• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA Catalogs

    Initial-Value Problem for Perturbations in Compressible Boundary Layers

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_1513_sip1_m.pdf
    Size:
    5.304Mb
    Format:
    PDF
    Description:
    azu_etd_1513_sip1_m.pdf
    Download
    Author
    Forgoston, Eric T.
    Issue Date
    2006
    Advisor
    Tumin, Anatoli M.
    Committee Chair
    Tumin, Anatoli M.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    An initial-value problem is formulated for a three-dimensional perturbation in a compressible boundary layer flow. The problem is solved using a Laplace transform with respect to time and Fourier transforms with respect to the streamwise and spanwise coordinates. The solution can be presented as a sum of modes consisting of continuous and discrete spectra of temporal stability theory. Two discrete modes, known as Mode S and Mode F, are of interest in high-speed flows since they may be involved in a laminar-turbulent transition scenario. The continuous and discrete spectrum are analyzed numerically for a hypersonic flow. A comprehensive study of the spectrum is performed, including Reynolds number, Mach number and temperature factor effects. A specific disturbance consisting of an initial temperature spot is considered, and the receptivity to this initial temperature spot is computed for both the two-dimensional and three-dimensional cases. Using the analysis of the discrete and continuous spectrum, the inverse Fourier transform is computed numerically. The two-dimensional inverse Fourier transform is calculated for Mode F and Mode S. The Mode S result is compared with an asymptotic approximation of the Fourier integral, which is obtained using a Gaussian model as well as the method of steepest descent. Additionally, the three-dimensional inverse Fourier transform is found using an asymptotic approximation. Using the inverse Fourier transform computations, the development of the wave packet is studied, including effects due to Reynolds number, Mach number and temperature factor.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Applied Mathematics
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055 | Tel 520-621-6442
    repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.