Show simple item record

dc.contributor.authorGuadiana, Juan
dc.contributor.authorMacias, Fil
dc.contributor.authorBraun, Chris
dc.date.accessioned2016-02-05T16:42:03Zen
dc.date.available2016-02-05T16:42:03Zen
dc.date.issued2011-10en
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/595731en
dc.descriptionITC/USA 2011 Conference Proceedings / The Forty-Seventh Annual International Telemetering Conference and Technical Exhibition / October 24-27, 2011 / Bally's Las Vegas, Las Vegas, Nevadaen_US
dc.description.abstractThe Isotropic radiator, a device capable of radiating energy evenly in all directions is an abstraction, itsʼ real counterpart is called an omnidirectional (omni) antenna. The omnidirectional antenna is found on many vehicles. Ideally, only one receiving system is ever needed to acquire an omni, no matter the vehicle orientation, given the range is not excessive. There are trade-offs with antenna efficiency, with gain typically around -15 dBi (95% coverage). This paper proposes abandoning this paradigm. If a vehicle knows where the ground is why radiate energy up into the sky, where there are no receiving stations. This can be achieved by integrating some instrumentation with a discrete antenna array so that it radiates only from selected elements. The accuracy required is modest, an inexpensive Inertial Measurement Unit (IMU) is sufficient to improve link margin by 10, 20dB or more. These numbers are credible, as outlandish as they are, and substantiated in this paper. Ironically, from the ground this non-isotropic antenna looks very isotropic. Of significant benefit, this Smarter Antenna concept enables spatial discrimination and with that comes spectrum efficiency gains beyond that achieved by other means including advanced modulation formats.
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.language.isoen_USen
dc.publisherInternational Foundation for Telemeteringen
dc.relation.urlhttp://www.telemetry.org/en
dc.rightsCopyright © held by the author; distribution rights International Foundation for Telemeteringen
dc.subjectAegis Readiness Assessment Vehicle (ARAV)en
dc.subjectSmarter Antennaen
dc.subjectSub-Aperture Trackingen
dc.subjectIsotropic Antennaen
dc.subjectC-Banden
dc.titleA Smarter Antennaen_US
dc.typetexten
dc.typeProceedingsen
dc.contributor.departmentWhite Sands Missile Rangeen
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en
refterms.dateFOA2018-06-17T23:24:58Z
html.description.abstractThe Isotropic radiator, a device capable of radiating energy evenly in all directions is an abstraction, itsʼ real counterpart is called an omnidirectional (omni) antenna. The omnidirectional antenna is found on many vehicles. Ideally, only one receiving system is ever needed to acquire an omni, no matter the vehicle orientation, given the range is not excessive. There are trade-offs with antenna efficiency, with gain typically around -15 dBi (95% coverage). This paper proposes abandoning this paradigm. If a vehicle knows where the ground is why radiate energy up into the sky, where there are no receiving stations. This can be achieved by integrating some instrumentation with a discrete antenna array so that it radiates only from selected elements. The accuracy required is modest, an inexpensive Inertial Measurement Unit (IMU) is sufficient to improve link margin by 10, 20dB or more. These numbers are credible, as outlandish as they are, and substantiated in this paper. Ironically, from the ground this non-isotropic antenna looks very isotropic. Of significant benefit, this Smarter Antenna concept enables spatial discrimination and with that comes spectrum efficiency gains beyond that achieved by other means including advanced modulation formats.


Files in this item

Thumbnail
Name:
ITC_2011_11-15-01.pdf
Size:
2.381Mb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record