ABOUT THE COLLECTION

Proceedings of the Hydrology section of the Annual Meeting of the Arizona-Nevada Academy of Science. Full text manuscripts of work presented. Research related to water resources, water management, and hydrologic studies primarily focused regionally on southwestern US.

Volume 2. Proceedings of the 1972 Meetings of the Arizona Section - American Water Resources Association and the Hydrology Section - Arizona Academy of Science.

May 5-6, 1972, Prescott, Arizona


QUESTIONS?

Contact anashydrology@gmail.com.

Recent Submissions

  • Hydrology and Water Resources in Arizona and the Southwest, Volume 2 (1972)

    Unknown author (Arizona-Nevada Academy of Science, 1972-05-06)
  • Water Disposition in Ephemeral Stream Channels

    Sammis, T. W.; Hydrology and Water Resources, University of Arizona (Arizona-Nevada Academy of Science, 1972-05-06)
    The contribution of flows from small watersheds to groundwater recharge is of interest. Water disposition depends on infiltration and evaporation characteristics. This study had the objective of developing an infiltration equation for estimating transmission losses during a flow event in an ephemeral stream near Tucson, Arizona, in the rocky mountain forest and range experiment station. Palo Verde, desert hackberry, cholla, marmontea and mesquite are the major bank species of the sandy channels. A climatic section consisting of a hydrothermograph recording rain gage and class a evaporation pan was installed. A water balance method was used to estimate evapotranspiration. A specially designed infiltrometer was used to simulate flow events. The data allowed the following conclusions: Philip's infiltration equation is an excellent mathematical model, initial moisture affects initial infiltration rate, the Philip coefficients are determinable by the infiltrometer constructed, soil moisture affects infiltration rates, and transpiration rates diminish linearly proportional to the ratio of available water to field capacity.
  • Bed Material Characteristics and Transmissions Losses in an Ephemeral Stream

    Murphey, J. B.; Lane, L. J.; Diskin, M. H.; Southwest Watershed Research Center, Agricultural Research Service, USDA, Soil and Water Conservation Research Division; Arizona Agricultural Experiment Station, Tucson (Arizona-Nevada Academy of Science, 1972-05-06)
    An average of 6 to 13 streamflows from intense summer convective storms occurs annually in the walnut gulch experimental station, 58 square miles in southeastern Arizona. Flows last generally less than 6 hours, and the channels are dry 99 percent of the time. The limiting factors imposed by the geology and geomorphology of the channel to transmission losses of a 6 square mile channel in the station are described. The Precambrian to quaternary geology is outlined, and geomorphology of the channels are described. Volume, porosity and specific yield of alluvium were determined. There is 106 acre-feet of alluvium with a mean specific yield of 28 percent, and a maximum water absorbing capacity of 29 acre-feet or 7 acre-feet per mile of reach. Channel slope is insensitive to changes in geological material beneath it or to changes in flow regime. Channel cross section is highly sensitive to geology and flow regime. Transmission losses were highly correlated to volume of inflow.
  • A Proposed Model for Flood Routing in Abstracting Ephemeral Channels

    Lane, Leonard J.; Soil and Water Conservation Research Division, Agricultural Research Service, USDA; Arizona Agricultural Experiment Station, Tucson, Arizona; Southwest Watershed Research Center, Tucson, Arizona 85705 (Arizona-Nevada Academy of Science, 1972-05-06)
    Almost all runoff from semiarid rangeland watersheds in southern Arizona results from intense highly variable thunderstorm rainfall. Abstractions, or transmission losses, are important in diminishing streamflow, supporting riparian vegetation and providing natural groundwater recharge. A flood routing procedure is developed using data from the walnut gulch experimental watershed, where flood movement and transmission losses are represented by a system using storage in the channel reach as a state variable which determines loss rates. Abstractions are computed as a cascade of general components in linear form. Wide variation in the parameters of this linear model with increasing inflow indicates that a linear relation between losses and storage is probably incorrect for ephemeral channels.
  • Objective and Subjective Analysis of Transition Probabilities of Monthly Flow on an Ephemeral Stream

    Dvoranchik, William; Duckstein, Lucien; Kisiel, Chester C.; Department of Systems and Industrial Engineering, University of Arizona; Department of Hydrology and Water Resources, University of Arizona, Tucson, Arizona (Arizona-Nevada Academy of Science, 1972-05-06)
    A critique of statistical properties of monthly flows on an ephemeral stream in Arizona is given. A subjective procedure, justified for managerial purposes not concerned with the variability of flow within the month, is proposed for sequential generation of monthly flow data. Ephemeral flows should be modeled by starting with at least historical daily flows for more meaningful monthly flow models. Stochastic properties of monthly streamflows and state transition probabilities are reviewed with regard to ephemeral streams. A flow chart for a streamflow model geared to digital computers, with a simulation of streamflow subroutine, is developed. Meaningful monthly flow models could serve as a check on alternative models (subjective matrix, lag-one auto regressive, harmonic, bivariate normal, bivariate log-normal models). Rules and guidelines are presented in developing meaningful probability matrices.
  • Significance of Antecedent Soil Moisture to a Semiarid Watershed Rainfall-Runoff Relation

    Chery, D. L., Jr.; Southwest Watershed Research Center, USDA, Agricultural Research Service, Soil and Water Conservation Research Division (Arizona-Nevada Academy of Science, 1972-05-06)
    Numerous reports from the southwest claim that soil moisture prior to rainfall-runoff event has no influence on the resulting flow volumes and peak rates. Runoff occurs from many storms that would not be expected to produce runoff, and an explanation lies in the occurrence of antecedent rains. This hypothesis is tested by dividing runoff events into 2 subsets--one with no rain within the preceding 120 hours, and the other with some rain within the preceding 24 hours--and to test the null hypothesis. The hypothesis was tested with rainfall and runoff data from a 40-acre agricultural research service watershed west of Albuquerque, New Mexico, using the Wilcoxon's rank sum test. Various levels of statistical significance are discussed, and shown graphically, to conclude conclusively that antecedent rainfall influences runoff from a semiarid watershed.
  • The Construction of a Probability Distribution for Rainfall on a Watershed by Simulation

    Williamson, Gary; Davis, Donald Ross; Systems & Industrial Engineering, University of Arizona, Tucson, Arizona 85721 (Arizona-Nevada Academy of Science, 1972-05-06)
    A raingage reading is a sample from the point rainfall population of an area. The actual average rainfall on the area (watershed) is a conditional probability distribution. For the case of thunderstorm rainfall this distribution is simulated by looking at all storms that could have produced the raingage reading. The likelihood of each storm is a function of its center depth. The amount of rain dumped on the watershed by each storm is weighted by the likelihood of its occurence and the totality of such calculations is used to produce a probability distribution of rainfall on the watershed. Examples are given to illustrate the versatility of the program and its possible use in decision analysis.
  • A Solution to Small Sample Bias in Flood Estimation

    Metler, William; Systems & Industrial Engineering, University of Arizona, Tucson, Arizona 85721 (Arizona-Nevada Academy of Science, 1972-05-06)
    In order to design culverts and bridges, it is necessary to compute an estimate of the design flood. Regionalization of flows by regression analysis is currently the method advocated by the U.S. Geological Survey to provide an estimate of the culvert and bridge design floods. In the regression analysis a set of simultaneous equations is solved for the regression coefficients which will be used to compute a design flood prediction for a construction site. The dependent variables in the set of simultaneous equations are the historical estimates of the design flood computed from the historical records of gaged sites in a region. If a log normal distribution of the annual peak flows is assumed, then the historical estimate of the design flood for site i may be computed by the normal as log Q(d,i) = x(i) + k(d)s(i). However because of the relatively small samples of peak flows commonly used in this problem, this paper shows that the historical estimate should be computed by to log Q(d,i) = X(i) + t(d,n-1) √((n+1)/n) s(i) where t(d,n-1) is obtained from tables of the Student's t. This t-estimate when used as input to the regression analysis provides a more realistic prediction in light of the small sample size, than the estimate yielded by the normal.
  • Role of Modern Methods of Data Analysis for Interpretation of Hydrologic Data in Arizona

    Kisiel, Chester C.; Duckstein, Lucien; Fogel, Martin M.; Department of Hydrology and Water Resources, University of Arizona, Tucson, Arizona 85721; Department of Systems and Industrial Engineering | Department of Watershed Management (Arizona-Nevada Academy of Science, 1972-05-06)
    Mathematical models, requiring substantial data, of hydrologic and water resources systems are under intensive investigation. The processes of data analysis and model building are interrelated so that models may be used to forecast for scientific reasons or decision making. Examples are drawn from research on modeling aquifers, watersheds, streamflow and precipitation in Arizona. Classes of problems include model choice, parameter estimates, initial condition, input identification, forecasting, valuation, control, presence of multiple objectives, and uncertainty. Classes of data analysis include correlation methods, system identification, stationarity, independence or randomness, seasonality, event based approach, fitting of probability distributions, and analysis for runs, range and crossing levels. Time series, event based and regression methods are reviewed. The issues discussed are applied to tree-ring analyses, streamflow gaging stations, and digital modeling of small watersheds and the Tucson aquifers.
  • Input Specifications to a Stochastic Decision Model

    Clainos, D. M.; Duckstein, L.; Roefs, T. G.; Systems and Industrial Engineering Department, University of Arizona; Hydrology and Water Resources Department, University of Arizona (Arizona-Nevada Academy of Science, 1972-05-06)
    The use of discrete conditional dependency matrices as input to stochastic decision models is examined. Some of the problems and initial assumptions involved with the construction of the above mentioned matrices are discussed. Covered in considerable detail is the transform used to relate the gamma space with the normal space. A new transform is introduced that should produce reasonable results when the record of streamflow (data) has a highly skewed distribution. Finally, the possibility of using the matrices to provide realistic inputs to a stochastic dynamic program is discussed.
  • Evaluation of a Turfgrass - Soil System to Utilize and Purify Municipal Waste Water

    Sidle, R. C.; Johnson, G. V.; Department of Soils, Water and Engineering, University of Arizona, Tucson, Arizona (Arizona-Nevada Academy of Science, 1972-05-06)
    Sewage effluent for irrigation is well established. This study determines the capacity of selective turfgrass-soil systems to purify municipal sewage effluent and to measure the degree of utilization of nitrogen in the effluent by turfgrass. Chlorinated secondarily treated sewage effluent from the city of Tucson was applied to turfgrass grown on sandy loam, silt and loam, under three levels of irrigation under laboratory conditions of duplicate pots. Each pot had 2 suction probes to estimate soil moisture tensions and to allow soil water sampling. The study operated from September to March, 1972, for 30 weeks. Purification efficiency, nitrogen utilization and percent recharge were calculated. Turfgrass can be irrigated with sewage effluent at common rates without hazard of nitrogen pollution to groundwater. Purification efficiency exceeded 90 percent for all irrigation levels on sandy loam and silt. Nitrogen utilization was greater over sandy loam. Turfgrass-soil systems can utilize nitrogen and purify waste water.
  • Nitrogen Species Transformations of Sewage Effluent Releases in a Desert Stream Channel

    Sebenik, P. G.; Cluff, C. B.; DeCook, K. J.; Water Resources Research Center, University of Arizona (Arizona-Nevada Academy of Science, 1972-05-06)
    A preliminary study was made with the objective of examining nitrogen species transformations of treated sewage effluent releases within the channel of an ephemeral stream, the Santa Cruz River of southern Arizona. Water quality samples were taken at established locations in sequence so that peak daily flows could be traced as the effluent moved downstream. Results indicate that increased nitrification, coinciding with changing stream characteristics, starts in the vicinity of Cortaro Road (6.3 river miles from the Tucson Sewage Treatment Plant discharge). Through physical-chemical changes in streamflow, nitrate -nitrogen values reach a maximum at approximately 90-95 percent and 60-80 percent of total flow distance for low flows and high flows, respectively. Concentrations of ammonia-nitrogen and total nitrogen decrease continuously downstream with both high and low flows. Therefore, the rate of nitrification within sewage effluent releases in a desert stream channel evidently is related to flow distance and physical characteristics of the stream.
  • Effect of a Grass and Soil Filter on Tucson Urban Runoff: A Preliminary Evaluation

    Popkin, Barney Paul; Water Resources Research Center, University of Arizona (Arizona-Nevada Academy of Science, 1972-05-06)
    Storm runoff from the Tucson metropolitan area is unsuitable for most uses without processing. A lysimeter comprised of a grass and soil filter was constructed and is being evaluated as a water-quality treatment facility. The lysimeter is 200 feet long, 4 feet wide and 5 feet deep, and contains homogeneous calcareous loam covered by common grasses. Experimental apparatus was installed to divert less than a cubic foot per second of runoff from urbanized Arcadia Watershed. Runoff flows by gravity over the lysimeter, where surface inflow, surface outflow and subsurface outflow are measured and sampled. Four trials, each associated with a discrete runoff event, were conducted in the fall of 1971. Water samples were analyzed for inorganic chemical constituents, chemical oxygen demand (COD), coliforms, turbidity and sediment contents. Subsurface-outflow samples from initial trials were high in COD and total dissolved solids, representing soil flushing or leaching. Concentrations of inorganics reached a maximum value within a few hours of initial seepage, and then decreased. The peaking represents a salt build-up between trials. Concentrations of COD, coliforms, turbidity and sediment in subsurface-outflow samples decreased significantly during each trial. Surface-outflow samples had lower turbidity, COD, bacteria and sediment contents than surface-inflow samples. Turbidity, suspended and volatile solids, coliforms and COD in runoff samples may be reduced by grass and soil filtration. Increased grass development and soil settling work to produce a better quality effluent. Quantification of the lysimeter's effectiveness will be useful for urban watershed management.
  • Collective Utility of Exchanging Treated Sewage Effluent for Irrigation and Mining Water

    Ko, Stephen C.; Duckstein, Lucien; Systems & Industrial Engineering, University of Arizona (Arizona-Nevada Academy of Science, 1972-05-06)
    The concept of collective utility is applied to a case study of alternative water resource utilization by providing a basis for comparing alternative uses of resources from the viewpoint of aggregate welfare. The exchange of sewage effluent for groundwater used by irrigation farmers, and the exchange of sewage effluent for groundwater used by processing and milling miners in Tucson, Arizona, are given as examples. Reviewed are collective utility concepts, case problems, definitions of problems, formulation of the model, and marginal change of collective utility. The first case has a collective utility of $800,500-g, where g represents unquantifiable factors, such as the reduction in quality of living due to the odor if solid waste exchanges. The second case has a collective utility of $175,000. Since it is likely that g will be on the order of $1 million per year, the first exchange is preferable to the second.
  • Saline and Organic Water Pollution

    Bohn, Hinrich L.; Johnson, Gordon V.; Department of Soils, Water and Engineering, University of Arizona, Tucson, Arizona, 85721 (Arizona-Nevada Academy of Science, 1972-05-06)
    Better use and recycling of fresh water, which often recharges the oceans, would reduce man's disruption of nature to increase his supply of potable water. The global distribution of water, desalination, water reclamation and recycling, the roles of soils and plants in recycling and urban misuse of water are discussed. Man can increase his supply of food and good fresh water by recycling and nutrient balance, which imply living off his wastes. Intimate involvement of soils and plants in the production of fresh water and food is clear. Soils and plants should be equally involved in converting our waste water into potable water and useful nutrients. Numerous examples of how this may be done and how it is being done are presented.
  • Weather Modification in Arizona, 1971

    Osborn, Herbert B.; USDA-ARS Southwest Watershed Research Center, Tucson, Arizona (Arizona-Nevada Academy of Science, 1972-05-06)
    There have been many efforts in recent years to modify thunderstorms through cloud seeding. Collective cloud seeding efforts in Arizona before 1971 are reviewed and an operational convective cloud seeding program carried out in Arizona in the summer of 1971 is analyzed. The comprehensive Santa Catalina cloud seeding experiment (1957 to 1964) was a randomized seeding using silver iodide. Results of this experiment are uncertain as numerous interpretations are possible. Numerous individual experiments from 1966 to 1970 at flagstaff were conducted, with uncertain results. An intensive program of seeding individual cumulus clouds with silver iodide was carried out in the summer of 1971 in central and eastern Arizona. No statistically significant changes were noted. Results of the Catalina experiment imply that seeding decreased rainfall on and downwind from the target. Two other experiments were inconclusive. Nine figures show precipitation patterns.
  • Converting Chaparral to Grass to Increase Streamflow

    Ingebo, Paul A.; Rocky Mountain Forest and Range Experiment Station (Arizona-Nevada Academy of Science, 1972-05-06)
    Chaparral covers 4 million acres in Arizona. There is interest in determining how much these lands contribute to surface water supply, and how this contribution could be changed by conversion of chaparral cover to grass or grass forb. Results from treatment in the Whitespar watersheds are interpreted. Live oak and true mountain mahogany dominate the study area, which averages 22.7 inches of annual precipitation. Whitespar B watershed was converted to grasses in 1967, and litter was not disturbed. The 246 acre watershed produced more streamflow than the untreated, 303-acre control which tended to remain intermittent. Prior to treatment, streamflow in both watersheds was quite well synchronized. Watershed b has since had continual flow. Winter flows contribute about 77 percent of the increased streamflow volume. The degree of effect is still under study, but a new rainfall-runoff relationship for the treated watershed is necessitated.
  • Some Legal Problems of Urban Runoff

    Holub, Hugh; College of Law, University of Arizona, Tucson (Arizona-Nevada Academy of Science, 1972-05-06)
    Pressure is being brought to bear on national resources of air, earth, and water in the growing cities in the arid southwest. Legal questions involved in capturing urban runoff and putting it to a beneficial use are examined. Urbanization of a watershed results in a 3 to 5 fold increase in runoff amounts. Legal aspects include tort liability from floods, water rights to the increased flows, land use restrictions along banks and flood plains, condemnation of land for park development and flowage easements, financing problems, zoning applications, and coordination of governmental bodies responsible for parks, storm drainage and related services. Urban runoff is the most obvious legal problem in the tort liability area. It appears feasible to divert small quantities of water from urban wastes for recreational uses which provide flood control benefits. It appears that municipalities could appropriate increased flows caused by urbanization. The ultimate legal questions remain to be resolved by legislation, litigation or extension of the appropriative system.
  • Color It Evaporation

    Dvoracek, M. J.; Department of Hydrology and Water Resources, University of Arizona (Arizona-Nevada Academy of Science, 1972-05-06)
    Evaporation is a major hydrologic process in arid and semiarid lands. A brief review of evaporation literature indicates that a unique parameter, color, is desirable. Artificially colored water was used in a west Texas experiment to monitor evaporation rate and to note the effect of color on evaporation. Artificially green water had a higher evaporation rate than sewage and runoff. Five different colored waters were studied from 1966 to 1970. Color seems to affect the amount of adsorbed radiation as well as the extent of black radiation. The trend for a higher daily rate of evaporation existed for colored waters except during periods of low air temperature. Seven graphs are presented to support these conclusions.
  • An Evaluation of Current Practices in Seepage Control

    Boyer, D. G.; Cluff, C. B.; Water Resources Research Center, University of Arizona (Arizona-Nevada Academy of Science, 1972-05-06)
    The need for increased control of seepage from both natural and artificial small ponds and lakes has become more apparent with the increased frequency of their construction and use on the farm, ranch, and in recreational urban use. Seepage control methods are also becoming more numerous. Unfortunately, comparisons as to effectiveness, longevity and costs are not readily available. This paper investigates some control techniques being used in this region and evaluated them according to the above criteria. Emphasis was on the use of available physiochemical methods other than rubber membranes and concrete liners. Examples of the types of controls in use include plastic, soil compaction aids, hydrophobic chemicals and monovalent cation applications, such as sodium chloride. Some examples of the use of these methods in Arizona are shown and the results of some field comparison tests conducted using 8 x 8 square foot double -ringed infiltrometers presented. Recommendations are made of additional research that should be undertaken to improve the technology of the control of seepage losses.

View more