• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA Catalogs

    In-Situ Regeneration of Granular Activated Carbon (GAC) Using Fenton's Reagents

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_etd_1963_sip1_m.pdf
    Size:
    1.860Mb
    Format:
    PDF
    Description:
    azu_etd_1963_sip1_m.pdf
    Download
    Author
    De Las Casas, Carla
    Issue Date
    2006
    Keywords
    Fenton
    Regeneration
    GAC
    carbon
    PCE
    degradation
    Advisor
    Ela, Wendell P.
    Committee Chair
    Ela, Wendell P.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Fenton-dependent recovery of carbon initially saturated with one of several chlorinated aliphatic contaminants was studied in batch and continuous-flow reactors. A specialty carbon, URV-MOD 1 (Calgon) was employed to minimize non-productive H2O2 demand - that which does not yield hydroxyl or superoxide radicals.Enhancement of PCE degradation kinetics by ferric iron addition is limited by iron solubility, even at relatively low pH. Quinone addition increased the pseudo-first-order rate constant for PCE loss temporarily. Only copper addition sustainably enhanced the specific rate of PCE loss. For copper-to-iron molar ratios of 0.25 to 5, the pseudo-first-order rate constant for PCE transformation was increased by a factor of 3.5. It is apparent that the effect of copper addition on Fenton-dependent reaction rates is complex, and involves a shift in chemical mechanism, as indicated by the differing slopes in the Arrhenius plot (with and without copper).A mathematical model was developed to evaluate the effect of operational parameters ([Fe(III)]T:[H2O2]o ratio and pH) on degradation kinetics and optimize the PCE degradation process in homogeneous reaction mixtures. The model simulated experimental degradation of the organic target in a homogeneous Fenton-reaction system. The model requires further refinement to simulate Fenton's systems in which ions in solution (such as sulfate and chloride) play significant roles.In continuous-flow reactors, Fenton's reagents were cycled through spent GAC in columns to degrade one of seven chlorinated compounds tested. The contaminant with the weakest adsorption characteristics, methylene chloride, was 99% lost from the carbon surface during a 14-hour regeneration period. At the field site, the GAC was saturated with gases containing TCE and PCE from a soil vapor extraction (SVE) system. In the field, up to 95% of the sorbed TCE was removed from GAC during regeneration periods of 50-60 hours. Recovery of PCE-loaded GAC was significantly slower. Column experiments show that there is minimal loss of carbon adsorption capacity during Fenton treatment and that the rate of GAC regeneration is compound specific. Scoping-level cost estimates indicated that field use of Fenton regeneration is not cost effective without optimization and/or iron surface amendments, except in the case of the most soluble VOCs.
    Type
    text
    Electronic Dissertation
    Degree Name
    PhD
    Degree Level
    doctoral
    Degree Program
    Environmental Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055 | Tel 520-621-6442
    repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.