• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA Catalogs

    High-temperature removal of metal vapors by solid sorbents.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9103055_sip1_m.pdf
    Size:
    6.007Mb
    Format:
    PDF
    Description:
    azu_td_9103055_sip1_m.pdf
    Download
    Author
    Uberoi, Mohit.
    Issue Date
    1990
    Keywords
    Engineering
    Advisor
    Shadman, Farhang
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    Emissions of metal vapor compounds during incineration and combustion is becoming an increasingly important problem. The kinetics and mechanism of high temperature removal of various metal vapors by solid sorbents has been investigated in this study. The kinetics experiments were performed in a high temperature microbalance reactor system under simulated flue gas atmosphere. Scanning electron microscopy, X-ray diffraction analysis, atomic absorption/emission spectrophotometry, Energy dispersive X-ray analysis, mercury porosimetry, and BET surface area analysis were used for characterization of the fresh and reacted sorbents. The results show that the process of metal vapor capture is not just physical condensation, but rather a complex combination of various chemical and physical processes. There are some similarities in the sorption process. For all the sorbents the rate of metal vapor sorption decreases with time and there is a final limit beyond which no more metal vapor gets captured. However, there are differences in the rate and reaction mechanism of metal vapor removal. Kaolinite and bauxite are suitable sorbents for lead and cadmium capture. The melting point of the lead aluminosilicate product formed after reaction of lead chloride with kaolinite and bauxite has a low melting point. Therefore, these sorbents are more suitable for downstream fixed bed removal of lead compounds. Removal of cadmium by bauxite occurs due to chemical reaction to form a cadmium aluminum silicate and a cadmium aluminate. Removal of cadmium by kaolinite occurs due to the formation of only the cadmium aluminosilicate. The final products of cadmium sorption have a higher water solubility as compared to that of the corresponding products for lead. Chlorine is not retained by the sorbents during the sorption process. Kaolinite, bauxite and emathlite are suitable sorbents for removal of alkali compounds. In adsorbing alkali chloride vapors, kaolinite and emathlite release all the chlorine back to the gas phase while bauxite retains some of the chlorine. Moreover, the products of reaction with emathlite have a melting point significantly lower than those for kaolinite and bauxite. At lower alkali concentrations, NaCl reacts irreversibly with kaolinite to form a sodium aluminosilicate product. When the local metal vapor concentration in the sorbent pores becomes higher than the saturation concentration for condensation, the metal vapor physically condenses in the sorbent pores and may subsequently react with the solid. The theoretical models developed were used to extract kinetic parameters from experimental data and for parametric studies. The kinetic data obtained can be used in design of practical metal removal systems.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Chemical Engineering
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055 | Tel 520-621-6442
    repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.