• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA Catalogs

    The Arabidopsis Calcineurin B-Like10 Calcium Sensor Couples Environmental Signals to Developmental Responses

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_11820_sip1_m.pdf
    Size:
    3.145Mb
    Format:
    PDF
    Download
    Author
    Monihan, Shea
    Issue Date
    2011
    Keywords
    calcium sensor
    CBL10
    development
    signal transduction
    Plant Science
    alternative splicing
    Arabidopsis
    Advisor
    Schumaker, Karen
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Calcium is a component of signal transduction pathways that allow plants to respond to numerous endogenous and environmental signals during growth and development. Calcium-mediated signaling involves multiple components including: 1) channels, pumps, and exchangers that act in concert to generate a change in cytosolic calcium, 2) calcium-binding proteins that sense the calcium change, and 3) downstream target proteins that modify enzyme activity and gene expression needed for the subsequent response. One method for achieving specificity during calcium signaling is through regulation of the calcium-binding proteins that perceive changes in cytosolic calcium. These proteins can be regulated through differences in expression in response to stimuli, localization within the cell or plant, affinity for calcium, and interaction with downstream target proteins; all of which can result in specific cellular responses. My projects have focused on the Arabidopsis thaliana (Arabidopsis) CALCINEURIN B-LIKE10 (CBL10) calcium-binding protein, and specifically on understanding: 1) how post-transcriptional regulation of the CBL10 gene is used to modulate seedling growth in saline conditions (salinity), and 2) CBL10’s function in the flower during growth in salinity. In addition, 3) I have examined the roles of two putative CBL10-interacting proteins in plant growth and development. CBL10 is alternatively spliced into two transcripts; CBL10 encoding the characterized, full-length protein and CBL10 LONG A (CBL10LA) encoding a putative truncated protein due to a pre-mature termination codon within a retained intron. When seedlings are grown in the absence of salinity, both alternatively spliced transcripts are detected; however, in response to salinity, levels of the CBL10LA transcript are reduced. My data suggest a model in which the relative abundance of the two transcripts regulates the SALT-OVERLY-SENSITIVE (SOS) pathway involved in maintaining cellular sodium ion homeostasis. The presence of CBL10LA in the absence of salinity ensures that the SOS pathway is inactive. The removal of CBL10LA in response to saline conditions results in CBL10 activation of the SOS pathway to prevent sodium ions from accumulating to toxic levels in the cytosol. Successful fertilization during flowering requires the coordinated development of stamens and pistils. Stamens must elongate and anthers dehisce to release pollen onto the stigma while the pistil prepares to receive the pollen and promote growth and targeting of the female gametophyte. When the cbl10 mutant is grown in salinity, flowers are sterile due to decreased stamen elongation, reduced anther dehiscence, and abnormal pistil development. My studies demonstrated that the SOS pathway is not involved in maintaining flower development in salinity and indicate that CBL10 functions in different pathways to regulate vegetative and reproductive development during growth in saline conditions. An in silico search for Arabidopsis proteins that might interact with CBL10 resulted in the identification of two components of the Mediator complex involved in the regulation of transcription in eukaryotes. While additional studies I carried out suggest that interaction with CBL10 is unlikely, I have shown that these proteins are important for plant growth in high levels of chloride and in maintenance of growth in short-day conditions.
    Type
    text
    Electronic Dissertation
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Graduate College
    Plant Science
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055 | Tel 520-621-6442
    repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.