• Login
    View Item 
    •   Home
    • Colleges, Departments, and Organizations
    • Digital Library of Information Science & Technology (DLIST)
    • DLIST
    • View Item
    •   Home
    • Colleges, Departments, and Organizations
    • Digital Library of Information Science & Technology (DLIST)
    • DLIST
    • View Item
    JavaScript is disabled for your browser. Some features of this site may not work without it.

    Browse

    All of UA Campus RepositoryCommunitiesTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournalThis CollectionTitleAuthorsIssue DateSubmit DateSubjectsPublisherJournal

    My Account

    LoginRegister

    About

    AboutUA Faculty PublicationsUA DissertationsUA Master's ThesesUA Honors ThesesUA PressUA YearbooksUA Catalogs

    Bibliomining for Automated Collection Development in a Digital Library Setting: Using Data Mining to Discover Web-Based Scholarly Research Works

    • CSV
    • RefMan
    • EndNote
    • BibTex
    • RefWorks
    Thumbnail
    Name:
    asisdiss.html
    Size:
    214.1Kb
    Format:
    HTML
    Download
    Author
    Nicholson, Scott
    Issue Date
    2003-12
    Submitted date
    2004-12-11
    Keywords
    Web Mining
    Data Mining
    Digital Libraries
    Local subject classification
    digital libraries
    collection development
    World Wide Web
    search engines
    bibliomining
    data mining
    intelligent agents
    
    Metadata
    Show full item record
    Citation
    Bibliomining for Automated Collection Development in a Digital Library Setting: Using Data Mining to Discover Web-Based Scholarly Research Works 2003-12, 54(12) Journal of the American Society for Information Science and Technology
    Journal
    Journal of the American Society for Information Science and Technology
    Description
    Based off Nicholson's 2000 University of North Texas dissertation, "CREATING A CRITERION-BASED INFORMATION AGENT THROUGH DATA MINING FOR AUTOMATED IDENTIFICATION OF SCHOLARLY RESEARCH ON THE WORLD WIDE WEB" located at http://scottnicholson.com/scholastic/finaldiss.doc
    URI
    http://hdl.handle.net/10150/106521
    Abstract
    This research creates an intelligent agent for automated collection development in a digital library setting. It uses a predictive model based on facets of each Web page to select scholarly works. The criteria came from the academic library selection literature, and a Delphi study was used to refine the list to 41 criteria. A Perl program was designed to analyze a Web page for each criterion and applied to a large collection of scholarly and non-scholarly Web pages. Bibliomining, or data mining for libraries, was then used to create different classification models. Four techniques were used: logistic regression, non-parametric discriminant analysis, classification trees, and neural networks. Accuracy and return were used to judge the effectiveness of each model on test datasets. In addition, a set of problematic pages that were difficult to classify because of their similarity to scholarly research was gathered and classified using the models. The resulting models could be used in the selection process to automatically create a digital library of Web-based scholarly research works. In addition, the technique can be extended to create a digital library of any type of structured electronic information.
    Type
    Journal (On-line/Unpaginated)
    Language
    en
    Collections
    DLIST

    entitlement

     
    The University of Arizona Libraries | 1510 E. University Blvd. | Tucson, AZ 85721-0055 | Tel 520-621-6442
    repository@u.library.arizona.edu
    DSpace software copyright © 2002-2017  DuraSpace
    Quick Guide | Contact Us | Send Feedback
    Open Repository is a service operated by 
    Atmire NV
     

    Export search results

    The export option will allow you to export the current search results of the entered query to a file. Different formats are available for download. To export the items, click on the button corresponding with the preferred download format.

    By default, clicking on the export buttons will result in a download of the allowed maximum amount of items.

    To select a subset of the search results, click "Selective Export" button and make a selection of the items you want to export. The amount of items that can be exported at once is similarly restricted as the full export.

    After making a selection, click one of the export format buttons. The amount of items that will be exported is indicated in the bubble next to export format.