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ABSTRACT

For decades, astronomers have used observations of mature planetary systems to

constrain planet formation theories, beginning with our own solar system and now

the thousands of known exoplanets. Recent advances in instrumentation have given

us a direct view of some steps in the planet formation process, such as large-scale

protostar and protoplanetary disk features and evolution. However, understanding

the details of how planets accrete and interact with their environment requires direct

observations of protoplanets themselves. Transition disks, protoplanetary disks with

inner clearings that may be caused by forming planets, are the best targets for these

studies. Their large distances, compared to the stars normally targeted for direct

imaging of exoplanets, make protoplanet detection difficult and necessitate novel

imaging techniques.

In this dissertation, I describe the results of using non-redundant masking (NRM)

to search for forming planets in transition disk clearings. I first present a data re-

duction pipeline that I wrote to this end, using example datasets and simulations

to demonstrate reduction and imaging optimizations. I discuss two transition disk

NRM case studies: T Cha and LkCa 15. In the case of T Cha, while we detect signif-

icant asymmetries, the data cannot be explained by orbiting companions. The fluxes

and orbital motion of the LkCa 15 companion signals, however, can be naturally

explained by protoplanets in the disk clearing. I use these datasets and simulated

observations to illustrate the effects of scattered light from transition disk material

on NRM protoplanet searches. I then demonstrate the utility of the dual-aperture

Large Binocular Telescope Interferometer’s NRM mode on the bright B[e] star MWC

349A. I discuss the implications of this work for planet formation studies as well as

future prospects for NRM and related techniques on next generation instruments.
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CHAPTER 1

INTRODUCTION

Understanding how stars and planets form has been a major goal in astronomy for

centuries. The formation of our own solar system has implications for the origins

and development of life on Earth. Understanding this process for other planetary

systems will help us better understand the development of life on other worlds, as

well as our place in the universe.

Until recently, we only had observations of our own solar system to inform

planet formation theory (e.g. Weidenschilling, 1977b). With thousands of indirectly-

detected, and handfuls of directly-imaged mature exoplanets, we now have many

different examples of the outcomes of planet formation. Planet demographics stud-

ies have helped us understand the roles of planet-disk interactions, planet-planet

interactions, and stellar metallicity (e.g Ida and Lin, 2004b, 2008a, 2010). Exo-

planet observations can be compared to increasingly sophisticated planet formation

models as we collect data on more systems.

Instrumentation advances have revealed some steps in the star and planet for-

mation process directly. We can directly observe the different phases of protostar

evolution at radio wavelengths (see Section 1.1; e.g. Eisner, 2012; Sheehan and Eis-

ner, 2014). High resolution observations in the radio can now evince the features of

protoplanetary disks (e.g. ALMA Partnership et al., 2015), even at very early evolu-

tionary stages (see Sections 1.2 and 1.4.3; e.g. Sheehan and Eisner, 2017). Progress

in visible and infrared imaging has led to the detection of protoplanetary disks in

scattered light as well (e.g. Dong et al., 2012; Muto et al., 2012). These have allowed

us to constrain disks’ dust properties, the timescales for grain growth, and different

disk dispersal mechanisms.

Despite decades of observational planet formation research, the details remain

poorly constrained. Many open questions exist, such as: How does material fall
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onto a growing planet and for how long? Where in the disk, and when in the disk

lifetime does planet formation take place? How do planets interact with the disks

in which they form? Answering these basic questions requires direct observations of

protoplanets themselves. For example, multi-wavelength infrared observations can

help to differentiate between circumplanetary disk and spherical accretion scenarios

(e.g. Spiegel and Burrows, 2012; Eisner, 2015; Zhu, 2015). Accreting planets are

thought to exhibit hydrogen line emission as shocked gas falls into their potential

wells; constraining line profiles would enable us to place constraints on their detailed

accretion mechanisms (e.g. Muzerolle et al., 1998).

Transition disks, protoplanetary disks with inner clearings that may be shaped

by forming planets, are the most promising targets for direct protoplanet searches.

Fortunately, whether accreting through a disk or by a spherical process, planets are

thought to go through a period of high infrared luminosity during formation, making

them more easily observable than their mature counterparts (e.g. Eisner, 2015; Zhu,

2015). While even giant mature planets have contrasts of ∼ 10−6 (e.g. Marois

et al., 2008a) compared to their host stars, protoplanets have predicted contrasts

of ∼ 10−2 − 10−4 (e.g. Eisner, 2015; Zhu, 2015). However the distances to nearby

transition disks (∼ 140 pc; e.g. Torres et al., 2007) mean that planets at∼ 10 AU will

be at the resolution limit for 8-m class telescopes in the infrared (∼ 0.07 arcseconds).

Thus novel imaging techniques are required to directly detect forming planets. In

this dissertation I describe my work using non-redundant masking (NRM; Tuthill

et al., 2000b) to search for and characterize protoplanets in transition disk clearings.

1.1 Protostar and Circumstellar Disk Formation

Star and planet formation begins with the collapse of a prestellar core - a region of

gas and dust in a Giant Molecular Cloud (GMC) massive enough to contract under

its own gravity. The simplest approximation for the size of a collapsing cloud core

is the Jeans length, (Jeans, 1902), where the self gravity of an isothermal medium
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with temperature T and density ρ overcomes its thermal motions:

λJ =
cs√
Gρ

, (1.1)

where cs is the sound speed, given by√
kT

µmH

, (1.2)

k is the Boltzmann constant, µ the mean molecular weight, and mH the Hydrogen

mass. For typical conditions - densities of ∼ 1000 cm−3 and temperatures of ∼ 10 K

(e.g. Bergin and Tafalla, 2007) - the Jeans length is 0.4 pc (∼ 107 solar radii). The

star formation process requires several orders of magnitude of collapse to occur.

The Jeans length calculation above agrees roughly with the observed sizes of

prestellar cores (e.g. Benson and Myers, 1989). Pre-stellar cores have been observed

in sub-millimeter dust continuum and gas tracers (e.g. Ward-Thompson et al., 1994;

Caselli et al., 2002) and in absorption in the infrared (see Figure 1.1; e.g. Bacmann

et al., 2000). They typically have mean densities ∼ 5−10 times that of their parent

cloud (e.g. André et al., 2009), and their asymmetric line profiles indicate infall (e.g.

Gregersen and Evans, 2000). The sharp edges observed in some cores (e.g. Bacmann

et al., 2000) suggest isolation from the parent cloud; this very early stage of star

formation may have a great influence on the stellar initial mass function.

In the absence of a pressure gradient, a spherical cloud of constant density will

collapse on the free-fall timescale:

tff =

√
1

Gρ
. (1.3)

An outward pressure gradient is created when collapse begins, but the collapse for a

spherical shell of radius r proceeds roughly at the free-fall timescale for the density

of the interior material (e.g. Larson, 2003). The inner, denser regions of the core

will collapse more quickly than the outer radii, leading to the runaway growth of

a central density peak (e.g. Larson, 1973; Tohline, 1982). The result of this non-

uniform collapse is that only a small fraction of the core’s mass is initially found
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A. Bacmann et al.: An ISOCAM absorption survey of the structure of pre-stellar cloud cores 565
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Fig. 4a–f. IRAM 1.3 mm continuum emission maps smoothed to 13′′ FWHM resolution (contours) superimposed on ISOCAM 7 µm absorption
image (greyscale). Contour levels are: a 20, 40, 60 mJy/beam for L1544; b 30, 50, 70 mJy/beam for Oph D; c 20, 40, 60 mJy/beam for L1709A;
d 10, 30, 50 mJy/beam for L1689B; e 20, 40, 60 mJy/beam for L310; f 20, 40 mJy/beam for L328.

assumed a single, representative dust temperature Td = 12.5 K
for all the cores. Based on recent ISOPHOT measurements of
L1544, Oph-D, L1689B, and other similar starless cores (e.g.
Ward-Thompson & André 1999; Lehtinen et al. 1998), we be-
lieve that this value of Td is likely to be within ±3 K of the

true dust temperature in most cases. Considering the additional
uncertainty on the millimeter dust mass opacity in dense cores,
which we took equal to κ1.3mm = 0.005 cm2g−1 (see, e.g.,
Preibisch et al. 1993; AWM96; and Kramer et al. 1999), the
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a b

Figure 1.1: Adapted from Bacmann et al. (2000), two prestellar cores shown in
extinction at 7 µm (greyscale) and 1.3 mm continuum (contours).

in the newly formed protostar, with the rest remaining in an extended envelope.

The turbulent initial conditions in the cloud (e.g. Burkert and Bodenheimer, 2000)

impart the core with net angular momentum (e.g. Goodman et al., 1993). As a

result, the envelope material falls into a rotationally supported circumstellar, or

protoplanetary, disk (e.g. Hayashi et al., 1982). Gravitational torques can then

transport angular momentum outward through the disk and drive accretion onto

the protostar (e.g. Larson, 1984; Bate, 1998).

Protostars are grouped into four classes based on their observed spectral energy

distributions (SEDs); these are taken to represent an evolutionary sequence. Class

0 sources (e.g. Andre et al., 2000) are extremely faint shorter than wavelengths of 10

µm, and have significant sub-millimeter luminosities. During this embedded phase

the protostellar mass is significantly less than the envelope mass. The Class I -

Class III distinctions are based on αIR, the slope of the spectral energy distribution

between 2.2 and 10-25 µm (e.g. Lada, 1987). Class I objects have αIR > 0, and

are thought to no longer be embedded but to have both disks and envelopes. Class

II objects are thought to have circumstellar disks only, and have spectral slopes of

−1.5 < αIR < 0 (classical TTauri stars). Class III sources (weak TTauri stars) have
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αIR < −1.5 and are no longer accreting significantly. Figure 1.2 shows model SEDs

for Class 0 - Class III sources alongside illustrations of their evolutionary states.

Millimeter observations of Class I objects show that they have much higher disk

masses than their evolved counterparts, but lower masses than those needed to form

giant planets (e.g. Eisner, 2012; Sheehan and Eisner, 2014). High spatial resolution

observations of a Class I protostar recently revealed a protoplanetary disk with an

inner clearing, or a transition disk, a morphology only previously seen in Class II

and Class III sources (Sheehan and Eisner, 2017). These results suggest that dust

grain evolution and planet formation may begin very early in the star formation

process.

1.2 Transition Disks: Natural Planet Formation Laboratories

Transition disks present an opportunity to study planet formation in action. First

identified through their spectral energy distributions (SEDs; see Figure 1.3; Strom

et al., 1989), these protoplanetary disks exhibit far-infrared excesses alongside near-

infrared deficits. The SED features were interpreted as disk cavities, suggesting that

the objects are in transition from full protoplanetary disks with excess throughout

the infrared to planetary systems with debris disks and only weak far-infrared ex-

cesses (e.g. Strom et al., 1989). SED modeling supported this, indicating density

reduction factors of ∼ 100−1000 for disk regions tens of astronomical units (AU) in

size (e.g. Espaillat et al., 2007b; Calvet et al., 2005) and showing evidence for grain

size evolution (e.g. Espaillat et al., 2007a). However, degeneracies in SED modeling

due to the effects of geometry and opacity (e.g. Boss and Yorke, 1996) required

direct images of transition disks to unambiguously detect these disk features.

Radio studies using the Sub-Millimeter Array (SMA), the Plateau de Bure In-

terferometer (PdBI), and the Very Large Array produced the first direct images

of transition disk clearings between 870 µm and 7 mm (see Figure 1.3; e.g. Piétu

et al., 2006; Hughes et al., 2007; Brown et al., 2008; Dutrey et al., 2008; Hughes

et al., 2009; Andrews et al., 2009; Brown et al., 2009; Andrews et al., 2011b). The
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Figure 1.2: The left column shows model spectral energy distributions for protostars
of different classes. The right column shows illustrations of their evolutionary states.
Figure from Isella (2006).
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Fig. 1.— SEDs of an evolved disk (top; RECX 11; Ingleby et al.
2011), a pre-transitional disk (middle; LkCa 15; Espaillat et al.
2007), and a transitional disk (bottom; GM Aur; Calvet et al.
2005). The stars are all K3-K5 and the fluxes have been corrected
for reddenning and scaled to the stellar photosphere (dot-long-
dashed line) for comparison. Relative to the Taurus median (short-
dashed line; D’Alessio et al. 1999), an evolved disk has less emis-
sion at all wavelengths, a pre-transitional disk has a MIR deficit
(5–20 µm, ignoring the 10 µm silicate emission feature), but com-
parable emission in the NIR (1–5 µm) and at longer wavelengths,
and a transitional disk has a deficit of emission in the NIR and
MIR with comparable emission at longer wavelengths.

2.1 Spectral Energy Distributions

SEDs are a powerful tool in disk studies as they pro-
vide information over a wide range of wavelengths, trac-
ing different emission mechanisms and material at differ-

!"##$%&'(!

)*+,'&-.,+#$%&'(!

/*01)*+,'&-.,+#$%&'(!

Fig. 2.— Schematic of full (top), pre-transitional (middle), and
transitional (bottom) disk structure. For the full disk, progressing
outward from the star (black) is the inner disk wall (light gray) and
outer disk (dark brown). Pre-transitional disks have an inner disk
wall (light gray) and inner disk (dark brown) followed by a disk
gap (white), then the outer disk wall (light gray) and outer disk
(dark brown). The transitional disk has an inner disk hole (white)
followed by an outer disk wall (light gray) and outer disk (dark
brown).

ent stellocentric radii. In a SED, one can see the signa-
tures of gas accretion (in the ultraviolet; see PPIV review
by Calvet et al. 2000), the stellar photosphere (typically
∼1 µm in TTS), and the dust in the disk (in the IR and
longer wavelengths). However, SEDs are not spatially re-
solved and this informationmust be supplemented by imag-
ing, ideally at many wavelengths (see § 2.2–2.3). Here
we review what has been learned from studying the SEDs
of (pre-)transitional disks, particularly using Spitzer IRS,
IRAC, and MIPS.

SED classification

A popular method of identifying transitional disks is to
compare individual SEDs to the median SED of disks in the
Taurus star-forming region (Fig. 1, dashed line in panels).
The median Taurus SED is typically taken as representative

3

Figure 1.3: Left: Adapted from Espaillat et al. (2014). The short-dashed line
shows the median Taurus SED (D’Alessio et al., 1999), the long-dashed line shows
the stellar photosphere, and the green line and points show a transition disk SED.
Right: From Andrews et al. (2011a), synthesized image of the LkCa 15 transition
disk from the SMA and PdBI.

observed millimeter cavities had sizes of a few to several tens of AU, in agreement

with the SED studies. More recent advances in radio and infrared instrumentation

provide a multi-wavelength view of these disk features. The Atacama Large Mil-

limeter Array has enabled measurements of gas surface density profiles in addition

to dust, revealing less drastic (but non-zero) gas depletion within the dust cavities

(e.g. van der Marel et al., 2015, 2016; Williams and McPartland, 2016). Further-

more, scattered light infrared imaging reveals differences in gap sizes between large

dust grains traced by millimeter emission, and smaller, micron sized grains traced

by the infrared (e.g. Dong et al., 2012; Hashimoto et al., 2015). These observations

have also led to the discovery of disk structures such as spirals, rings, and large-scale

asymmetries (e.g. Muto et al., 2012; Wagner et al., 2015; Biller et al., 2015). We

now have a rich, multi-wavelength transition disk dataset with which to compare

theories of protoplanetary disk evolution and planet formation.
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1.2.1 Transition Disk Clearing Mechanisms

A variety of mechanisms are thought to contribute to gap opening, including grain

growth, photoevaporation, and dynamical interactions with forming planets. Grow-

ing grains to millimeter and centimeter sizes could create transition disk SED fea-

tures (e.g. Dullemond and Dominik, 2005; Tanaka et al., 2005; Birnstiel et al., 2012)

by decreasing emissivity at near-infrared wavelengths (e.g. D’Alessio et al., 2006).

However, collisions between these large grains can become destructive enough to fill

in the SED (e.g. Windmark et al., 2012). This scenario still cannot explain mil-

limeter cavities; disk simulations have failed to grow grains to large enough sizes to

reproduce the clearings observed at radio wavelengths (e.g. Birnstiel et al., 2012).

Photoevaporation by the central star can clear gas and small dust in the inner

disk regions (e.g. Clarke et al., 2001; Alexander et al., 2006), and at larger disk radii

when radial drift is invoked (e.g. Alexander and Armitage, 2007). While X-ray winds

could deplete inner disk radii more efficiently than UV winds (e.g. Ercolano et al.,

2008; Drake et al., 2009; Owen et al., 2010), the observed X-ray luminosities for stars

with transition disks are too low to explain their cavity sizes and mass loss rates (e.g.

Owen et al., 2011). Furthermore, disk dispersal by photoevaporation alone leads to

a phase with low-accretion rate and small hole size (consistent with observations

of millimeter-faint transition disks), followed by a non-accreting, large-hole phase

(e.g. Owen, 2016). It cannot explain the observed population of millimeter-bright,

accreting transition disks with large cavities.

Simulations have shown that planetary mass companions can indeed open gaps

in protoplanetary disks (e.g Lin and Papaloizou, 1986; Bryden et al., 1999; Crida

et al., 2006). These accreting protoplanets would lower the stellar accretion rates,

consistent with observations (e.g. Najita et al., 2007). Additionally, dust trapping

created by a planetary companion has been shown to be more effective for millimeter-

than micron-sized grains, providing an explanation for smaller cavity sizes observed

in the infrared compared to the millimeter (e.g. Hashimoto et al., 2015). While high-

contrast imaging studies have determined some transitional disks to be circumbinary,



23

(e.g. Uchida et al., 2004; Furlan et al., 2007; Ireland and Kraus, 2008; Biller et al.,

2012; Close et al., 2014), the companion mass limits for half the known sample are

∼ 20 − 30 MJ (e.g. Kraus et al., 2011; Evans et al., 2012). This means that disk-

clearing companions in many transition disks must be sub-stellar rather than stellar

mass.

Studies suggest that some combination of these three scenarios are required to

explain transition disk observations. For example, reconciling the presence of small

grains inside millimeter clearings with near-infrared SED deficits may require grain

growth (e.g. Pinilla et al., 2012a; Zhu et al., 2012). Furthermore, invoking photoe-

vaporation after gap-clearing by an embedded planet could explain transition disk

accretion rates and hole sizes (e.g. Rosotti et al., 2013). While much work is needed

to fully understand the origin and evolution of transition disks, the observational

and theoretical studies to date indicate that these objects are the best targets for

direct planet formation studies.

1.3 Planet Formation

1.3.1 Terrestrial Planet Formation

Planet formation involves the growth of solids over 12 orders of magnitude: from

sub-micron to centimeter sized dust, to meter sized rocks, to kilometer sized plan-

etesimals, to Earth sized and larger terrestrial planets or giant planet cores. Very

small dust grains are well coupled to the gas disk, but will sediment out to the

midplane as they collide with other particles and grow in size. As larger particles

settle they collide with a background of slower, small grains and continue to grow

in size. With settling and coagulation, particles reach the midplane and can grow

to mm sizes quite quickly (in ∼ 103 years in idealized theoretical calculations; e.g.

Dullemond and Dominik, 2005; Safronov and Zvjagina, 1969). This process is a

balance between growth and fragmentation (e.g. Birnstiel et al., 2011). The latter

must be invoked to reconcile growth to mm size with observations of near-infrared

excesses seen in TTauri star SEDs (e.g. Strom et al., 1989).
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Growth to mm sized particles can occur rapidly, but growing beyond this to meter

and then to planetesimal size is more difficult. While destructive collision velocities

are low interior to the ice line, coagulation beyond mm size may occur further out

where ices allow higher velocity collisions (e.g. Poppe et al., 2000; Zsom et al., 2010;

Gundlach and Blum, 2015). Porous aggregates may also allow for sticking at higher

velocities (e.g. Okuzumi et al., 2012). Once large particles exist, they undergo

radial drift due to differential velocity with the gas disk (Weidenschilling, 1977a).

The negative pressure gradient causes the gas to rotate at sub-Keplerian velocity,

while large bodies are decoupled with the gas and orbit at Keplerian velocity. They

experience a head wind that causes them to lose angular momentum and spiral

toward the star; this drift velocity depends on particle size, with∼meter sized bodies

drifting the fastest. The timescale on which they inspiral is short compared to the

disk lifetime for meter sized particles. While locally reversing the pressure gradient

and trapping particles could enable further growth (e.g. Pinilla et al., 2012b), radial

drift implies that growth through meter size to planetesimals must take place quickly.

The most promising mechanism for forming planetesimals is the streaming in-

stability (Youdin and Goodman, 2005). Here, coagulation and settling result in a

disk midplane where the local gas and particle densities are comparable. The high

particle densities speed up the gas, causing radial drift to slow. Particles in the outer

regions of the disk drift in on faster timescales, leading to a pileup of solids that can

then collapse due to gravitational instability. This results in a population of plan-

etesimals with a range of sizes, as has been demonstrated in numerical simulations

(e.g. Johansen and Youdin, 2007; Simon et al., 2016).

Growth beyond planetesimals involves gravitational focusing, in which a body’s

gravitational force makes the collisional cross section larger than its size. The mag-

nitude of gravitational focusing decreases with relative velocity, which depends on

the balance of aerodynamic interactions that damp particle motions, and turbulence

that stirs particles to higher velocity (e.g. Okuzumi and Ormel, 2013). During this

growth phase, planetesimals may accrete a significant amount of millimeter sized

and smaller particles via “pebble accretion” (e.g. Ormel and Klahr, 2010; Lam-
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brechts and Johansen, 2012), which also depends on the disk velocity dispersion.

Growth proceeds rapidly until the planetary embryos become large enough to stir

up smaller particles in the disk, at which a slower, “oligarchic” growth phase be-

gins (e.g. Kokubo and Ida, 1998). Eventually the planetary embryos approach their

isolation mass, having consumed the majority of bodies on slow enough and close

enough orbits to be gravitationally influenced (e.g. Lissauer, 1993). Isolation masses

roughly match the final terrestrial planet masses and estimated giant planet core

masses for their orbital separations.

1.3.2 Giant Planet Formation

Giant planet formation is thought to take place through two different pathways: core

accretion (e.g. Pollack et al., 1996) or gravitational instability (e.g. Kuiper, 1951;

Cameron, 1978). In the core accretion model, planet formation begins through the

process outlined above; smaller solids combine to form larger ones until the isolation

mass is reached. Once the giant planet core becomes massive enough, it begins to

accrete an atmosphere from the gas disk. Initially, the atmosphere is in hydrostatic

equilibrium, with accretion of pebbles and planetesimals onto the core providing a

source of luminosity. When the core reaches a critical mass (e.g. Mizuno, 1980), the

atmosphere contracts and a period of runaway growth ensues until gas supplies are

exhausted.

Gravitational instability causes regions of the disk to collapse under their own

gravity. The disk conditions must be such that Toomre’s Q parameter (Toomre,

1964) is small:

Q =
csΩ

πGΣ
. 1 (1.4)

where cs, the sound speed, is defined in Equation 1.2, Ω is the local disk angular

velocity, and Σ is the local disk surface density. For reasonable conditions at 10

AU around a solar mass star (cs = 0.5 km s−1; e.g. Armitage, 2007), Q = 1 requires

Σ = 1.5×103g cm−2. This is large compared to disk surface density estimates based

on our own solar system (e.g. Weidenschilling, 1977b). However, Q’s dependence on
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Ω suggests that this mechanism could play a greater role farther out (several tens

to hundreds of AU) in the disk.

Forming or recently-formed planets are expected to be relatively bright com-

pared to their host stars. Spherical or disk-fed accretion scenarios will produce

compact (extent . 0.01 AU), infrared emission, leading to contrasts of 10−2 − 10−4

(e.g. Eisner, 2015; Zhu, 2015). Actively accreting giant planets should also emit at

accretion-tracing emission lines such as Hα as hydrogen gas falls into their grav-

itational potential and becomes shocked. Furthermore, young planets that have

recently formed with high initial entropy (“hot-start” models; e.g. Spiegel and Bur-

rows, 2012) will have relatively high luminosities as their photospheres cool. This

early, luminous phase presents an opportunity to study planet formation in action.

1.4 Observational Planet Formation Studies

1.4.1 Minimum Mass (Extra-)Solar Nebula

One of the earliest examples of observational planet formation studies is the mini-

mum mass solar nebula (MMSN; Weidenschilling, 1977b). Here, the masses of the

solar system’s planets and asteroid belt are augmented with Hydrogen and Helium to

reach solar composition. Depending on the value chosen for Jupiter’s current mass,

the total mass in the solar nebula then ranges between 0.01 and 0.1 solar masses.

Spreading the total mass out over annuli provides an estimate for the disk surface

density evolution with radius, roughly Σ ∼ r−3/2. The MMSN can be thought of as

a mass budget for in-situ formation of the solar system planets, ignoring processes

such as migration.

Decades later, the thousands of mature exoplanets have enabled the calculation

of a Minimum Mass Extra-Solar Nebula (MMEN; e.g. Kuchner, 2004; Chiang and

Laughlin, 2013). These studies result in surface density relations of Σ ∼ r−2 for

giant planets and Σ ∼ r−1.6 for terrestrial planets, roughly consistent with the

MMSN. The Chiang and Laughlin (2013) MMEN, calculated using close-in super-

Earths (and thus orbital separations < 0.45 AU), is several times larger than the
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MMSN. The MMEN implies that in-situ formation of super-Earths is possible, as

well as distant gas giants when the relation is extrapolated to larger radii. However,

simulated observations of planet populations suggest that in-situ formation is ruled

out and migration effects need to be taken into account (Raymond and Cossou,

2014). Accumulated observations of extra-solar systems have allowed us to test

more complicated planet formation theories than possible with our solar system

alone.

1.4.2 Planet Demographics

Related to the MMEN are planet demographics studies, which try to reconcile the

observed exoplanet populations with our current understanding of planet formation.

A variety of indirect planet detection methods exist, all of which populate different

planet parameter spaces (see Figure 1.4). In the radial velocity and astrometry

methods, we observe the stellar wobble induced by the exoplanet’s gravity, through

doppler shifts and by observing the star’s position on the sky, respectively. Ra-

dial velocity and astrometry are thus sensitive to massive planets on relatively close

orbits. Transit searches record dimming of starlight caused by planets that pass

directly between the observer and the star. These are sensitive to lower mass plan-

ets than radial velocity, and our observations are biased toward close separations

since multiple transits (and thus a long time baseline) are required to confirm these

detections. Direct imaging (see Section 1.5.1) is sensitive to young, self-luminous

giant planets at large semimajor axes (angular separations), due to the limitations

of current telescopes and instrumentation (see Section 6.2).

Beginning with radial velocity surveys, the distributions of observed planet char-

acteristics such as masses, semi-major axes, and orbital eccentricities have been used

to gain general insights about the planet formation process. The observed mass -

semimajor axis distribution (e.g. Ida and Lin, 2004a), as well as the giant planet

occurrence rate versus metallicity (Ida and Lin, 2004b; Fischer and Valenti, 2005;

Mordasini et al., 2009), suggest core accretion rather than gravitational instability

as a formation mechanism. We have learned that the masses of close-in giant plan-
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Figure 1.4: Confirmed exoplanet masses versus semi-major axis, with symbols indi-
cating detection method. Data were taken from the NASA Exoplanet Archive.
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ets depend on stellar spectral type, indicating differences in migration timescales

compared to gas depletion timescales (e.g. Ida and Lin, 2005). Mass-period re-

lations have also been useful for constraining migration theory (e.g. Ida and Lin,

2008a,b). More recently, the large number of known multi-planet systems thanks

to Kepler has allowed for simulations of multiple interacting protoplanets (e.g. Ida

et al., 2013). As we fill in more of the planet parameter space, we can begin to test

more complicated aspects of planet formation theory.

1.4.3 Protoplanetary Disk Imaging

High resolution radio (e.g. ALMA Partnership et al., 2015; Pérez et al., 2016; Isella

et al., 2016) and infrared observations (e.g. Muto et al., 2012; Wagner et al., 2015;

Biller et al., 2015) have revealed complex features in protoplanetary disks that can

be compared to simulations of disk-planet interactions and gravitational instability

(see Figure 1.5). Simulations of super-Earths in protoplanetary disks have produced

double ring features consistent with those detected in high resolution ALMA obser-

vations of some objects (Dong et al., 2017; Bae et al., 2017). Spirals indicating

gravitational instability have recently been imaged in a protoplanetary disk (Pérez

et al., 2016). Some disks with spirals, such as MWC 758 (e.g. Benisty et al., 2015)

and SAO 206462 (e.g. Muto et al., 2012) are more consistent with planet-disk in-

teractions (e.g. Dong et al., 2015a,b). Interactions with nearby stars have also been

shown to cause spiral features in disks (e.g. see Figure 1.5; Wagner et al., 2015;

Dong et al., 2016). In some cases disk features may certainly be signposts of planet

formation; however the multiple ways to form some disk features make this approach

ambiguous.

1.5 Open Questions and the Need for Direct Protoplanet Observations

Observations of the planet formation process thus far leave a number of unanswered

questions. For example, the accretion process is still unconstrained. Differentiat-

ing between spherical and circumplanetary disk accretion requires observations at
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beam. Then the position of each point was moved to the nearest
local radial maximum (or minimum for dark rings). To avoid
regions where the rings become less distinct, points were
discarded if they moved outside the nominal width of the
individual rings (5 to 8 AU). Eight rings retained 55%> of the
points, to which we subsequently fit an ellipse, including its
center position, using a Markov Chain Monte Carlo (Foreman-
Mackey et al. 2013). The results are listed in Table 2, with the
full range of parameters given for the eight most distinct rings,
and just the semimajor axis for the others. It seems likely that
the “gap,” “enhancement,” and “clump” observed in VLA 1.3
and 0.7 cm images (Greaves et al. 2008; Carrasco-González
et al. 2009) at ∼10, 20, and 55 AU along the major axis of the
disk correspond to the D1, B1, and the combined emission
from the B2 to B4 rings, respectively.

The weighted average of the best-fit inclination and P.A. for
the eight fitted rings yields i 46 .72 0 .05= ±◦ ◦ and P.A.

138 .02 0 .07= ±◦ ◦ , consistent with the constraints found for

the average disk geometry over large scales. However, the best-
fit ellipses have their centers offset with respect to the peak of
the 1.0 mm emission, as can be seen in the equatorial offsets
reported in Table 2. These offsets are statistically significant for
all but the innermost ring (D1). Interestingly, the magnitude of
the position offset increases with orbital distance from the
center.
Using the weighted average inclination and P.A., we have

deprojected the combined 1.0 mm visibility data into a
circularly symmetric, face-on equivalent view (see Figure 3
(a)). We have also extracted cross-cuts at an angle of138° from
both the 1.0 mm continuum image and the spectral index map
shown in Figures 2(e) and (f). These cross-cuts are shown in
Figures 3(b) and (c). The variation in intensity between the
bright and dark rings is readily apparent. Considering only the
fully characterized rings, the largest average intensity contrast
is between the first pair with D1 being 46% less bright than B1,
and the smallest contrast is between the 5th pair with D5 being

Figure 2. Panels (a), (b), and (c) show 2.9, 1.3, and 0.87 mm ALMA continuum images of HL Tau. Panel (d) shows the 1.3 mm PSF for the same FOV as the other
panels as well as an inset with an enlarged view of the inner 300 mas centered on the PSF’s peak (the other bands show similar patterns). Panels (e) and (f) show the
image and spectral index maps resulting from the combination of the 1.3 and 0.87 mm data. The spectral index (α) map has been masked where 4errorα α < . The
synthesized beams are shown in the lower left of each panel; also see Table 1. The range of the color bar shown for panel (b) at 1.3 mm corresponds to 2− × rms to
0.9× the image peak using the values in Table 1. The color scales for panels (a), (c), and (e) are the same except using the values of rms and image peak
corresponding to each respective wavelength in Table 1.
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The Astrophysical Journal Letters, 808:L3 (10pp), 2015 July 20 ALMA Partnership et al.

Figure 2. PSF-subtracted Y-, J-, and H-band IFS images of HD 100453, verifying the detection of the spiral disk in each band.

Figure 3. (Top row) Azimuthal brightness of the ring, taken at half-degree increments and smoothed by a running boxcar. (Bottom row) Surface rightness profile in
the spiral arms, with the K1 IRDIS image overlaid to show the apertures used to extract the surface brightness. Each image is normalized independently.

3

The Astrophysical Journal Letters, 813:L2 (6pp), 2015 November 1 Wagner et al.

Figure 1.5: Left: From ALMA Partnership et al. (2015). ALMA observations of
the HL Tau transition disk reveal many gaps and rings. Right: From Wagner et al.
(2015). Spiral features in the disk around the Herbig Ae/Be star HD 100453 seen
in scattered light.

multiple infrared wavelengths (e.g. Spiegel and Burrows, 2012; Eisner, 2015; Zhu,

2015). If accretion takes place through a circumplanetary disk, measuring emission

line profiles could distinguish between boundary layer and magnetospheric accretion

scenarios (e.g. Muzerolle et al., 1998).

We now have many examples of circumstellar disks with interesting features

such as gaps, rings, and spirals indicating the possible influence of planets. However

the origin of these features remains unknown until we can directly connect them

with planets. Indeed, some features such as spirals can be matched by gravitational

instability as well as interactions with companions. Detecting forming planets di-

rectly would better constrain planet-disk interactions and transition disk clearing

mechanisms.

Protoplanetary disk studies and planet demographics have informed our under-

standing of relevant timescales (e.g. grain growth and gas disk lifetime), as well as

the importance of migration and planet-planet scattering. Observing many proto-

planetary systems would be very powerful to this end. It would provide a statistical

understanding of how long planets are accreting and how forming planets interact
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with each other and their disks. Developing the techniques to image forming planets

directly is the first step in creating such a protoplanetary census.

1.5.1 Direct Imaging of Mature Exoplanets

Mature exoplanets illustrate the scientific advances that can be made through direct

imaging, as well as the associated technological challenges (see Section 1.6). Indirect

planet searches such as the transit and radial velocity techniques have constrained

planet parameters such as mass, radius, and semimajor axis. Direct imaging has

given us a much more detailed view of individual planets since it allows us to observe

their broadband photometery and spectra (e.g. Skemer et al., 2012; Macintosh et al.,

2015). This has led to the detection of clouds and non-equilibrium chemistry (e.g.

Skemer et al., 2014b).

Direct imaging has thus far been limited to observations of giant planets in the

infrared, where they are brighter than in the visible owing to their thermal emission

(see Figure 1.6; e.g. Skemer et al., 2014b). Due to the sharp increase in observable

planet flux approaching the diffraction limit, direct imaging surveys have also been

limited to planets around nearby stars (see Figure 1.6; e.g. Skemer et al., 2014a).

The majority of directly imaged exoplanets lie at angular separations several times

the diffraction limit (see Figure 1.6; e.g. Bowler, 2016).

1.6 Direct Imaging Methods: State-of-the-Art, Limitations, and Novel

Techniques

1.6.1 Adaptive Optics

Ground-based imaging systems require adaptive optics (AO) to achieve high resolu-

tion and contrast. Turbulent mixing of hot and cold air in the Earth’s atmosphere

degrades image quality, blurring point sources into “seeing-limited” disks. The size

of a seeing disk is determined by the coherence length, or Fried length, which is

related to the integrated turbulence along the line of sight to the star through the
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Figure 4. Top Left: On-sky contrast curves for LBTAO at H-band and L’ (1.6µm and 3.8µm). Top Right: Contrast
curves converted to mass sensitivity curves for a hypothetical young star (30 Myr A-star with “hot-start”36 planets at 40
pc, which is meant to approximate HR 8799). Because a planet’s contrast with respect to its host star decreases at longer
wavelengths, the L’ mass sensitivity is superior, even though the raw contrast curves show a deeper contrast at H-band.
Note that the floor on the contrast curve results from sky/telescope background noise, not quasi-static speckle residuals.
Bottom Left: Contrast curves converted to mass sensitivity curves for a hypothetical old star (1 Gyr G-star with “hot-
start” planets at 10 pc). Even for old planets, LEECH achieves an excellent planet sensitivity. And because old stars can
be found near the Sun, the physical resolution is improved compared to the more distant young-star case. Bottom Right:
Same as top-left, but with additional curves showing the L’ contrast curve converted into an effective H-band contrast
curve, based on the “young star” and “old star” examples shown in the other panels. These effective H-band curves show
the equivalent H-band contrast necessary to detect planets that are detectable in our L’ data. LEECH’s effective H-band
contrast is competitive with the best H-band contrasts achieved to date.

LEECH’s effective H-band contrast is ∼16 magnitudes at 0.5” for the examples shown, which is competitive
with the contrasts currently being achieved by GPI∗ and SPHERE. Observations of known exoplanetary systems
are consistently the highest S/N images taken of those systems (see, for example, Figure 5).

Figure 5. LEECH L’ (3.8µm) images of the planetary systems around HR 8799 and Kappa And. These images are the
highest S/N images of either system, and show the best sensitivity to unseen inner planets for either system.

6. SURVEY DESIGN AND TARGET LIST

Previous surveys (NICI42–44 , IDPS,45 etc.) were designed to maximize the detections of exoplanets assuming an
optimistic model for the evolution of planet luminosities (hot-start36). In the hot-start model, planets around
young stars are very bright, and then rapidly fade as they evolve. A more pessimistic model (cold-start35)
predicts that planets start fainter than the hot-start models, but then fade more slowly. Designing a survey
to maximize hot-start detections pushes a target list towards young systems, even if they are far away, and
angularly small on the sky. However, the previous surveys yielded mostly non-detections, which could either
mean that wide separation massive planets are extremely rare, or that wide separation massive planets don’t
evolve following the hot-start models. To distinguish between these hypotheses, LEECH is designed to detect
cold-start planets, so that non-detections rule out the presence of planets regardless of formation scenario.

By working at L’, LEECH is optimized for detecting cold, low-luminosity exoplanets (see Figure 3). To
detect cold-start planets LEECH must have the sensitivity to detect 500-600 K planets, which corresponds to an
absolute magnitude limit of L’∼15 magnitudes.36 The bright sky/telescope background limits typical LEECH
observations to a sensitivity of L’∼17.5 magnitudes, which implies a distance cut of 30 pc. In reality, planets
may follow evolutionary models that are intermediate between hot-start and cold-start models (e.g. warm-start
models46), so our target list is also designed to survey likely planet hosts (such as massive stars) out to larger
distances.

The LEECH survey has a fluid target list consisting of nearby, intermediate-aged stars complementing other
high-contrast imaging surveys of more distant, young stars. Some representative examples of our current target
list include 52 members of the 300-600Myr Ursa Majoris moving group,47–49 54 A and B-type stars within 55pc,
and 30 young (≤1Gyr) FGK stars within 25pc. The Ursa Majoris (UMa) moving group targets were drawn
from a membership list,48 and span a range of spectral types from A0 to M2. The sample is biased towards
more massive stars, with 44% of the sample being earlier than spectral type A9, a higher proportion than the

∗Early GPI commissioning data have a contrast of ∆H∼13.5 mags at 0.5” for a flat spectrum and ∆H∼14.5 mags
for a fully methanated spectrum in 30 minutes clock time,41 which will be a typical exposure for the GPI survey.
LBTI/LMIRcam’s effective contrast of ∆H∼16 assumes a 2 hour integration, which is typical for LEECH.

Figure 1. from Directly Imaged L-T Transition Exoplanets in the Mid-infrared
Skemer et al. 2014 ApJ 792 17 doi:10.1088/0004-637X/792/1/17
http://dx.doi.org/10.1088/0004-637X/792/1/17
© 2014. The American Astronomical Society. All rights reserved.

0.07 “

Figure 1.6: Adapted from Skemer et al. (2014a). Left: Example contrasts as a
function of wavelength for Beta pic b (1600 K; green), HR 8799 cde (1000 K; dark
blue), a 700 K cold start model (light blue), a 400 K planetary atmosphere model,
and Jupiter. Grey shading shows the typical direct imaging passbands. Top right:
LBT contrast as a function of separation for H (blue) and L′ (green) bands; the
vertical black line marks the L′ diffraction limit for the LBT. Bottom right: Example
LBT direct imaging dataset for Kappa And (∆L′ = 8.8 mag; e.g. Bonnefoy et al.,
2014). The smaller white bar shows the LBT L′ diffraction limit.
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atmosphere:

r0 ∼
[
λ−2 cos γ−1

∫
C2
n (z) dz

]−3/5

. (1.5)

Here, λ is the observing wavelength and γ the zenith angle. Cn (z) describes the

refractive index variations induced by atmospheric turbulence as a function of height,

z. The seeing disk diameter is then ∼ λ/r0, which can be ∼ 1 arcsecond depending

on the turbulence.

The achievable resolution of a telescope in the absence of an atmosphere (diffrac-

tion limit) is ∼ λ/D; for λ = 1 µm, D = 8 m. This is ∼ 0.025 arcseconds, much

smaller than the seeing disk. Achieving the theoretical resolution of most tele-

scopes thus requires adaptive optics, which compensate for atmospheric blurring

through the use of a wavefront sensor, control system, and deformable mirror (DM).

The wavefront sensor measures the imperfections in an incoming wavefront, and

the control system converts those deviations into commands that it sends to the

actuators that deform the mirror. The AO system must close its servo loop fast

enough to correct aberrations before atmospheric turbulence changes the wavefront

significantly.

Three parameters drive the design of an adaptive optics system: the coherence

length, the coherence time, and the isoplanatic angle. The coherence length (see

Equation 1.5), gives the length over which there is on average 1 radian of root-

mean-square (rms) phase aberration. For the infrared, e.g. λ = 3 µm, the coherence

length is ∼ 70 centimeters. This determines the telescope diameter at which images

are degraded by turbulent motions and thus the minimum actuator spacing on the

deformable mirror (∼ r0 for Nyquist sampling of a coherent cell).

The coherence timescale (τ0) is defined as the time it takes turbulence to produce

1 radian of rms phase error in a wavefront:

τ0 ∼
r0

v
, (1.6)

where r0 is defined in Equation 1.5 and v is the average wind speed. The coherence

timescale is on the order of several to ten milliseconds in the infrared, suggesting

that AO systems should operate with closed-loop frequencies of ∼ 100− 1000 Hz.
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The isoplanatic angle (θ0) is defined as the angle over which rms phase variations

are less than 1 radian:

θ0 ∼
cos γ r0

h
, (1.7)

where h is the average height of the turbulent atmospheric layer, r0 is given by

Equation 1.5, and γ is the zenith angle. The isoplanatic angle is usually on the

scale of a few arcseconds and defines the maximum angular scale over which good

AO correction can be achieved. Taking these three parameters into account, AO

systems typically operate over small (a few to ∼ 10 arcseconds) fields of view, run

at speeds of ∼ 100−1000 Hz, and have a DM actuator spacing of approximately r0.

This thesis presents observations from several AO-equipped telescopes: the Large

Binocular Telescope (LBT), Magellan, Keck, and the Very Large Telescope (VLT).

The LBT and Magellan AO systems in particular are optimized for infrared obser-

vations; these use deformable secondary mirrors to reduce the number of optics and

thus decrease noise due to instrumental thermal emission (e.g. Morzinski et al., 2014;

Bailey et al., 2014; Lloyd-Hart, 2000). The LBT AO system can achieve contrasts

of 10−4−10−5 at separations greater than 0.3 arcseconds (see Figure 1.7; e.g. Bailey

et al., 2014). On Magellan, MagAO can image in the visible and the infrared, with

demonstrated contrasts of ∼ 10−5 in the visible at a separation of ∼ 0.5 arcseconds

(e.g. Males et al., 2014). The decrease in λ/D provided by MagAO’s visible imag-

ing mode can achieve higher contrast than infrared AO imaging at small angular

separations (e.g. Close et al., 2014).

1.6.2 Post Processing Methods

The post processing methods used in traditional AO imaging are designed to effec-

tively remove the telescope’s point-spread function (PSF). These all rely on letting

the sky rotate on the detector throughout the observations. Instrumental signals

will remained fixed while true astrophysical signals rotate on the sky. Images can be

combined to eliminate the instrumental signals and derotated to create an image of

the source; this technique is referred to as angular differential imaging (ADI; Marois
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Figure 2: RMS Wavefront Error vs. mode number for two different seeing conditions, as measured by the
wavefront sensor. In red is the WFE of the native seeing, and in black is that of the AO-corrected wavefront.
The AO system achieved good rejection at all modes, with RMS amplitudes of 1-2 nm at the highest spatial
frequencies.

Figure 3: Left Theoretical L-band PSF. Right L-band image of a bright star, after “eye doctor” NCPA correction
(discussed in Sect. 4.1). During the 2 min integration, the seeing varied between 1.4” and 1.9”. The AO system
was running with 300 spatial modes at 990 Hz, and the final image had a Strehl Ratio of 89%. The source at
outside the third Airy ring 12 o’clock is an optical ghost.

the uncertainty in SR introduced by measuring integrated flux with a small aperture is 1-3%. Figure 3 shows
the theoretical LMIRCam PSF in the broadband L filter (3.4− 4 µm) and an LMIRCam image of a bright star
created from 2 min of stacked 0.3 sec images. The images were not shifted before coadding in order to preserve
the effects of tip/tilt jitter. During this dataset the AO system was correcting 300 modes at 990 Hz. Although
the seeing was varying between 1.4” and 1.9”, the SR was 89%.

For longer Angular Differential Imaging datasets, typical of LBTI direct imaging observing sequences, we
achieve unprecedented L-band contrasts, competitive with H-band results. Figure 4 shows a representative
contrast curve from data obtained as part of the LEECH survey. In green is an L-band contrast curve from
LMIRCam using the LBTI AO system.6 In blue is an H-band contrast curve from PISCES observations using
the (nearly identical) FLAO system.17 The datasets had comparable sky rotation and integration: ∼ 2 hr of
wall clock time and ∼ 60◦ of rotation. The effect of the control radius “knee” is prominent in the PISCES data,
but more muted in the L-band data, due to a combination of higher sky background noise contribution and the
more sparsely sampled contrast curve at L-band.
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Figure 1.7: From Bailey et al. (2014). Theoretical (left) and observed (right) point
spread functions for the single-aperture, 8.4-meter mode of LBTI at L band. The
point-like source in the right panel is a ghost.

et al., 2006). ADI has enabled exoplanet imaging at several times the diffraction

limit (e.g. Marois et al., 2008a). More sophisticated calibration techniques such as

the locally optimized combination of images (LOCI; Lafrenière et al., 2007) and

Karhunen-Loève Image Processing (KLIP; Soummer et al., 2012) involve building

a reference library of images and combining them optimally for different portions

of the PSF. All of these algorithms become less effective closer to the star; for ADI

this is owing to the smaller motion on the detector for the same amount of sky rota-

tion. The exclusion zones on which LOCI and KLIP rely to prevent self subtraction

also become quite small approaching the star. Spectral differential imaging (SDI;

e.g. Close et al., 2014) takes advantage of the fact that speckle locations scale with

wavelength while true signals do not. SDI can improve PSF characterization beyond

ADI alone, achieving higher contrasts at a given angular separation.

1.6.3 Coronography

The highest resolution AO-enabled direct images of mature exoplanets have resulted

from coronagraphs (e.g. Mawet et al., 2012; Guyon et al., 2014). These attenuate
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starlight by simply masking out some portion of the field of view (e.g. Lyot, 1939) or

by modulating the phase of the incoming wavefront (e.g. Mawet et al., 2005). The

theoretical inner working angle (sometimes defined as the point at which off-axis

light is attenuated by 50%) for the highest performance coronagraphs ranges from

∼ 0.7− 3 λ/D (e.g. Guyon et al., 2006; Mawet et al., 2012).

While coronagraphs can in theory reach angular separations of λ/D, in prac-

tice imperfect wavefront control and data reduction algorithms limit the achievable

resolution. Low order aberrations such as tip-tilt can change rapidly due to seeing

variations and instrument / telescope vibrations (e.g. Meimon et al., 2010). An

AO system operating more slowly than these variations will allow aberrations to

leak into off axis light (“phase leakage”; e.g. Mawet et al., 2012). This can mimic

the signal from a circumstellar disk for small asymmetric aberrations or symmet-

ric aberrations such as focus. Larger asymmetric aberrations may masquerade as

companions. These factors, combined with the difficulties of PSF characterization

at small angular separations, limit the angular resolution of a coronagraphic AO

imaging system to ∼ 1.5λ/D (e.g. Mawet et al., 2012).

1.6.4 Optical Interferometry

The techniques of optical interferometry can be combined with more traditional

adaptive optics imaging to achieve the full resolution of a telescope. Interferometry

combines the light from an array of telescopes to image at a resolution proportional

to their separations. Young’s 1803 double slit experiment illustrates the physical

principles behind an interferometer. Plane parallel light from a distant point source

encounters two slits and is then imaged on a screen. Due to the wave nature of

light and the different path lengths from each slit to the screen, the light construc-

tively and destructively interferes to form a fringe pattern. The wavelength of the

observed fringes is λ
b

where b is the separation, or baseline, between the two slits,

corresponding to a spatial frequency of u = b
λ
.

An interferometric array can be thought of as a collection of two slit experi-

ments. For each baseline one can measure the amplitude of the observed fringes and
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their phase relative to some reference. By the van Cittert-Zernike theorem we can

relate the fringe (complex visibility) phase (φVν ) and amplitude (|Vν |) to the Fourier

transform of the source intensity (Iν):∣∣∣∣∣Vν
(−→
D

λ

)∣∣∣∣∣ exp (−iφVν ) =

∫
δΩ

dxΩ dyΩ Iν (−→rΩ) exp
(
−2πi

(−→
D
λ
· −→rΩ

))
∫
δΩ

dxΩ dyΩ Iν (−→rΩ)
(1.8)

where ν is the (single) frequency of the incoming light,
−→
D is the baseline vector

projected onto the sky, and −→rΩ = (xΩ, yΩ) are the cartesian coordinates of the

source intensity on the sky. We have assumed that the source emits over a small

enough angle, Ω, that its coordinates can be approximated as cartesian, rather than

spherical. The projected baseline vector,
−→
D , divided by the observing wavelength,

λ, is often written as
−→
D
λ

= (u, v).

In the absence of degradation by the Earth’s atmosphere, the van Cittert-Zernike

theorem would hold, and we could directly measure the astrophysical amplitudes

and phases with an optical interferometer. However, the coherence length of the

atmosphere (Equation 1.5) is much smaller than the baselines in the array. Thus

uncorrelated atmospheric phase delays will occur over each aperture, shifting the

phases of the observed fringes and corrupting true signals. If a bright, unresolved

source exists within an isoplanatic angle (Equation 1.7) then this can be used as a

phase reference to correct the science fringes (e.g. Shao and Colavita, 1992). However

this mode is not always possible, leaving the closure phase technique (e.g. Jennison,

1958) as a way of eliminating atmospheric phase errors.

The utility of closure phase is illustrated by writing the measured phase for

one baseline as a combination of atmospheric and source phases. For the baseline

connecting apertures 1 and 2, for example, the measured fringe phase (Φ12) is:

Φ12 = Φs,12 + [φ2 − φ1] (1.9)

where Φs,12 is the intrinsic source phase at the baseline’s spatial frequency, and

φ1 and φ2 are the atmospheric phase delays introduced over each aperture. Our

ability to separate the source and atmospheric phases means that adding the phases
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around a triangle of baselines will cancel out the atmospheric phase shifts, leaving

behind the sum of the intrinsic source phases. For an N aperture interferometer,(
N
2

)
baselines and

(
N
3

)
closure phases exist,

(
N−1

2

)
of which are independent. Thus

not all phase information can be recovered from closure phases, but the percentage

of recoverable phase information increases with the number of apertures.

With complete knowledge of the Fourier amplitudes and phases, synthesizing an

image would be as simple as inverting the complex visibilities. However, the Fourier

coverage of an interferometer is incomplete, and sometimes highly non-uniform. As

a result, a large number of images exist that fit the observed amplitudes and phases.

Finding the “best” image requires regularizers, which enforce prior information such

as positivity and smoothness (e.g. Renard et al., 2011). Regularizers were first de-

veloped for imaging with non-uniform Fourier coverage in radio interferometery (e.g.

Högbom, 1974; Ables, 1974). Image reconstruction algorithms for optical interfer-

ometry involve maximizing the likelihood of the observations while satisfying an

additional regularization constraint.

1.6.5 Non-Redundant Masking

Non-redundant masking (NRM; e.g. Tuthill et al., 2000b) combines optical interfer-

ometry techniques with those used in traditional AO corrected imaging. It trans-

forms a filled aperture into an interferometric array through the use of a pupil plane

mask. The detector then records the interference fringes formed by the mask, which

can be thought of as the superposition of all “two-slit” fringe patterns coming from

each pair of apertures. Taking the Fourier transform of the images yields the com-

plex visibilities. Since no baselines in the mask have the same length or orientation,

information from each baseline is encoded at a unique location in Fourier space.

We then calculate closure phases and squared visibilities, and use model fitting and

image reconstruction to understand the source brightness distribution.

Despite blocking the majority of incident light, NRM allows for characterization

of residual wavefront errors. Non-redundancy means that none of the baselines

add incoherently; the complex visibility phases can be mapped to atmospheric and



39

instrumental phase offsets for each baseline. As a result, in the presence of residual

AO errors a masked pupil can achieve approximately twice the effective resolution as

a filled aperture, down to 0.5 λ/D. NRM can detect stellar (e.g. Ireland and Kraus,

2008; Kraus et al., 2011; Biller et al., 2012) companions, substellar companions (e.g.

Kraus and Ireland, 2012; Sallum et al., 2015b), and circumstellar disk features (e.g.

Sallum et al., 2015a; Cheetham et al., 2015) at or even within the diffraction limit.

1.7 Outline of this Thesis

This thesis presents my work using non-redundant masking to search for and char-

acterize planets in transition disk clearings. Chapter 2 describes the python NRM

data reduction pipeline I wrote to this end. I discuss the experimental setup, data

reduction, and image reconstruction, using data and simulations to illustrate the

various steps. Chapters 3 and 4 present the results of applying NRM to protoplanet

searches in two transition disks, TCha and LkCa 15. Chapter 5 discusses the impact

of scattered light from disk material on transition disk planet searches, with specific

examples for TCha and LkCa 15. Chapter 6 demonstrates this technique on the 23-

meter LBTI on the bright B[e] star MWC 349A. Chapter 7 summarizes the results

of these studies and discusses future prospects for NRM and related techniques on

next generation facilities.
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CHAPTER 2

DATA REDUCTION AND IMAGE RECONSTRUCTION TECHNIQUES FOR

NON-REDUNDANT MASKING†

The technique of non-redundant masking (NRM) transforms a conventional tele-

scope into an interferometric array. In practice, this provides a much better con-

strained point spread function than a filled aperture and thus higher resolution than

traditional imaging methods. Here we describe an NRM data reduction pipeline.

We discuss strategies for NRM observations regarding dithering patterns and cali-

brator selection. We describe relevant image calibrations and show their effects on

the scatter in the Fourier measurements. We also describe the various ways to cal-

culate and calibrate Fourier quantities, and discuss different calibration strategies.

We present the results of image reconstructions from simulated observations where

we adjust prior images, weighting schemes, and error bar estimation. We compare

two imaging algorithms and discuss implications for reconstructing images from real

observations. Finally, we explore how the current state of the art compares to next

generation Extremely Large Telescopes.

2.1 Introduction

Direct exoplanet studies rely on high contrast imaging methods used with adaptive

optics systems. Techniques such as coronagraphy (e.g. Guyon et al., 2014), coupled

with post-processing algorithms such as angular differential imaging (e.g. Marois

et al., 2006) can detect planets around nearby stars (e.g. Macintosh et al., 2015). The

theoretical inner working angles of state of the art coronagraphs are ∼ 0.7− 3λ/D

(e.g. Mawet et al., 2012; Guyon et al., 2006). In practice, the achievable IWA is

†This chapter has been submitted for publication in AAS Journals.
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not only a function of coronagraph design, but also of wavefront control. Residual

low order aberrations such as tip-tilt, which can be caused by seeing variations and

vibrations (e.g. Meimon et al., 2010), can leak into the off-axis light (e.g. Mawet

et al., 2012). Furthermore, data reduction algorithms that build reference point-

spread functions (PSFs; e.g. Lafrenière et al., 2007; Soummer et al., 2012) perform

poorly at small separations where fewer image elements exist. These factors combine

to limit achievable coronagraph performance to 1.5 to a few λ/D (e.g. Mawet et al.,

2012).

Non-redundant masking (NRM; e.g. Tuthill et al., 2000b) is a way to probe

smaller separations than more traditional imaging techniques such as coronography.

NRM turns a conventional telescope into an interferometer through the use of a

pupil-plane mask. No two baselines have the same position angle or separation,

meaning that residual wavefront errors do not add incoherently and can be char-

acterized. Thus, despite blocking the majority of incident light, in the presence of

noise NRM provides much better PSF characterization than filled-aperture obser-

vations. It can detect sources with moderate contrast (∼ 1 : 100) at separations as

small as 0.5 λ/D, expanding the companion discovery phase space. NRM has led

to the detection of stellar (e.g. Ireland and Kraus, 2008; Biller et al., 2012) com-

panions, substellar companions (e.g. Kraus and Ireland, 2012; Sallum et al., 2015b),

and circumstellar disk features (e.g. Sallum et al., 2015a; Cheetham et al., 2015)

at or even within the diffraction limit. This makes it particularly useful for direct

planet formation studies, where most targets are at distances of > 100 pc.

Here we describe observational, data reduction, and image reconstruction tech-

niques for NRM observations. We discuss a python NRM data reduction pipeline,

used primarily on observations from the Large Binocular Telescope Interferometer

(LBTI; e.g. Hinz et al., 2008) detector, LMIRCam (Leisenring et al., 2012). However

our pipeline is general, and has also been applied to data from Magellan, Keck, and

the VLT.

We show the effects of various calibration steps on the phases and squared vis-

ibilities. We present reconstructed images from simulated observations of sources
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with different morphologies. We discuss the effects of different initial images, error

bar scalings, and baseline weighting schemes on these simulated reconstructed im-

ages. We also compare simulated Giant Magellan Telescope reconstructed images

to those currently achievable with the 23-meter LBTI.

2.2 Experimental Setup

In NRM observations, the detector records the interference fringes formed by the

mask, called “interferograms.” Fourier transforming the interferograms yields com-

plex visibilities, which have the form A exp iφ. Since the mask is non-redundant

- no two hole pairs have the same separation and orientation - information from

each baseline is located at a unique location in Fourier space. Sampling the Fourier

transform, we calculate squared visibilities - the total power on each baseline - and

closure phases - sums of phases around baselines forming a triangle (e.g. Jennison,

1958; Baldwin et al., 1986). Closure phases are particularly powerful for companion

detections since they are sensitive to asymmetries and are unaffected by atmospheric

phase offsets. Because closure phases are correlated, we then project them into lin-

early independent quantities called kernel phases (e.g. Martinache, 2010; Ireland,

2013; Sallum et al., 2015a). We apply both model fitting and image reconstruction

to understand the source morphology.

2.3 Observational Strategy

NRM observations at LBT, Magellan, Keck, and the Very Large Telescope (VLT)

are carried out in the near infrared (∼ 1 − 4 µm). Since the sky background is

high at these wavelengths (especially at wavelengths longer than 2 µm), we observe

each target with two dither pairs per pointing. We dither the images between the

top and bottom halves of the detector. To limit the effects of flat field errors, we

keep the interferograms centered as close to the same pixels as possible for each

dither position. In clear conditions where the sky brightness is not variable on short

timescales, one dither can be used to form the sky background for the other.
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We alternate the science target observations with observations of unresolved cal-

ibrator stars. This allows us to account for instrumental contributions to the closure

/ kernel phases and squared visibilities. We match the target and calibrators’ visible

fluxes so that they have similar AO correction quality, and their infrared fluxes so

they have similar noise levels on the science detector. Calibrators are also vetted to

ensure they do not have significant near-infrared excesses (indicating circumstellar

dust) in their spectral energy distributions. We choose multiple calibrators for each

science target to minimize the possibility of contamination by binary calibrators.

2.4 Data Reduction

2.4.1 Dark Subtraction, Flat Fielding, and Background Subtraction

We create a master dark frame by taking the median of many dedicated dark images

taken during the observing night. We then dark subtract a set of sky flats taken

during the night. We median combine them and divide by the mode to create the

master flat.

We apply dark, flat, and background calibrations differently depending on the

observing conditions. In photometric conditions, for each dither pair we use one

dither to perform dark and background subtraction on the other. We median all

the frames in the first dither and subtract this median from each frame in the second

dither. We then divide by a flat. Figure 2.1 shows example images as these steps

are applied.

For datasets taken in variable conditions such as intermittent cirrus, one dither

may have a very different background level than another. In this case, rather than

use one dither to perform the dark and background subtraction for another, we first

subtract a median dark from every image in each dither. We then divide by a flat.

After flattening we take the median of all pixels in non-vignetted portions of the

CCD to be the median background signal. We subtract this median background

value from the entire frame. Figure 2.2 shows example images for each of these

steps.
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Raw Image  - (Dark + Background)  / Flat

Photometric Conditions Reduction Steps

Figure 2.1: Example raw science image (left), the same image after dark and back-
ground subtraction (center), and then after flat fielding (right). The left and center
panels are shown with different color scales since the median value is significantly
higher before background subtraction. The right panel is shown on the same color
scale as the center panel. These images are from the December 2014 dataset pub-
lished in Sallum et al. (2015b). In the two rightmost panels, the snowflake patterns
show the interferograms formed by the mask. The two sides show the interferograms
formed by the left and right LBT primary mirrors. The negative images on top show
the results of using the median of one dither to subtract the sky background from
the bottom dither.

Raw Image - Dark  / Flat - Background

Non-Photometric Conditions Reduction Steps

Figure 2.2: From left to right: an example raw science image, the same image after
dark subtraction, then after flattening, and lastly after background subtraction.
Vignetting can be seen in the rightmost columns, bottom rows, and corners of the
CCD. The center two panels are shown on the same color scales. The outermost two
panels are on different color scales since the average pixel value changes significantly
after dark and background subtraction. These images were taken after LMIRCam
was upgraded to a 2048 × 2048 HAWAII-2RG detector.
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2.4.2 Channel Bias Correction

LMIRCam is a 2048 × 2048 HAWAII-2RG (H2RG; Beletic et al., 2008) detector,

recently upgraded from a 1024 × 1024 HgCdTe detector (e.g. Leisenring et al., 2012).

Both of these configurations are read out in 64-pixel channels, each of which has

its own analog-to-digital converter with a unique bias level. We correct for these

different bias levels and any non-linear bias changes during each exposure by taking

the median of each 64-column channel for each image. We subtract the bias from

each readout channel, as shown in Figure 2.3. If uncorrected, these channel biases

lead to low spatial frequency noise in the complex visibilities (Figure 2.3). While this

64-pixel scenario is specific to LMIRCam, H2RGs are used in other instruments with

NRM capabilities such as the Gemini Planet Imager (e.g. Ingraham et al., 2014).

Regardless of the readout configuration, variable bias levels across the subframe may

add systematic errors to the Fourier transform and can be corrected in a similar way.

2.4.3 Bad Pixel Correction

We create a bad pixel map for each dataset using dark frames. We calculate the

standard deviation of each pixel across the cube of images. We then label some

fraction of pixels with the highest and lowest standard deviations as bad. We allow

for asymmetric cuts since the tails on the distribution of standard deviations may

be asymmetric (they are for LMIRCam, see Figure 2.4). We use a variety of upper

and lower cuts, and choose the bad pixel map that minimizes the scatter in the

calibrator observations for the night. For an example dataset taken in December

2014 (published in Sallum et al., 2015b), dropping the top 2% and bottom 1% of

pixels resulted in the best bad pixel correction.

2.4.4 Noise Versus Reduction Steps

In Figure 2.6 we compare the scatter in the calibrated and uncalibrated data at each

reduction step for the December 2014 LBT observations published in Sallum et al.

(2015b). We use two unresolved stars to calibrate each other, and then examine
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Image Before Image After

FFT Before FFT After

Channel Bias Subtraction

Figure 2.3: Top: Images before and after channel bias correction. Bottom: Complex
visibilities (Fourier transformed images) before and after channel bias correction.
The vertical striping present in the uncorrected images creates low spatial frequency
noise in the complex visibilities.
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Figure 2.4: Top: Bad pixel map created from a set of 20 dark frames. Bottom:
Histogram of pixel standard deviations over 20 dark frames. The vertical lines
indicate the cuts used to create the bad pixel map shown in the top panel.
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Figure 2.5: Example interferogram subframe before (left) and after (right) bad pixel
correction.

the scatter after flattening, channel bias correction, and bad pixel correction. For

the closure phases, the channel bias and bad pixel corrections decrease the closure

phase scatter by nearly equal amounts (∼ 0.11◦−0.14◦). For the squared visibilities,

reductions with a channel bias correction have orders of magnitude more scatter

than those without a channel bias correction. This is because only certain baselines

sample the spatial frequencies of the channel bias noise; these will have much more

power in them than the baselines that do not.

For the December 2014 L′ data, both the uncalibrated and calibrated data have

lower scatter when a flat is not applied. We suspect this is because of the small

number of flats used to create the master sky flat, which can be thought of as

an image of ones with Gaussian noise added. Flattening will thus add noise to

the uncalibrated complex visibilities. If the image on the detector always falls on

the exact same pixels, then the flat field applied to the subframed interferogram

is always the same. With pointing inconsistencies, the subframed flat field is also

inconsistent; any noise added by the master flat will then change slightly between

pointings and will be more difficult to calibrate out. This increases the scatter in
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Figure 2.6: Comparison of closure phase (left) and squared visibility (right) scatters
for observations of unresolved stars from December 2014. Dashed lines show reduc-
tions that include flattening, while solid lines show reductions without flattening.
Calibrated data are shown in blue, while uncalibrated data are shown in black.

the calibrated data as well. A large number of flats would decrease the noise in the

master flat, and thus in both the uncalibrated and calibrated observables. Previous

simulations of NRM observations suggest that ∼ 106 photoelectrons per pixel are

required for flattening to add less than ∼ 0.06◦ (Ireland, 2013). While flattening

does not significantly change or improve the LMIRCam closure phases and squared

visibilities, it may be more useful on other detectors with greater flat field variations

across the subframed interferograms.
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2.5 Closure Phase Calculation

The (u, v) coordinates for a closing triangle of baselines satisfy the following:

(u1, v1) + (u2, v2) + (u3, v3) = 0. (2.1)

To calculate a closure phase for a single triangle, we sample the complex visibilities

for the three baselines and multiply them to form the bispectrum. For each trian-

gle, we average the bispectra measured from all images in a dither and then take

the average bispectrum phase as the closure phase. Since the bispectrum has both

amplitude and phase, averaging bispectra upweights higher signal-to-noise measure-

ments, which have higher complex visibility amplitudes.

The simplest way of calculating a closure phase in practice is to use only a single

pixel for each baseline. However, the finite mask hole size causes information from

each baseline to be spread over multiple pixels in the Fourier transform. To use

information from more than just the central pixels, we can multiply the subframed

interferogram by a window function. Taking the Fourier transform of a windowed

image convolves the Fourier transforms of the interferogram and window function,

creating inter-pixel correlations. We can then still sample single pixels but incor-

porate more information than the unwindowed single pixel method. One caveat

with this method is that narrow enough window functions can cause signals from

adjacent baselines to bleed into one another.

An alternative to windowing is to average many bispectra in each individual

image for each triangle of baselines (the “Monnier” method; Monnier, 1999), as

diagrammed in Figure 2.8. We first take the Fourier transform of the unwindowed

interferogram. For each mask hole triplet we find all closing triangles that connect

the extended signals from the three baselines. We calculate their bispectra and

average them to create a single bispectrum for each triangle of baselines in an image.

As in the single pixel method, we average the bispectra for all images in a dither

and then take the bispectrum argument to be the average closure phase.

Figure 2.7 shows example window functions (Hanning and super-Gaussian),

and Figure 2.8 illustrates the different closure phase calculation methods. A one-
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Figure 2.7: Example window functions.

dimensional Hanning window of size M has the form

0.5− 0.5 cos
2πn

M − 1
(2.2)

where n goes from 0 to M-1. To create a two-dimensional window, we make two

one-dimensional Hanning windows and then take their outer product. We generate

super-Gaussian windows according to the following:

exp
[
− ln (0.5)

( r

HWHM

)m]
, (2.3)

where r is the distance from the center of the subframe, and HWHM the window

half width at half maximum.

We use the scatter in the uncalibrated and calibrated data to compare the various

closure phase calculation methods (see Figure 2.9). For both the calibrated and

uncalibrated data, the single-pixel method without windowing results in the highest

scatter (σuncal = 3.8◦, σcal = 3.4◦) and the “Monnier” method without windowing

results in the lowest scatter (σuncal = 2.3◦, σcal = 2.1◦). The single-pixel + window

methods have a range of intermediate scatters (σuncal = 2.4◦−3.0◦, σcal = 2.2◦−2.6◦).
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Figure 2.8: Closure phase generation methods. The left panel shows the Fourier
transform of an interferogram multiplied by a Hanning window. Here we would use
a single pixel at the center of each splodge to calculate the bispectrum for a mask hole
triplet (white lines). The window function shown here caused correlations between
adjacent splodges. The right panel shows the Fourier transform of an unwindowed
interferogram. The white lines show example closing triangles for individual pixels
within each splodge. Here we average the bispectra of these triangles to calculate
the bispectrum for each mask hole triplet.
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Figure 2.9: Comparison of uncalibrated (left) and calibrated (right) closure phase
scatters for different window functions and calculation methods.
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Here, the narrower windows, which have wider Fourier transforms and thus farther-

reaching inter-pixel correlations, lead to lower scatter in both the calibrated and

uncalibrated data.

While the “Monnier” method is computationally more expensive, since hundreds

or thousands of pixel triangles could exist for each closure phase, it results in the

lowest scatter. The single-pixel + window method is only ∼ 0.1−0.2◦ higher scatter

and would be useful with limited computational resources or large datasets.

2.6 Kernel Phase Projection

We project closure phases into linearly independent quantities called kernel phases

(Martinache, 2010) so that we can fit uncorrelated observables. To calculate kernel

phases, we assume that our observed phase vector, Φ, can be written as a linear

combination of instrumental phases, φ, plus any intrinsic source phase Φ0 (following

the notation in Sallum et al. (2015a)):

Φ = A · φ+ Φ0 (2.4)

For a non-redundant mask, φ contains the instrumental phase measured on each of

N sub-apertures. A is an M by N matrix that describes how those are combined to

form the phase measured for each of M =
(

N
2

)
hole pairs. We search for the kernel,

or nullspace, of A so that the instrumental phase signal is eliminated, or

K ·A = 0. (2.5)

We find K using singular value decomposition of AT:

AT = U ·W ·VT. (2.6)

Here U is an N ×M column-orthogonal matrix and V is an M ×M orthogonal

matrix. W is an M ×M diagonal matrix with zeros and positive values only. The

positive values in W are the singular values of AT. The columns in V corresponding

to these singular values form the nullspace of A and make up the rows of K.
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We already have a matrix T, that is not linearly independent but that does

eliminate instrumental phase signals. T projects the M phases into
(

N
3

)
closure

phases:

ΦCP = T ·A · φ+ T ·Φ0. (2.7)

We can thus project the closure phases into kernel phases using the matrix B such

that

B ·T = K. (2.8)

Since K has full row rank, but not full column rank, it has a right inverse (K−1
R )

only:

K ·K−1
R = I = B ·T ·K−1

R . (2.9)

B also only has a right inverse:

B−1
R = T ·K−1

R . (2.10)

We then take the left inverse of Equation 2.10 to calculate B, and use it to project

the closure phases into kernel phases. We form the kernel phase variances by taking

the diagonal values of the projected closure phase covariance matrix:

Ck = B ·CCP ·BT. (2.11)

We can form statistically independent kernel phases (Ireland, 2013) by apply-

ing another projection to diagonalize the kernel phase covariance matrix, Ck. We

diagonalize Ck by the spectral theorem:

Ck = U ·W ·U∗, (2.12)

where U is a unitary matrix whose columns contain the eigenvectors of Ck. Ks, a

statistically independent kernel phase projection, is then calculated according to

Ks = U ·K. (2.13)

Figure 2.10 compares kernel phases calculated using K (the “Martinache” pro-

jection) and Ks (the “Ireland” projection). The top two panels show uncalibrated
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and calibrated observations of two unresolved stars from December 2014. The Marti-

nache kernel phases have lower calibrated and uncalibrated scatters than the Ireland

kernel phases. The two projections may have relative scalings, which would result

in kernel phase signals of different magnitudes for a given source morphology. To

ensure a fair comparison we also show their fractional errors (see Figure 2.10, bot-

tom panels). While the Ireland projection has only slightly higher fractional error

for the majority of the kernel phases, it has many more outliers than the Martinache

projection. We thus use the Martinache projection, which incorporates information

only about the mask and not about the observations, for model fits to kernel phases.

2.7 Squared Visibility Generation

We calculate squared visibilities by summing the power (
∣∣Aeiφ∣∣2) in all pixels corre-

sponding to each baseline in the complex visibilities. We measure any bias by taking

the average power for regions in Fourier space without signal. We subtract this bias

and then normalize by the power at zero baseline (equivalent to normalizing by total

power in the interferogram).

Figure 2.11 compares squared visibilities generated after applying the different

window functions. The choice of window function has a more dramatic effect on

the uncalibrated visibilities than on the calibrated visibilities. Windowed squared

visibilities have much higher values before calibration. This is because convolving in

Fourier space decreases the power at a spatial frequency of zero relative to the mask

spatial frequencies. However this effect is uniform between the target and calibrator

observations and thus calibrates out.

We note that this squared visibility comparison is for a dataset with very good

sky subtraction; the edges of the subframed images have an average pixel value very

close to zero. However, in conditions where sky subtraction is difficult, average pixel

values may deviate from zero at the edges of the subframed images. This can cause

ringing in the Fourier plane that would contaminate the squared visibilities. In

this case windowing would help to remove this noise, which may not be consistent
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Figure 2.10: Histograms of uncalibrated (left) and calibrated (right) kernel phases
(top) and their fractional errors (bottom) for the “Martinache” (without CCP di-
agonalization; solid black lines) and “Ireland” (with CCP diagonalization; dashed
blue lines) projection methods.
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Figure 2.11: Histograms of uncalibrated (left) and calibrated (right) squared visi-
bilities for different window functions.

between target and calibrator observations in variable conditions.

2.8 Calibration

2.8.1 Instrumental Signal Fitting

We calibrate the phases and squared visibilities in two different ways. In the first,

which we refer to as Polycal, we fit polynomial functions in time to the calibrator

observations. A zeroth order function in time would represent a constant instru-

mental signal, while a very high order polynomial would indicate a highly variable

instrumental signal. We choose the order that minimizes the calibrated observ-

ables without over-fitting the calibrator measurements. We sample this polynomial

function at the time of the target observations to find the instrumental signal. We

subtract the instrumental signal from the raw kernel and closure phases and divide

it into the raw squared visibilities. Figure 2.12 shows an example calibration for a
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single, linearly independent kernel phase (see Section 2.6). Figure 2.13 compares the

calibrated kernel phases for polynomials with terms up to different orders in time,

and shows how the observed scatter changes with maximum order.

Polycal is best performed when calibrator observations can be taken before the

first and after the last target observation. Figure 2.14 illustrates the potential issues

that can occur when calibrator observations do not bookend the target observations.

For this dataset, the large scatter in the calibrator observations leads to best-fit

polynomials that prefer large coefficients for higher order terms. These high order

polynomials match the first calibrator observation well, but have unrealistic values

at the earlier time of the first target observation (see purple dotted line and solid

green line in Figure 2.14). Second order polynomials often provide calibration that

is comparable to or better than higher orders. They also tend to avoid these issues

when target observations are not bookended by calibrator measurements.

2.8.2 Optimized Calibrator Weighting

The second calibration method is an optimized calibrator weighting detailed in

Kraus and Ireland (2012) and Ireland (2013), similar to the “locally optimized

combination of images” (LOCI; Lafrenière et al., 2007) algorithm applied in filled-

aperture direct imaging. Here, calibrators are chosen to minimize the χ2 of the

null model, that is a zero kernel / closure phase signal. Following the notation in

Ireland (2013), for each uncalibrated set of kernel phases xt, we search for a set of N

weights (ak, where k goes from 1 to N), to average the N calibrator measurements.

The calibrated kernel phases for one pointing (xc) are:

xc = xt −
N∑
k=1

akxk. (2.14)

The χ2 of the null model is then

χ2 =
∑ xc

σc
2
, (2.15)
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Figure 2.12: Polycal example for a single kernel phase. The top panel shows the
calibrator (black points) and target (blue points) observations for a single kernel
phase as a function of time. The plotted lines show polynomial fits as a function of
time with different maximum orders. The bottom panel shows the calibrated kernel
phases over time, with different colors indicating fits up to different orders in time.
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Figure 2.13: Comparison of calibrated kernel phases for Polycal. The top panel
shows histograms for an entire night of calibrated kernel phases for different maxi-
mum order polynomials. The bottom panel shows the standard deviation of a night
of calibrated kernel phases as a function of maximum order.
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Figure 2.14: Polycal example for a single kernel phase. The top panel shows the
calibrator (black points) and target (blue points) observations for a single kernel
phase as a function of time. The plotted lines show polynomial fits as a function of
time with different maximum orders. The bottom panel shows the calibrated kernel
phases over time, with different colors indicating fits up to different orders in time.
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where σc are the calibrated kernel phase errors, given by

σc
2 = σt

2 +
N∑
k=1

akσk
2. (2.16)

Several different likelihood functions can be maximized to find the optimal cali-

brator weights. The simplest likelihood function would be

L = exp
(
−0.5 χ2

)
. (2.17)

However, maximizing this likelihood function could wash out true signals. To try

to prevent this, Kraus and Ireland (2012) add a regularizer, π, to the likelihood

function. Arbitrary functions can be used for π; the calibration used in Kraus and

Ireland (2012) applies the following regularization:

π = exp

(
−0.5 a2

k

∑ σk
2

σt
2

)
, (2.18)

which punishes large weights and calibrator measurements with large errors. The

likelihood function is then:

L = exp
(
−0.5 χ2

)
× π (2.19)

This calibration is performed iteratively to constrain an additional “calibration er-

ror” term, ∆, intended to account for errors beyond the random component found

in σt and σk. The ∆ term is a constant added to all errors (calibrators and target),

designed so that the reduced χ2 of the calibrated kernel phases is equal to 1:

χ2
r =

1

N

∑ xc

σc
2

= 1 (2.20)

Figure 2.15 compares the Polycal kernel phases to the LOCI-like kernel phases

using the likelihood function defined by Equation 2.19 for two different datasets.

The histograms in the top two panels show that the LOCI-like calibration does not

decrease the scatter much more than the Polycal calibration. The bottom two panels

show the absolute value of the LOCI kernel phases plotted against the absolute

value of the Polycal kernel phases. Deviations from the dashed line in these panels
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Figure 2.15: Comparison of Polycal and LOCI-like calibrated kernel phases for two
nights of data. The top two panels show the histograms of calibrated kernel phases
for Polycal in black and LOCI in blue. The bottom two panels show the absolute
value of the LOCI kernel phases plotted against those for the Polycal calibration.
The dashed line shows a 1:1 correlation.
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(indicating a 1:1 relationship) show differences between the two calibration methods

for each kernel phase. While LOCI does not change the distribution of all kernel

phases significantly, it does change the individual kernel phase values.

Figure 2.16 demonstrates the ability of the regularizer, π and the calibration error

term ∆ to bias the calibration. The blue line / points show the LOCI calibrated

kernel phases for Dataset 1 in Figure 2.15. The red line / points show the LOCI

calibration without using the calibration error term, and the green line / points

show the LOCI calibration without using ∆ or π. The discrepancy in the overall

distribution of kernel phases (top panel), as well as the in the values for the individual

kernel phases (bottom panel), show that the calibration can change significantly

depending on the choice of error scaling and regularizer. With no error scaling or

regularizer, the LOCI-like calibration could eliminate all astrophysical signal as the

number of calibrator measurements becomes large.

In addition to the bias introduced by the arbitrary regularizer and error scaling,

this optimized calibration incorporates the science target data to calibrate those

same data. In this implementation, this calibration cannot be an unbiased mea-

surement of the instrumental signal. This could be avoided by observing many

calibrators and optimizing to minimize the calibrator signal closest to a given tar-

get observation. However, this approach is nearly identical to Polycal, which fits

simple functions to the calibrator signal over time and provides nearly the same

scatter as the optimized weighting. While the polynomial fitting does depend on

the assigned calibrator errors, Polycal also introduces fewer arbitrary biases. We

thus recommend using simpler calibration methods like Polycal rather than this

optimized calibration.

2.9 Image Reconstruction

Uneven and incomplete Fourier coverage, analogous to imaging in radio interferom-

etry (e.g. Högbom, 1974), makes image reconstruction an ill-posed problem. With

perfect knowledge of the complex visibilities, synthesizing an image would only re-
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Figure 2.16: LOCI regularization comparison. In the top panel, the black line
shows the Polycal kernel phase distribution for Dataset 2 from Figure 2.15. The
dashed blue line shows the LOCI calibration from Figure 2.15, the red dotted line a
LOCI calibration with no “calibration error” term, and the green solid line a LOCI
calibration with no regularization or “calibration error” term. The bottom panel
shows the three LOCI calibrations’ absolute value kernel phases plotted against
those for the Polycal calibration.
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quire an inverse Fourier transform. However, the number of pixels in a reconstructed

image is much larger than the number of Fourier phases and amplitudes that we

can constrain. This problem is more severe in optical / infrared interferometry than

it is in the radio, since we do not measure phases directly, but rather combinations

of phases. As a result, we cannot independently measure all of the phases for the

array and have less phase information than in the radio case. This lack of Fourier

information means that an infinite number of model images can provide comparable

fits to the observations. To reconstruct images from NRM observations, we thus use

algorithms that maximize the likelihood of the data while also satisfying a regular-

ization constraint (e.g Thiebaut and Giovannelli, 2010). Regularizers, which were

first used to compensate for incomplete Fourier coverage in the radio (e.g. Högbom,

1974; Titterington, 1985; Ables, 1974), are chosen by hand to impose prior knowl-

edge such as positivity, smoothness, sharp edges, or sparsity (e.g. Renard et al.,

2011).

2.9.1 Optimization Engines

While many different optimization engines exist for finding the best image, they can

be split into two general categories. Deterministic algorithms take steps propor-

tional to the gradient of the likelihood function at the current image state. These

include the steepest descent method in the Building Block Method (e.g. Hofmann

and Weigelt, 1993), the constrained semi-Newton method (used in the algorithm

MiRA; e.g. Thiébaut, 2008), and the trust region method (used in the algorithm

BSMEM; e.g. Buscher, 1994; Baron and Young, 2008). Stochastic algorithms, on the

other hand, involve moving flux elements randomly in the image plane during itera-

tions in Monte Carlo Markov Chains (MCMC). One stochastic algorithm is MACIM

(Ireland et al., 2006), a simulated annealing method that accepts or rejects images

based on a temperature parameter. A newer stochastic algorithm is SQUEEZE

(Baron et al., 2010), which can perform parallel simulated annealing, where the

results of several simulated annealing chains are averaged. SQUEEZE can also per-

form parallel tempering, where several MCMC chains at different temperatures can
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exchange information as they run.

2.9.2 Regularizers

Many regularizers can be used to constrain the image reconstruction in different

ways. Some work to punish excursions from a prior image, or the default image in the

absence of any data. An example is the Maximum Entropy, or MEM, regularization,

which favors the least-informative reconstruction by maximizing an entropy term in

the likelihood function (e.g. Haniff et al., 1987; Buscher, 1994). The results of

regularizers such as MEM depend heavily on the choice of prior image (e.g. Baron,

2016).

Compressed sensing regularizations decompose the image into a linear combi-

nation of basis functions and then apply constraints. A simple example would be

sparsity in the pixel basis. This was first enforced by the Building Block Method

(Hofmann and Weigelt, 1993) and can result in large areas with low flux. Sparsity

can also be imposed in the gradient of the image, which would preserve uniform

flux and edges (e.g. Renard et al., 2011). A more recent regularization that can be

applied in SQUEEZE is one that imposes sparsity after decomposing the image into

a wavelet basis (e.g. Baron et al., 2010). The wide variety of available regularizers,

of which these are just a few examples, shows that care must be taken in choosing

one and in understanding its effect on the final reconstructed image.

2.9.3 Degeneracies

Comparing the reconstructed images from LBT NRM observations of MWC 349A

(Sallum et al., 2017) and LkCa 15 (Sallum et al., 2015b) illustrates the effects of

prior choice and array configuration on the final reconstructed images. The MWC

349A dataset has two pointings with ∼ 13◦ change in parallactic angle, while the

LkCa 15 dataset has 15 pointings with parallactic angles between −65◦ and 65◦.

The LkCa 15 observations were taken with the LBT in single-aperture mode, using

only baselines within each of the two primary mirrors. The MWC 349A data were
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Input Model

Figure 2.17: Best fit skewed ring plus delta function model for observations of MWC
349A published in Sallum et al. (2017). This image was used as the input for the
simulations shown in the bottom row of Figure 2.18 and in Figure 2.19.

taken in dual-aperture mode, but due to the small amount of sky rotation these data

only have triple the single aperture resolution for a small range of position angles.

Figure 2.17 shows the best fit skewed ring + delta function model for the MWC

349A observations. This model was determined by fitting the complex visibility

data directly, and this does not depend on image reconstruction.

The top row of Figure 2.18 shows images reconstructed using BSMEM for the

data, and the bottom row for simulated observations of the model image in Figure

2.17. The left and right columns show images reconstructed using delta function

and Gaussian priors. The simulations show that observations of the source shown in

Figure 2.17 lead to different reconstructed images depending on the choice of prior.

The delta function prior results in a single, bright pixel, surrounded by a dark hole

roughly the same size as the central part of the synthesized beam (contours in Figure

2.18). The Gaussian prior puts the same fractional flux into the central part of the

beam as there is in the single pixel at the center of the delta prior reconstruction.

Figure 2.19 shows the effects of improving the sky rotation (center panel), and

resolution (right panel) of the observations. Reconstructions improve with more

complete Fourier coverage and longer baselines, showing the true extent and position

angle of the input model despite an inadequate prior. The LkCa 15 reconstructions
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Figure 2.18: From Sallum et al. (2017), reconstructed images from observations of
MWC 349A (top row) and simulated observations of the best-fit skewed disk +
delta function model (bottom row; see Figure 2.17). The left and right columns
show reconstructions for delta function and Gaussian priors, respectively
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Figure 2.19: Simulated observations of the model shown in Figure 2.17. The leftmost
panel shows the MWC 349A (u, v) coverage and sky rotation. The center panel
shows the same mask configuration but with very dense sky rotation, and the right
panel shows the dense sky rotation case with a mask having twice the resolution.

(see Figure 2.20), illustrate this as well. Again, the Gaussian prior results in a

region of emission roughly the size of the beam that has the same fractional flux

as the central pixel in the delta function reconstruction. However here the sources

are at large enough separation (compared to the array resolution) that their portion

of the image is less affected by the choice of prior. These degeneracies and their

different effects on different datasets highlight the need for modeling in interpreting

reconstructed images.

2.9.4 Simulated Data Reconstructions: BSMEM versus SQUEEZE

Since choices made during the image reconstruction process can change the final im-

age, we use simulated data, rather than observations, to compare the reconstructed

images to eight different source brightness distributions. The point of these recon-

struction tests is to evaluate each algorithm’s performance with no prior knowledge

of the source morphology. Thus we run each algorithm in identical configurations

regardless of the input model. The detailed implementation and results of these

simulations can be found in Section 2.11. We compare two image reconstruction al-

gorithms, BSMEM (Buscher, 1994; Baron and Young, 2008), and SQUEEZE (Baron
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Figure 2.20: Reconstructed images from the L′ LBT NRM dataset published in
Sallum et al. (2015b). The left panel shows the results of using a delta function
prior, and the right panel a Gaussian prior. The two images are shown on the same
color scale.

et al., 2010), that are often used on NRM datasets. BSMEM is a deterministic al-

gorithm with a MEM regularizer, while SQUEEZE is a stochastic algorithm with a

variety of available regularizers.

With no knowledge of the source morphology, and with the potential for poor

error bar estimation, BSMEM performs better than SQUEEZE. The BSMEM re-

constructions vary less when the data error bars are over- or under-estimated, and

also when the relative closure-phase and squared visibility errors vary. Weighting

the data by baseline length changes the results of both algorithms, with SQUEEZE

providing better reconstructions of extended sources than BSMEM when long base-

lines were downweighted. Both BSMEM and SQUEEZE fail to converge when cer-

tain initial images are used for some input models (delta function initial images for

BSMEM, and Gaussian initial images for SQUEEZE). Neither algorithm behaves

so poorly that the source morphology is completely unrecognizable, but recovering

features like close-separation point sources is more difficult with SQUEEZE under

certain conditions.

We note that, with prior knowledge of the source morphology, the relative per-

formances of BSMEM and SQUEEZE may change as more optimal regularizations

can be applied. For example, using BSMEM with a delta function prior may be
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optimal when the target is expected to be a collection of point sources. When large

areas of extended emission are expected, using SQUEEZE with a weighting scheme

that upweights short baselines may yield the best results.

2.9.5 GMT versus LBT: (u,v) Coverage and Sky Rotation Testing

To compare the current state of the art to future facilities, we simulate observations

with the dual-aperture LBT to those for a hypothetical mask made for GMT. We

designed a 12-hole mask with GMT resolution (25.4 meters), only slightly larger

than the resolution provided by LBTI. However the hole placement is much more

symmetric with azimuth than the LBTI 12-hole mask. For both masks, we simulate

observations with 20 pointings having parallactic angles between −65◦ and 65◦,

comparable to the sky rotation coverage in the December 2014 dataset. We also

simulate observations with poorer sky rotation - two pointings with parallactic angles

of −5◦ and 5◦. This sky rotation is comparable to the amount observed for the 2012

dual-aperture LBT observations of MWC 349A (Sallum et al., 2017). Figure 2.21

shows the Fourier coverage for each facility and sky rotation case.

We reconstruct images for all eight objects in each of these four cases. Figure 2.22

shows the results using BSMEM. For the good sky rotation case, LBT and GMT

produce comparable reconstructed images. With poorer sky rotation, the LBT’s

uneven Fourier coverage leads to poorer reconstructed images. The lower resolution

in one direction smears flux out along the position angle where the beam is wider.

However, even with smaller sky rotation coverage, none of the reconstructed images

are so poor that the input source morphology is not recovered. Since most datasets

will have sky rotation coverage between the “Good” and “Bad” cases, Figure 2.22

shows that the co-phased LBTI can already provide comparable imaging to that

possible with GMT.
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Figure 2.21: Fourier coverage for the 12-hole Large Binocular Telescope mask (left)
and a hypothetical 12-hole Giant Magellan Telescope mask (right). The top row
shows parallactic angle coverage between −5◦ and 5◦ and the bottom row shows
−65◦ to 65◦.
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Figure 2.22: Images reconstructed from simulated observations using BSMEM with
different masks and sky rotation coverage. The top row shows the input model
image. The next two rows show observations with 20 pointings having sky rotation
angles between −65◦ and 65◦ for the LBT and hypothetical GMT masks, respec-
tively. The last two rows show observations with 2 pointings having sky rotation
angles of −5◦ and 5◦ for the LBT and GMT masks. The point sources in Models 1,
2, 6, 7, and 8 in the top row have scaled brightnesses and sizes for ease of viewing.
Figure 2.21 shows the Fourier coverage of these four datasets.
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2.10 Conclusions

We described observational and data reduction strategies for non-redundant mask-

ing observations with specific examples for individual datasets. We showed how

image calibrations such as channel bias subtraction, flat fielding, and bad pixel

corrections affect the uncalibrated and calibrated observables for LMIRCam. We

recommend checking reduction steps in this way for each dataset since factors such

as observing conditions and detector features can change the relative importance of

these calibrations.

We explored different closure phase and squared visibility calculation methods.

The closure phases calculated using the unwindowed, “Monnier” method resulted in

lower scatter than all single-pixel calculation methods. Kernel phase projections that

took into account information from the mask alone (the “Martinache” projection) led

to lower scatter and fractional errors than projections that diagonalized the average

closure phase covariance matrix. While windowing did not change the squared

visibilities dramatically for observations taken in photometric conditions, datasets

with more variable background levels could benefit from windowing. We described

different calibration strategies for the phases and visibilities and made a case for

applying simple calibrations rather then optimized ones that have more arbitrary

biases.

We presented image reconstruction tests using the BSMEM and SQUEEZE algo-

rithms for eight models representing potential NRM science targets. Overall, with-

out prior knowledge of the source morphology and with the potential for poorly esti-

mated error bars, BSMEM led to more robust reconstructed images than SQUEEZE.

However, neither algorithm led to such poor reconstructed images that the source

morphology could not be identified.

We compared the imaging capabilities of the LBTI 12-hole mask to a hypothet-

ical 12-hole mask designed for GMT. For good sky rotation coverage and typical

noise levels, the dual-aperture LBTI and the GMT produced nearly identical recon-

structed images. The dual aperture LBTI can thus already provide GMT-like NRM
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imaging. GMT’s larger collecting area and more even Fourier coverage will enable

detections at similar angular separations with lower sky rotation and a shorter total

integration time.

2.11 Appendix: BSMEM and SQUEEZE Image Reconstruction Tests

We simulate observations of the following sources to test two image reconstruction

algorithms, BSMEM and SQUEEZE, on potential NRM science targets.

• Model 1: A 1-magnitude contrast binary with a separation of 100 milliarcsec-

onds.

• Model 2: A multiple system with contrasts ranging from 1 to 5 magnitudes

and separations ranging from 30 to 70 milliarcseconds. Keck surveys of young

stars (e.g. Kraus et al., 2011) detected companions of roughly these angular

separations and magnitude ranges (and those in Model 1).

• Model 3: A uniform circle of diameter 200 mas with spots having contrasts

of 2 to 4 magnitudes. NRM is used to image circumstellar disks, which may

have non-uniformities such as hot spots. This case is also interesting for long

baseline optical interferometry, which is often used to image stellar surfaces.

• Model 4: A uniform ellipse with a major axis of 200 mas and axis ratio of

0.33.

• Model 5: A skewed ellipse with a major axis of 200 mas, axis ratio of 0.33,

and 50% skew amplitude. This case and Model 4 are meant to represent the

circumstellar disks that may have skew or outflows that have been imaged by

NRM studies (e.g. Danchi et al., 2001; Sallum et al., 2017)

• Model 6: A point source plus a uniform ring with a diameter of 300 mas and

Gaussian cross section, meant to emulate a transition disk with no detectable

companions. This diameter is roughly the angular diameter of transition disk
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clearings for the most nearby potential targets, corresponding to a hole diam-

eter of 84 AU at 140 pc (e.g. Andrews et al., 2011b).

• Model 7: A point source plus a skewed Gaussian ring with a diameter of 300

mas and 70% skew amplitude. Skew has been observed in NRM observations

of transition disks (e.g. Huélamo et al., 2011; Sallum et al., 2015a; Cheetham

et al., 2015).

• Model 8: The multiple system in Model 2 surrounded by the skewed Gaussian

ring in Model 7. This is meant to imitate companion searches in skewed tran-

sition disks. Companions with separations and contrasts similar to those in

Model 2 have been found in NRM observations of transition and circumbinary

disks (e.g. Ireland and Kraus, 2008; Kraus and Ireland, 2012; Sallum et al.,

2015b).

All datasets are generated using the 12-hole mask installed in LBTI/LMIRCam in

dual-aperture mode. To create data with realistic amounts of correlated noise, we

add Gaussian noise to the complex visibility amplitudes (A) and phases (φ) before

calculating the squared visibilities and closure phases. As shown in Figure 2.23,

amplitude and phase scatters of 0.065 and 1.15◦ match the observed scatter in the

December 2014 dataset. The propagated uncertainties for the closure phases and

squared visibilities are then

σCP =
√

3 σφ (2.21)

and

σV 2 =
√

2A σA. (2.22)

Unless specified otherwise, we use these noise levels and roughly the same sky rota-

tion coverage as in the December 2014 dataset - 20 pointings with parallactic angles

between −65◦ and 65◦.

We reconstruct images using the BSMEM (Buscher, 1994) and SQUEEZE

(Baron et al., 2010) algorithms. The total image field of view is always set to

780 mas, corresponding to the resolution of the shortest baseline in the mask, and
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Figure 2.23: Comparison of simulated squared visibilities (left) and closure phases
(right) to those observed for the unresolved calibrator stars observed in December
2014. The black histograms show the real observations and the red dashed curves
show the simulated data.

the pixel scale is always set to 2 mas. To calculate residuals, we first align the

output image with the input model via cross-correlation and then sum the square of

the images’ difference. We perform BSMEM reconstructions in “Classic Bayesian”

mode, running 200 iterations for every input dataset. For SQUEEZE, we run 4

MCMC chains in parallel tempering mode for 1000 iterations. Since the point of

these imaging experiments is to test the algorithms with no knowledge of the input

source, we do not optimize any regularization or noise scalings when reconstructing

images. The results of all the reconstructions for both algorithms are discussed here,

with the images shown in Figures 2.24 to 2.31.

2.11.1 Initial Images

We test the effect of using different starting images (flat, Gaussian, and δ functions)

in both BSMEM and SQUEEZE for each of the eight sources. The Gaussian initial

images have full-width-half-maxima of 200 mas. Figure 2.24 shows the results for

BSMEM. Here, starting with a flat initial image or a centered Gaussian provides the

best reconstruction with no knowledge of the true source morphology. The binary

and multiple reconstructions have lower residuals with a delta function initial image.
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Figure 2.24: Images reconstructed from simulated observations using BSMEM with
different initial images. The top row shows the input model image, and the next
three rows show reconstructions with flat, Gaussian, and delta function initial im-
ages, respectively. The point sources in Models 1, 2, 6, 7, and 8 in the top row have
scaled brightnesses and sizes for ease of viewing.

However, for extended sources, BSMEM cannot converge to a realistic image in

classic Bayesian mode with a delta function prior. The flat initial image results also

have vertical or horizontal striping in some cases. This is because BSMEM does not

automatically recenter when reconstructing images non-interactively. Recentering

by hand during the reconstruction would eliminate these artifacts.

Figure 2.25 shows the same tests using SQUEEZE. Here, only the flat and δ

function initial images result in reconstructions that match the input images. With

1000 steps, SQUEEZE does not reproduce the input model starting from a Gaussian

initial image. Comparing the reconstructions of models that include compact point

sources (i.e. Models 1, 2, and 8) between BSMEM and SQUEEZE shows that

SQUEEZE is more likely to blend point sources together. As a result, BSMEM

more reliably reproduces the point sources within the ring in Model 8. Conversely,

comparing Models 3, 4, and 5 between the two algorithms shows that SQUEEZE is

less prone to over-resolve extended emission than BSMEM.
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Figure 2.25: Images reconstructed from simulated observations using SQUEEZE
with different initial images (rows). The top row shows the input model image, and
the next three rows show reconstructions with flat, Gaussian, and delta function
initial images, respectively. The point sources in Models 1, 2, 6, 7, and 8 in the top
row have scaled brightnesses and sizes for ease of viewing.

2.11.2 Total χ2 Scaling

We scale the total χ2 of each dataset to explore the dependence of each algorithm on

correct error bar estimation. We multiply all the closure phase and squared visibility

error bars by constant values of 0.25, 0.5, 1.0, 2.0, and 4.0, without changing the

actual noise added to the model. For each algorithm we use the initial image that

produced the best results in the previous section - a large Gaussian for BSMEM,

and a flat image for SQUEEZE.

Figures 2.26 and 2.27 show the results for BSMEM and SQUEEZE, respectively.

As the error bar scaling decreases, both algorithms produce tighter reconstructions of

the point sources in Models 1, 2, and 8. With over-estimated error bars, SQUEEZE’s

blurring of close-separation point sources becomes more pronounced (see Model

8 in Figure 2.27). In this regime, SQUEEZE also puts regions of very low flux

directly opposite asymmetric emission (see Model 1, top two panels in Figure 2.27).

While SQUEEZE blurs extended emission (e.g. Models 3, 4 and 5) more with
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Figure 2.26: Images reconstructed from simulated observations using BSMEM with
different error bar scalings. The top row shows the input model image, and the
following rows have all closure phase and squared visibility errors scaled by factors
of 4.0, 2.0, 1.0, 0.5, and 0.25 from top to bottom. The point sources in Models 1, 2,
6, 7, and 8 in the top row have scaled brightnesses and sizes for ease of viewing.

over-estimated errors, BSMEM creates blurrier reconstructions of extended emission

when the errors are under-estimated.

Neither algorithm causes huge qualitative mismatches between the inputs and

reconstructed images for any of the error scalings. This suggests that poorly es-

timated errors will not degrade reconstructed images to the point that the source

morphology could not be recovered. However, for SQUEEZE especially, poorly es-

timated error bars may result in non-detections of close-in companions. Comparing

Figures 2.26 and 2.27 shows that BSMEM produces more reliable reconstructions

of most models with under- or over-estimated errors.
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Figure 2.27: Images reconstructed from simulated observations using SQUEEZE
with different error bar scalings. The top row shows the input model image, and the
following rows have all closure phase and squared visibility errors scaled by factors
of 4.0, 2.0, 1.0, 0.5, and 0.25 from top to bottom. The point sources in Models 1, 2,
6, 7, and 8 in the top row have scaled brightnesses and sizes for ease of viewing.
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2.11.3 Weighting By Baseline Length

To test the effects of different (u, v) weighting schemes, we reconstruct images using

closure phase and squared visibility errors that depend on baseline length. We assign

errors in the following way:

σ = Bp σmed, (2.23)

where B is the baseline length for squared visibilities and the mean baseline length for

closure phases, and σmed is the median observed error bar. Here, p = 0 corresponds

to uniform weighting, p < 0 upweights long baselines, and p > 0 upweights short

baselines. To separate the relative weighting effects from a varying total χ2, we scale

the errors so that the total χ2 of the initial image (Gaussian for BSMEM and flat

for SQUEEZE) is constant. We reconstruct images for p values of -2, -1, 0, 1, 2.

Figure 2.28 shows the results for BSMEM, and Figure 2.29 shows the results for

SQUEEZE. Both algorithms generally produce better reconstructions of extended

emission when the short baselines are upweighted. SQUEEZE’s reconstructions of

Models 4 and 5 show a more marked improvement with upweighted short baselines

than BSMEM’s. For both algorithms, upweighting the long baselines improves the

recovery of compact sources, especially when they are alongside an extended com-

ponent like in Model 8 (skewed ring + multiple system). However, both SQUEEZE

and BSMEM tend to over-resolve extended components when the long baselines are

upweighted (see bottom rows of Figures 2.28 and 2.29). As in the total χ2 tests,

no weighting scheme creates large qualitative differences between the inputs and

reconstructions.

2.11.4 Closure Phase and Squared Visibility Weighting

We test the effect of reconstructing images using different relative closure phase and

squared visibility weights. We scale all closure phase errors by a constant factor fcp,

while leaving the squared visibility errors alone (fV 2 = 1.0). We then rescale fcp

and fV 2 by the same constant to keep the χ2 of the prior image for each algorithm

fixed. We use error scaling ratios (fcp/fV 2) of 4.0, 2.0, 1.0, 0.5, and 0.25, where
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Figure 2.28: Images reconstructed from simulated observations using BSMEM with
different baseline weightings. The top row shows the input model image. The next
rows show reconstructions for datasets whose assigned errors depend on baseline
length raised to powers of 2, 1, 0, -1, and -2 from top to bottom. The upper rows
weight short baselines more heavily, while the lower rows weight longer baselines
more heavily. The point sources in Models 1, 2, 6, 7, and 8 in the top row have
scaled brightnesses and sizes for ease of viewing.
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Figure 2.29: Images reconstructed from simulated observations using SQUEEZE
with different baseline weightings. The top row shows the input model image. The
next rows show reconstructions for datasets whose assigned errors depend on baseline
length raised to powers of 2, 1, 0, -1, and -2 from top to bottom. The upper rows
weight short baselines more heavily, while the lower rows weight longer baselines
more heavily. The point sources in Models 1, 2, 6, 7, and 8 in the top row have
scaled brightnesses and sizes for ease of viewing.
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larger values downweight closure phases and smaller values upweight closure phases

relative to squared visibilities.

Figures 2.30 and 2.31 show the results for BSMEM and SQUEEZE, respectively.

BSMEM shows little to no difference in reconstruction quality across all weighting

schemes. The exception to this is the fcp/fV 2 = 4 reconstruction of Model 3, which

has a poorer reconstruction of the spots on the uniform disk. SQUEEZE produces

more reliable reconstructions of Models 1, 2, 7, and 8 when the closure phases are

downweighted relative to the squared visibilities. It does not recover the compact

components in these models when the squared visibilities are downweighted. How-

ever, the reconstructions of Model 6 (uniform ring + delta function) are worse with

downweighted closure phases. Here SQUEEZE allows compact emission to appear

in two locations within the ring. This could result from averaging subsequent im-

ages in the MCMC chains that were not centered consistently. Overall, the relative

closure phase and squared visibility weights change SQUEEZE’s performance more

dramatically than BSMEM’s.
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Figure 2.30: Images reconstructed from simulated observations using BSMEM with
different relative closure phase and squared visibility weightings. The top row shows
the input model image, and the next rows show reconstructions where the closure
phase errors have been scaled by a factor of 4.0, 2.0, 1.0, 0.5, and 0.25 top to bottom,
relative to the squared visibilities. The point sources in Models 1, 2, 6, 7, and 8 in
the top row have scaled brightnesses and sizes for ease of viewing.
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Figure 2.31: Images reconstructed from simulated observations using BSMEM with
different relative closure phase and squared visibility weightings. The top row shows
the input model image, and the next rows show reconstructions where the closure
phase errors have been scaled by a factor of 4.0, 2.0, 1.0, 0.5, and 0.25 top to bottom,
relative to the squared visibilities. The point sources in Models 1, 2, 6, 7, and 8 in
the top row have scaled brightnesses and sizes for ease of viewing.
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CHAPTER 3

NEW SPATIALLY RESOLVED OBSERVATIONS OF THE T CHA

TRANSITION DISK AND CONSTRAINTS ON THE PREVIOUSLY CLAIMED

SUBSTELLAR COMPANION†

We present multi-epoch non-redundant masking observations of the T Cha transition

disk, taken at the VLT and Magellan in H, Ks, and L′ bands. T Cha is one of a

small number of transition disks that host companion candidates discovered by high-

resolution imaging techniques, with a putative companion at a position angle of 78◦,

separation of 62 mas, and contrast of ∆L′ = 5.1 mag. We find comparable binary

parameters in our re-reduction of the initial detection images, and similar parameters

in the 2011 L′, 2013 NaCo L′, and 2013 NaCo Ks data sets. We find a close-in

companion signal in the 2012 NaCo L′ dataset that cannot be explained by orbital

motion, and a non-detection in the 2013 MagAO/Clio2 L′ data. However, Monte-

carlo simulations show that the best fits to the 2012 NaCo and 2013 MagAO/Clio2

followup data may be consistent with noise. There is also a significant probability

of false non-detections in both of these data sets. We discuss physical scenarios

that could cause the best fits, and argue that previous companion and scattering

explanations are inconsistent with the results of the much larger dataset presented

here.

3.1 Introduction

Since their discovery, transition disks have been regarded as natural laboratories for

the study of protoplanetary disk evolution and perhaps planet formation. These

objects’ spectral energy distributions (SEDs) lack near- to mid-infrared emission,

†This chapter has been published previously as Sallum et al. (2015a)
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yet display a far-infrared excess (Strom et al., 1989). Initial studies attributed these

SED features to a lack of warm dust at inner, AU-scale radii, suggesting that they

were “in transition” from protoplanetary disks with excess throughout the infrared,

to debris disks with only very weak far-infrared excess (e.g., Lin and Papaloizou,

1986, 1993; Bryden et al., 1999; Calvet et al., 2002). More recent modeling of Spitzer

spectra (e.g., Calvet et al., 2005; Brown et al., 2007; Espaillat et al., 2007b,a; Meŕın

et al., 2010) also associated the mid-infrared deficits with disk cavities or gaps on

AU scales. Followup submillimeter imaging (e.g., Brown et al., 2009; Hughes et al.,

2009; Andrews et al., 2011b) has directly confirmed the presence of these features.

Studies have identified several processes that could play a role in the formation

of gaps and cavities, including photo-evaporative winds, grain growth, and dynam-

ical interactions with companions. While photoevaporative winds would clear out

only the gas and small dust in the inner disk, (Clarke et al., 2001; Alexander et al.,

2006), accounting for radial drift of solids can lead to dissipation of dust at large

radii as well (Alexander and Armitage, 2007). Furthermore, X-ray winds may drive

disk depletion at a faster rate than UV winds, suggesting that X-ray photoevapo-

ration could clear our inner disk radii more efficiently (e.g., Ercolano et al., 2008;

Drake et al., 2009; Owen et al., 2010). However, the cavity sizes and mass loss rates

observed in transition disks are too large compared to their X-ray luminosities to be

consistent with clearing by photoevaporation (Andrews et al., 2011b; Owen et al.,

2011). Furthermore, measurements of outer disk masses are too large compared to

results of simulations that cause disks to go through an “inner hole” phase (Alexan-

der et al., 2006). While photoevaporation could explain some inner clearings, it

alone cannot be responsible for transition disk structure.

Rather than clearing away disk material to lower the infrared emission, grain

growth decreases its emissivity (Draine, 2006; D’Alessio et al., 2006). Growing

grains to mm/cm sizes can create SED deficits comparable to those observed in

transition disks (e.g., Dullemond and Dominik, 2005; Tanaka et al., 2005; Birnstiel

et al., 2012). However, disk evolution simulations by Birnstiel et al. (2012) failed to

generate the particle size distributions required to produce mm wavelength cavities.
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Additionally, soon after growing from ∼ 1µm size to mm size, direct collisions

between silicate particles could become destructive (e.g., Windmark et al., 2012),

and the resulting smaller particles could then produce emission to fill in the SED

deficit. This suggests that, while grain growth must impact disk evolution at some

level, this process alone cannot shape transition disk cavities.

Dynamical interactions with companions are the best explanation to date for

forming disk gaps. Models have demonstrated that stellar mass companions can

open cavities in disks (e.g., Artymowicz and Lubow, 1994; Pichardo et al., 2008),

and some observed disk gaps, such as those in CoKu Tau 4 (Ireland and Kraus,

2008), HD98800 (Furlan et al., 2007), and Hen 3-600 (Uchida et al., 2004), have

been associated with stellar mass binaries. However, high resolution imaging has

ruled out companions with masses higher than ∼ 20 - 30 MJup for approximately half

of the known transition disks (Kraus et al., 2011; Evans et al., 2012). This leaves

the exciting possibility that planetary mass companions are clearing out cavities and

gaps, accreting material that would have otherwise fallen onto the star (e.g., Najita

et al., 2007). Simulations have shown that tidal interactions with a planetary mass

companion can indeed open gaps in disks (e.g., Lin and Papaloizou, 1986; Bryden

et al., 1999; Crida et al., 2006).

Here we discuss one transition disk thought to be shaped by a substellar mass

companion, T Chamaeleontis (T Cha). T Cha is a G8 type, 1.5 M� star, first cat-

egorized as a weak-line T Tauri star due to its low Hα equivalent width of < 10

Å (Alcala et al., 1993). This suggested it had entered the final stages of accretion.

The classification conflicted with T Cha’s infrared excess, thought to result from its

outer disk; this spectral feature would place it as a classical T Tauri star. Later

observations showed that it is in fact a transition disk object, perhaps in the in-

termediate stages between a protoplanetary disk and a disk-free planetary system.

Brown et al. (2007) found that T Cha’s SED could be reproduced by a disk with a

gap between 0.2 and 15 AU, and SED modeling by Olofsson et al. (2011) supported

this, with a best fit gap extending from 0.17 to 7.5 AU.

Imaging observations suggested the presence of a companion of L′ contrast 5.1
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Table 3.1. Mask Parameters

Mask Nholes Nb Ncp Nkp Baseline Range (m) Throughput (%)

NaCo 7 21 35 15 1.77 - 6.45 16%

MagAO/Clio2 6 15 20 10 1.68 - 5.02 11%

mag at a separation of 62 mas - 6.7 AU at a distance of 108 pc - (Huélamo et al.,

2011), within T Cha’s disk gap. However, Olofsson et al. (2013) showed that the

detected signal could be modeled almost equally well by an asymmetry caused by

forward scattering from the upper layers of the outer disk. Observing orbital motion

of the companion candidate would distinguish between these two scenarios. To this

end, we acquired new observations of T Cha with the Magellan AO (MagAO) system.

We also present a re-analysis of the original discovery data from VLT/NaCo, as

well as a new analysis of previously unpublished NaCo data from the Very Large

Telescope (VLT) archive.

3.2 Experimental Setup

Non-redundant masking (NRM) transforms a filled aperture into a sparse interfer-

ometric array using a pupil-plane mask. While blocking the majority of the light,

this provides much better knowledge of the PSF than a conventional telescope. A

resulting image (called an interferogram) then shows the interference fringes formed

by the mask, and subsequent image reconstruction or model fitting relies on quanti-

ties calculated from its Fourier transform. Since the mask is non-redundant (no two

baselines have the same length and orientation), each baseline has unique (u, v) co-

ordinates. The symmetry of the Fourier transform means that identical information

for a baseline can be found in two points in (u, v) space - at (u, v) and (−u,−v).

The finite size of the mask holes, as well as the width of the filter bandpass, causes

this information to spread out. This means that the Fourier transform will have

several distinct “splodges,” two coming from each mask baseline.
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Using the Fourier transform at the locations of these splodges, we find the com-

plex visibility for each baseline, which has the form Aeiφ, where A is the amplitude

and φ the phase. Since atmospheric and instrumental effects corrupt the complex

visibilities, we calculate two other quantities, squared visibilities and closure phases.

Squared visibilities measure the power in the Fourier transform as a function of base-

line length, and closure phases are sums of phases around three baselines that form a

triangle. Closure phases eliminate atmospheric and instrumental phase offsets that

corrupt measurements taken using single baselines. These obey the relation:

Φcp = φ (u1, v1) + φ (u2, v2) + φ (u3, v3) (3.1)

where ui and vi are the sampling coordinates of the ith baseline in the Fourier plane.

An N-hole mask will provide
(
N
2

)
baselines and visibilities, and

(
N
3

)
closure phases,(

N−1
2

)
of which are independent.

3.3 Observations

3.3.1 New Magellan/MagAO/Clio2 Data

We observed T Cha and two unresolved calibrators, HD101251 and HD102260 us-

ing the 6.5 m Clay telescope, MagAO adaptive optics system (Close et al., 2013;

Morzinski et al., 2014), and Clio2 science camera (Freed et al., 2004; Sivanandam

et al., 2006) on 2013 April 5. A six-hole non-redundant mask was mounted in a pupil

plane filter wheel in Clio2. Table 3.1 lists the parameters of the Clio2 mask. We used

two calibrators to lessen the probability that detected signals were being injected

by a resolved or binary calibrator. Our exposure times for T Cha, HD101251, and

HD102260 were 1.0 s, 0.9 s, and 1.3 s, respectively. We took 4 to 6 50-frame data

cubes (called “visits” in Table 3.2) before switching objects according to the pattern

target-cal1-target-cal2. We acquired 6 visits for T Cha, 2 visits for HD101251, and

3 visits for HD102260. These resulted in 28.3 minutes, 9 minutes, and 15.16 minutes

of total integration, respectively. We observed in L′, λc = 3.78 µm, and the total

change in sky rotation angle was 47◦, shown in Figure 3.1.
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Figure 3.1: Sky rotation comparison in (u, v) space for all L′ data sets and 2013
NaCo Ks data. The NaCo 2010 L′ data had a change in sky rotation of ∼ 62◦. The
total sky rotation in the NaCo 2011 L′ data was ∼ 39◦. The NaCo 2012 L′ data had
∼ 19◦ of sky rotation, and the NaCo 2013 L′ data had ∼ 56◦. The MagAO/Clio2
2013 data had a change of ∼ 47◦. Due to its smaller aperture, the MagAO/Clio2
baselines are shorter than for NaCo. Lastly, the NaCo 2013 Ks data had ∼ 71◦ of
sky rotation.
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3.3.2 Previously Published 2010 VLT/NaCo Data

2010 March 17 L′ Observations

The initial detection of the T Cha companion (Huélamo et al., 2011) resulted from

NRM observations taken at the VLT using NaCo (Penzen, 1993; Rousset et al.,

2003). The parameters for the NaCo mask are listed in Table 3.1. In order to

verify our reduction pipeline, we downloaded and re-reduced the previously pub-

lished observations from the archive. This dataset included observations of T Cha

and a single, unresolved calibrator, HD102260, with 9 visits to T Cha and 10 to

HD102260. The observations followed the pattern ...cal-target-cal..., dithering so

that each 100-frame data cube placed the interferogram on one of the detector’s

quadrants. These data resulted in 48 minutes of integration on T Cha and 53.33

minutes on HD102260. Images were taken in L′, λc = 3.8 µm, and the total change

in sky rotation angle was 62◦, shown in Figure 3.1.

2010 July 1 Ks Observations

The detection of T Cha in L′ was accompanied by a non-detection in Ks (λc =

2.18µm), from data taken at the VLT using NaCo in July 2010. We reduced this

archival dataset, which includes observations of T Cha, HD102260, and HD101251.

Three visits were made to T Cha, totaling 20 minutes of integration. For each

calibrator, 1 visit consisting of 6.7 minutes of integration was made. The change in

sky rotation angle for these data was 19◦, and the dithering pattern was identical

to the 2010 L′ NaCo data. These data were too noisy to detect companion signals

comparable to the Huelamo et al. (2011) binary, so we include their discussion in

Section 3.11.

3.3.3 Unpublished VLT/NaCo Data

While searching for published data to verify our pipeline, we found additional ob-

servations taken using VLT/NaCo from 2011 - 2013. These include L′ and Ks

observations from March 14-15, 2011, L′ observations from March 8, 2012, and L′,
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Ks, and H band observations from March 25-27, 2013. We include a description

of each dataset in this section. However, the scatter in the 2011 Ks and 2013 H

band observations would wash out companion signals of interest. For this reason,

we include only a short discussion of the results from these data in Section 3.11.

2011 March 14 L′ Observations

We reduced archival L′ VLT/NaCo data taken in 2011, which included observations

of T Cha and the same calibrator as the 2010 L′ dataset, HD102260. These data

consisted of seven visits to T Cha, and nine visits to HD102260, resulting in 37.33

minutes of integration on T Cha and 48 minutes on HD102260. The dithering

pattern was the same as for the 2010 L′ NaCo data, and the total change in sky

rotation angle was 39◦, shown in Figure 3.1.

2011 March 15 Ks Observations

These archival data include observations of T Cha and HD102260 taken in Ks. The

dithering pattern was identical to the 2010 L′ NaCo data. Six visits were made to

each object, resulting in 40 minutes on target and calibrator. The total change in

sky rotation for these data was 38◦, shown in Section 3.11.

2012 March 8 L′ Observations

We reduced archival VLT/NaCo L′ data taken on March 8, 2012. These include

observations of T Cha, HD102260, and HD101251. Five visits were made to T Cha

and 2 to each calibrator. This resulted in a total of 26.7 minutes of integration for

T Cha, and 10.7 minutes for each calibrator. The visits were dithered so that the

image fell on a different detector quadrant during neighboring sets of 100 exposures.

The total change in sky rotation for this dataset was 19◦, shown in Figure 3.1.
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2013 March 25 L′ Observations

The 2013 archival L′ VLT/NaCo data include observations of T Cha, HD101251, and

HD102260. Ten visits were made to T Cha, with 52.3 total minutes of integration.

A total of 4 visits were made to HD101251, resulting in 20.1 minutes of integration,

and the 6 visits to HD102260 yielded 35.3 minutes of integration time. These data

had a change in sky rotation of 56◦, shown in Figure 3.1. Table 3.2 details the

individual visits to all three objects, which did not have identical exposure times.

2013 March 26 Ks Observations

We also present archival VLT/NaCo data taken in Ks band. The 11 visits to T Cha

resulted in a total of 63 minutes of integration. HD101251’s 4 visits yielded 19.2

minutes of total exposure time, and the total amount of integration for the 5 visits

made to HD102260 was 26 minutes. The change in sky rotation for this dataset was

71◦, shown in Figure 3.1. See Table 3.2 for details of the individual visits to each

object.

2013 March 27 H Observations

The last archival dataset was taken on March 27, 2013 in H band (λc = 1.65µm).

The total integration time for T Cha’s 6 visits was 33.3 minutes. For HD101251,

2 visits were made, resulting in 14.1 minutes of integration. Lastly, the 3 visits to

HD102260 total 15.8 minutes of integration time. Table 3.2 details the individual

visits made to each object. The change in sky rotation for these observations was

39◦, shown in Section 3.11.
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Table 3.2. Summary of Observations

Target Right Ascension Declination tint Nframes
a Nvisits

b Total Time Seeing τ0

(hh mm ss.sss) (dd mm ss.sss) (s) (min) (arcsec) (ms)

L′ Observations

2010 Mar 17: VLT/NaCo

T Cha 11 57 13.550 -79 21 31.537 0.4 800 9 48 0.6 8

HD102260 11 45 13.822 -78 36 58.633 0.4 800 10 53.3

2011 Mar 14: VLT/NaCo

T Cha 11 57 13.550 -79 21 31.537 0.4 800 7 37.3 2.0 1.5

HD102260 11 45 13.822 -78 36 58.633 0.4 800 9 48

2012 Mar 8: VLT/NaCo

T Cha 11 57 13.550 -79 21 31.537 0.4 800 5 26.7 1.0 6

HD101251 11 37 49.220 -79 14 31.604 0.4 800 2 10.7

HD102260 11 45 13.822 -78 36 58.633 0.4 800 2 10.7

2013 Mar 25: VLT/NaCo

T Cha 11 57 13.550 -79 21 31.537 0.4 800 2 10.7 0.75 7

T Cha 11 57 13.550 -79 21 31.537 0.3 1057 7 37.0

T Cha 11 57 13.550 -79 21 31.537 0.2 1405 1 4.7

HD102260 11 45 13.822 -78 36 58.633 0.4 800 1 5.3

HD102260 11 45 13.822 -78 36 58.633 0.3 1057 4 21.1

HD102260 11 45 13.822 -78 36 58.633 0.5 1057 1 8.8

HD101251 11 37 49.220 -79 14 31.604 0.4 800 1 5.3

HD101251 11 37 49.220 -79 14 31.604 0.3 1058 2 10.6

HD101251 11 37 49.220 -79 14 31.604 0.15 1687 1 4.2

2013 Apr 5: Magellan/MagAO/Clio2

T Cha 11 57 13.550 -79 21 31.537 1.0 300 5 28.3 0.6 N/A

T Cha 11 57 13.550 -79 21 31.537 1.0 200 1 28.3

HD101251 11 37 49.220 -79 14 31.604 0.9 300 2 9

HD102260 11 45 13.822 -78 36 58.633 1.3 300 1 15.16

HD102260 11 45 13.822 -78 36 58.633 1.3 200 2 15.16

Ks Observations

2010 Jul 1: VLT/NaCo

T Cha 11 57 13.550 -79 21 31.537 0.5 800 3 20 1 4

HD101251 11 37 49.220 -79 14 31.604 0.5 800 1 6.7

HD102260 11 45 13.822 -78 36 58.633 0.5 800 1 6.7

2011 Mar 15: VLT/NaCo

T Cha 11 57 13.550 -79 21 31.537 2.0 200 6 40 0.75 3

HD102260 11 45 13.822 -78 36 58.633 2.0 200 6 40

2013 Mar 26: VLT/NaCo

T Cha 11 57 13.550 -79 21 31.537 1.0 280 2 9.3 1 4
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Table 3.2 (cont’d)

Target Right Ascension Declination tint Nframes
a Nvisits

b Total Time Seeing τ0

(hh mm ss.sss) (dd mm ss.sss) (s) (min) (arcsec) (ms)

T Cha 11 57 13.550 -79 21 31.537 0.8 427 4 22.8

T Cha 11 57 13.550 -79 21 31.537 0.7 497 3 17.4

T Cha 11 57 13.550 -79 21 31.537 0.5 807 2 13.5

HD102260 11 45 13.822 -78 36 58.633 1.0 350 1 5.8

HD102260 11 45 13.822 -78 36 58.633 0.5 707 2 11.8

HD102260 11 45 13.822 -78 36 58.633 0.4 707 1 4.7

HD102260 11 45 13.822 -78 36 58.633 0.3 1057 1 5.3

HD101251 11 37 49.220 -79 14 31.604 0.2 1407 3 14.1

HD101251 11 37 49.220 -79 14 31.604 0.11 2782 1 5.1

H Observations

2013 Mar 27: VLT/NaCo

T Cha 11 57 13.550 -79 21 31.537 0.4 605 1 4.03 0.75 3.5

T Cha 11 57 13.550 -79 21 31.537 0.4 847 1 5.64

T Cha 11 57 13.550 -79 21 31.537 0.5 707 4 23.6

HD102260 11 45 13.822 -78 36 58.633 0.15 2107 3 15.8

HD101251 11 37 49.220 -79 14 31.604 0.11 3157 2 11.6

HD101251 11 37 49.220 -79 14 31.604 0.11 1353 1 2.5

aNumber of frames in each visit

bEach visit consists of all images taken before switching between target and calibrator.

3.4 Data Reduction

We have developed a suite of software in Python to perform basic data reduction,

calibration, and visibility and closure phase calculations. We first flat-field and bad-

pixel correct all images. For a given set of two dithers, we perform sky subtraction

for one position by taking the median of all images in the other dither position and

subtracting the median from each image. We then apply a super-Gaussian window

function to reduce the noise associated with the low-signal edges of the interferogram

and spatially filter the data. A super-Gaussian has the form exp(−kx4); we choose k

such that the half width at half max is λ/dsub, where dsub is the mask sub-aperture

diameter (e.g., Bernat et al., 2012). After windowing, we Fourier transform the
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10 5 0 5 10
Kernel Phase ( ◦ )

Snapshot Kernel Phase Scatter

NaCo L' 2010 σ=2.85

NaCo L' 2011 σ=4.38

NaCo L' 2012 σ=3.36

NaCo L' 2013 σ=4.23

MagAO/Clio2 L' 2013 σ=0.78

NaCo Ks 2013 σ=3.72

Figure 3.2: Normalized histograms of uncalibrated kernel phases for L′ and 2013
Ks data. For a subset of each dither (chosen so that equal amounts of integration
came from all observations), we subtract the mean kernel phase from each indi-
vidual measurement to generate the histograms shown above. The snapshot kernel
phase errors are much lower in the MagAO/Clio2 data than in the NaCo data sets,
indicating lower levels of random noise.

.
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NaCo L' 2010 σ=0.63 NaCo L' 2011 σ=0.91 NaCo L' 2012 σ=0.4

4 2 0 2 4

NaCo L' 2013 σ=0.28

4 2 0 2 4
Kernel Phase ( ◦ )

MagAO/Clio2 L' 2013 σ=0.66

4 2 0 2 4

NaCo Ks 2013 σ=0.34

 Δt
−1  Calibrated Kernel Phases

Figure 3.3: Normalized histograms of each set of calibrated L′ kernel phases as
well as NaCo 2013 Ks kernel phases, with their best fit Gaussian distributions over
plotted. The Gaussian distributions were used to generate noise realizations for the
simulations described in Section 3.7.

.
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data.

Next, we calculate squared visibilities. We first simulate an interferogram and

resulting Fourier transform using the locations and sizes of the holes in the mask,

along with the observation’s wavelength. This provides us with the pixel locations

of the splodges (see § 3.2) in the Fourier transform. We then square the Fourier

transform of the data, and sum all pixels within the splodges corresponding to each

baseline, normalizing by the total power in the interferogram.

The typical uncertainty due to random errors for the visibilities ranges between

0.02 and 0.12 for all L′ and 2013 Ks data sets. For comparison, a binary with sepa-

ration 62 mas and contrast ∆L′ = 5.1 mag produces a change in visibility between

the shortest and longest baseline of approximately 0.035 for both the MagAO/Clio2

and NaCo masks. While some of the followup data sets’ random visibility errors

are smaller than this signal, visibilities’ dependence on the AO system (e.g., Lacour

et al., 2011; Kraus and Ireland, 2012) renders them harder to calibrate. Differences

in AO performance over the night, or between target and calibrator observations

can introduce additional error. To investigate this, we divide the visibilities for each

set of two adjacent calibrator scans; the calibrated visibilities for a point source

should be equal to 1 for all baselines. We then take the scatter in these calibrated

visibilities as an estimate for the systematic uncertainties in the target visibilities.

This results in calibrated visibilities with scatters ranging between 0.04 and 0.11.

Due to these large uncertainties, as in previous NRM studies (e.g., Huélamo et al.,

2011; Kraus and Ireland, 2012) we restrict our binary fitting to phases only, rather

than including the squared visibilities.

For each triangle, we form the bispectrum by multiplying the complex values in

the Fourier transform at three (u, v) coordinates. We then average over the individ-

ual frames, and take the phase of the average bispectrum to be our closure phase.

Of the
(
N
3

)
closure phases, only

(
N−1

2

)
are independent. For this reason, we perform

fits on kernel phases, linearly independent combinations of closure phases (see Mar-

tinache, 2010; Kraus and Ireland, 2012; Ireland, 2013). We find our kernel phases

in a way similar to Martinache (2010). Section 3.13 gives a detailed description of
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our projection method.

Figure 3.2 shows histograms of the kernel phases for individual images in the

Ks and L′ data sets, and can be taken to represent a comparison of the snapshot

kernel phase errors for the different data sets. For a given dither, we calculate the(
N−1

2

)
mean kernel phases. We then calculate the kernel phases for every individual

image in the dither and subtract the mean. We use the same total integration

time, 39 s, to calculate the mean kernel phase. This process yields the distributions

shown in Figure 3.2. The snapshot errors in the 2013 MagAO data (σ = 0.73◦)

are much smaller than the VLT/NaCo data sets (σ = 2.85 − 4.38◦ for L′ kernel

phases.) We also compare the MagAO/Clio2 and NaCo data with different amounts

of time-averaging. As long as these averages are performed within a single dithering

sequence, the chosen interval does not change the noise levels significantly. Due to

their high scatter and the resulting unreliable fits we show kernel phase histograms

for the 2010 and 2011 Ks as well as the 2013 H band data in Section 3.11.

Random sources of noise associated with both AO performance and observing

conditions cause snapshot kernel phase errors. For exposures much longer than the

inverse of the AO system bandwidth, closure phase errors scale in the following way

(Ireland, 2013):

σcp ∼ σφ

√
1

fcT
, (3.2)

where σφ is the phase noise on each sub-aperture in the closing triangle, fc the cutoff

frequency below which piston noise is white, and T the exposure time. The kernel

phase errors will then be the projection of the closure phase errors. If we assume

σφ and fc are equal for all data sets, the ratio of two observations’ closure phase

errors scales with the ratio of their exposure times. Using 0.2s – 0.5s for the NaCo

data, and 1.0s for the MagAO/Clio2 data, the ratio of the MagAO/Clio2 to NaCo

closure phase errors should range from 0.44 to 0.71. The ratio of the MagAO/Clio2

and NaCo L′ observed errors ranges between 0.27 and 0.18 depending on the NaCo

L′ dataset. Hence, exposure time alone cannot explain the discrepancy between the

MagAO/Clio2 and NaCo L′ snapshot errors.

Other random sources of noise include photon, background, and read noise, which
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lead to closure phase errors (following Ireland, 2013):

σcp ∼
Nh

NpV

√
1.5(Np +Nb + npσ2

ro) , (3.3)

where Nh is the number of holes in the mask, V the fringe visibility, Np the total

number of photons, Nb the number of background photons, np the number of pixels,

and σro the read noise. If we assume we are in the photon-noise regime, the closure

phase error simplifies to

σcp ∼
Nh

V

√
1.5

Np
. (3.4)

The number of photons is Np = Ftarget×Atel×fmask×T , where Ftarget is the photon

flux from the source, Atel the telescope collecting area, fmask the fraction of light

allowed through by the mask, and T the exposure time. The relevant values for the

MagAO/Clio2 observations are Atel ∼ (6.5m)2, fmask = 0.11, T = 1s, and Nh = 6.

For the NaCo observations, Atel ∼ (8.2m)2, fmask = 0.16, T = 0.2s − 0.4s, and

Nh = 7. Assuming that the fringe visibilities for the two data sets are approximately

equal, taking the ratio of the MagAO/Clio2 to NaCo closure phase errors gives

0.58 − 0.92. Thus, the differences in telescope and observing parameters cannot

fully explain the lower MagAO/Clio2 snapshot errors. Better AO performance by

MagAO, which leads to lower values for σφ and higher values of fc, could be one

cause for this discrepancy. Additionally, the smaller holes (as evinced by the lower

throughput in Table 3.1) of the Clio2 mask mean that the 2013 observations are less

redundant than the NaCo observations. This could also reduce the snapshot errors

for the MagAO/Clio2 data.

3.5 Calibration

Due to atmospheric and instrumental systematics, the mean kernel phases them-

selves (subtracted off in Figure 3.2) can vary substantially throughout the obser-

vations. To take these effects into account, we subtract our unresolved calibrator

kernel phases from our target kernel phases. We do this in several ways.

To apply a simple nearest-neighbor calibration, we first calculate the time be-

tween a given target scan and all calibrator scans (∆t). We then average all calibra-
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tor scans, weighting by ∆t−10, and subtract the weighted-average calibrator from

the target scan. To use information from all of the calibrator scans, rather than

limiting ourselves to only the nearest-neighbor, we calculate an average calibrator,

weighting the scans by ∆t−1. Finally, we apply a more optimized weighting, similar

to LOCI (Lafrenière et al., 2007) techniques in direct imaging data reduction and

the calibration strategy adopted in Kraus & Ireland (2012) and Ireland (2013).

For the LOCI-like calibration scheme, we find the linear combination of calibrator

scans that minimizes the sum of the target’s squared kernel phases. This is equiva-

lent to minimizing the χ2 for the null model. While this calibration scheme provides

the lowest scatter and thus highest signal to noise, it can also subtract signal from

the measurements. For this reason, it is often applied iteratively, minimizing the χ2

for the null model initially and then minimizing the χ2 for the best-fit model until

the best-fit converges. We also LOCI calibrate without iteration, minimizing the χ2

of the ∆t−1 model. Both LOCI schemes remove signal, and do not always give con-

sistent results. Therefore, we focus on the fits to simpler, neighbor-like calibrations

in the subsequent sections. The behavior of the LOCI calibration method will be

detailed in a future paper.

The histograms for the L′ and 2013 Ks data sets are shown in Figure 3.3. While

the MagAO/Clio2 data have lower snapshot kernel phase errors than the NaCo L′

observations (see Figure 3.2), the systematics in the three data sets are such that

the scatter in the mean, calibrated kernel phases are quite similar. We speculate

that the greater temporal spacing between target and calibrator observations in the

MagAO/Clio2 observations could cause this. The average time between target and

calibrator scans in the these data is 8.8 minutes. For the NaCo observations, the

mean time between target and calibrator scans for the L′ data ranges between 4.2

and 6.9 minutes.

3.5.1 Consistency Checks

To check whether one calibrator could be contaminating the MagAO/Clio2 data and

increasing the kernel phase scatter, we calibrated our T Cha kernel phases using each
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calibrator individually. Our dithering pattern alternated calibrator observations

between target observations, resulting in some target scans being closer in time to

one of the two calibrators. Using only one calibrator star increased the scatter in

the calibrated kernel phases. However, both single-star calibrations yielded kernel

phases with nearly identical standard deviations (approximately 1◦). This similarity

suggests that neither calibrator is contaminating the dataset, and the increase in

noise compared to the two-star calibration scheme highlights the need for calibrator

scans taken close in time to the target observations. Furthermore, best fits to these

calibrated data are consistent with those for the fully calibrated data.

For the fully-calibrated MagAO/Clio2 L′ data, we compare the scatter in scans

taken during the first half of the night to the scatter for those taken during the

second. The kernel phase standard deviations in this test are nearly identical (0.66◦

and 0.68◦). This suggests that the calibration quality did not change significantly

during the observations.

We carried out calibrator tests for the NaCo 2012 L′ and 2013 L′ and Ks data

sets, which, unlike the 2010 and 2011 data, included observations of two calibrator

stars. We calibrated each calibrator star using the other with a ∆t−1 method, and

then fit a binary model to the kernel phases. In all three data sets, neither calibrator

star’s kernel phases show clear signs of a companion; simulations show that their

best fits are consistent with noise.

We also calibrated the NaCo 2012 and 2013 T Cha kernel phases using each

calibrator separately, and then fit the resulting kernel phases. Using individual

calibrators did not change the best fits significantly for any of these three data sets.

Additionally, the scatters for these calibrations were similar. Using only HD101251

and HD102260, respectively, the standard deviations were 0.39◦ and 0.36◦ for 2012

L′, 0.28◦ and 0.33◦ for 2013 L′, and 0.45◦ and 0.36◦ for 2013 Ks.

We also check that the scatters in these three NaCo data sets are comparable

for both halves of the night. The 2012 L′ data from the first and second halves

of the observations have scatters of 0.37◦ and 0.36◦, respectively. For the 2013 L′

observations, the kernel phase standard deviation for the first half of observations
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Table 3.3. Binary Grid Parameter Space

Parameter Minimum Maximum Step Size

P.A. (◦) -180 180 1

s (mas) 0 700 5

∆ (mag) 3 7 0.05

is 0.32◦, while for the second half it is 0.27◦. The change throughout the night for

the 2013 Ks observations was slightly larger, with a standard deviation of 0.45◦ for

the first half, and 0.31◦ for the second half.

Lastly, we compare the scatter in the calibrated kernel phases (Figure 3.3) with

changes in average seeing and coherence time (Table 3.2) between observations. In

general, observations with longer coherence times and lower wind speeds had lower

kernel phase scatter.

3.6 Binary Fitting

To search for companions in our data, we fit binary models to our kernel phases.

Given the angular resolution of our observations, a binary can be approximated as

two delta functions, the Fourier transform of which is an analytic function. Equation

(3.5) gives the complex visibility for a binary with a companion separation s, position

angle P.A. (measured E of N), and brightness ratio b (in units of the primary’s

brightness).

V (u, v) =
1√
2π

(
1 + b ei·s(u·sin(PA)+v·cos(PA))

)
(3.5)

The phase measured for a binary by a baseline with coordinates (u, v), is then the

angle of Equation 3.5:

φ(u, v) = tan−1

(
Im(V (u, v))

Re(V (u, v))

)
. (3.6)

To create a model set of kernel phases, we calculate the closure phases for each

triangle using the locations and sizes of the mask sub-apertures, and sky rotation
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angles included in our observations. We then project the closure phases into kernel

phases in the same way as we have done for the data. Due to the symmetry of the

Fourier transform, each closure phase can correspond to one of two closing triangles.

To keep the sign of our closure phases (and thus kernel phases) consistent between

data and model, we sample the same closing triangles in both. Additionally, where

necessary, we use observations of a known binary to calibrate the orientation of

our detector on the sky. For the NaCo data, as in Huelamo et al. 2011, we use

observations of the binary θ Ori C, taken in 2010 April.

We perform χ2 fitting of the binary models to each individual dataset using both

a grid and nested sampling (Sivia and Skilling, 2006). Our grid spans a range of pa-

rameters in binary position angle (P.A.), separation (s), and contrast in magnitudes

(∆). ∆ can be related to b, the brightness ratio, by the following:

∆ = −2.5 log10(b) (3.7)

Table 3.3 lists the ranges and spacings for each parameter. For each set of param-

eters, we calculated model kernel phases and a χ2 statistic. We used the best grid

fit as an input for our nested sampling algorithm.

Nested sampling involves first filling the parameter space with a large number (in

our case, 100) of points, and calculating a likelihood (exp(−χ2/2)) for each point.

We then replace the lowest likelihood point with a random member of the remaining

99, and evolve it using a Markov-Chain to a higher likelihood region of the parameter

space. We repeat this process until the 100 points satisfy a convergence criterion,

in our case, the scatter in the ensemble must be a small fraction (∼ 0.1%) of the

mean. We give one of the 100 nested sampling points the best grid fit as an initial

value, and assign random values to the remaining 99. This is not necessary for fits in

which there is one clear minimum, but it can help in preventing the nested sampling

fit from converging to local minima.

We report parameter errors calculated from a χ2 interval. After finding the min-

imum χ2 using nested sampling, we then scale all χ2 values for a grid of parameters

so that the reduced χ2 of the best-fit model is equal to 1. With the scaled set of χ2
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values, we find all grid points within ∆χ2 of 3.53 (Press et al., 1992) to place a 1σ

error on the fit parameters.

Bootstrapping often gives the most conservative estimates of parameter errors.

However, as noted in Press et al. (1992), the results of data fitting in Fourier space

rely heavily on all grid points being present, and while the (u, v) coverage in the

NaCo and MagAO data sets is good, it is by no means complete. For this reason,

bootstrapped data sets do not fairly represent the noise in the data. We confirmed

this by bootstrapping Gaussian noise sampled at the same (u, v) points as each

dataset; a given noise realization’s best fit contrast ratio was much higher than the

bootstrapped distribution would suggest.

3.7 Noise Simulations

For each dataset, we fit simulated kernel phases to quantify our type I (false-positive)

and type II (false-negative) errors. The contrast ratio and separation parameters

in a binary model act much like the amplitude and frequency of a sine wave; they

take on non-zero values when fit to noise. In order to determine the separations

and contrast ratios that could be caused by the noise levels in these data sets,

we simulated Gaussian kernel phases from distributions fit to the data. These are

shown in Figure 3.3 for L′ and 2013 Ks data, and in Section 3.11 for 2010 and 2011

Ks and H band data. We use (u, v) coverage and sky rotation identical to each

observation. We fit binary models to 1000 of these noise realizations and create

a probability distribution from the best fits. Since the best fit position angle for

the noise simulations is uniformly distributed, we create two-dimensional confidence

intervals from the best fit separations and contrasts. We then compare the best fit

from our data to these confidence intervals. For example, if our best fit lies just

outside the contour enclosing 95% of the best fits, there is a 5% chance that the fit

is drawn from the distribution and thus a 5% chance that the fit resulted from noise

alone.

A second way of quantifying type I errors is to calculate the F statistic, the best
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Table 3.4. Binary Fit Results

Data Set P.A. (deg) s (mas) ∆L′ P(FA)a(%) P(FA)b(%) ∆χ2,Hu σHu,allowed

2010 March 17: VLT/NaCo L′

∆t−1 83 ±7
9 88 ±22

58 5.5 ±0.5
2.5 11 < 0.1 2.63 1

∆t−10 82 ±5
7 78 ±22

48 5.3 ±0.6
2.3 4 < 0.1 2.56 1

2011 March 14: VLT/NaCo L′

∆t−1 92 ±11
14 87 ±33

57 5.3 ±0.7
2.3 25 18 2.54 1

∆t−10 92 ±117
21 94 ±356

64 5.4 ±0.8
2.4 18 36 1.25 1

2012 March 8: VLT/NaCo L′

∆t−1 -40 ±5
5 32 ±28

2 3.4 ±1.6
3.2 1.3 < 0.1 23.10 > 4

∆t−10 -38 ±5
5 29 ±54

6 0.4 ±5.3
0.3 4.3 < 0.1 20.43 4

2013 March 25: VLT/NaCo L′

∆t−1 83 ±3
1 55 ±25

25 5.2 ±0.7
1.9 0.9 < 0.1 25.82 > 4

∆t−10 82 ±4
4 25 ±50

0.01 2.8 ±3.1
0.2 3.4 < 0.1 17.35 4

2013 March 26: VLT/NaCo Ks

∆t−1 74 ±4
0.3 42 ±8

22 5.2 ±0.3
1.8 1.3 < 0.1 21.47 4

∆t−10 77 ±1
3 51 ±9

11 5.4 ±0.2
0.3 0.4 < 0.1 10.64 2

2013 April 5: Magellan/MagAO/Clio2 L′

∆t−1 112 ±176
99 337 ±153

147 5.8 ±0.6
0.4 32 2 15.97 4

∆t−10 -131 ±3
5 315 ±25

26 5.8 ±0.5
0.3 32 4.5 12.85 3

aUsing distribution of noise simulation best fits

bUsing distribution of noise simulation F statistics
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fit χ2 divided by the null model χ2, for each noise realization. Comparing the F

statistic for a dataset’s best fit to a distribution of these simulated noise F statistics

yields the probability that the best fit incorrectly rejects the null hypothesis. For

example, if 95% of the simulated noise realizations have lower F statistics than a

dataset’s best fit, there is a 95% probability that the data contain no real signal.

This procedure is outlined in detail in Protassov et al. (2002).

To estimate our type II errors - the likelihood that the best fit to our data would

be a false negative - we simulated observations with noise plus the signal from a

companion. We generate 1000 Gaussian noise realizations and fit a binary model

to the simulated data. We take the fraction of fits where the input signal was not

recovered to be our type II error. We also calculate F statistics from the noise +

signal realizations, for comparison with both the noise F statistics and the data’s

best fit F statistics.

Figure 3.4 shows the noise simulations for all L′ and 2013 Ks data sets with a

∆t−1 calibration. The scattered points show the results of 1000 fits to Gaussian

noise comparable to the scatter in each dataset, and the points with error bars

show the best fit to each dataset. The color scale shows a probability distribution

interpolated from the results of the simulations, and the contour lines indicate 1σ,

2σ, and 3σ confidence intervals.

Figure 3.5 shows the false alarm probabilities for the same data sets in Figure 3.4.

In each panel, the black line is a histogram of all of the F statistics for 1000 Gaussian

noise realizations. The red, vertical lines indicate the F statistic for each dataset’s

best fit; the intersection of these lines with the black histograms gives the probability

that the best fit to the data resulted from noise. The green, cumulative histogram

shows the distribution of F statistics for the 1000 noise + signal realizations. The

intersection of the red line with this distribution gives the fraction of noise + signal

realizations with fits that look less significant (higher F statistics) than our best

fit. For Figures 3.4 and 3.5, the noise properties of the ∆t−10 calibration yielded

comparable results (see Table 3.4).

While using a χ2 statistic to assign significance depends on the data error bars,
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which could be difficult to estimate properly, these simulations take into account

only the scatter in the kernel phases. For this reason, in Section 8, we use the results

of the noise simulations to estimate the significance of the best fit binary results.

Figure 3.4: Noise simulations for all L′ and NaCo 2013 Ks data sets. The scattered
points show the best fits to 1000 noise realizations for each dataset, drawn from the
Gaussian distributions shown in Figure 3.3. The color scale shows the probability
distribution interpolated from the best fits, while the contours indicate 1σ, 2σ, and
3σ confidence intervals. The bold point with error bars represents the best fit for
each epoch.

3.8 Results

Table 3.4 shows our results in chronological order. The first three columns list the

results of binary fits to the kernel phases. Following the binary fits, the next columns

list two false-alarm probabilities, the first calculated using the distribution of best

fits to noise realizations and the second using the distribution of best fit F statistics

(see Section 3.7). The last two columns list the ∆χ2 corresponding to the Huelamo
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Figure 3.5: False alarm testing for all L′ data sets and NaCo 2013 Ks observations.
In each panel, the black, cumulative histogram shows the F statistics (best fit χ2

divided by null model χ2) for 1000 noise simulations. The intersection of the red,
vertical line with the black histogram yields a false alarm probability. The green,
cumulative histogram shows the F statistics from the 1000 noise + signal simulations
carried out for each set of observations. The intersection of the red line with this
histogram gives the fraction of noise + signal simulations that look less significant
(higher F statistic) than the best fit.

et al. (2011) binary for that dataset, alongside the corresponding confidence interval

at which it is allowed. The bold values are binary fit results for the ∆t−1 calibrated

data. We include the best fits from this calibration strategy in Section 9.

3.8.1 2010 VLT/NaCo L′ Data - Initial Detection

For these data, we first fit our neighbor-calibrated (weighting by ∆t−10) kernel

phases, since the calibration strategy for the closure phases in Huélamo et al. (2011)

is most similar to this approach (see also Lacour et al., 2011). We find a best fit

binary with position angle of 82± 5
7
◦, separation of 78± 22

48 mas, and ∆L′ = 5.3± 0.6
2.3
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Figure 3.6: Separation - contrast degeneracy. The subplots each show the evolution
of one simulated kernel phase during the MagAO/Clio2 observations. The different
lines are binaries with identical position angles, but different separations and con-
trast ratios. The blue solid line shows the signal from a companion similar to that
published in Huélamo et al. (2011) (s = 62 mas, ∆L′ = 5.1), the red dashed line
shows s = 31 mas and ∆L′ = 2.9, and the green dotted line shows s = 93 mas and
∆L′ = 6.0. While slight differences exist between the binary models, they are not
detectable given the accuracy of the data.

.
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mag. This is comparable to the Huelamo et al. (2011) best fit - position angle of

78±1◦, separation of 62±7 mas (6.7 AU at 108 pc), and ∆L′ of 5.1± 0.2 mag. Our fit

parameter errors are substantially larger than those quoted in Huélamo et al. (2011),

which were derived using χ2 intervals from a binary fit to closure phases (see also

Lacour et al., 2011). Closure phases have correlated errors, which could bias the

parameter errors derived using a simple χ2 fit. Parameter errors also depend on

whether the data error bars have been scaled such that the reduced χ2 is equal to 1,

which is appropriate if you assume the model to be correct, and that underestimated

error bars are causing a high reduced χ2. Our large separation and contrast error

bars are consistent with the severe degeneracy between these two parameters. Figure

3.6 illustrates this degeneracy, with kernel phases plotted for separations 0.5×, 1×,

and 1.5× the separation of the Huélamo et al. (2011) binary, varying the contrast

ratio. The three models are nearly indistinguishable. For this reason, we believe

our fit errors to be a more realistic representation of the parameter constraints.

After the nearest-neighbor fit, we then fit the ∆t−1 calibrated kernel phases,

finding a best fit with position angle of 83± 7
9
◦, separation of 88±22

58 mas, and ∆L′ =

5.5±0.5
2.5 mag. The ∆t−1 calibration method resulted in kernel phases with lower

scatter than the ∆t−10 method - 0.63◦ versus 0.66◦. Using a χ2 interval, the Huelamo

et al. (2011) binary model is within 1σ of the best fit for both calibration methods.

Section 3.12 shows our ∆t−1 calibrated kernel phases with both the Huelamo et al.

(2011) model and the best fit model from this work. The two models are nearly

indistinguishable.

Figure 3.4 shows that there is a small probability that the binary detection

resulted from a random noise fluctuation. The best fit falls on a contour that

encloses 89% of the simulation results; there is an 11% chance that the 2010 fit was

the result of noise. The 2010 L′ best fit is then significant at roughly the 2σ level.

The distribution of F statistics, shown in Figure 3.5, indicates that the false alarm

probability for this dataset is < 0.1%, giving the fit ∼ 3σ significance.
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3.8.2 VLT/NaCo 2011 L′ Data

For these data, the ∆t−1 best fit has a position angle of 92±11
14
◦, a separation of 87±33

57

mas, and a contrast of ∆L′ = 5.3±0.7
2.3 mag. Compared to the ∆t−10 calibration (listed

in Table 3.4), the ∆t−1 weighting reduced the number of outliers in the calibrated

kernel phases, providing a tighter constraint on the binary fit parameters. Again,

for both of these calibration methods, the Huelamo et al. (2011) model is within

1σ of the best fit. Section 3.12 shows our calibrated kernel phases with both the

Huelamo et al. (2011) model and the best fit model from this work.

Figure 3.4 shows the results of the noise simulations for this dataset. The distri-

bution of best fits suggests that the fit to the data is significant at the 1σ level; the

point with error bars falls on a contour which encloses 75% of the fits to noise, giving

a 25% false alarm probability. This agrees roughly with the F statistic distribution,

shown in Figure 3.5. The best fit F statistic, F = 0.900, gives an 18% probability

of false alarm. This corresponds to a 1 − 2σ confidence level. Here, the best fit is

consistent with the distribution of noise + signal F statistics, which overlaps with

the noise-only F statistics. The overlap of these two distributions indicates that,

with the properties of the NaCo 2011 data, noise alone can produce best fits that

appear as significant as noise plus the Huelamo binary model.

3.8.3 VLT/NaCo 2012 L′ Data

The ∆t−1 fit resulted in a position angle of −40±5
5
◦, separation of 32±28

2 mas, and a

contrast of 3.4±1.6
3.2 mag. The kernel phases, with this work’s best fit and the Huelamo

et al. (2011) companion signal over-plotted, are shown in Section 3.12. Using a χ2

interval, these data rule out the presence of the Huelamo signal at greater than 4σ.

The results of noise simulations for the 2012 L′ data are shown in Figure 3.4.

The best fit lies on a contour that encloses 98.7% of the fits to noise, giving a 1.3%

false alarm probability. This suggests that the best fit is significant at nearly 3σ.

The F statistics (see Figure 3.5) also indicate that the fit is ∼ 3σ significant; less

than 0.1% of F statistics are lower than that for the best fit (F = 0.579).
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3.8.4 VLT/NaCo 2013 L′ Data

The ∆t−1 best fit has a position angle of 83±3
1
◦, separation of 55±25

25 mas, and a

contrast of 5.2±0.7
1.9 mag. Section 3.12 shows the kernel phases with our best fit model

(red line) plotted alongside the Huelamo et al. (2011) binary model. The Huelamo

et al. (2011) model is ruled out at ∼ 4 sigma using a χ2 interval; the separation and

contrast are within 1σ of the Huelamo et al. (2011) binary, but the position angle

is greater by 5.46◦. However, adopting our larger parameter error bars, (see §8.1),

the two models are consistent at 1σ.

Our best fit to these data lies on a contour enclosing 99.1% of the points, giving

a 0.9% chance that the best fit resulted from noise alone (see Figure 3.4). This

suggests that the best fit is significant at nearly 3σ. The F statistics, shown in

Figure 3.5) give a lower false alarm probability than this. The best fit F statistic (F

= 0.586) is lower than all 1000 noise simulation F statistics, giving a < 0.1% false

alarm probability.

3.8.5 VLT/NaCo 2013 Ks Data

The ∆t−1 best fit parameters are position angle of 74.45±3.72
0.31
◦, separation of

42.07±7.93
22.07 mas, and contrast of 5.17±0.29

1.87 mag. These data (scattered points) with

our best fit model and the Huelamo et al. (2011) model are shown in Section 3.12.

The error bars for this work’s best fit and the Huelamo et al. (2011) best fit overlap

for both position angle and contrast. However, the best fit separation is smaller

than the Huelamo et al. (2011) model. Given the large error bars, this difference is

significant at less than 2σ.

The best fit to these data falls on a contour that encloses 98.7% of the noise

simulation results (see Figure 3.4). This gives a 1.3% chance that the best fit was

the result of noise. The best fit F statistic (F = 0.560) was lower than all of the

simulated F statistics, shown in Figure 3.5. This gives a < 0.1% probability of the

best fit resulting from noise. These estimates suggest that the fit to these data is

significant at the ∼ 3σ level.
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3.8.6 Magellan/MagAO/Clio2 2013 Data

The ∆t−1 calibration for these data has a best fit with a position angle of 112±176
99
◦,

separation of 337±153
147 mas, and ∆L′ = 5.8±0.6

0.4 mag. Both this and the ∆t−10 best

fit (see Table 3.4) are unreasonable in that binaries with these parameters should

have been, but were not detected in the 2013 MagAO/Clio2 direct imaging data.

Shown in Figure 3.4, the 2013 MagAO/Clio2 best fit lies on a contour that

encloses 68% of the simulated fits, giving a 32% probability that it could have

resulted from noise - a 1σ result. For these data, this method does not agree well

with the F statistic false-alarm estimation. The best fit F statistic, shown in Figure

3.5, is greater than only 2% of the simulated F statistics, suggesting that there is

a 2% probability that the best fit was caused by noise. We speculate that this

discrepancy could be caused by outliers in the data themselves. The null model χ2

for a set of kernel phases with non-Gaussian outliers will be greater than the null

model for kernel phases drawn from a Gaussian distribution, which could reduce the

F statistic. Figure 3.3 shows that the MagAO data could indeed have both outliers

and a small non-zero mean kernel phase. These could both inflate the null model

χ2 compared to that for Gaussian data, making the F statistic method less reliable

as a false alarm probability estimator.

Section 3.12 shows our calibrated kernel phases with the NaCo 2013 L′ best fit

and the best fit model. The NaCo 2013 L′ best fit is allowed at 3σ by a secondary χ2

minimum MagAO/Clio2 data. We estimated our type II errors following Section 3.7,

adding the 2013 NaCo L′ best fit to 1000 noise realizations. The results show that

the probability of missing this signal, had it been present in these data, is 49.9%.

Thus, the 2013 NaCo L′ best fit is allowed by the MagAO/Clio2 observations.

3.9 Discussion

The NaCo 2012 and MagAO/Clio2 2013 L′ data sets have best fit binaries that are

inconsistent with both the Huelamo et al. (2011) model and our best fit to the

NaCo 2013 L′ data. However, simulations show that there is a non-zero chance that
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these fits resulted from noise - 1.3% for the NaCo and 32% for the MagAO/Clio2

observations. We simulated noise realizations (see Section 3.7) to estimate our type

II errors for both of these data sets, using the NaCo 2013 L′ signal as the input

binary model. The chance that we would have missed the binary signal in these

data is 15.8% for NaCo 2012 and 49.9% for MagAO/Clio2 2013.

Keeping these type II errors in mind, in the subsections concerning orbital motion

and forward scattering we first assume that the tentative NaCo 2012 detection is

reliable but that the MagAO/Clio2 non-detection is due to noise. We then discuss

the results assuming that noise fluctuations led to a false detection in the NaCo

2012 data, while a signal compatible with the other NaCo data sets was actually

present beneath the noise. We also consider the possibility that asymmetries caused

by planet-disk interactions could have caused the observed kernel phases. In the

last subsections, we discuss whether a chance alignment or systematic error could

masquerade as a companion in the data sets where we detect a significant signal.

3.9.1 Companion Orbital Motion

Detecting orbital motion of a binary signal in multi-epoch data sets would confirm

the claimed companion from Huelamo et al. (2011). For example, Kraus and Ireland

(2012) detected a planet candidate in the LkCa15 transition disk. Multi-epoch

observations of this object revealed orbital motion of the companion at the level of

∼ 4◦ a year (Ireland and Kraus, 2014), strengthening the case for the protoplanet

explanation of the phase signal.

We compare the predicted position of an orbiting companion to our fit results.

Our best fit to the archival discovery data has a separation of 88 mas, which at T

Cha’s distance of 108 ± 9 pc (Torres et al., 2008) corresponds to 9.5 AU. We can

use the orientation of the outer disk as well as the best-fit separation to predict the

position of the planet in followup data sets.

We first take a circular orbit at the same inclination (i = 58◦) and position angle

(−70◦) as the outer disk as determined by Olofsson et al. (2013). We choose the 2010

companion location as the initial orbital position, and then predict the projected
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Figure 3.7: χ2 slices at the fixed contrast ratio for all L′ observations as well as 2013
NaCo Ks observations, with filled contours at 1 to > 4σ confidence limits. The line
indicates a circular orbit in the plane of the outer disk (see Olofsson et al., 2013).
The ×s show the initial position of the putative companion from our re-reduction of
the 2010 NaCo L′ data, while the circles show the predicted position(s) of a planet
on the orbit. We plot two since the planet could be orbiting in either direction.
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Figure 3.8: Example orbits consistent with 2010, 2011, and 2013 NaCo best fits.
The shaded regions show the 1σ confidence intervals at the best-fit contrast ratio
for the 2010 NaCo L′ (red), 2011 NaCo L′ (blue), and 2013 NaCo L′+Ks (green)
data sets. Colored points mark the predicted orbital positions at the times of the
observations. Black ellipses mark the full orbits. The thick, gray line indicates the
inner edge of the outer disk, as determined by Olofsson et al. (2013).

separations for the followup data sets. Each panel in Figure 3.7 shows the orbital

prediction for a single observation over a χ2 slice at its best fit contrast ratio. While

the predicted position is within 1σ of the NaCo 2011 L′ best fit, all other data sets,

even those with lower false alarm probabilities such as 2013 NaCo L′ and Ks, rule

out the presence of a companion on this orbit. Thus, this scenario cannot explain

the observations.

If we assume the NaCo 2012 L′ signal is a real detection, then we need to match its

fitted position along with the fits from other epochs. This would require at least one
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full orbit to be completed between 2010 and 2013. However, the observed projected

separations (s) at each epoch place a lower bound on the apocenter distance:

a(1 + e) ≥ s. (3.8)

Using this constraint and the fact that T Cha has a mass of 1.5M�, we can check

whether any orbits with a period of ∼ 3 yr could produce the observed separations.

Even as e approaches 1, an orbit around a 1.5M� star cannot have a period of less

than 8.5 yr. This rules out orbital motion as the cause of the different position angle

in the 2012 L′ data.

If we assume that the 2012 L′ NaCo data missed the signal found in the other data

sets, we can ask what orbits would cause the best fits to the remaining observations,

which show motion compared to the Huelamo et al. (2011) model. For a grid of

orbits, we calculated the predicted positions for the times of the 2010, 2011, and

2013 observations. We compared these positions to the 1σ confidence intervals in

position angle and separation from the binary fitting. We take the results of a

simultaneous fit to the 2013 NaCo and MagAO data as our constraint on the 2013

position. We find that inclined orbits, some of which cross into the outer disk, can

produce the observations. Orbits with the same inclination as the outer disk require

eccentricities higher than 0.9 to reproduce the observations. Figure 3.8 shows two

example orbits over the 1σ confidence regions at the best fit contrast for the three

epochs. While a low-eccentricity orbit in the plane of the disk is inconsistent with

the observations, an orbit that is highly eccentric or substantially misaligned with

the disk is compatible with the data. Since one would expect a young planet that is

still accreting from the disk to be on a low-eccentricity, aligned orbit, these models

do not seem physically likely.

3.9.2 Forward Scattering from the Disk

Olofsson et al. (2013) found that scattering by dust in the upper layers of T Cha’s

outer disk could fit the observed phase signal nearly as well as a companion. Indeed,

observations of another transition disk, FL Cha, showed that low mass companion
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and disk-scattering models could both explain the closure phase signal in this single

epoch observation (Cieza et al., 2013). In contrast to the companion model, a

constant scattering model would lead to a signal that does not vary in time.

The NaCo 2011 and 2013 data support the hypothesis that a constant level of

forward scattering could be responsible for the observations. The error bars for the

best fits to these data sets are large enough that they overlap with those for our fit

to the NaCo 2010 data. However, the best fit to the 2012 NaCo data is inconsistent

with the NaCo 2010 best fit. If we assume that the 2012 NaCo L′ detection is not

caused by noise, then variability in the amount of scattered light would be required

to explain the results.

The intensity of scattered light in a protoplanetary disk is proportional to the

luminosity of the star (e.g., Cieza et al., 2013; Inoue et al., 2008; Dullemond and

Natta, 2003). Stellar variability would lead to variability in the intensity of the

scattered light from the disk. However, this would not cause the ∆L′ of a best fit

companion to increase, since the ratio of the scattered light intensity to the stellar

luminosity would remain constant. Additionally, while T Cha is known to be quite

variable in V band, due to changing extinction by circumstellar material, analysis

of Spitzer spectra along with mid- and far-IR photometry by Schisano et al. (2009)

indicates that it is not variable in the infrared.

Changing the size distributions, cross sections, or mass fractions of the various

dust grain species could change the amount of forward scattering relative to the

stellar brightness (e.g., D’Alessio et al., 1998; Pollack et al., 1985). Changes to the

geometry of the disk, such as the height of the outer disk’s inner wall, could also al-

ter the scattering intensity (e.g., Dullemond and Dominik, 2004). Some young stars

exhibit variability in scattered light due to geometric changes in the inner disk that

then shadow the outer parts of the disk (Wisniewski et al., 2008; Sitko et al., 2008;

Bans and Königl, 2012, e.g.,). These changes can occur on the timescale of weeks

to months (the dynamical timescale of the inner disk). However, geometric changes

at the radius of the outer disk would take place on the timescale of multiple years.

The viscous timescale, an estimate of the time it takes for disk material to shear
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out, at 9.5 AU, is greater than 100 yr for reasonable values of the viscosity param-

eter (Shakura and Sunyaev, 1973) and scale-height to radius ratio. The dynamical

timescale (Ω−1
k ) at the inner edge of the outer disk (12 AU) is 5.41 yr. Thus, disk

geometry changes at the radius of the outer disk cannot explain the 2012 NaCo L′

best fit.

Scattered light from the upper layers of the outer disk should be brighter at

Ks than at L′. This is due to the fact that larger grains will settle toward the

disk mid-plane and thus contribute less to the total amount of scattered light than

smaller grains (e.g., Natta et al., 2006). Assuming that the detections in the NaCo

2012 and MagAO data are due to noise, and that forward scattering is causing

the other observed signals, one may naively expect the 2013 kernel phase signal to

be greater at Ks than at L′. In contrast, we observe similar signal amplitudes at

both wavelengths. However the scattered light may arise from an extended region,

significantly resolved by our observations, in which case such a simple interpretation

may not apply. To test this, we simulated scattered light images of T Cha’s outer

disk using the radiative transfer code Hyperion (Robitaille, 2011). We produced

images comparable to those published in Olofsson et al. (2013), using the same dust

properties and disk parameters as their best fit. For this model, the mean kernel

phase signal was 0.29◦ at Ks and 0.27◦ at L′. Thus, having similar kernel phase

signals for Ks and L′ cannot rule out the scattering scenario. We also calculated

χ2 values using the 2013 NaCo observations, and find that the reduced χ2 for the

scattering model is ∼ 5.1. The binary model gives a better fit to the data, but

forward scattering can produce kernel phases similar to the observations.

3.9.3 Optically Thin Disk Asymmetries

While the scattering scenario leads to asymmetries in the outer disk, resulting in

non-zero kernel phases without the presence of a companion, hydrodynamic simu-

lations (e.g., Fouchet et al., 2010) suggest that disk-planet interactions can cause

asymmetric structures in the optically thin dust within transition disk cavities. Ob-

servations in both the infrared (e.g., Muto et al., 2012) and the sub millimeter (e.g.,
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Isella et al., 2013; Pérez et al., 2014) have confirmed the presence of such asymme-

tries. Furthermore, recent NRM observations of the transition disk V1247 Orionis

revealed phase signals whose best fit binary parameters changed significantly with

wavelength. This indicated that the underlying structure was not a simple compan-

ion, but asymmetric optically thin material within the disk gap (Kraus et al., 2013).

Image reconstruction would allow us to look for asymmetries in T Cha’s disk gap.

We will present image reconstruction in a systematic way in a future paper, but a

preliminary effort (using MACIM; Ireland et al. (2006)) suggests a trefoil structure

within the cleared region of the transition disk, perhaps compatible with disk-planet

interaction models.

3.9.4 Chance Alignment

We investigate the probability that the chance alignment of a foreground or back-

ground object would cause a companion signal in the 2010 NaCo dataset, and that

its proper motion would be mistaken for orbital motion between 2010 and 2013.

Since T Cha has a proper motion of -39.61 mas yr−1 in right ascension and -9.87

mas yr−1 in declination, stationary objects in the foreground or background could

appear to move like orbiting companions.

The number of chance alignments in a field of view with area AFOV is

nalign = AFOV Σ, (3.9)

where Σ is the surface density of stars along the line of sight. We use the extent

of T Cha’s disk gap to define our field of view. From Olofsson et al. 2013, the gap

extends from 0.17 AU to 12 AU, subtending ∼ 0.11” at 108 pc. To estimate the

surface density of stars along the line of sight, we queried Two Micron All Sky Survey

for all stars within 1 degree of T Cha, with ∆Ks lower than 7 (Ks of ∼ 7− 14 mag).

This gives a stellar surface density of 11544 stars deg−2. The probability that a

chance alignment with a foreground or background object would cause a companion

signal in the NaCo 2010 data is then ∼ 7.0× 10−6.
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3.9.5 Systematic Errors

The 2010, 2011, and 2013 best fits have a low, 0.003%, probability of all resulting

from noise, assuming the observations are independent. In this section, we discuss

the possibility that the signals could be caused by some systematic effect.

Systematic errors could be possible since T Cha is such a southern target (δ ∼
−79◦), and thus transits at 35.27◦ at the VLT (φ = −24.63◦) and slightly higher,

39.90◦ at Magellan (φ = −29.26◦). While our calibrator tests (see Section 3.5)

showed that it is unlikely that the calibrators injected a signal into the T Cha

kernel phases, this does not rule out all AO-related systematic effects. If we assume

a reliable non-detection in the 2013 MagAO/Clio2 data, this could suggest that a

systematic error caused the same signal to be present in all of the NaCo data sets.

This could be due to T Cha’s lower transit elevation as observed from the VLT.

The similar position angles, but different separations of the L′ and Ks band best

fits (see Figure 3.7) also suggest that systematic errors could be an issue. The best

fit separation for the 2013 NaCo Ks observations is ∼ 42 mas, while the L′ best fit

separation is ∼ 55 mas. The size of an observed speckle pattern is proportional to

the wavelength (e.g., Marois et al., 2000), and thus we would expect the ratio of a

speckle’s position in Ks to its position in L′ to be ∼ 0.57. The ratio of the NaCo

2013 Ks and L′ separations is 0.77. However, the large separation error bars prevent

us from placing tight constraints on the relative separations.

3.10 Conclusions

We presented multi-epoch observations of the T Cha transition disk, taken using

VLT/NaCo and Magellan/MagAO/Clio2, in L′, Ks, and H bands. Out of the nine

data sets, three are too noisy to detect signals at the level of the companion candidate

published in Huelamo et al. (2011); these are the 2010 and 2011 NaCo Ks and 2013

NaCo H band data.

We find companion parameters comparable to those published in Huelamo et

al. (2011) in our re-reduction of the initial discovery data. Furthermore, we find
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comparable binary parameters to the companion candidate’s in the 2011 NaCo L′

dataset, and tentative evidence for radial motion by the time of the 2013 NaCo

and MagAO/Clio2 observations. Assuming that noise in the 2012 NaCo and 2013

MagAO/Clio2 data led to non-detections of the signal (simulations show such false

non-detections to be fairly probably in these data sets), highly eccentric or mis-

aligned orbits could result in a signal consistent with the observations.

Scattered light from T Cha’s outer disk could provide another explanation for

the observed kernel phases, although a binary model gives a slightly better fit to the

data. Preliminary image reconstructions also suggest an asymmetric structure, per-

haps consistent with disk-planet interactions, as the source of the observed signals.

Lastly, the ratio of the NaCo 2013 Ks and L′ best fit separations argues for the

possibility that challenges associated with AO correcting a dim, southern source,

could cause a systematic error that would masquerade as a close in companion. The

detection of a secondary minimum in the MagAO/Clio2 data at the same position

as the NaCo detections is encouraging, but follow-up observations with higher signal

to noise are required to rule out the possibility of systematic errors.

3.11 Appendix A: Additional Ks and H Band Data Sets

Figure 3.9 shows the sky rotation coverage for the 2010 and 2011 NaCo Ks and

2013 NaCo H band data sets. The comparison of the snapshot errors (see §3.4) is

displayed in Figure 3.10. The calibrated kernel phase histograms, with the Gaussian

distributions used to generate the noise simulations discussed in Section 3.7, are

shown in Figure 3.11.

3.11.1 2010 VLT/NaCo Ks Data - Published Non-detection

Table 3.5 lists the results of binary fits to these data as well as the 2011 NaCo

Ks and 2013 NaCo H band data sets. The ∆t−1 calibration strategy produced a

best fit position angle of 122±66
137
◦, separation of 268±412

48 mas, and a contrast of

∆Ks = 4.8±1.3
0.5 mag. Section 3.12 shows these data alongside this work’s best fit
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Figure 3.9: Sky rotation comparison in (u, v) space for 2010 and 2011 NaCo Ks data
as well as 2013 NaCo H data. The NaCo 2010 and 2011 Ks data had changes in
sky rotation of ∼ 19◦ and ∼ 38◦, respectively. The sky rotation in the NaCo 2013
H data was ∼ 39◦.

.

100 50 0 50 100
Kernel Phase ( ◦ )

Snapshot Kernel Phase Scatter

NaCo Ks 2010 σ=18.19

NaCo Ks 2011 σ=25.64

NaCo H 2013 σ=22.26

Figure 3.10: Normalized histogram of uncalibrated kernel phases for 2010 and 2011
Ks as well as 2013 H band data. For a subset of each dither (taken so that equal
amounts of integration came from each observation), we subtract the mean kernel
phase from each individual measurement to generate the histogram shown above.
The snapshot errors for these data sets are significantly larger than those for the
other six.
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Figure 3.11: Normalized histograms of calibrated NaCo 2010 and 2011 Ks as well
as NaCo 2013 H kernel phases, with their best fit Gaussian distributions over plot-
ted. These calibrated kernel phases have much higher scatter than the other data
sets. The Gaussian distributions were used to generate noise realizations for the
simulations described in Section 3.7.

.

Table 3.5. Binary Fit Results: TCha 2010-2011 NaCo Ks and 2013 NaCo H

Dataset PA (deg) s (mas) ∆L′ P(FA)1(%) P(FA)2(%) P(miss) (%) ∆χ2,Hu σHu

2010 July 1: VLT/NaCo Ks

∆t−1 122 ±66
137 268 ±412

48 4.8 ±1.3
0.5 71.0 71.5 93.6 10.40 3

∆t−10 124 ±165
155 259 ±441

89 4.8 ±1.8
0.6 36.0 92.6 95.5 8.19 3

2011 March 15: VLT/NaCo Ks

∆t−1 22 ±0.03
165 358 ±342

8 4.2 ±0.6
0.4 68.0 9.5 83.5 9.44 3

∆t−10 22 ±1
2 359 ±1

9 4.1 ±0.6
0.3 31.7 5.7 82.9 9.31 3

2013 March 27: VLT/NaCo H

∆t−1 -27 ±5
7 31 ±9

11 3.8 ±0.8
0.8 1 < 0.1 84.1 32.01 > 4

∆t−10 -28 ±5
7 29 ±18

9 3.6 ±0.9
0.6 0.8 < 0.1 98.1 30.10 > 4

aUsing distribution of noise simulation best fits

bUsing distribution of noise simulation F statistics
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Figure 3.12: Noise simulations for all H and Ks data sets. The scattered points show
the best fits to 1000 noise realizations for each dataset, drawn from the Gaussian
distributions shown in Figure 3.11. The color shows the probability distribution
interpolated from the best fits, while the contours indicate 1σ, 2σ, and 3σ confidence
intervals. The bold point with error bars represents the best fit for each epoch.

and the Huelamo et al. (2011) binary model.

For these data, there is a very high probability that the best fit resulted from

noise, and that a companion signal would not have been recovered. The best fit

to these data lies on a contour that encloses 29% of the noise simulation results

(see Figure 3.12). There is thus a 71% chance that the best fit resulted from noise.

The F statistics agree with this result; 71.5% of the F statistics are lower than that

measured for the best fit, F = 0.843 (see Figure 3.13). Both of these suggest that

the fit to this dataset is consistent with noise.

For the 2010 and 2011 NaCo Ks and 2013 NaCo H band data sets, we estimate

our type II errors following the procedure outlined in §3.7. As the input signal,

we add companions with the same separation (62 mas) and contrast (∆ = 5.1)

as the Huelamo et al. (2011) binary. To account for biases due to sky rotation

coverage, we vary the input position angle of the companions. Of the 1000 noise +

signal realizations, 936 resulted in erroneous best fits. This gives a 93.6% chance

that, with the noise present in the 2010 Ks data, we would not have recovered the

companion signal had it been present. We thus cannot assign a non-detection to

this dataset with a high degree of confidence.
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Figure 3.13: False alarm testing for 2010 and 2011 Ks and 2013 H band observations.
In each panel, the black, cumulative histogram shows the F statistics (best fit χ2

divided by null model χ2) for 1000 noise simulations. The intersection of the red,
vertical line with the black histogram yields a false alarm probability. The green,
cumulative histogram shows the F statistics from the 1000 noise + signal simulations
carried out for each set of observations. The intersection of the red line with this
histogram gives the fraction of noise + signal simulations that look less significant
(higher F statistic) than the best fit.

3.11.2 VLT/NaCo 2011 Ks Data

The ∆t−1 calibration yielded a best fit position angle of 22±0.03
165
◦, separation of

358±342
8 mas, and a contrast of ∆Ks = 4.2±0.6

0.45 mag. See Table 3.5 for ∆t−10

best fit parameters. Section 3.12 shows these data with this work’s best fit and the

Huelamo et al. (2011) binary model plotted.

Figure 3.12 shows the results of noise simulations for the 2011 NaCo Ks data.

The best fit falls on a contour that encloses 32% of the noise simulations. This gives

a 68% chance that the best fit was caused by noise alone. The F statistics (see

Figure 3.13), however, give a smaller false alarm probability; the best fit F statistic

(F = 0.837) is higher than only 9.5% of the simulated F statistics. This gives a

9.5% chance that the best fit resulted from noise.

The type II error estimation gives an 83.5% chance that the companion candidate

signal would be lost under the noise. Of the 1000 realizations, 835 resulted in best

fits that were inconsistent with the input signal. Thus, we cannot rule out the

Huelamo et al. (2011) signal in these data.
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3.11.3 VLT/NaCo 2013 H Data

The ∆t−1 best fit to these data has a position angle of -27±5
7
◦, separation of 29±18

9 ,

and contrast of 3.6±0.9
0.6 mag. Table 3.5 lists the fit parameters for the ∆t−10 calibra-

tion. See Section 3.12 for a plot of these data, along with this work’s best fit model

and the Huelamo et al. (2011) companion model.

Figure 3.12 shows the results of noise and noise + signal simulations for the

2013 H band data. The best fit to these data, compared to the distribution of fits to

noise, suggests that there is only a 1% chance that the best fit is the result of noise.

The F statistics also indicate that the false alarm probability is < 0.1% (see Figure

3.13); the best fit F statistic (F = 0.725) is lower than all simulated F statistics.

However, the kernel phase histogram (see Figure 3.11) shows a significant number of

outliers. The distribution is also not centered on zero. Both of these characteristics

would cause the distribution of best fits and F statistics to underestimate the false

alarm probability.

Of the 1000 noise + signal simulations, we did not recover the input signal in 841

realizations. This gives an 84.1% chance that we would have missed the companion

signal, had it been present under the noise. Thus, we cannot rule out the Huelamo

et al. (2011) signal with confidence using the H band data.
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3.12 Appendix B: Data and Model Plots

Figures 3.14 - 3.22 show plots of kernel phase versus scan index, a proxy for sky

rotation angle, for all observational epochs. In each plot, the grey points show the

data and the red solid line marks this work’s best fit. Figures 3.14 - 3.19 show data

sets with low enough noise levels to include in the discussion in Chapter 3. Figure

3.19, which displays the MagAO/Clio2 data, shows the NaCo 2013 L′ best fit in

green, since the two data sets were taken close in time to one another. All other

figures in this section show the Huelamo et al. (2011) model in green. Figures 3.20

- 3.22 show data sets with high enough scatter to wash out signals of interest, and

thus were not included in the discussion in Chapter 3.
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Figure 3.14: Kernel phase data for 2010 NaCo L′ observations, shown with best fits
from this work (red line) and Huelamo (dashed green line). Each subplot corresponds
to a single linear combination of closure phases plotted against scan index (a proxy
for sky rotation angle). The error bars plotted are unscaled, while our parameter
constraints are derived using error bars scaled such that the reduced χ2 of the best
fit model is equal to 1. The Huelamo et al. (2011) model is allowed within 1σ of
this work’s best fit.
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Figure 3.15: Kernel phase data for 2011 NaCo L′ observations, shown with best
fits from this work (red line) and Huelamo 2010 (dashed green line). Each subplot
corresponds to a single linear combination of closure phases plotted against scan
index (a proxy for sky rotation angle). The error bars plotted are unscaled, while
our parameter constraints are derived using error bars scaled such that the reduced
χ2 of the best fit model is equal to 1. The Huelamo et al. (2011) model is allowed
within 1σ of this work’s best fit.
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Figure 3.16: Kernel phase data for 2012 NaCo L′ observations, shown with best fits
from this work (red line) and Huelamo (dashed green line). Each subplot corresponds
to a single linear combination of closure phases plotted against scan index (a proxy
for sky rotation angle). The error bars plotted are unscaled, while our parameter
constraints are derived using error bars scaled such that the reduced χ2 of the best
fit model is equal to 1.
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Figure 3.17: Kernel phase data for 2013 NaCo L′ observations, shown with best fits
from this work (red line) and Huelamo (dashed green line). Each subplot corresponds
to a single linear combination of closure phases plotted against scan index (a proxy
for sky rotation angle). The error bars plotted are unscaled, while our parameter
constraints are derived using error bars scaled such that the reduced χ2 of the best
fit model is equal to 1.
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Figure 3.18: Kernel phase data for 2013 NaCo Ks observations, shown with best fits
from this work (red line) and Huelamo (dashed green line). Each subplot corresponds
to a single linear combination of closure phases plotted against scan index (a proxy
for sky rotation angle). The error bars plotted are unscaled, while our parameter
constraints are derived using error bars scaled such that the reduced χ2 of the best
fit model is equal to 1.
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Figure 3.19: Kernel phase data for 2013 MagAO L′ observations, shown with best
fits from this work (red line) and the NaCo 2013 L′ best fit (dashed green line). Each
subplot corresponds to a single linear combination of closure phases plotted against
scan index (a proxy for sky rotation angle). The error bars plotted are unscaled,
while our parameter constraints are derived using error bars scaled such that the
reduced χ2 of the best fit model is equal to 1.
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Figure 3.20: Kernel phase data for 2010 NaCo Ks observations, shown with best fits
from this work (red line) and Huelamo (dashed green line). Each subplot corresponds
to a single linear combination of closure phases plotted against scan index (a proxy
for sky rotation angle). The error bars plotted are unscaled, while our parameter
constraints are derived using error bars scaled such that the reduced χ2 of the best
fit model is equal to 1.
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Figure 3.21: Kernel phase data for 2011 NaCo Ks observations, shown with best fits
from this work (red line) and Huelamo (dashed green line). Each subplot corresponds
to a single linear combination of closure phases plotted against scan index (a proxy
for sky rotation angle). The error bars plotted are unscaled, while our parameter
constraints are derived using error bars scaled such that the reduced χ2 of the best
fit model is equal to 1.
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Figure 3.22: Kernel phase data for 2013 NaCo H observations, shown with best fits
from this work (red line) and Huelamo (dashed green line). Each subplot corresponds
to a single linear combination of closure phases plotted against scan index (a proxy
for sky rotation angle). The error bars plotted are unscaled, while our parameter
constraints are derived using error bars scaled such that the reduced χ2 of the best
fit model is equal to 1.
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3.13 Appendix C: Kernel Phase Projection

Our kernel phase projection is similar to that in Martinache (2010). We begin with

the matrix A, which describes the ways in which Na apertures (φ) are combined to

yield Np phases (Φ):

Φ = A · φ. (3.10)

This equation can be modified for observations of a source with intrinsic signal,

assuming that the source phase simply adds to the instrumental phase:

Φ = A · φ+ Φ0. (3.11)

In order to eliminate the instrumental phase, we are searching for a matrix, K, such

that:

K ·A = 0. (3.12)

We can use singular value decomposition to find K. We decompose AT in the fol-

lowing way:

AT = U ·W ·VT (3.13)

where U is an Na × Np column-orthogonal matrix, W is an Np × Np diagonal matrix

with either positive or zero elements, and V is an Np × Np orthogonal matrix. The

columns of V corresponding to zero W-values are filled into the rows of K. We

then build K from a matrix, T, which describes how to combine phases into closure

phases (Φcp).

Φcp = T ·A · φ+ T · Φ0 = T · Φ0 (3.14)

We find B, such that:

B ·T = K (3.15)

and

Φk = B ·T ·A · φ+ B ·T · Φ0 = K · Φ0. (3.16)

In the following equations, for any matrix M, M−1
right and M−1

left represent the

right and left generalized inverses, respectively. These are used to invert non-square

matrices; a right inverse is required when a matrix has full row rank but does not
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have full column rank, and a left inverse when a matrix has full column rank but

does not have full row rank.

M−1
right = MT · (M ·MT )−1 (3.17)

M−1
left = (MT ·M)−1 ·MT (3.18)

K has the dimensions Nk × Np where Nk is the number of (linearly independent)

kernel phases and Np the number of Fourier phases (Nk < Np). K has a right inverse.

B ·T ·K−1
right = K ·K−1

right = I. (3.19)

Since B has the dimensions Nk × Ncp, (Nk < Ncp), B has a right inverse, which,

according to 3.19, is the following:

B−1
right = T ·K−1

right (3.20)

and

B ·B−1
right = I (3.21)

Furthermore, the left inverse of B−1
right can be calculated to find the B in Equation

(3.21).

So:

B = (B−1
right)

−1
left = (T ·K−1

right)
−1
left (3.22)

This satisfies both Equations (3.15) and (3.16). We find the kernel phase covariance

matrix, Ck, using the closure phase covariance matrix Ccp in the following way:

Ck = B ·Ccp ·BT . (3.23)

We can take our kernel phase variances to be the diagonal entries of Ck.
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CHAPTER 4

ACCRETING PROTOPLANETS IN THE LKCA 15 TRANSITION DISK†

Exoplanet detections have revolutionized astronomy, offering new insights into

solar system architecture and planet demographics. While nearly 1900 exoplanets

have now been discovered and confirmed (Akeson et al., 2013), none are still in the

process of formation. Transition discs, protoplanetary disks with inner clearings

(Andrews et al., 2011b; Strom et al., 1989; Calvet et al., 2005) best explained by

the influence of accreting planets (Bryden et al., 1999), are natural laboratories

for the study of planet formation. Some transition disks show evidence for the

presence of young planets in the form of disk asymmetries (Isella et al., 2013; Pérez

et al., 2014) or infrared sources detected within their clearings, as in the case of

LkCa 15 (Kraus and Ireland, 2012; Ireland and Kraus, 2014). Attempts to observe

directly signatures of accretion onto protoplanets have hitherto proven unsuccessful

(Whelan et al., 2015). Here we report adaptive optics observations of LkCa 15 that

probe within the disk clearing. With accurate source positions over multiple epochs

spanning 2009 - 2015, we infer the presence of multiple companions on Keplerian

orbits. We directly detect Hα emission from the innermost companion, LkCa 15 b,

evincing hot (∼ 10, 000 K) gas falling deep into the potential well of an accreting

protoplanet.

4.1 Accreting Protoplanets in the LkCa 15 Transition Disk

We observed LkCa 15 using the high-contrast imaging technique of non-redundant

masking (NRM; e.g. Tuthill et al., 2000a), at the Large Binocular Telescope (LBT) in

Ks (λc = 2.16 µm) and L′ (λc = 3.7 µm; see Table 4.2). We detect two components,

†This chapter has been published previously as Sallum et al. (2015b).
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Table 4.1. Model Fit Results

Component Date Instrument λ P.A. s ∆ MpṀ a

(◦) (mas) (mag) (M2
J yr−1) (AU)

LkCa 15 b Nov 15 2014 MagAO Hα = 656.3 nm −103± 8 88± 5 5.0± 0.3 2.4× 10−6 14.7±2.1
2.1

LkCa 15 b Feb 5-7 2015 LBT Ks = 2.18 µm −86±26
16 125±25

40 6.0±2.0
0.5 10−5 14.7±2.1

2.1

LkCa 15 b Dec 15 2014 LBT L′ = 3.8 µm −100±21
16 106±81

19 5.4±0.1
4.9 10−5 14.7±2.1

2.1

LkCa 15 c Feb 5-7 2015 LBT Ks = 2.18 µm −48±22
10 85±15

15 5.5±0.5
0.5 10−5 18.6±2.5

2.7

LkCa 15 c Dec 15 2014 LBT L′ = 3.8 µm −44±16
21 68±37

43 4.8±0.7
4.3 10−5 18.6±2.5

2.7

LkCa 15 d Dec 15 2014 LBT L′ = 3.8 µm 14±32
24 87±72

70 5.9±2.1
5.4 5× 10−6 18.0±6.7

5.4

LkCa 15 b and c, in both bands, with consistent positions across wavelength given

the uncertainties (see Table 4.1, Figure 4.4). We detect a faint, third component,

LkCa 15 d, at L′ only. Since d is significantly fainter than b and c, and not detected

at Ks, we focus on the other two sources in the following analysis, but include

discussion of the putative third companion where relevant.

We also observed LkCa 15 in Hα (λc = 655.8 nm) using the Magellan Adaptive

Optics System (MagAO) in Simultaneous Differential Imaging (SDI; e.g. Close et al.,

2014; Marois et al., 2003) mode (see Section 4.5). We detect LkCa 15 b in these data,

at a signal-to-noise of 6.4 and a position that agrees with the LBT observations (see

Table 4.1, Figures 4.5-4.8, Table 4.3). LkCa 15 c was not detected in Hα, perhaps

due to higher extinction along the line of sight or lower accretion rates at the time of

the observations. Both b and c lie well within the disk clearing (Figure 4.1), which

extends to a stellocentric radius of 56 AU (Thalmann et al., 2014).

We compare LkCa 15 b and c’s positions to the infrared signal seen in 2009-

2010 NRM observations (Kraus and Ireland, 2012). As shown in Figure 4.2, orbital

fits (fixed to the outer disk plane: inclination i = 50◦, position angle θ = 150◦;

Thalmann et al., 2014) suggest distinct orbits, with b moving faster (semimajor

axis, a = 14.7 ± 2.1 AU) than c (a = 18.6 ± 2.5 AU). Taking the semimajor axis

uncertainties into account and requiring that these orbits be stable, b and c must

have masses < 5−10 MJ (Gladman, 1993; Beaugé et al., 2003), with masses > 5 MJ

allowed only in the case of a 2:1 resonance. For completeness, we performed a series

of four-body simulations to show that stable orbital solutions exist including LkCa
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10 AU

b L′ Ks Hα
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c

d?

a

50 AU

Figure 4.1: Composite Hα, Ks, and L′ image. a) The colored image shows Hα
(blue), Ks (green), and L′ (red) detections at the same scale as VLA millimetre
observations (greyscale; Isella et al., 2014). b) Zoomed in composite image of LBT
and Magellan observations, with b, c, and d marked.

15 d, with three planet masses ≤ 0.5 MJ (see Section 4.6), Figures 4.9 - 4.10) and

higher masses for b and c allowed with a less massive d.

We calculate LkCa 15 b and c’s infrared fluxes, and compare them to circum-

planetary accretion disk models (Eisner, 2015; Zhu, 2015) and hot-start (Spiegel and

Burrows, 2012) models of sub-stellar mass companions shortly after accretion has

ceased (see Figure 4.3). From the LkCa 15 A magnitudes (2MASS Ks = 8.16 and

IRAC m3.6 = 7.61; Skrutskie et al., 2006; Rebull et al., 2010), we derive fluxes of

1.4 ± 0.7 mJy at Ks and 2.5 ± 1.2 mJy at L′ for b, and 2.3 ± 1.1 mJy at Ks and

2.5±1.2 mJy at L′ for c. These are consistent with accretion disks having inner radii

Rin = 2 RJ and planet mass times accretion rate MpṀ ∼ 10−5 M2
J yr−1. However,

changing Rin affects both the total disk flux and its colour. The large uncertain-

ties on fluxes and colours allow us to constrain Rin only to within a factor of ∼ 2,

translating to a factor of ∼ 2− 3 uncertainty in MpṀ (for example, a Rin = 1 RJ,

MpṀ ∼ 3× 10−6 M2
J yr−1 disk can also reproduce the observations).

While the hot-start model shown in Figure 4.3 can approximately produce the Ks
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Figure 4.2: Position evolution. a) LkCa 15 b position angle and separation (inset)
evolution, showing Hα (blue), Ks (green), and L′ (red). The earliest three points
indicate previous observations (Kraus and Ireland, 2012); others show fits to our
data. colored and black 1σ error bars are from a non-linear algorithm and a grid,
respectively (see Section 4.3). The yellow shading spans the 1σ allowed parameters
from orbital fitting. Solid and dotted curves show stable orbits for 0.5 MJ and 1.0
MJ planets, respectively. b) Same as a), for LkCa 15 c. c) Stable orbits for 0.5 MJ

(solid) and 1.0 MJ (dotted) planets.

and L′ emission for b and c, the observations are best explained by an accretion disk

model. The hot start model can only match a previously-established 1.55 µm upper

limit on the contrast of the structure within the disk gap (∆H = 7.2 mag; Ireland

and Kraus, 2014) if the extinction is significantly higher than inferred toward the

star. Moreover, even a highly-extincted hot-start model cannot reproduce the strong

emission at 4.7 µm (contrast of ∆M = 3.5; Ireland and Kraus, 2014). Emission from

an accretion disk increases from L′ to M band, while the hot-start model produces

little M band emission. Finally, a cooling photosphere produces no Hα emission,

firmly ruling out the hot-start model as the source of LkCa 15 b.

Since LkCa 15 b is detected at Hα, an accretion tracer (Zhou et al., 2014; Rigliaco

et al., 2012; Hartmann et al., 1994), its nature as an accreting protoplanet is clear.

LkCa 15 b’s Hα contrast, corrected for A’s Hα excess and assuming equal extinction

to A (AR = 0.75 mag; Kenyon and Hartmann, 1995), corresponds to a line flux of

∼ 6×10−5 L�. Assuming similar accretion luminosity (Lacc) scalings as low-mass T

Tauri stars (Rigliaco et al., 2012; Close et al., 2014) gives Lacc ∼ 4×10−4 L�, yielding

MpṀ ∼ 3 × 10−6 M2
J yr−1 for a 1.6 RJ planet (Gullbring et al., 1998). Previous
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Figure 4.3: Spectral energy distributions. Symbols indicate fluxes for LkCa 15
b (circles), c (squares), and d (diamonds), showing Hα (dark blue), Ks (green),
and L′ (red). The light and dark blue arrows mark previously-published H-band
(Ireland and Kraus, 2014) and 3σ 642 nm upper limits for LkCa 15 b, respectively.
The lines show accretion disk and hot-start models. The disk models are simple
combinations of blackbody spectra (Eisner, 2015), a suitable approximation for the
case of a cool (T < 1500 K) stellar atmosphere where dust opacity dominates.
The MpṀ calculated from the Hα flux agrees with that inferred from the infrared
measurements (see text).
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observations showed that low-mass, accreting objects may emit a higher fraction of

accretion luminosity at Hα (Zhou et al., 2014); assuming similar accretion scalings

as T Tauri stars may overestimate Lacc. Extinction toward b is also uncertain; while

we assume equal extinction to A and b, localized extinction can alter the numbers

quoted above. While the uncertainties are large, this MpṀ is consistent with that

estimated from the infrared fluxes.

Previous investigators posited a single protoplanet in LkCa 15, accreting material

from its co-orbital surroundings (Kraus and Ireland, 2012). While the semimajor

axis uncertainties do not formally rule out b and c (and d, see Figure 4.9) being co-

orbital, physical arguments show that they cannot be gravitationally bound. The

size of the previously reported emission (several AU) is larger than a Hill radius

(∼ 1.8 AU for a 10 MJ planet orbiting a 1 M� star at 10 AU), and much larger than

the maximum possible size of a circumplanetary disk (∼ 1/3 the Hill radius; Ayliffe

and Bate, 2011). Thus the sources cannot be part of a bound, accreting system,

and an alternative scenario is required to explain the observations.

We argue further that it is difficult to explain LkCa 15 b and c (and d) with

an orbiting clump of gravitationally unbound dust within the disk gap, emitting

thermally or in scattered light. At a distance of ∼ 10 AU, neither LkCa 15 A nor

a companion with a contrast of ∼ 5 magnitudes can heat dust sufficiently to emit

at 2 − 4 µm. Assuming isotropic single scattering, we calculate that an optically

thin spherical clump of dust, perhaps resulting from a recent planetesimal collision,

could produce the contrast observed at a single wavelength. However, observing this

clump before it sheared out would be a priori unlikely, since the viscous timescale

at ∼ 10 AU is just ∼ 3% the age of the system.

Observations argue strongly against this explanation as well. Scattering cannot

cause increasing emission from H to M band (Ireland and Kraus, 2014), since dust

opacity decreases with increasing wavelength. Furthermore, since dust opacity is

equal between Hα and the nearby continuum, scattering signals have equal contrast

in both narrowband filters. Scaling the continuum image by the LkCa 15 A Hα-

to-continuum flux ratio and subtracting it from the Hα image should only lead to
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an Hα detection if scattering is not the emission mechanism. Indeed, this yields a

LkCa 15 b detection with signal-to-noise of 4.8. While the Wollaston beamsplitter

in MagAO’s SDI mode could lead to contamination by polarized light, the visible

polarized scattered light intensity at b’s position is less than ∼ 7% the Hα source

flux (Thalmann et al., 2015). It could not cause the Hα detection. This leaves the

multiple-planet scenario as the most natural explanation for the data.

Both the infrared and Hα observations show that we are unambiguously witness-

ing planet formation in LkCa 15. The data offer evidence that giant protoplanets

undergo a period of high infrared and Hα luminosity during their accretion phase.

I n the near future, ALMA’s sensitivity and angular resolution should enable us

to detect sub-millimetre emission from circumplanetary disks (Isella et al., 2014).

Additionally, while the LBT data published here were taken in single-aperture mode

(baselines up to ∼ 8 m), non-redundant masking using the co-phased LBTI will pro-

vide 23-m baselines, allowing us to place tight constraints on the companion orbits

and to resolve structure at smaller separations. Continued monitoring of accretion

tracers from LkCa 15 b will probe whether the accretion is steady or stochastic.

This young system provides the first opportunity to study planet formation and

disc-planet interactions directly.

4.2 Methods 1: LBT Observations and Data Reduction

We observed LkCa 15 using non-redundant masking (NRM; e.g. Tuthill et al., 2000b)

with LBTI/LMIRCam (Hinz et al., 2008; Leisenring et al., 2012) in December 2014

and February 2015. NRM transforms a conventional telescope into an interferomet-

ric array through the use of a pupil-plane mask, providing better PSF characteri-

zation and resolving angular scales even within λ/D. We used LMIRCam’s 12-hole

mask in single-aperture mode, yielding 1.4 - 7.0 meter baselines. We broke up the

observations into “visits,” each consisting of an identical set of integrations on LkCa

15 and an unresolved calibrator star (see Table 4.2). We used three calibrators to

lessen the possibility of contamination by a binary calibrator, and included one cali-
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Table 4.2. Summary of Observations

Target Right Ascension Declination tint Nframes
a Nvisits

b Total Time Average Seeing

(hh mm ss.sss) (dd mm ss.sss) (s) (h) (asec)

LkCa 15 04 39 17.796 +22 21 03.48 30 316 1 2.63 0.9

LkCa 15 04 39 17.796 +22 21 03.48 10 40 15 1.67 0.76

HD284668 04 42 09.686 +22 13 55.62 10 40 5 0.56

HD284581 04 40 32.495 +22 31 32.88 10 40 4 0.44

GM Aur 04 55 10.983 +30 21 59.54 10 40 5 0.56

LkCa 15 04 39 17.796 +22 21 03.48 20 20 19 2.11 0.95

HD284668 04 42 09.686 +22 13 55.62 20 20 7 0.78

HD284581 04 40 32.495 +22 31 32.88 20 20 7 0.78

GM Aur 04 55 10.983 +30 21 59.54 20 20 6 0.67

aNumber of frames in each visit

bEach visit consists of all images taken before switching between target and calibrator.

brator, GM Aur, from those observed previously at Keck (Kraus and Ireland, 2012).

We let the sky rotate throughout the observations, facilitating calibration of quasi-

static speckles. At Ks and L′ we observed LkCa 15 at parallactic angles between

−37◦ and 65◦, and −65◦ and 65◦, respectively.

The NRM images show the interference fringes formed by the mask, the Fourier

transform of which yields complex visibilities. Sampling the complex visibilities, we

calculated squared visibilities (power versus baseline) and closure phases (sums of

phases around three baselines forming a triangle). Closure phases eliminate atmo-

spheric phase errors, leaving behind the sum of the intrinsic source phases. The

LBT raw closure phase scatter was ∼ 3◦, significantly lower than the uncertainties

in previous NRM observations (∼ 4◦; Kraus and Ireland, 2012).

For each closing triangle, we fitted a polynomial to all calibrator closure phases as

a function of time. We sampled the polynomial at the time of each target observation

and subtracted it from each target closure phase. We calibrated using a variety of

functions; of these, polynomials up to 2nd order in time provided the lowest-scatter

calibrated closure phases, with standard deviations of 1.7◦ at Ks and 1.9◦ at L′. We
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calibrated the squared visibilities similarly, dividing by the calibrator rather than

subtracting. We calibrated the mask baselines using the observed power spectra

and knowledge of the filter bandpass and plate scale (Maire et al., 2015).

4.3 Methods 2: LBT Image Reconstruction, Model Fitting, & Parame-

ter Error Estimation

We fitted models directly to kernel phases (e.g. Martinache, 2010; Ireland, 2013),

linearly independent combinations of closure phases, to search for companions. We

modeled the central star as a delta function and each companion as another delta

function located a distance s from the star, at position angle PA, and with con-

trast ∆. We sampled the synthetic complex visibilities at the same baselines and

parallactic angles as the data, and performed a grid fit, using a ∆χ2 to determine

our parameter confidence intervals. Due to a known degeneracy between companion

separation and contrast (e.g. Sallum et al., 2015a), brighter companions at smaller

separations provide equally good fits as those fainter and farther out. We thus per-

formed fits to individual wavelengths to verify that the positions of b and c agreed

across wavelength, then calculated a best fit where the companions coincided at Ks

and L′ (see Table 4.1). The model grids in this study required ∼ 50, 000 CPU hours

to generate, but were computed in a reasonable amount of time using the University

of Arizona’s El Gato supercomputer.

We also reconstructed images from the closure phases. To produce cleaner im-

ages, we re-calibrated the closure phases toward the best-fit Ks + L′ model using

an optimized calibrator weighting technique applied in previous NRM studies (e.g.

Kraus and Ireland, 2012). This calibration is similar to the Locally Optimized

Calibration of Images (LOCI; Lafrenière et al., 2007) technique applied in direct

imaging. Since this scheme can remove signal and underestimate errors, we applied

it only to produce images (see Figure 4.4, using the polynomial calibration to esti-

mate companion parameters. As a consistency check, we reconstructed images using

both the BiSpectrum Maximum Entropy Method (BSMEM; Buscher, 1994) and the
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Monte-Carlo MArkov Chain IMager algorithm (MACIM; Ireland et al., 2006). The

companion positions agree between the two algorithms, although BSMEM produces

more compact emission toward each component. BSMEM has been shown to pro-

vide the most faithful image reconstruction of any available algorithms in blind tests

(Lawson et al., 2006).

4.4 Methods 3: Companion Parameter Error Estimation for Previously-

Published Keck Data

Orbital fitting required parameter errors for the previously published Keck observa-

tions and the LBT observations to be consistently estimated. The published errors

for the 2009-2010 companion parameters were generated using the non-linear algo-

rithm MPFIT (Markwardt, 2009). While non-linear fitters are often employed for

computational expediency, the Levenberg-Marquardt algorithm can easily fall into

a local minimum and underestimate parameter errors. The LBT grid χ2 surfaces

show local minima for both two- and three-companion fits, rendering MPFIT un-

reliable unless the starting parameters were very close to the global minimum. We

compared MPFIT and grid-based parameter errors for the LBT data, and found

that MPFIT significantly underestimated the errors (Figure 4.2).

To create a “typical” error bar for each Keck companion, we estimated the error

bar dependence on contrast using the LBT fits. Errors increased with decreasing

companion flux, which we parameterized as a square root dependence. For a given

Keck companion we thus scaled our LBT errors by the square root of the LBT-to-

Keck flux ratio. We inflated the Keck error bars by a factor of 1.3, the ratio of

the uncalibrated closure phase scatter in the Keck data (∼ 4◦) to that for the LBT

data (∼ 3◦). We capped the separation upper limits at 3λ/D, where D is Keck’s

telescope diameter, 10m, since the largest LBT upper limit was at nearly 3λ/D,

and companions at those distances are no longer subject to the separation-contrast

degeneracy.
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Figure 4.4: Image reconstructions. Images reconstructed from closure phases, show-
ing Ks polynomial (a) and LOCI-like (b) calibrations, and L′ polynomial (c) and
LOCI-like (d) calibrations. Both calibrations yielded reconstructed images with at
least two distinct components. The LOCI-like calibration moved each companion
within the position errors derived from the grid χ2 surface.
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4.5 Methods 4: MagAO Data Reduction and Analysis

We observed LkCa 15 on November 15 and 22, 2014, as part of the Giant Accreting

Protoplanet Survey (GAPplanetS), a visible-wavelength survey of bright transition

disks. GAPplanetS stars are imaged simultaneously in Hα (0.656 µm, ∆λ = 6 nm)

and the nearby stellar continuum (0.642 µm, ∆λ = 6 nm) with the 585-actuator

Magellan Adaptive Optics systems SDI camera (Close et al., 2014; ?, 2012). The con-

tinuum channel provides a sensitive, simultaneous probe of the stellar PSF, allowing

for effective removal of residual starlight and isolation of Hα emitting sources (Close

et al., 2014; Follette et al., 2013). The observations utilized new single-substrate

narrowband Hα and continuum filters, a significant improvement over the previous

VisAO SDI filters, which suffered from ghost images.

Seeing during the November 15 observations was better than the site median

(0.56± 0.06′′), winds were low (3.6± 0.9 mph), and humidity was typical of the sea-

son (37.0± 2.8%). Strehl ratio was low (< 10%), and difficult to measure meaning-

fully. We characterized image quality using the stellar full-width at half-maximum

(FWHM), 0.07′′ (at 0.65 µm over 30 second integrations), a significant improvement

over the seeing. We collected 316 30-second closed-AO-loop images, with a total

of 156 minutes of integration time and 48.6◦ of sky rotation. We selected the 149

LkCa 15 images with the lowest residual wavefront error (∼ 50%), equivalent to

74.5 minutes of exposure time. This image subset had 47.6◦ of sky rotation, with

the rotational space well sampled.

The November 22 data were not of sufficient quality to recover LkCa 15 b, due

to lower sky rotation (27.0◦), shorter total integration (91 minutes), and shallower

individual exposures (15 seconds). Injected positive planets with the same separa-

tion as LkCa 15 b were only recoverable with SNR > 3 at contrasts > 5 × 10−2

(nearly an order of magnitude brighter than the measured November 15 LkCa 15 b

contrast). For this reason, we discuss only the November 15 dataset in the rest of

the paper.

Images were first bias-subtracted, registered, and aligned via cross-correlation.
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The Hα flat field image showed very little non-uniformity across the field (< 1%),

so a flat field was not applied. We masked CCD dust spots visible in the flat field

wherever they affected the image throughput by more than 2%.

We processed the aligned data using angular differential imaging (ADI; Marois

et al., 2008b), comparing the “classical” method of using a single median point-

spread function (PSF) for all images (cADI; Marois et al., 2006) to the Karhunen-

Loeve Image Processing (KLIP; Soummer et al., 2012) algorithm, which calculates

a least-squares optimum PSF for each image. LkCa 15 b was detected in the Hα

channel via both methods, as shown in Figure 4.5. The planet was not detected

in continuum with either method, so continuum images were used as a probe of

PSF residuals and scattered light emission from the inner disk. Subtraction of the

processed continuum images from the Hα images (“ASDI”) left behind only true

Hα emission.

4.5.1 Classical ADI reductions

We constructed the stellar PSF by median combining images in 0.5◦ rotational bins

and then median combining again to produce a PSF evenly sampled in rotational

space. We subtracted the stellar PSF from the individual images, rotated them

to a common on-sky orientation and combined them. Given the small separation

between LkCa 15 A and b, the planet moved by only 1.5 FWHM over the course

of the observations, resulting in self-subtraction and decreasing the FWHM of the

processed planet PSF to ∼ 4− 5 pixels in azimuth.

4.5.2 KLIP-ADI Reductions

KLIP reductions were carried out using a well-tested custom IDL code (Males et al.,

2014). To optimize reduction parameters, we maximized the signal to noise of

injected planets (with the same separation and contrast as LkCa 15 b) inserted

after using a negative planet to erase the LkCa 15 b signal. Planets were placed at

position angles distant from known artifacts, and east or west of the star to avoid
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Figure 4.5: KLIP and ADI Hα SNR maps. Final KLIP SNR maps for Hα (a), con-
tinuum (b) and the difference between the two (ASDI, c). d-f) Final cADI SNR maps
in the same order. Dividing by the radial noise profiles to create these maps should
normalize the noise distribution at all radii within the speckle-dominated regime.
The presence of dark holes in the maps suggests that we are speckle-dominated
out to the AO control radius at r ∼ 20 pixels (white, dashed circles). LkCa 15
b’s separation is 11.6 pixels. The yellow keystones indicate the 2-sigma range of
allowed astrometry for the KLIP ASDI point source (upper right) based on negative
simulated planet injection.



159

the noisier north / south region of the PSF, corresponding to the wind direction

during the observations.

To limit self-subtraction, the library from which KLIP builds the stellar PSF is

limited to images where a planet would have rotated away from its original posi-

tion. We explored the size of this exclusion region (“rotational mask”) systematically

through fake planet injection, and found that a 5◦ mask (∼1 pixel at r = 11 pix-

els) produced the highest signal-to-noise recoveries of injected planets. Given the

stellar FWHM of 0.07′′, this resulted in azimuthal self-subtraction, with a processed

planetary PSF of ∼2 pixels in azimuth.

Noise in the KLIP processed images was mostly Gaussian when images were di-

vided into several independently-optimized radial zones, indicating efficient removal

of speckles. Dividing these zones azimuthally provided no additional advantage, and

the final KLIP reductions shown in Figure 4.5 reflect a PSF divided into 50-pixel

(0.4′′) annuli. Removal of the median PSF radial profile for the entire image set

aided significantly in attenuating the stellar halo, improving the ability of the KLIP

algorithm to match residual speckles and enhancing contrast close to the star.

4.5.3 Photometry and Astrometry

We estimated photometry and astrometry by minimizing residuals after injecting a

negative planet at the location of LkCa 15 b. The cube of registered and aligned

Hα channel images was scaled by the chosen contrast value, multiplied by -1, and

injected into the raw images before KLIP processing. Using the full Hα image

cube rather than its median combination simulated variability of the PSF between

images.

We generated error bars by injecting false positive planets with similar separa-

tions and contrasts to LkCa 15 b after using a negative planet to eliminate the true

signal. Planets were placed at position angles away from the wind direction, and

spaced by at least 75% of the measured stellar FWHM. We computed the centroid

and peak pixel using a 5 pixel aperture around each planet, and assigned the stan-

dard deviations in recovered flux and position as our 1σ photometric and astrometric
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Table 4.3. False Planet Injection Results

P.A.∗ Xin
† Yin

‡ Xrec§ Yrec‖ ∆P.A.¶ ∆s# Peak SNR

(◦) (pix) (pix) (pix) (pix) (◦) (pix)

-77 135.2 127.0 136.0 127.3 -0.53 -0.85 8.9

-44 132.1 132.4 132.8 132.8 1.11 -0.78 6.2

38 117.7 133.2 116.2 134.3 -2.25 -1.80 4.3

73 114.0 127.7 112.3 127.8 -1.81 -1.66 4.6

108 114.0 121.1 113.9 122.0 4.67 0.15 5.5

143 117.9 115.7 118.1 116.7 2.50 0.91 4.7

Simulated Planet Means 0.62 -0.67 5.7

X Y P.A. s Peak SNR

Parameters 135.8 121.8 -103.4 11.6 6.8

1 σ Errors ±2.7 ±1.0 ±30%

∗Input false planet position angle

†Input false planet X location

‡Input false planet Y location

§Recovered false planet X location

‖Recovered false planet Y location

¶Recovered minus input false planet position angle

#Recovered minus input false planet separation

uncertainties, respectively (see Table 4.3 and Figure 4.6).

4.5.4 Signal-to-noise of the Hα Detection

To create signal-to-noise ratio (SNR) maps, we calculated a radial noise profile using

the standard deviation of 1-pixel-wide annuli and divided it into the raw images.

In the raw maps, LkCa 15 b has SNR ∼ 3 − 4. Smoothing by a Gaussian with

a 2-pixel FWHM maximized the SNR of injected fake planets, so we applied this

smoothing to the final science images, resulting in peak SNRs of 4.4 and 6.8 in the

KLIP Hα and ASDI images, respectively. However, directly-imaged exoplanets at

small separations suffer from small number statistical effects (Mawet et al., 2014).

The underlying speckle distribution is difficult to probe given the small number
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Figure 4.6: False positive planet SNR maps. a) LkCa 15 final ASDI SNR map. b)
ASDI SNR map with LkCa 15 b removed. c-h) ASDI SNR maps of false positive
planets injected at a radius of 11 pixels and contrast of 8 × 10−3. Recovered pa-
rameters for these planets are given in Table 4.3 and were used to determine 1σ
astrometric and photometric uncertainties.

of independently sampled noise regions. In an annulus at the distance of LkCa

15 b (1.3 FWHM), seven noise regions exist, leading to corrected (Mawet et al.,

2014) SNRs of 4.1 and 6.4 for the Hα and ASDI images, respectively. The ASDI

detection corresponds to a false positive probability of 3× 10−4 using the Student’s

t-distribution with 6 degrees of freedom.

Comparing the LkCa 15 b SNR to the distribution of values in the ASDI SNR

map (Figure 4.7), shows that it is a clear outlier. Comparison of the peak pixel in

an aperture centered on b to those in the surrounding noise apertures (Figures 4.7

- 4.8) further demonstrates b’s statistical significance.

In addition to the high SNR, low false positive fraction, and the statistics pre-

sented in Figure 4.7, the Hα detection is significant because it occurs at the same

location as the independent LBT detection. This further reduces the probability

of a false positive detection in the MagAO data, since speckles have no preferred

location.
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Figure 4.7: Hα detection noise statistics. a) Histogram of noise (non-planet) pixel
values in the SNR map within the speckle dominated regime (black line) compared
to a Normal distribution (red line). The black arrow denotes the location of the peak
SNR value for LkCa 15 b. b) Histogram of the peak values in all noise apertures (see
Figure 4.8) within the control radius (black line) compared to a Normal distribution
(red line). The black arrow shows the peak pixel value in the LkCa 15 b aperture.
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Figure 4.8: Noise apertures. Noise apertures (black circles) surrounding LkCa 15 A
used to calculate the statistics presented in Figure 4.7. Color indicates SNR.
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4.5.5 Fidelity of the LkCa 15 b Detection

Neither the existence of LkCa 15 b nor its derived parameters are dependent on our

choice to include only the top ∼ 50% of raw images. The planet appears at the

same location and with the same approximate brightness when processing all 316

images, as well as only the top 25% of images. An excess with SNR > 3 appears

at LkCa 15 b’s location with a wide range of KLIP zone geometries and rotational

masks, when any number of KL modes from 2 to 100+ are removed, and whether

or not the median radial profile of the PSF is subtracted before processing.

4.5.6 Limits on LkCa 15 b SDI Continuum Flux

We used simulated planet detections to place an upper limit on LkCa 15 b’s contin-

uum flux. We injected planets into the raw continuum channel images with a range

of contrasts and at positions near LkCa 15 b. We then measured the SNR of each

simulated detection to determine the confidence at which we could detect a given

contrast. As above, we apply a small number statistical correction (Mawet et al.,

2014) to the SNR of each recovered planet. The simulations suggest that we would

have detected an excess with a corrected SNR of 3 (false positive fraction of 10−2)

for a continuum source with contrast greater than 5× 10−3. Since LkCa 15 A is 1.8

times brighter at Hα than continuum, this corresponds to an Hα-to-continuum-flux

ratio lower limit of 2.7.

4.5.7 Limits on LkCa 15 c Hα Contrast

We established limits on the LkCa 15 c Hα contrast using false planet injections,

first using a negative planet to eliminate the LkCa 15 b signal. We injected planets

with a range of contrasts at positions sampling the LBT error ellipse for LkCa

15 c. At position angles between -40◦ and -52◦, several 2 − 2.5 σ peaks near c’s

location boost the SNRs for recovered planets. Here, we can detect contrasts down

to 2× 10−3 with corrected (Mawet et al., 2014) SNRs of 3 (false positive fraction of

2 × 10−2). Position angles greater than -40◦ approach a noisier region of the PSF,
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leading to decreased sensitivity; here contrasts of 6× 10−3 are required for adjusted

signal-to-noise ratios of 3. We cannot reject or confirm accretion onto LkCa 15 c

below 6 × 10−3 contrast (∆Hα = 5.6) with the current dataset. This improves

upon previous spectro-astrometric observations, which yielded a contrast limit of

∆Hα = 3.4 for a position angle near LkCa 15 c.

4.6 Methods 5: Stability Analysis with LkCa 15 d

We ran a series of orbit integrations to demonstrate that stable solutions exist for

b, c, and d at separations within the 1σ semimajor axis error bars (see Figures

4.9 - 4.10). We used the publicly available Swifter package (Levison and Duncan,

2013) - specifically, the symplectic integrator, SyMBA (Duncan et al., 1998), which

switches to a Burlisch-Stoer algorithm for planetary close approaches. We also ran

comparison integrations with the Gauss Radau 15th order integrator and found

comparable results, with minimum energy conservation of 1 part in 107 over a 10

Myr integration.

We required all orbits to be nearly co-planar, with a random scatter < 1◦, and

assigned each planet a random eccentricity below 10−4. To assess stability we inte-

grated three different random phase combinations for 10 Myr. We found stable three

body solutions out to 1 − 2 Myr with semi-major axes of ab = 12.7 AU, ac = 18.6

AU, ad = 24.7 AU. To ensure stability out to 10 Myr with orbits in the 1σ errors

requires that all planets be ≤ 0.5 MJ . A wider range of orbits are allowed if d’s

mass is decreased further. These constraints are in line with previous large nu-

merical studies of equally spaced (in RH,m), equal-mass planets(Faber and Quillen,

2007). Note for planets b and c, there are possible resonant configurations within

the predicted period ranges, which would admit somewhat higher masses.
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Figure 4.9: LkCa 15 d position angle and separation versus time. Evolution of
position angle and separation (inset) for LkCa 15 d. Green and red points indicate
Ks and L′ data, respectively. In both panels, the earliest three points correspond
to previously published Keck observations,8 and the most recent points show best
fits to our data. The colored error bars are derived using the non-linear algorithm
MPFIT, which significantly underestimates the parameter errors compared to the
more robust grid ∆χ2 (black error bars). The yellow shaded region spans the position
angles and separations allowed at 1σ by the multi-epoch observations, which have
semi-major axes between 12.6 and 24.7 AU. Solid curves show the best-fit orbit (18.0
AU), and dashed curves show an orbit (24.7 AU) that is stable for a 0.5 MJ planet
exterior to LkCa 15 b and c. Lower mass planets or resonant configurations permit
stable orbits for LkCa 15 d at smaller stellocentric radii.
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Figure 4.10: Orbital integration results. a) Stable orbits for LkCa 15 b, c, and d
over a 10 Myr integration. b) Osculating eccentricity. The planets are each 0.5 MJ

with initial semi-major axes of 12.7, 18.6, and 24.7 AU, initial eccentricities of order
10−5, and relative inclinations of < 1◦. After a 10 Myr integration, the eccentricities
of c and d have increased to only a few percent.
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CHAPTER 5

IMAGING PROTOPLANETS: OBSERVING TRANSITION DISKS WITH

NON-REDUNDANT MASKING†

Transition disks, protoplanetary disks with inner clearings, are promising objects

in which to directly image forming planets. The high contrast imaging technique

of non-redundant masking is well posed to detect planetary mass companions at

several to tens of AU in nearby transition disks. We present non-redundant masking

observations of the T Cha and LkCa 15 transition disks, both of which host posited

sub-stellar mass companions. However, due to a loss of information intrinsic to the

technique, observations of extended sources (e.g. scattered light from disks) can

be misinterpreted as moving companions. We discuss tests to distinguish between

these two scenarios, with applications to the T Cha and LkCa 15 observations. We

argue that a static, forward-scattering disk can explain the T Cha data, while LkCa

15 is best explained by multiple orbiting companions.

5.1 Introduction

Direct images of protoplanets will provide unique insight into the planet formation

process. Transition disks, protoplanetary disks with solar system sized inner dust

clearings (Strom et al., 1989; Brown et al., 2009) present an opportunity to im-

age protoplanets directly. Both observations (Ireland and Kraus, 2008; Kraus and

Ireland, 2012; Isella et al., 2013; Sallum et al., 2015b) and simulations (Lin and

Papaloizou, 1986; Bryden et al., 1999; Crida et al., 2006) suggest that dynamical

interactions with unseen companions may play an important role in creating the

clearings. However, stellar mass companions have been ruled out in approximately

†This chapter has been published previously as Sallum et al. (2016).
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half of known transition disks (Kraus et al., 2011; Evans et al., 2012). This leaves the

possibility that planetary mass companions are responsible for the disk clearings.

Imaging protoplanets in transition disks requires both high contrast and high

resolution. Compared to mature exoplanets, accreting planets are bright relative

to their host stars in the infrared (Eisner, 2015; Zhu, 2015), having contrasts of

∼ 10−2 − 10−4. At the distance of the nearest transition disks (∼ 100 pc) 10

AU subtends 0.1′′, approximately the diffraction limit of an 8 m telescope at L band

(0.095′′). Searching for planets at ∼ AU to tens of AU separations therefore requires

the ability to image at high contrast at or within the diffraction limit.

While traditional direct imaging techniques can probe angular scales of a few

λ/D, the high contrast imaging technique of non-redundant masking (NRM; Tuthill

et al., 2000a) provides much better point spread function characterization, prob-

ing scales even within λ/D. NRM transforms a filled aperture into a sparse array

through the use of a pupil plane mask. The Fourier-transformed images yield com-

plex visibilities, which give the amplitude and phase of each baseline in the mask.

From the complex visibilities we calculate squared visibilities, the power on each

baseline, and closure phases, sums of phases around baselines forming a triangle.

Closure phases eliminate atmospheric phase errors; each closure phase is the sum of

the intrinsic source phases. Measuring the sums of source phases in this way means

that not all source phase information can be recovered from observations. Due to

this missing phase information, to understand the source brightness distribution we

use both model fitting and image reconstruction.

Here we present two NRM transition disk case studies, T Cha and LkCa 15.

Huélamo et al. (2011) detected a companion candidate in T Cha using 2010 Very

Large Telescope (VLT) / NaCo (Rousset et al., 2003) masking observations. The

best fit single companion model had a separation of 62 miliarcseconds (mas) at

a position angle of 78◦ and a contrast of 5.1 magnitudes at L′ (Huélamo et al.,

2011). Keck masking observations of LkCa 15 between 2009 and 2010 revealed

three infrared point sources within the disk clearing (Kraus and Ireland, 2012) with

separations between ∼ 70− 100 mas and contrasts between ∼ 5− 6 magnitudes at
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K and L bands. For both of these objects, alternative scenarios have been discussed

where the point source detections are caused not by orbiting companions, but by

forward scattered light from the circumstellar disk. (Olofsson et al., 2013; Cheetham

et al., 2015; Ireland and Kraus, 2014; Sallum et al., 2015a) We discuss tests to

distinguish between companion and scattering scenarios, with applications to our

observations of both LkCa 15 and T Cha.

5.2 T Cha

5.2.1 Previously Published Observations

In Sallum et al. (2015a) we presented re-reduced archival NRM observations of T

Cha taken using VLT/NaCo at L′ and Ks bands between 2010 and 2013. We also

presented new Magellan/MagAO 2013 L′ observations. We fitted single companion

models to these datasets and found that the best fit position angle changed between

the initial companion candidate detection in 2010 and followup datasets through

2013.

5.2.2 Companion Scenario

Figure 5.1 shows χ2 slices in right ascension and declination for a single companion

model at the best fit contrast for each epoch. The position angle of the best fit com-

panion changes between 2010 and 2013. However, it does not change by the amount

expected for a companion at ∼ 9.5 AU in the outer disk plane. Figure 5.1 shows

this; the χ2 minimum does not lie at the predicted position of an orbiting companion

(hollow circles) for any of the datasets except for NaCo 2011. The apparent changes

in position angle cannot be explained by a companion on a Keplerian orbit in the

outer disk plane. A companion on either a very eccentric or very misaligned orbit

can reproduce some of the observations, but this does not seem physically likely

(Sallum et al., 2015a).

Figure 5.2 shows the reconstructed images for each epoch of T Cha observations.

The three-lobed structure in most of the reconstructed images suggests that a single
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Figure 5.1: From Sallum et al. 2015a. The individual panels show χ2 slices in right
ascension and declination at the best fit contrast ratio for single companion model
fits to the T Cha observations. The solid ellipses trace out circular orbits in the
plane of the outer disk at the separation of the 2010 best fit companion. In each
panel, the x shows the 2010 best fit position, and the circles show predicted positions
for orbiting companions at the time of the observations.

companion model is too simple to adequately describe the data. The reconstructed

images show that the best fit position angle of a single companion model fit almost

always overlaps with the brightest lobe in the reconstructed image (white lines in

Figure 5.2). A three companion model could describe a single epoch of observations

if one point source were located at each lobe in the reconstructed images. While

this model could better reproduce the data, the lack of orbital motion in the recon-

structed images argues against it; three stationary companions would be unphysical.

The reconstructed images suggest that the changing single companion position an-

gle is caused by fitting an over-simplified model to the data, a multiple companion
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Figure 5.2: Each panel shows the reconstructed image for a single epoch of T Cha
observations in Sallum et al. 2015a. The solid lines mark the best fit single com-
panion position angles, while the dashed lines show the best fit single companion
position angle from the 2010 dataset.

model would not make physical sense, and that a stationary model would provide a

better explanation for the observations.

5.2.3 Scattered Light Scenario

We raytraced images of T Cha’s outer disk to test whether the structure in the

reconstructed images could be caused by scattered light. We used the open source

radiative transfer code Hyperion (Robitaille, 2011), and disk parameters found in

Huélamo et al. (2015). Figure 5.3 shows the L band raytraced disk image that we

sampled like the masking observations. We simulated NRM datasets by sampling

the raytraced images with the same (u,v) coverage and sky rotation as each epoch of

T Cha observations. We also measured the scatter in the calibrated closure phases
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and squared visibilities for each T Cha dataset and added equal amounts of Gaussian

noise to the simulated data. We then reconstructed images using both the BSMEM

(Buscher, 1994) and MACIM (Ireland et al., 2006) algorithms. The two algorithms

produced comparable results.

Figure 5.4 shows the reconstructed images for a single Gaussian noise realization

added to each outer disk observation. The images shown in the first four panels

of Figure 5.4 were reconstructed from observations using the NaCo mask at L′,

with comparable sky rotation (Sallum et al., 2015a). Comparison of these panels

shows that multi-epoch observations with the same mask and wavelength and similar

sky rotation will produce nearly identical images. The same three-lobed structure

is present in all four NaCo L′ images, and noise fluctuations cause flux to move

between the lobes in different noise realizations.

Different masks at the same wavelength may yield different reconstructions for

observations of the same source as well. The different (u,v) coverage and sky rota-

tion in the MagAO 2013 L′ compared to NaCo 2010-2013 L′ observations produces

different images. Furthermore, different wavelength observations using the same

mask may also result in different reconstructed images (NaCo 2013 Ks compared to

NaCo 2010 - 2013 L′). This is because resolution scales with wavelength and thus

different wavelength observations will have different beams.

The simulated disk observations can reproduce the structure in the reconstructed

images shown in Figure 5.2. The changes in brightness for different observations and

noise realizations are consistent with the brightness changes in images reconstructed

from the actual data (compare NaCo 2010 and NaCo 2012 in Figure 5.2). Like

the actual T Cha observations, fitting a single companion model to the datasets

shown in Figure 5.4 would result in a best fit position angle that jumps erratically

between noise spikes. This suggests that the T Cha reconstructed images and single

companion model fits are not caused by the presence of companions, but rather by

noisy observations of scattered light from the outer disk.
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100 mas

Figure 5.3: Hyperion raytraced image of T Cha’s transition disk using the disk
parameters published in Huelamo et al. 2015.

5.3 LkCa 15

5.3.1 Previously Published Observations

In Sallum et al. (2015b), we presented reanalyzed archival Keck infrared observations

of LkCa 15 (Kraus and Ireland, 2012) as well as new LBT/LMIRCam (Hinz et al.,

2008; Leisenring et al., 2012) infrared and Magellan/MagAO (Morzinski et al., 2014;

Close et al., 2012) Hα datasets. We fit multiple companion models to the Keck

and LBT masking observations and also reconstructed images using both BSMEM

(Buscher, 1994) and MACIM (Ireland et al., 2006). Figures 5.5 and 5.6 show the

reconstructed images from L and K bands, respectively. In all the Keck observations

and in the LBT L′ dataset we detect three point sources within the disk clearing

(LkCa 15 b, c, and d), two of which (LkCa 15 b and c) coincide with LBT Ks
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Figure 5.4: Reconstructed images from simulated observations of the disk shown in
Figure 5.3. For each simulated dataset we added Gaussian noise at the level of the
actual observations and used identical sky rotation and (u,v) coverage.

detections. We detect one of the infrared point sources (LkCa 15 b) at Hα, an

accretion tracer (Zhou et al., 2014; Rigliaco et al., 2012; Hartmann et al., 1994).

5.3.2 New LBT L′ Observations

In February 2016 we observed LkCa 15 at L′ using the LBT and LMIRCam’s 12-hole

mask. The scatter in these data was higher than those published in Sallum et al.

2015b (calibrated closure phase scatter of 2.5◦ compared to 1.9◦ in December 2014).

The amount of sky rotation was also significantly lower (parallactic angles between

21◦ and 65◦ compared to -65◦ and 65◦ in December 2014). We fit multiple companion

models and reconstructed images (see Figure 5.5) from these data. In both the

model fitting and reconstructed images we detect two point sources consistent with
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the positions of LkCa 15 c and d.

To test the significance of the 2016 LkCa 15 b data, we simulated datasets

with identical (u,v) coverage and sky rotation angles as the new observations. We

created a three-companion model with the separations and position angles set by

the best fit orbit to the 2009-2015 masking observations. We fixed the contrast of

each companion to the December 2014 L′ best fit. We added 1000 Gaussian noise

realizations with standard deviation of 2.5◦ to the simulated closure phases and

reconstructed an image for each noise realization. For each reconstructed image we

calculated the signal to noise ratio at the input position of LkCa 15 b by comparing

the mean flux in an aperture around b to the average flux in all apertures not

containing b, c, or d. LkCa 15 b’s signal to noise was greater than 1 in ∼ 57%

of noise realizations. Choosing a signal-to-noise ratio so low gives us the most

conservative estimate on LkCa 15 b’s false negative probability. Thus LkCa 15 b

has at least a ∼ 43% chance of false non-detection; this is much higher than the

false negative probability for LkCa 15 c (∼ 3%) due to b’s closer separation and

slightly lower flux.

The new observations are consistent with the three companion scenario. While

even low-quality data can potentially detect LkCa 15 c, we require better signal to

noise than obtained in our 2016 observations to reliably detect b. To detect LkCa

15 b at the same confidence as c in the new dataset requires closure phases with

scatter of ∼ 1◦.

5.3.3 Multiple Companion Scenario

In LkCa 15 we observe smooth position angle changes of the best fit companion

model over several years of observations. The positions between 2009 and 2016

agree with those expected for companions on distinct circular orbits in the outer disk

plane. Figure 5.7 shows the position evolution of the three companion model over

the last ∼ 6 years, with the new LBT L′ positions of LkCa 15 c and d added. While

the positions agree with those expected for Keplerian orbits, the uncertainties on

the orbital separations are still quite large. For example, the uncertainties on LkCa
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Keck 2009 L 100 mas Keck 2010 L 100 mas

LBT 2015 L′ 100 mas LBT 2016 L′ 100 mas

Figure 5.5: Reconstructed images from Keck (top row) and LBT (bottom row) L
band NRM observations of LkCa 15. While LkCa 15 b is not detected in the new
LBT observations, the noise levels and sky rotation present in the data are such
that there is a ∼ 43% chance of a false non-detection. The new LBT observations
are consistent with the three companion model.

15 d’s position are large enough that a constant position angle could go through all

of the error bars. A longer time baseline and higher resolution observations would

allow us to place better constraints on the point source positions and on their orbital

parameters.

5.3.4 Scattered Light Scenario

LkCa 15’s outer disk has been detected both at sub-mm and mm wavelengths (An-

drews et al., 2011b; Isella et al., 2014) and in the near infrared in scattered light

(Thalmann et al., 2014). Since we have seen that scattered light can masquerade as

a companion signal in NRM data, we simulated masking observations of LkCa 15’s
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Keck 2010 K 100 mas LBT 2015 Ks 100 mas

Figure 5.6: Reconstructed images from Keck (left) and LBT (right) K band NRM
observations of LkCa 15.

outer disk. We used Hyperion to create ray traced images for the disk parameters

and dust properties in Thalmann et al. (2014). The outer disk could not cause point

sources within ∼ 100 − 200 mas of the star in the reconstructed images. A more

compact scattered light model is required to produce point sources at stellocentric

distances consistent with those in the observed reconstructed images.

Recent SPHERE/ZIMPOL observations revealed an inner disk component in

LkCa 15 (Thalmann et al., 2015). We simulated masking observations to test

whether scattered light from a two disk model could cause low-separation point

source signals in reconstructed images. Since the inner disk parameters are not

well constrained, rather than raytrace images of both disks we used a parametric

skewed-ring model (Kraus et al., 2009). We set the contrast of the outer disk to

∼ 5% to match previous scattered light observations (Thalmann et al., 2014). We

then scaled the flux of the inner disk to be approximately twice that observed for

the outer disk, to match optical polarimetric observations (Thalmann et al., 2015).

This model is shown in Figure 5.8. For each dataset, we used (u,v) coverage and sky

rotation identical to the real observations, and added Gaussian noise at the level

measured for the real data.

Figures 5.9 and 5.10 show reconstructed images for the two disk model plus a

single noise realization. In each panel, the sources within ∼ 100 mas of the star to
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Figure 5.7: Position angle (large panels) and separation (insets) evolution over time
for LkCa 15 b (left), c (center), and d (right). Red, green, and blue points show
positions for sources detected at L′, Ks, and Hα, respectively, and error bars were
generated using a χ2 interval on a grid. Yellow shading marks the 1 σ allowed
region from orbital fitting published in Sallum et al. 2015b. The last points in each
of the two rightmost panels show positions for c and d from fits to the new LBT
observations. These agree with the previously published orbital fits.

the northwest (upper right) are due to light from the inner disk, while the flux in

that direction at larger separation is due to the outer disk. Comparing the top two

panels of Figure 5.9 shows that adding noise can change the relative fluxes of the

point sources caused by each disk. For example, flux at the position of the outer

disk is much brighter in the 2009 Keck L band simulation compared to 2010, despite

the fact that they have identical masks and wavelengths and similar sky rotation.

Additionally, in the 2015 L′ simulation, the inner disk does not cause any bright

point sources close to the star. While only a single noise realization is shown in

each panel of Figure 5.9, comparison of different noise realizations with the same

scatter shows that noise spikes can cause flux to move between the inner and outer

disk regions. These variations make it unlikely that scattered light from the inner

disk would consistently cause point sources close to the star. This is inconsistent

with the observations, which show close-in point sources in all epochs (see Figures

5.5 and 5.6).

If scattered light from the inner disk caused point sources close to the star across

multiple epochs, their positions would differ for observations made with different
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100 mas

Figure 5.8: Input two disk model for LkCa 15 scattered light testing. This two disk
model was motivated by recent observations of the inner disk and by the fact that
simulated observations of the outer disk alone could not produce point sources close
to the star in reconstructed images.

masks. Like the NaCo versus MagAO T Cha reconstructed images, the locations of

point sources for simulated LBT disk observations are different from those for Keck.

It would be extremely difficult for a scattering signal to cause consistent point source

detections across multiple epochs using multiple masks.

We used the simulated disk observations to quantify the probability that scat-

tered light would cause three point sources across multiple epochs. To estimate the

probability for a single observational epoch, we calculated the signal to noise at the

positions of b, c, and d in 100 reconstructed images with different noise realizations.

We measured the mean brightness in an aperture at the position of each companion

and divided it by the mean flux of all apertures not containing b, c, or d. We also

limited our noise measurement to separations interior to ∼ 200 mas, so that the
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Keck 2009 L 100 mas Keck 2010 L 100 mas

LBT 2015 L′ 100 mas LBT 2016 L′ 100 mas

Figure 5.9: Reconstructed images for a single noise realization added to simulated L
band observations of the LkCa 15 two disk model shown in Figure 5.8. At the noise
levels present in the observations, scattered light from LkCa 15 does not always
cause bright point sources close to the star.

average noise level did not include measurements of LkCa 15’s outer disk flux. Out

of 100 noise realizations, none resulted in detections at all three positions with sig-

nal to noise greater than 1. The probability that forward scattering from the inner

disk caused the companion signals for a single epoch is thus < 0.01. Assuming the

six observations are independent, the probability that we would detect three point

sources across all epochs is vanishingly small.

Even if scattered light from LkCa 15’s inner disk were causing multiple point

sources to appear in the reconstructed images, their positions would remain fixed

for multi-epoch datasets with the same mask and roughly the same sky rotation. A

single companion fit to these data may show an apparent change in position angle

as flux moves between each of the sources caused by the inner disk. A multiple
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Keck 2010 K 100 mas LBT 2015 Ks 100 mas

Figure 5.10: Reconstructed images for a single noise realization added to simulated
K band observations of the two disk model shown in Figure 5.8.

companion fit to the scattering signal (with as many companions as point sources

caused by the inner disk) would show no changes in position angle. An orbiting

companion would cause a signal with a smoothly changing position angle that could

not be caused by scattered light.

The sources seen in both the Keck and LBT reconstructed images have position

angles that change with time. Comparing the top two panels of Figure 5.5, the

position angles of the sources change by several degrees between 2009 and 2010. The

two sources seen in both bottom panels of Figure 5.5 also have changing position

angles. This agrees with the fact that previously published Keck K band images

show three sources with position angles changing by ∼ 4◦ per year (Ireland and

Kraus, 2014). A forward scattering scenario could not cause position angle changes

like these.

The observed infrared fluxes argue against the scattered light scenario as well

(Sallum et al., 2015b). Since dust opacity increases with decreasing wavelength, a

scattering signal will have higher flux at shorter wavelength. However the infrared

sources detected in both Keck and LBT observations are brighter at L band than at

K band (Kraus and Ireland, 2012; Ireland and Kraus, 2014; Sallum et al., 2015b). A

non-detection at Keck at H band (Ireland and Kraus, 2014), and a strong detection

at M band (Ireland and Kraus, 2014) argue further against scattered light as the



183

cause of the structure in reconstructed images. Lastly, a scattered light model could

not cause the Hα detection, since dust opacity at Hα and in the nearby continuum

would be equal.

5.4 Conclusions

We presented multi-epoch NRM observations of the T Cha and LkCa 15 transition

disks. For both objects we find best fit companion models with position angles that

change with time. In the case of T Cha we showed that the data are better explained

by scattered light from the outer disk than by an orbiting companion. While the

position angle of the best fit companion does change, it does not do so in a Keplerian

way or even monotonically. This apparent motion is most likely caused by fitting a

single companion fit to noisy observations of an extended scattered light signal.

For LkCa 15 we show that at the noise levels present in the observations, scat-

tered light from the inner disk can cause point sources close to the star in recon-

structed images, but not consistently. Furthermore, scattering is highly unlikely to

cause multiple point sources to appear at consistent positions for different masks,

and even less likely to cause point sources with smoothly changing position angles.

A non-detection at H band, a strong detection at M band, and the Hα detection

argue against the scattered light hypothesis as well. Unlike T Cha, the position

angle changes observed for LkCa 15 agree with those for companions on Keplerian

orbits aligned with the outer disk. For these reasons, we argue that the multiple

companion scenario most naturally explains the NRM observations of LkCa 15.

The tests presented here highlight the importance of using a combination of

model fitting and image reconstruction in non-redundant masking observations. Re-

constructed images can reveal a simple model such as a single companion to be

inadequate, as in the case of T Cha. However, our ability to reconstruct an image

of an extended source is limited by the (u,v) coverage, sky rotation, and noise levels

of the observations. For this reason, it is useful to use modeling to check whether

extended sources such as disks could create point source structure in reconstructed
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images. NRM is a powerful technique for detecting close in companions, but care

must be taken to distinguish between true companion signals and extended sources.

The ability to distinguish between companions and scattered light improves with

increased (u,v) coverage (and thus larger amounts of recoverable phase information)

as well as with increased resolution. For example, simulated images using the co-

phased LBTI’s 12 hole mask easily recover a single extended source for both T Cha’s

disk and LkCa 15’s outer disk with the same amount of sky rotation as the LBT

L′ LkCa 15 data. A close-in LkCa 15 inner disk also appears much more extended

in dual-aperture LBTI masking data compared to the intra-aperture observations

shown here. Future observations of transition disks using the co-phased LBTI will

allow for unambiguous detection of companions at even closer separations than those

seen in LkCa 15.
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CHAPTER 6

IMPROVED CONSTRAINTS ON THE DISK AROUND MWC 349A FROM

THE 23-METER LBTI†

We present new spatially resolved observations of MWC 349A from the Large Binoc-

ular Telescope Interferometer (LBTI), a 23-meter baseline interferometer made up

of two, co-mounted 8-meter telescopes. MWC 349A is a B[e] star with an un-

known evolutionary state. Proposed scenarios range from a young stellar object

(YSO), to a B[e] supergiant, to a tight binary system. Radio continuum and recom-

bination line observations of this source revealed a sub-arcsecond bipolar outflow

surrounding a ∼ 100 mas circumstellar disk. Followup infrared studies detected

the disk, and suggested that it may have skew and an inner clearing. Our new

infrared interferometric observations, which have more than twice the resolution of

previously-published datasets, support the presence of both skew and a compact

infrared excess. They rule out inner clearings with radii greater than ∼ 14 mas.

We show the improvements in disk parameter constraints provided by LBTI, and

discuss the inferred disk parameters in the context of the posited evolutionary states

for MWC 349A.

6.1 Introduction

Discovered in 1932 as a member of a binary system (Merrill et al., 1932), MWC 349A

is a B[e] star with an uncertain spectral type (e.g. Lamers et al., 1998; Allen and

Swings, 1972a). It lacks optical photospheric lines; however, He I emission indicates

a high stellar temperature (Andrillat et al., 1996). Estimates range between 20, 000−
35, 000 K, corresponding to B0 (Hofmann et al., 2002) to late O (Hartmann et al.,

†This chapter has been published previously as Sallum et al. (2017).
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1980) spectral type. Its mass and luminosity determinations range from 30 − 40 M�

(e.g. Ponomarev et al., 1994; Planesas et al., 1992; Gvaramadze and Menten, 2012;

Báez-Rubio et al., 2013) and 3× 104 − 8× 105 L� (Cohen et al., 1985; Gvaramadze

and Menten, 2012), respectively. Its distance may be as close as 1.2 kpc, based on

the spectral type for MWC 349B (Cohen et al., 1985), or as large as 1.7 kpc (Meyer

et al., 2002; Knödlseder, 2000) if A is not associated with B (e.g. Strelnitski et al.,

2013; Gvaramadze and Menten, 2012; Meyer et al., 2002) and is instead a member

of the Cyg OB2 association.

MWC 349A is one of the brightest radio sources in the sky (Braes et al., 1972)

and exhibits masing emission from the far-infrared through the millimeter (Martin-

Pintado et al., 1989; Thum et al., 1994; Strelnitski et al., 1996; Thum et al., 1998).

Continuum observations at 6.1 cm reveal a sub-arcsecond nebula with a dark lane

roughly 100 mas wide at its equator (e.g. Cohen et al., 1985; White and Becker,

1985; Martin-Pintado et al., 1993). The radio spectrum indicates an ionized wind

expanding at 25− 50 km s−1 (Altenhoff et al., 1981), yielding an inferred mass loss

rate of 10−5 M� per year (Olnon, 1975).

Spectroscopic and spectropolarimetric observations suggest the presence of a

disk with both an ionized and a neutral component around MWC 349A (Hartmann

et al., 1980; Yudin, 1996; Hamann and Simon, 1986; Aitken et al., 1990; Thompson

et al., 1977). The maser emission supports this; double peaked line profiles indicate

Keplerian rotation of gas (Thum et al., 1992; Gordon, 1992; Ponomarev et al.,

1994). H92α line observations reveal rotation in the bipolar outflow and constrain

its inclination to be 15 ± 5◦ with respect to the plane of the sky (Rodriguez and

Bastian, 1994). Assuming the disk and outflow are perpendicular, this suggests that

the disk may be nearly edge-on. The H30α recombination line originates from two

locations consistent with the size and orientation of the nebula’s dark lane (Planesas

et al., 1992), suggesting that the disk may reside there.

The disk characteristics inferred from radio data agree with high-resolution in-

frared imaging. Early speckle observations constrain the disk size to be smaller

than the dark lane in the radio (Mariotti et al., 1983). Gaussian fits to subsequent
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speckle imaging yield best fit FWHMs of 38± 18 mas in the north-south direction

at K band, and 85 ± 19 mas in the east-west direction at L′ (Leinert, 1986). More

recent interferometric observations can be modeled by uniform ellipses with similar

sizes at wavelengths from 1.65 to 3.08 µm (Danchi et al., 2001). The reconstructed

1.65 µm image appears asymmetric (Danchi et al., 2001). Emission from the inner

rim of an inclined disk with a clearing (e.g. Tuthill et al., 2001) or forward scattered

light from a significantly flared disk (e.g. Kessel et al., 1998) could have caused this

asymmetry.

MWC 349A has an unknown evolutionary state. The presence of a dusty disk,

infrared excess (Geisel, 1970; Allen and Swings, 1972a,b; Allen, 1973), and bipolar

outflow indicate a YSO morphology (Thompson et al., 1977; Cohen et al., 1985).

Recent observations associate it with a nearby cold molecular cloud, supporting this

scenario (Strelnitski et al., 2013). While its binarity is uncertain, MWC 349B is

a B0 III star, and an evolved companion would argue against a YSO morphology.

Proposed alternate scenarios to a YSO include a B[e] supergiant (e.g. Hartmann

et al., 1980; Hofmann et al., 2002), a binary system with an equatorial stellar wind

(Morris, 1981), and a runaway hierarchical triple (Gvaramadze and Menten, 2012).

Here we present new infrared interferometric observations of the MWC 349A

disk from the 23-meter Large Binocular Telescope Interfrerometer (LBTI). We fit

geometric and radiative transfer models to, and reconstruct images from the ob-

servations. We compare the constraints on disk parameters derived from both the

single-aperture (up to 8 meter baselines within each LBT primary mirror) and dual-

aperture (baselines between the two primaries up to 23 meters) datasets. We demon-

strate the degeneracies in reconstructing images from sparsely sampled observations

and emphasize the importance of applying both model fitting and imaging to these

datasets. We discuss the implications of the observations for the disk morphology

and the evolutionary state of MWC 349A.
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6.2 Technique

Non-redundant masking (e.g. Tuthill et al., 2000b) transforms a filled aperture into

an interferometer via a pupil plane mask. The detector records the interference

fringes formed by the mask, which we Fourier transform to calculate complex vis-

ibilities. From the complex visibilities we calculate squared visibilities, the powers

on all baselines, and closure phases, sums of phases around baselines forming a tri-

angle (e.g. Jennison, 1958; Baldwin et al., 1986). Closure phases are intrinsically

self-calibrating and are robust to atmospheric phase noise. Since closure phases are

correlated we project them into linearly independent combinations of closure phases

(e.g. Ireland, 2013; Sallum et al., 2015a) called kernel phases (Martinache, 2010).

Due to the loss of phase information intrinsic to the technique we use model fitting

and image reconstruction to understand the source brightness distribution.

Although NRM blocks the majority of incident light, it provides a much better

point spread function characterization than a conventional telescope. This enables

imaging at smaller angular separation than more traditional direct imaging tech-

niques such as filled-aperture angular differential imaging (e.g. Marois et al., 2006)

and coronography (e.g. Guyon et al., 2014). While coronagraphs create inner work-

ing angles of ∼ λ/D for the highest performance designs (e.g. Mawet et al., 2005),

NRM provides resolution even within the diffraction limit. It has proven useful in

the direct detection of close-in stellar (e.g. Biller et al., 2012; Ireland and Kraus,

2008) and substellar (e.g. Sallum et al., 2015b; Kraus and Ireland, 2012) mass com-

panions.

6.3 Observations

We observed MWC 349A on 21 May 2012 at the LBT with the 12-hole mask (see

Figure 6.1) installed in LBTI/LMIRCam (Hinz et al., 2008; Leisenring et al., 2012).

This configuration provided baselines up to ∼ 23 meters and yielded 66 squared

visibilities and 220 closure phases that we projected into 55 independent kernel

phases. We took data with the adaptive optics correction running on each of the
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two LBT apertures. We did not actively correct the path length between them

to enable long exposures for the baselines connecting the two mirrors. We rather

aligned them once at the beginning of the night and took short enough exposures

for the long baselines to be coherent.

To account for instrumental signals, we observed the unresolved calibrator star

HD 193092 with the same configuration as MWC 349A. We used a bandpass centered

on 3.78 µm with a width of 0.2 µm. The dataset for each object consists of two

cubes of 500 29-ms exposures, yielding 29 seconds of total integration. Each cube

of images was taken with even sampling over a time interval of 145 seconds with a

0.27 second dead time between frames. The two MWC 349A datacubes were taken

at LST (HA) of 19h 18m (-1h 12m) and 19h 40m (-0h 52m), resulting in ∼ 13◦ of

sky rotation (see Figure 6.1).

6.4 Data Reduction

We flat field, sky subtract, and bad pixel correct all images, then Fourier trans-

form them to form complex visibilities. The non-zero mask hole size and bandpass

cause information from each baseline to be encoded in several pixels in the Fourier

transform (“splodges”). To calculate squared visibilities, we sum the power in the

splodges corresponding to each baseline and normalize by the power at zero base-

line. We subtract the average power in the regions without signal to correct for

any bias, then average the squared visibilities for all individual images to calculate

the squared visibility for each cube of images. To calculate closure phases, for each

triangle of baselines we find all pixel combinations that satisfy the following relation:

(u1, v1) + (u2, v2) + (u3, v3) = 0. (6.1)

and multiply their complex visibilities to form a bispectrum. We calculate the

bispectra for all pixel triangles that connect the three splodges and satisfy Equation

6.1. We average these to form the bispectrum for each triangle of baselines for a

single image. We then average the bispectra for all images and take the bispectral
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Figure 6.1: Top: 12-hole mask installed in LBTI/LMIRCam. Bottom: Fourier
coverage of the MWC 349 observations. The small amount of sky rotation means
that some position angles were sampled with higher resolution than others.
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phase as the closure phase for each triangle of baselines. We lastly project the

closure phases into kernel phases.

Since we have only two calibrator observations, we simply average the mean ker-

nel phases and squared visibilities for the two data cubes. We subtract the calibrator

kernel phases from the target kernel phases, and divide the target visibilities by the

calibrator visibilities. Since calibration errors introduce the largest amount of scat-

ter in the final kernel phases and visibilities, we would normally use the scatter in

a large number of calibrator scans to estimate the errors for the target observations

(e.g. Sallum et al., 2015b). However, we cannot robustly estimate errors using only

two calibrator measurements. Thus we assume that the errors are uniform and take

the kernel (closure) phase errors to be the standard deviation of all calibrated kernel

(closure) phases. We similarly take the standard deviation of all squared visibilities

after subtracting the two dithers from each other to remove any trends.1 This re-

sults in a kernel (closure) phase error of 3.4◦ (6.0◦), and a squared visibility error of

0.08. These values agree with those derived when we include uniform error scalings

as nuisance parameters in the fitting (§6.5).

6.5 Model Fitting and Image Reconstruction

6.5.1 Geometric Models

To estimate the size of the MWC 349A disk, we first fit uniform ellipses to the

calibrated kernel phases and squared visibilities. This model is identical to that

published in Danchi et al. (2001): a solid ellipse with semi-major axis Rout, position

angle θ measured east of north, and axial ratio r. Depending on the disk inclination

and geometry, a bright inner disk rim, gas or refractory dust within the sublimation

radius, or the central star may be visible. We thus also fit geometric models that

include central delta functions accounting for a fraction b of the total flux, beginning

with a uniform ellipse plus delta function model. These two models are symmetric

1The calibrated closure phases and squared visibilities can be found at www.stephsallum.

space/research.

www.stephsallum.space/research
www.stephsallum.space/research
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and cannot cause non-zero kernel phase measurements. Since the asymmetry in the

1.65 µm Keck image could have resulted from forward scattering from a flared disk,

we also consider skewed ellipse models. The skewed ellipse is the uniform ellipse

multiplied by a sinusoid in position angle, given by the following (e.g. Schaefer

et al., 2010):

I =

1 + As cos (φs − φ) , if
(

x′
Rout

)2

+
(

y′

rRout

)2

< 1

0, otherwise
(6.2)

where

x′ = x cos (θ)− y sin (θ)

y′ = x sin (θ) + y cos (θ)

φ = arctan
y

x
.

(6.3)

Here φs is the position angle at which the flux is brightest. Given the high tem-

perature and luminosity estimates for MWC 349A, a clearing in the dust disk may

be resolved. We thus also fit skewed ring plus delta function models to allow for

a compact component (the star plus any gaseous / refractory material within the

sublimation radius) and an outer disk. The skewed ring model is the skewed ellipse

with an inner hole of radius Rin:

I =


1 + As cos (φs − φ) , if

(
x′
Rout

)2

+
(

y′

rRout

)2

< 1

0, if
(

x′
Rin

)2

+
(

y′

rRin

)2

< 1

0, otherwise

(6.4)

where x′, y′, φ, and φs are identical to those in Equation 6.2.

We also fit two dimensional Gaussians to the data to explore models without

sharp edges. Like the solid ellipse fits, we first consider simple Gaussians and then

add a central delta function and skew. The skewed Gaussian brightness profile is

given by the following:

I = (1 + As cos (φs − φ))

× exp

[
−4 ln 2

((
x′

rHWHM

)2

+

(
y′

HWHM

)2
)]

(6.5)
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where x′, y′, and φs are defined in the same way as Equation 6.2. We lastly fit

Gaussian ellipses with inner clearings to the data. In order to make the simpler

Gaussians a subset of these models, to make the ring model we start with a simple

non-skewed Gaussian. We then subtract a second Gaussian with identical position

angle and axis ratio, but with HWHM scaled by fHWHM . We constrain fHWHM

to be less than 1 to prevent negative signal in the model images. We lastly apply

skew and add a central delta function.

We fit the data using the Markov chain Monte Carlo algorithm emcee (Foreman-

Mackey et al., 2013). We apply parallel tempering to ensure that the parameter

space is fully explored in the case of multiple likelihood maxima. We calculate the 1σ

parameter errors using the 16% and 84% contours from the chains at a temperature

of one. To compare the various models, we calculate the Bayesian evidence (e.g.

Trotta, 2008), the integral of the posterior probability over the parameter priors,

or the probability of a model given the data. The evidence ratios, or log evidence

differences, between two models give their relative probabilities. Since Bayesian

evidence is a noisy statistic with a non-zero false positive probability (e.g. Jenkins

and Peacock, 2011), we also compute χ2 differences to compare the models. For

each model we calculate the difference between its minimum χ2 value and that of

the most complex model with fewer parameters.

We fit the data once including the kernel phase and visibility error scalings as

nuisance parameters. Since the best fits were nearly identical to the measured scatter

we present results where we fix the error scalings to the observed kernel phase and

visibility scatter. We also perform fits to the intra-aperture baselines to understand

how the full LBT resolution improves the model parameter constraints.

Table 6.1 lists the best-fit dual-aperture model parameters and Table 6.2 lists

their corresponding minimum χ2 and Bayesian evidence values. The best fit position

angles agree for all models and are also consistent with the best fit position angle

reported in Danchi et al. (2001). For both types of brightness distributions, the

Bayesian evidence and χ2 difference testing suggest that models including a compact

component and skew are significantly better than the simpler models (see Table 6.2).
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Table 6.1. MWC 349A Geometric Model Fit Results

Ellipse Models

Model Rout (mas) θ (◦) r As φs (deg) b Rin (mas)

Ellipse 46± 2 97± 3 0.65± 0.03 — — — —

Ellipse + δ 57± 2 99± 3 0.66± 0.03 — — 0.30± 0.02 —

Ellipse + δ + Skew 58± 2 98± 3 0.68± 0.03 0.17± 0.04 −153±7
6 0.32± 0.01 —

Ring + δ + Skew 57± 2 98± 3 0.68± 0.03 0.16± 0.04 −153±7
6 0.33± 0.02 < 14

Gaussian Models

Model HWHM (mas) θ (◦) r As φs (deg) b fHWHM

Gaussian 28.2± 0.7 97± 3 0.64± 0.03 — — — —

Gaussian + δ 34± 1 101± 3 0.64± 0.03 — — 0.23±0.02
0.03 —

Gaussian + δ + Skew 34± 1 101± 3 0.66± 0.03 0.24± 0.02 −153±7
5 0.24± 0.02 —

Gaussian Ring + δ + Skew 32±2
3 101±4

3 0.67±0.03
0.04 0.21± 0.06 −153±6

8 0.4± 0.2 0.31±0.03
0.04

Table 6.2. MWC 349A Model Comparison

Model χ2
min d.o.f. ∆χ2 a ∆d.o.f. a Significanceb logZ

Ellipse 264.5 239 — — — −139± 2

Ellipse + δ 234.4 238 30.1 1 5.5σ −126± 3

Ellipse + δ + Skew 213.9 236 20.5 2 4.1σ −120± 3

Ring + δ + Skew 213.9 235 0.0 1 — −121± 4

Gaussian 255.5 239 — — — −134± 2

Gaussian + δ 228.3 238 27.2 1 5.2σ −123± 3

Gaussian + δ + Skew 208.8 236 19.5 2 4.0σ −117± 3

Gaussian Ring + δ + Skew 208.5 235 0.3 1 < 1σ −118± 3

aWith respect to the above, simpler model

bDerived from the χ2 difference test
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Figure 6.2: Gaussian + δ (left column), Gaussian + δ + Skew (center column),
and Gaussian Ring + δ + Skew (right column) model comparison. The black points
show the observed kernel phases (middle row) and squared visibilities (bottom row),
while the purple points show the model observables. These correspond to the last
three models listed in Table 6.1.



196

These models provide a better match to the observations (see Figure 6.2).

Both the Bayesian evidence and the χ2 difference testing suggest that including

an inner clearing does not improve the fit significantly. The Ring + δ + Skew

model constrains any inner hole to have a radius less than 14 mas, but the best

fit is indistinguishable from the Ellipse + δ + Skew model, given the resolution of

the observations. While the Gaussian Ring + δ + Skew model has a slightly lower

minimum χ2 than Gaussian models without an inner clearing, its ∆χ2 is low enough

that it is not preferred at the 1σ level. It produces nearly identical observables to

the Gaussian + δ + Skew best fit model (see Figure 6.2). Its evidence value is also

comparable to the Gaussian + δ + Skew best fit model.

Figure 6.3 shows the posterior distributions for the Ring + δ + Skew model fit

using both the intra- and dual-aperture observations. The 23-meter LBTI places

new and tighter constraints on all of the disk parameters compared to the single-

aperture observations. The uniform ellipse model fit to the dual-aperture data

results in comparable parameter errors as previous Keck studies (Danchi et al.,

2001), but with ∼ 21% the number of squared visibilities and ∼ 6% the number of

closure phases.

6.5.2 Radiative Transfer Modeling

We generate radiative transfer models to test whether a disk in radiative equilibrium

with the central star can match the observations. We use the open source radiative

transfer codes Hyperion (Robitaille, 2011) and RADMC-3D (Dullemond, 2012) and

input the standard density profile for a flared disk:

ρ (r, z) = ρ0

(
r

r0

)−α
exp

(
−1

2

[
z

h (r)

]2
)
, (6.6)

where

h (r) = h0

(
r

r0

)β
. (6.7)

Here r and z are the radius and height in a cylindrical coordinate system. The

radius value r0 is where the scale height h is fixed to the constant value h0 and the
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Figure 6.3: Triangle plot for Ring + δ + Skew model fits. The grey and purple
histograms at the top of each column show one-dimensional posterior distributions
from the intra- and dual-aperture fits, respectively. The contours show joint poste-
rior distributions for each pair of parameters in the model.



198

midplane density ρ is fixed to the constant value ρ0. The density constant, ρ0, can

be found by integrating the density over all space with knowledge of the total disk

mass. We first consider scale height (β) and density (α) power law indices (1.25

and 2.25, respectively) consistent with irradiated disks in hydrostatic equilibrium

(e.g. Whitney et al., 2003; D’Alessio et al., 1998). We set the disk inner radius at

the point where the dust temperature reaches 1500 K to simulate dust sublimation,

and use silicate dust with a grain size of ∼ 1 µm (e.g. Bans and Königl, 2012). We

show results with a disk mass of 0.01 M∗, but also explored 10−3 M∗ and 0.1 M∗

disk masses and found that they produce comparable results. We vary the stellar

temperature and luminosity within their estimated uncertainties (20, 000 − 35, 000

K for temperature and 3× 104− 8× 105 L� for luminosity.) We set the scale height

to outer disk radius ratio at 0.01, and the disk inclination to 75◦ (Rodriguez and

Bastian, 1994). We also explore models with higher flaring indeces, since MWC

349A may have a centrifugally driven disk wind (e.g. Mart́ın-Pintado et al., 2011).

None of the radiative transfer models for passive irradiated disks match the

observations. Figure 6.4 shows two example disk models for the upper and lower

bounds on the temperature and luminosity for MWC 349A. For a low-luminosity

MWC 349A, reprocessed light from the inner disk rim can account for the unresolved

component in the geometric models. However, in this case the outer regions of the

disk are too cold to produce significant amounts of emission. A high-luminosity

MWC 349A is bright on the correct scales along the disk major axis, but due to

its inclination it cannot reproduce the visibilities along the minor axis. Asymmetric

emission from the vertical wall at the disk inner edge also leads to a large phase

signal.

6.5.3 Image Reconstruction

We reconstruct images using the BSMEM algorithm (Buscher, 1994), assigning uniform

closure phase and squared visibility errors of 6.0◦ and 0.08, respectively. Degenera-

cies exist between different reconstructed images from datasets with sparse (u, v)

coverage and small amounts of sky rotation. To illustrate this, we reconstruct im-
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Figure 6.4: Top: Ray-traced images for passive irradiated disk models using the
lower (left) and upper (right) limits for MWC 349A’s stellar temperature and lumi-
nosity. Both images have been rotated so the disk major axis is aligned with the
x axis. Bottom: Kernel phases (left) and squared visibilities (right) for the model
images, with the lower stellar luminosity model in green and the higher stellar lu-
minosity model in purple. Black points with error bars show the observations.
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Figure 6.5: Reconstructed images for MWC 349A observations (top row) and sim-
ulated observations of the best-fit skewed ring plus delta function model shown in
Figure 6.2 (bottom). The left column shows images reconstructed using a delta
function prior, and the right a Gaussian prior. The half-maximum contour of the
synthesized beam is shown in the bottom left corner of each panel. The inability to
reproduce the input image and the dependence on prior image highlight the need
for model fitting and make reconstructed images ambiguous.

ages from simulated observations of the best fit model images. We use the same

(u, v) coverage and sky rotation and add Gaussian noise at the level measured in

the data. We then reconstruct images from both the data and the simulations using

multiple priors.

Figure 6.5 shows images reconstructed from both the data and simulated obser-

vations of the best fit skewed ring plus delta function model. Comparing the two

rows of Figure 6.5 shows that the best fit geometric model is consistent with images

reconstructed using both priors. Comparing the two columns of Figure 6.5 shows

that the reconstructed images depend on the choice of prior image. Additionally,
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degeneracies exist in the unresolved regions of the reconstructed images. The size

and shape of the bright central component in each “Gaussian Prior” image is consis-

tent with the size and shape of the synthesized beam. The fractional flux contained

in the central component is roughly the same for the images made using each prior,

and is approximately equal to the amount of flux contained within the synthesized

main beam in the input model image. Putting a fraction b of the image flux into a

central component will create identical closure phases and squared visibilities as long

as the central component is unresolved. These degeneracies and the dependence on

the prior image make reconstructed images ambiguous and necessitate model fitting

in order to understand the source brightness distribution.

6.6 Discussion

6.6.1 Compact Infrared Excess

The compact component in the geometric models accounts for . 30% the total

image flux. Assuming a 3.78 µm flux of ∼ 100 Jy for MWC 349A (Thompson et al.,

1977) yields a 30 Jy flux for the central component. Following Millan-Gabet et al.

(2001), we can use the observed MWC 349A V and L band fluxes to estimate the

amount of compact infrared excess. The emission expected for a star at temperature

T with radius R? is the Planck function times the solid angle, Ω = πR2
?

d2 , where d is the

distance to the star. Using a dereddened V flux of 37.7 Jy and attributing it entirely

to the star implies stellar radii of 13 - 28 R� depending on the chosen temperature

and distance values. With this range of stellar solid angles and temperatures, the

amount of unextincted stellar flux expected at 3.78 µm is then 1 − 3 Jy. Thus at

least ∼ 90% of the compact flux is in excess, and this estimate increases if we include

extinction when calculating the stellar flux at 3.78 µm.

Emission from a disk rim can account for the compact infrared excess if the

stellar luminosity is low (3 × 104 L�) and the disk rim is close enough to the star

to be unresolved. A higher luminosity (8 × 105 L�) MWC 349A sets the inner

disk radius at ∼ 40 AU in the absence of shielding (Figure 6.4). This is highly
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100 mas

Figure 6.6: Best fit Gaussian Ring + δ + Skew model shown with the VLA con-
tinuum map contours (Martin-Pintado et al., 1993). The position angle of the disk
agrees with the orientation of the dark lane in the VLA map.
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resolved and cannot contribute to a compact infrared excess. If the luminosity is

indeed as high as 8× 105 L�, material such as optically thick gas (e.g. Eisner et al.,

2009) or refractory dust (e.g. Benisty et al., 2010) must exist within the theoretical

dust sublimation radius to explain the compact infrared excess. Thus the central

geometric model component could be caused by a close-in inner disk rim, material

within the dust sublimation radius, or some combination of the two.

The inferred stellar radius and compact infrared excess are consistent with both

the YSO and B[e] supergiant scenarios for MWC 349A. Comparable stellar radii

have been inferred for Herbig Ae/Be stars and B[e] supergiants (e.g. Zickgraf, 2006;

Fairlamb et al., 2015). Observations of B[e] supergiants suggest compact infrared

excesses with comparable fractional flux to that for MWC 349A (e.g. Zickgraf et al.,

1986; Kreplin et al., 2012). Large infrared excesses are found in observations of

Herbig Ae/Be stars, in which the excess fractional flux can reach 95% (e.g. Millan-

Gabet et al., 2001). Symmetric gaseous emission has been detected within the dust

sublimation radius of several Herbig Ae/Be stars (e.g. Eisner et al., 2009, 2010;

Tannirkulam et al., 2008; Kraus et al., 2008). This emission is .AU sized and

consistent with the size of the compact component in the geometric models, given

the distance estimates for MWC 349A. Gaseous emission coming from within the

sublimation radius, which may be required if the stellar luminosity is high, would

thus support an early age for MWC 349A.

6.6.2 Disk Geometry

The range of outer radii for the geometric disk models is 44−60 mas, corresponding

to 53−102 AU given the MWC 349A distance uncertainties. This is smaller than the

gravitational radius for a photoevaporating disk, at which material would no longer

be bound and could be lost in an outflow (Hollenbach et al., 1994). The gravitational

radius can be written rg = GM∗/c
2
s, where G is the gravitational constant, M∗ the

stellar mass, and cs the sound speed. Assuming cs = 11 km s−1 (Danchi et al., 2001),

rg = 219− 290 AU depending on the assumed stellar mass. The best fit outer radii

and position angles also agree with radio observations of the bipolar outflow and
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maser emission. The H30α maser emission spots are separated by 65 mas (Planesas

et al., 1992) at a position angle of 107 ± 7◦. The best fit model is consistent with

the width and orientation of the dark lane seen in VLA data as well (see Figure 6.6;

Martin-Pintado et al., 1993). Thus the geometric model fits are consistent with a

disk bound to MWC 349A at the center of the bipolar nebula and with the same

orientation as the two maser spots.

The best fit ellipse size in Danchi et al. (2001) increases with wavelength from

a major axis of 36 mas at 1.65 µm to 62 mas at 3.08 µm. These ellipse sizes, as

well as the best fit major axis presented here (88 − 120 mas at 3.78 µm) follow a

wavelength scaling close to λ
4
3 . This trend is expected for flat, geometrically thin

accretion disks as opposed to the λ2 relation expected for flared disks (e.g. Malbet

and Bertout, 1995). Without complete radiative transfer models to compare to the

data, Danchi et al. (2001) interpreted this as evidence for a flat disk around MWC

349A.

The radiative transfer simulations show that passive irradiated disks, which have

the majority of their 3.78 µm flux near their inner rim, cannot match the observa-

tions given MWC 349A’s inclination (75◦). For low MWC 349A luminosity (∼ 3×104

L�), the extent of the emission is much too small to match the squared visibilities

(Figure 6.4). For a higher stellar luminosity (∼ 8 × 105 L�), the asymmetric disk

rim at larger angular separation causes a phase signal that is too large. A rounded

inner disk wall would produce a lower phase signal (e.g. Monnier et al., 2006). This

would be consistent with previous interferometric observations of Herbig Ae/Be

stars, which could not be fit by models with simple vertical disk rims (e.g. Mon-

nier et al., 2006; Millan-Gabet et al., 2016; Lazareff et al., 2017). However, even a

perfectly symmetric ring (see Figure 6.7) does not match the data, since the large

inclination shortens the appearance of the disk on the sky. This results in squared

visibilities that fall off too quickly with baseline length. Rounded rim models with

an inclination of ∼ 48◦ can match the data; however this is unlikely given previous

constraints on the disk inclination from radio recombination line observations (e.g.

Rodriguez and Bastian, 1994).
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In both the high and low luminosity case, reproducing the observations requires

additional emission, and thus heating, at large radii. The maser emission far from

the star supports this scenario, since masers are often caused by shocks which would

heat nearby gas (e.g. Leurini et al., 2016). The presence of an ionized outflow

(e.g. Mart́ın-Pintado et al., 2011) is also consistent with heating at large radii.

This extended emission may support a young age for MWC 349, since previous

observations of Herbig Ae/Be stars suggest the presence of extended envelopes (e.g.

Lazareff et al., 2017).

6.6.3 A Tight Binary?

Some studies suggest that MWC 349 may be a hierarchical triple, where A is a

close-separation binary surrounded by a circumbinary disk (e.g. Gvaramadze and

Menten, 2012). Regular brightness variations with a period of nine years (Jorgenson

et al., 2000) suggest that MWC 349A may indeed be a close binary system with an

orbital separation of ∼ 13 AU (7.7 - 10.8 mas depending on the distance estimate to

MWC 349A). Given their resolution, previous infrared interferometric observations

cannot rule out an embedded binary with a separation < 28 mas (Danchi et al.,

2001). Our observations also cannot rule out a close-separation binary morphology

for MWC 349A. Model fits that include two point sources within the disk clearing

can provide good fits to the data and do not tightly constrain the locations or fluxes

of either inner component.

6.7 Conclusions

We presented new, 23-meter baseline interferometric observations of MWC 349A

from LBTI. We fitted the data with geometric and radiative transfer models. Ge-

ometric models with both skew and a compact component provided the best fit

to the observations. Models including an inner clearing constrain any disk hole to

be less than ∼ 14 mas in radius. The best-fit outer radii and skew parameters in

the geometric models suggest the presence of a flat disk around MWC 349A. How-
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Figure 6.7: Top: Left: Symmetric ring model illustrating the effect of a rounded
inner disk rim. Right: RADMC radiative transfer model for a high luminosity MWC
349A. Both images have been rotated so the disk major axis is aligned with the x
axis. Bottom: Kernel phases (left) and squared visibilities (right) for the model
images, with the symmetric ring model in green and the higher stellar luminosity
radiative transfer model in purple. Black points with error bars show the observa-
tions.
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ever, radiative transfer models of highly-inclined, passive irradiated disks cannot

reproduce the observations and require additional heating at large radii. The higher

MWC 349A luminosity estimates require the presence of optically thick gas or re-

fractory dust within the sublimation radius to match the compact infrared excess.

This scenario may support a young age for MWC 349. In the low-luminosity case,

determining the symmetry of the disk inner rim or detecting gaseous emission within

the dust sublimation radius would help to constrain the age of MWC 349A. Mak-

ing this distinction and placing constraints on possible close-in companions requires

followup observations with increased sky rotation and higher resolution.
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CHAPTER 7

CONCLUSIONS

7.1 Transition Disk Searches with Non-Redundant Masking

7.1.1 LkCa 15

The NRM and direct imaging LkCa 15 data presented in Chapter 4 provided the

most detailed view of the best system for planet formation studies. The infrared

fluxes and companion positions between 2009 and 2016 were naturally explained

by the presence of planets on distinct orbits in the disk clearing. However, the

position errors prevented a precise orbital determination. The recent discovery and

imaging of LkCa 15’s inner disk (Thalmann et al., 2015, 2016), which resides at the

separation of the protoplanet candidates, highlights the importance of constraining

the companion orbits. While forward scattering from an inner disk could masquerade

as a companion in single epoch observations, it could not cause companion signals

that appear to be on Keplerian orbits. The simulations in Chapter 5 demonstrated

this. Future observations with a longer time baseline will help to pin down the

companion orbits.

7.1.2 TCha

The T Cha observations presented in Chapter 3 illustrated the potential issues

of searching for companions in skewed disks using NRM. Single companion fits

over multiple epochs resulted in erratically changing best-fit position angles. The

simulations in Chapter 5 showed that this can result from fitting an inadequate

model to noisy observations of the skewed outer disk. The multi-epoch closure

phase signal was better explained by scattered light from the outer disk than by a

true companion. These results highlight the importance of combining simulations
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with model fitting and image reconstruction.

7.2 MWC 349 and the Dual-Aperture LBTI

Chapters 2 and 6 demonstrated the utility of the dual-aperture LBTI using obser-

vations and simulations. Even with noisy data and a small amount of sky rotation,

the MWC 349A disk model in Chapter 6 was much better constrained by the dual-

aperture data than by the short baselines alone. This led to the detection of skew

and a compact infrared excess in the MWC 349A disk that was not detected in

previous Keck studies (Danchi et al., 2001). The simulations presented in Chapter 2

showed that the dual-aperture LBTI can provide GMT resolution now, for datasets

with sky rotation and noise properties similar to the LkCa 15 data in Chapter 4.

7.3 NRM Data Reduction and Imaging Techniques

Chapter 2 presented the python pipeline applied in Chapters 3 - 6. It demon-

strated the effects of various reduction steps on the scatter in the observables and

discussed the optimal calculation of those observables. It showed that simple meth-

ods taking only calibrator observations into account provide nearly equal scatter

as previously-applied optimized algorithms, but with fewer arbitrary biases. The

image reconstruction simulations showed that factors such as the input image and

error estimation can have a dramatic effect on the final reconstructed image. Like

the case of TCha, this demonstrates the importance of using modeling to evaluate

the results of reconstructed images.

7.4 Noise Sources and Current Limitations

The achievable contrast of NRM observations is limited by noise sources that can

be split into random, (quasi-)static, and calibration errors. While closure phases

are robust to phase errors to first order, they suffer from higher order phase noise.

For typical observing conditions, random errors due to fundamental noise sources
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such as photon, read noise, and dark current lead to closure phase uncertainties of

∼ 0.5◦ (e.g. Ireland, 2013). Other random sources of noise include short-lived phase

variations (speckles) due to limited adaptive optics correction. Residual phase errors

shift the fringe pattern of the various baselines on the detector, and will change on

the timescale of the inverse AO bandwidth (∼ 1− 10 ms). The exposure times used

for NRM observations are on the order of seconds and can thus be thought of as

the sum of many fringe patterns at slightly different positions determined by the

AO system’s RMS phase error. Typical RMS errors of ∼ 150 nm in the infrared

(λ ∼ 3 µm) for an AO system operating at 100 − 1000 Hz lead to random closure

phase errors of < 0.1◦ (e.g. Ireland, 2013). The squared visibility error induced by

these phase variations is . 0.02. Squared visibilities are also subject to random

scintillation noise, which would affect the instrumental visibility amplitudes.

Speckles arising from uncorrected turbulence will average out on the scale of

milliseconds and will thus cause no static closure phase errors. Those caused by

temperature and instrumental changes (e.g. moving optics, flexure) are quasi-static;

they have lifetimes of minutes to hours and need to be calibrated out (e.g. Hinkley

et al., 2007). These degrade closure phases to a greater extent than temporal phase

variations. Simulations applying sinusoidal phase variations with spatial frequencies

of ∼ 0.1 − 1 cycles per meter resulted in RMS closure phases of ∼ 1◦ for 90%

Strehl (Ireland, 2013). This is much lower than the complex visibility phase errors

caused by spatial phase variations (∼ 18◦ for 150 nm RMS at 3 µm). With perfect

calibration, this noise source can be thought of as static; however any change in

the source of the speckles between target and calibrator measurements will cause a

calibration error. The resulting calibrated closure phase scatters are then a degree

to a few degrees.

Dispersion effects can also cause differences in target and calibrator phases that

contaminate the calibrated closure phases. The phase signal due to spectral dif-

ferences between targets and calibrators is similar to that of a close-in compan-

ion (e.g. Le Bouquin and Absil, 2012; Ireland, 2013). For spectral differences of

∼ 10%, assuming target and calibrator observations occur at the same airmass, the
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dispersion-induced calibration error may be a tenth of a degree to a couple of de-

grees, depending on the bandpass. Dropping the assumption of common airmass

between target and calibrator observations increases the phase discrepancy.

Calibration errors caused by speckle lifetimes and dispersion effects dominate

the ground-based NRM error budget. The closure phases observed during a single

dither have scatters consistent with short-lived speckles and fundamental random

noise (∼ 0.1◦). However, the raw closure phases have RMS values of a few degrees,

consistent with quasi-static speckles. When calibrated, typical closure phases still

have scatters consistent with either differential refraction between calibrator and

target measurements, or residual quasi-static errors (& 1.0◦). For comparison, a

∼ 80 mas, ∼ 5 − 6 magnitude companion would produce a closure phase signal

with a magnitude of ∼ 1◦ for typical masks on 8-meter class telescopes. This makes

detecting companions with contrasts greater than ∼ 6 magnitudes difficult.

7.5 Future Directions and Improvements

7.5.1 From the Ground: Extreme-AO Systems

NRM and related Fourier techniques will complement the next generation of ground-

based instruments. Upcoming Extreme Adaptive Optics (ExAO) systems (e.g.

Larkin et al., 2014; Groff et al., 2013) offer improved wavefront control over pre-

vious instrumentation. While they are designed to achieve < 100 nm of dynamic

RMS wavefront error, ExAO systems such as GPI have measured RMS errors of

100 − 150 nm (e.g. Macintosh et al., 2014). This means that quasi-static speckles

will still cause raw phase errors of a few to ten degrees. Furthermore, the next

generation of ground-based telescopes will have segmented mirrors, which can have

phase jumps that are difficult to calibrate (e.g. Lacour et al., 2014). All of these

factors will make closure phase useful for eliminating phase errors to first order.

As the wavefront errors become lower, and Strehl becomes higher, the filled-

aperture kernel phase technique (e.g. Martinache, 2010) can be a powerful method

of PSF deconvolution. In Chapter 2, I described kernel phase’s applications for
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NRM observations. For filled-aperture datasets we can apply the same projection

methods, treating them as if they were taken with a redundant array. The potential

for redundant baselines to add incoherently requires that this technique be applied at

relatively high Strehl, where speckle noise produces lower phase errors. Simulations

have shown that, at Strehl of ∼ 0.9, phase errors due to quasi-static speckles are

∼ 3◦−10◦, closure phase errors are ∼ 0.5◦−1◦, and kernel phase errors ∼ 0.2◦−0.5◦

(Ireland, 2013). Lower Strehl simulations (S ∼ 0.6) resulted in kernel phase scatters

that were lower than those for the raw phases, but higher than those for closure

phases. However, observations with Palomar’s PALM-3000 ExAO system (Bouchez

et al., 2008), with a K band Strehl of 0.5 showed that filled-aperture kernel phase

and NRM performed comparably for test observations on a ∼ 27 : 1 contrast binary

system (Pope et al., 2016).

Closure and kernel phase are likely to remain useful for accessing angular sep-

arations . λ/D from the ground. This is because imaging with complex visibility

phases, rather than closure or kernel phases, requires either extremely high (∼ 0.999)

Strehl, or extremely stable and easily characterizable residual phase errors. These

scenarios would result in raw and calibrated complex visibility phase scatters, re-

spectively, of . 1◦. However, a Strehl of 0.999 requires RMS wavefront errors of

∼ 10 nm, much lower than the targeted RMS errors of ExAO systems. Even with

a mask to prevent redundancy noise, ground based instrumentation is too unstable,

and calibrator selection and observations are too difficult to calibrate the phases

themselves to high precision.

While more work is needed to understand the conditions in which kernel phase

outperforms NRM, it is a promising alternative in the moderate-to-high Strehl

regime. By providing comparable resolution to NRM with much greater through-

put, kernel phase could enable more efficient protoplanet searches from the ground.

It more easily fills in the Fourier plane and thus has the potential to produce less

ambiguous reconstructed images. Furthermore, the higher throughput means that,

used in conjunction with an integral field unit, kernel phase could provide the first

spectra of forming planets. This would enable detailed case studies of individual
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protoplanets, and could lead to new constraints on their accretion mechanisms and

compositions.

7.5.2 From Space: NRM on James Webb Space Telescope

Scheduled to launch in late 2018, James Webb Space Telescope (JWST) will also

benefit from an NRM mode (e.g. Sivaramakrishnan et al., 2012). While JWST will

not encounter speckle noise caused by an atmosphere, quasi-static speckle noise may

still exist due to imperfect mirror segment phasing and temperature changes. These

noise sources will dominate for high contrast companion detections, making NRM

a powerful PSF characterization tool. While JWST is expected to have Strehls

& 0.8 (e.g. Lightsey et al., 2014), which would cause moderate instrumental com-

plex visibility phases, they will be much more stable than the quasi-static residual

phase errors experienced on the ground. Thanks to this stability, complex visibility

phases can be calibrated to much greater precision, enabling imaging from phases

themselves rather than closure or kernel phases (e.g. Sivaramakrishnan et al., 2012).

Its moderate aperture (6.5 meters) compared to ground based facilities means

that JWST will not probe smaller separations than previous NRM studies. How-

ever, its lack of atmospheric noise sources mean that it can achieve much higher

contrast. Simulations have shown that NRM on JWST could detect companions

with contrasts of ∼ 8− 9 magnitudes at ∼ 100 mas separation. JWST with NRM

will reach deeper contrasts at separations only slightly larger than those currently

accessible from the ground. For separations outside λ/D, where the separation-

contrast degeneracy described in Chapter 3 is not an issue, it could place very tight

constraints on companion fluxes. This corresponds to ∼ 15 AU separation compan-

ions at transition disk distances (λ/D at ∼ 3 µm). James Webb has the potential

to discover lower mass planets than we can currently detect at these separations,

populating new areas of the planet parameter space. The techniques presented here,

applied on the next generation of space- and ground-based telescopes, will eventu-

ally allow us to build a protoplanet census that we can compare to planet formation

models.
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Zsom, A., C. W. Ormel, C. Güttler, J. Blum, and C. P. Dullemond (2010). The
outcome of protoplanetary dust growth: pebbles, boulders, or planetesimals?
II. Introducing the bouncing barrier. A&A, 513, A57. doi:10.1051/0004-6361/
200912976.


	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	CHAPTER INTRODUCTION
	Protostar and Circumstellar Disk Formation
	Transition Disks: Natural Planet Formation Laboratories
	Transition Disk Clearing Mechanisms

	Planet Formation
	Terrestrial Planet Formation
	Giant Planet Formation

	Observational Planet Formation Studies
	Minimum Mass (Extra-)Solar Nebula
	Planet Demographics
	Protoplanetary Disk Imaging

	Open Questions and the Need for Direct Protoplanet Observations
	Direct Imaging of Mature Exoplanets

	Direct Imaging Methods: State-of-the-Art, Limitations, and Novel Techniques
	Adaptive Optics
	Post Processing Methods
	Coronography
	Optical Interferometry
	Non-Redundant Masking

	Outline of this Thesis

	CHAPTER DATA REDUCTION AND IMAGE RECONSTRUCTION TECHNIQUES FOR NON-REDUNDANT MASKING
	Introduction
	Experimental Setup
	Observational Strategy
	Data Reduction
	Dark Subtraction, Flat Fielding, and Background Subtraction
	Channel Bias Correction
	Bad Pixel Correction
	Noise Versus Reduction Steps

	Closure Phase Calculation
	Kernel Phase Projection
	Squared Visibility Generation
	Calibration
	Instrumental Signal Fitting
	Optimized Calibrator Weighting

	Image Reconstruction
	Optimization Engines
	Regularizers
	Degeneracies
	Simulated Data Reconstructions: BSMEM versus SQUEEZE
	GMT versus LBT: (u,v) Coverage and Sky Rotation Testing

	Conclusions
	Appendix: BSMEM and SQUEEZE Image Reconstruction Tests
	Initial Images
	Total 2 Scaling
	Weighting By Baseline Length
	Closure Phase and Squared Visibility Weighting


	CHAPTER NEW SPATIALLY RESOLVED OBSERVATIONS OF THE T CHA TRANSITION DISK AND CONSTRAINTS ON THE PREVIOUSLY CLAIMED SUBSTELLAR COMPANION
	Introduction
	Experimental Setup
	Observations
	New Magellan/MagAO/Clio2 Data
	Previously Published 2010 VLT/NaCo Data
	Unpublished VLT/NaCo Data

	Data Reduction
	Calibration
	Consistency Checks

	Binary Fitting
	Noise Simulations
	Results
	2010 VLT/NaCo L' Data - Initial Detection
	VLT/NaCo 2011 L' Data
	VLT/NaCo 2012 L' Data
	VLT/NaCo 2013 L' Data
	VLT/NaCo 2013 Ks Data
	Magellan/MagAO/Clio2 2013 Data

	Discussion
	Companion Orbital Motion
	Forward Scattering from the Disk
	Optically Thin Disk Asymmetries
	Chance Alignment
	Systematic Errors

	Conclusions
	Appendix A: Additional Ks and H Band Data Sets
	2010 VLT/NaCo Ks Data - Published Non-detection
	VLT/NaCo 2011 Ks Data
	VLT/NaCo 2013 H Data

	Appendix B: Data and Model Plots
	Appendix C: Kernel Phase Projection

	CHAPTER ACCRETING PROTOPLANETS IN THE LKCA 15 TRANSITION DISK
	Accreting Protoplanets in the LkCa 15 Transition Disk
	Methods 1: LBT Observations and Data Reduction
	Methods 2: LBT Image Reconstruction, Model Fitting, & Parameter Error Estimation
	Methods 3: Companion Parameter Error Estimation for Previously-Published Keck Data
	Methods 4: MagAO Data Reduction and Analysis
	Classical ADI reductions
	KLIP-ADI Reductions
	Photometry and Astrometry
	Signal-to-noise of the H Detection
	Fidelity of the LkCa 15 b Detection
	Limits on LkCa 15 b SDI Continuum Flux
	Limits on LkCa 15 c H Contrast

	Methods 5: Stability Analysis with LkCa 15 d

	CHAPTER IMAGING PROTOPLANETS: OBSERVING TRANSITION DISKS WITH NON-REDUNDANT MASKING
	Introduction
	T Cha
	Previously Published Observations
	Companion Scenario
	Scattered Light Scenario

	LkCa 15
	Previously Published Observations
	New LBT L' Observations
	Multiple Companion Scenario
	Scattered Light Scenario

	Conclusions

	CHAPTER IMPROVED CONSTRAINTS ON THE DISK AROUND MWC 349A FROM THE 23-METER LBTI
	Introduction
	Technique
	Observations
	Data Reduction
	Model Fitting and Image Reconstruction
	Geometric Models
	Radiative Transfer Modeling
	Image Reconstruction

	Discussion
	Compact Infrared Excess
	Disk Geometry
	A Tight Binary?

	Conclusions

	CHAPTER CONCLUSIONS
	Transition Disk Searches with Non-Redundant Masking
	LkCa 15
	TCha

	MWC 349 and the Dual-Aperture LBTI
	NRM Data Reduction and Imaging Techniques
	Noise Sources and Current Limitations
	Future Directions and Improvements
	From the Ground: Extreme-AO Systems
	From Space: NRM on James Webb Space Telescope


	REFERENCES

