• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA Catalogs

    HaMMLeT: An Infinite Hidden Markov Model with Local Transitions

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_15810_sip1_m.pdf
    Size:
    4.342Mb
    Format:
    PDF
    Download
    Author
    Dawson, Colin Reimer
    Issue Date
    2017
    Keywords
    Bayesian statistics
    Machine learning
    Time series modeling
    Advisor
    Morrison, Clayton T.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    In classical mixture modeling, each data point is modeled as arising i.i.d. (typically) from a weighted sum of probability distributions. When data arises from different sources that may not give rise to the same mixture distribution, a hierarchical model can allow the source contexts (e.g., documents, sub-populations) to share components while assigning different weights across them (while perhaps coupling the weights to "borrow strength" across contexts). The Dirichlet Process (DP) Mixture Model (e.g., Rasmussen (2000)) is a Bayesian approach to mixture modeling which models the data as arising from a countably infinite number of components: the Dirichlet Process provides a prior on the mixture weights that guards against overfitting. The Hierarchical Dirichlet Process (HDP) Mixture Model (Teh et al., 2006) employs a separate DP Mixture Model for each context, but couples the weights across contexts. This coupling is critical to ensure that mixture components are reused across contexts. An important application of HDPs is to time series models, in particular Hidden Markov Models (HMMs), where the HDP can be used as a prior on a doubly infinite transition matrix for the latent Markov chain, giving rise to the HDP-HMM (first developed, as the "Infinite HMM", by Beal et al. (2001), and subsequently shown to be a case of an HDP by Teh et al. (2006)). There, the hierarchy is over rows of the transition matrix, and the distributions across rows are coupled through a top-level Dirichlet Process. In the first part of the dissertation, I present a formal overview of Mixture Models and Hidden Markov Models. I then turn to a discussion of Dirichlet Processes and their various representations, as well as associated schemes for tackling the problem of doing approximate inference over an infinitely flexible model with finite computa- tional resources. I will then turn to the Hierarchical Dirichlet Process (HDP) and its application to an infinite state Hidden Markov Model, the HDP-HMM. These models have been widely adopted in Bayesian statistics and machine learning. However, a limitation of the vanilla HDP is that it offers no mechanism to model correlations between mixture components across contexts. This is limiting in many applications, including topic modeling, where we expect certain components to occur or not occur together. In the HMM setting, we might expect certain states to exhibit similar incoming and outgoing transition probabilities; that is, for certain rows and columns of the transition matrix to be correlated. In particular, we might expect pairs of states that are "similar" in some way to transition frequently to each other. The HDP-HMM offers no mechanism to model this similarity structure. The central contribution of the dissertation is a novel generalization of the HDP- HMM which I call the Hierarchical Dirichlet Process Hidden Markov Model With Local Transitions (HDP-HMM-LT, or HaMMLeT for short), which allows for correlations between rows and columns of the transition matrix by assigning each state a location in a latent similarity space and promoting transitions between states that are near each other. I present a Gibbs sampling scheme for inference in this model, employing auxiliary variables to simplify the relevant conditional distributions, which have a natural interpretation after re-casting the discrete time Markov chain as a continuous time Markov Jump Process where holding times are integrated out, and where some jump attempts "fail". I refer to this novel representation as the Markov Process With Failed Jumps. I test this model on several synthetic and real data sets, showing that for data where transitions between similar states are more common, the HaMMLeT model more effectively finds the latent time series structure underlying the observations.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Statistics
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055 | Tel 520-621-6442
    repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.