Show simple item record

dc.contributor.authorMelle, Christophe
dc.contributor.authorChaimbault, David
dc.contributor.authorPeleau, Fabien
dc.contributor.authorKaras, Alain
dc.date.accessioned2015-10-14T18:15:27Zen
dc.date.available2015-10-14T18:15:27Zen
dc.date.issued2013-10en
dc.identifier.issn0884-5123en
dc.identifier.issn0074-9079en
dc.identifier.urihttp://hdl.handle.net/10150/579680en
dc.descriptionITC/USA 2013 Conference Proceedings / The Forty-Ninth Annual International Telemetering Conference and Technical Exhibition / October 21-24, 2013 / Bally's Hotel & Convention Center, Las Vegas, NVen_US
dc.description.abstractThe flight test mission services need higher data rates due to increased system complexity and the need for more accurate, higher rate, and better data acquisition. The existing L or S band frequency spectrum allocation was a limiting factor to meet this increased data rate requirement. The World Radio-communication Conference (WRC 2007) attributed new additional frequency spectrum allocations in the C band for Aeronautical Mobile Telemetry (AMT). The international flight test community has taken this opportunity to immediately take advantage of the new C-band range 5091-5250MHz. This paper presents the multi-band feed product designed by the RF & Antenna Laboratory of ZODIAC DATA SYSTEMS company. This feed is foreseen to be used in prime focus configuration on any diameter parabola dish providing telemetry and tracking channels in three L, S, and C bands. Here, are described the concept and the technology achieved taking into consideration the performance and industrial constraints. Moreover, this contribution focuses on the electromagnetic simulations of radiating elements, the feed network and RF system integration. This paper is structured as follows: firstly, the objectives and the motivation for developing a prime focus feed which works in L, S, C bands are presented. In particular, the market constraints and approach to find the best solution satisfying the feed RF requirements, and mechanical constraints, such as weight, size and cost, are discussed. The second section describes the 5 step development cycle: principle and technology, design of the telemetry channels and tracking function, cohabitation of the different radiating elements, and problems of the channels isolations. The third section discusses the performance achieved using electromagnetic simulations. The fourth section talks about the integration of RF system feed. The paper concludes by discussing future work using the same concept that is applied to other telecommunication or telemetry frequency bands.
dc.description.sponsorshipInternational Foundation for Telemeteringen
dc.language.isoen_USen
dc.publisherInternational Foundation for Telemeteringen
dc.relation.urlhttp://www.telemetry.org/en
dc.rightsCopyright © held by the author; distribution rights International Foundation for Telemeteringen_US
dc.subjectTri-banden
dc.subjectL, S, C bandsen
dc.subjectMulti-band feeden
dc.subjectGround stationen
dc.subjectTelemetryen
dc.subjectTrackingen
dc.subjectSingle Channel Monopulse (SCM)en
dc.subjectFlight testen
dc.titleA Tri-Band L, S, C Prime Focus Feed: Concept, Design and Performanceen_US
dc.typetexten
dc.typeProceedingsen
dc.contributor.departmentZodiac Data Systemsen
dc.identifier.journalInternational Telemetering Conference Proceedingsen
dc.description.collectioninformationProceedings from the International Telemetering Conference are made available by the International Foundation for Telemetering and the University of Arizona Libraries. Visit http://www.telemetry.org/index.php/contact-us if you have questions about items in this collection.en_US
refterms.dateFOA2018-09-10T14:52:11Z
html.description.abstractThe flight test mission services need higher data rates due to increased system complexity and the need for more accurate, higher rate, and better data acquisition. The existing L or S band frequency spectrum allocation was a limiting factor to meet this increased data rate requirement. The World Radio-communication Conference (WRC 2007) attributed new additional frequency spectrum allocations in the C band for Aeronautical Mobile Telemetry (AMT). The international flight test community has taken this opportunity to immediately take advantage of the new C-band range 5091-5250MHz. This paper presents the multi-band feed product designed by the RF & Antenna Laboratory of ZODIAC DATA SYSTEMS company. This feed is foreseen to be used in prime focus configuration on any diameter parabola dish providing telemetry and tracking channels in three L, S, and C bands. Here, are described the concept and the technology achieved taking into consideration the performance and industrial constraints. Moreover, this contribution focuses on the electromagnetic simulations of radiating elements, the feed network and RF system integration. This paper is structured as follows: firstly, the objectives and the motivation for developing a prime focus feed which works in L, S, C bands are presented. In particular, the market constraints and approach to find the best solution satisfying the feed RF requirements, and mechanical constraints, such as weight, size and cost, are discussed. The second section describes the 5 step development cycle: principle and technology, design of the telemetry channels and tracking function, cohabitation of the different radiating elements, and problems of the channels isolations. The third section discusses the performance achieved using electromagnetic simulations. The fourth section talks about the integration of RF system feed. The paper concludes by discussing future work using the same concept that is applied to other telecommunication or telemetry frequency bands.


Files in this item

Thumbnail
Name:
ITC_2013_13-16-05.pdf
Size:
484.3Kb
Format:
PDF

This item appears in the following Collection(s)

Show simple item record