ABOUT THE COLLECTION

The International Telemetering Conference/USA (ITC/USA) is dedicated to the promotion and stimulation of technical growth in telemetering and its allied arts and sciences. It is the premier annual forum and technical exhibition providing telemetry specific short courses, technical papers from professionals and students, and exhibits of the industry’s leading companies. ITC/USA is sponsored by the International Foundation for Telemetering (IFT), a non-profit corporation dedicated to serving the technical and professional interests of the telemetering community.

This collection contains the proceedings of the thirty-fourth International Telemetering Conference, October 26-29, 1998. The conference, sponsored by the International Foundation for Telemetering, was held at the Town & Country Resort Hotel and Convention Center in San Diego, California.

QUESTIONS?

Contact http://www.telemetry.org/index.php/contact-us with your questions about the International Telemetering Conference Proceedings.

Recent Submissions

  • X-33 INTEGRATED TEST FACILITY EXTENDED RANGE SIMULATION

    Sharma, Ashley; National Aeronautics and Space Administration (International Foundation for Telemetering, 1998-10)
    In support of the X-33 single-stage-to-orbit program, NASA Dryden Flight Research Center was selected to provide continuous range communications of the X-33 vehicle from launch at Edwards Air Force Base, California, through landing at Malmstrom Air Force Base, Montana, or at Michael Army Air Field, Utah. An extensive real-time range simulation capability is being developed to ensure successful communications with the autonomous X-33 vehicle. This paper provides an overview of the various levels of simulation, integration, and test being developed to support the X-33 extended range subsystems. These subsystems include the flight termination system, L-band command uplink subsystem, and S-band telemetry downlink subsystem.
  • THE X-33 EXTENDED FLIGHT TEST RANGE

    Mackall, Dale A.; Sakahara, Robert; Kremer, Steven E.; National Aeronautics and Space Administration; Edwards Air Force Base (International Foundation for Telemetering, 1998-10)
    Development of an extended test range, with range instrumentation providing continuous vehicle communications, is required to flight-test the X-33, a scaled version of a reusable launch vehicle. The extended test range provides vehicle communications coverage from California to landing at Montana or Utah. This paper provides an overview of the approaches used to meet X-33 program requirements, including using multiple ground stations, and methods to reduce problems caused by reentry plasma radio frequency blackout. The advances used to develop the extended test range show other hypersonic and access-to-space programs can benefit from the development of the extended test range.
  • EXTENDED RANGE COMMUNICATIONS SUPPORT FOR THE X-33

    Eslinger, Brian; Garza, Reynaldo; TYBRIN Corp.; Edwards Air Force Base (International Foundation for Telemetering, 1998-10)
    Communications support for the X-33 requires addressing several unique challenges to meet program and range safety requirements. As an avenue to minimize costs, the program has reduced requirements to the communications system, which lowered the cost of networking the extended range. Cost trade-offs showed that by lowering the telemetry data rate from 2 Megabits per second to 1.440 Megabits per second that significant cost avoidance could be realized. Also, by adopting standard telecommunications data rate for the uplink data stream, an efficient and integrated solution for the extended range communications could be supported. Meeting the program requirements as well as range safety requirements for this effort are critical to the success of the program. This paper describes some of the important requirements driving the design of the extended range communications support and the design of the system to meet those requirements.
  • X-33 TELEMETRY BEST SOURCE SELECTION, PROCESSING, DISPLAY, AND SIMULATION MODEL COMPARISON

    Burkes, Darryl A.; Air Force Flight Test Center (International Foundation for Telemetering, 1998-10)
    The X-33 program requires the use of multiple telemetry ground stations to provide continuous coverage of the launch, ascent, re-entry and approach phases for flights from Edwards AFB, California, to landings at Dugway Proving Grounds, Utah, and Malmstrom AFB, Montana. This paper will discuss the X-33 telemetry requirements and design, including information on the fixed and mobile telemetry systems, automated best source selection system, processing/display support for range safety officers (RSO) and range engineers, and comparison of real-time data with simulated data using the Dynamic Ground Station Analysis model. Due to the use of multiple ground stations and short duration flights, the goal throughout the X-33 missions is to automatically provide the best telemetry source for critical vehicle performance monitoring. The X-33 program was initiated by National Aeronautics and Space Administration (NASA) Cooperative Agreement No. NCC8-115 with Lockheed Martin Skunk Works (LMSW).
  • TUNABLE FSK/AM SIGNAL DETECTOR ON A 6U-VME CARD

    Hordeski, Theodore J.,Jr.; GDP Space Systems (International Foundation for Telemetering, 1998-10)
    The telemetry and aerospace communities require communications equipment providing various modulation and demodulation formats. One format, with application in Space Ground Link Subsystems (SGLS), utilizes a Ternary (tri-tone) Frequency Shift-Keyed (FSK) signal Amplitude Modulated (AM) by a triangle waveform. Historically, SGLS equipment has operated with a fixed tri-tone frequency set (e.g., 65 kHz, 76 kHz and 95 kHz). The need for additional transmission channels and increased bandwidth efficiency creates the requirement for equipment with the flexibility to generate and receive varied and higher frequency tone sets. Combining analog and digital techniques, GDP Space Systems has developed the FDT001. It is an FSK/AM detector which recovers a bit rate clock at one of four selectable bit rates and reproduces ternary FSK modulation data over a widely tunable range of tone frequencies. The tuning range is expanded by using two methods of digital frequency discrimination. The following paper describes the design of the FDT001.
  • APPROACH FOR A WIDE DEVIATION RF PHASE MODULATOR on a 6U-VME-CARD

    Weitzman, Jonathan M; GDP Space Systems (International Foundation for Telemetering, 1998-10)
    A Phase Modulator combining digital techniques with non-traditional analog circuitry can minimize the shortcomings of a traditional (purely analog) Phase Modulator. These shortcomings are: nonlinear response from input modulating signal to output modulated signal; parameters (frequency and modulation index) that are difficult to set; and the need for complex filters. The design approach discussed in this paper uses a combination of Direct Digital Synthesis (DDS) and analog devices operating in their linear range to generate a Phase Modulated RF (140 MHz) signal. A Numerically Controlled Oscillator (NCO) digitally generates the first IF yielding a very accurate, repeatable and linear signal with easily adjustable parameters such as frequency and modulation index. Linear multipliers (instead of saturated diode mixers or step recovery diodes) are used for up-conversion to RF. Using linear multipliers eases the filtering requirements due to the significantly reduced harmonics and IM (Inter-Modulation) terms. The resulting RF signal is easily translated to higher frequency bands such as L, S, C, X or K.
  • High Rate Digital Demodulator ASIC

    Ghuman, Parminder; Sheikh, Salman; Koubek, Steve; Hoy, Scott; Gray, Andrew; National Aeronautics and Space Administration; Lockheed Martin Space Mission Systems & Services; SGT Inc. (International Foundation for Telemetering, 1998-10)
    The architecture of the High Rate (600 Mega-bits per second) Digital Demodulator (HRDD) ASIC capable of demodulating BPSK and QPSK modulated data is presented in this paper. The advantages of all-digital processing include increased flexibility and reliability with reduced reproduction costs. Conventional serial digital processing would require high processing rates necessitating a hardware implementation other than CMOS technology such as Gallium Arsenide (GaAs) which has high cost and power requirements. It is more desirable to use CMOS technology with its lower power requirements and higher gate density. However, digital demodulation of high data rates in CMOS requires parallel algorithms to process the sampled data at a rate lower than the data rate. The parallel processing algorithms described here were developed jointly by NASA’s Goddard Space Flight Center (GSFC) and the Jet Propulsion Laboratory (JPL). The resulting all-digital receiver has the capability to demodulate BPSK, QPSK, OQPSK, and DQPSK at data rates in excess of 300 Mega-bits per second (Mbps) per channel. This paper will provide an overview of the parallel architecture and features of the HRDR ASIC. In addition, this paper will provide an overview of the implementation of the hardware architectures used to create flexibility over conventional high rate analog or hybrid receivers. This flexibility includes a wide range of data rates, modulation schemes, and operating environments. In conclusion it will be shown how this high rate digital demodulator can be used with an off-the-shelf A/D and a flexible analog front end, both of which are numerically computer controlled, to produce a very flexible, low cost high rate digital receiver.
  • A VALUABLE TOOL TO HAVE WHEN WORKING WITH PSK DEMODULATORS IS A KNOWLEDGE OF ITS FUNCTIONALITY

    Cylc, Linda; Aydin Telemetry (International Foundation for Telemetering, 1998-10)
    PSK demodulators have been an integral part of the signal recovery process for decades. Unless a person has designed a demodulator, how much can a person know or understand about its operation? Instruction on how to set up a demodulator’s parameters to acquire a signal is found in a manual. An explanation of why parameters are set a certain way to handle particular input signal characteristics is often not provided in a manual. This paper is designed to be a tool to aid engineers, technicians, and operators who utilize demodulators. Its purpose is to relay the functionality of a demodulator to a user so that he or she can take advantage of its control parameters and status feedback. Knowing the reasons why a demodulator is set to certain parameters may greatly reduce confusion when a system is not working properly. On site troubleshooting may be accomplished without the need to call the manufacturer of the product. Another advantage of understanding the operation will be recognized when interfacing with the manufacturer. A person will be able to relay the information to a design engineer more easily, and will understand more of the engineer’s feedback on the potential problem. Utilizing this paper as an aid to enhance operation of a PSK demodulator will bring a user one step closer to understanding the complexity of its design.
  • Application of IP Multicasting to the NASA Communications Command and Telemetry Ground Network

    Spinolo, M. Chris; National Aeronautics and Space Administration (International Foundation for Telemetering, 1998-10)
    The NASA Communications (Nascom) Division has been directed to deploy Internet Protocol (IP) based technology for the ground segments of all present and future spaceflight telemetry networks. The Nascom network supports all NASA spaceflight telemetry, command and status requirements, from sounding rockets and balloons to the Hubble Space Telescope and the Space Shuttle. This paper discusses the challenges of transitioning a 35 year old, custom engineered, worldwide legacy telemetry network to IP, and the resulting, new NASA IP Operational Network for ground transport of spacecraft telemetry and command.
  • Range Communications System Using Asynchronous Transfer Mode (ATM)

    Eslinger, Brian; McCombe, Joleen; TYBRIN Corp.; Edwards Air Force Base (International Foundation for Telemetering, 1998-10)
    As aircraft become more complex and require more resources over larger areas, the challenge of the test ranges is to provide economical solutions to move telemetry data from the test article to the data processing facility. Edwards AFB is in the process of upgrading the ground transmission facilities to transport data including telemetry using Asynchronous Transfer Mode (ATM). This paper documents the challenge of supporting telemetry over ATM, different approaches that are available, the benefits of using ATM, and discussion of candidate hardware options. The effort at Edwards include the linking of the major range facilities over a fiber optic backbone and links to other major test ranges in the Southwest Range Complex via microwave. The fiber optic backbone is expected to be OC-12c (622 Mbps) ATM supporting new capabilities as well as all of the legacy systems. The backbone system will be designed so that migration to OC-48 is possible without service disruption. The microwave links are multiple DS-3 capable. Some of these DS-3s may support legacy systems, but the ability to link ranges using ATM is expected simultaneously.
  • TCP/IP Remote Control of a Ground Station

    Massey, Dale P.; Universal Space Network, Inc. (International Foundation for Telemetering, 1998-10)
    Satellite tracking ground stations are under continuous pressure to automate. Autonomy is generally the desired goal, but if the ground stations are in a Commercial Ground Network(CGN) setup to support many missions simultaneously, remote control of such stations is of much more importance. The proliferation of Low Earth Orbiting (LEO) science, earth resources and eventually global communications satellites either in orbit or planned, requires a much lower cost methodology for ground support. A CGN of TCP/IP remotely controlled ground stations lowers much of the manpower that was historically required to operate such stations. This paper will cover the remote control aspects needed for a satellite ground tracking station and offer a unique remote control topology utilizing TCP/IP.
  • REAL-TIME DATA SERVER-CLIENT SYSTEM FOR THE NEAR REAL-TIME RESEARCH ANALYSIS OF ENSEMBLE DATA

    Ng, Sunny; Wei, Mei Y.; Somes, Austin; Aoyagi, Mich; Leung, Joe; National Aeronautics and Space Administration; Recom Technologies (International Foundation for Telemetering, 1998-10)
    This paper describes a distributed network client-server system developed for researchers to perform real-time or near-real-time analyses on ensembles of telemetry data previously done in post-flight. The client-server software approach provides extensible computing and real-time access to data at multiple remote client sites. Researchers at remote sites can share similar information as those at the test site. The system has been used successfully in numerous commercial, academic and NASA wide aircraft flight testing.
  • THE IMPACT OF NETWORK ARCHITECTURE ON DATA ACQUISITION SYSTEMS

    Skelley, Daniel S.; Jones, Sidney R., Jr.; Naval Air Warfare Center Aircraft Division (International Foundation for Telemetering, 1998-10)
    The purpose of this paper is to present a broad view of the impact of network architectures on future data acquisition systems. The major advantages and challenges associated with the use of network architectures are rooted in the packetized structure of the data. Many of the issues raised are subtle and complex. It is not the intent of this paper to give these issues the thorough academic and technical analysis they deserve. It is the hope of the authors this paper will generate awareness and discussion on these issues.
  • FIBRE CHANNEL USE IN DATA ACQUISITION SYSTEMS

    DeBenedetto, Louis J.; Myriad Logic, Inc. (International Foundation for Telemetering, 1998-10)
    Since becoming an ANSI standard in 1994, Fibre Channel has matured into a high-speed reliable data communication solution. Fibre Channel uses point-to-point, arbitrated loop, or switched topologies, to provide a wide range of options for data storage and highspeed data transfer applications. Unlike Gigabit Ethernet, Fibre Channel supports protocols such as HIPPI-FP, SCSI and IPI, allowing for greater flexibility when designing systems. However, the wide range of options supported in the Fibre Channel standard can be the source of misunderstanding and incompatibility. This paper intends to clear up some of the misconceptions about Fibre Channel by presenting the current standard and discussing how Fibre Channel can be used in data acquisition systems. Since these systems often require extremely high throughput for routing data, as well as high speed data storage to long term media, solutions are not often cut and dry. This paper will give examples of how using different layers of the Fibre Channel protocol will meet the needs of today’s data acquisition requirements. It provides a brief overview of Fibre Channel technology and identifies the different types of Fibre Channel products available. It provides examples of how commercial-off-the-shelf (COTS) products can be used to build data acquisition and storage systems requiring throughputs of up to 90 Mbytes per second on a single fiber. Additionally, it shows how multiple fibers can be used to achieve much higher data rates.
  • LINK ANALYSIS FOR THE NEAR EARTH ASTEROID PROSPECTOR

    Barton, Randal L.; New Mexico State University (International Foundation for Telemetering, 1998-10)
    The Near Earth Asteroid Prospector (NEAP) has a scheduled launch date between mid- 1999 and mid-2000, and will encounter a yet to be determined near Earth asteroid (1.1 - 2.2 AU distance from Earth) some ten months later [2]. The purpose of this mission is not only to collect valuable scientific and geological data, but to also determine the value of the asteroid’s materials for possible mining and exploitation [2], [3]. The purpose of this paper is to detail frequency allocation issues and to determine possible return (space to Earth) data rates associated with deep space communications with the NEAP spacecraft.
  • SOME PRACTICAL CONSIDERATIONS IN THE USE OF PSEUDO-RANDOM SEQUENCES FOR TESTING THE EOS AM-1 RECEIVER

    O’Donnell, John; AYDIN Telemetry (International Foundation for Telemetering, 1998-10)
    There are well-known advantages in using pseudo-random sequences for testing of data communication links. The sequences, also called pseudo-noise (PN) sequences, approximate random data very well, especially for sequences thousands of bits long. They are easy to generate and are widely used for bit error rate testing because it is easy to synchronize a slave pattern generator to a received PN stream for bit-by-bit comparison. There are other aspects of PN sequences, however, that are not as widely known or applied. This paper points out how some of the less familiar characteristics of PN sequences can be put to practical use in the design of a Digital Test Set and other specialbuilt test equipment used for checkout of the EOS AM-1 Space Data Receiver. The paper also shows how knowledge of these PN sequence characteristics can simplify troubleshooting the digital sections in the Space Data Receiver. Finally, the paper addresses the sufficiency of PN data testing in characterizing the performance of a receiver/data recovery system.
  • Acquiring PN Codes Without Serial Searches Using Modified Correlation Loops

    Yadati, Uday; Kosbar, Kurt; University of Missouri-Rolla (International Foundation for Telemetering, 1998-10)
    This paper analyzes the performance of a modified correlation, or delay-locked loop (DLL). These devices typically cross-correlate the received signal with a differentiated version of the originally transmitted signal. This paper describes some interesting properties the loop assumes when the differentiator is replaced by a Hilbert transform. The loop will still track the timing offset of the code, but it will also be able to acquire the signal when the initial offset is greater than one chip time. The new loop may also be superior to traditional DLL in low SNR environments, since it is much less likely to lose lock. Since the new loop is highly non-linear, it is studied through the use of computer simulations.
  • Reed-Solomon Coding as a Multipath Fading Countermeasure for PCM/FM Aeronautical Telemetry

    Rice, Michael D.; Friend, Daniel H.; Brigham Young University (International Foundation for Telemetering, 1998-10)
    This paper evaluates the use of Reed-Solomon error correcting codes as a countermeasure for the bursty errors caused by multipath fading seen in aeronautical telemetry channels. The tradeoff between code rate and interleaving depth is analyzed and an equation for predicting the code rate given a fixed burst length and interleaving depth is presented. Close agreement is found between predictions made by this equation and simulated results.
  • 625 MBIT/SEC BIT ERROR LOCATION ANALYSIS FOR INSTRUMENTATION RECORDING APPLICATIONS

    Waschura, Thomas E.; SyntheSys Research Incorporated (International Foundation for Telemetering, 1998-10)
    This paper describes techniques for error location analysis used in the design and testing of high-speed instrumentation data recording and communications applications. It focuses on the differences between common bit error rate testing and new error location analysis. Examples of techniques presented include separating bit and burst error components, studying probability of burst occurrences, looking at error free interval occurrence rates as well as auto-correlating error position. Each technique contributes to a better understanding of the underlying error phenomenon and enables higher-quality digital recording and communication. Specific applications in error correction coding emulation, magnetic media error mapping and systematic error interference are discussed.
  • Automatic Gain Control and Doppler Motion Models in LabVIEW

    Laird, Daniel T.; Edwards Air Force Base (International Foundation for Telemetering, 1998-10)
    A simplex or ‘passive’ continuous wave and monopulse seeker tracks specific attributes of a target’s radio frequency (RF) radar return in some coordinate frame. In particular, a return carries dynamic information in amplitude (ω) and frequency (ω) at some point in azimuth (r,θ) and elevation (r,θ) planes. A passive seeker requires an illuminator beam, I(ω,φ,θ), and may require a frequency modulation on the illuminator. To model a simplex target return, we have based the dynamics on a point source radar cross section (RCS) along a line of sight (LoS) radial. The Az and El angles are equivalent to antenna placement, the attenuation and frequency dynamics are modeled in commercial off-the-shelf (COTS) software.

View more