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ABSTRACT 

The traditional metropolitan water -supply planning problem is 
characterized by two main steps: 

(a) project future water requirements based on present rates of 
economic growth,, and 

(b) schedule water development projects to be introduced into the 
system on time to meet these predicted requirements. 

The City of Tucson plans its water supply essentially in this manner. The 
prime objective of this phase of our research was to formally review the 
above problem and to formulate it in terms of concepts of management 
science. Implied commitments to accept Colorado River water and gradual 
changes in quality of Tucson's groundwater force serious consideration of 
the economic tradeoffs between alternative sources and uses of water. 
These alternatives lead to a need for a restatement of water - supply planning 
objectives in more precise forms than have heretofore been put forth. The 
doctoral dissertation by G. Clausen addresses itself to the above restatement 
with actual data on the Tucson basin. 

The various water -supply planning objective functions including the 
traditional one are all expressions which maximize the difference between 
gains and losses involved with water development. They can be expressed 
mathematically and differentiated on the basis of how these gains and 
losses are defined. In the traditional sense, gains derived from meeting 
projected requirements are assumed to be infinite, and losses are taken to 
be actual project costs and not social costs associated with undesirable 
economic growth. Therefore, maximization of net gains is accomplished by 
minimizing project costs, and gains do not even have to be expressed. 
Consideration of alternatives, however, requires that gains be expressed 
quantitatively as benefits to individuals, communities, or regions, i.e., 
primary, secondary, or tertiary benefits. The same logic holds for the 
expression of total costs. 

An objective function, used to express the water- supply problem in the 
Tucson Basin, considers gains as cash revenue to a hypothetical central 
water - control agency which sells water to the users within the basin. 
Losses are considered as marginal costs to the agency for producing, treating, 
and distributing water. The concept of economic demand is used to estimate 
the amount of water that municipal, industrial, and agricultural users will 
purchase at different prices. Linear demand functions are postulated. The 
possible sources of supply considered are groundwater from within the basin, 
groundwater from the neighboring Avra Valley Basin, reclaimed waste water, 
and Central Arizona Project water from the Colorado River. Constraints are 
formulated to allow for limits on water availability, for social limits on 
water prices, and for minimal requirements of each user over a specified 
time period; these permit a determination of optimal allocations of water 
under different conditions to answer "what if' questions, given the 
assumptions of the model. The resulting static model is termed a pricing 
model and is optimized by first decomposing the objective function into 
component parts with each part representing terms involving only one source 
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of water. In instances involving inequality constraints, quadratic 
programming is used. In other instances where equality constraints or 
unconstrained conditions exist, Lagrange multipliers and calculus methods 
are used. These latter conditions arise when it is determined at which 
point certain constraints become inactive. In the completely general case, 
this type of decomposition is not possible, but it appears that in many 
specific uses objective functions of this nature can be profitably 
decomposed and optima determined much more conveniently than otherwise 
possible. The model clearly identifies the opportunity costs associated 
with the required use of Colorado River water in lieu of the cheaper 
Tucson groundwater. 
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CHAPTER 1 

INTRODUCTION 

It is becoming increasingly apparent that the aims of large- scale 
water development are changing. Water is no longer thought of as a 
resource to be exploited by anyone as he sees fit for his own economic 
gain or need, but it is thought of as a resource belonging to all the 
people to be exploited as they determine for the most benefit of all 
concerned. This means in general to use water to help improve the quality 
of the total environment, i.e., the entire region or the entire country. 
These new aims require _sound planning procedures capable of considering all 
the alternatives possible for water use ._ in the total environment. As 
stated by the National Academy of Science (1968), "the best cure for a 
threatening water shortage is not necessarily more water; savings in water 
use, or transfer of water use to less consumptive, higher yield -applications, 
or discovery of new techniques of water management may offer better 
solutions. "` 

This investigation is an effort directed toward clarifying the 
objectives of water -supply problems and introducing new planning techniques. 
It should be emphasized here that it is the planning process and not the 
plan itself that we are most interested in The purpose is to develop 
processes, attitudes and perspectives which make sound planning possible 
rather than to simply have a water -supply plan. The actual plan is likely 
to become obsolete shortly after it is developed due to reappraisal and 
reevaluation of both objectives and data input. The process, which 
created the plan if thoughtfully conceived, nurtured, and controlled, is 
not. 

In operations research we attempt to formalize the general planning 
process and then proceed to use the process to achieve the best plan 
possible under the circumstances. First, the physical- economic system with 
which we are dealing must be defined and the interaction of the system 
variables must be quantified. Next, we need a measure of system 
effectiveness expressible in terms of the system variables. This measure 
of effectiveness is referred to as an objective function. Finally, we 
must be able to identify which values of the system _variables yield 
optimum effectiveness. Just as all but. the simplest decisions are made 
pursuant to the consideration of certain requirements, there also exist in 
most cases certain constraints concerning the variables which must be 
considered. The constraints are in the form of physical, economic, or 
social limitations. 

Most prior applications of operations research to water -supply prob- 
lems have been concerned with formulating a model to fit a particular 
programming technique. Usually only one objective function and one 
programming technique are presented. The objective functions are not 
clearly interpreted in terms of welfare economics. The above are major 
criticisms' often' leveled at operations research studies. Therefore, in 
chapter 2, all the various water -supply planning objective functions are 
formalized in general mathematical terms. Certain objective functions 



imply certain constraining relationships among the variables, and these are 
also set forth in general terms. The economic theory underlying the 
various objective functions is explained in the latter part of the chapter.` 

In chapter 3, the water- supply problem in the Tucson Basin, Arizona, 
is used as an illustrative example. It is used to demonstrate the 
application of one of the objective functions set forth in chapter 2. The 
objective function used is referred to as the pricing model and involves 
the consideration of water as a commodity rather than a free good. In 'the 

model, the sale of ̀ the commodity, water, is- accomplished by a supposed 
central water- control agency, but this agency, being a public entity, is 
guided in its actions by the people. 

The water-supply problems of the Tucson Basin are typical of the 
problems encountered in other arid and semiarid regions, that is, an 
economy with certain trends has been established on a groundwater supply 
which is being used at a faster rate than the average rate of recharge. 
This condition ̀ leads to a decline in the groundwater level to a point 
where the public realizes that in order to maintain the prevailing economic 
trend other water sources should be acquired. The question then is what is 
the most efficient plan for acquiring and allocating this water to the 
municipal, agricultural, and industrial users'.. Along with this, a basic 
premise of the study is that the alternative of altering the economic trend 
should also be considered.'' Specifically, this means using water -in less 
consumptive, higher yield applications, however these may be defined. 

The pricing model presented` required input data concerning water 
availabilities, water costs, and demand functions relating the price 
charged for water to the amount expected to be used at that price. These 
data are obtained for the Tucson Basin model which essentially involve the 
determination of the optimal quantities of water from each source to be 
used by the municipal, agricultural, and industrial users in the basin. 
The sources of water considered are the Tucson Basin groundwater, reservoir, 
groundwater from the neighboring Avra Valley Basin, reclaimed waste water, 
and Central Arizona Project water. Additional data describing the 
hydrologic- economic system are also obtained. The model is solved using a 
decomposition technique based on cost aggregation which is described in 
the text and a quadratic programming algorithm. 

The distinctions of and relationships between static and dynamic 
models should also be made clear. A static model is one which simulates a 
situation which does not change with time or represents only one time 
period. In a dynamic model, the conditions change. A static model can be 
converted into a dynamic model, however, by redefining the coefficients in 
the objective function or changing the constraining conditions for each of 
a consecutive series of time periods. In this study, the model developed 
is assumed to represent conditions during one time period, but it could 
be expanded into a dynamic model as mentioned. 

With studies of this type, professionals are admittedly encroaching on 
policy issues beyond their range of expertise. This point is also brought 
to the fore by Davis (1968) in his section on "The Task of Political 
Responsibility." It seems as if this overlapping of responsibility betweer 
the engineer - planner and the politician is not only inevitable, but, if 
pursued diligently, desirable because it can lead to inducing the politiciE 
and administrator to play more responsible roles in the planning process. 
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CHAPTER 2 

WATER ALLOCATlON METHODS 

Traditionally, the water -supply problem for a community or group of 
people has been handled in the following manner. The citizens first 
realize that a problem does exist, that is, they arrive at the belief that 
their existing supplies are not adequate to meet the projected require - 
ments`which they have decided will be necessary to fulfill the desires of 
future inhabitants of their community or area. Then a water- resource 
engineer is officially engaged to undertake a search for additional sup- 
plies, plan projects which will allow for the development of these supplies, 
and schedule the _construction of these projects to come on line in time to 
meet the projected requirements. In- many ,instances, the engineer . is 
permanently engaged in the person, for instance, of a metropolitan water 
department to help define community water problems as well as solve them. 

All engineers, however, are not satisfied with this type of approach, 
and have argued that a more efficient use of the water, resource should be 
made. This argument until recently has been overshadowed by the fact that 
surplus water had been available. But, as readily available sources 
dwindle and surplus water becomes more and more expensive to develop, it is 
beginning to be recognized that existing supplies are going to have to be 
utilized in a more efficient manner. This goes along with the general 
theme of improving the quality of our total environment rather than allowing 
the rather haphazard growth of resource use to continue unabated. 

The proponents of this theme in the field of water resources point out 
two concepts which for the most part have been sorely, lacking in the 
traditional approach. The first is.that,all the alternative and somewhat 
more imaginative schemes have not been taken fully into account and -as: long. 
as they are not considered we cannot be assured of having devised the type 
of water -supply plan which will best meet our objectives. The most 
prominent among these alternatives are reuse of waste water, artificial 
recharge, and transfer of water between uses. The second concept is that 
water has not been considered as a commodity for which a market does exist. 
This means that economic principles governing the allocation of supplies 
between competing, uses have not been employed. It must be recognized that 
the social and legal atmosphere surrounding any given situation may make 
the practical application of either or both of these two concepts very 
difficult, but these facts do not relieve the engineer of the 
responsibility to develop theoretical plans which encompass these concepts. 

In this regard there are two general approaches that he can take: 
(1) meet projected requirements at minimum cost or (2) maximize net 
benefits accruing from water, use. The approach taken depends on the above - 
mentioned social and legal constraints within which he must ultimately 
operate. In general, he must be satisfied with the first approach when 
working with private -firms :and certain low-level planning agencies such as 
small municipalities or irrigation districts which do not consider water as 
a °:limiting resource and are willing to pay high rates in order to maintain 
their present per capita use standards. In these cases, the idea of 
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considering alternative uses can be introduced. The second approach can 
sometimes be taken when dealing with high -level planning agencies such as 
state or regional planning boards which are in position allowing them to 
judge at which place or in what activity a certain water resource can be 
used most efficiently. In these cases, both the alternative uses and 
commodity aspect of the water resource can be considered. 

In this chapter general deterministic models, based on the above - 
mentioned two concepts from which specific water- resource allocation prob- 
lems can be deduced will be discussed. These concepts will first be 
discussed in terms of general, deterministic, static models, that is, 
models which do not change with time Later, the time dimension will be 
added to the models and discretization in space will be discussed. The 
static models are presented first only for simplification. Also a need is 
foreseen to explain the basis for the models in terms of economic systems 
which have reached states of dynamic equilibrium (where the forces of 
supply and demand are in balance) and can therefore be described as static. 
Next, refinement possibilities for cases involving 'stochastic inputs will 
be pointed out. A discussion of both the traditional optimization tools 
and the relatively new mathematical programming techniques for optimizing 
the models will follow Finally, we will review and compare several 
recent efforts by other investigators in this field. 

Allocation Models 

Classification of Problem Types 
by Constraints 

Whether or not we consider water as a` limiting resource we must 
consider capital as. one. Therefore, in both of the above approaches we 
cannot plan in a haphazard fashion but must plan so that we get the most 
out of the money available. .In.this endeavor, formalized optimiation 
techniques can be and have been used to find plans which either minimize 
costs or maximize benefits according to certain objectives and subject to 
various constraints 

These constraints fall generally into two categories: those which 
require the total amount of water supplied by sources to be greater than 
or equal to a specific requirement and those which require the total amount 
of water used by uses from any one source to be less than or equal to the 
amount available from that source. The former or requirements constraint 
can be expressed as 

. 

n- 

E q. > Q. 
i=1 1J J 

j= 1, (,2-1) 

where gij is the amount of water transferred from source i to use j and Q. 

is the total amount of water required by use j. The second or availability 
constraint can be expressed as 

m 
E qi < Q. = 1, 2, ..., n (2 -2) 

j =1 
J 

where Qi is the total amount of water available from source i. 
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The two approaches mentioned earlier can be distinguished by the class 
of constraints present. The requirements approach must have both classes 
of constraints, but the benefit- maximization approach needs only the 
availability constraints. In other words, if we are to attempt to 
maximize benefits for any set of alternatives other than those specified by 
meeting projected requirements we must have the freedom to do so. 

Requirements Approach 

If projected requirements must be met and the objective Z is to 
minimize total cost, the function to be minimized has the following 
general form: 

m n 
Z = E E c. q. (2 -3). 

j =1 i =1 
1) 13 

where cij is the cost of transferring a unit of water from source i to use 

j. Unit costs do not consider economics of scale and are implicitly linear. 
This is a basic assumption and implies the idea of independence among 
variables. We assume that cij is totally independent of not only its 

associated q but also all other qi 's, i.e., cif is the same regardless 

of the level of its associated qj. Furthermore, it is not affected by 1 

the presence or level of other q1 is in the model In this static model 

the gij .o 's are not independent of one another, as witnessed in the 

constraining relationships, and no assumption as to their independence has 
been made. 

This type of problem is termed a "transportation or distribution 
problem" in operations research, and it was originally used to determine 
the most efficient shipping patterns for supply missions during World 
War II. It is helpful to be able to recognize the correspondence between 
industrial or military type problems and water -resources problems; there- 
fore, we will elucidate this point in the context of transportation 
problems. Suppose we have a number of manufacturing plants each producing 
a`known quantity of the same product (these are analogous to sources of 
water supply). We also have a number of destinations, each of which has a 
particular requirement for this product (these are analogous to the various 
types of water users and their requirements). There is a shipping cost for 
shipping one unit of product from each manufacturing plant to each 
destination (these are analogous' to costs of transferring water) . The 
problem, then, is to determine how to distribute goods from the plants to 
the destinations in order to minimize total shipping cost and meet supply 
and requirement restrictions, i.e., how to meet the water - supply require- 
ment at least cost. The objective function is that given by (2 -3). 
Simple algorithms are available for solving these type problems. 

If it is feasible to assume that costs are linear functions of their 
associated quantities of water, the more realistic nonlinear relationship 
between cij and its associated qij could be substituted into the objective 
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function as it stands in (2 -3). The solution, however, would require a 
nonlinear optimization technique which would not be nearly as easy to 
apply in general as the well -known transportation algorithm. 

It is interesting to note that in requirements -type models it is 

inherently assumed that the greatest benefits, both economic and social, 
direct and indirect, will arise when a predetermined amount of water is 
supplied to each use. Therefore, in this rather constrained situation, 
the least -cost solution is considered by some to also be the solution 
which maximizes net benefits. 

Net- Benefits Approach 

If the requirement constraints can be relazed from those given in 
(2 -1), where a projected requirement for each use is specified, to the 
following 

m n 
E E q1 > Q (2 -4) 

j =1 i =1 

where Q is the total amount of water required by the region as a whole and 
no specification is made as to individual use requirements, then the idea 
of net -benefit maximization can be introduced, that is, as soon as the 
requirements of the type (2 -1) are relaxed, some freedom of choice is 
allowed and this is all that is needed to allow the net -benefit maximiza- 
tion approach to be used. 

An objective function using constant unit net benefits bij can be 

maximized with linear programming techniques in the same manner as 
equation (2 -3) and takes the form 

m n 
Z = E E b q. 

j =1 i =1 17 
i 

where b. is the benefit accruing from a unit of water being transferred 
ij 

from; source i to use j. With linear benefit and cost functions, (2-5) is 
a simpler- representation of 

(2 -5) 

m m n 
Z= E B. - E E C. 

j=1 j j=1 i=1 
i (2 -6) 

where B. is the gross benefit arising from transferring some quantity of 

water to use j and C. is the total cost of transferring this water from 
ij 

source i.to -use j. In order to maximize the function, of course, both trie 

benefits and costs would be expressed as functions of their associated 
quantities of water and could be nonlinear as well as linear. 

If the requirement constraint can be relaxed- altogether, the net 
benefit maximization approach can operate with complete freedom subject 
only to the availability constraints. The approach inherently assumes an 
overall controlling agency with the power to specify how much water each 
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type of user will be allowed. We can also visualize the existence of tiers 
of controlling agencies below this overall agency with each receiving an 
allotted amount of water from its superior and in turn allocating this to 
its indigenous sub- uses. For instance, an irrigation district could 
receive water from a basin -wide planning agency and in turn allocate this 
water to types of farming activities within its jurisdiction with an 
effort to maximize benefits to the irrigation district. In our society, 
however, we prefer to look at the lowest member of this tier first, that 
is, the individual. For instance, how much water should the individual 
farmer or industry purchase in order to maximize his or its individual 
profit ? Whether we view this tier from the top or bottom, the supply - 
demand relationships have the same fundamental economic bases. These will 
be discussed - in the next section, but before doing that let us analyze the 
term "benefit. ". 

Definition of Benefits. 

First of all, it seems that benefits resulting from the use of water 
are most quantifiably assessed in cases where the water is used in 
agriculture. The amount of water needed to grow a certain crop can be 
determined : - So, at least in this case, a good estimate of primary or 
direct benefits, that is, benefits to the user of the water resource, can 
be obtained.: Even these primary benefits are very difficult to estimate 
for all other types of uses. The benefit picture is not complete without' 
the inclusion of indirect benefits, however. In most cases the total 
benefit picture is ; very difficult to describe because use of water by one 
sector- of. the economy- creates reverberations throughout the whole economy 
which.: give rise to a myriad of indirect benefits- ,and-costs for which 
account should be made. Input - output models which attempt-to-show how the 
output from each sector of the economy is distributed among the other 
sectors and, likewise, how each sector obtains from the, others: its needed 
inputs are efforts directed toward putting g monetary values on these 
indirect benefits. A detailed discussion of the application of these 
models is given by Martin and Carter ( 1962). Efforts such as these are 
prodigious works because of the immense amount- of data required and are 
prepared on a large -area basis, for instance, nationwide or statewide. In 
the end, numerous assumptions still have to be made, but studies such as 
these are important as realistic methods of quantifying total benefits. In 
order to use these studies for sub- areas within the study area, the sub -areas 
must be considered as microcosms of the study area. 

In the case of a water -supply system, the profits accruing from the 
sale of water can be considered as a measure of system effectiveness just 
as can the above -described benefits. In fact, profits are the measures of 
effectiveness of any business firm and as such can be thought of as 
benefits to the firm. If for some reason it would be desirable to operate` 
a water-supply system as a business firm, the profits to the agency 
operating the system would be the total revenue paid by the water users' 
less the total costs of obtaining, treating, and distributing this water. 
The objective here is to maximize the following function 

rn m n 
Z = E R. - E E C. (2 -7) 

j =1 3 j =1 i =1 lj 
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where R. is the total revenue collected by the agency for water from use j 

and C. is the total cost to the agency of transferring this water from 
lj 

source i to, use j 

The fact is that water- supply systems are normally publicly owned and 
not operated to maximize profits per se. But this does not mean that in 
the interest of efficiency they cannot work toward maximizing profits 
within the.. publicly set constraints which they must operate. In fact, it 
will be shown later how a central water- control agency could be operated 
so as to maximize its internal profits for the sake of efficiency. 

The introduction of price requires recognition of the concept of 
economic demand, the relation between water use and price. This concept 
recognizes that price has an effect on the amount of water used and that 
given the opportunity water users will adjust their use in relation to 
cost. The relative change in use with a change in price is known as the 
elasticity which is expressed mathematically as 

_ eEt 
Q. p 

where p is the price per unit and Q is the quantity at which e, the . 

elasticity is measured. Thus, if a doubling of price would decrease use by 
20 percent, the elasticity is said to be 0.20.. If the demand is elastic, 
use is dependent on price 

There, is also the possibility of cross elasticities being of impor- 
tance in water supply, that is, the amount of water used by one sector 
might, be affected by the amount used by another sector or, conversely, the 
price charged another sector. Cross elasticities can be expressed 
mathematically as 

dQ1 _ dpi dp2 

Q1 
el 

Pi 
+ e1,2 (2 -9) 

(2 -8) 

where pl is _ the price per unit charged the first sector, Q1 is the quantity 

used by the first sector and el is the elasticity between Q1 and pl. The 

price p2 charged the second sector affects Q1 through the cross elasticity 

value el 2 A considerable amount of elasticity does exist for water sales 
and, hence, demand considerations are important in planning. 

We are now at the point of interacting with the basic ideas of public 
pricing policy and the theory of the firm. These ideas have been well 
expressed for quite some in the economic literature, but they will be 
developed here purely in the context of water resources and for the 
purpose of superimposing this field of economics on the systems approach 
to water allocation problems as described above. The economic fundamentals 
used in the next section were gathered from Chiang (1967), Bonbright (1961). 
Maass et al. (1962) , Hirshl_ eifer, De Haven, and Mi.iliman -(1960) , and 
Samuelson (1964). 
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Economic Principles 

In very general terms, every organization's problem, whether this 
organization be a nation or an individual, is to maximize the difference 
between its gains and its losses (if we use the terms gain and loss in a 
very broad sense). The degree to which they do this can be thought of as 
the degree of economic efficiency which they attain. We will endeavor to 
show here in economic terms how the maximizing of economic efficiency 
within the framework of pure competition or monopolistic competition is the 
same as optimizing the objective functions set forth in (2 -6) and (2 -7) 
respectively. 

Pure, Competition 

One of the basic economic axioms is that an optimum condition, from 
the point of view of overall economic efficiency, exists in the presence of 
a freely competitive market. Of course, in the water -supply field we do . 

not have anything approaching a competitive situation, but if the forces 
operating in this situation are understood, the water - control agency can 
operate so as to simulate the competitive:, model. Thus, by focusing 
attention on the nature of a competitive market, the economic nature of a 
publicly owned water utility can be brought into perspective. Actually, it 
is common practice among economists to design public utilities to function 
in such a way as to emulate a competitive market. 

This market is characterized by the existence of enough consumers and 
producers to force the supply of and demand for a given commodity, in 
this case water, to an equilibrium condition. The equilibrium condition, 
as shown in Fig. 1, is found at the intersection of the supply and demand 
curves and prescribes a price per unit volume of water and a total level of 
-water production that would occur in a purely competitive situation. In 
.reality, this equilibrium condition is rarely attained because the market 
framework is continually shifting in time, and it takes time for the 

- mrarket. conditions to catch up with each new shift. The reason that total 
production would be expanded out to the equilibrium point is that this is 
the only point at which individual consumers would be maximizing their net 
satisfaction while paying the exactly same price that in turn maximizes the 
net revenue of all the individual suppliers at this level of production. 
Everyone all this time acts only in his own self- interest. To see how 
these individual maximizations take place, it is necessary to look in more 
detail at the situation from both the consumer's and producer's viewpoint. 

For each different unit price of water offered to the consumer, he 
will purchase a different quantity. Assuming that at each price, he can 
purchase whatever quantity he desires, he will purchase the amount which 
maximizes his net satisfaction (however he personally may define this) for 
the use of this water at that price. 

In the competitive market situation, he is only offered water at a 
single price (the competitive price) , but he can buy as much as he wants 
at this price. Therefore, in his own self- interest he will buy the amount 
of water indicated by his demand curve, and this will be the amount that 
maximizes his net satisfaction. 
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Figure 1. Equalizing the Demand and Supply of a Commodity. 
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Fig. 2 shows an entire schedule relating the unit prices charged to a 
user of water to the quantity which he will use at that price.. This is 
called a demand curve. Demand curves for water are thought of as having 
the general shape as shown in Fig. 2; however, they vary from user to 
user. Specific discussion of different types of demand curves is contained 
in chapter 3. The price paid per unit delivered declines as quantity 
increases, since the first units of water becoming available will naturally 
be applied to the most urgent needs and the user will pay a high price for 
these units, the next will be applied to somewhat less intense needs, etc. 
Eventually, prices in any use may become zero, reflecting a situation of a 
saturated demand for water. In this state, no more will be desired by this 
user even at a zero price. This, however, is not the type of demand curve 
faced by the supplier in a competitive market. The reason for this will be 
given shortly. 

Now let us look in some detail at the water supplier's situation. The 
price which the user is willing to pay at the competitive equilibrium point 
for a' quantity of water becomes the supplier's revenue. This price, as far 
as the individual supplier is concerned, is exogenous, that is, it is 
determined by market forces external to the individual supplier and he has 
no control over it. His total revenue function, then, will be 

R = pQ (2 -10) 

where R is the total revenue to be gained by the supplier upon producing an 
amount of water Q, and p is the unit price which the consumer pays. 
Similarly, his total cost function will be 

C = cAQ- (2 -11) 

where C is the total cost of supplying Q units of water, and cA (also a 

function of Q) is the average unit cost. In his own self- interest, the 
supplier will sell the amount of water which will maximize his net returns 
(R - C) . This amount will be indicated by the point where his marginal 
revenue equals his marginal cost. Marginal revenues and marginal costs at 
any level of production are obtained by taking the derivatives of (2 -10) 
and (2 -11), respectively, at that level of production, i.e., dR /dQ and 
dC /dQ. In a competitive market, however, the competitive price offered 
does not change as far as the supplier is concerned. Therefore, the price 
is both his average and marginal revenue. Since this is the case, the 
supplier should theoretically operate at the level indicated by the point 
where his marginal cost equals the competitive market price as shown in 
Fig. 3. The competitive market price necessarily appears as a horizontal 
line to the supplier. Fig. 4 shows this same operating level indicated by 
the point where there is the greatest difference between the supplier's 
total revenue curve R (always linear when he is entering a competitive 
market) and his total cost curve C. It should be kept in mind that in this 
present discussion, we are concerning ourselves with single suppliers and 
single users and their individual actions when faced with a competitive 
market. 

At any production level Q, total cost C and average cost dot are related 

to marginal cost cm in the following manner 
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Figure 2. Hypothetical Demand Curve. 
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Figure 3. Supplier's Optimum Operating Level Indicated by Marginal Revenue 
and Marginal Cost Curves. 

18 



Maximum net revenue 

Optimum operating level (point 
at which p n dR /dO M dC /dQ) 
lye 

Number of units 
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(2 -12) 

In this discussion so far, we have pictured average costs as increasing 
whereas in reality average costs usually decrease throughout initial 
production levels due to economics of scale and only start to increase when 
the raw material resource (water in our case) starts to become scarce. 
Therefore, as long as the supplier's average costs are decreasing, he has 
every reason to expand his production further and further, since each 
additional increment in production brings him the same extra revenue but 
lower extra costs. This circumstance is shown in Fig. 5. If for some 
reason these types of producers never reached a point where average costs 
started increasing, they would continue to expand their output to a point 
where supply exceeds demand, perfect competition would cease to exist, and 
the market would have to readjust itself about a new equilibrium position. 
Therefore, in order for competitive market theory to hold true, each 
supplier's cost curve must be characterized by rising average costs beyond 
some point. 

With this background, we are now in a position to extract a premise 
from the theory of competition which can be used to operate the central 
water -control agency in a manner which emulates this competitive condition 
of all- around net satisfaction. The premise is that maximum net satisfac- 
tion from the use of water is not achieved so long as consumers are willing 
to pay more for additional units of water than the additional cost incurred 
in producing these additional units. In the next section we will se how 
this premise is applied. 

Monopolistic Competition 

As alluded to above, the municipal water utility does not function in 
a competitive market. It must operate (as in reality do almost all types 
of economic enterprises) in an atmosphere of monopolistic competition 
which means, in this case, that the central water -control agency does not 
face a horizontal, competitive market demand curve, but instead must face 
the actual demand curves of its customers. But in so doing and according 
to the above -stated premise, if we operate at a point where marginal cost 
of producing, treating, and distributing water equals the price charged for 
the water, we will be maximizing net satisfaction from the use of this 
water. 

Fig. 6 shows the water consumer's demand curve, the central water - 
control agency's marginal and average cost curves, and the point at which 
the marginal cost and the demand price are equal. This point, then, 
simulates the competitive market equilibrium point as discussed earlier. 

Fig. 6 also shows "total consumer satisfaction" S(Q) which is defined 
mathematically as 

Q 
S(Q) = t pdQ 

0 
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Figure 5. Supplier's Condition with Decreasing Unit Costs. 
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Figure 6. Equilibrium Condition Simulated at Point where Marginal Cost 
Equals Price. 
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or the area under the demand curve out to Q units of water. This total 
consumer satisfaction is also referred to in the economic literature as 
total "value -in -use" and in this the demand curve p(Q) can be thought of 

as the marginal value -in -use curve, i.e., it is the slope of a total value - 
in -use function S(Q). The following relationship then holds 

P(Q) = dQ S(Q) 
(2 -14) 

Therefore, finding the point where marginal cost equals marginal value -in- 
use is the same as maximizing the following objective function 

Z = V - C (2 -15) 

where V is total value -in -use and C is total cost. With the above ideas in 
mind, (2 -15) could also be written as 

Q Q 
Z = I p(Q) dg - I cM(Q) dQ (2 -16) 

0 0 

where the first integral is the area under the demand curve out to Q, or 
the total value -in -use, and the second integral is the area under the 
marginal cost curve out to Q, or the total cost. 

It is important to note here the similarity between (2 -15) and (2 -6) 

assuming that both are unconstrained. This is because total value -in -use 
V is a measure of the total benefits used in equation (2 -6) and, therefore, 
the only difference between the two equations is that (2 -6) is dealing with 
multiple uses and sources while (2 -15) is only concerned with a single use 
and a single source. Thus the economic basis of (2 -6) is established. 

Just as in the case of the individual producer, however, problems 
arise when the average costs are decreasing relative to Q and this is often 
the case for water producers because of the normal aspects of economies of 
scale. Again, this is because the typical costs of production, treatment, 
and distribution all decreasè on a per unit basis as the total amount of 
water involved increases. This increase, however, would theoretically be 
only up to a point where production would reach such a level that water 
would become scarce enough to cause the costs to start rising for each 
additional unit processed. Whenever average costs are increasing, they are 
exceeded by marginal costs. Therefore, as is the case with the demand 
curve shown in Fig. 7, the average cost exceeds the price when the 
equilibrium point falls in this range. This means that an actual monetary 
operational loss would be incurred by the water utility by operating at 
the equilibrium point under these conditions. This loss is shown 
graphically in Fig. 7. Proponents of marginal cost pricing for water 
utilities point out that this fact should not deter them from its use 
because the operational loss incurred can be made up by various means and 
the use of any other price would cause non -optimal use of the water 
resource. The most often suggested means for making up the operational loss 
is some form of tax - financed subsidy. But this in effect only disguises 
the full costs to the users and in actuality they are paying more than the 
marginal cost of supplying them with water. To protect themselves against 
this type of operational loss, therefore, most water utilities tend toward 
an average- cost -pricing system, that is, they set prices equal to average 
costs (which in this case include a normal rate of return on invested 
capital) in order to assure the financial solvency of the utility. 
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Figure 7. Equilibrium Condition where Average Costs are Decreasing with 
Respect to Marginal Costs. 
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In the case where the demand curve intersects a rising average cost 
curve as shown in Fig. 8, the equilibrium -point production level will 
produce an operational gain to the utility. This is because the average 
costs are less than the price. Here, if the average -cost pricing system 
were used, for each of the additional units produced beyond the 
equilibrium point, the marginal cost (the additional cost of supplying the 
unit considered) is greater than the amount that anyone is willing to pay 
for the extra unit supplied. This violates the basic premise stated 
earlier and again leads to non -optimal use of the water resource. 

Therefore, the marginal cost pricing system can be effectively used by 
a central water agency to simulate an ideal, competitive market as long as 
average costs are increasing. But, in the range of decreasing average 
costs, practical application of the theory raises the problem of how to 
recoup the operational loss. 

The central water -control agency as postulated here is functioning as 
a publicly owned monopoly, but as seen in the previous section, it can be 
operated as if competitive conditions existed in order to maximize overall 
economic efficiency. Moreover, when average costs are increasing, the 
competitive -like operation not only maximizes overall economic efficiency, 
but also affords an operational gain in dollars to the water- control agency. 
This gain can either be retained by the public agency and accumulated as a 
future building fund or it can be redistributed to the consumer's as a 
dividend. 

Let us now turn full attention to operational gain. It can be 
increased if we are willing to deviate from the perfectly competitive market 
structure and forego some amount of consumer satisfaction. This increase 
would be brought about by decreasing the production level. The reason that 
a water -control agency may be interested in this idea is twofold. In the 
face of impending expansion requirements, the operational gain would be 
accumulated as a building fund, and this would also accomplish the dual 
purpose of conserving water supply. This concept is shown in Fig. 9. Thus, 
if it were decided to operate at the sub -optimal level F instead of the 
competitive supply level I, the operational gain would increase from an 
amount equal to the area of rectangle BCKJ to an amount equal to the area 
of rectangle ADHG. The total consumer satisfaction would decrease from an 
amount equal to the area OEKI to an amount equal to area OEHF. The total 
amount of water used would decrease from amount I to amount F. 

In the economic sense, a monopolistic condition exists if there is only 
one supplier and he is allowed to be concerned only with maximizing the net 
revenue to his operation. 

The above -mentioned course of action is exactly the direction in which 
the monopolist would move as he endeavored to maximize his profits. There- 
fore, from his viewpoint the consumer demand curve becomes an average 
revenue curve, and he considers himself able to operate at whatever produc- 
tion level he chooses. This relationship is 

r =R -pa=p A Q Q 
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where rA is the average unit revenue at any level of production Q, R is 

total revenue, and p is the unit price taken from the demand curve at 
production level Q. 

It is true, of course, that a municipal utility would never want to 
operate as a monopolist with the sole goal of maximizing profit; a utility, 
after all, only exists to serve the general public. The point is that the 
utility does face real, sloping demand curves and therefore is in a market 
characterized by monopolistic competition. We must understand this type of 
market as well as a purely competitive one. 

Since the monopolist's only motive is to maximize his net revenue, he 
would continue to cut back his production to the point where his marginal 
revenue equaled his marginal cost. From the consumer's demand curve, the 
monopolist can derive his total revenue curve R as in (2 -10). He can also 
derive his marginal revenue curve rm from 

dR d(rAQ) 
rm = dQ - (2 -18) 

The monopolist's optimal production level and his corresponding maximum net 
revenue is shown in Fig. 10. 

If the central water- control agency for the dual -purpose reason 
mentioned above desires to operate toward the monopolistic side of 
competition and maximize its net revenue, it can be seen from Fig. 9 that 
this is the same as maximizing the following objective function 

Z = pQ - cAQ (2 -19) 

where p is price per unit, cA is average cost per unit, and Q is any level 

of production. At this point, it is important to note the similarity 
between equations (2 -19) and (2 -.7). Here, pQ is equivalent to total revenue 
R and cAQ is equivalent to total cost C. Therefore, the only difference 

between the two equations is that (2 -7) is dealing with multiple uses and 
sources while (2 -19) is only concerned with a single use and a single 
source. This, then, establishes the economic basis of (2 -7). 

Aggregation and Deaggregation of 
Demands and Costs 

The foregoing economic interpretations of equations (2 -6) and (2 -7) 
have been in the context of single demand curves and single cost curves. 
The curves can either be thought of as representing single sources and uses 
of water or in the more general sense as representing the aggregate demands 
and costs of multiple uses and sources. In most water -supply problems, it 
will behoove us to see how the aggregate curves can be broken down into 
their individual components and, conversely, how the individual curves can 
be aggregated. In this discussion it will be assumed that there is 
complete independence between the individual demands as well as between 
the individual costs. 
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This aggregation and deaggregation of demands and costs will be looked 
at first within the context of a competitive market. Where complementary 
uses are involved, the individual demand curves can be added together to 
form an aggregate demand curve which will represent the total amount of 
water which will be taken by all consumers in the market at all possible 
prices. The aggregate demand curve is obtained by adding, for each 
ordinate (price), the abscissa of the individual curves of all the buyers 
in the market, i.e., the quantity demanded by each buyer at that price. 
The intersection of the supplier's marginal cost curve and this aggregate 
demand curve will then indicate the price to be paid by all users and the 
total amount of water that the supplier will furnish the market. This 
concept is shown in Fig. 11. Here in supplying demands DA and DB, the 

supplier would furnish a total amount QT. Consumer A would receive QA 

units, consumer B would receive QB units, and each would pay the same unit 

price p for the water. It can be seen that the amount of water transferred 
to A would be different if B were not present in the market; likewise, the 
amount of water transferred to B would be different if A were not present. 
Complementary sources of water can also be analyzed within the competitive 
market framework. In this case, the consumer considers water from any of 
the sources as the same commodity, but in obtaining and distributing this 
water the supplier incurs different costs depending on the source and 
quality. 

Fig. 12 shows a demand curve p(Q), two average -cost curves (repre- 
senting costs to the supplier to furnish water of the same quality but from 
different sources to the user), a total average -cost curve CAT (horizontal 

summation of the individual average costs), and a total marginal -cost 
curve cam, (derived from cAT as in 2 -12). Here, the supplier will operate 

at point (p,QT) and supply the demand with quantity Q1 from source 1 and 

quantity Q2 from source 2. 

Finally, if both complementary sources and uses are involved as shown 
in Fig. 13, the water transfer will take place at the point (p,QT) with 

quantity Q1 being supplied from source 1 and quantity Q2 from source 2. 

Further, it is also shown that quantity QA will go to demand A and QB to 

demand B, each user paying a unit price p for the water. In this case 

QT = QA QB = Ql Q2 (2 -20) 

and water can be transferred from either source to either use while main- 
taining maximum economic efficiency. Operating the central water -control 
agency in such a way as to simulate the competitive market as depicted in 
Fig. 13 is the same as maximizing the following objective function 

QT 
Z = I DT(Q) dQ - pQT 

0 
(2 -21) 

where Z represents net consumer satisfaction, the integral is total 
consumer satisfaction as shown in Fig. 6, and pQT is the total amount paid 
for water by the consumers. 
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Figure 12. Complementary Sources and Aggregate Cost, Pure Competition. 
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Figure 13. Complementary Uses and Sources with Aggregate Demands and Costs, 
Pure Competition. 
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The treatment of multiple uses and sources will now be reviewed in the 
framework of a monopolistic market. The central water - control agency will 
be cast as the monopolist who faces several different demands with each 
representing a different type of user who has at his disposal several 
sources of water with which to supply these demands. The user will be 
involved with a different cost curve for each source -use combination, i.e., 
if there are three sources and three uses there will be nine characteristic 
cost curves. This is because different costs of obtaining, treating, and 
distributing water are incurred for each source -use combination. The 
monopolist's objective is to determine the quantities of water which when 
transferred from each source to each use will maximize his net revenue. A 
situation involving three sources and two uses is depicted graphically in 
Fig. 14. From demand DA, the supplier's marginal revenue function 

rMA 
arising from this use can be obtained. The total average cost of supply 
use A, CATA is found by horizontally summing the individual average costs 

of supply use A from supplies 1, 2, and 3. These curves are labeled 
cAlA, 

cA2A, and cA3A' The total marginal cost of supplying use A, 
cMTA 

is obtained 

from 
CATA. 

The point of maximum net revenue is then indicated by the level 

QTA 
at which marginal revenue equals marginal cost, i.e., the intersection 

of rMTA 
and c 

MT 
The price to be charged user A, p, is also indicated by 

this point. When the total average cost is broken down into its component 
parts as shown in Fig. 14, the desired quantities of water Q1A, Q2A, and 

Q3A 
to be transferred from sources 1, 2, and 3 to use A are indicated as 

well as the average unit cost of supplying use A, namely 
cAA. 

The same 

analysis can be followed for use B to discover the quantities Q1B' Q2B' 
and 

Q3B 
to be transferred from sources 1, 2, and 3 to use B. 

The monopolist's objective in the situation depicted in Fig. 14 can be 
expressed in equation form as 

Z 
= PAQTA cAAQ1A cAAQ2A cAAQ3A + PBQTB cABQ1B 

- cABQ2B - cABQ3B (2 -22) 

Equation (2 -22) has the same form as equation (2 -19) and is related to 
equation (2 -7) in the same way. It can be expressed in general form as 

m m n 
Z = E p.Q. - E E ci.gi. (2 -23) 

j =1 J J j =1 i =1 J J 

where pi is the unit price to be charged user j, Q. is the total amount of 
water used by j, ci. is the cost of transferring a unit of water from 

source i to use j, and qij is the amount of water transferred from source i 

to use j. 

Thus far in this section, objective functions which can be used in 
water -allocation problems have been formulated and their economic rationale 
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has been pointed out. It should be emphasized that constraining relations 
will usually always act to keep the system from reaching a theoretical 
equilibrium point or point of maximum profits. This simply means that the 
system will have to be operated as close to an unconstrained optimum as 
the constraints will allow. 

Extensions into Space and Time 

All of the equations presented thus far in this chapter have been 
presented in a single time frame and all of the sources and uses have been 
considered as independent with respect to their associated costs and water 
availabilities. We have really been thinking in terms of lumped systems, 
that is, lumped to the point where we can be assured of the independence 
criterion. For example, if one of the sources of water is a groundwater 
aquifer, our presentation so far requires that we consider the aquifer as 
a single source of water. We cannot theoretically consider separate well - 
fields or individual wells as single sources of water in these models 
because they are intimately related, i.e., the amount of water withdrawn 
from one well affects the amount of water which can be withdrawn from 
another well and the independence criterion does not hold. The same loss 
of hydrologic independence occurs when we consider surface sources and 
groundwater sources which are hydraulically connected or if the surface 
source recharges the groundwater source intermittently, i.e., the hydraulic 
connection is not always present. Aquifers, however, have been modeled as 
distributed systems, and currently the trend of research in this field is 
toward combining the management models discussed here and the aquifer 
analogs. This area of research will be discussed in a later section. 
Suffice it to say now that the independence problem must be overcome first. 

The same independence criterion must yield an affirmative answer when 
applied to dynamic or multistage water -supply planning problems. For 
instance, in allocating water from various sources to several uses over a 
certain planning horizon, we have to make the allocation during each time 
period (or stage) within the horizon. The question then is this. Are the 
states of the variables describing the system at each stage independent of 
their states in other stages or are they dependent? If they are independent, 
the optimal allocations can be made at each stage, and the overall problem 
is optimized by merely considering the entire series of single stage 
decisions. If they are dependent, however, the optimal answer is only 
obtained by considering the entire stream of stages in toto. In other 
words, decomposition is impossible. In either case, any of the objective 
functions presented thus far can be expanded to encompass the time 
dimension by adding a "t" subscript to each of the variables. For 
example, (2 -23) can be expanded to 

m m n 
Z = E p. Q. - E E cijtgijt (2 -24) 

j =1 j =1 j =1 

where pjt is now the unit price charged user j during time period t, Qjt is 

the total amount of water used by j during the period t, cijt is the cost of 

transferring a unit of water from source i to use j during time period t, 
and gift is the amount of water transferred from source i to use j during 



time period t. Therefore, if independence between variables prevails, 
(2 -24) can be decomposed into a series of individual optimization problems 
each containing only variables with the same "t" subscripts. If dependence 
prevails the overall objective function must be optimized as one large 
problem. 

To make this point perfectly clear, a simple problem involving 
obvious dependencies in the form of "carry over" costs will be briefly 
stated at this point. The problem was posed by Duckstein and Kisiel (1968). 

They considered the problem of a temporal capital investment policy 
for wells over two stages (two years). Given the initial production level 
X0 = 50 acre -feet /year and requirements at each stage as D1 = 30 acre -feet 

and D2 = 35 acre -feet, let the cost of change in production level at each 

stage be R dollars /acre -feet, 

R = 0.5(Xi - Xi -1)2 (2 -25) 

and the cost of surplus storage be C = $5 /acre -feet. Assume no shortages. 
Find production schedule that minimizes costs. If we couple the two one - 
stage models, in period one (i =1) the solution 

min R1 = 0.5(X1 - 50)2 + 5(X1 - 30) (2 -26) 

subject to 

X = X 
1 

> 30 (2 -27) 

is X1* = 45 and R1* = $87.50, and in period two (i =2) the solution to 

min R2 = 0.5(X 
2 

- 45) 2 + S (X2 - 35) 

subject to 

X2 2135 

is X2* = 40 and R2* = $37.50. 

(2 -28) 

(2 -29) 

The minimum cost of the production schedule is R* = R1* + R2* _ $125 

at X* = (45,40). On the other hand, if we solve it directly as a two -stage 
problem, the solution to 

min[0.5(X1 - 50) 2 + (X1 - 30) + 0.5(X2 - X 
1 
) 
2 

+ 5(X2 - 35) ] (2-30; 

subject to 

X1 > 30 and X2 > 35 (2 -31) 

is, by the calculus, X* _ (40,35) and R* _ $112.50 in comparison to $125.00. 

But if the model were such that no year -to -year storage were necessary, 
no costs were involved in changing the production level, and requirements 
were specified at each stage, the same optimal allocation would take place 
regardless of the method used. 
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If the independence problem can be overcome, the next deterrent to the 
practical use of distributed -system models in water management is the 
availability of physical and economic data pertaining to each sub -source 
and each sub -use. As will be seen in chapter 3, economic data are 
particularly hard to estimate with much assurance of accuracy, and the 
task become more difficult as small units of area are analyzed. 

Model Refinement under Uncertainty 

In this section, we will discuss how the models described thus far 
might be handled in cases where the model parameters are not deterministic. 
Davis (1968) in dealing with the dimensions of uncertainty in water - 
planning models points out that the degrees of information surrounding 
particular model parameters may range from complete knowledge of the 
probability distribution to lack of knowledge of even the range of 
possibilities. Different degrees of model refinement are possible 
depending on the degree of uncertainty surrounding the parameters. In our 
context, the demand and cost functions in the objective function are 
estimates of the economic system and the amounts of water available in the 
constraints are estimates of the physical system; thus, some or all of the 
model parameters may in reality be random variables. The most obvious 
source of physical randomness in the water -allocation models is the case 
where a source of water is streamflow or, in a groundwater situation, 
where natural recharge is considered. On the other hand, when groundwater 
is being mined as a source of water there really is very little probability 
that a planned amount of withdrawal would not be available. However, 
future water quality is a very real uncertainty in both groundwater and 
surface water situations. 

Sensitivity Analysis 

If the systems being modeled really are non -deterministic but we have 
a deterministic model to plan their operation, we are in essence 
substituting mean or expected values of the parameters in question. This 
is a completely valid approach if no statistical evidence concerning the 
parameters in question can be obtained. For instance, in the case of 
economic data such as demand functions, any type of variability index 
would be a pure guess. In cases such as these, some type of sensitivity 
analysis can be useful, that is, the parameters in question can be varied 
over a certain range and the individual or combined effects of these 
perturbations on optimal values of the objective function can be noted. 
These type analyses afford us a way to present results embodying our 
admitted lack of knowledge about certain parameters and also point out 
directions in which further effort toward identification of parameter input 
should be expended. Data refinement is most worthwhile (with respect to 
the model) where it is concerned with the input parameters which cause the 
largest variations in output upon being perturbed the least. 

If any of the random input parameters can be described by some types 
if variability indexes, these indexes can sometimes be incorporated into 
the operating model. Two such incorporations will be mentioned here. 
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Known Probabilities for Certain 
Parameter Values 

An approach referred to as stochastic programming by Hillier and 
Lieberman (1968) offers a way of reformulating a mathematical model in 
order to include certain information we may have concerning the randomness 
of any of the model parameters. The type of information incorporated here 
concerns a series of values for any given parameter and the probabilities 
of occurrence of each of these values (the series of probabilities 
summing to one). The deterministic objective function is then replaced by 
an "expected value" function E(Z). For example, (2 -23) would become 

m m n 

E(Z) = E E(p.)Q. - E E E(ci.)g1. . (2 -32) 
j =1 > > j =1 i =1 

The most logical place for randomness to be considered in the pricing model 
of (2 -23) is in the right -hand side constants of the availability constraint 
of the type shown in (2 -2). Let us show here how the problem would be 
reformulated if one of the Qi's in the set of (2 -2) constraints would be, 

expressed as a series of values of the following type 

x Qnk 
; k = 1, 2, ..., k (2 -33) 

where xk is the probability associated with the quantity Qnk and the xk sum 

to one. Equation (2 -32) would then become 

k m k m n -1 
E(Z) = E E x p.Q. + E E E x c..q (2 -34) 

k =1 j =1 
k i 

k =1 j =1 i =1 
k i ij 

and would be subject to the constraints 

m 
E qi. < Q ; i = 1, 2, ..., n -1 (2 -35) 
=1 3 

- 

and the random nth constraint 

jE l qnj - xkQnk 
k = 1, 2, ..., k . (2-36) 

Therefore, in this context, the objective function would be expanded by k 

terms and the number of constraints would be increased as shown in (2 -36). 
If more than one model parameter were considered random, we would become 
involved in joint probabilities and the equations would have to be expressed 
in matrix form. 

Known Probability Distributions for 
Certain Parameters 

Charnes and Cooper (1959) have developed an approach called chance - 
constrained programming, which can be used to modify models so that feasible 
solutions are allowed to have a certain probability, less than one, of 
violating a constraint. Explicitly, this formulation would allow us to 
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replace the availability constraints of (2 -2) with a probability function 
P 
r 

as follows 

m 
P{ E qi = Q.} < xi ; i = 1, 2, ..., n (2 -37) 

j =1 

where the xi are specified probabilities between zero and one. Within this 

framework we will again maximize the expected value function of (2 -32), but 
the system of constraints will have to be modified differently than in the 
previous example. Hillier and Lieberman (1968) show how the constraints of 
(2 -37) can be converted into legitimate inequality constraints if the Q. 

i 

are assumed to have normal distributions. Without presenting the details, 
our availability constraints could be reduced to 

,E1 qlj = E(Qi) + KxloQl ; i = 1, 2, ..., n (2-38) 

where E(Q.) and an are the mean and standard deviation of Q., respectively, 
i 

and Kxl is given as [Q. - E(Qi) ]/a . As Hillier and Lieberman (1968) 
Qi 

explain, the objective of this type of programming is to select the "best" 
non -negative solution that "probably" will turn out to satisfy each of the 
original constraints (assuming the xi probabilities are reasonably close to 

one) when the random variables take on their values. 

Application of Optimization Techniques 

Up to this point in the discussion we have employed implicit, 
generalized functions to model the water -supply systems. It is desirable 
in a presentation such as this to use these implicit functions so that we 
do not become overburdened with detailed formulations and also so that the 
presentation will encompass many possible individual system peculiarities. 
This type of modeling has enabled us to present the essence of several 
different concepts in an easily understood manner. The real substance of 
a systems study, however, lies in determining the real physical, economic, 
or social relationships between the variables, i.e., it requires explicit 
formulation. This is because, in the end, the water resource analyst must 
produce numerical results which are the ultimate purpose of mathematical 
models in the first place. To this end, then, in this section we will 
consider some of the various mathematical methods which can be used to 
produce these results. The emphasis will be on associating the methods 
with general problem types, not on amplification of any particular method 
since a vast literature on the latter is currently available. We will 
attempt to show how this whole gambit of tools can be applied individually 
and in consort to optimize our water- resource models. 

The first thing we want to know is whether or not the problem is 
decomposable, that is, can it be broken down into a series of independent 
subproblems which can in turn be individually optimized and then rejoined 
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to yield an overall optimum. It seems as if many problems may be of this 
type, but the basis for decomposition can be for a varied number of 
reasons and actually depends on the specifics of the problem. We will see 
an example of this in the next chapter. 

Whether we are considering the whole or independent subparts, the 
next thing to look at is the constraint set. If no constraints exist, 
solution by the calculus is possible. If only equality constraints are 
present, Lagrangian multipliers provide an easy means of optimization. If 
the constraint set contains inequality constraints, we are usually forced 
into using some type of mathematical programming; but, if the problem is 
simple, some sort of informal search technique can sometimes be devised. 
The latter would mean, for example, optimizing the objective function alone 
and first of all noting which constraints are effective and which are not. 
Then set the effective constraints as equalities and reoptimize with the 
help of Lagrangians; continue the process until the objective function is 
optimized and the constraints are satisfied. Informal search cannot 
really be explained in general terms because it depends entirely on the 
problem structure. 

Formal search techniques have been developed, however, which are coded 
and help us immensely in our optimization efforts. Linear, quadratic, and 
convex programmings are actually search techniques, and their development 
along with a certain decomposition principle, namely, dynamic programming, 
has afforded a great impetus to the entire field of operations research, 
let alone the study of water- resources systems. The formal search 
techniques are algorithms which have one thing in common -- they guarantee 
that each iteration is closer to the optimum than its predecessor. 
Furthermore, both linear and quadratic programming problems have closed - 
form solutions, and the algorithms indicate when this closed -form solution 
has been reached. Convex programming algorithms do not have closed -form 
solutions, but since with each iteration the solution is bettered, 
solutions very close to optimum can be reached. 

Objective functions which are linear, such as (2 -3) and (2 -5), and 
constrained by linear inequalities can be solved with linear programming. 
Piecewise linearization of convex functions also yields itself to linear 
programming, however, and since linear programming codes are so well 
understood and capable of handling such a large number of variables, they 
can be used in this way to solve some nonlinear programming problems. All 
of the other objective functions besides (2 -3) and (2 -5) can be nonlinear 
and, therefore, the possibility exists of solving them all with linear 
programming codes. 

Quadratic programming algorithms are variations of the basic simplex 
method of linear programming and were designed to handle quadratic objec- 
tive functions with linear constraints. This condition leads to objective 
functions containing terms with integer powers only of the first and 
second order, i.e., the function is quadratic. This type of programming 
is employed in the example problem given in the next chapter. If the 
demand and cost functions could not be assumed linear, then either convex 
programming (of which there are several algorithms) or piecewise 
linearization would have to be employed. 

41 



Dynamic programming is actually a decomposition principle used in 
multistage problems which arise when outputs from one stage or decision 
are also inputs to other stages or decisions. In other words, a series of 
decisions are to be made in time or space, but because the individual 
decisions (but not the properties of each stage) are in some way dependent 
upon each other, the optimal overall policy will not necessarily be found 
by considering each decision separately. Therefore, these problems must 
be handled by trying to find optimal values for all decisions simultaneously. 
Dynamic programming is a method which while considering the string of 
interacting decisions in toto, also splits the problem into subproblems, 
each involving only one variable or a portion of the variables which can be 
considered one at a time. This type of decomposition is best applied in 
water -supply problems when we are considering allocation to a large number 
of uses from only one source or to a single use over a number of time 
periods from a single source. Once the model is established, a functional 
relationship is derived which distributes any total allocation to all of 
the component subproblems. 

After one has developed a "feel" for a given water -supply model it is 
often possible to decompose and use several different optimization techniques 
on the different components ranging from the calculus to some type of 
mathematical programming. Actually mathematical programming techniques find 
their fullest utilization only when the problem to be optimized is very 
large. In typical water -supply problems, however, often the problem is not 
very large because there simply are not large numbers of sources and uses 
to be considered. In these cases, it is felt that it is best to use "home- 
made" search techniques and in so doing come to a better realization of the 
intricacies of the problem at hand. Furthermore, the premise that, with a 
minimum period of programming instruction, the computer can assume the 
entire burden of calculation is simply not valid even though it is expressed 
openly in many texts. Oftentimes, bitter experience with the computer 
combined with programming problems makes an experienced analyst very 
cautious in examining his reams of numerical printouts. Thus, in the end he 
is finally forced to the old- fashioned numerical techniques to verify the 
calculations for at least a sample case. 

Recent Investigations 

Recent applications of operations research methods in the water -supply 
field have not been mentioned up to this point because the intent was to 
describe the various objective functions and their interrelations in 
general terms and to avoid any specifics. Now that the groundwater has 
been laid, however, we can take a look at the pertinent literature to see 
where each work fits into this framework of objectives. 

The requirements approach using an objective function as given in (2 -3) 
was used by Dracup (1966) to model the water -supply system in the San 
Gabriel Valley in southern California. He compiled data on the quantities 
of water available from five sources and the requirements by four uses over 
a thirty -year planning period. A network of unit costs associated with the 
possible source -use transfers was also estimated. These three types of 
data constitute the needed data input for this type of model. Dracup used 
a general linear programming code to find the least -cost combination of 
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meeting the given requirements. This type of model also fits quite nicely 
into the framework of the transportation method of linear programming 
which allows a much simpler means of solution if one is concerned about 
such things. It is definitely conceptualized easier if set up as a 

simple transportation network. There has been some debate as to whether 
Dracup's model need be optimized in toto, over the entire time period, or 
whether it can be decomposed on annual basis and solved year by year. 
Since there are no carry -over costs or other parameter dependencies, it 
would seem that decomposition would be possible if so desired. These 
comments should not detract from the beauty of Dracup's work however, which 
lies in his method of presentation -- it is easily read and easily under- 
stood. In order for our work with operations research to permeate the 
practical realm, more lucid presentations such as Dracup's are definitely 
needed in the water -supply field. 

Objective functions using constant unit net benefits as shown in (2 -5) 

were used by McLaughlin (1967) to model parts of water -supply systems in 
several South American river basins and by Heaney (1968) to model part of 
the Colorado River Basin water -supply system. Both used linear programming 
codes to find the values of the variables (amounts of water used by 
subregions) which maximized net benefits. In addition to the availability 
constraints, Heaney also bound the upper limits of water transfers by using 
the projected water requirements as upper limits. These types of models 
are usually optimized without requirements constraints, however, and the 
data then needed consists of availabilities and constant unit net benefits. 
As explained earlier, the latter dictates an inelastic demand for water 
which we have implied is not the case. Both of these models are capable of 
incorporating the elasticity concept, however, but then they would have to 
be solved using piecewise linearization of the total benefit function if 
linear programming solutions were to be retained. One reason for using 
objective functions of the form (2 -5) is a lack of price elasticity data. 
When (2 -5) is used, an assumption of complete price inelasticity is 
implicitly made. 

Moving on to the nonlinear case as encompassed in objective functions 
of the type (2 -6) , Buras (1963) , Bear and Levin (1964) , and Burt (1964) all 
used a modified form of this to maximize the present value of net benefits 
over time accruing from groundwater use and the conjunctive use of a ground- 
water and surface reservoir. Buras and Bear used dynamic programming 
exclusively whereas Burt used a combination of search techniques (trial and 
error) to optimize their models. Essentially, input consisted of demand 
curves or total benefit approximations, costs, and a planning period. Then 
using the total number of years in the planning period, a year -by -year 
pumping policy was obtained which maximized present value of net benefits. 
The pumping schedule is then referred to as the "optimal yield" of the 
aquifer rather than the "safe yield." 

Domenico (1967) approached the "optimal yield" problem in a slightly 
different manner. Input in Domenico's model consists of initial depths of 
water, a constant annual pumping rate, and an interest rate. Then, output 
is the number of years water should be mined at the given rate to yield 
maximum present net worth. Using a modification of (2 -6) Domenico solves 
his mathematical model with the calculus. 
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Flinn (1969) considers the allocation of the annual safe yield from a 
servoir using an objective function of the type (2 -5) and terms the total 
nefits "net social payoff" after Samuelson (1952). His models are based 
ideas presented by Takayama and Judge (1964). The use of linear demand 

hedules by the various users results in a quadratic objective function. 
e use of quadratic programming is advocated to solve for the optimum 
atial allocation of water. Flinn's work is much along the lines of the 
terial presented in the next chapter of this dissertation in that 
sically the same input (costs, demands, and water availabilities) is 
quired. Flinn, however, chooses to operate his system as close to the 
mpetitive market equilibrium point as possible, whereas, the application 
the next chapter operates as a constrained monopoly. 

Brown and McGuire (1967) were concerned with developing a pricing 
licy for the Kern County Water Agency, California. They also adopted an 
jective function of the type (2 -15) and suggest implementing the price 
anges through the means of a pump tax. 

The groundwater portions of all the above -mentioned models have been 
mped systems, i.e., basin -wide, average water levels have been used, 
d this implies that static conditions are reached immediately after 
mping disturbances take place (like extracting water from a bucket). The 
y to correct for this physical discrepancy is to tie the management model 
to an analog model of the groundwater basin so that the true distributed - 
rameter system can be represented. Martin, Burdak, and Young (1969) have 
ne just this for an agricultural problem in Final County, Arizona where 
aquifer is being mined for irrigation needs. Objective function (2 -5) 

s been used allowing for linear programming to be employed in the 
nagement portion of the model. After the management model is optimized 
r one time period, the analog is operated to determine the new water 
vels according to the pumping pattern determined by the management model. 

We have shown in this discussion of the literature that operations 
search methods can play an active part in the water -supply planning 
Dblem. Optimization techniques are available to handle almost any 
Dblem -- linear or nonlinear, lumped or distributed, spatial or time 
riant -- if the necessary data are available. 
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CHAPTER 3 

APPLICATION OF THE PRICING MODEL: 

TUCSON BASIN, ARIZONA 

In this chapter a very realistic problem, which is eminently suited to 
illustrate the use of the pricing model discussed in chapter 2, will be 
described and worked out. As the problem evolves, it also affords a good 
example of work within an area of operations research referred to as 
"solution strategy" (Geoffrion, 1968), that is, reduction of a large -scale 
optimization problem to a sequence of simpler derived optimization problems. 
We will be concerned with the problem of how to allocate present and 
future sources of water to various classes of water users in the Tucson 
Basin, Arizona. There is not enough water in the sense that all users 
cannot continue to enjoy their present rates of use at the present prices 
charged for water for any extended period of time. This situation exists 
because the water supply is pumped entirely from the groundwater reservoir 
within the basin at a rate exceeding the average annual recharge and 
alternative sources are all more expensive to obtain. Hence, costs will be 
continually increasing as activity within the basin grows with time. We 
will be concerned here with the optimal possible short -run policy, given 
the framework of existing market conditions. 

After describing the hydrologic and physical setting along with the 
water -supply system as it exists now and as it is postulated to exist in 
the problem, we will discuss the various sources and costs of water and the 
availability constraints. We will next introduce the demand functions, 
formulate an objective function, discuss decomposition, and introduce a 
policy constraint. Finally we will give and discuss numerical results. 

General Hydrologic Description 

The Tucson Basin in southern Arizona is an intermontane trough within 
the Basin and Range province of the southwestern United States. It is 
about 1,000 square miles in area and is bounded on the east and west sides 
by mountains. A protrusion of the Santa Catalina Mountains from the east 
forms a four mile wide narrows at the northwest . end of the basin out of 
which flow both occasional surface runoff and groundwater. The basin is 
drained to the northwest by the influent Santa Cruz River and a tributary, 
Rillito Creek. The basin is filled with semiconsolidated fluvial deposits 
eroded from the adjacent mountains. These deposits have been encountered 
at depths up to 2,000 feet in the center of the basin. Flood plains within 
the basin are as much as a mile wide and underlain by unconsolidated gravel 
and sand. The basin deposits and the flood plains are hydraulically 
connected and form the groundwater reservoir. Depth to water is 100 to 200 
feet throughout most of the basin but ranges between 5 feet near the flood 
plains to 500 feet or more elsewhere. 

Average annual precipitation varies from 11 inches on the basin floor 
to 30 inches on some of the surrounding mountain areas. The summer 
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thunderstorm season accounts for most of the surface runoff, but this 
runoff is less than one percent of the total rainfall. 

The Water -Supply System 

At the present time, as stated earlier, the water supply for the basin 
is pumped entirely from the groundwater reservoir within the basin. The 
total amount now used is about 150,000 acre -feet per year. None of the 
runoff is used in the basin because the streams are dry for long periods 
and there are no surface storage reservoirs. The metropolitan area of 
Tucson is located in the northern part of the basin. The city's Department 
of Water and Sewers in supplying most of the municipal and industrial needs 
of the area pumps about 40 percent of the total amount used in the basin. 
The rest of the water is pumped by a few small water companies which supply 
some outlying residential areas; individual industries, mainly mines in 
the southern part of the basin; farmers and other private users with their 
own wells. The largest of these private users in and near Tucson are the 
University of Arizona, Tucson School District No. One, and Davis -Monthan 
Air Force Base. The agricultural water is used to irrigate lands mostly 
lying along the Santa Cruz River northwest and south of Tucson. 

The Tucson Department of Water and Sewers has hopes of obtaining overall 
control of the water resources within the basin and if successful in so 
doing could be considered as a monopolist with complete price- setting power 
for water users. In this problem it will be assumed that this type of 
control is an accomplished fact. 

It will also be assumed -that the "central water - control agency" which 
we have alluded to will have the following limited sources from which to 
draw: 

(a) groundwater from within the basin, 

(b) groundwater from Avra Valley (a neighboring basin) , 

(c) reclaimed waste water, and 

(d) Central Arizona Project water. 

The uses will be divided into the following categories: 

(a) domestic, 

(b) industrial, and 

(c) agricultural. 

After some deductions, the question is how should water from these 
sources be dispersed among domestic, industrial, and agricultural uses, and 
what prices (the policy instruments) should then be charged to maximize 
profits to the central water -control agency. Since this process of maxi- 
mizing profits may lead to very high, socially unacceptable prices, a policy 
constraint will be added which attaches a certain disutility to upward 
changes from the existing situation. 

46 



Before proceeding, it will be helpful to refer to Fig. 15 which is a 

schematic of the possible transfers which can take place within the 
postulated model. The agricultural products capable of being produced in 
the Tucson Basin are identical to those which can be produced in Avra 
Valley, and it seems illogical to expect a water transfer between these 
two areas for the purpose of irrigation. Therefore, this particular type 
of transfer will not be considered in the model. 

Water Availabilities 

Complete management of the water resource, as envisioned in this prob- 
lem, must include a deliberate and significant search for new technology. 
As Smith (1967) points out "the management problem is dynamic and the 
arsenal of tools required to cope with it must be equally dynamic." In 
this regard there are several sources of water supply available to the 
Tucson Basin in addition to the four deemed most pertinent in this example 
problem -- some of these options have been explored and some have not. 
They are listed in Table 1 along with references to pertinent investigations 
and cost figures if available. All of these options must be kept in mind; 
when and if the political -technological picture clears, they should all 
receive careful consideration. The four sources of water chosen to be 
studied here are the only ones which are either currently being used or for 
which plans to implement their use are currently being carried out. There- 
fore, they are the only sources which can logically be considered in a 
short -run policy study such as this and the only ones which will be discussed 
in terms of amounts of water available and costs of obtaining this water. 

Groundwater, Tucson Basin 

There is a very large amount of groundwater available in the Tucson 
Basin; however, it is not all extractable, it becomes more costly to obtain 
as the depth to water increases, and it is generally thought to be impaired 
in chemical quality and temperature as depth increases. Smoor (1967) 
studied the horizontal variation in chemical quality of the basin's ground- 
water and found it to be significant, yet regional distribution patterns 
did emerge. Knowledge of the groundwater quality is vitally important in 
the planning process because it is the biggest, single, possible deterrent 
to the accessibility of an enormous supply. The extent of this supply in 
just the upper 500 feet of the basin -fill material was estimated from data 
obtained from Matlock, Schwalen, and Shaw (1965) to be 18 million acre -feet. 
This is not an estimate of recoverable water but simply the volume in place 
using a value for specific yield of 0.15 and a present average depth to 
water of 250 feet. To put the immensity of this figure in perspective, the 
current rate of withdrawal could be sustained for some 90 years before this 
volume of water would be used. This is assuming an average annual rate of 
natural recharge of about 56,000 acre -feet per year which is an estimate 
associated with the above- mentioned specific yield of 0.15. 

This supply is not certain, however, and the general philosophy of the 
regional water authorities has been to consider the Tucson Basin groundwater 
reservoir as a base supply, but also to be continually seeking outside 
supplies which when implemented will help "conserve" this base supply. The 
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TABLE 1. -- Optional sources of water, pertinent references, and 
relative costs 

Source Reference 
Cost Estimate 
($ /acre -foot) 

Runoff Induced by 
Land Treatmenta 

Desalination, Gulf 
of California 

Transfer from Low - 
value Uses 

Surface Runoff 

Groundwater, San 
Pedro River Basin 

Urban Runoff 

Cloud seeding 
Evaporation Suppression 
Artificial Recharge 
Seepáge Control 
Increased Irrigation 

Efficiency 

University of Arizona, Water 
Resources Research Center 
(1965) 

Seale and Post (196 5) 

Kelso and Jacobs (1967) 

Rillito Creek Hydrologic 
Research Commission 
(]959)e 

23-95b 

145 

31-68d 

a. Includes covering land surface with plastic and gravel and 
treating land surface with salt. 

b. Treatment costs only for first 20 years of operation 

c. Total production and transportation costs to Tucson 

d . Total costs of diverting water from agricultural to urban use. 

e . Compilation of surface runoff data from Tillito Creek and 
tributaries. 
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economic consequences of such implementation will be one of the items 
which this example problem will help to estimate. The next three of these 

additional supplies which are currently virtually assured of being 

implemented will now be discussed. 

Groundwater, Avra Valley 

The City of Tucson has purchased land in the southern part of Avra 
Valley, drilled large wells, and presently has a 42 -inch, 15 -mile long 
pipeline constructed to convey water to the Tucson area. The amount 
involved will be about 11,000 acre -feet per year increasing to about 22,000 
acre -feet per year in the near future. As in the Tucson Basin, there is 

a large amount of water potentially available in Avra Valley. Again, using 
a value for specific yield of 0.15 and a present average depth to water, in 

this case, of 320 feet, the volume in the upper 500 feet of basin -fill 
material in Avra Valley was estimated at about 6 million acre -feet. Data 
used in making this estimate was obtained from White, Matlock, and 
Schwalen (1966). The current annual withdrawal for agricultural purposes 
was about 115,000 acre -feet per year in 1966. 

Presently citizens in Avra Valley are bringing suit against the City 
of Tucson in an effort to enjoin the city from obtaining Avra Valley water 
until just compensation has been made by the city. The basis for this 
action is that Arizona water law does not favor the use of groundwater 
outside the basin from which it is pumped. This suit will probably 
culminate in the form of additional costs to the city in obtaining Avra 
Valley water. 

Reclaimed Waste Water 

In fiscal year 1967 -68, the Tucson Department of Water and Sewers 
treated 26,800 acre -feet of waste water, and the Pima County Sanitary 
District No. One treated about 7,200 acre -feet for a total of 34,000 acre - 
feet. This is equal to about 55 percent of the amount used by the total 
sewered area. In addition to these main sources of waste water, there are 
several industries in the basin producing sizable amounts of waste water 
which do not enter the sewer system. Tucson Gas and Electric Company 
released about 500 acre -feet in 1968 and Hughes Aircraft Company released 
about 350 acre -feet. There are several other minor sources such as the 
Mineral Hill underground copper mine located 15 miles south of Tucson which 
pumps about 35 acre -feet per year from their main shaft into a nearby stream 
bed. This gives a total of about 35,000 acre -feet of waste water origin atinE 
in the Tucson Basin annually. Only 12,000 acre -feet or 34 percent of the 
total available waste water is presently being reused. This water is reused 
to irrigate land in the northern part of the basin. In this problem, we will 
assume that the present contract which the Tucson Department of Water and 
Sewers has concerning this 12,000 acre -feet of waste water can be renegotiat( 
This will allow waste water to be used for other purposes if deemed desirable 
Discounting the mine effluent, there is currently about 35,000 acre -feet of 
waste water, most of which is already being reclaimed, available for reuse ir. 

the Tucson metropolitan area. 
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Central Arizona Project Water 

The City of Tucson is scheduled to receive some 112,000 acre -feet of 
water from the Central Arizona Project, which was recently authorized by 
Congress. In addition to this, irrigation districts may form within the 
basin and contract for additional water. The first water is scheduled to 
reach Tucson around 1975 and will come from the yet to be constructed 
Charleston Dam on the San Pedro River. This water is expected to amount to 
about 14,000 acre -feet per year. The remaining imported water is to come 
from the Colorado River supposedly around 1980. 

The preceding data result in the following four constraints on the 
availability of water from the four sources concerned. Referring to 
Fig. 15 for notation and using quantities in thousands of acre -feet, we 
have: 

qT,M qT,I qT,A ,,MAX 

qV'M + gV'I < 11 

qW'M gW,I gW,A < 35 

qC'M qC'I qC'A < 112 . (3-1) 

The term, GX, will be the annual withdrawal of groundwater from the 
Tucson Basin with the exact amount to be decided by a central water -control 
agency. It is assumed that the current City of Tucson contract to sell 
12,000 acre -feet of reclaimed waste water for irrigation purposes can be 
renegotiated. This leaves 35,000 acre -feet of waste water available for 
reuse. Even though the bulk of Central Arizona Project water will not 
arrive for at least 10 years, for purposes of illustration in this problem, 
we will assume that it is available now. Since no negative quantities can 
be transferred, we also have the constraints that all the quantities should 
be non -negative. 

Water Costs 

A defensible water -rate schedule should be based on accurate, reliable 
cost analyses. In this regard, quite reliable data can be obtained 
concerning costs involved in the existing water-supply system in the Tucson 
Basin (City of Tucson Department of Water and Sewers, 1967 and 1968; Nelson 
and Busch, 1967; Gilkey and Beckman, 1963) . It is interesting to note at 
this point that a study of Afifi (1967) showed that only about 45 percent 
of the water utilities in Illinois keep cost information on a regular 
basis. It cannot be emphasized too strongly how important this type of 
data is to the formulation of a rational water -rate schedule. The real 
difficulty in a problem such as this is to predict costs for the various 
source -use relationships which do not yet exist. In this example problem 
only operating costs will be used, and they will be assumed to be linear, 
that is, the same unit costs will hold in each case for any quantity of 
water transferred. 
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In order to facilitate good estimation of the various operating costs, 
each one was broken down into three components -- production costs, treat- 

ment costs, and distribution costs. For each one of the water transfers 
shown in Fig. 15, there is an associated cost. A summary of the component 
costs and the total individual costs is contained in Table 2. The 
superscripts used in Table 1 identify the costs with their respective 
water -transfer routes as shown in Fig. 15. The costs will now be discussed 
in terms of the three components. 

Production Costs 

The factors involved in determining the unit operating costs of 
producing groundwater, that is, pumping it to the land surface, are the 
depth to water, pump efficiency, fuel costs, and repair and maintenance of 

pump and well. The figure used for cT'M also includes the average annual 

cost of drilling new wells while cT'I and cT'A do not. If the central 
water -control agency did exist there would be few new wells drilled for 
irrigation purposes. This is because the total amount of water allocated 
to agriculture would decline annually. This idea is expressed in a table of 
projected water requirements constructed by the Tucson Department of Water 
and Sewers (Rauscher, 1968) . The average annual cost of drilling new wells 

is not included in cT,I because this sector will probably be expanding at 
the expense of agriculture and therefore be able to take over existing 
irrigation wells when needed. The costs of producing Avra Valley ground- 
water were taken to be the same as those for producing it in the Tucson 
Basin. These costs were taken from the City of Tucson Department of Water 

and Sewers, Annual Report 1967 -68 (1969) . The value of cT'A was obtained 
from the agricultural demand curve, described later in the text, knowing 
the present amount of agricultural use. The costs of Central Arizona 

Project water -- cC'M, cC'I, and cC,A -- were taken from estimates currently 
being made by officials of the U. S. Bureau of Reclamation. 

Treatment Costs 

The groundwater pumped from the Tucson Basin and Avra Valley requires 
no treatment other than small amounts of chlorine at some locations. The 
present cost of reclaiming waste water by the Tucson Department of Water 
and Sewers was taken as the cost to treat it for reuse by agriculture. 
Costs of reclaiming waste water for reuse by the municipality and industry 
were estimated from Watt (1968) who gives the cost of tertiary treatment as 
four times the cost of primary treatment. No attempt was made to estimate 
costs of reusing the industrial effluents mentioned earlier. The Central 
Arizona Project water will have to be treated, if so desired, by the 
purchaser, and this cost was also estimated from current statements made by 
officials of the U. S. Bureau of Reclamation. 
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TABLE 2.--Component and total costs o water transfers in $ /acre -feet 

Cost Production Treatment Distribution Total 

cT-M 23.20 0 39.30 62.50 

cTsI 18.00 0 2.00 20.00 

cT,A 5.00 0 3.00 8.00 

ó 'M 23.20 0 59.30 82.50 

cV'1 18.00 0 22.00 40.00 

cw' M 0 44.00 39.30 83.30 

cw, I 0 44.00 39.30 83.30 
cWeA 0 11.00 4.00 .15.00 

cC,M 55.00 20.00 39.30 114.30 

cCI 55.00 20.00 39.30 114.30 
cC,A 10.00 0 6.00 16.00 
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Distribution Costs 

If a user is connected to a distribution system, the distribution costs 
include administration, engineering, metering, and maintaining the system. 
The figures used for this portion of the costs were taken from the annual 
report of the City of Tucson Department of Water and Sewers (1967 and 1968) 
and also from estimates currently being made by local water authorities. 
These costs also include depreciation of plant and equipment. 

Summary of Costs 

Table 2 is a list of the estimates of component and total costs we will 
use in this example problem. 

Water Demand Functions 

Let us first state that in actuality each farming operation, each 
industry, each type of municipal use (households, lawn sprinkling, city 
parks, etc.), and even each individual has his or its own particular 
demand curve for water and, furthermore, these change over time. This 
necessitates, therefore, a certain amount of aggregation before we can even 
start to estimate them. In this problem we have three aggregations: 
agricultural uses, municipal uses, and industrial uses. 

The determination of demand functions for water, despite the growing 
number of empirical investigations in recent years, remains a matter of 
approximation. The approximation usually concerns the form of the parti- 
cular mathematical function chosen, as well as the numerical specification 
of the parameters to go into the chosen function. Let us first look at 
some of the rationale behind the choice of functions. 

The total demand curve can generally be thought of as occurring in 
three merging portions. They are, in order of increasing elasticity, 
obligated demand, intermediate demand, and potential demand. These are 
depicted in Fig. 16 and labeled 1, 2, and 3 respectively. The obligated 
demand is made up of uses such as drinking and washing -- type of uses 
which we are prepared to pay almost any amount to retain. The intermediate 
demand can be pictured as made up of uses which we desire to retain, but 
we will definitely make an effort to cut back on the amount of water involve4 
when the price goes up. The potential demand consists of uses which we do 
not really want or need, but if given the water at a low price we will 
"invent" them just to be using the water. In the municipal sector, these 
latter uses may be excessive lawn sprinkling or hosing down patios and 
driveways instead of sweeping them. In the agricultural sector, these uses 
are growing very low -value crops. In naming these uses, of course, one is 
always biased, and argument as to which type of use is or not a potential 
use is always present. 

Often times municipal and industrial demand curves are expressed 
functionally as rectangular hyperbolas which are mathematically simple 
representations of the general demand curve shown in Fig. 16. Demand, 
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1- Obligated demand 
2- Intermediate demand 
3- Potential demand 

3 
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Number of units 

Figure 16. Characteristic Portions of Demand Curves 
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when approximated as a rectangular hyperbola (Fig. 17), has the form 

Q = (B k 

where Q is quantity, p is price per unit, and B and k are constants. In 

this case, the demand curve has constant elasticity and its value is the 
negative of k. This can be shown using equation (2 -8) where 

e - 
dPp (3 -3) 

Rewriting equation (3 -2) as 

Q = Bkp -k (3 -4) 

and substituting it and its derivative with respect to p 

(3 -2) 

dQ -kBkp 
-k -1 

dp 

into (3 -3) gives 

(3 -5) 

e = -kBkp-k-1 
-kBkp-k-1 

- k . Bkp-k Bkp-k-1 (3-6) 

P 

On the other hand, agricultural demand curves are most often represented as 
straight lines because both the obligated and potential portions are thought 
of as being truncated producing a curve like the one shown in Fig. 17. 
This truncation is said to occur on the upper end because there is a some- 
what definite point beyond which prices could not be raised if the farming 
operation were to make a profit. On the lower end, the farmer actually 
could deteriorate his land with too much water and therefore would not buy 
anymore water no matter how low the price is. The slope of a straight line 
should not be confused with elasticity -- they are different. Actually, a 
straight -line demand curve is elastic near the price axis, unitary elastic 
at the halfway point, and inelastic near the quantity axis. The equation 
for the demand function, when approximated as a straight line can be 
derived from the following, more specific form of equation (2 -8) 

Q P 

(3-7) 

Thus, if we have data for the existing use rate Q, the existing price per 
unit p, and an estimate of elasticity e; we can obtain the parameters for a 
straight -line demand function. Likewise, a set of these same three types 
of data when used in equation (3 -2) will give us the parameters for a 
hyperbolic demand function. 

If, however, experimental data in the form of a series of price - 
quantity values are available, curves can be fitted to this data and 
equation parameters calculated from the fitted curves. This is how the 
municipal and agricultural demand curves will be derived in this example 
problem. The industrial demand curve will be derived by estimating the 
parameters first as mentioned above. All three of the demand curves will 
be assumed to be linear; a nonlinear function, as explained in chapter 2, 
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Figure 17. Commonly Used Shapes of Demand Curves 
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might increase the complexity of the problem solution immensely. Also, we 
will be dealing only with limited portions of the total demand curve, and 
in these cases the linear representations are judged to be just as valid as 
any other representation considering the paucity of the data. We will 
mainly be concerned with rather small deviations from the existing price - 
quantity values, which to some extent justifies the use of a linear 
demand function. 

Before going on to a detailed discussion of the demand curves as 
derived for the Tucson Basin, it should be kept in mind that these, of 
course, are only estimates; later in the chapter we will discuss the 
consequences of "wrong" estimates. 

Municipal Demand 

A series of price -quantity values for municipal use was obtained using 
empirical relationships suggested by Howe (1968) and based on the well - 
known "Hopkins Study" (Linaweaver, Geyer, and Wolff; 1968) . This study . 

done at Johns Hopkins University served to gather and interpret residential 
water -use data from 11 metropolitan areas throughout the country. The two 
study areas most hydrologically similar to and also closest to Tucson were 
San Diego, California and Denver, Colorado. It was determined that 
municipal water use could best be studied when broken down into household 
use and sprinkling use. The factors most influential in determining house- 
hold use were the market value of the dwelling unit and the price charged 
for the water. The factors most influential in determining sprinkling use 
were the irrigable area surrounding the dwelling unit, the average potential 
evapotranspiration during the sprinkling season, the average precipitation 
during the sprinkling season, and the price charged for the water. 

Using these factors, Howe (1968) developed the following expressions by 
which to estimate municipal demand curves 

- 206 + 3.47v - 1.30pw (3 -8) 
qa d 

where qa is household use in gallons per day per dwelling unit, v is the 

market value of the dwelling unit in thousands of dollars, and pw is the 
price charged for water, 

qs s = 3657r 
Ps 

0.309 -0.930 

where qs 
s 

is the summer sprinkling use in gallons per day per dwelling unit, 

ps is the price charged for water, and rs is defined as 

rs = b (ws - 0 . 6ps) (3 -10) 

where b is the irrigable area in acres surrounding the dwelling unit, ws is 

the average summer potential evapotranspiration (calculated by the Thornthwail 
method) for the area in inches, and ps is the average summer precipitation foi 

the area in inches. 
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An aggregate municipal demand curve representing both household and 
sprinkling use was estimated for the Tucson Basin using this method. The 
variables needed for this locale are listed in Table 3. 

The median market value of homes was taken from the U. S. Bureau of 
Census (1960) and represents the median market value of owner- occupied 
residences as of April, 1960. At that time there was an average of 3.3 
persons per dwelling unit, and this figure is used later to estimate the 
number of dwelling units from population data. The "summer" sprinkling 
season in Tucson was taken to include the entire year as many residents 
having lawns usually plant and water rye grass during the winter months. 

To estimate the total amount of water used for municipal purposes, 
equations (3 -8) and (3 -9) were combined as follows 

QM = "clay d) 365 + (gs s) 365 )Ndu 
(3 -11) 

where QM is the total amount of water in gallons per year and Ndu is the 

number of dwelling units. Further expansion of equation (3 -11) yields 

QM = (206 + 3.47(11.6) - 1.30pw) 365Ndu + {3657 (0.25(87 

- 0.6 x 11))0.309 p-0.930} 365Ndu 
' 

(3 -12) 

Using a present population of 315,000 in the metropolitan area with the 
corresponding number of dwelling units equal to 95,300 and changing the 
units of pw to dollars per acre -foot and QM to acre -feet per year, gives 

QM 

613 - pw 

+ 
3.01 x 0 

6 

(3 -13) 
2.33 x 10 -2 P 

0.930 
w 

In 1967 -68 the price paid for water by residents served by the Tucson 
Department of Water and Sewers ranged from 20 cents per thousand gallons to 
over $1.00 per thousand gallons in some hard to serve outlying areas. The 
average price paid by these users was 36 cents per thousand gallons or 
$110 per acre -foot. When this price is used in equation (3 -13) the 
resulting quantity is 59,700 acre -feet. This number matches quite nicely 
with the often -quoted estimate of 60,000 acre -feet as the current annual 
rate of municipal use in the Tucson area. Data taken from equation (3 -13) 
are plotted in Fig. 18. Also seen in Fig. 18 is a linear representation 
(by the method of least squares) of the portion of these data between pM 
equal to $110 per acre -foot and $210 per acre -foot. The latter, then, is 
the municipal demand curve which will be used for calculations in this 
problem. The equation for this linear demand curve is 

QM = 88.10 - 0.258pM (3 -14) 

where QM is total municipal demand in thousands of acre -feet and pM is 

price in dollars per acre -foot. Point elasticities along this line can be 
calculated using equations (2 -8) and (3 -14) in the following manner 
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TABLE 3. - -Data used for estimating demand for municipal water, 
Tucson Basin 

Variables Values 

Median market value of 
dwelling unit, v 

Average irrigable area surround- 
ing dwelling unit, b 

Average "summer" potential 
evapotranspiration, ws 

$11,600 

0.25 acre 

87 inches 

Average "summer" precipitation 11 inches 
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dQM 
- 0.258 

dpM 

QM 88.10.-.0.258pM 

and 

dQM /dpM -0.258pm 
eM 

QM /pm 
88.10 0.258pM (3 -17) 

The elasticities range from -0.48 where pM equals $110 per acre -foot to 

-1.59 where pM equals $210 per acre -foot. This means that from the present 

price of $110 per acre -foot a 10 percent increase in price will lead to a 
4.8 percent decrease in municipal water use. Conley (1967) in reviewing 
several studies on municipal price elasticities concludes that values 
ranging from -0.30 to -0.35 are most likely for the western United States. 
The existing municipal elasticity in Tucson is higher than these latter 
figures probably because the people realize that they are living in a 
desert environment and are privately and publicly concerned about the 
conservation and proper use of their water resource. 

Agricultural Demand 

The agricultural sector's response to water prices can be studied 
through a "net- revenue coefficient" approach. This is done by calculating 
all of the variable costs (those costs that change with changes in output) , 

except the cost of water, which are involved in producing an acre of a given 
crop. These variable costs are then subtracted from the farmer's gross 
revenue per acre generated by the harvesting and marketing of this crop; 
the residual is the net revenue per acre. Since all variable costs except 
water are considered, this net revenue, presumably, is the maximum amount 
the farmer could afford to pay for water and still make a normal profit 
(normal profit is included in the variable costs). When the net revenue 
is divided by the total water requirement per acre for this crop, a net - 
revenue coefficient is obtained which is the maximum amount the farmer 
should be willing to pay for an acre -foot of water. Then, if these net - 
revenue coefficients in dollars- per acre -foot for each crop are plotted 
against the amounts of water used in the area for each crop (on an 
accumulated basis starting with the highest coefficient and ending with 
the lowest), as shown in Fig. 19, a stepped function is obtained which is 
an estimate of the area's demand curve. 

This type of study was made for the purposes of this problem using 
crop surveys and net -benefit coefficients for Pima County, Arizona (the 
Tucson Basin lies wholly within Pima County) obtained from the Departments 
of Agricultural Engineering and Agricultural Economics, The University of 
Arizona. The variable costs used in calculating the net - revenue 
coefficients included such items as power and material expenses, machinery 
repair, and labor costs. The data obtained is shown in Table 4. When the 
fourth row of this table is plotted against the fifth row, a stepped 
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function (Fig. 19) is obtained which represents an estimate of the agri- 
cultural demand as it existed in 1967, the time during which the surveys 
were made. To smooth out the steps in the demand schedule for the purposes 
of this problem, a linear regression equation was fitted to these data by 
the method of least squares. The equation for this linearized demand 
curve is 

QA = 87.29 - 1.546pA (3 -18) 

where QA is total agricultural demand in thousands of acre -feet at a price 

in dollars per acre -foot of pA. It was assumed that the midpoints, marked 

X, of the vertical portions of the steps were most stable with respect to 
price changes; these points, therefore, were used as observations for 
fitting the estimating equation. 

The irrigation water requirements used were averages while studies have 
shown that for a given crop some farmers use twice the amount of water that 
others use on comparable land. This, coupled with the fact that there is a 
wide range in net -benefit coefficients, points out the tremendous incentives 
farmers have for saving water. In other words, when prices are raised, they 
have the opportunity to save water by adopting more efficient irrigation 
practices or substituting higher valued crops and using less acreage. 

The amount of water used for irrigation in the basin has been dropping 
a little each year due to increased pumping lifts in some areas and the 
phasing out of some low- valued crops. Whereas Table 4 shows a total agri- 
cultural use of 84,485 acre -feet in 1967, the current estimates are that 
about 75,000 acre -feet will be used in 1969. At this latter rate of annual 
use, the demand equation (3 -18) gives a current price that the farmer is 
paying for water of $8.00 per acre -foot. In this case, the price can be 
also interpreted as the cost of supplying irrigation water from the Tucson 
Basin groundwater reservoir since the existing distribution system would 
continue to be used if the central water -control agency was in control. 
Using data in Nelson and Busch (1967), it was estimated that the cost of 
pumping the water to land surface is currently $5.00 per acre -foot; there- 
fore, it appears that the cost of maintaining an irrigation distribution 
system in.the basin is $3.00 per acre -foot. These latter stated costs 
appear in Table 2 as costs of production and distribution. 

Elasticities on the agricultural demand curve range from -0.20 at a 
price of $8 per acre -foot to -1.13 at a price of $30 per acre -foot. At 
prices higher than about $30 per acre -foot, it is considered that crop 
substitution and the effect of water costs on final product prices would 
serve to invalidate the demand curve. For example, according to Table 4, 
alfalfa would be the first crop to cease to be planted if water prices 
increased, and yet theory tells us that as the production of alfalfa drops, 
its market value would increase, thus increasing its net -revenue coefficient. 
Also with a water -price increase, higher value crops will be substituted for 
crops of lower value and again increase the net -revenue coefficients. 

In order to incorporate these discrepancies some economists (Hartman 
and Whittelsey, 1960; Moore, 1962) have developed general equilibrium models 
(solved using linear programming techniques) with which to determine the 
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crop program which would maximize net farm income. This crop program is 
then used along with the net -revenue coefficients to develop a demand curve. 
For comparison with the above -mentioned agricultural elasticities, Moore 
(1962) calculated elasticities ranging from -0.14 at $5 per acre -foot to 
-1.58 at $25 per acre -foot for crop land in southern California. 

Industrial Demand 

There has been little objective study of true industrial demand for 
water. Much of the reason for this dearth of information is based on the 
fact that the "value added per acre -foot of water" in most industries is 
very high. For instance, Tijoriwala, Martin, and Bower (1968) indicate that 
the value added per acre -foot of water intake in the industrial sectors of 
the Arizona economy ranges from $1,684.79 for primary metals to $140,331.18 
for fabricated metals and machinery. While, for comparsion, the figures in 
the agricultural crop sectors range from $13.52 for food and feed grains to 
$126.14 for vegetables. "Value added" is the total cost of production paid 
out as earned incomes to the owners of factors of production (wages, interes 
proprietor's profits, water costs, etc.). If "value added per acre -foot of 
water" is low, indication is that a large portion of the total production 
costs are accounted for by water; likewise, high values added per acre -foot 
of water indicate that only a small portion of the total production costs 
are attributable to water. Thus, if the price of water were to increase 
assuming this increase could not be passed on to buyers of the product, 
firms where value added per acre -foot of water is quite small would face a 
"profit squeeze" and be forced to change their water -using habits. On the 
other hand, high values added per acre -foot of water are often times 
interpreted as meaning that these associated firms are able to pay a very 
high price for water and still maintain high profits and, further, that 
they would not be forced to lower their usage if the price of water were 
to rise. This condition, if it were true, would produce an inelastic 
demand curve within any range of reasonable prices and lead to a demand 
curve described simply as a vertical line through a point indicated by the 
existing price -quantity values. 

The point to be made here is that even though it can be shown that 
industry is able to pay more for water, they are certainly not always 
willing to do so if the price is raised and are perfectly capable of 
changing their internal water -use patterns and reducing their water intake 
if they can save money by so doing. This means more than a reduction in the 
amount of intake water due to in -plant treating and subsequent recirculation 
which would essentially maintain the existing status of the gross amount of 
water applied per unit of output, but also means the capacity to reduce the 
gross water applied through actual changes in the manufacturing process. 
The latter notion is exemplified by data (Sewell et al., 1968) which show 
the gross water applied in petroleum refining to vary from less than 200 to 
more than 4,000 gallons per barrel of crude oil processed for 159 refineries 
surveyed. 

This leads one to believe that it would be possible to quantify 
industrial demand curves for water by analyzing the alternative water -use 
patterns in terms of their associated costs and the amount of water used 
with each alternative. Then, it is only logical that as the price of water 
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rises to a point where a new use pattern becomes economical, the firm 
would switch over to this use pattern requiring less water and so on. 
These data, then, would constitute a stepwise demand curve. Needless to 
say, these types of data are not easily obtainable due to the understandable 
unwillingness of plant officials to divulge the required information. But, 
nonetheless, this does not rule out the possibility of estimating such data 
if one is familiar with the manufacturing processes. 

There is an industrial demand study worthy of note, however, not only 
because it is an attempt to quantify industrial demand, but also because it 
introduces the more general subject of how uncertainty in water supply may 
affect the demand. Rather than study the demand curve for each type of 
industry Turnovsky (1968) devised an "index of per capita industrial 
production" which involved summing the industrial payrolls in a given 
community and converting this sum to a per capita term. The index was then 
used to help estimate the industrial water demand in each of 19 
Massachusetts towns as 

X = ß0 + ßlß2 + 02p + ß3IP (3 -19) 

where X is the per capita industrial water demand, the ß's are regression 

coefficients, 
a2 

is the variance of supply, p is the price, and IP is the 
above -mentioned industrial production index. Of the three variables, IP 
turned out to be the least significant in predicting per capita industrial 
demand, but price and variance were highly significant. 

In the Tucson Basin, there are three types of uses which make up the 
preponderance of the industrial water -use component. The largest of these is 
a group of four copper mines located in the southern end of the basin about 
20 miles south of Tucson. Three of these mines are open pit and currently 
each of them obtains water from its own wells. Data taken from Gilkey and 
Beckman (1963) and Larson and Henkes (1968) indicate that their total new 
water intake is about 12,000 acre -feet per year at present, and all 
practice recirculation within the concentrators. The fourth operation is an 
underground mine using about 600 acre -feet per year which it obtains from 
within its main shaft. The mines use 200 to 250 gallons of water per ton of 
ore processed. 

The amount of water used by mines will change drastically in the 
period 1970 -1975 as both the Duval Corporation and the Anaconda Company bring 
large, new, open pit properties into operation. These two operations are 
expected to increase the water use by mines to about 42,000 acre -feet per 
year by 1975. 

The second largest industrial user in the basin is Tucson Gas and 
Electric Company which withdrew 4,400 acre -feet of water from its own wells 
in 1968. This operation practices cooling -tower recirculation to the extent 
that their total in -plant use is about 22,000 acre -feet per year. 

The other large industrial use is by a large manufacturing plant operated 
by the Hughes Aircraft Company which used 415 acre -feet of water in 1968. 
This water was again obtained from private wells. 
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This gives a total industrial use within the basin 
17,500 acre -feet annually. The cost of obtaining water 
was about $20 per acre -foot (Gilkey and Beckman, 1963), 
of use makes up the largest portion of total industrial 
used as an average current price of water to industrial 
problem. 

at present of about 
by the mines in 1962 
and since this type 
use, this figure was 
users in this 

Since all the industries in the basin are already practicing recircu- 
lation, the price elasticity for this demand is probably rather low. For 
instance, Cootner and Lof (1965) have indicated that for electric steam 
generation plants with cooling towers already installed (as is the case with 
Tucson Gas and Electric Company), the price elasticity for water would be 
about -0.15. Price elasticity is still present because of their ability to 
increase the condenser size (at increased cost, of course) and thus increase 
the efficiency of each unit of water in disposing of heat. 

It appears, according to Kaufman (1967) ,. that there are more 
opportunities for conserving water in the mining operations even though, in 

this case, recirculation within the ore concentrators has already been 
adopted. These opportunities include recirculation at other stages in the 
milling process. 

With the above -stated facts in mind, it was decided to estimate the 
industrial price elasticity at the present price -quantity values as a -0.20. 
These data then give us one point on the demand curve and the elasticity at 
this point. With these we can derive a linear expression for industrial 
demand using equation (3 -7) as follows: 

QI - 17.5 pI - 20 

175 eI 20 

or 

(3 -20) 

QI = 21.0 - 0.175p, 

where QI is total industrial demand in thousands of acre -feet and pI is in 

dollars per acre -foot. 

In this context, costs are the unit, variable costs of delivering water 
from the groundwater reservoir within the basin (the only current source) to 

each of the three sectors. Since at present irrigators and industrialists 
are self -supplied, their costs are the same as the prices they are now payin4 
for water in that they are not charging themselves any more for water than it 

costs them to obtain it. The municipal users, served by the Department of 
Water and Sewers, however, are not self -supplied, and the prices which they 
pay for water exceed the variable costs of delivery. If our hypothetical 
central water -control agency existed now and was operating the existing Ovate] 
supply system under the conditions as specified in Table 5, the municipal 
sector, by equation (2 -11), would be the only sector from which a net revenue 
would be generated. This net revenue could be calculated simply as follows: 

RN = 59,700(110.00 - 62.50) + 75,000(8.00 - 8.00) 

+ 17,500(20.00 - 20.00) = $2,835,750 (3 -22) 
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During 1967 -68, the Tucson Department of Water and Sewers had a net operatil 
revenue of $2,202,924 upon delivering 44,500 acre -feet of water for municipi 
use. 

The Objective Function 

As stated before, there is presently only one source of water being use 
in the Tucson Basin -- the Tucson Basin groundwater reservoir. All of the 
data presented herein concerning this source are current, i.e., they represe 
the situation as it is believed to exist in the spring of 1969. Likewise, 
each of the three types of uses currently exist and their demand curves are 
presented as an estimate of the situation only as it exists now. The other 
sources of water, however, are not actually being used in the system yet, ar 

therefore the data presented concerning them represent conditions as they a3 

expected to arise when these sources enter the system. 

The pricing model, then, can be used to allocate water within the water 
supply system as it exists now and can also be used to allocate water within 
the system as it is expected to exist when the new supply sources become 
availabe. Actually, .in this problem we will first allocate water on an 
annual basis within the existing system and then look at how this allocation 
would be affected if each of the new supply sources were to be currently 
brought on line. 

If the four sources of water which have been described were all 
presently available, the problem would be as follows: Allocate the water 
from these sources to the municipal, agricultural, and industrial users in 
such a way as to maximize profits to the central water - control agency. This 
stated objective can be formulated as a nonlinear mathematical programming 
problem whose general form is as shown in equation (2 -15). The objective 
function to be maximized is 

Z= P M (QT'M + QV'M + QW'M + QC'M) - cT'MgT'M - cV'MgV'M 

- cW'MgW'M - 

cW,AQW,A 

cT,IqT,I 

cC'MQC'M + P A CQT'A + QW'A + QC'A) - cT'AgT'A 

cC'AQC'A + P 
I 
(QT'I + QV'I + 

gW,I 
+ QC'I) 

cV,IqV,I cW,IgW,I cC,IgC,I 

subject to the following availability constraints: 

T,M T,A T,I +q 
qV,M qV,I 

Q - V 

qW'M + gW'A + gW'I 
..<4011w 

C,M C,A C,I 
C 

and nonnegativity constraints 
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qi. > 0 . (3 -25) 
J 

The general form of these constraints is shown in equation (2 -2). The known 
cost coefficients (c.. in equation (2 -15) expressed in dollars per acre -foot 
are 

cT'M = cost of transferring water from Tucson Basin groundwater 
reservoir to municipal uses, 

cV'M = cost of transferring water from Avra Valley to municipal uses, 

cw'M = cost of transferring waste water to municipal uses, 

cC'M = cost of transferring Central Arizona Project water to municipal 
uses, 

cT,A = cost of transferring water from Tucson Basin groundwater 
reservoir to agricultural uses, 

cW'A = cost of transferring waste water to agricultural uses, 

cC'A = cost of transferring Central Arizona Project water to 
agricultural uses, 

cT'I = cost of transferring water from Tucson Basin groundwater 
reservoir to industrial uses, 

cV'I = cost of transferring water from Avra Valley to industrial uses, 

cW'I = cost of transferring waste water to industrial uses, and 

cC'I = cost of transferring Central Arizona Project water to industrial 
uses. 

"Cost of transferring" refers to the total cost of production, treatment, 
and distribution as given in Table 2. The price variables (p. in equation 
2 -15), expressed in dollars per acre -foot, are 

pM = price paid for water by municipal users, 

pA = price paid for water by agricultural users, and 

pI = price paid for water by industrial users. 

The quantity variables (q.. in equations 2 -2 and 2 -15), expressed in acre - 
feet, are 

13 

qT,M quantity of water transferred from Tucson Basin groundwater 
reservoir to municipal uses, 

qV,M quantity of water transferred from Avra Valley to municipal 
uses, 

W'M q = quantity of waste water transferred to municipal uses, 
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qC,M quantity of Central Arizona Project water transferred to 
municipal uses, 

q'A = quantity of water transferred from Tucson Basin groundwater 
reservoir to agricultural uses, 

W,A 
= quantity of waste water transferred to agricultural uses, 

qC,A quantity of Central Arizona Project water transferred to 
agricultural uses, 

q 
T I 

= quantity of water transferred from Tucson Basin groundwater 
reservoir to industrial uses, 

qV'I = quantity of water transferred from Avra Valley to industrial 
uses, 

q'I = quantity of waste water transferred to industrial uses, and 

qC'I = quantity of Central Arizona Project water transferred to 
industrial uses. 

The availability constants (Qi in equation 2 -2) on the right -hand side of 

the constraints, expressed in acre -feet, are 

QT = total amount of water available from Tucson Basin groundwater 
reservoir (depends on political decision rule to be discussed 
later) , 

QV = total amount of water available from Avra Valley (11,000 acre - 
feet) , 

QW = total amount of waste water available (35,000 acre -feet), and 

QC = total amount of Central Arizona Project water available (112,000 
acre -feet) . 

The demand functions given in Table 5 can be restated as 

but 

therefore 

pM = 341.47 - 3.876QM 

pA = 56.46 - 0.647QA 

pI = 120.00 - 5.714Q1 

QM = qT'M + 
gV,M 

+ 
gW,M 

+ gC'M 

Q = T,A W,A gC,A 
A 

QI = qT'I + gV'I + gW'I + gC'I 
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3.876(gT'M 
qV'M qW'M qC'M) 

pM = 341.47 - 

pA = 56.46 - 0.647(gT'A 
qW'A gC,A) 

(3 -28) 

pI = 120.00 - 5.714(gT'I 
qV,I qW,I qC,I) 

These equations (3 -27) along with the cost coefficients given in Table 2 

can be used in equation (3 -23) to give the following more specific objective 
function which is a quadratic function in q... i 

Z = 341.47(gT,M 
qV,M qW,M qC,M) 

- 3.876(gT'M 
qV,M qW,M gC,M)2 - 62.50gT,M - 82.50gV,M 

- 83.30gW'M - 114.30gC'M + 56.46(gT,A 
+.qW,A gC,A)2 

- 8.00gT'A - 15.00gW'A - 16.00gC'A 

+ 120(gT'I + qV'I + qW'I + gC'I)2 - 20.00gT'I - 40.00gV,I 

- 83.30gW'I - 114.30gC'I . (3 -29) 

When the availability constraints are used in equations (3 -24) , the 
constraints become 

T,M T,A T,I 
q +q +q 

QT 
qV,M qV,I 

< 11 

qW'M gW,A qW'I < 35 

qC'M gC,A qC'I < 112 

and 

(3 -30) 

qij > 0 . (3 -31) 

Equation (3 -39) can be maximized subject to the constraints, equations 
(3 -30), using quadratic programming techniques, all eleven qij variables, 

and all four inequality constraints. But because of the particular economic 
structure of the problem (specifically, the manner in which the cost 
coefficients are arrayed), it can be decomposed into four independent sub- 
problems thereby greatly reducing the computational effort required for its 
solution. The basis for and reasoning behind this decomposition will now 
be explained. 

Decomposition of the Objective Function 

There are innumerable ways by which large -structured mathematical 
programming problems can be manipulated in order to facilitate their 
solutions. The effort that has been devoted to this subject is quite 
varied because each worker has been involved with particular problems, each 
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of which has its own peculiarities and each of which must be attacked some- 
what differently so that these individual peculiarities can be exploited. 
The impetus behind the manipulations and strategies is usually to overcome 
the mathematical problem of computer capacity. But there is another 
important reason why these manipulations and strategies should not be 
overlooked. It is possible to generate problems which appear to require 
programming techniques for their solutions, but which actually can be 
solved somewhat simply. If detailed programming techniques are used in 
these situations, they cloud the general understanding of the problem and 
sometimes imply that certain insights are missing. These manipulations and 
strategies, however, when applied can often prove quite fruitful in 
revealing some of these insights. We will show in this problem how this 
type of "information feedback" occurred when attempts were made to use a 
solution strategy. 

One of these solution -strategy concepts is referred to as the principle 
of decomposition. That is, some large problems can be broken into parts -- 
variables and constraints can be grouped so that each constraint or set of 
constraints involves only one set of variables while other constraints 
involve sets of different variables. When the matching groups (subproblems) 
are solved, their solutions can be reassembled to give an overall solution. 
In searching for some sort of decomposition possibility in this problem, it 
was found that certain economic principles could be used as guidelines 
along which decomposition could take place. These principles will first be 
explained, and then the actual decomposition of this particular problem will 
be described. 

Keeping this explanation in terms of water resources, let us first 
consider a case where only one user is being supplied with water. The user 
confronts us with a single linear demand curve, and we have the option of 
supplying him from either of two sources. We are faced with a different 
unit cost of supply from each source. This situation is pictured in Fig. 20 
From the supplier's point of view, the demand curve becomes the average 
revenue curve. For each supply, the average and marginal costs are pictured 
as single horizontal lines because, in this case, they are constant unit 
costs, and average costs equal marginal costs. Area ABCD is the profit to 
be gained by supplying the user with water from source A, and the area EBCF 
is the profit to be gained by supplying the user with water from source B. 
The area identified as "A profit" in Fig. 20 is the increase in profit to 
be obtained by supplying the user with the least -cost source (in this case 
source A). Therefore, it is obvious that we will obtain the most profit by 
supplying the user from source A. It is also obvious that the "A profit" 
area will always be present no matter what supply level is chosen; therefore 
it will always be best to supply theuser from source A. We can generalize 
this statement by saying that whenever we are faced with a linear demand 
curve and constant unit costs of supply, at any level of supply we will 
obtain the most profit at this level by supplying from the least -cost 
source. For sake of clarification, this concept is also shown in Fig. 21, 
but this time using a total revenue curve and total cost curves. Again, it 
can be seen that at any supply level we will obtain the most profits by 
supplying from the least -cost source. Actually this principle is 
intuitively realized by most water- source planners in their obvious desire 
to use the least expensive sources of water early in an area's development 
stage and then start seeking out more expensive sources of supply to meet 
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- Dernand = Average revenue 

/-Cost (supply B) 

Number of units 

Figure 20. Single User, Two Possible Supply Sources, Unit Prices, and Costs 

Total revenue 

, Profit 
A 

Profit .4 Total cost (supply B) 

B ' . 

. . `.-- '1"---Total cost (supply A) 
...- 4.- ...- 

Number of units 

Figure 21. Single User, Two Possible Supply Sources, Total Revenue, 
and Total Costs 
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expected requirements once the area's economy is relatively established. 
This idea is vital to the decomposition of this problem. 

We can expand this idea by stating that if we are faced with supplying 
several users each with his own characteristic demand curve, by the same 
above reasoning we would be in the best profit position if we supplied each 
user with his particular least -cost source. Now, in this specific problem, 
the total cost structure is such that the least -cost source (Tucson Basin 
groundwater reservoir) to municipal users is also the least -cost source to 
the agricultural and industrial users. Further, the next least expensive 
supply source (Aura Valley) to municipal users is also the next least 
expensive source to the other users. The same thing holds true for the 
third least expensive source (waste water) and the most expensive source 
(Central Arizona Project water) . This categorized array of costs can be 
seen in the "total cost" column of Table 2. 

These circumstances, then, afford us a guideline along which the overal 
problem as expressed in equations (3 -23) , (3 -24) , and (3 -25) can be 
decomposed, that is, first allocate in an optimal manner only water from the 
Tucson Basin groundwater reservoir to all three users. This subproblem is 
formulated in the same way as the overall problem except that only the 

applicable quantity variables (qT,M, qT,I, and qT'A) need be considered. 
The objective of this subproblem is to maximize 

ZT = pMgT'M - cT'MgT'M + pAgT'A - cT'AgT'A 

subject to 

and 

p 
gT,I cT,IaT,I 

I 

qT'M + gT'A + gT'I < 

T,M T,A T,I 
q , q , q 

QT 

(3-32) 

(3 -33) 

(3 -34) 

where ZT refers to the profit obtained from allocating only water from the 

Tucson Basin groundwater reservoir. This is a quadratic programming problem 
in only three variables and can be solved using Wolfe's (1959) modified 
simplex technique by hand very easily. Since we are using an inequality 
type availability constraint, none of the individual allocations will go 
beyond the level indicated by the point where marginal revenues equal 
marginal costs, but any of them may be less than this level because of the 
availability constraint, that is, an optimization with no availability 
constraint would call for supplying all sources at the level indicated by 
the point at which marginal revenues equal marginal costs; beyond this the 
solution would be nonoptimal. But because of the availability constraint, 
all or some of the uses might not be supplied up to this level by the least - 
cost source. If for any use the level of allocation from this least -cost 
source is the same level as that indicated by the point where marginal 
revenues equal marginal costs, no further allocation need be made to this 
use. This would be the case for use A in an example involving three uses 
and four sources depicted in Fig. 22. If for any use where the allocation 
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Figure 22. Demonstration of Decomposition Principles 
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from the least -cost source is less than that indicated by the point where 
marginal revenues equal marginal costs, further allocation must be made 
from the next least -cost source. Let us say that this was the case in our 
example Tucson Basin problem. If use A were municipal use, our next step 
would be to allocate water from Avra Valley, but we know that Avra Valley 
water cannot go to agricultural use, therefore, we allocate all of it to 
industrial use (use B in Fig. 22). The third subproblem would be again 
formulated in the same way as the overall problem except that only the 

applicable quantity variables (qW'A and qW'I) need be considered. Remember, 
municipal use has already been fully allocated and the third least - 
expensive source is waste water. The objective of this third subproblem 
would be to maximize 

subject to 

and 

ZW = pAgW'A - cW'AgW'A + pIgW'I - cW'IgW'I 

W'A W'I + g q < QW (3-36) 

W,A W,I 
q 

, q 0 (3-37) 

(3 -35) 

where ZW refers to the profit obtained from allocating just waste water. 

This amounts to another simple quadratic programming problem, this time 
with only two variables. In this third subproblem it is possible that the 
allocation to use B, if added on to the preceding allocations, would exceed 
the level indicated by the point where the marginal cost of this source 
equals the marginal revenue. In this case, the allocation to this use would 
be made only to the point where marginal revenue equals marginal cost, and 
the remainder of this allocation would be added on to use C. Lastly, in 
Fig. 22, the most expensive source would be allocated to use C out to the 
point where the marginal cost of this source equals the marginal revenue of 
use C. 

What we have actually done in this decomposition procedure is break 
the overall problem down into a series of very simple quadratic programming 
problems (in our example, these can be solved very simply with hand 
calculations) and an elementary bookkeeping procedure. The main benefit, 
however, is the much deeper insight we gained into the problem at hand. 

Unconstrained Optimization 

The previous section explained why, in maximizing our problem 
(equations 3 -29, 3 -30, and 3 -31) , we would first maximize the profit to be 
obtained from allocating only water from the Tucson Basin groundwater 
reservoir. Now, if we do not limit the amount of water available from this 
source, or, for instances, set QT equal to the amount of water now used in 

the basin (150,000 acre -feet annually), the first subproblem is formulated a: 
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subject to 

and 

ZT = 341.47gT'M - 3.876(gT'M)2 - 62.50gT'M + 56.46gT,A 

- 0.647(gT'A)2 8.00gT,A + 120.00gT'I - 5.714(gT'I)2 

- 20.00gT,I 

qT'M qT'A qT'I < 150 

qT'M, qT'A, qT'I 

Its maximum is obtained with the following set of quantities and 
corresponding prices 

qT,M 
35,990 acre -feet, pM = $201.99 

qT,A 
27,460 acre -feet, pA = $ 32.23 

qT,I 
8,750 acre -feet, pI = $ 70.00 . 

(3 -38) 

(3 -39) 

(3 -40) 

(3 -41) 

The total allocation to all uses is 82,200 acre -feet. This is less than 
150,000 acre -feet and, therefore, this means that we have allocated out 
to the point where marginal revenues equal marginal costs for all three 
uses and any further allocation from this source or any other source would 
be suboptimal. This set of prices and quantities, therefore, also 
maximizes the overall problem. The total profits in this case is 
$6,365,400. This is an increase in profit of $3,529,600 over what the 
central water control agency would be generating if presently in operation. 

There are, however, important reasons for not attaching too much 
significance to this result. The first is that the linear demand functions 
which we used are hardly acceptable for such violent deviations from the 
initial values. The second is that the result implying an 83 percent rise 
in the price of municipal water, a 300 percent rise in the price of 
agricultural water, and a 250 percent rise in the price of industrial 
water -- would not likely be acceptable. The third is that the result also 
calls for a 46 percent reduction in the total annual use in the basin; 
this also is too drastic to be acceptable. For these reasons a policy 
constraint is introduced into our example problem and will be explained in 
the following section. 

The Policy Constraint 

To accomodate for the fact that large price rises are unsatisfactory 
from the social point of view, a constraint will be added to our problem 
of the following form 

pm - 110 
PA - 8 

PI 
- 20 

K nM 110 + nM 8 +. nI 20 
(3 -42) 
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The nI coefficients are weights attached to the relative deviations of a 

projected price from the existing water prices. This type of constraint 
was used by Louwes, Boot, and Wage (1963) in an interesting problem 
involving the optimal use of milk in the Netherlands. The weights n1 will 
be determined in such a way that we have 

nM: nA: nI = pMQM: PAQA: PIQI (3 -43) 

where the pi and Q values refer to existing prices and quantities. Hence 

the ratio of the nI's is equal to the ratio of the total revenues received 

by the central water control agency from each of the three types of uses. 
The nI's have been scaled so as to add to 10, which gives 

nM = 8.7, nA = 0.8, n1 = 0.5 . (3 -44) 

This implies that if all prices increase by 10 percent, K = 1.0. The value 
of K is zero in the existing situation. As we allow K to increase from 
zero, we know from our unconstrained optimum study that prices will tend to 
rise; therefore, protests from farmers, city dwellers, and industrial 
interests will become stronger. This is why we shall refer to equation 
(3-42) as the social constraint . 

Substituting the nI values of (3 -44) into (3 -42), we can specify the 

constraint numerically as 

pM - 110 
PA 

- 8 
PI 

- 20 
K = 8.7 

110 +0.8 8 +0.5 20 

or 

(3 -45) 

K = 0.079pM + 0.100pA + 0.0251)I - 10 . (3 -46) 

Our problem can now be stated as follows: maximize equation (3 -29) 
subject to (3 -30) , (3 -31) , and (3 -46) for various values of K, by 
determining the quantities to be allocated and the corresponding prices. 

In formulating this constraint a certain value judgment has been made. 
Since the municipal users presently pay the most for water on a per acre - 
foot basis and because of their numbers also contribute by far the greatest 
revenue to the water agency, the judgment was made that their water prices 
should be perturbed the least. In the constraint, a perturbation in 
municipal water prices is weighted heavily; whereas, the other uses are not 
so heavily weighted. 

The Numerical Results 

As explained earlier, in this problem as described thus far, it will 
always be best to allocate water from the Tucson Basin groundwater reservoir 
first. We also know from previous discussion that as we relax K, the 
policy constraint, optimal solutions will tend toward higher prices and 
lower quantities of water delivered. To state this another way, increasing 
K will result in optimal solutions using less total water annually than the 
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152,000 acre -feet now being pumped in the Tucson Basin. If we consider this 
152,000 acre -feet per year as an arbitrary maximum amount which we will 
allow to be pumped, rather than some lesser amount, we can explore the option 
of using only water from the Tucson Basin groundwater reservoir and be able 
to drop the availability constraint. For this reason, and also because of 
the fact that groundwater within the basin is the only active source at 
present, we will first look at the results obtained using only this source 
of water. Our problem at this point, then, has been reduced to the 
following: maximize equation (3 -38) subject to equations (3 -39), (3 -40), 
and (3 -46) for various values of K. 

Results for K = 0 

We will first consider the problem for K = 0 and answer the question, 
"What is the maximum profit obtainable for socially neutral situations ?" 
The results of this solution are given in the second column of Table 6. It 
can be seen that a readjustment in prices was called for with the municipal 
price decreasing and the agricultural and industrial prices increasing. 
This in itself is an indication that the existing price to municipal users 
is closer to the optimum than the other prices because at this point a 
greater increase in profit per acre -foot can be obtained by increasing the 
price to agricultural and industrial users. Our K = 0 constraint requires, 
however, that in order to increase these latter two prices, the municipal 
price must decrease, and this is what happened. The Lagrangian a4 

i 
pertaining to the policy constraint turned out to be positive, another 
indication that profits can be increased by increasing prices. The value 
of the. Lagrangian multiplier is commonly referred to as the shadow price in 
economics. This is because these values are measures of the cost of the 
constraint in the sense that they give the increase or decrease in revenue 
obtainable when the constraint is relaxed by one marginal unit. Thus, in 
this case, if we let K = 0.1 instead of K = 0, the Lagrangian X4 gives the 

increase in the value of the objective function for infinitesimal increases 
in K. A closer approximation is obtained by taking the average a4 value of 
K = 0 and K = 0.1. 

Since our main concern in this entire problem is how to increase profits 
and we know that in so doing we must ultimately raise all prices, it does 
not seem realistic to consider lowering the price to municipal users. 
Therefore, at this point we will introduce three more constraints into our 
problem which simply do not allow the prices to fall below their present 
values. They are 

pM > 110.00 

PAL 8.00 (3 -47) 

pI > 20.00 . 

Since we are using quantities of water as our decision variables, we need 
to reformulate these constraints in terms of the q.. variables rather than 

13 
the prices. This can be accomplished by the appropriate substitutions of 
equations (3 -28) into the above inequality constraints. This gives 
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TABLE 6. --The numerical solutions using only water from the Tucson 
Basin groundwater reservoir for various values of K 

Existing 
Situation 

(1) 

pM 110.00 

PA 8.00 

PI 20.00 

QM 59,700 

QA 75,000 

QI 17,500 

m 
(p-c)Qi 2,835,570 

1=1 

m 
ch i= 1 

Active 
Constraints* 

X4 

152,200 

K=0 K=0.1 K=0.2 K=0.3 
(2) (3) (4) (5) 

104.14 110.00 110.00 110.00 

11.56 9.10 9.90 10.54 

24.35 20.00 20.80 22.23 

61,230 59,700 59,700 59,700 

69,320 73,220 71,980 71,000 

16,740 17,500 17,360 17,110 

2,870,183 2,916,292 2,986,400 3,054,245. 

1474390 150,420 149,040 147,810 

4 1,3,4 1,4 1,4 

63,912 71,521 69,047 67,068 

*These numbers refer to the following constraints: 

1. gTsM '- 59.7 

3. qT,I 17.5 

4. K = 0.079pM + 0.100pA + 0.025p1 - 10, 
for various values of K. 
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TABLE 6 . --Continued 

K=0.4 
(6) 

pM 110.00 

PA 11,19 

PI 23.66 

QM 59,700 

9A. 69,990 

QI 16,860 

iin i-1)Qi 3,120,725 
l 

146,550 

K=0.5 K--0.6 K=0.7 
(7) (8) (9) 

110.00 110.00 110.40 

11.83 12.47 12.88 

25.09 26.51 27.27 

S9,700 59,700 59,620 

69,000 68,010 67,380 

16,610 16,360 16,230 

3,184,564 3,246,257 3,302,604 

145,310 144,070 143,230. 

Active 
Constraints* 1,4 1,4 1,4 4 

A4 65,059 63,080 61,101 59,819 

*These numbers refer to the following constraints: 

1 -. qT' M ft 59.7 

3. qT' I 3 17.5 

4; K 0- 0379pM --+ °0100A - + 0.025p1 - -- -10; 

for various values of K. 
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K=0.8 
(1 0) 

111:30 

13.07 

27.69 

59,380 

67,080 

16,150 

3,362,032 

142,020 

4 

59,234 



TABLE 6. -- Continued 

K= 0.9 
(11) 

pM 112.19 

PA 13.26 

pI 
28.11 

QM 59,150 

QA 6.6, 790 

QI 16,080 

m 
(pi-c)Qi 3,420,886 

1=1 

m 
E Qi 1=1 

142,020 

Active 
Constraints* 4 

A4 58,649 

K = 1.0 
(12) 

K = 2.0 
(13)- 

K = 3.0 
(14) 

K= 4.0 
(15) 

113 .09 122.04 131.00 139.95 

13.45 15.34 17.23 19.13 

28.53 32.70 36.88 41.06 

58,920 56.610 54,300 51,990 

66,500 63,570 60,650' 57,720 

16,010 15, 280 14,550 13,810 

3,479,752 4,031,218 4,564,953 4,959,886 

141,430 135,460 129,500 123,520 

4 4 4 4 

58,064 52,216 46,368 40,520 

*These numbers refer to the following constraints: 

1. qT'M 59.7 

3. qT,I 17..5 

4. K = 0.079pM + 0.100pA + 0.025p1 - 10, 
for various values of K. 
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TABLE 6 . -- Continued 

PM 

PA 

PI 

QM 

QA 

QI 

m 
(p1- c)Qi 

1=1 

Qi i=i 
Active 
Constraints* 

b4 

K= 5.0 
(16) 

K= 6.0 
(17)- 

K= 7.0 
(18)- 

K= 8.0 
(19) 

K= 9.0 
(20) 

148.90 157.86 166.81 175.76 184.72 

21.02 22.91 24.80 26.70 28.58 

45.23 49.41 53.59 57.77 61.94 

49,680 47,370 45,060 42,750 40 -,440 

54,670 51,870 48,950 46,010 43,110 

13,080 12,350 11,620 10,890 10,160 

5,334,163 5,653,797 5,913,083 6,113,567 6,255,880 

117,430 111,590 105,630 99,650 93,710 

4 4 4 4 4 

34,672 28,824 22,976 17,128 11,280 

*These numbers refer to the following constraints: 
1. qT'M 59.7 

3. gT,I 17.5 

4. K = 0.079pM + 0. 100pA + 0.025pí - 10, 
for various values of K. 
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TABLE 6.--Continued 

PM 

PA 

PI 

QM 

QA 

QI 

m 
(p1- c)Qi 

i=1 

m 
E Qi 1=1 

Active 
Constraints* 

4 

K= 10.0 
(21) 

K= 10.94 
(22) 

K= 11.0 
(23) 

193.67 201.99 202.62 

30.47 32.23 32.36 

66.12 70.00 70.29 

38,130 35,990 35,820 

40,180 37,460 37,250 

9,430 8,750 8,700 

6,339,267 6,365,400 6,363,848 

87,740 82,200 81,770 

4 4 4 

+5,432 0 -415 

*These numbers refer to the following constraints: 

1. qT,M 59.7 

3. gT'I 17.5 

4. K = 0.079pM + 0.100pA + 0.025p1 10, 
for various values of K. 
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qT'M + gV'M + gW'M + 'M < 59.7 

qT,A qW'A qC'A 
< 75.0 

qT,I gV,I gW,I gC,I < 17.5 

(3 -48) 

With these constraints (3 -48) in the problem, the solution for K = 0 will 
be the same as the existing conditions since in order for any one of the 
prices to move up in value at least one of the others would have to move 
down, but this cannot happen because of the constraints (3 -48). As soon as 

the policy constraint is relaxed, however, the prices will start to move up. 
In the next section, we will discuss the results obtained for alternative 
values of K. The problem is now stated as follows: maximize equation (3 -38) 
subject to (3 -39), (3 -40), (3 -46), and (3 -48) for various values of K. 

Results for Alternative Values of K 

Table 6 gives the solution values of prices and quantities, the profit 
obtained, and the Lagrangians associated with the exactly satisfied 
constraints for alternative values of K. Apart from the policy constraint 
only the first and third constraints of (3 -48) are effective for the lower 
values of K. The absolute maximum, already discussed in an earlier section, 
is obtained where K = 10.94. Up to this point it is seen that the Lagrangian 
A4 values are positive but decreasing, implying that the incremental increases 

in profit are getting less as we approach the absolute maximum. At this 
point X4 is zero meaning that any further increase in prices will lower 

profit. As K is raised beyond 10.94, X4 becomes negative and would get 

larger if K were raised further. 

Now let us see how the information contained in Table 6 could be used 
by the central water -control agency for the twofold purpose of increasing 
profits and decreasing the total amount of water used in the basin. The 
last major increase in water rates for municipal users in the City of Tucson 
was instigated in October, 1964, and amounted to about 30 percent. Let us 
assume that another 30 percent increase is now warranted and use Table 6 to 
see how, according to our model, it can be optimally accomplished, that is, 
how can we obtain the most profit out of a 30 percent price increase? This 
question is answered in column 14 of Table 6. Sell municipal water for 
$131.00 per acre -foot, agricultural water for $17.23 per acre -foot, and 
industrial water for $36.88 per acre -foot. This amounts to a 19 percent 
rise in municipal rates, a 115 percent rise in agricultural rates, and a 84 

percent rise in industrial rates. These increases reflect the structure of 
our policy constraint which inhibits municipal rate changes in comparision 
with the others on the grounds that municipal rates are already comparatively 
high and municipal users contribute a preponderance of the total revenue. 
The total profits would be increased by 61 percent or by about $1,729,000, 
and the total amount of water used in the basin would be decreased by 15 
percent or by 22,700 acre -feet. 

Let us repeat that these results are based on demand function which are 
at best approximations and the further we deviate from the existing situation 
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the more liable are our results. The consequences of these uncertainties 
will be discussed later. 

Results Involving All Sources 

The use of the pricing model will now be expanded to obtain results 
involving all the sources heretofore mentioned as future possibilities of 
supply. We know from our discussion thus far that these sources will not 
enter the solution unless forced to do so. We will force their entrance by 
restating the inequality -type availability constraints as equalities. First 
let us set up four operating rules which concern the Tucson Basin ground- 
water reservoir and the concept of "safe yield." (This latter term is truly 
one of the most ambiguous terms in hydrology -- to the author it simply 
means some sort of planned utilization of the groundwater reservoir based 
on the wants and needs of the community.) Three of these rules will dictatE 
three different annual rates of withdrawal based on three different rates of 
estimated average annual natural recharge. These reflect a policy whose 
purpose is to maintain or build up the present average groundwater level 
within the basin. A fourth rule is also considered which calls for importir 
all water used in the basin in a concerted effort to build up the average 
groundwater level. In these cases we will assume that we are required to 
supply the present annual rate of use, 152,200 acre -feet, and therefore we 
will use equality constraints starting with the amount of water to be used 
from the least expensive source. To this amount we will successively add 
on, in the form of equality constraints, the amounts of water to be used 
from the next least expensive sources until the specified requirement is 
met. For instance, the first operating rule assumes an average natural 
recharge rate of 79,000 acre -feet per year and limits the pumping within the 
basin to this amount. Therefore, we need to add to this 11,000 acre -feet 
from Avra Valley, 35,000 acre -feet of waste water, and 27,200 acre -feet of 
Central Arizona Project water to make the total requirement of 152,200 acre - 
feet. Our problem will then be the following: maximize (3 -29) subject to 
(3 -31) , (3 -38) , and 

qT'M + qT'A + qT'I = 79 

qV,M qV,I = 11 (3 -49) 

q 'M + qW'A + -W'I = 35 

qC,M qC'A qC,I = 27.2 

The second, third, and fourth operating rules will be along the same 
lines as the first, but with annual pumpages within the basin limited to 
56,000 acre -feet, 33,000 acre -feet, and zero acre -feet. Again, the total 
requirement is 152,200 acre -feet in all cases. Before discussing the result 
let us make it perfectly clear how they were obtained. 

Operating rule number one will be used as an explanatory example, and 
Fig. 23 will be used for illustration. The solution procedure is as follows 

1. Allocate 79,000 acre -feet of water from the Tucson Basin ground- 
water reservoir to all uses by maximizing equation (3 -38) subject 
to (3 -40) and 
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Figure 23. Allocation under Operating Rule No. 1 
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and 

qT'M < 59.7 

qT'A < 75.0 

qT,I < 17.5 

(3 -50) 

qT,M gT,A gT,I 
79.0 . (3-51) 

2. Allocate 11,000 acre -feet of water from Avra Valley to municipal 
and industrial uses by maximizing 

V 
Z2 = 203.59gV'M - 3.876(gV'M)2 - 82.50q 

'M 

+ 71.61gV'I - 5.714(gV'I)2 40.00gV,I 

subject to 

qV,M < 24.13 

qV,I < 9.03 

and 

qV,M gV,I = 11.0 . 

(3 -52) 

(3 -52) 

(3 -54) 

To obtain the new demand functions used in (3 -52) we simply shift 

the vertical axes out to the point of the most recent allocation 
as shown by the dashed lines in Fig. 23. The slope of the demand 
functions remain the same, but their ordinal intercepts change as 

shown. The right -hand side constants in (3 -53) are simply the 
right -hand side constants in (3 -50) deleted by the amount of the 
previous allocations. 

3. Allocate 35,000 acre -feet of waste water to all uses by maximizing 

Z3 = 160.95q 'M - 3.876(q 'M) 2 - 83.30q 'M + 33. 84q,Á 

0.647(gW,A)2 15.00gW,A + 71.61gW'I - 5.714(gW'I)2 

- 83.30gW,I 

subject to 

W 'M < 13.13 

q'A < 41.04 
qW,I < 9.03 

and 

(3 -55) 

(3 -56) 

qW'M qW'A qW,I 
35.0 . (3 -57) 

4. Allocate 27,200 acre -feet of Central Arizona Project water (the 
amount needed in addition to water from the other three less 
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expensive sources to meet the total requirement of 152,200 acre - 
feet) by maximizing 

Z4 = 116.37gC'M - 3.876(gC'M)2 114.30gC'M + 18.63gC'A 

- 0.647(gC'A)2 - 16.00gC'A + 71.61gC'I - 5.714(gC'I)2 

- 114.30gC'I 

subject to 

qC,M < 1.63 

gC,A 
< 16.54 

qC,I < 9.0 

and 

qC'M qC'A qC,I = 27.2 . 

(3 -58) 

(3 -59) 

(3 -60) 

At this point, the sum of the right -hand side constants in (3 -59) 

necessarily equal the right -hand constant in (3 -60). Therefore, 
the final allocation can only be 

qC,M 
1.63 

qC,A 
16.54 (3 -61) 

qC,I 
9.03 . 

The allocations resulting from the application of all four different 
operating rules are shown in Table 7. In general, the allocations remain 
fairly stable except for the agricultural sector. As the decisions are 
made to reduce pumping from within the basin, agricultural use from this 
source should decline and be supplanted by Central Arizona Project water. 
The reasonableness of this course of action will be discussed later. 

From the allocations in Table 7, a table of costs (Table 8) was 
calculated. Because of the specified requirement of using 152,200 acre -feet 
of water for all uses, the total revenue under each operating rule remained 
the same. As more expensive sources of water were used to replace the 
groundwater supply from within the basin, the costs necessarily increased. 
What our model actually shows us in this case is the least -cost method of 
supplying the required amount of water under the conditions specified. For 
all four operating rules the total revenue was $7,527,000; therefore, profits 
for the four rules were 

Rule #1 $1,111,200 
Rule #2 $ 617,900 
Rule #3 $ 92,900 
Rule #4 -$1,103.800 

The profits rendered under each of these operating rules are all less 
than the profits now accruing with the water-supply system operating in its 
present state. This profit, it will be remembered, is $2,835,570. The 
difference in the present profits and each of the other possible profits 
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then gives us a measure of the opportunity cost of implementing each of the 
rules. They are 

Rule #1 $1,724,370 
Rule #2 $2,217,670 
Rule #3 $2,742,670 
Rule #4 $3,939,370 

Results Using Estimated Data for 1975 

The purpose of this section is to demonstrate how the pricing model 
can be used in planning over a time horizon. In the case of the Tucson 
Basin, the static model can be expanded generally as shown in equation 
(2 -24). Any logical amount of water can be bought or pumped each year 
regardless of how much was bought or pumped the previous year; therefore, 
we will assume that hydrologic dependencies from year to year do not 
affect the model. Likewise, economic dependencies can be assumed to have 
no effect. The problem facing us then is to predict water requirements, 
water demands, water costs, and water availabilities in the future as 
input data at each stage of the model. 

Needless to say, this type of data cannot be predicted very 
accurately. However, intelligent attempts can be made and must be made if 
we wish to plan for the future at all. As mentioned earlier, in the Tucson 
Basin the use of water by mines is expected to increase sharply in the near 
future. It is estimated that by 1975 the mines would like to be using aboul 
41,600 acre -feet annually, but to stay at or near this new level for 
awhile. This fact gives us a good reason to try to predict the overall 
water -supply picture in 1975. By so doing we can suggest plans for 
coping with this rather substantial perturbation in the water -supply system. 

A summary of the predicted requirements and demands for each sector in 
1975 is shown in Table 9. The estimated requirements were taken from 
Rauscher (1969) . The estimates 1975 population in the Tucson Basin is 
388,000. 

The municipal and industrial demand curves for 1975 were estimated by 
simply shifting the present demand curves horizontally out to the point 
indicated by the new price -use relationship assuming present -day prices. 
In other words, it is assumed that municipal users would use 73,100 acre - 
feet at a price of $110 per acre -foot and industrial users would use 
47,500 acre -feet at a price of $20.00. The slopes of the functions, there- 
fore, remain the same and their equations can be derived based on this 
information. Actually, by doing this we have assumed that at every price 
the total use in 1975 will be a constant amount more than it would be 
presently. This constant amount is the difference between future and 
present uses at present prices. 

The agricultural demand curve was estimated by assuming the same 
elasticity at the future use rate of 58,700 acre -feet at $8.00 per acre - 
foot as at the present use rate of 75,000 acre -feet at $8.00 per acre -foot. 
This tends to keep ordinal intercepts of the present and future demand 
curves very nearly the same, but increases the slope of the function as 
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TABLE 9. -- Requirements and demands predicted for 1975 

Sector 
Requirement 

(acre -feet per year) Demand Function 

Municipal 73,100 QM = 101.5 - 0. 258pm 

Agriculture 58,700 QA = 68.6 1 .236pÁ 

Industry 47,500 QI 51 ..0 - 0. 175p1 
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total agricultural use decreases. Thus, as total agricultural use decreases 
the low -value crops will be eliminated and the high -value crops retained. T 
agricultural demand curve for 1975 then was estimated using a price -use 
point of 58,700 acre -feet and $8.00 and an elasticity of -0.17. 

All of the water- transfer costs were assumed to remain the same as 

given in Table, and the 1975 availabilities were estimated as follows: 

Tucson Basin groundwater 56,000 
Avra Valley groundwater 22,000 
Waste water 40,300 
Central Arizona Project 112,000 

acre -feet 
acre -feet 
acre -feet 
acre -feet 

The figure for Tucson Basin groundwater is one of the natural recharge 
estimates. It is assumed that the full amount of Avra Valley water will be 
available, that is, all that the present system can handle. The waste 
water is a straight percentage of the municipal use, 55 percent as indicated 
earlier. The Central Arizona Project water is again assumed to be 
available so that we can compare these results with those earlier. 

The optimization of this 1975 model was accomplished in exactly the 
same way as indicated in the preceding section using the 1975 parameters 
and assuming that the predicted requirements had to be met. The resulting 
allocations are given in Table 10. These results can be compared with the 
results for operating Rule #2 in Table 7, since they both assume an average 
annual natural recharge rate of 56,000 acre -feet. 

After 1975 it is estimated that the municipal requirement will 
continue to expand with the population at its present rate of increase 
(about 2,000 acre -feet per year), while industrial requirements level off 
and agricultural requirements decrease by about 1,400 acre -feet per year 
(Rauscher, 1968). If this is true, the trend of optimal allocations will 
be to supply the agricultural and industrial users with more and more of 
their water from the CAP. This is assuming a constant relative price range. 

Interpretation of Results 

The most obvious conclusion to be drawn here is that a central water 
control agency could profit by using only groundwater from the Tucson 
Basin and less of it than is now being used. Undoubtedly there is a 
tendency to dismiss this conclusion as plain "horse sense." It is true 
that perhaps any good water -resources consultant could have given the same 
broad conclusion just from his experience. But those years of experience 
were not available in this case, and the answer was still obtained. The 
operations research framework and the rigor it demands helped make this 
possible. 

In the particular case of the Tucson Basin it is quite possible that a 

water -rate increase may be considered as a way of financing the introduction 
of outside sources. If such action is considered, the results in Table 6 

will help in planning this rate increase. This is assuming that there is 

basic agreement on the form of policy constraint which favors larger 
increases in agricultural and industrial rates than municipal rates. 
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TABLE 10.--Optimal allocation considering 1975 requirements and all 
sources, in acre -feet 

Tucson Basin - 

Groundwater Avra Valley Waste Water CAP Total 

Municipal 36,420 14,580 13,890. 8,210 73,100 

Agricultural 22,110 36,590 58,700 

Industrial 19,580 7,420 4,300 16,200 47,500 
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In the results involving all four sources of water, the objective is 
constrained by forcing the system to meet the present requirements, and 
because of this the present price structure remains intact. A form of 
internal efficiency has been accomplished, however, by allocating the water 
in such a way as to maximize profits to a central water -control agency. In 
the case of the Tucson Basin, by retaining the price structure we are 
operating the system as a point close to maximum net satisfaction or 
maximum net social payoff -- that is, maximum under the assumption used in 
developing the demand curves. It will be remembered that the demand 
curves were assumed to pass through the present price -use relationships 
and that the present marginal costs of both agricultural and industrial 
water were considered as their present prices. Therefore, in these latter 
two cases we are operating at the point where marginal cost equals price 
and this is where net satisfaction is greatest for these two sectors. In 
the case of municipal water, the price of $110.00 is greater than the 
marginal cost of $62,50, when delivering 59,700 acre -feet. Therefore, we 
are theoretically operating at a point which yields less net satisfaction 
than possible. 

This leads to the rather envious results of operating as close to the 
point of maximum net social payoff as the constraints will allow and at the 
same time operating a central water -control agency so as to maximize its 
profits under these conditions. 

Effect of Changes in Elasticities 
on Problem Solution 

In this section we will perform a sensitivity analysis to determine 
the effect on the optimal solution of the pricing model if the demand 
elasticities take on other possible values. In particular, we will vary 
the point elasticities by plus and minus 10 percent at the present price - 
use coordinates to see what changes in prices this will bring about at the 
optimal solution for K = 13.0 in the case where the only source considered 
is groundwater. It will be recalled that setting K = 13.0 allows for a 30 

percent overall price increase. 

The influences of changes in the elasticities on the demand functions 
can be determined from (3 -7). From (3 -7) we derive 

Q = ep - Q(e - 1) . (3 -62) 

If e is changed by an amount De, we obtain 

Q = (e + Ae)P - Q(e + Ae - 1) . (3 -63) 

Equation (3 -63) can be used to derive a new linear demand curve for each 
perturbation in elasticity. Then, the adjusted demand curves can be 
entered into the pricing model and the changes in output over the original 
unperturbed output can be noted. 

A 10 percent change in the point elasticities given in Table 4 yields 
the following de values: 
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AeM = .048 

teA = .017 

AeI = .020 . 

(3 -64) 

The subscripts M, A, and I again designate municipal, agricultural, and 
industrial sectors. The adjusted demand functions can now be calculated 
for a positive 10 percent change in elasticity using (3 -63). They are: 

QM = 85.49 - .234pM 

QA = 86.48 - 1.4 34pß 

Q1 = 20.65 - .158p1 . 

For a negative 10 percent change in elasticity, the adjusted demand 
functions are: 

(3 -65) 

QM = 91.22 - .287pM 

QA = 89.02 - 1.753pA (3 -66) 

Ql = 21.35 - .192p, . 

Table 11 contains the numerical results of changing each of the point 
elasticities individually and in unison on the optimal prices at K = 13.0. 
It can be observed that individual changes in any elasticity always 
result in optimal price changes of the same sign for the corresponding use, 
and price changes of the opposite sign for the other two uses. In other 
words, a positive change in any single elasticity makes it profitable to 
transfer less water to the corresponding use and more water to the other 
two uses. In effect, the demand curve whose elasticity has been positively 
perturbed becomes steeper. This allows the same profit to be made by 
transferring less water to this use, i.e., by increasing the price to this 
use. At the 30 percent overall price increase level, the largest change 
in price occurs when the municipal demand elasticity is decreased. This 
causes a negative change in price to municipal users of $1.76 per acre - 
foot. As K increases, however, the effect of changes in elasticity also 
increases. If all the elasticities are either overestimated or 
underestimated the results will partially offset each other as can be seen 
in the last two rows of Table 11. 
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TABLE 11 . -- Effects of 10% elasticity changes on water prices ($/acre - 
foot) , at K = 13.0 

Resulting water -price changes and % changes 

PM 
PA % PI 

+eM 

+eA 

+eI 

-em 

-eA 

-eI 

+eM s eA, eI 
-eM,eA,el 

+1.09 

-0.47 

-0.37 

-1.76 

+0.90 

+0.14 

+0.83 

-0.36 

-0.38 

-1.34 

+0.69 

+0.11 

+0.34 +0.26 

-0.61 -0.47 

-0.68 

+0.65 

-0.08 

+0.68 

-0.90 

+0.04 

-3.94 

+3.77 

-0.45 

+3..94 

-5.21 

+0.23 

-0.13 -0.75 

-0.23 -1.33 

-1.51 

-0.22 

+1.59 

+1.50 

+0.42 

-1.41 

-4.10 

-0.58 

+4.31 

+4.07 

+1.14 

-3.82 

-0.23 -0.62 

+0.44 +1.19 
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CHAPTER 4 

CONCLUSIONS AND RECOMMENDATIONS 

In this final chapter, we will link the entire decision -making process 
which has been presented thus far, anticipate and answer various critical 
comments, and point out directions in which the use of operations research 
in water resources seems to be moving. 

The principal conclusions to be drawn from this analysis are: 

1. The choice of both water -supply planning objectives and source - 
use relationships should be from a broader base of alternatives 
than traditional practice allows. 

2. Relationships between water use and price (the concept of economic 
demand) can be quantified and should be incorporated in water - 
supply planning models. 

3. The pricing model presented is a valid water -supply planning 
objective function. 

4. The pricing model can be used, as it was for the Tucson Basin, to 
indicate a water -supply plan which maximizes both net social 
payoff to the community and actual monetary profits to the 
central water -control agency. 

S. Optimization with detailed programming techniques can cloud the 
general understanding of the problem and sometimes implies that 
certain insights are missing. Decomposition can often prove 
quite fruitful in revealing some of these insights and also leads 
to simpler solutions of nonlinear functions. 

It appears that continued research into the planning of conjunctive use 
water -supply systems should be directed toward combining the management 
models with aquifer analogs. This would involve representing the management 
model as a distributed parameter system and thus a more detailed data 
collection program than was attempted in this analysis would be required. 
Data on costs and demands would be required from each subsector of the 
basin. 

The purpose of this effort has been to present the water -supply 
planning problem in all of its ramifications from choosing the objectives 
and describing the system to optimizing the model and noting its plausibility. 
The framework was built in chapter 2 where we discussed possible objective 
functions, showed their economic basis, mentioned the traditional and more 
recent solution methods, and saw what work in this field has gone before. 
Now let us reflect for a moment on that part of the presentation. 

In general terms, every organization's planning objective is to 
maximize the difference between its gains and losses, however these may be 
expressed. These gains and losses are functions of certain variables (some 
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controlled by the organization, some uncontrolled), and hence we can express 
the organization's objective in mathematical form. This is precisely what 
we did in the first part of chapter 2 for a series of water -supply planning 
objectives. But, how does the water-resources engineer with operations 
research capabilities choose a specific objective function for his 
particular project? The answer is that in practice he does not choose. At 
the university level he is free to speculate and theorize, but in practice 
the objective function is determined by the public administrator and the 
type of data available. If the public administrator is reflecting the 
consensus of community values, then indeed he will be working with the 
correct objective, but the fact is that he is often a victim of power 
politics and reflects individual interest or interest -group demands. When 
the individual interests do not coincide with the public consensus, then 
diseconomies will likely appear and detract from the representativeness of 
the objective in maximizing net community gains from the use of its water 
resource. Let us not be naive, however, and think that this consensus of 
community values is easy to obtain, for it is not. The reason interest 
groups are so strong is that they are easy to listen to -- they interject 
themselves, whereas the general public does not. The American democratic 
system is so styled as to answer to the interest groups, and only when their 
views conflict mightily with the public are the people aroused to the point 
where they react. But the beautiful thing about the system is that this 
reaction can take place and on occasion it does take place. In fact, it 
is taking place to a minor degree in this effort, through the presentation 
of water -supply planning objectives which are alternatives to the standard 
requirements approach. 

The models were presented and compared in a static framework because 
this is how their basic natures can be seen most clearly. These same 
models are the building blocks of a planning model which extends over time; 
therefore, it was not thought necessary to clutter the explanations with 
additional time subscripts. To extend the models over a time horizon, it 
is necessary to make predictions as to what the input data will be in each 
time period and also to state quantitatively any economic or hydrologic 
interdependencies which may be present between stages. It was seen that if 
the interdependencies do exist they must be entered into the model, and 
then the model has to be solved as a whole, i.e., simple decomposition by 
time periods cannot take place. A current criticism of some of the multi- 
stage planning models is that all of these interdependencies have not been . 
taken into account and if the models are used assuming independence they 
are used incorrectly. These types of mistakes are very noticeable in the 
water -supply models when optimal solutions call for drastic reallocations 
from stage to stage. We know from an engineering viewpoint alone that this 
would be impractical to implement and, therefore, some sort of dependency 
function is required to eliminate these possibilities from the model. The 
other big question when working with planning models over time is whether 
or not to use the present value concept and, if it is used, what interest 
rate should be applied. In this effort, we have concentrated on variable 
costs which are not incurred until the water transfer takes place, and the 
attitude has been taken that benefits accruing from the transfers are most 
important to the future recipients. For these reasons, the present -value 
concept in the 1975 model was not used, and thus, the problem of deciding 
on an interest rate was evaded. The whole question of interest rate is 
presently a point of much controversy at all levels of planning, and it is 
not out purpose here to discuss it further. 
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As concerns model building and optimization in general we have implied 
throughout the presentation that the problem should not be approached with 
any particular optimization technique in mind. In this way we will not be 
biased to formulate a model which conforms to any particular technique. 
The model at best will always be an approximation to reality, but the 
differences with reality should be kept as confined as possible, and this 
is best done by worrying about solution techniques after the model has been 
formulted. As was mentioned, the engineer now has quite an array of 
optimization tools available to him, and only after the model has been 
formulated should he consider modifying it for the sake of optimization. 

A case study of a portion of the water -supply planning problem in the 
Tucson Basin was presented in chapter 3. It is only a portion of the total 
problem because political and legal realities have been overlooked and also 
because the basin has been considered as a lumped system. But, nevertheless,. 
this endeavor has merit to the extent that it provides a conceptual guide- 
line for sound economic development of the water resource. The extent to 
which realities require deviation from a plan such as this can be likened 
to the extent to which social goals deviate from economic goals. 

The establishment of some sort of central water-control agency in the 
Tucson Basin seems likely at present. An organization known as the 
Tucson Urban Area Regional Reviewing Committee and made up of representatives 
from Tucson, South Tucson, and Pima County already exists and is considering 
basin -wide water problems, but they have authority only to suggest various 
courses of action, not to implement them. However, elsewhere where ground- 
water basin management is also a vital public concern central water 
authorities have been established and can claim some success. A good 
example is the Orange County Water District in California (Weschler, 1968). 
It has responsibility for and authority to implement all aspects of 
management and control of the groundwater basin in the county. A pump tax 
levied on units of groundwater pumped by individuals provides a means for 
regulation of the extraction rate. 

The other part of the problem not accounted for in this analysis is 

the design of an actual distribution network within the basin. This would 
require definition of the system in terms of spatially distributed 
parameters, and economic data not normally considered worthy of the required 
effort would have to be gathered. Detailed hydrologic data are much more 
readily available. The models as they were presented are capable of 
handling a spatially distributed system if the appropriate data are 
available and, thus, a distribution network could be designed. The same 
type of data required in the problem in chapter 3 would be needed for each 
subarea within the basin. The dependency problem of well interference 
would be accounted for by operating the models in conjunction with an analog 
of the groundwater system as was done by Martin, Burdak and Young (1969) . 

The pricing of public water supplies is not publicly acceptable as a 

device for limiting demand at the present time. It does seem, however, in 

arid and semiarid areas where people are unusually conscious of possible 
water shortages that the idea may gain a certain amount of acceptance. 
This process is in fact a naturally occurring one even now. This is 

witnessed by the dissolution of marginally valued irrigation projects as 

the cost of pumping and delivering water increases with increased depths to 
water. 
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The basic pricing model was used in all the applications in chapter 3 

as a means of efficiently operating a central water -control agency. The 
reduction in demand would presumably occur if not otherwise constrained in 
this model. However, the policy constraint and requirement constraints can 
be used to keep the total water use at any level desired. 

We have concentrated here on questions of allocative efficiency, but 
as pointed out by Weisbrod (1968) the effects of income distribution are 
just as important in water -resource project evaluation. This is evidence 
on a national scale by the authorization of projects from particular 
geographic regions in spite of their relatively low measures of economic 
efficiency. In one of the applications in chapter 3, an implicit decision 
concerning distributional equity was made in the formulation of the policy 
constraint. The weights developed for the different types of uses favored 
the municipal users over the agricultural and industrial users. Up to the 
point where K = 0.6, profits would be made from the industrial and 
agricultural sectors only. Above this value of K, municipal users would 
provide an increasing percentage of the profits but, on an individual basis, 
the irrigators and industrialists would contribute the most. This would 
have the effect of redistributing income from these irrigators and 
industrialists to the municipality. 

In general, we may conclude that the pricing model has potential as a 
means of regulating groundwater withdrawal and allocating water in a 
conjunctive use situation. The dual purpose of economic efficiency and 
distributional equity can be quantitatively explored in this framework, but 
implementation of results requires the establishment of a central water - 
control agency. Before this can be accomplished, more politicians are 
needed who recognize that alternative choices in water -supply management 
do exist and and who are willing to review the alternatives without bias 
and take responsibility for the plan of their choice. 
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