ABOUT THE COLLECTION

Tree-Ring Research is the peer-reviewed journal of the Tree Ring Society. The journal was first published in 1934 under the title Tree-Ring Bulletin. In 2001, the title changed to Tree-Ring Research.

Issues from 1934–2006 are freely available on the publications section of the Tree-Ring Society website. The Tree-Ring Society and the Laboratory of Tree-Ring Research at the University of Arizona partnered with the University Libraries to re-digitize back issues for improved searching capabilities and long-term preservation.


QUESTIONS?

Contact the Editor of Tree-Ring Research at editor@treeringsociety.org.

Collections in this community

Recent Submissions

  • In Memoriam- Austin Long (1936–2010)

    Eastoe, Chris; Leavitt, Steven W. (Tree-Ring Society, 2011-01)
  • Preventing Bark-Caused Increment Borer Jams: A Modified Technique For Core Extraction

    Tyminski, William P.; University of North Carolina at Greensboro, Carolina Tree-Ring Science Laboratory, Department of Geography (Tree-Ring Society, 2011-07)
    When coring thick-barked trees, increment cores often become compressed and jammed inside the narrow region of the borer shaft. These jams can be problematic for two reasons: first, it often leaves the core unusable; second, the jam may be so tightly compressed in the borer that removal is difficult, especially in the field. Although procedures to evacuate these jams are documented in the literature, methods of prevention are not. Here, a modified manual method of increment boring that can reduce the likelihood of jams and, in addition, decrease the number of deformed core samples is described. Traditional and modified boring methods were randomly assigned to 40 Douglas-fir trees (80 cores) at a research site along the Oregon coast. Results show that jams were associated with traditional boring over six times more than with the proposed modified technique.
  • Regional And Watershed-Scale Coherence In The Stable-Oxygen and Carbon Isotope Ratio Time Series in Tree Rings Of Coast Redwood (Sequoia Sempervirens)

    Roden, John S.; Johnstone, James A.; Dawson, Todd E.; Department of Biology, Southern Oregon University; Department of Integrative Biology, University of California (Tree-Ring Society, 2011-07)
    Coast redwood (Sequoia sempervirens) ecosystems are strongly influenced by the presence of summer marine fog, and variation in fog frequency is closely linked to climate variation in the NE Pacific region. Because oxygen isotope composition (𝛿¹⁸O) of organic matter records distinct water sources (e.g. summertime fog vs. winter precipitation) and carbon isotopes (𝛿¹³C) are typically sensitive to humidity and water status, it then follows that inter-annual variation in tree-ring isotope ratios, which are coherent across multiple sites, should preserve a potentially powerful proxy for climate reconstruction. Here we present an analysis of a 50-year time series for both 𝛿¹⁸O and 𝛿¹³C values from subdivided tree rings obtained from multiple redwood trees at multiple sites. Within-site and between site correlations were highly significant (p < 0.01) for the 𝛿¹⁸O time series indicating a regionally coherent common forcing of 𝛿¹⁸O fractionation. Within-site and between-site correlation coefficients were lower for the 𝛿¹³C than for the 𝛿¹⁸O time series although most were still significant (at least to p < 0.05). The hypothesized reason for the differences in the correlation is that carbon isotope discrimination is more sensitive to microenvironmental and tree-level physiological variation than is 𝛿¹⁸O fractionation. Stable-isotope variation in tree-ring cellulose was similar between slope, gully and riparian micro-habitats within a single watershed, implying that minor topographic variation when sampling should not be a major concern. These results indicate that stable-isotope time series from redwood tree rings are strongly influenced by regional climate drivers and potentially valuable proxies for Pacific coastal climate variability.
  • Dendrochronological Dating Of The Lund-Spathelf House, Ann Arbor, Michigan, USA

    Harley, Grant L.; Grissino-Mayer, Henri D.; LaForest, Lisa B.; McCauley, Patrick; Laboratory of Tree-Ring Science, Department of Geography, The University of Tennessee (Tree-Ring Society, 2011-07)
    The Lund-Spathelf House is located at 1526 Pontiac Trail in Ann Arbor, Michigan. During a recent renovation, the owner sought information regarding the construction of the house by searching through numerous written records. Despite an extensive history of the land on which the house currently sits, neither a construction year nor general period of construction could be obtained. Therefore, four samples of oak (Quercus spp.) were extracted from floor boards throughout the house for dendrochronological dating. The four samples crossdated conclusively with each other both visually and statistically and were used to build a floating 126-year tree-ring chronology. We used COFECHA to statistically evaluate the absolute temporal placement of this chronology against a nearby regional chronology (MI005.CRN) from the Cranbrook Institute, Michigan. The Lund-Spathelf House chronology was anchored in time with the regional chronology from A.D. 1720 to 1845 with a correlation coefficient of 0.62 (p < 0.0001, t < 8.76, n = 126). All four oak samples provided conclusive cutting dates of A.D. 1845, indicating the year the Lund-Spathelf House was constructed.
  • Latewood Chronology Development For Summer-Moisture Reconstruction In The US Southwest

    Griffin, Daniel; Meko, David M.; Touchan, Ramzi; Leavitt, Steven W.; Woodhouse, Connie A.; Laboratory of Tree-Ring Research, University of Arizona; School of Geography and Development, University of Arizona (Tree-Ring Society, 2011-07)
    Tree-ring studies have demonstrated that conifer latewood measurements contain information on long-term North American monsoon (NAM) variability, a hydroclimatic feature of great importance to plants, animals, and human society in the US Southwest. This paper explores data-treatment options for developing latewood chronologies aimed at NAM reconstruction. Archived wood samples for five Douglas-fir (Pseudotsuga menziesii, Mirb. Franco) sites in southeastern Arizona are augmented with new collections. The combined dataset is analyzed along with time series of regionally averaged observed precipitation to quantify the strength of regional precipitation signal in latewood time series and to identify ways of increasing the signal strength. Analysis addresses the signal strength influences of including or excluding ‘‘false’’ latewood bands in the nominal ‘‘latewood’’ portion of the ring, the necessary adjustment of latewood width for statistical dependence on antecedent earlywood width, and tree age. Results suggest that adjusted latewood width chronologies from individual sites can explain around 30% of the variance of regional summer (July–August) precipitation—increasing to more than 50% with use of multiple chronologies. This assessment is fairly insensitive to the treatment of false latewood bands (in intra-annual width and 𝛿¹³C variables), and to whether latewood-width is adjusted for dependence on earlywood-width at the core or site level. Considerations for operational chronology development in future studies are (1) large tree-to-tree differences in moisture signal, (2) occasional nonlinearity in EW-LW dependence, and (3) extremely narrow and invariant latewood width in outer portions of some cores. A protocol for chronology development addressing these considerations is suggested.
  • Basic Principles And Methods Of Dendrochronological Specimen Curation

    Creasman, Pearce Paul; Laboratory of Tree-Ring Research, University of Arizona (Tree-Ring Society, 2011-07)
    Dendrochronological collections include continuously expanding multi-taxon records of tree growth that encompass millennia and often offer irreplaceable sources of biological, environmental, and cultural information. Nevertheless, each departure of a scholar from the field—whether because of death, retirement, career change, shift in research priorities, or even move to a new institution—places collections in increased danger of being lost as viable resources. Without an organized and concerted effort to address outstanding and future issues of specimen curation, dendrochronology as a whole may become mired in the same trap that befalls many other scientific fields: collections apathy. Dendrochronological collections exist as a result of decades of effort and should function to support current and future scientific endeavors, education, and outreach, but cannot do so without adequate attention to their future. Intended as a ‘‘call to arms’’ this paper, focused on dendrochronology in the academic and public sector, aims to encourage discussion and, more importantly, to provide a foundation for and to instill a sense of urgency regarding long-term preservation of dendrochronological specimens.
  • Blue Intensity In Pinus Sylvestris Tree Rings: A Manual For A New Palaeoclimate Proxy

    Campbell, Rochelle; McCarroll, Danny; Robertson, Iain; Loader, Neil J.; Grudd, Håkan; Gunnarson, Björn; Department of Geography, College of Science, Swansea University; Bert Bolin Centre for Climate Research, Department of Physical Geography and Quaternary Geology, Stockholm University; Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå , Sweden (Tree-Ring Society, 2011-07)
    Minimum blue intensity is a reflected light imaging technique that provides an inexpensive, robust and reliable surrogate for maximum latewood density. In this application it was found that temperature reconstructions from resin-extracted samples of Pinus sylvestris (L.) from Fennoscandia provide results equivalent to conventional x-ray densitometry. This paper describes the implementation of the blue intensity method using commercially available software and a flat-bed scanner. A calibration procedure is presented that permits results obtained by different laboratories, or using different scanners, to be compared. In addition, the use of carefully prepared and chemically treated 10-mm-diameter cores are explored; suggesting that it may not be necessary to produce thin laths with the rings aligned exactly perpendicular to the measurement surface.
  • Tricycle: A Universal Conversion Tool For Digital Tree-Ring Data

    Brewer, Peter W.; Murphy, Daniel; Jansma, Esther; Malcolm and Carolyn Wiener Laboratory for Aegean and Near Eastern Dendrochronology, Cornell University; Faculty of Geosciences, Utrecht University; Cultural Heritage Agency, Rijksdienst voor het Cultureel Erfgoed (RCE), Amersfoort, The Netherlands (Tree-Ring Society, 2011-07)
    There are at least 21 dendro-data formats used in dendrochronology laboratories around the world. Many of these formats are read by a limited number of programs, thereby inhibiting collaboration, limiting critical review of analyses, and risking the long-term accessibility of datasets. Some of the older formats are supported by a single program and are falling into disuse, opening the risk for data to become obsolete and unreadable. These formats also have a variety of flaws, including but not limited to no accurate method for denoting measuring units, little or no metadata support, lack of support for variables other than whole ring widths (e.g. earlywood/latewood widths, ratios and density). The proposed long-term solution is the adoption of a universal data standard such as the Tree-Ring Data Standard (TRiDaS). In the short and medium term, however, a tool is required that is capable of converting not only back and forth to this standard, but between any of the existing formats in use today. Such a tool is also required to provide continued access to data archived in obscure formats. This paper describes TRiCYCLE, a new application that does just this. TRiCYCLE is an open-source, cross-platform, desktop application for the conversion of the most commonly used data formats. Two open source Java libraries upon which TRiCYCLE depends are also described. These libraries can be used by developers to implement support for all data formats within their own applications.
  • Incorporating Climatological Techniques To Improve Tree-Ring Site Selection In Complex Terrain

    Wise, Erika K.; Department of Geography, University of North Carolina at Chapel Hill (Tree-Ring Society, 2011-01)
    Dendroclimatologists often approach field work with the intent of reconstructing a particular climate variable (e.g. temperature, streamflow, precipitation). Although guidelines exist for species and site selection, isolating the signal of interest is difficult in areas with complex terrain or a lack of ideal sites. In this case study, I suggest climatological techniques for a more efficient sampling scheme and apply these techniques to identify criteria for selecting sites sensitive to winter precipitation in the north-central Rocky Mountains. These techniques include examining factors influencing the regional response of tree growth to climate by utilizing the International Tree-Ring Databank (ITRDB), using eigenvector analyses to identify modes of variability between sites, and delineating climate regions based on the variable of interest through climate regionalization. Results suggest that low- or mid-elevation Pseudotsuga menziesii sites should be targeted for maximizing the winter precipitation signal in the case study area. The season of precipitation impacting growth was found to be a major component of the overall variability between sites.
  • Climate Response Of Oak Species Across An Environmental Gradient In The Southern Appalachian Mountains, USA

    White, Philip B.; Van De Gevel, Saskia L.; Grissino-Mayer, Henri D.; LaForest, Lisa B.; Deweese, Georgina G.; Department of Geography and Planning, Appalachian State University; Laboratory of Tree-Ring Science, Department of Geography, University of Tennessee; Department of Geosciences, University of West Georgia (Tree-Ring Society, 2011-01)
    We investigated the climatic sensitivity of oak species across a wide elevation range in the southern Appalachian Mountains, an area where greater knowledge of oak sensitivity is desired. We developed three tree-ring chronologies for climatic analyses from oak cores taken from the Jefferson National Forest, Virginia, and Great Smoky Mountains National Park, Tennessee. We statistically compared the three chronologies with monthly climatic data from 1930 to 2005. The results of our analyses suggest that oak species in the southern Appalachian Mountains require a cool, moist summer for above average-growth to occur. The climate signal increased in duration from high to low elevational and latitudinal gradients, indicating a strong moisture-preconditioning signal during the previous fall at our lowest elevation site. A notable finding of this research was the degree of responsiveness in oaks that are growing in forest interior locations where strong climate sensitivity would not be expected because of the effects of internal stand dynamics. Furthermore, the relationships between evapotranspiration rates and the geographic factors of elevation, latitude, and aspect influence the climate signals at the three sites. Our research suggests that oaks located in a warm and xeric climate experience more physiological stress and put forth a more varied climatic response.
  • Reconstructing Population Dynamics Of Yellow-Cedar In Declining Stands: Baseline Information From Tree Rings

    Stan, Amanda B.; Maertens, Thomas B.; Daniels, Lori D.; Zeglen, Stefan; Department of Geography, University of British Columbia; British Columbia Ministry of Forests and Range, Nanaimo, British Columbia V9T 6E9, Canada (Tree-Ring Society, 2011-01)
    Yellow-cedar (Chamaecyparis nootkatensis (D. Don) Spach) forests of coastal British Columbia are apparently experiencing decline in a manner similar to that observed in southeastern Alaska. In this pilot study, we collect tree-ring data from live and standing dead yellow-cedar trees from four declining sites on the North Coast of British Columbia. We use this data to compare growth patterns at our sites to those of yellow-cedar trees at non-declining and declining sites in southwestern British Columbia and southeastern Alaska and, in addition, to assess the possibility of reconstructing yellow-cedar population dynamics in declining stands using dendrochronology. We found coherent growth patterns (i.e. marker years and periods of suppression) among yellow-cedar chronologies from non-declining and declining sites across a broad geographic range as well as unique growth patterns between our chronologies from declining sites and those from declining sites in nearby Alaska. Using outer-ring dates of increment cores, we were able to estimate time since death of decade- to century-old standing dead yellow-cedar trees, although the precision of the estimates was influenced by partial cambial mortality and erosion of outer rings. Our results provide baseline dendrochronological information that will be useful for planning future studies that assess growth-climate relations and reconstruct the long-term population dynamics of yellow-cedar in declining stands.
  • Scientific Advisory-- Expanded Application Of Dendrochronology Collections: Collect And Save Exudates

    Santiago-Blay, Jorge A.; Lambert, Joseph B.; Creasman, Pearce Paul; Department of Paleobiology, MRC-121, National Museum of Natural History, Smithsonian Institution; Department of Chemistry, Trinity University; Department of Chemistry, Northwestern University; Laboratory of Tree-Ring Research, University of Arizona (Tree-Ring Society, 2011-01)
  • Software Review Autobox And Its Use In Dendroecology

    Rauchfuss, Julia; Mid Sweden University, Department of Natural Sciences, Engineering and Mathematics (Tree-Ring Society, 2011-01)
  • The Dendrochronology Of Pinus Elliottii In The Lower Florida Keys: Chronology Development And Climate Response

    Harley, Grant L.; Grissino-Mayer, Henri D.; Horn, Sally P.; Laboratory of Tree-Ring Science, Initiative for Quaternary Paleoclimate Research, Department of Geography, The University of Tennessee (Tree-Ring Society, 2011-01)
    South Florida slash pine (Pinus elliottii var. densa) is the southernmost pine species in the United States and the foundation species of the globally endangered pine rockland communities in south Florida. To test if slash pine produces annual growth rings in the Lower Florida Keys, we counted the number of rings on samples collected from the North Big Pine Key site (NBP), which contained a fire scar from a known wildfire and a known date for hurricane-induced tree mortality (2006 or 2007). In addition, a crossdated tree-ring chronology (1871–2009) was developed from living trees and remnant wood found at the site and compared to divisional climate data to determine how the regional climate regime influences radial growth. Our analyses demonstrated that slash pine forms anatomically distinct, annual growth rings with the consistent year-to-year variability necessary for rigorous dendrochronological studies. Response-function and correlation analysis showed that annual growth of slash pine at NBP is primarily influenced by water availability during the growing season. However, no significant correlations were found between tree growth and the Atlantic Multidecadal Oscillation or the El Niño-Southern Oscillation. Our study reveals the potential of producing high-quality dendrochronological data in southern Florida from slash pine, which should prove useful in further studies on fire history and tree phenology and for assessing the projected impacts of impending climate change on the fragile pine rockland community.
  • Do Females Differ From Males Of European Yew (Taxus Baccata L.) In Dedrochronological Analysis?

    Cedro, Anna; Iszkulo, Grzegorz; Climatology and Marine Meteorology Department, Szczecin University; Institute of Dendrology, Polish Academy of Sciences, ul. Parkowa 5, 62-035 Kórnik, Poland; University of Zielona Góra, Department of Biology, Prof. Z. Szafrana 1 (Tree-Ring Society, 2011-01)
    Female and male plants often differ in reproductive effort and habitat requirements. The aim of this study was to analyze these differences between the sexes and the effect of climate on tree-ring width in European yew (Taxus baccata). The study was conducted in five yew populations in western Poland. Wood samples were taken from 196 trees (98 females and 98 males) and subjected to the standard procedure of dendrochronological dating. Mean tree-ring width was significantly higher in males since about the beginning of sexual maturity. No such relationship was observed in the youngest population, which is the most distant from the current geographic limit for this species. In most of the analyzed populations, width of tree rings in female individuals, in contrast to males, was negatively correlated with high temperatures in August and September in the year prior to the formation of the tree ring, and correlated positively with precipitation in June and July in the current year. The differentiation of tree-ring width between males and females likely began when the yew trees reached sexual maturity, probably because of the assumed greater reproductive effort of females in comparison with males. The lack of difference in the youngest population may result from a short time since the beginning of sexual maturity or from a milder climate in that region. Different reactions of the two sexes to climate indicate that this may affect the range and viability of populations at the limits of the range.
  • Potential For Developing Fire Histories In Chir Pine (Pinus Roxburghii) Forest In The Himalayan Foothills

    Brown, Peter M.; Bhattacharyya, Amalava; Shah, Santosh K.; Rocky Mountain Tree-Ring Research, 2901 Moore Lane, Fort Collins, CO 80526, USA; Birbal Sahni Institute of Palaeobotany, 53 University Road, Lucknow, 226 007, India (Tree-Ring Society, 2011-01)
    We report on the potential for developing long-term fire histories from chir pine (Pinus roxburghii Sarg.) forests in the Western Himalayan foothills based on a preliminary study from a stand located in the state of Uttarakhand in northern India. Rings from trees collected to develop a master skeleton plot chronology were generally complacent with false rings present during most years, but were crossdatable with only minor difficulty. The oldest tree confidently crossdated back to 1886, with good sample depth (5 trees) from 1911, which helped date the fire scars in cross-sections collected from three trees. Fire frequency as determined from fire-scar dates was high, with mean and median fire intervals of 3 years from 1938 to 2006. Fires were likely from human ignitions given the prevalence of human land use in the site. Fire scars were generally recorded at false-ring boundaries and likely represent burning during the hot, dry period in May or early June before the onset of monsoon rainfall beginning in mid-June. Although only three fire-scarred trees were sampled, this preliminary assessment shows there is a potential for additional samples from other stands to develop longer-term fire histories to better understand the role of fire in the ecology and management of chir pine throughout its range in the Himalaya region.