• Login
    View Item 
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    •   Home
    • UA Graduate and Undergraduate Research
    • UA Theses and Dissertations
    • Dissertations
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA Catalogs

    Picosecond time-resolved resonance Raman spectroscopy of the primary products in the bacteriorhodopsin photocycle.

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    azu_td_9025066_sip1_m.pdf
    Size:
    5.083Mb
    Format:
    PDF
    Description:
    azu_td_9025066_sip1_m.pdf
    Download
    Author
    Brack, Terry.
    Issue Date
    1990
    Keywords
    Chemistry
    Advisor
    Atkinson, George H.
    
    Metadata
    Show full item record
    Publisher
    The University of Arizona.
    Rights
    Copyright © is held by the author. Digital access to this material is made possible by the University Libraries, University of Arizona. Further transmission, reproduction or presentation (such as public display or performance) of protected items is prohibited except with permission of the author.
    Abstract
    The initial photochemical and photophysical events of the Bacteriorhodopsin (BR) photocycle are investigated using resonance Raman spectroscopy. The salt water bacterium, Halobacterium halobium, converts light into chemical energy via this cycle. Light induced isomerization of the all-trans retinal chromophore causes proton translocation across the lipid membrane containing the protein. Absorption experiments reveal red shifts in BR absorption on a picosecond time scale. Picosecond time-resolved resonance Raman spectroscopy (PTR³) provides a vibrational probe of these changes. PTR³ utilizes two tunable dye lasers in a pump-probe configuration. One initiates photochemistry while a second probes the chromophore. The vibrational spectrum of the K-590 intermediate present 50 ps after the initiation of the photocycle is obtained by PTR³ spectroscopy. The ability to separate photolytic excitation from the Raman probe facilitates the application of a quantitative model of the optical excitation process to time resolved vibrational measurements of K-590. These spectra are analyzed to find the isomerization state of retinal in K-590 by comparison with the resonance Raman spectra of model compounds. These resonance Raman results are compared to earlier measurements of the K intermediate. PTR³ spectra of K-590 present later in the photocycle are also obtained. These spectra remain unchanged over the period investigated (40 ps-26 ns). These results confirm that isomerization of the chromophore is one of the primary events following initiation of the photocycle. Changes in relative Raman intensities observed earlier than 40 ps are discussed with reference to the photophysics of the optical excitation process. PTR³ techniques are applied to antistokes Raman measurements of BR. The existence of a significant vibrationally excited population is revealed. Differences in the Raman band positions in the stokes and antistokes spectra demonstrate that several quanta of the higher frequency modes in the BR Raman spectrum are excited. These modes decay with a time constant of ≈7 ps. These observations suggest the retinal chromophore does not experience rapid uniform internal vibrational redistribution following the internal conversion producing the vibrationally excited species.
    Type
    text
    Dissertation-Reproduction (electronic)
    Degree Name
    Ph.D.
    Degree Level
    doctoral
    Degree Program
    Chemistry
    Graduate College
    Degree Grantor
    University of Arizona
    Collections
    Dissertations

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055 | Tel 520-621-6442
    repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.