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ABSTRACT 

This study gives a phenomenologically based stochastic 

model of space -time rainfall. Specifically, two random vari- 

ables on the spatial rainfall, e.g. the cumulative rainfall 

within a season and the maximum cumulative rainfall per rain- 

fall event within a season are considered. An approach is 

given to determine the cumulative distribution function 

(c.d.f.) of the cumulative rainfall per event, based on a 

particular random structure of space -time rainfall. Then the 

first two moments of the cumulative seasonal rainfall are 

derived based on a stochastic dependence between the cumula- 

tive rainfall per event and the number of rainfall events 

within a season. This stochastic dependence is important in 

the context of the spatial rainfall process. A theorem is 

then proved on the rate of convergence of the exact c.d.f. of 

the seasonal cumulative rainfall up to the ith year, i > 1, 

to its limiting c.d.f. Use of the limiting c.d.f. of the 

maximum cumulative rainfall per rainfall event up to the ith 

year within a season is given in the context of determination 

of the 'design rainfall'. Such information is useful in the 

design of hydraulic structures. 

Special mathematical applications of the general 

theory are developed from a combination of empirical and 

x 
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phenomenological based assumptions. A numerical application 

of this approach is demonstrated on the Atterbury watershed 

in the Southwestern United States. 



CHAPTER 1 

INTRODUCTION 

The purpose of this study is to develop a stochastic 

model of the spatial rainfall process. The last decade and 

a half has witnessed an emergence of numerous efforts ex- 

pended towards modeling of different aspects of stochastic 

hydrologic processes. In particular the processes of rain- 

fall and streamflow have been modeled extensively because 

they form an integral part of the design and operation of 

water resources systems, such as detention storage reservoirs, 

dams, emergency spillways, flood control structures like spurs 

and barrages, natural recharge of aquifers, natural and arti- 

ficial irrigation, to mention a few. 

An important aim of any model of stochastic hydro- 

logic process is to determine, if possible, the form of 

probability law that governs the outcome of random events of 

interest. Examples of such random events may include exceed - 

ance of maximum annual flow above the capacity of emergency 

spillway, flooding of a storage reservoir due to cumulative 

flows exceeding its capacity, and others. Such random events 

can be defined in terms of random variables, e.g., annual 

1 
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maximum or seasonal maximum peak flow, mean annual cumulative 

rainfall, etc., on the underlying hydrologic process. 

In the present study, basically two random variables 

are considered for the process of spatial rainfall, e.g., the 

cumulative rainfall within a season and the maximum cumula- 

tive rainfall per rainfall event within a season. However, 

the same random variables can also be considered for the 

process of cumulative water yield, based on a simple trans- 

formation to calculate excess water yield from the cumulative 

rainfall per rainfall event. The nature of this transforma- 

tion is also given in this study. The approach used here for 

the modeling stems from the mathematical theory of stochastic 

processes and to some extent is similar to the ones used in 

the past for the point rainfall process (Todorovic, 1968; 

Verschuren, 1968). Such an approach can be called phenomeno- 

logical in the sense that most of the assumptions are justi- 

fied in terms of the nature of rainfall phenomena. However, 

some assumptions are made to induce simplification in the 

approach. 

To this end, a literature review of stochastic models 

in hydrology is given in Chapter 2. Only those models are 

considered that attempt to determine the form of the cumula- 

tive distribution function (c.d.f.) underlying random vari- 

ables of interest. In order to give a general unifying 

perspective on the diverse stochastic models that exist in 
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hydrology, models are classified into empirical, phenomeno- 

logical and physical stochastic models. Specific models on 

the rainfall process and the process of excess water yield 

are then briefly reviewed under the guidelines of this 

classification. 

The general theoretical considerations are then pre- 

sented in Chapter 3. The theory is first developed within a 

fixed time interval (season). The salient features of the 

theory are as follows. The process of spatial rainfall is 

considered to be an intermittent process such that its evolu- 

tion on the time axis is divided into an alternating sequence 

of random intervals called wet and dry intervals. During a 

wet interval rainfall occurs somewhere over a gaged region 

surrounding one or more basins, and during a dry interval no 

rainfall occurs over the region. The rainfall occurring 

within a wet interval forms a rainfall event which may cor- 

respond to a natural storm that may pass over the region. 

Based on this formulation, the number of rainfall events 

within a season is a positive integer valued random variable. 

The probability mass function (p.m.f.) of this can be obtained 

from the c.d.f. of random intervals denoting dry and wet 

intervals. 

Next, within any given wet interval, a phenomeno- 

logical approach is given to determine the c.d.f. of cumula- 

tive rainfall from a river basin. This approach is based on 
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the stochastic process of number of storm cells that may 

occur over the basin, and the random variables denoting cumu- 

lative rainfall from these cells. Since the c.d.f. of the 

cumulative rainfall per event depends stochastically on the 

wet random interval, a stochastic dependence arises between 

the random variable denoting the cumulative rainfall per 

rainfall event and the random variable denoting number of 

such rainfall events within a season. This dependence 

structure makes the determination of the c.d.f.'s of cumula- 

tive rainfall and the maximum rainfall per event over a 

season analytically intractable. Therefore general expres- 

sions are derived for calculating the first two moments of 

the cumulative rainfall per season. Moreover the limiting 

behavior of these two c.d.f.'s are studied as follows. 

A sequence of the same fixed season is considered 

from one year to another. Then the cumulative rainfall up 

to the ith year within the same season is defined. A 

theorem is proved in regard to the rate of convergence of 

c.d.f. of the cumulative rainfall up to the ith year; 

ï > 1, within a season to its limiting c.d.f. Similarly 

the limiting c.d.f. of the maximum rainfall per event up to 

the ith year (i t 03) within a fixed season is also given 

based on the results of Berman (1962). Since the exact 

c.d.f. of the maximum cumulative rainfall per event within 

a season is not obtainable in our case, therefore use of the 
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limiting c.d.f. of the maximum cumulative rainfall per event 

in determination of the actual return period is indicated. 

Specific theoretical applications of the general 

formulation of Chapter 3 are given in Chapter 4. Specifically 

the p.m.f. for the conditional probability of the number of 

cells given the wet duration of a rainfall event, is hypo- 

thesised to be a Poisson process in space. Then using a 

particular depth -area relationship for a cell and a two 

parameter gamma probability density function for the maximum 

cell depth, an analytical expression for the c.d.f. of the 

cumulative rainfall per rainfall event is given. In this 

derivation the wet interval is assumed to follow an expo- 

nential p.d.f. Then an approximate analytical expression is 

given for the expected cumulative spatial rainfall within a 

season. Extension to ungaged basins and multiple converging 

basins within the fixed gaged region is also given. Finally 

the limiting distribution of the maximum rainfall per rain- 

fall event is derived using the derived expression for the 

c.d.f. of the cumulative rainfall per rainfall event. 

A numerical demonstration of the specific results 

obtained in Chapter 4 is given in Chapter 5 on the Atterbury 

watershed near Tucson, Arizona. Summer rainfall is selected 

for the demonstrative purposes. Finally a summary of this 

study and recommendations for further research are given. 



CHAPTER 2 

LITERATURE REVIEW 

The first attempts to treat hydrologic variables as 

statistical variables with an intention of estimating the 

frequency of occurrence of various magnitudes, were those 

dealing with floods (Horton, 1913; Fuller, 1914). The fre- 

quency analysis of precipitation, and in particular that of 

rainfall, was started around 1935 (Yarnell, 1935). Since 

then much effort has been expended in the realm of frequency 

analysis of rainfall and floods. All such frequency analyses 

have two major sources of error, (i) errors due to the as- 

sumed probability density function (p.d.f.) not conforming 

to the "true" p.d.f. underlying the population of floods and 

rainfall, and (ii) sampling errors due to non- representa- 

tiveness of the record from which the numerical values of 

the parameters of the p.d.f. are estimated (Nash and Amorocho, 

1966). Although both the above sources are of rather basic 

and great importance, one could argue that the uncertainty 

in the "true" form of frequency function or p.d.f. is of more 

fundamental importance than the sampling errors. To this ef- 

fect, in regard to floods, Nash and Amorocho indicate that 

the magnitudes of floods corresponding to even very high 

6 
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return periods could be estimated with quite tolerable ac- 

curacy from relatively small samples, if one could be certain 

that the assumed form of the p.d.f. was correct. 

This leads to a natural question as to how the true 

form of p.d.f. underlying any random variable can be de- 

termined? The answer lies in the approaches other than 

classical frequency analysis, that have been taken in the 

past. The remaining exposition discusses such approaches 

for the random variables defined on floods and rainfall. 

However, a classification of diverse approaches seems neces- 

sary to explain better the ideas behind them. Such is done 

prior to the review of specific models. Finally, note that 

since a p.d.f. may not always exist, therefore the following 

discussion generally considers cumulative distribution func- 

tion (c.d.f.) of a random variable instead of a p.d.f. 

2.1. A Classification of Modeling Approaches 

All such models developed in the past, that attempt 

to determine the "true" form of the c.d.f. of some random 

variable of interest, are to some extent diverse in their 

respective approaches. Research has gone beyond the simple 

procedure of choosing some p.d.f. and fitting the data to it. 

For example, models of Todorovic (1968), Zelenhasic (1970), 

Eagleson (1972), Duckstein, Fogel and Kisiel (1972), etc., 

take a stochastic process orientation to arrive at the form 

of c.d.f.'s of variables like annual maximum flow, cumulative 
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point rainfall within a season, etc. As a consequence of 

this it seems necessary to give a broad classification to 

these approaches, before attempting to review the models that 

are pertinent to this study. Our intent behind giving this 

classification is threefold, 

(i) to justify the selection of models to be reviewed, 

(ii) to give a unifying fabric to models that are purely 

statistical in comparison with the so- called "process 

oriented" models, and 

(iii) to point out some of the issues involved in undertaking 

detailed modeling of a process to arrive at the "true" 

form of c.d.f., basically from a process oriented 

viewpoint. 

Based on this, we classify models into three 

categories, 

(i) Empirical or purely statistical models, 

(ii) Phenomenological or process oriented stochastic models, 

and 

(iii) Physically based stochastic models. 

(i) In the first category, those models can be 

assigned, that take a purely statistical approach to estimate 

the "true" form of the c.d.f. of the random variable in 

question. Such a procedure has been summarized by Nash and 

Amorocho (1966) as, "In general such estimation involves 
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choosing a particular form (double exponential, log -normal, 

etc.) for the frequency or probability distribution of the 

flood magnitude and using the available sample to estimate 

the numerical values of the parameters of this function." 

Such an approach is empirical because different forms of fre- 

quency functions are tried in this case, without any physical 

or phenomenological justification for doing so. 

(ii) A phenomenological model to determine the "true" 

form of the c.d.f. of a random variable can be formulated in 

two ways; (1) to start from that particular process on which 

the random variable is defined, and then under a set of as- 

sumptions, determine the form of c.d.f. Such has been at- 

tempted in the past for the annual maximum peak flow, cumula- 

tive annual rainfall, etc., by Zelenhasic (1970) and Todorovic 

(1968) respectively. (2) To start from a finite number of 

processes that sequentially give rise to the process on which 

the random variables of interest are defined. For example in 

dealing with some random variable defined on streamflows, one 

could start with the process of global atmospheric circulation 

of moisture, heat, etc. which in turn gives rise to a process 

of local atmospheric disturbance, which in turn gives rise to 

the process of rainfall and /or snow, which in conjunction 

with the process of catchment dynamics leads to the process 

of streamflows. In this context, an ideal model would start 

from the process of global atmospheric disturbance to finally 
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arrive at the c.d.f. of a random variable defined on stream - 

flows. Alternatively, the starting phase can be one of the 

intermediate processes, e.g., starting from the process of 

rainfall and /or snow in conjunction with the transformation 

processes of rainfall to runoff (Kisiel, 1967) to finally 

derive the form of c.d.f. of a random variable on streamflows. 

Some attempts along these lines are the work of Woolhiser 

and Todorovic (1971) and Duckstein, et al. (1972). 

(iii) The physically based stochastic models can be 

considered an extension of phenomenological models in the 

sense that the physical theories of fluid mechanics and 

thermodynamics, as the case may be, are used to take into 

account the behavior of physical variables. For example, in- 

stead of using a lumped parameter unit hydrograph with the 

stochastic rainfall process, if one uses the continuity and 

momentum equations for routing through a catchment, to arrive 

at the streamflow process, then such a model would be called 

physical. LeCam (1961) indicates of such a consideration 

leading to a so- called "true" model although he actually 

does not undertake such an approach. Eagleson's model (1972) 

can be placed in this category, since he uses a kinematic 

wave model in conjunction with stochastic rainfall inputs to 

finally arrive at the p.d.f. of maximum flow. 

Having indicated a criterion for the classification 

of various approaches, a brief comparison is now given be- 

tween these approaches. Firstly, to decide on the "true" 
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form of a c.d.f. based on an empirical approach seems rather 

difficult, and moreover such a selection can sometimes be 

misleading. For example, if one could argue that a p.d.f. 

does not exist for some random variable under consideration, 

then any one of the selections of p.d.f.'s is as arbitrary as 

the other. In the case of maximum instantaneous flow within 

an arbitrary but fixed time interval, Zelenhasic (1970), 

based on a phenomenological approach indicates that the de- 

sired c.d.f. of maximum flow is not differentiable at the 

origin. The 'atom' at the origin is due to the fact that 

there is a non -zero probability (howsoever small) of having 

no exceedance above a pre -selected datum in every finite time 

interval. Another shortcoming in a purely empirical approach 

lies in the method of selection of one p.d.f. over the other. 

The most commonly used methods are the statistical goodness 

of fit tests, e.g., chi - square or Kolmogorov- Smirnoff, etc. 

Based on these tests, one can accept hypothesis regarding 

goodness of fit of a set of data by more than one type of 

p.d.f.'s. Therefore the selection of a p.d.f. based on a 

purely statistical testing can never guarantee it to be the 

"true" p.d.f. 

A phenomenological approach uses the mathematical 

tools from the theory of stochastic processes to arrive at 

the form of c.d.f.'s of random variables. In other words, a 

particular hydrologic process is considered to be a stochastic 
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process, and then the form of c.d.f.'s of random variables 

defined on this process are derived under a set of assump- 

tions, which are to a large extent motivated by phenomeno- 

logical considerations (for example, see Todorovic, 1968; 

Zelenhasic, 1970). However, since a stochastic process is 

defined in terms of a family or a sequence of random vari- 

ables, one has to first determine the form of c.d.f.'s of the 

random variables which define a stochastic process, before 

attempting to derive the form of c.d.f.'s of random variables 

of interest defined on a stochastic process. Determination 

of the forms of c.d.f.'s of random variables that define a 

stochastic process leads to empiricism in a phenomenological 

approach. For example, consider the stochastic process de- 

fined in terms of a sequence of instantaneous flow exceed - 

ances within an arbitrary time interval (Zelenhasic, 1970). 

Using the phenomenological fact that the number of such 

exceedances is a random variable in any fixed finite time 

interval, Zelehhasic determines the c.d.f. of the maximum 

exceedance within this time interval. Empiricism in this 

approach lies in the fact of empirically fitting a c.d.f. to 

each exceedance, as done by Zelenhasic. 

The above discussion on a phenomenological approach 

leads to the consideration of more than one stochastic 

process, as mentioned earlier. Such a consideration in the 

context of Zelenhasic's model would mean the determination 
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of the form of c.d.f. of each exceedance. This can be de- 

termined by simultaneously considering the stochastic 

processes of rainfall over a river basin and that of the 

basin response. This in turn would lead to a phenomenological 

approach that would consist of three stochastic processes for 

determination of the form of c.d.f. of maximum instantaneous 

flow within an arbitrary but fixed time interval. 

Besides determination of the form of c.d.f.'s of 

random variables which define a stochastic process, another 

important aspect of phenomenological modeling are the as- 

sumptions that go into it. Generally speaking, assumptions 

are motivated by two considerations, i.e., the extent to which 

such assumptions represent a phenomenon in the real world and 

an extent to which ease in mathematical manipulation is 

achieved from these assumptions. In this respect the results 

obtained from a phenomenological model are "true" only up to 

the extent to which the underlying assumptions are valid in 

the real world situation. 

The contemporary literature in hydrology does not 

contain many physically based stochastic models. Presently 

the emphasis in research seems to be on building phenomeno- 

logical models. However, a verification of the assumptions 

in the phenomenological models may only be attainable through 

physical principles. Most of the work on physical modeling 

falls in the category of deterministic models, which can be 
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considered to be a very particular kind of stochastic models 

in the sense that they assign a probability one to every out- 

come. In this context, note that determinisim is frequently 

misunderstood. When considering a physical model, e.g., con- 

tinuity equation, etc., one does have a deterministic re- 

lationship in mind. However if the inputs to a system are 

random, then even when continuity principle is applied to 

these inputs, the outputs will be stochastic. A classical 

example in hydrology is the area of rainfall- runoff models, 

which shall not be reviewed here. 

A preliminary attempt along the lines of physically 

based stochastic modeling is that of Gupta (1972). This ap- 

proach is not yet developed completely, but it attempts to 

numerically estimate the c.d.f. of a random variable defined 

on the streamflow process, by using stochastic rainfall 

process and a deterministic rainfall to runoff transforma- 

tion. An analytical approach along physically based sto- 

chastic modeling is that of Eagleson (1972). Eagleson uses 

kinematic wave in conjunction with stochastic rainfall inputs 

to determine the c.d.f. of instantaneous flows. Since an 

analytical approach in this area can get mathematically very 

cumbersome, Eagleson makes expedient assumptions to arrive 

at some kind of analytical solutions as a first step. 

Based on the above discussion, it seems that as de- 

tailed phenomenological or physical modeling of some process 
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is attempted, the data requirements to validate such models 

also increase besides the increase in complexity of analysis. 

Thus far only a general idea behind stochastic modeling of 

hydrologic processes has been given. In the ensuing text, 

some specific models are reviewed. 

2.2. Review of Specific Stochastic Models 

In this section, the primary emphasis is on review of 

phenomenological models of the rainfall process. However, 

the process of excess water yield as derived from rainfall is 

also reviewed briefly. In particular the process of cumula- 

tive rainfall within an arbitrary but fixed time interval is 

considered. Moreover, a few of those models that consider 

other aspects of a rainfall process are also reviewed briefly, 

e.g.,simulation of rainfall fields over a catchment. 

To begin with, we consider the rainfall process as 

the process of our ultimate interest. After having reviewed 

the relevant models dealing with the rainfall, the process 

of excess water yield as derived from rainfall is considered 

next. The rainfall process has been analyzed in diverse ways 

in the literature, and different aspects of such have been 

considered in the past. Such approaches can be summarized 

as below. 

(1) Modeling of rainfall process (after it reaches 

the ground) as a stochastic process. Two aspects on this 

have been considered, namely (a) the above as a point 
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process evolving in time and (b) as a spatial process 

evolving in time. 

(2) Modeling of rainfall process from the local 

meteorological considerations of the atmosphere. 

In regard to the rainfall simulation from the 

meteorological considerations Amorocho and Morgan (1971) give 

a model for the simulation of storm fields at the ground level. 

Their simulation is based on the convective storm model of 

Weinstein and Davis (1968). The inputs to this model are a 

number of meteorological parameters derived partly from 

atmospheric soundings and partly from local ground rainfall 

data. This model gives estimates of total storm rainfall, 

duration and area coverage, but does not permit a running com- 

putation of the temporal change in the precipitation field. 

However since this aspect of simulating rainfall from atmo- 

spheric conditions is not pertinent to our study, we shall 

not go into any further details of this model. 

2.2.1. Stochastic Modeling of the Rainfall Process 

Point Rainfall Process. In regard to the approaches 

on the stochastic modeling of the rainfall process, we first 

consider the work done on point rainfall process. Once again 

two aspects on the point rainfall process have been con- 

sidered in the past, (i) to obtain the form of c.d.f.'s of 

random variables defined on point rainfall process and 
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(ii) simulation of synthetic traces of rainfall based on the 

emperical p.d.f.'s fitted to different random variables on 

this process. 

Todorovic and Yevjevich (1969) give a comprehensive 

theoretical analysis of a point rainfall process. They con- 

sider e(s) > 0 as the rainfall intensity at some instance 

s, at a fixed point in space, within an arbitrary time in- 

terval (t0,t]; t0 < t < co. A storm event is defined as 

continuous precipitation between two non -rainy intervals, 

even though the total amount of precipitation and duration 

of some storms may be very small. Based on the phenomeno- 

logically motivated assumption regarding intermittency of 

the e(s) process in time, i.e., P {E(s) = 0} ¢ 0 (P is 

the probability measure), a sequence of storm events (as de- 

fined above) is obtained within (t0,t]. Two important con- 

cepts should be noted here, (a) idea of an event (also ex- 

plored by other researches, and is indicated later in this 

text,), and (b) a random number of such events within any 

arbitrary but fixed interval (t0,t]. The cumulative process 

X(t) is given by the random integral, 

t 
X(t) = 1 E(s)ds. 

to 
(2.1) 

The following stochastic processes, defined as func- 

tion of E(s), are considered, (1) N(t), the number of 
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complete storm events in time interval (t0,t], (2) N(x), 

the maximum number of storm events after t0, such that the 

total precipitation does not exceed the amount x - x0; x0 

is the total amount up to time t0; (3) {tj;j = 1, 2, ... }, 

the terminal times of storm events which is a random sequence 

of points on the time scale, (4) Xi, the total precipita- 

tion for j storm events; (5) Zj = Xj - Xj_1, the total 

precipitation during the jth storm event, and (6) 

{X(t),t > t0} as given by Equation (2.1) as a stepwise non- 

decreasing cumulative function of c(s). 

Different cases are considered in regard to the 

derivation of the probability mass function (p.m.f.) of N(t) 

based on various assumptions (note that N(t) is a counting 

random variable). The derivation of the c.d.f. for X(t) 

is given, using independence between N(t) and N(x), and 

assuming both as Poisson processes with intensity (rate) 

parameters X1 and X2 respectively. The p.d.f. of x(t) 

for all t > t0 is given by, 

-X 
1 
t -(À t x) 

ft(x) = d(x)e 1+ a2a1t/a2x e 1 

+l 
2 I1(2ala2tx), (2.2) 

where 6(x) = 1 for x = 0 and 0 otherwise. I1(2 )/X1X2tx) 

is the modified Bessel function of the first order. 

Another aspect of the rainfall process considered in 

the past is related to the sequence of random variables 
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{Ti;j = 1,2,...} as indicated earlier. A new sequence 

{(Tj_1,1.1);j = 1,2,...1 denoting the time between the end 

of two consecutive storms can then be formed. Denote 

T1 = (Tj_1,Tj) for all j = 1, 2, ...,. Tj for all j. > i 

can be considered as the sum of two random intervals, i.e., 

Dj denoting the dry period following the (j -1)st storm and 

C. denoting the duration of the jth storm. Hence Tj = D. 

+ Ci, for all j = 1, 2, ...,. Grace and Eagleson (1966) 

reviewed earlier models dealing with the aspect of so- called 

occurrence and non -occurrence of rainfall, in the light of 

the sequences {D1;j = 1,2,...1 and {Cj;j = 1,2,...} of 

random intervals. However these sequences are not considered 

for the storm as defined by Todorovic above, but for the daily 

rainfall occurrences. Therefore discretizing the time in 

this way makes the sequences of random intervals {Dj} and 

{C.} positive integer valued. Crovelli (1971) mentions the 

work of several researchers who found that sequence in daily 

rainfall occurrence can be described by discrete Markov 

chains. Such include Gabriel and Neumann (1962), Caskey 

(1963), Weiss (1964), Green (1964), Feyerherm and Bark (1965), 

Wiser (1965) and Pattison (1965). Green (1964) looks at the 

sequences from the viewpoint of an alternating renewal 

process (as described by Cox, 1962) and derives more 

satisfactory results for the Tel -Aviv data, as compared 

to Gabriel and Neumann (1962). However he does not 
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suggest the applicability of this model for every part of the 

world, since Dj and C. may not always be independent and 

identically distributed (i.i.d.) as negative exponential for 

all j > 1, as assumed by Green in his model. 

Another aspect regarding point rainfall process has 

been to look at the depth- duration relation. In our context 

this means the consideration of the joint p.d.f. of Zj and 

Cj; j = 1, 2, ..., denoting respectively the total rainfall 

and the storm duration for the jth storm as given earlier. 

Grayman and Eagleson (1969) used empirical consideration to 

propose a two parameter gamma density to describe the con- 

ditional density of depth given duration. They use this 

empirical p.d.f. in conjunction with the p.d.f.'s of {Di} 

and {C.} to generate synthetic sequences of rainfall. 

Crovelli (1971) proposed a common bivariate gamma 

p.d.f. to model Zj and C. for all 

function f(z,c) is given as 

f(z,c) = aße-6c(1 - e-az) for 

j 

0 

> 

< 

1. 

az 

The density 

< ßc 

(2.3) 

= a6e-az(1 - e-ßc) for 0 < ßc < az . 

Crovelli gives different statistical properties 

associated with the above p.d.f. including statistical esti- 

mators to estimate the parameters a and 6 that arise 
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above, and finally derives the expected cumulative precipita- 

tion within a time interval (0,t) using the theory of 

finite continuous time Markov chains (Parzen, 1967). 

The work done in the past in regard to simulation of 

synthetic point rainfall sequences, based on the random in- 

tervals Dj, C, and the random variable Zj, j > 1, is 

not reviewed here, since no simulation type modeling is being 

undertaken in this study. However, a few models dealing with 

such simulation are those of Pattison (1965), Grace and 

Eagleson (1966), Grayman and Eagleson (1969) and Sariahmed 

and Kisiel (1969). 

Process of Spatial Rainfall. In regard to the spatial 

rainfall process, two aspects similar to that of the point 

rainfall process have been considered in the past, namely, 

simulation of spatial rainfall (Sorman and Wallace, 1972) 

and analytical derivations of the form of c.d.f.'s of random 

variables defined on the process of spatial rainfall. The 

review in the ensuing text primarily considers the determina- 

tion of the form of c.d.f.'s of random variables. However, 

some phenomenological aspects of the process of spatial 

rainfall are also reviewed, which are later used in Chapter 

3 on theoretical considerations. 

The possibility of a stochastic analysis of spatial 

rainfall is indicated by LeCam (1961). He identifies the 

shower cell as the basic element of an areal model. The cells 
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occur in clusters that may conceivably correspond to a front. 

A bunch of cell clusters may correspond to what is called a 

storm. Note that this definition of a storm in an areal con- 

text differs sharply from that defined earlier for a point 

process. However the work of LeCam is too general to be put 

to specific modeling efforts. Further, since 1961, more has 

been learned in regard to spatial properties of storms, e.g., 

see Grayman and Eagleson (1971). The details of the salient 

features of spatial rainfall process as indicated by Grayman 

and Eagleson will be given later in this text. 

Duckstein, et al. (1972) consider spatial rainfall in 

connection with prediction of cumulative rainfall for summer 

type storms on small watersheds in semi -arid regions. They 

consider the spatial rainfall process evolving in time as an 

intermittent process. However their definition of a rainfall 

event is operational rather than phenomenological, as given 

by LeCam. One of the two possible criteria for defining a 

rainfall event, is to consider n gages, with total rainfall 

R1, ..., Rn, for a given day as specified by the U. S. 

National Weather Service. Now, an event is said to occur at 
n 

any of the gages, if the mean precipitation ( E Ri) /n is 
i =1 

greater than .5 inches and one gage records more than 1 

inch. Other definitions of a rainfall event are of course 

possible. Having done this, the c.d.f. of the cumulative 

rainfall within a season is then derived based on the 
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assumption of a Poisson p.m.f. for the random number of these 

events, and a negative binomial p.m.f. for the mean precipi- 

tation per event. The resulting process is a compound Poisson 

process, since it is assumed that the counting process and 

the random variable denoting average rainfall per event are 

mutually independent. Clearly the basic approach given above 

is the same as that of Todorovic and Yevjevich (1969), on the 

point rainfall process. 

Another aspect of spatial rainfall is the so- called 

depth -area relationships. Such studies attempt to express 

the areal distribution of total rainfall from a "storm' under 

consideration, as a function of the point of maximum rainfall. 

Court (1961) gives a comprehensive review of the earlier work. 

Fogel and Duckstein (1969) also propose such a relationship 

for the convective thunderstorm cells for semi -arid summer 

rainfall. It seems that such relationship should not be done 

exclusive of the phenomenological basis behind a "storm type" 

under consideration (as given by meteorologists, namely con- 

vective, frontal, squall line, etc.). However these relation- 

ships as developed only for a thunderstorm cell in the semi- 

arid regions, can be called phenomenological. This conceptual 

basis is used later in Chapter 4 to derive the c.d.f. of the 

cumulative spatial rainfall from a cell. 

Another aspect related to spatial rainfall considered 

in the past, are the spatial correlation structures of the 
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rainfall depths in space. This aspect is not reviewed 

presently, because these studies are not phenomenologically 

oriented in the sense that such correlations are given for 

total observed rainfall amounts without considering the 

process of spatial rainfall as such. However, such works 

dealing with the spatial correlations center around trying 

different functional relations for correlations with an in- 

tent to justify one form over the other (Rodriguez -Iturbe, 

Vermarcke and Schaake, 1972). Such studies have been used 

as an aid in the design of data collection networks. 

In regard to the simulation of spatial rainfall, 

Grayman and Eagleson (1971) attempt to simulate spatial rain- 

fall using certain observed phenomenological features of dif- 

ferent storm types (meteorologically speaking). Although 

simulation is not pertinent to the present effort, the 

phenemonenological features of storms as used by them are 

relevent. A comprehensive summary of this is given below. 

Meteorological events can be classified by the scale 

or level of the event. Climatic scale is the largest. Next 

in size is the synoptic or marco- scale, for example a cyclone 

or a storm front. The next level is the mesoscale which gen- 

erally has an area ranging from 25 to 5,000 square miles. 

The next and the smallest scale is cellular or micro -scale 

event, and is about 3 to 30 square miles in size. Grayman and 

Eagleson (1971) also review earlier works which noted the 
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presence of the cellular activity within diverse storm types. 

They quote House (1969) for identifying two distinct levels 

of meso -scale activity, based on analysis of nine diverse 

storm types in the New England area. House calls these two 

levels as large meso -scale areas (LMSA) and small meso -scale 

areas (SMSA). A schematic representation of a typical storm 

type is given in Figure 2.1. In this figure four distinct 

levels of activities are indicated. They further summarize 

other statistical characteristics of levels of a storm type, 

e.g, histogram of cell durations, relationship between cell 

duration and cell intensity, etc. Finally, they indicate the 

random nature of a number of LMSA that develop within a 

synoptic level, and number of cells that develop within a 

LMSA, etc. However, it appears that a synthesis of the sto- 

chastic behavior of these storm properties is necessary. 

Although in the above analysis, the convective summer 

type thunderstorm cells for semi -arid regions are not included, 

other works (Fogel and Duckstein, 1969) do indicate such cel- 

lular activity for summer type rainfall. However the different 

levels of activity for the air -mass type summer rainfall have 

not been identified to the best of our information. 

Interestingly enough, part of the above features 

were speculated by LeCam (1961) in his attempt to give 

phenomenological reasons for modeling of spatial rainfall 

process. However, he only considered two levels of activity 

and described it as a very general two -stage clustering 
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SYNOPTIC BOUNDARY 

Figure 2.1. Schematic of Typical Storm. 
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process, having assumed that the cells do not undergo any 

movement. 

2.2.2. Process of Excess Water Yield as Derived 
from rainfall 

The process of excess water yield as derived from the 

rainfall process can approximately considered (quantitatively) 

to be the same as the process of cumulative runoff, if the 

basin under consideration is small (Woolhiser and Todorovic, 

(1971). The models developed in the past for excess water 

yield, generally use a certain lumped rainfall to runoff 

transformation for the cumulative rainfall per rainfall event 

over the entire basin. Woolhiser and Todorovic mention the 

possibility of postulating several such transformations, but 

indicate that as the structure of such transformations be- 

comes more reasonable from a physical stnadpoint, mathemati- 

cally it gets intractable. They summarized the approaches as, 

(i) pure threshold model, (ii) general threshold or storage 

model and (iii) the inflitration model. They give brief 

mathematical formulations of the problem for the above three 

cases and finally indicate the non -availability of a solution 

to second and third approaches given above. Finally, they 

hypothesis a chance mechanism to describe the runoff count- 

ing process from the point rainfall counting process. 

Duckstein, et al. (1972) also use a pure threshold 

model to derive the c.d.f. of excess water yield. The pure 



threshold is simply given as follows. Let Zj be a random 

variable denoting the excess water yield, corresponding to 

the cumulative rainfall per event Zj, j > 1. Let w* be 

some constant, that depends on the physical characteristics 

of a watershed. Then based on the pure threshold model, 

Z' 
7 

= Z 
i 

- w* if Zj > w*, j = 1, 2, ... 

= 0 otherwise 
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(2.4) 

Another transformation given by Duckstein, et al. 

(1972) is the Soil Conservation Service formula. Clearly, 

once the c.d.f. of rainfall per event, denoted by Zj is 

determined for all j > 1, the c.d.f. of the corresponding 

excess water yield can easily be determined based on some 

transformation of the form given by Equation (2.4). The 

c.d.f. of cumulative water yield within an arbitrary time 

interval is then determined, based on the sum of a random 

number of random variables, where each random variable de- 

notes the excess water yield per event. However the deriva- 

tion is given on the assumption of independence between the 

random variable denoting the number of such events and that 

denoting excess water yield per event. 

In summary, the cumulative water yield given by the 

above approaches represents the free water accumulation 
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rather than the surface runoff. As mentioned in the begin- 

ning, for small watersheds these two are nearly identical, 

but for large watersheds the attenuation of rainfall excess 

by watershed hydraulics must be considered. 

2.3. Concluding Remarks 

In the above review, an attempt is made to project 

the notion of phenomenological modeling of stochastic hydro- 

logic processes, in particular that of the rainfall process. 

Table 2.1 gives a brief summary of the phenomenological 

models of the rainfall process that have been mentioned in 

the review. 

Table 2.1. A Summary of Phenomenological Models of the 
Rainfall Process. 

Type of 
Approach 

Models of the Point 
Rainfall Process 

Models of the Spatial 
Rainfall Process 

Analytical Todorovic (1968), 
Todorovic and 
Yevjevich (1969), 
Verschuren (1968), 

Fogel and Duckstein 
(1969), Duckstein, 
et al. (1972), 
Gupta (1972), 

Gabriel and 
Neumann (1962) , 

Green (1964) 
Crovelli (1971) 

Simulation Pattison (1965), 
Grace and 

Grayman and Eagleson 
(1971), Sorman and 

Eagleson (1966) , 

Grayman and 
Wallace (1972) , 

Amorocho and Morgan 
Eagleson (1969), 
Sariahmed and 

(1971) 

Kisiel (1969) 
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The phenomenological approach to analytical modeling 

of the rainfall process is essentially 'event' based. How- 

ever no universal definition of a rainfall event seems 

possible. An event is generally defined on the basis of the 

type of process available, the form of data and finally the 

mathematical approach taken to analyse the process. 

An event based phenomenological approach to the 

modeling of the rainfall process has been along the lines of 

a random number of random variables. This approach has two 

aspects, (i) the nature of stochastic process to determine 

the p.m.f. of number of such events within a given time in- 

terval and (ii) the c.d.f. of random variables defined on 

an event, e.g., cumulative rainfall per event, cumulative 

excess water yield, etc. 

In regard to the assumptions made in the past in such 

models, it is invariably assumed that the random variable de- 

noting the number of events is independent of the random 

variables characterising magnitudes of the sequence of events. 

This assumption may be 'reasonable' under very restrictive 

conditions for the process of cumulative water yield and 

cumulative rainfall. For example in the case of the point 

rainfall process, where the rainfall bursts are of relatively 

very short duration in comparison with the duration between 

successive bursts, e.g., summer rainfall in arid lands, the 

assumption of independence seems reasonable. However for 
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winter rainfall in some areas (Kao, Duckstein and Fogel, 

1971), the above independence assumption is not reasonable. 

In such cases the durations of rainfall bursts give rise to 

a stochastic dependence between the random variables denoting 

the number of events and their magnitudes. Moreover if one 

is considering the rainfall process in space, then the as- 

sumption of independence does not seem at all reasonable, 

because of relatively long durations over which rainfall may 

occur over a region from a rainfall event. 

Most of the modeling efforts with an aim to study the 

rainfall process analytically, have primarily dealt with the 

point rainfall process. The c.d.f.'s of rainfall magnitudes 

per rainfall event have also been assigned empirically based 

on data. In context of a spatial rainfall process, a need 

exists to consider the derivations of c.d.f.'s of rainfall 

per event using phenomenological characteristics of spatial 

rainfall. Such an attempt may ultimately lead to providing 

answers to the following, (i) Prediction of cumulative rain- 

fall and water yield over a single or multiple basins within 

a gaged region, (ii) Extension to ungaged basins within this 

region, (iii) Impact of such considerations on the data re- 

quirements, both qualitative and quantitative. 

In the next chapter on theoretical considerations, 

some of the above aspects are considered for the spatial 

rainfall process. 



CHAPTER 3 

THEORETICAL CONSIDERATIONS 

3.1. Introduction 

The rainfall process is the basic process for study 

in this exposition. The process of snow accumulation and 

snow melt are not considered. The development focuses on 

obtaining the analytical form of cumulative distribution 

functions (c.d.f.'s) of random variables under consideration. 

The general approach gives a model to obtain the 

c.d.f.'s of cumulative rainfall and excess water yield from 

a rainfall event, and the c.d.f. of occurrence of a random 

number of such events within a fixed season. Based on the 

nature of a simple transformation that is used to convert 

the cumulative rainfall per event into excess water yield, 

the present development (in regard to cumulative surface 

runoff) can only apply over basins that are, say, roughly up 

to 200 mi2 in area. This is because for basins of this 

size, the excess water yield is roughly the cumulative sur- 

face runoff, as mentioned in Chapter 2. 

Four random variables are of interest in this study, 

namely, the cumulative rainfall and the excess water yield 

within a fixed season, and maximum cumulative rainfall 

32 
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and the excess water yield per event within a season. The 

c.d.f.'s of these random variables within a season (finite 

time interval), which represent our goal, cannot be obtained 

in analytical form in light of the stochastic dependence be- 

tween the cumulative rainfall or excess water yield per event 

and the number of occurrence of such events within a fixed 

season. The specific nature of this dependence is indicated 

in the general approach, in which the following properties 

of these random variables are considered. 

(1) The first two moments of the cumulative rainfall within 

a season; 

(2) the rate of convergence of the c.d.f. of the cumulative 

rainfall within a fixed season up to j years; j > 1, 

to its limiting c.d.f.; 

(3) the limiting c.d.f. of the maximum cumulative rain- 

fall per event within a fixed season up to j years 

(j T co), which is given based on the results of Berman 

(1962) . 

The above derived results for the cumulative rainfall are 

equally applicable to the excess water yield. 

Extension of each of the above results to multiple 

seasons is given under the assumption of independence of 

cumulative rainfall from one season to another. 
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3.2. General Approach 

Let (0,t1), (t1,t2], ..., etc. be a sequence of 

time intervals. For example, each time interval may typically 

represent a 'season'. Each time interval is assumed to be 

fixed and within each interval it is assumed that 'similar' 

kind of rainfall activity occurs. For example, the summer 

season in semi -arid lands may correspond to say (0,t1], 

within which the air -mass type of convective rainfall occurs. 

From one interval to another the rainfall activities can 

differ in regard to their statistical properties (discussed 

later in this chapter). The subsequent development is given 

for any one season say (0,t1). However, based on the as- 

sumption that the same general approach is applicable to 

other seasons as well, extension to multiple seasons would 

be indicated. 

Let B denote the river basin under consideration 

and R Z' B be some gaged region that contains the basin. 

For the present we don't discuss the nature of the region R, 

because it can vary with the type of rainfall activity under 

consideration and the extent of data availability. Moreover 

the concept of a region, which is important for extensions 

to ungaged basins, is elaborated on in Chapter 4. For the 

purposes of theoretical development, we treat R and in 

turn B as subsets of the two -dimensional Euclidean space. 
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For present development, we do not need to consider varia- 

tions in altitude, but effect of such is indicated in 

Chapter 4. 

The entire development is based on the assumption of 

a probability space P,F,P), where Q is sample space, F 

is the a- algebra of the subsets of the sample space and P 

is a probability measure defined on it (for the details refer 

to Breiman, 1968). Further it is assumed that the stochastic 

processes that are analysed subsequently, are defined on the 

above probability space. 

Let C(u,v,$) > 0, denote the rainfall intensity at 

some point (u,v) c R and at some instant s e (0,t1]. Since 

for every (u,v) e R (in particular (u,v) a B) and every 

s e (0,t1], F(u,v,$) is a random variable, the family of 

random variables, 

{C (u,v,$) > 0; (u,v) e R,s e (0,t111 (3.1) 

represents a random field. Assume that for every (u,v) e R 

and s e (0,t1], C(u,v,$) is integrable. The cumulative 

rainfall up to time t1 from a river basin B C R, denoted 

by X(t1), t1 > 0, is now given by the following integral, 

tl 

J(u,v,$)dudvds. X(tl) _ ( f 

0 B 
(3.2) 
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X(t1), for all t1 > 0, is a random variable and therefore 

the family of random variables {X(t1);t1 > 0} represents a 

continuous parameter stochastic process. Since u,v,$) > 0, 

for all (u,v) e B and s e (0,t1] , X(t1) , for t1 > 0 

has monotonically non -decreasing sample functions, i.e., for 

each t e (0,t1) , and At' > 0, X(t') < X (t' +it') . The 

stochastic process {X(t1);t1 > 0} forms the basic process 

of study in the ensuing text. Figure 3.1 represents a typical 

sample function of the process {X(t1);t1 > 0). 

It is assumed that P {E(u,v,$) = 0, for all 

(u,v) e B and s e (0,t1)) # O. This assumption gives rise 

to the so- called intermittency in the rainfall process. Based 

on this intermittent nature of rainfall process, two se- 

quences of 'dry' and 'wet' random intervals can be defined, 

such that no rainfall occurs anywhere over the region during 

'dry' interval and rainfall occurs somehwere over the region 

during 'wet' interval. In order to avoid introducing new 

notation, we adopt the same notations as that for point rain- 

fall process, introduced in the second chapter. Let 

{Dj;j>1) and {Cj;j>1) denote two sequences of random in- 

tervals, such that Di = {s;(u,v,$) = 0, for all 

(u,v) e R); j > 1, and Cj = {s;c(u,v,$) > 0, for some 

(u,v) e R); j > 1. Note that Cj and Dj for j > 1, 

represent random intervals within the fixed season (0,t1]. 

Clearly, the above definition of the sequence {Cj) does 
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0 TIME --- ti 

Figure 3.1. A Typical Sample Function of 
the Stochastic Process of the 
Cumulative Rainfall. 
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not require that E(u,v,$) > 0 for every (u,v) a R, within 

the random intervals C., j > 1. Phenomenologically such a 

formulation is very realistic, because of the fact that 

spatial intermittency generally occurs in spatial rainfall. 

The mathematical formulation of a random interval 

Cj; j > 1, can phenomenologically be interpreted as, the 

time interval from the commencement of rainfall anywhere over 

the region, up to the time of termination of rainfall every- 

where over the region. The values assumed by the random wet 

intervals Ci's; j > 1, can be determined from a few re- 

cording rain gages covering the region. Moreover, if the 

radar observations are also available, then these may be 

used in conjunction with the rain gages to determine the 

values assumed by the random wet intervals. In our subse- 

quent discussion, we refer to C.'s; j > 1, as durations 

of rainfall events. However, the delineation of Cj; j > 1, 

given above is more suitable for moving storm fronts. In 

the case of air -mass type of convective rainfall, subjective 

judgment may be needed for a criterion to determine the com- 

mencement and termination of rainfall over a region, that 

may constitute the duration of a rainfall event. This is 

because, the rainfall occurs locally in a random manner in 

space and time from thunderstorm cells (Fogel and Duckstein, 

1969). In our context, some of these cells may be needed to 

be grouped as part of the same rainfall event, in case the 
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cells occur adjacent to one another in time over the region. 

One such subjective criterion is demonstrated in the numerical 

case study given in Chapter 5. 

The sequences {Cj} and {Di} can be used to de- 

termine the probability mass function (p.m.f.) of number of 

events within a season (0,t1). Such is developed in the 

ensuing section. 

3.2.1. Counting Process of Number of Rainfall Events 

Firstly, the development is given for a finite time 

interval (0,t1). Then the limiting behavior is given by 

taking a sequence of years and considering the counting 

process within the fixed season (0,t1], from one year to 

the next. This limiting property of the counting process 

is used later in determining the limiting c.d.f.'s of the 

maximum cumulative rainfall and the excess water yield per 

rainfall event. 

Assume that the random intervals in the sequence 

{Cj} are mutually independent and identically distributed 

(i.i.d.) as C1 and similarly in the sequence {D } are 

i.i.á. as D . 

j j 
Moreover C and D.; j > 1, are mutually 

l 

independent. These assumptions can be justified heuristi- 

cally as follows. Firstly, the sequences {Dj} and {Cj} 

are defined for the spatial rainfall within a fixed season 

(0,t1]. It is assumed at the beginning, that the similar 

kind of rainfall activity takes place from the rainfall 
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storms within the season, i.e., the air -mass type of con- 

vective rainfall in the summer season in the south -western 

United States. Therefore the random intervals Cj and D.; 

j > 1, being identically distributed as C1 and D1 re- 

spectively within a fixed season seems reasonable. However, 

no phenomenological reason either for or against the assump- 

tion of independence seems possible at present. Therefore 

we assume independence to induce mathematical simplification 

in our treatment. However, note that such assumptions in 

regard to independence have also been made in the past for 

the point rainfall process (Grace and Eagleson, 1966; 

Todorovic, 1968). 

Let T. = Ci + D.; j > 1. Then the random intervals 

T 
i' 

j > 1, are mutually independent and identically dis- 

tributed as T1, since Cj are i.i.d as C1 and Di are 

i.i.d as D1; j > 1. Assume that E[T1] < co. The {T.} 

forms a renewal process, and let N(t1), t1 > 0, denote 

the number of renewals (complete rainfall events) within 

(0,t1] . N(t1) is defined as (Parzen, 1967, p. 133) , 

N(t1) = sup{n; 1 T. < tl}. 
j=1 

(3.3) 

Now it follows from Equation (3.3), that the following random 

events are identical (Parzen, 1967, p. 133), 



n n+1 
{N(t1) = n} = { Tj < tl < T.1. 

j=1 j=1 

From Equation (3.4), the p.m.f. of the counting random 

variable N(t1) can be written as, 

n n+l 
P{N (tl) = n} = P{ Tj<tl} - P{ y T. < tl} . 

j=1 j=1 
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(3.4) 

(3.5) 

In other words, the probability distribution of the random 

variable N(ti) is completely determined by the c.d.f. of 

the random variables Tj; j > 1. 

Let m(t1) denote the expectation of the random 

variable N(t1), then from Equation (3.5), 

n 'n+1 
m(t1 ) = E[N(tl)] = n(P{ T. < t1} - p{ X T. < t 

1 
1) 

n=1 j=1 j=1 

n 
= P{ / T. < t }. 

n=1 j=1 
1 

(3.6) 

The expectation of a renewal counting process, also called 

its mean value function, completely determines its proba- 

bility law (Parzen, 1967, p. 179). Therefore the second 

moment of N(t1), m2 (ti) = E [N2 (t1) ] , is given by 

tl 

m2(t1 ) = m(t1 ) + ( m(tl-s)dm(s) . 

JO 
(3.7) 
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Limiting behavior of the counting random variable 

N(ti) is given as follows. Let {N(tl,j);j = 1,2,...} be 

a sequence of counting random variables such that N(tl,j) 

denotes the number of rainfall events within the season 

(0,t1], during the jth year, j > 1. Further assume that 

{N(tl,j) }; j > 1, is an i.i.d. sequence. This assumption 

is reasonable, if one assumes that meteorology of the 

atmosphere from one year to another can be considered to be 

the same. Define partial sums Ni(t1) as Ni(t1) 

= N(t1,1) + ... + N(t1,i). Then Ni(t1) for all i > 1 

denotes the total number of events within (0,t1] up to the 

i 
th year. 

Assuming that m(ti) = E [N (tl, j) ] for all j > 1 

is finite, the following is true from the strong law of 

large numbers (Breiman,. 1968, p.52), namely 

lim Ni(tl)/i a;s' 
0= 

(3.8) 

where 'a.s.' denotes hlmost sure' convergence. For every 

e > 0, the criterion for the almost sure convergence is 

given as (Loève, 1955, p.115) 

P{flUl 
(Ni+n(t1)/i) - m(tl) > e} = 0 

in 
(3.9) 
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Moreover, it can be deduced from Equation (3.8) that the se- 

quence {N (t 
1 
)/i} converges in probability, which is given 

as 

lim P{ I (Ni(t1)/i) - m(ti) I > e} - 0. (3.10) 
iTce 

Equation (3.10) is true because of the fact that a.s. con- 

vergence of a sequence of random variables implies converg- 

ence in probability (Loève, 1955, p. 116). This concludes 

the convergence behavior of the random variables Ni(tl); 

i > 1. We now return to Equation (3.2) in order to develop 

a model for determining the c.d.f. of cumulative rainfall 

from an event. 

3.2.2. Cumulative Distribution Function of Cumulative 
Rainfall and Water Yield from an Event 

Let {T -j>11 be a sequence of random variables de- 

noting termination epochs of events, such that 

P(Tj > Tj_1) = 1 for all j > 1, and To E 0. Therefore 

according to the previously introduced notation 

(Tj_l,Tj) = Ti, for j = 1, 2, ...,. Now Equation (3.2) 

can be expressed as, 

N(t1) T. 

X(ti) = ( f ( (u,v,$)dudvds 
j= J Tj-1 BJ 

ri 

f 

( 

+ T(N(t ))BJ(u,v,$)dudvds. 1 

(3.11) 
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As a first step, Equation (3.11) can be simplified 

by assuming that (u,v,$) E 0 for all s e [T(N(ti),t1)]. 

This assumption is not serious in our context, since we are 

considering a fixed season (0,t1], and looking at all 

rainfall events that occur within this time. Therefore this 

assumption implies that we drop an incomplete storm at the 

tail end of a season, and only consider those rainfall events 

that terminate prior to the instant tl. An added advantage 

of this assumption is that it also simplifies the analysis. 

Thus in view of this assumption, Equation (3.11) reduces to, 

N(tl) 

J 

Tj 
( 

X(ti) = 1 
T 

1 J(u,v,$)dudvds. (3.12) 
B 

A typical sample function of the process {X(ti);ti >0 }, as 

given by Equation (3.12), is shown in Figure 3.2. 

Define Z(Tj_1,Tj) for j = 1, 2, ..., as 

f 

Tj 

= J J(uv,$)dudvds; j = 1, 2, ... (3.13) 

Tj-1 B 

The sequence of random variables Z(Tj_1,Tj) for all 

Ti < t1; j > 1, forms a discrete parameter stochastic 

process, and represents cumulative rainfall over the random 

interval (Tj_i,Tj), j > 1, which is simply the cumulative 

rainfall per rainfall event. Moreover, assume that 

{Z(-rj_1,Tj)} is an i.i.d. sequence of random variables 
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Figure 3.2. A Typical Sample Function of 
the Stochastic Process of 
Cumulative Rainfall as given 
by Equation (3.12). 
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within the fixed season (0,t1). Therefore rewriting 

(Tj_l,T .) = Tj; j > 1, Z (Tj) for all j > 1, have the 

same distribution as Z(T1). 

As indicated earlier, T1 is a sum of two random 

intervals D1 and C1 and is given as T1 = D1 + Cl, 

where C1 is the duration of a rainfall event and D1 is 

the dry period preceding this event. Moreover (u,v,$) = 0 

for all (u,v) e R, and s e D1. Therefore based on Equa- 

tion (3.13), we denote Z(T1) = Z(C1). However in case of 

excess water yield it is not so, because excess water yield 

depends on the dry duration preceding a rainfall event 

through the antecedent soil moisture conditions. 

We first consider the random variable Z(C1) and 

outline a model to determine its c.d.f. Then using this 

model, the c.d.f. for the excess water yield is obtained. 

The c.d.f. of the random variable Z(C1) for every 

z > 0, can be written as, 

P{Z(C1) < z} = JP{Z(c) < z (C1 = c}dF(c) , 

0 

(3.14) 

where F(c) = P {C1 < c} is the c.d.f. of the random variable 

C 
l' 

denoting random duration. In view of Equation (3.13), 

Equation (3.14) becomes 
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P{Z (C1) < z} 

c 
= JP{JJJ Ou,v,$)dudvds < zIC1 = c}dF(c) . (3.15) 

B 

The conditional probability arising in Equation (3.15) is 

now determined. 

Recall that the random duration C1 of a rainfall 

event is defined with respect to a region R. Now, based on 

the phenomenological description of the spatial rainfall 

process given in Section 2.2.2 of Chapter 2, we assume during 

the random duration of a rainfall event, that the spatial 

rainfall occurs only from the storm cells and no rainfall 

occurs outside of these cells. This assumption is reasonable, 

because most of the high intensity rainfall takes place within 

these cells and the rainfall intensities outside these cells 

are very low (Grayman and Eagleson, 1971). Let M(Bi,C1) 

be a positive integer valued random variable, denoting the 

number of cell centers occurring in some basin Bi c R, 

i < i < r, where r is the total number of disjoint (in- 

cluding contiguous) subbasins contained in the region R. A 

cell center is defined as the point of maximum rainfall within 

a cell. Although, M(Bi,C1) denotes the number of cell 

centers within Bi c R, in subsequent discussion we refer 

to it as denoting the number of cells. This is because we 

assume that each cell has only one point of maximum rainfall. 
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Now for a finite number of disjoint (including con- 

tiguous) subbasins contained in R, say B1, ..., Br; 

r > 1, we obtain finite sequence of random variables, 

given by 

{M(Bi.C1);Bi c R,l < i < r}. (3.16) 

denoting the number of storm cells that occur over Bi; 

1 < i < r, during the random duration C1 of a rainfall 

event. In particular, M(B,C1) denotes the number of storm 
r1 

cells over the river basin B, where B = U B; rl < r, 
i =1 

during the random duration C1 of a rainfall event. 

Now the conditional probability in Equation (3.15) 

may be expressed as 

P{( ( (Ou,v,$)dudvds < ziCl = c} 
JO B 

M(B,c) W2n 
= p{ ( 

1 

((u,v,$)dudvds < zIC1 = c} 
n=1 W2n-1 

, 

1 B 
A 
1 (3.17) 

where {(W2n- 
1,W2n);n 

= 1,2,...} is a sequence of random 

intervals denoting the random durations of cells. BA c B 

for n > 1, denoting a subset of the basin is given as 

BA = {(u,v) a B;E(u,v,$) > O,s a (W2n- l'W2n) }' 
n > 1. 

Phenomenologically, Equation (3.17) can be interpreted as 
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giving the conditional probability of the sum of rainfall 

from storm cells distributed over the river basin, given 

that the random duration C1 of a rainfall event over the 

region is equal to c. 

Let {Yn;n > 1} be a sequence of random variables 

denoting the total rainfall from cells. Then in Equation 

(3.17), we denote, 

W2n 
Yn = 

1 

((u,v,$)dudvds, n = 1, 2, ...,. (3.18) 

W2n-1 
Bn 

Now substituting Equation (3.18) into Equation (3.17), the 

conditional probability given by Equation (3.17) can be 

evaluated as 

M(B,c) 
P{ Yn < zICl = c} 

n=1 

k 
= P{ 1 Y < z,M(B,c) = kiC = c} 

k=1 n=1 n 1 

+ P{M(B,c) = 01C1 = c}. (3.19) 

Equation (3.19) gives the most general framework to evaluate 

the conditional probability of the cumulative rainfall per 

event, given the duration of this event. It may be diffi- 

cult to obtain any analytic forms of c.d.f.'s using 

Equation (3.19) in such generality. However further 
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assumptions can be made in order to obtain analytical solu- 

tions. To a large extent, this forms the basis of mathe- 

matical applications presented in Chapter 4. Special cases 

including extension to ungaged basins, etc., are discussed 

in Chapter 4. We now give a derivation to obtain the c.d.f. 

of excess water yield. 

Cumulative Distribution Function of the Excess Water 

Yield. The excess water yield can be obtained from the 

cumulative rainfall by use of the type of transformations dis- 

cussed in Section 2.2.3 of Chapter 2. Moreover it was indi- 

cated in Chapter 2, that no theory for general threshold and 

infiltration model exists. We propose pure threshold model 

as our basis for transforming rainfall into excess water 

yield, but phenomenologically give a more meaningful random 

mechanism than that has been proposed in the past (Woolhiser 

and Todorovic, 1971). The choice of this transformation also 

restricts the applicability of this approach to moderate 

sized basins in regard to prediction of cumulative surface 

runoff. This is because of the assumption, that excess water 

yield can be considered approximately to be equal to the 

surface runoff only for small to mid -sized basins. 

Let {Z'(Tj);j > 1} be a sequence of i.i.d. random 

variables denoting excess water yield. Z'(Tj) is dis- 

tributed as Z'(T1) for all j = 1, 2, ...,. Define 

Z' (T1) as, 
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Z' (T1) = Z(Ci) - g(Di) (3.20) 

where the threshold value is given by g(D1), which denotes 

some functions for the preceding random dry period D1. 

Strictly speaking, the threshold value may also depend upon 

the current storm conditions, e.g. duration, intensity, rain- 

fall, etc., (Fogel, 1969), but presently we assume the 

preceding dry interval to be of importance during which soil 

moisture gets depleted. 

Now the c.d.f. of Z'(T1), for any z > 0 can be 

obtained using Equations (3.14) and (3.20) as 

P{Z' (T1) < z} = P{Z(C1) < z + g(D1) } 

= JP{Z(C1) < z + g(d1) 1D1 = dl}dF(dl) . (3.21) 
0 

where F(d1) = P {D1 < d1 }. But Z(C1) is independent of 

the random interval D1, hence Equation (3.21) reduces to, 

P{Z 
1 
(T1) < z} 

= 
JJP{Z(c) < z + g(di)1C1 = c}dF(c)dF(dl) (3.22) 

0 0 

where F(c) = P {C1 < c}. The conditional probability in 

Equation (3.22) can be evaluated using Equation (3.19). 
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Finally, note that the conditional expectation and 

higher moments, etc., of Z(C1) can be obtained either using 

Equation (3.19) or directly as follows 

00 n 
E [Z (c) I C1 = c] = I E [ y YjI{M (B,c) = n} I C1 = cl 

n=1 j=1 

n 
= 

G I E[YjI{M(B,c) = n} IC1 = c] 

n=1 j=1 
(3.23) 

where I {A} is the indicator function of a set A. Equation 

(3.23) gives the conditional expectation of Z(Ci). Simi- 

larly, higher conditional moments can be obtained. 

We close the section on the general approach with 

the note that specific applications of the above will be 

given in Chapter 4. 

3.3. Processes of the Cumulative Rainfall 
and Water Yield for a Season 

3.3.1. Derivation of the First Two Moments 

Ideally, we would like to obtain the c.d.f. of 

X(t1); t1 > 0, as given by Equation (3.12). However, under 

the general dependence structure between N(ti) and Z(Tj); 

j > 1, such is not obtainable. Therefore under this section 

we derive expressions for the first two moments of X(t1), 

namely E [X (t1) ] and E [X2 (t1) ] . In its own right, such 

information can be of importance to an engineer. 



Based on Equation (3.12), 

N(t 
1 

) 

E[X(t1)] = E[ G Z(Tj)I{ U {N(t1) = n}}]. 
j=1 n=0 
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(3.24) 

Now {N (ti) = k} (l {N (t1) = j} = 0 (Null Set) for j k, 

CO 00 

and if U {N(ti) = n } }.= I I {N(t1) = n} = 1. Using this fact, 
n =0 n =0 

Equation (3.24) becomes, 

Cco 

n 
E [X(t1) ] = G E[ 2 Z (Tj) I{N (t1) = n} ] . 

n=1 j=1 
(3.25) 

Since in Section 3.2.2., Z(Ti ) for j > 1, are assumed to 

be i.i.d. as Z(T1), therefore Equation (3.25) can be 

written as, 

OD 

E [X(tl) ] = I nE [Z (T1) I{N (tl) = n}]. 
n=1 

(3.26) 

Substituting 

E [X(ti) 

= 
n111 n 

Equation (3.4) 

n 
] = nE [Z (T1) I{ 

n=1 j=1 

tl n 

o 
E [Z (s) I{ J12Tj < t1 

in Equation (3.26), we obtain 

n+l 
T. < t1 < T . } ] 

j=1 3 

n+l 
- s < 32Tj}Ì1 = s]dF(s) (3.27) 

n n +1 
Note that the random variable I{ 

1 
T. < t1 - s < T.} is 

j 
=2 

j =2 3 

independent of the random variable T1, and in turn is 



independent of Z(T1), since Z(T1) depends only on T1. 

Hence Equation (3.27) reduces to, 

E [X (tl) ] 
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(3.28) 

rtl n n+l 
= n1 E [Z (s) (T = s]P{ T < t - s < / T }dF (s) 

n=1 0 1 j=2 1 j=2 3 

because E[I {A }] = P {A} for any set A. From Equation (3.4), 

n -1 n 
it follows that P {N(t1) = n - 1} = P{ T. < t < T. }. 

j =1 3 1 j =1 3 

Since the right hand side of this identity involves an event 

defined from the sum of n i.i.d. random variables T., 

1 < j < n, therefore the following is true, 

n n+1 n-1 n 
P{ T. < t < } = P{ I T. < t < E T.} 

j=2 3 1 j=2 j=1 3 1 j=1 3 

= P{N (tl) = n - It. (3.29) 

Substituting Equation (3.29) into Equation (3.28), 

nj E ( (t1) ] = n1 E [Z (s) 1T1 = s]P{N(tl - s) = n - 1}dF(s) 
n=1 JO 

t 

E [Z (s) 
T1 

= s] (n-1) P{N (t1-s) = n - 1}dF (s) 
f01 n=1 

tl 
+ ( E [Z (s) I T1 = s] P{N (tl-s) = n - 1}dF (s) 

0 n=1 



or equivalently, 

J 

t1 

E[X(t1)] = E[Z(s) 1T1 = s]m(ti-s)dF(s) 
0 

(tl 

JO 
E [Z (s) 1 T1 

= s] dF (s) , 
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(3.30) 

where m(t1 -s) = E[N(t1 -s)] as defined in Section 3.2.1. 

The conditional expectation E[Z(s)IT1 = s] can be obtained 

from Equation (3.23). 

The derivation of the E[X2(t1)] can be done along 

similar lines as that for E[X(tl)]. Therefore, we give the 

derivation in Appendix A. The final expression for 

E [X2(t1)] is obtained as 

t 
1 

E [X2 (t1) ] = J E [Z2 (s1) 1T1 = s1]m(t1-s1)dF(si) 
0 

( 

tl 

+ 
E [Z2 (s1) 1 T1 = s1] dF (sl) 

0 

tl t1-s2 
co 

n(n-1)E [Z (s1) 1 T1 = sl]E [Z (s2) 1T2 = S2] 
0 0 n=1 

P{n(tl-sl-s2) = n - 2}dF(si)dF(s2) . (3.31) 

A special case for E[X(t1)] is now derived based 

on Equation (3.30). 
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In the case Z(Tj)'s; j > 1, are independent of 

Ti for all j > 1, and in turn are independent of the 

counting process N(tl), we get the case of the sum of a 

random number of i.i.d. random variables. Such a situation 

would arise when the Z(T.); j > 1, as given by Equation 

(3.13) depends only on the path of the sample function 

E(u,v,$), and not on the random interval T. For this 

case denote Z(T.) = Z ;; j > 1. Then E[Zt1T1 = s] = E[Zi]. 

Substituting this in Equation (3.30), 

(tl 
tl 

E[X(tl)] = E[Zi]{I m(tl- s)dF(s) + dF(s)}, 
JO 0 

(3.32) 

but the expression within brackets in Equation (3.32) is the 

integral equation for the mean value function of a renewal 

counting process (Parzen, 1967, p. 171), which is given as 

J 

tl 

m (t1) = F (tl) + m(t1-s) dF (s) . 

0 

Substituting Equation (3.33) into Equation (3.32), 

E [X (tl) ] = E[Z1]m(ti) = E [Z1]E [N (ti) ] , 

(3.33) 

(3.34) 

which is the expression that has been used earlier in hydro- 

logic literature (Duckstein et al., 1972). 



Also a general expression for E[X(tl)] has been 

given by Todorovic (1970), but he does not specify the 

"dependence" sturcture between the Z(Tj); j > 1, and the 

N (t1). However his expression is given as, 

00 

E[X(t1)] = E 
1 

E[Z(Tn) IN(tl)]dP. 
n=1 {Tn<tl} 
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(3.35) 

Starting from Equation (3.35) we derive Equation (3.30) in 

Appendix B. 

Similarly, as in the case of E[X(t1)], we can re- 

duce Equation (3.31) to the expression for the variance of 

the sum of a random number of i.i.d. random variables. Denote 

Z(T.) = Z; j > 1, as before, and note that E[(Zt)2IT1 = s] 

= E[(Zi)2]. Making this substitution in Equation (3.31) we 

obtain 

rti 
E [X2(t1 )] = E[(Zi)2]J m(tl-sl)dF(s2 + E[(Z1)2]F(tl) 

0 

(3.36) 

00 (tl(tl-s2 
+ E2[Zi] 1 n(n-1)J 

1 P{N(tl-sls2) = n - 2}dF()dF(s2). 
n=1 0 0 

Now the following identity follows from Equation (3.4), 

rtl ¡tl-s2 

J 1 

P{N(tl- i s2) = n - 2}dF( 1)dF(s2) = P{N(t1) = n}. (3.37) 
0 0 

Substituting Equations (3.33) and (3.37) into Equation (3.36), 



00 

E[X2(t1)] = E[(Zi)]m(t1) + E2 [Zi] n(n-1)P{N(t1) = n} 
n=1 

= E [ (Zi) 2]m(tl) + E2 [Z1] (m2 (t1) - m(t1) ) . 
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(3.38) 

where m2 (t1) is E [N2 (tl) ] . Now let a2 
[X (tl) ] denote the 

variance of X (t1) , then, 

Q2 [X (tl) ] = E [X2 (tl) ] - E2 [X (t1) ] . (3.39) 

Substituting Equations (3.38) and (3.34) into Equation (3.39), 

the variance of X(t1) is given as, 

Var [X (tl) ] = m(ti) {E [ (Zi) 2] - E2 [Zi] } 

+ E2 [Zi]m2 (ti) - E2 [Zi]m 

+ E2 [Z1] ci2 [N (t1) ] . 

= m(tl) a2 [Z1] 

(3.39) 

where o 
2 [q] and a2[N(t1)] denote the variance of Zi 

and N(t1) respectively. a2[N(t1)] can be obtained from 

Equations (3.6) and (3.7). Equation (3.39) has also been 

used in hydrologic literature previously (Duckstein et al., 

1972) . 

Extension to More Than One Season. The derivations 

presented above can be extended to more than one season. 



59 

For example, let (0,t) be divided into two seasons, say 

(0,t1] and (tl,t]. Let x(t) denote the total cumulative 

rainfall up to time t. Then X(t) can be written as, 

X(t) = X(ti) + X(t) - X (tl) , (3.40) 

where X(t) - X(t1), denotes the cumulative rainfall within 

the season (t1,t). Hence 

E[X(t)] = E [X (t1) ] + E[X(t) - X (t1) ] . (3.41) 

Assuming that the random variables denoting the cum- 

ulative rainfall from one season to another are mutually 

independent, the variance of X(t) denoted by a2[X(t)] is 

given as, 

a2 [X (t) ] = a2 [X (t1) ] + a2 [X (t) - X (t1)]. (3.42) 

In Equations (3.41) and (3.42), the random variables 

X(t1) and X(t) - X(t1), can be non -identically distributed. 

Phenomenologically, such a situation can arise from differ- 

ences in the type of rainfall storms that may occur over the 

region R from one season to another. For example, the 

occurrence of air -mass type of convective storms during sum- 

mer season, and the frontal storms during winter season in 
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the southwestern United States, can make the corresponding 

cumulative seasonal rainfall amounts non -identically dis- 

tributed. 

The derivations given in this section are also ap- 

plicable to the excess water yield per event. This is due 

to the fact that in the previous derivations, Z(T1) de- 

noting the cumulative rainfall per event is considered to 

be dependent on the random variable T1, which is also true 

for Z'(T1) denoting the excess water yield per event. 

This concludes our discussion on obtaining the first 

two moments of the cumulative rainfall and excess water 

yield within a finite time interval. Note that the deriva- 

tions become 'involved' even for the second moment of X(t1). 

This in turn can give an indication in regard to the diffi- 

culties in obtaining an analytical form for the c.d.f. of 

X(ti) within a finite time interval. 

3.4. Limiting Distribution and Convergence 
Rate for Cumulative Seasonal Rainfall 

Let {Xi(t1)} be a sequence of random variables 

such that for every i > 1, Xi(ti) denotes the cumulative 

rainfall up to the ith year within a fixed season (0,t1]. 

Then for every x > 0, lim P {Xi(t1) < x} gives the 
¡too 

limiting c.d.f. of the random variables Xi(t1); i > 1. 

This is considered in the context of the rate of convergence 
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of P {Xi(t1) < x }; i > 1, to its limiting c.d.f., in the 

following theorem. 

Some new notation is now introduced to achieve 

facility in giving the theorem. Let. Zj 

= (Z(Tj) -E[Z(T)]) /c[Z(Tj)); where Q2[Z(Tj)] is 

the variance of Z (Tj) . Clearly E [Z . ] = 0 and a2 [Z] = 1;, 

j > 1. Recall from Section 3.2.1 that N(tl,j) is defined 

as the number of events within (0,t1] during the 
jth 

year, j > 1. Denote N(tl,j) = N(j) for all j > 1, and 

i 

similarly Ni = N(j); i > 1. Let 
j =1 

N. 

Xi(t1 ) = X(Ni) = 1 Z., i = 1, 2, ...,. (3.43) 
j=1 

Note that in the above notation we have suppressed the vari- 

able tl, but it is understood that we are still referring 

to the same fixed interval (0,t1), for all the years. 

To this end, we give a lemma in regard to the sequence 

{N(j) }, which is used in the theorem. 

LEMMA. Let N(j) be a sequence of i.i.d. random 

variables with mean m and variance a2. Assume that 

EIN(1)I 2p < co, for some p > 1. Denote Ni = N(1) + ... 

+ N(i). Then (a) (Ni - mi )la r converges in distribu- 

tion to the standard normal, and (b) 
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lim E(Nl-ml)2n 
1 (x2ne-x2/2dx, 

1 < n < p (3.44) 
¡too air ffi 

and the right hand side is bounded by some function of p, 

say b(p), because all moments of the standard normal dis- 

tribution are bounded. 

Proof. (a) follows simply from the classical central 

limit theorem. For the proof of (b), see Bhattacharaya (1973). 

We now give the theorem on the rate of convergence of 

the sequence {X(Ni) }. 

THEOREM 1. Let {z } be an i.i.d. sequence of 

random variables with mean zero and variance one. Put 

X(n) = Z1 + ... + Zn. Let {N(j)} be a sequence of positive 

integer valued i.i.d. random variables, N(j); j > 1, is 

not independent of Z i > 1, and such that E [N (j) ] 2p < 

for some p > 1. Let Ni = N(1) + ... + N(i). If '(x) 

denotes the c.d.f. of a standard normal distribution, then 

X(N.) 

sXP I 
P{ 1 < x} - (x) 

I 

= 0(1/j)13/(61:41) 

i 

(3.45) 

Proof. Let e > 0 be arbitrary. By Chebyshev's 

inequality, 

P{INi - mil > cmi} = 6(c,i) < E[Ni - mi]4/(emi)21). (3.46) 



Using the Lemma in the right hand side, gives 

6(c,i) < EIN. - mil2p/(Emi)2P 

< b(P)Q2pip/(Emi)2p = al/c2pip 
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(3.47) 

where a1 = b(p)o2p /m2p is some constant. Now, for any 

-°° < x < c°, 

X(N.) 
P{ 1< x} P{X(n) < x,Ni = n} Ñ .. n=0 ñ i 

X (n) < x,N = n} 
In-miI<mic ñ 

+ P{X. (n) < x,Ni = n}. . 
In -miI>miE ñ (3.48) 

Based on Equation (3.46), Equation (3.48) is written as, 

X(N.) 
IP{ 

1< 
x} - 2 P{X(n) < x,Ni = n}I 

( n-rni I <miE ñ 

< P{INi - mil > mci} = ö(c,i). (3.49) 

Let n1 = [m(1 -c) i) and n2 = [m(l +c) il , where [ - --] de- 

notes the integral part of the number within square brackets 

Now for In - mil < cmi, 



P{x(n) < x,N. = n} < P{x(n 
1 

) ) < x + p,N. = n} 
i 1 2 

where p = max J ) Zk1. Similarly, we get, 
nl <n <n2 nl <k <n 

P{x(n) < x, Ni = n} > P{x(nl) < x n - p,Ni = n}. 
VE 

From Kolmogorov's inequality (Breiman, 1968, p. 65), 

P {p > (e)1 /3 n } < (n2 - nl) /nl(e)2 /3. 

64 

(3.50) 

(3.51) 

(3.52) 

Now let G be the event {p < (e)1 /3} and H the event 

{INi 
- mil < emi }, then from Equations (3.49), (3.50), (3.51) 

and (3.52), it follows that 

x (Ni) 
P{ < x} < P{ 

X (ni) 
< x - + (e) 

1/3 
,G (1 H} 

(n 
2 
-n 

1 
) 

+ 
n (C) 

2/3 
+ d (e,i) 

1 

and, 

X(N.) X (ni) 1/3 P{ < x} > P{ < x - (e) ,G fl H) - 6 (e,i) 

473-. 

(3.53) 

(3.54) 

p{X (nl) 
(e)1/3} 

(n2-n ) 

26 (e,i) . 

1 nl(e) 



Hence it follows from Equations (3.53) and (3.54), that 

X (nl) 

< 
x - (6) 

1/3 
1 

2el/3 < p{X 
X(N.) 

< x} P{ 
(1-e) 

26 (e,i) _ Ñ 
1 

X (n ) 

1 1+e (e)1/3} - 1- e 

1/3 
+ 2i-e + S (e,i) . 
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(3.55) 

Based on the Berry -Eseen theorems (see Bhattacharaya, 

1973) for the sum of i. i.d. random variables with zero mean 

and unit variance, the left and right sides of the inequality 

given by Equation (3.55) can be written as, 

{X (n1) 
< x - (e) 1/3} > ('(x) - (e) 1/3 

1.6f3 
3 

3/2 1 1(132) 

assuming that 133 = EZi < a, and 132 = EZi < 00. Now from 

Lipschitz condition for the function (1)(), we get, 

(3.56) 

(1)(x - (e)1/3) > 0(x) - (e)1/3//fT. 

Similarly, we obtain, 

(3.57) 



P{X (nl) ql+c (x 
(e)1/3 

J ii 

Since /l +e 
1 -e 

1.663 

67-(a 2) 3/2' 

is of the order of (1 + e), hence, 

x (1+e) 
(xli±É) _ 0 (x (l+c) ) = (x) + J 1 f 

e-u 
2 /2 

du 
x 

Let y = u /x, then 

(x(l+e) -u2/2 
e du = 

1 
1 

x 

1 

(1+e 22 
1 e y 

x /2 xdy 
1 

x2/2xc 1 
---e e. 

Combining Equations (3.58), (3.59) and (3.60), 

P(X (nl) x 
1+c 1 -1/2 

(e) 
1/3 

) < 0(x) + --e e 

nl 1 e 2Tr 

+ (e) 
1/3 1.663 

2 62471 

Substituting Equations (3.56), (3.57) and (3.61) into 

Equation (3.55) , 
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(3.58) 

(3.59) 

(3.60) 

(3.61) 



1/3 1/3 1.6ß 
3 

() (x) ( 2 

(1, E) 67-1-,t3 ) 3/2 2a (e'1) 
1 2 

X(N.) 1/3 1/3 -1/2 
< P{ < x} < (x) + (e) 

1/3 
e 

4W7 'TT 

1.66 
3 

+ 3 
2 (1) 

e 
+ 6 (e,i) 

ß2 1 
or equivalently, 

IPI (Ni < x} - 
(1) (x) < (E)1/3 

e-1/2 2 
+ 

2 1E) i /f7 

1.663 
+ 26(6,i) + 

ß2mi(1-s) 
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(3.62) 

Note that the right hand side in Equation (3.62) is inde- 

pendent of x, (1- e) is of the order of one. Therefore, 

X(N.) a 
suplP{ 1 < x} - ()(x)I < e1/3a + 3 + 26(e,i), 

4T7 2 ir (3.63) 

where a2 = 2 + (e -1/2 + 1)/V-27 1 a3 = 1.663 /0 2ím. Sub- 

stituting Equation (3.47) into Equation (3.63), 

X (N . ) 

suplP{ 1 < x} - 4)(x)I < a2c 1/3 a3(i)-1/2 

+ al(i)-13(0-2P. (3.64) 



Minimum of the bound on the right hand side is now obtained 

by differentiating it with respect to e. Thus 

or 

UT (a2e1/3 + a3 (i) 
-1/2 + al(i)-P(E)-4) = 0 
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e = 
(2pal/a2) 

3/ (6P+1) (i)-3p/(6p+1) ti (i)-3p/(6p+1) (3.65) 

Substituting Equation (3.65) into the r.h.s. of Equation 

(3.64), the order of the error bound on the r.h.s. is given 

as 

X(Ni) 
su P/(6p+1) pP{ Ñ < x} - (x)) = O(1/i) 
x 

i 

which was to be proved. 

COROLLARY. Theorem of Anscombe (1952) follows from 

the above as a special case. However, the added restriction 

E[N(j)]2p < 00 is not required. Recall from Section 3.2.1, 

that {Ni} denote the partial sums of i.i.d. random vari- 

ables and it is shown in Equation (3.10), that Ni /i con- 

verges in probability. This implies that ô(eri) 4 0 as 

i t =. Since e > 0 is arbitrary, therefore from Equation 

(3.55), it can be concluded that, 



X(N ) x 2 
p{ i. 1 1 r e-u 

1 
/17- 

2 u. 
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(3.66) 

Operationally speaking, such convergence rates can 

be used to give a quantitative estimate of the deviation of 

the c.d.f. of the cumulative seasonal rainfall up to the ith 

year i > 1, from its limiting c.d.f. Such considerations 

are necessary, if the c.d.f. of the cumulative seasonal rain- 

fall is not obtainable in an analytical form. However, the 

rate of convergence as given by our theorem, provides a loose 

bound. For example, in case p = 1, the order of the 

bound is (1 /i)1 /7. For large values of p, the order of 

this bound converges to (1 /i)1 /6, for all i > 1. There- 

fore the results given here can only be considered as a first 

step towards such efforts. Moreover, in light of the ob- 

tained order of the bound; it can only be regarded as being 

more of a mathematical interest than operational interest. 

Although the above discussion is given in terms of 

cumulative rainfall, the results also hold good for the 

excess water yield. 

Cumulative Rainfall from Multiple Seasons. In this 

section, we give a derivation to obtain the limiting c.d.f. 

of X(t), t > 0, such that the interval (0,t] is divided 

into more than one season, say (0,t1], (tl,t2], etc., 

and within each season the random variables denoting 
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cumulative rainfall X(t1), X(t2) - X(t1), ..., are 

mutually independent but non -identically distributed. 

For demonstrative purposes, (0,t] is divided into 

two seasons, (0,t1], (ti,t]. Extension to more than two 

seasons follows identically to the development given below. 

Let {T} be a sequence of i.i.d. random variables 

within (ti,t], representing the random time intervals be- 

tween termination of successive rainfall events. However 

{T} within (tl,t] can have a different c.d.f. than that 

of the c.d.f. of {T.} defined within the interval (0,t1]. 

Let Ni(ti,t) denote the counting process of number of rain- 

fall events within (t1,t] up to the ith year. If m(t1,t) 

= E[N(ti,t)] < co, then for every c > 0, the following is 

true based on Equation (3.10), 

P{ I (Ni (ti,t) /i) - l.l {l,t) > c} 0. (3.67) 

Moreover assume that the general approach to derive 

the c.d.f. of cumulative rainfall per event as given in 

Section 3.2.2 also holds well for the season (tl,t]. Let 

{Z(T;)} denote the cumulative rainfall per event within 

(ti,t], such that Z(T;) within (t1,t] and Z(Ti) within 

(0,t1] are non -identically distributed. 

Based on the above assumptions, X(ti) and X(t) 

- X(t1) are also non -identically distributed. Let 
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Ni (t) = Ni (t1) + Pli (t1,t) . Denoting X (t1,t) = X(t) - X (t1) , 

the c.d.f. of X.(t) is given as, 

x . (t) X . (t ) x (t ,t) 
p{ 1 < x} = p{ 1 1 + i 1 

Ni (t) VIRT(t) OF/7.(t) 

= P{Xl(tl) 
1(t1) Xi(t1,t) Ni(t1,t) 

< x}. Ñ (t1) Ni (t) i (t1,t) Ni (t) 

But 

and 

Ni(t1) a.s. 
m(t) 

it' Ni(t) m(t1)+m(t1,t) 

Ni(t1,t) a.s. m(t1,t) 

iTm Ni(t) m(t1)+m(t1t) 

(3.68) 

(3.69) 

Now both random variables on the left hand side in Equation 

(3.68) converge to a normal c.d.f., with means zero and 

variances m(t) /(m(t1) + m(t1,t)) and 

m(t1,t) /(m(ti) + m(t1,t)). Therefore their sum will con- 

verge to a standard normal distribution with mean zero and 

variance one. This follows from the well known fact that 

sum of independent normal random variables is again normal, 

and its mean and variance is given by the sums of means and 

variances of the original random variables respectively. 

Hence, 



X. 
1 f 

x -u22 
lim P{ < x} -r e du. 

AR-7(t) - 
72 

(3.70) 

3.5. Limiting Distribution for Maximum 
Cumulative Rainfall per Event 

Extreme valued distributions of hydrologic variables 

have been used in the past in connection with the determina- 

tion of the average return periods of extreme random events 

defined in terms of these hydrologic variables. However, it 

has been recognized that the concept of average return period 

is very misleading, since the actual return periods can be 

much less than the average (Kendall, 1959). Nonetheless, 

the derivations of the actual or average return periods in 

the past have been considered only for the cases where the 

c.d.f. of the random variable (maximum seasonal or annual 

flow or rainfall, etc.) is know for a finite time (generally 

a year or a season). In our case, since we cannot obtain an 

expression for the c.d.f. of the maximum cumulative rainfall 

per event within a season (0,t1], because of dependence be- 

tween Z(C1) and N(ti), we would show the use of a limit- 

ing distribution to obtain the necessary information on the 

actual return periods. In this spirit, we also recommend 

that the concept of the average return period should be com- 

pletely dispensed with in hydrology, since actual return 

periods can be directly obtained for the cases where the 

c.d.f. of a random variable over a year or a season is known 
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(Todorovic and Zelenhasic, 1970), without going through the 

route of the average return period. 

To this end, we first give the treatment to obtain 

the limiting c.d.f. of the maximum rainfall per event, and 

then present its application in a separate sub - section in 

the spirit of obtaining actual return periods. 

The treatment is first presented for a single season 

(0,t1], and is then extended to multiple seasons. Now 

define V(Ni) as, 

V(Ni) = sup Z(T ). 
i <j <N. J 

(3.71) 

Recall from Section 3.2.1 that Ni = N.(tl) is the random 

variable denoting the number of rainfall events within 

(0,t1) up to the ith year, i > 1. 

Now consider the sequence of i.i.d. random variables 

Z(Ti), j > 1. Genedenko (1942) was the first one to give 

the necessary and sufficient conditions for the existence of 

limiting c.d.f. of maximum of a fixed number of i.i.d. random 

variables. Let 

V(n) = max Z (T .) . (3.72) 
i <j <n 

Then, 
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p{ V (n) < x} = [P{ Z (Ti ) < x} ] n = [F (x) ] n. (3.73) 

If there exists a c.d.f. G(x), and sequences 

{vn} such that un > 0 for n > 1, and 

lim P{(V(n) - vn)unl < x} = G(x) 
nTco 

{un} and 

(3.74) 

at each continuity point x of 

to one of the following types, 

G(x), 

i.e., 

then G(x) belongs 

G1(x) = exp[ -x -a] 

G1(x) = 0 

for 

for 

x > 0, 

x < 0 

a > 0 

(3.75) 

G 
2 
(x) = exp [- ( -x) a] for x > 0; a > 0 

G2 (x) = 0 for x < 0 (3.76) 

G3(x) = exp[-e-x] -co < x < (3.77) 

Since type three, i.e., G3(x), is relevant to our 

case, we give the necessary and sufficient conditions for 

the convergence of the c.d.f. of V(n) to the third type. 

For this case the constants {un} and {vn} satisfy the 

relations, 



1- F(vn) ti n-1 and 1- F(u 
n 
+v 

n 
) 

ti (ne) -1 

75 

(3.78) 

for vn < vn +1 and n > 1. The above results of Genedenko 

are reproduced from Berman (1962). 

The limiting c.d.f. of the maximum of a random 

number of random variables under the condition that Z(T,) 

are dependent on the counting process N(t1), is given by 

Berman (1962). We state Berman's theorem below. 

THEOREM 2. Zf {Ni} and Z(T.) are not neces- 

sarily independent of each other, and if there exists a 

positive number m 

then for every x 

such that Nudi -0- m in probability, 

lim P{ui1 (V (Ni) - vi) < x} = [G (x) ] m 
i?co 

(3.79) 

where G(x) is one of the three types as given earlier by 

Equations (3.75) , (3.76) and (3.77) . 

Recall that we established the convergence of 

to m(t1) in probability in Equation (3.10). Therefore in 

our case if {Z(Ty} satisfy the convergence criterion given 

by Equation (3.74), then Berman's theorem can be used to 

derive the limiting c.d.f. 

We now extend the above results to two seasons. For 

the case of two seasons (0,t1] and (t1,t], define 



V(N. (t)) = max( sup Z(T.), sup Z(T:)). 
1 1 <j <Ni(tl) 3 1 <j<Ni(t1,t) 3 

76 

(3.80) 

Then from the independence of the rainfall events between 

two seasons, it follows from Theorem 2, that 

lim P{uil (V (Ni (t) ) - vi) < x} 
iT00 

m(ti) m (tl,t) 
= [G (x) ] [G' (x) ] (3.81) 

where G'(x) is that for the sequence {Z(Ti) }, as G(x) 

for {Z(T.)} given by Equation (3.74), and m(ti,t) 

= E[N(tl,t)], is the expected number of rainfall events 

within the season (tl,t]. 

3.5.1. Return Period: What Does it Really Mean? 

We first give the mathematical formulation behind 

determination of the actual and the average return periods 

of an extreme event, and then indicate the role of a limiting 

c.d.f. within this framework. 

Recall from Section 3.2.1, that N(i) = N(t,i) de- 

notes the number of rainfall events within the season (0,t1], 

during the ith year, i > 1. Let V(N(i)) denote the 

maximum cumulative rainfall per event during the ith year, 

ie, 
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V(N(i)) = sup Z(T.); i = 1, 2, ...,. (3.82) 
1 <j <N(i) 3 

Now define a positive integer valued random variable K, as 

K = min {i;V(N(i)) > x }. (3.83) 

Thus K denotes the number of years it takes to have the 

first exceedance of the maximum seasonal rainfall per event. 

From Equation (3.83) it follows that 

P{K = k} 

= P{V (N (1) ) < x, . . . ,V (N (k-1) ) < x,V (N (k) ) > x} . (3.84) 

Classically, the average return period is defined to 

be E[K]. Based on the assumption that V(N(i)); i > 1, 

are i.i.d. random variables, E[K] is obtained as, 

00 

E[K] = kP{K = k} = 1/P{V(N(k)) > x}. (3.85) 
k=1 

A serious implication of specifying the average re- 

turn period as the design criterion is pointed out by 

Kendall (1959). Based on the work of Kendall, the actual 

return period is defined as the period during which no ex- 

ceedance takes place. Let n' denote the actual return 



78 

period, and a' the probability that no exceedance occurs 

during n'. (1 -a') is also called the risk. Then from 

Equation (3.84), 

CO 

a' = PIK > n'} = PIK = n} 
n=n' +1 

(3.86) 
CO 

= P{V (N (1) ) < x, . . . ,V (N (n-1) ) < x,V (N (n) ) > x} 

n=n'+1 

Using the assumption in Equation (3.86), that V(N(i)), de- 

noting the maximum cumulative rainfall per event within 

(0,t1) during 

CO 

i > 1, are i.i.d. as V(N(1)) , 

a' = G [P{V(N(1)) < x}]n-1 
P{V(N(1)) x} 

n=n'+1 

x111-1 - p{V (N (1) ) 
< x}n 

n=n'+1 n=n'+1 

= P{V(N(1)) < x}n', (3.87) 

Based on Equation (3.87), the actual return period n' can 

be determined corresponding to a specified level of risk 

(1 - a'), provide the c.d.f. of V(N(1)) during a season is 

known. 

Now, in order to point out the danger in using the 

average return period as the design period, let n' in 
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Equation (3.87) denote the average return period. Substi- 

tuting Equation (3.85) into Equation (3.87), the correspond- 

ing risk is obtained as, 

(1 - a') = 1 - (1 - n )n (3.88) 

For n' = 25, (1 - a') = .65. Taking limits on both sides 

of Equation (3.88) as n' 4 co, (1 - a') = 1 - e -1 (Kendall, 

1959). In other words, there is a 65% chance of having at 

least one exceedance of an extreme event, if the design 

period of twenty -five years of a structure is taken to be 

the average return period. 

It is now clear from Equation (3.87) that the con- 

cept of an average return period should be dispensed with 

in the hydrologic design practices, since it is a misleading 

and a redundant concept. 

In case P {V(N(1) < x} is not obtainable, as is the 

case with us, then limiting c.d.f. can be used to obtain 

information on the design period of a structure. Such is 

discussed below. 

Consider a sequence of real numbers fun} and (vn} 

as given in Equation (3.77), and rewrite Equation (3.86) as, 



1 - añ = P{V (N (1) ) < unx + vn, . . . ,V (N (n) ) < unx + vn} 

= P{ max V(N(i)) < unx + vn}. 
1 <i <n 

Substituting Equation (3.71) into Equation (3.89), 

1 - añ = P{ sup z(Tj) < unx + vn}, 
1<j<Nn 
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(3.89) 

(3.90) 

Taking limits as n T co, on both sides of Equation (3.90) 

lim (1 - a' ) = lim P{ sup z (T3 .)< u x + 
nT n nT 1<j<Nn J n 

(3.91) 

But the right hand side of Equation (3.91) is the limiting 

distribution as given by Equation (3.79). Therefore sub- 

stituting Equation (3.79) and (3.10) into Equation (3.91), 

m(t1) 
= lim (1 - añ) = [G (x) ] 

nTco 
(3.92) 

The left hand side denotes the risk corresponding 

to the worst possible event that can ever occur. Thus 

using Equation (3.92), one can compute the value of the 

worst possible rainfall per event corresponding to a speci- 

fied value of the risk. However in order to compute a 

design rainfall corresponding to an actual finite return 

period, Equation (3.91) can be used to give an approximate 
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result, provided a large value of the actual return period 

is desired and some value of the risk is specified. 

With this, we conclude the discussion on general 

theoretical considerations. The next chapter considers some 

specific theoretical applications of the general theory given 

here. 



CHAPTER 4 

THEORETICAL APPLICATIONS 

4.1. Introduction 

This chapter is devoted to a few specific theoretical 

applications of the general theoretical considerations given 

in Chapter 3. The treatment given here is in the spirit of 

obtaining analytical solutions. 

In particular, the c.d.f.'s of the random variables 

Z(T1) and Z'(T1), denoting the cumulative rainfall and 

the excess water yield per event respectively, are derived 

under a set of hypotheses and assumptions. Specifically, 

the derivation is based on the following hypotheses; 

(1) the stochastic field of the distribution of number of 

storm cells over any sub -basin within the region, given 

the duration of a storm (rainfall event), is a Poisson 

field (the word 'field' is in reference to identifying 

a process in two dimensional parametric space); 

(2) the maximum rainfall depth within a cell (cell center) 

as a random variable follows a two parameter gamma 

p.d.f.; 

(3) the storm duration denoted by Cl, follows an expo- 

nential p.d.f. The derivation is firstly given with 

82 
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reference to a single sub -basin within the region, 

and then generalized to multiple basins within the 

region. A schematic extension of these results to an 

ungaged basin within the region is also indicated. 

Based on the above derivations for cumulative rain- 

fall per event, an approximate expression is obtained for 

the average cumulative rainfall within a season. Finally, 

an expression is obtained for the limiting distribution of 

the maximum cumulative rainfall per event, using the re- 

sults given in Section 3.5 of Chapter 3. 

Our intent in this chapter is mainly demonstrative. 

However, many hypotheses are given a phenomenological in- 

terpretation. Finally, all possible applications of the 

theoretical considerations given in Chapter 3 are not 

considered here, but only the important ones. 

4.2. Stochastic Process of Spatial Rainfall 

Recall from Section 3.2.2 of Chapter 3, that the 

c.d.f. of random variable Z(C1), denoting cumulative rain- 

fall per event with duration Cl, may be obtained by com- 

bining Equations (3.14) and (3.19) as 

P{Z(C1) < z} = 
f 

P{Z(c) < ziC1 = c}dF(c) 
0 

k 
y P{ Y < z,M(B,c) = kiCl = c}dF(c) 

0 k=1 n=1 
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( 
1 

P{M(B,c) = 01C1 = c}dF(c), (4.1) 
0 

where M(B,C1); B C R, denotes the number of 'cell centers' 

within some basin B contained in the region R, and Yn 

denotes the spatial rainfall from the nth cell, n > 1. 

Moreover, in Section 3.2.2 of Chapter 3, we referred to 

M(B,C1) as denoting the number of cells instead of cell 

centers, based on the assumption that each cell has only one 

cell center (point of maximum rainfall). In the subsequent 

discussion also, we will refer to M(B,C1) as denoting the 

number of cells. Within our formulation, Equation (4.1) 

represents the most general expression for obtaining the 

c.d.f. of Z (C1) . 

To this end, assume that M(B,C1) and Yn, for all 

n > 1, are conditionally independent, where the conditioning 

random variable C1 denotes the duration of a rainfall event. 

Phenomenologically speaking, this assumption means that 

given the duration of a rainfall event, the number of storm 

cells that occur over the basins and the corresponding rain- 

fall amounts from each cell, are mutually independent. Based 

on this assumption, Equation (4.1) can be rewritten as, 

P{Z(C,) < z} 

co k 
P{ y Yn < z1C1 = c}P{M(B,c) = k1C1 = c}dF(c) 

0 k=1 n=1 
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B,c) + = OC = c}dF(c) . (4.2) 
0 

In order to determine the c.d.f. Z(C1), as given 

by Equation (4.2), the following probabilities must be de- 

termined, namely, 

(1) P{M(B,c) = klC1 = c}, k = 0, 1, ...,; 

k 
(2) P{ Yn < zIC1 = c} and 

n=1 

(3) F(c) = P{C1 < c}. 

Such is considered in the ensuing sub -sections. 

4.2.1. Random Field of the Number of Storm Cells 

The conditional probability P {M(B,c) = kiC1 = c }, 

k = 0, 1, 2, ..., gives the p.m.f. of number of storm cells 

over the basin B, given that the duration of a storm over 

the region is c. Recall that the random duration C1 is 

defined with respect to the entire region R D Bi, 

1 < i < r, and conditionally in the random field 

{M(Bi,C1);Bi c R,1 < i < r }, the duration behaves as a 

fixed parameter. 

More precisely, let u(Bi,c) be a finite measure 

for all B. c R, 1 < i < r, i.e., u(Bi,c) < co, and c 

is some positive real number. Recall from Section 3.2.2 

that B1, ..., Br represent the toral number of mutually 

disjoint (including contiguous) sub -basins within the 
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region R and B = U Bi, rl < r. Hydrologically, these 
i =1 

sub -basins can be conceived of as divisions of a single basin, 
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or multiple basins with a common drainage outlet or multiple 

basins with multiple outlets. Such is shown schematically 

in Figure 4.1. Now, following Takâcs (1956), assume the 

following, which will be given a phenomenological interpre- 

tation afterwards, 

(i) P {M(Bi,c) = 0IC1 = c} ¢ 1, if u (Bi,c) > 0 for any 

Bi c R, and, 

CO 

P{M(Bi,c) = kIC1 = c} = 1, k = 0, 1, 2, ...,. 
k=0 

(ii) The conditional probability P {M(Bi,c) = kIC1 = c} 

depends only on the measure u(Bi,c) for all 

Bi C R, k = 0, 1, ... , . 

(iii) If B1 and B2 c R and B1 (i B2 = j (Null Set) , 

then 

P{M(B1 U B2,c) = kIC1 = c} 

= P{M(B1,c) + M(B2,c) = klCl = c}, 

= P{M(Bi,c) = jIC1 = c}P{M(B2,c) = k - 7iC1 = C}, 
j=0 
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REGION R 

Figure 4.1. A Schematic View of three 
Different Configurations of 
River Basins Within a Region. 



(iv) 

i.e., the random variables M(B1,C1) and M(B2,C1) 

aré conditionally independent. 

P{M(Bi,c)>11C1=c} 
lim p{M(B. c=1 C c} 

1; i< i < r. 

U (Bi,c) ->0 1 1 
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Under the above assumptions (i) to (iv), the con- 

ditional distribution of the random variable M(Bi,C1) for 

every Bi C R, 1 < i < r, follows a Poisson p.m.f. (Takács, 

1956). Mathematically this can be expressed as, 

P{M(Bi,c) = kiC1 = c} = exp(-u(Bi,c))[u(Bi,c)lk/k!; 

k = 0, 1, 2, ..., Bi c R; 1 < i < r. (4.3) 

Phenomenologically, the above assumptions (i) to (iv) 

giving rise to a Poisson p.m.f., can be explained as follows. 

The finite measure p(Bi,c), denotes the conditional 

expectation of the number of storm cells over the sub -basin 

Bi, 1 < i < r. Now, according to the first assumption, 

given that the conditional expectation u(Bi,c) > 0 for any 

Bi C R, there is a positive probability less than 1, that 

one or more cells can occur over the sub -basin. The second 

assumption implies that the probability of occurrence of 

cells over any sub -basin Bi; 1 < i < r, depends only on 

the measure u(Bi,c) defined over that sub -basin. For 
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example, it may depend on the area of the sub- basin. The 

third assumption states that the random variables denoting the 

number of cells, over disjoint sub -basins are conditionally 

independent. This assumption may be more justifiable for 

sub -basins that are 'far apart'. This can be argued accord- 

ing to the nature of spatial evolution of these cells. For 

example, the cells occurring over two disjoint sub -basins 

from within two different small meso -scale areas (SMSA) as 

mentioned in Section 2.2.1 of Chapter 2, may be assumed to 

be independent. However, if the cells occur over two dis- 

joint sub -basins from within the same SMSA, then there may 

be a dependence in the number of cells, that occur over each 

of these two sub -basins. Nonetheless, as a first approxima- 

tion, we accept the validity of the third assumption. Finally, 

according to the fourth assumption, as the expected number of 

cells over a basin becomes small, the probability of occur- 

rences of more than one cell also gets small. In other 

words, over very small sub -basins, two or more cells cannot 

occur simultaneously. This assumption may be violated by 

fusion of two or more cells. However, such considerations 

can complicate our analysis considerably; yet two or more 

cells fused together can be viewed as one cell only. 

The second assumption given above is very important 

phenomenologically, in the sense that non- homogenity within 

the region R can be incompassed in the theory. Such 
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non -homogenity can arise due to elevation differences between 

the sub -basins within the region, which in turn can influence 

the p.m.f. of the occurrence of number of cells over these 

sub -basins. Influences of this kind have been observed 

empirically (Duckstein, Fogel and Thames, 1973; Grayman and 

Eagleson, 1971). Presently, we assume a simple form for the 

measure i'(Bi,c), but still introduce non -homogenity between 

the sub -basins ..., Br, as given below, namely, 

u (Bi,c) = aicv (Bi) , 1 < i < r (4.4) 

where ai ai; i j, i < i, j < r, are positive real 

numbers and v(Bi) is the area of the sub -basin Bi, 

1 < i < r. ai can be interpreted as the rate of occurrence 

of cells per unit area per unit time, within the sub -basin 

Bi, 1 < i < r. Different basins can have different rates 

of the occurrence of cells, due to non -homogenity within the 

region R. However, the simple form of measure as given by 

Equation (4.4) is assumed only for the demonstrative purposes. 

More general type of measures can be assigned as well, if 

empirical evidence warrants it. 

This concludes the discussion on the random field of 

the number of storm cells. Next, the spatial distribution 

of rainfall from individual cells is considered. 
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4.2.2. Cumulative Distribution Function of the Spatial 
Rainfall from Storm Cells 

The conditional probability of the total spatial 

rainfall from k cells; k > 1, with respect to the storm 

k 
duration is given as P{ 1 Yn < zIC1 = c }, z > O. Let us 

n =1 

assume that (i) the random variables Yn; n > 1, are 

i.i.d. and (ii) Yn, n > 1, are independent of storm dura- 

tion. Phenomenologically, the first assumption may not be 

very sound, especially for the frontal or squall line type 

of storms, where multiple cells occur within a SMSA. For 

such situations the successive cells that develop in time, 

are influenced by the cells preceding them in regard to the 

moisture content (Byers and Braham, 1949). On the other hand, 

for the air -mass type of convective rainfall in arid regions, 

cells occur more or less in isolation and therefore the first 

assumption may be more reasonable for the air -mass type of 

thunderstorm cells. The second assumption seems reasonable 

as a first approximation, but strictly speaking the depend- 

ence between Yn; n > 1, and the storm duration C1 does 

arise through the random durations of individual cells. In 

this light the independence can be attributed to the fact 

that Yn, depends only on the path of the sample function 

CAu,v,$) > 0, and not on the random duration of the nth 

cell denoted by (W2n- 1'W2n); 
n > 1, (see Section 3.2.2, 

Chapter 3). Phenomenologically, such would be true, when 
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most of the rainfall from a cell occurs due to high rainfall 

intensities within a time interval much smaller than the 

total cell duration, as is the case with summer rainfall in 

the Southwestern United States. 

Recall from Section 3.2.2 of Chapter 3, that Yn; 

n > 1 is given by Equation (3.18) as, 

rW2n ¡ 

Yn 
J 

JC(u,v,$)dudvds, 

W2n-1 Bn 

(4.5) 

where B' = {(u,v);C(u,v,$) > 0, for all s e (W2n- 1,W2n)} 

Thus B' for n = 1, 2, ..., represents the 'areal extent' 

of a cell. Define a new family of random variables given 

as, 

where, 

> 0;(u,v) e Bri,Bñ e R}, (4.6) 

¡W2n 
Cñ(u,v) = 1 C(u,v,$)ds; n > 1. 

W2n-1 

(4.7) 

Clearly, the random variable C!(u,v) > 0, repre- 

sents the cumulative rainfall (with respect to time) within 

a cell for any point in space (u,v) e Bñ, and the family 

of random variables given by Equation (4.6) represents a 

random field for all n > 1. Substituting Equation (4.7) 



into Equation (4.6), 

Yn = 1 Cñ (u,v) dudv. 
B' 
n 
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(4.8) 

Now, the determination of the c.d.f. of Yn; n > 1, 

involves hypothesizing some model for the random field given 

by Equation (4.6). 

The work done in the past in regard to modeling of 

the random field given by Equation (4.6), falls in the realm 

of depth -area relationships. However, most of the work 

along these lines does not havea phenomenological orientation 

in the sense, that such relationships are not given for the 

individual cells. A few exceptions to this are the models 

proposed by Fogel and Duckstein (1969), Woolhiser and 

Schwalen (1959) and Osborn (1970), but these models only deal 

with the air -mass type of convective rainfall cells. For our 

purpose, any one of such models can be used, as far as they 

characterize the spatial rainfall distribution within a cell. 

The basic idea behind such models is that the random 

variable gñ(u,v) at every (u,v) e Bñ is expressed as 

some deterministic function of the maximum rainfall depth 

denoted by the random variable Fn(u0,v0), (u0,v0) a Bñ. 

These models seem to represent an over simplified view of 

the spatial rainfall. This is mainly due to the fact that 

these relationships are purely empirical and are heavily 
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conditioned by the type of rainfall data that is generally 

available to form these empirical relationships (Davis, 

Kisiel and Duckstein, 1972). 

In the absence of any more empirical evidence, on 

the phenomenological behavior of the cumulative spatial rain- 

fall from a cell, other than the one given above, we assume 

that any one of the depth -area relationships is a reasonable 

modelfor describing the random field given by Equation (4.6). 

Let g(u,v) for all (u,v) a Bñ; n > 1, be a real valued 

deterministic function, and 2.1(u0,v0); n > 1, be the center 

rainfall depth. Then the random field given by Equation (4.6) 

can be expressed as, 

{n(u,v) n 
n(u0,v0)g(u,v);(u,v) c BA}; n > 1. (4.9) 

Substituting Equation (4.9) into Equation (4.8), the 

cumulative rainfall per cell denoted by Yn is given as, 

Yn - 
B' 

1n(u0,v0)g(u,v)dudv 

= c n(u0,v0)f fg(u,v)dudv; n > 1. (4.10) 
JB 

n 

Now, using the assumption made earlier in this sec- 

tion, that Yn; n > 1, are i.i.d. random variables, we 

conclude from Equation (4.10) that n(u0,v0); n > 1, are 
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i.i.d. as, say, and B' 
n 

B'. Recall that B'; n > 1, 

denotes the areal extent of a cell, and the equivalence re- 

lation implies that the areal extent of all cells is the 

same. This assumption is not unreasonable, because empirical 

evidence to this effect exists in the literature for at 

least air -mass type of connective rainfall (Osborn, 1970). 

In view of the above, Equation (4.10) can be written 

as, 

Yn = Og' (v (B' ) ) ; n ? 1 

where, (4.11) 

g' (v(B')) 
f 

fg(u,v)dudv . 

B' 

Note that v(13') denotes the measure of the set B', i.e., 

the area covered by a cell. 

Based on the form of empirical functions g(u,v) 

proposed earlier, for example see Fogel and Duckstein (1969), 

the cumulative spatial rainfall from a cell would appear 

something similar to given in figure 4.2. However from Equa- 

tion (4.11) it is clear that under our formulation, a complex 

form of function g(u,v) would not add to the generality, 

but can only make its integration over B' impossible in a 

closed form. Therefore for demonstrative purpose, we assume 
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0u,v) 

/FINITE AREAL EXTENT OF 
RAINFALL FROM A CELL = B 

v 

Figure 4.2. A Conceptualization of the 
Distribution of the Cumula- 
tive Spatial Rainfall in a 
Cell. 
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a linear functional relation as schematically shown in 

Figure 4.3, which makes the spatial rainfall from a cell 

appear as a symmetric cone. However, empirical relation of 

this kind have been proposed in the past by Osborn (1970). 

Assume that the base of the cone is circular with radius r . 

c 

The assumption of circularity is not necessary, but is made 

only to simplify computations. Now the cumulative spatial 

rainfall per cell Yn; n > 1, is simply the volume of a 

cone with radius rc and height co, which is given by 

Equation (4 .11) as, 

Yn = qOwrc/3; n > 1. (4.12) 

Equation (4.12) gives an expression for the total 

cumulative spatial rainfall from a cell. However in actu- 

ality, we are only interested in that fraction of the total 

cumulative rainfall per cell, that falls over a sub -basin 

under consideration. The reason for introducing a 'fraction' 

is clear from the fact that depending on the location of the 

cell center in relation to the sub -basin, the total cumula- 

tive rainfall from a cell does not always occur over the sub - 

basin. Thus the proportion or fraction of the total cumula- 

tive rainfall per cell that falls over the basin can be 

assumed to be a bounded random variable, denoted by Q. The 

upper and lower bounds of 1 and 0 respectively, on the 



98 

v 

Figure 4.3. A Conceptualization of the 
Distribution of the Cumula- 
tive Spatial Rainfall in a 
Cell, as Assumed in This 
Study. 



99 

random variable Q are obvious from the fact, that either 

the entire cumulative rainfall occurs over the basin or none 

occurs at all. The randomization is schematically shown in 

Figure 4.4. Now, if the random variables Yn; n > 1, de- 

note the cumulative rainfall per cell that can occur over a 

sub -basin Bi; 1 < i < r, then in view of Equation (4.12) 

and the above assumption, Yn is given by, 

Yn = C OnrcQ/3; n > 1. (4.13) 

Note that Equations (4.12) and (4.13) represent two different 

sequences of random variables, but we don't indicate them by 

separate notations, since no confusion seems possible. In 

the subsequent discussion, any reference to Yn would only 

imply Equation (4.13), unless stated otherwise. 

To this end, assume that Co follows a two parameter 

gamma a p.d.f., denoted by f(y) and for every y > 0, given 

as, 

f(y) = an0yn0-le-ay/(n0-1)!; X > 0, n0 = 1,2, -, (4.14) 

where X and n0 are the parameters of the gamma p.d.f. 

Our basis for assuming a gamma p.d.f. is purely empirical 

(see Chapter 5), without any phenomenological justification. 
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STORM 
CELLS 

FRACTION OF A CELL 
THAT FALLS ON THE 
RIVER BASIN 

Figure 4.4. A Schematic Representation 
of Randomness in the Cumula- 
tive Rainfall per Cell over 
a Basin Due to Cell Location. 
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However, a gamma p.d.f. does have a good amount of flexi- 

bility in the sense, that for different values of X and 

n0, it can give a wide variety of shapes. 

In regard to the random variable Q, assume that Q 

is uniformly distributed betwen 0 and 1, which is a 

special case of a beta density function. A phenomenological 

reasoning can be given to this effect. In case the basin 

under consideration is much larger in comparison with the 

areal extent of a cell, then a beta density skewed towards 

the upper bound would be more suitable, since a large per- 

centage of cells would tend to fall completely within the 

basin. On the other hand, if a basin is comparable to the 

areal extent of a cell, then a uniform p.d.f. may seem more 

reasonable. However our assumption of a uniform p.d.f. is 

more for achieving analytical and computational simplifica- 

tion. The p.d.f. of 

f(q) 

Q, 

= 1 

denoted by f(q), 

for 0< q< 1 

is given as, 

= 0 otherwise (4.15) 

Now assuming that Co and Q are mutually independ- 

ent, and substituting Equations (4.14) and (4.15) into Equa- 

tion (4.13), the c.d.f. of Yn; n > 1, can be obtained as 

1 
P{Yi7 < y} _ (OP{3Oqnr < ylQ = q}f(q)dq (4.16) 



1 

= P{C < (3y/qr)}dq 

n0-1 

= [1 - e-y ( I Oty VI) j/j ! ) l dq; n > 1 

0 j=0 

where y' = 3y /Jrr > O. 
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(4.17) 

k 
The c.d.f. of E Y, which is our goal as indicated 

n =1 

in the beginning of this section, can be obtained using the 

following fact. Consider k i.i.d. random variables, each 

gamma distributed with parameters A and n0. Then their 

sum is also a gamma with parameters A and nok ( Parzen, 

1967). Using this fact and Equation (4.17), for any y > 0, 
k 

the c.d.f. of I Yn; K = 1, 2, ..., is given by, 
n =1 

(1 
n0k-1 

P{ Y < y} = [1 - e-Xy/q( (Xy'XII) i/j!) ldq. (4.18) 
n=1 n 0 j=0 

Equation (4.18) can be rewritten as, 

k (1 n k-1 
P{ / Y < y} = J[ ew 0 dw i (nok-1) ! ]dq 

n=1 0 

(4.19) 

where y' = 3y /trrc as given before. 

This result concludes this sub -section on obtaining 

the c.d.f. of the cumulative spatial rainfall. In the next 

section, the formulations given in this section and in 
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Section 4.2.1, are used to obtain the c.d.f. of cumulative 

rainfall per event. 

4.3. Cumulative Distribution Functions of Cumulative 
Rainfall and Water Yield from an Event 

We can use Equation (4.2) to obtain the c.d.f. of the 

cumulative rainfall per event. Then the c.d.f. of the excess 

water yield can be obtained by substituting Equation (4.2) 

into Equation (3.22), as mentioned in Section 3.2.2 of 

Chapter 3. 
rl 

Recall from Section 3.2.2 that the basin B = U Bi; 
i =1 

1 < rl < r. Assume that r1 = 1. Then B = B1, i.e., we 

first consider only one sub -basin B1 contained in the 

region R. Then using Equation (3.2), the c.d.f. of the 

cumulative rainfall can be derived for one sub -basin. The 

result is then generalized to multiple basins, i.e., when 
r1 

II= U Bi, 2< ri < r. 
i=1 

To this end, we start by explicitly identifying the 

three c.d.f.'s that consititue Equation (4.2). Assume that 

the random duration of a rainfall event, denoted by C1, 

has an exponential p.d.f. Phenomenologically speaking, such 

assumption seems reasonable for the air -mass type of convec- 

tive storms over a small region, say up to 200 mi2 or so, 

because the number of multiple cells that can occur within 

the random duration is small and each cell is of a short 
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duration say up to 15 -20 minutes or so. An empirical veri- 

fication of this assumption is given in Chapter 5, for the 

Atterbury watershed in the Southwestern United States. On 

the other hand this assumption does not seem reasonable for 

the durations of storms associated with moving fronts, since 

such storms 'persist' for a relatively long time. In any 

case, the results given below can always be modified if C1 

does not follow an exponential p.d.f. Now in view of this 

assumption, the exponential p.d.f. of C1 with parameter 

ß1 > 0, can be expressed as, 

-ß 
1 
c 

f(c) = ß1e ; c > 0. (4.20) 

Next, we consider the Poisson p.m.f., which gives 

the conditional (on C1) distribution of the number of 

storm cells over the basins Bi; 1 < i < r. Let 

a1v(B1) = ai in Equation (4.4). Then replacing a1v(B1) 

by ai in Equation (4.3), the conditional distribution of 

the number of cells that occur over B1, is given by, 

_ a 'c 
P{M(B k, 1,c) = iC1 = c} = e 1(aic)k/k!; k > 0. (4.21) 

Finally, the c.d.f. of cumulative rainfall from k 

cells, k = 0, 1, ..., can be obtained from Equation (4.19). 



Based on the assumption made in Section 4.2, that 

iYn }, denoting spatial rainfall per cell, are independent 

of the storm duration C1, and replacing B by B1 in 

Equation 

P{Z(C1) 

1 0 k=1 
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(4.2), 

< z} = JP{M(B1c) 

k 
P{ Y 

n=1 

it modifies to 

= OIC1 = c}dF(c) 
0 

< z}P{M(131,c) = K1C1 = c}dF(c) . (4.22) 

Substituting Equations (4.19), (4.20) and (4.21) into Equa- 

tion (4.22), and denoting z' = 3zI1Tr2, Equation (4.22) is 

written as, 

-(al 
+l) C 

P{Z 
(C1) 

< z} _ G31e dc 

«. 1 z'a/q n k-1 
+ ( 

) 

( (e-ww 0 dwdg/ (nOk-1) ! ) 

JO k=1 0 0 

_aIC 
k 

_ß1C 

(e 
1 

(aic) /k!) ß1e dc. 

Equation (4.23) may be transformed into, 

(4.23) 

ßl 1 z'x/q nOk-1 
P{Z (C1) < z} - -r+ - + f f [ (e w dw/(n k-1) !) 

al ßl 0 0 k=1 0 

fw -(ai+ßl)c 
(al)J c e dc/k! ]dq 

0 
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ßl 
1 z' a/q cc -w nOk-1 al k ---[1 + ( 1 (e w dw/(nOk-1) !) (-r-+ ) dq] 

al+ßl J 0 0 k=1 1 ßl 
(4.24) 

Equation (4.24) can be rewritten as, 

ßl 

a 

1 z'X/g-w 
°° 

nOk-1 al k 
- , [1 + ( 

J 
e { [w /(n k-l) !] [ 

l 

] }]dwdq l+ßl 
J 0 0 k=1 0 al+ßl 

(4.25) 

The infinite series in Equation (4.25) can be summed up as 

below. 

00 nOk-1 ai k k 
[w / ( n0 

k=1 1 1 

00 n 
0 
k-1 

= eiwe) / (nOk-1) ! 

where, 

n0 ai 

al 

ai 1/n0 
8 = --+ 

1 
or 0 = ( ) 

ßl al 

(4.26) 

(4.27) 

The sum of the infinite series occurring on the right hand 

side of Equation (4.26) can be expressed as follows 

(Parzen, 1967, p. 175), 

nOk-1 
n0-1 

/0A70 /(n 
0 

k-1) ! = r dexp(wed) 
k=1 n0 j=0 

(4.28) 



where, 

3 = exP(27ij/n0) ; 
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i = 1-1, 0 < j < n0. (4.29) 

Substituting Equation (4.28) into Equation (4.25), 

P{z (c1) < z} 

(1rz'a/q 
n0-1 

- 
+ß [1 + J 

J 

(e /n 
o 

) / dexp(w8S3)dwdq] 
1 1 0 0 j=0 

(3 1 n0-1 z'x/q 

= a'+(3 
{1 + (8/n0) J / 

a3 ` exp[-w(1-8d3}dwdg} 
1 1 O j=0 0 

n -1 

= aß+ß {1 + (8/n0) 1 a- [1 - e-Az' (1-8d3)/g]dq 
1 1 0 j=0 1-06J 

= a+ {1 + (1/n0) le- zi (1-8d3)/gaq] }. (4.30) 
1 1 3=0 1-8d 0 

The integral in Equation (4.30) cannot be obtained 

in an analytical form. In regard to the behavior of this 

integral and its possible simplification in the form of an 

infinite series, see Bromwich (1926, p. 336). However, 

Equation (4.30) can be expressed more conveniently in view 

of the following simplification, namely, 



n0-1 n0-1 

1 + (1/n0) E 063/(1-063) = (1/n0) 1/(1-60). 
j=0 j=0 
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(4.31) 

Where the expression within the summation sign on the right 

hand side of Equation (4.31) is the sum of an infinite series 

for complex numbers, since I001 < 1, (see Churchill, 1960, 

p. 132). Hence the right hand side in Equation (4.31) can 

be written as, 

n0-1 

(1/n0) 
j=0 

1/(1-063) 

n0-1 

_ (1/n0) .I 
j=0 

co 

k=0 

n 
0 
-1 

= (0k/n0) (63)k. 
k=0 

(863)k 

(4.32) 

Now consider the following identity (Parzen, 1967, p. 176), 

namely, 

n0-1 

(1/n0) 
j=0 

n0-1 

(1/n0) I 

j=0 

(1/n0) 

(63)k = 1 if k is a multiple of no 

(0)k = 0 otherwise 

(4.33) 

Substituting Equation (4.33) into Equation (4.32), 

n 
0 
-1 

-1 
co 

1/(1-063) = 0kn0 = 1/(1-0n0) 
j=0 k=0 

= (ai +ß1) /ß1. (4.34) 



Since from Equation (4.27), 8n0 = ai(ai +61) < 1. Sub- 

stituting Equation (4.34) into Equation (4.30), the c.d.f. 

of the cumulative rainfall per event becomes, 

P{Z (C1 < z} 

n 
o 
-1 

= 1 
61 

6_ ö rfl e-az' (1-AS3)/qdq. 
(a1+61 n0 j=0 1-6P 0 
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(4.35) 

Equation (4.35) represents a 'proper' c.d.f. in the sense 

that, 

lim P{ Z (C1) < z) = 1. (4.36) 

Moreover taking the limit as z' 0, in Equation 

(4.35) it follows from Equation (4.34), that 

lim P{Z (C1) < z) = 61/(0.1 1+61) 
z'4-0 

(4.37) 

From Equation (4.37), it is clear that the c.d.f. 

of Z(Ci) is not differentiable at the origin, hence the 

c.d.f. of Z(C1) does not have a p.d.f. Phenomenological 

significance to the existence of this 'atom' at the origin 

of the c.d.f. of Z(C1), in the context of extension to 

ungaged basins, will be given later. 
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The c.d.f. of the cumulative rainfall for one sub - 

basin as given by Equation (4.35), can now be generalized 

to multiple basins. In order to accomplish this generaliza- 

tion, we first indicate a very important property of the 

Poisson field giving the p.m.f. of number of cells within 

our region R. The generalization then follows very simply 

from this property. 

Recall that r is the total number of sub -basins 

within our region R. Let 1 < r1 < r be an integer, such 

that the basin B is comprised of the union of 

r1 
B1, ..., Br , i.e., B = U Bi. Assume that B1, ..., Br 

1 i =1 1 

are mutually disjoint (including contiguous), i.e., 

Bj ll Bk = 0, j k. Therefore from the third assumption 

on page 86, it follows that the random variables M(Bi,C1) 

and M(Bj,C1), i j, are conditionally independent for 

i < i , j < rl . Hence based on Equation (4.3), it can be 

shown that the conditional p.m.f. of the random variable 
r1 

M( U B.,C1) has a Poisson distribution with the conditional 
j =1 J r1 

expectation U( U B.,c) given by, 
j =1 

r1 r1 r1 

p( U Bj,c) = E[M( U Bj,c) IC1 = c] = E[ M(Bic) IC1 = c] 

j=1 j=1 j=1 

r1 r1 r1 

_ '1lE[M(Bj,c)lC1 -c] - 1' lajcv(Bj) = la. 
j j= 

(4.38) 



r1 

If we let a' = a.v(B.), then for the basin B, the 
j=1 

conditional p.m.f. of the number of cells can be written as, 
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P{M(B,c) = kICl = c} = e-a'c(a'c)k/k!; k > 0. (4.39) 

Note that Equation (4.39) is identical to Equation 

(4.21), except that the parameter ai of Equation (4.21) is 

now replaced by the parameter a', given by Equation (4.38). 

Therefore the c.d.f. of the cumulative rainfall over the 
r1 

basin B = U Bi, is given by Equation (4.35), with para- 
i =1 r1 

meter ai replaced by parameter a' = a:. 
j =1 3 

A particular case of the c.d.f. of Z(C1) as given 

by Equation (3.35), can be obtained by assuming the p.d.f. 

of the random variable Q, given by Equation (4.15) to be 

degenerate at 1. This assumption on Q would correspond 

to the case of having relatively very small storm cells as 

compared to the size of the river basin. Based on this as- 

sumption, Equation (3.35) reduces to the following analytical 

form, namely, 

n -1 

P{Z (C1) < z} = 1 - (a'+ßl)n 
@S3 c-az' (1-@S3) (4.40) 

1 0 j=1 1-@Sj 

Finally note, that all the parameters in Equations 

(4.35) and (4.40) are phenomenologically meaningful. This 
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provides a contrast to an empirical approach, where the para- 

meters in the fitted c.d.f. generally have only a statis- 

tical significance. 

Cumulative Distribution Function of the Excess Water 

Yield. Having obtained the c.d.f. of cumulative rainfall per 

event, we now obtain for special watershed conditions the 

c.d.f. of the excess water yield, denoted by Z'(T1). Re- 

call, that Equation (3.20) in Chapter 3, gives the excess 

water yield as, 

Z' (T1) = Z (Ci) - g(Di) (4.41) 

where Z(C1) and g(D1) are mutually independent random 

variables as is indicated in Chapter 3. Now, based on the 

phenomenological considerations, we first assume a functional 

form for g(D1) as given below. 

Assume that g(D1) is primarily governed by the 

antecedent conditions, i.e., the longer the dry duration, 

that produces the soil moisture depletion, the higher the 

threshold g(D1), but not exceeding some constant, say 

equal to e1 > 0. On the other hand, the shorter the dry 

duration the lower is the threshold g(D1), say equal to 

£i Q2, L1 > ,e2 > 0. A mathematical function satisfying 

these requirements is assumed to be given by, 



g(Di) = t1 - t2e-W0 D1 
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(4.42) 

where w0 is some decay constant. 

Assume for the demonstrative purpose that D1 fol- 

lows an exponential p.d.f. with parameter 02 > O. Then the 

p.d.f. of D1 can be expressed as, 

fD (d1) = f(d 
1 

) = ß2e -ß2d1, d1 > O. 
1 

(4.43) 

Now the c.d.f. of the excess water yield, Z'(T1), 

corresponding to the c.d.f. of the cumulative rainfall per 

event, Z(C1), can be obtained by substituting Equations 

(4.43), (4.42) into Equation (3.21), that is, 

P{Z ' (T1) < z} 

- J 

c°2e-ß2d1P{Z(C1) 
< z + t2 - 

Q1 
- e-Wdl}ddl. 

n 
(4.44) 

In particular, the c.d.f. of Z'(T1), corresponding 

to the c.d.f. of Z(C1), given by Equation (3.35) can be 

obtained by substituting Equation (3.35) into Equation (4.44). 

However, after making this substitution, any further simpli- 

fication of Equation (4.44) is not possible. This con- 

clusion mirrors the analytical difficulties in obtaining the 
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similar c.d.f.'s of water yields, by using phenomenologically 

more realistic watershed models. 

4.3.1. Schematic Extension to an Ungaged Basin 

Extension of preceding results to an ungaged basin 

can be achieved in the context of the existence of a gaged 

region R surrounding the basin. Such has been assumed 

throughout in our treatment. The concepts behind such an 

extension are given below. 

We assume that the ungaged basin say Bu is contained 

within our region R. Then it follows from this assumption 

that the assumed conditional p.m.f. of spatial distribution 

of the storm cells, as given in Section 4.2, is also applic- 

able to the ungaged basin. The parameter au for Bu, 

given by Equation (4.4), can be estimated from the estimate 

of parameters for the gaged basins and topography of the 

region, using if necessary, some subjective judgment. Re- 

call that the random intervals C1 and D1 denoting the 

random duration of a storm and the dry period preceding a 

storm respectively, have been defined with respect to the 

region R; hence their c.d.f.'s are also valid for the un- 

gaged basin. The remaining treatment can be carried out in 

the same way as that for the gaged basins. 

In the above context, we emphasise that the formula- 

tion of a framework in the context of a region surrounding 

one or more sub -basins under consideration, is essential. 
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In such a situation the storm characteristics are determined 

with respect to the region. Of course, such determinations 

can be made only on the basis of whatever data is available. 

Then extensions to ungaged basins can be carried out as in- 

dicated above. In this context, the occurrence of an atom 

in the c.d.f. of the cumulative rainfall, as given by 

Equation (4.35) is very reasonable, because it gives the 

probability that no storm cell occurs over a sub -basin, when 

a storm occurs over the region. 

With this we close this section on the determination 

of the c.d.f.'s of the cumulative rainfall and the water 

yields from a rainfall event. The next section deals with 

the derivation of the expected cumulative rainfall within 

some season, (0,t1]. 

4.4. Expected Cumulative Rainfall 
Within a Fixed Season 

Recall from Section 3.3 in Chapter 3, that the 

general expressions for the E [X (t1) ] and E [X2 (t1) ] de- 

noting the first and second moments of cumulative rainfall 

within a fixed season (0,t1], are given by Equations (3.30) 

and (3.31). In this section, we demonstrate the use of 

Equation (3.30) in regard to obtaining E[X(t1)], 

The expression for expected value of X(t1) as 

given by Equation (3.30), is 



tl 

E [X(tl) ] = J E [Z (s) IT1 = s]m(tl - s)dF(s) 
0 

(tl 

+ 
E [Z (s) I T1 = s]dF (s) , 

0 
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(4.45) 

where, F(s) = P {T1 < s). 

We first restrict ourselves to the summer rainfall 

in semi -arid lands, such as the Southwestern United States. 

Recall from Section 3.2 in Chapter 3 that 

T1 = C1 + D1. Using Equations (4.43) and (4.20) for the 

p.d.f. of D1 and C1 respectively, the p.d.f. of T1 for 

any s > 0, can be obtained as (Feller, 1971, p. 7), 

-ß2s -ßls fT (s) = f(s) = (e -e)f310201-(32), ßl # a2.(4.46) 
1 

Equation (4.49) represents the convolution of the p.d.f.'s 

of two non -identically distributed exponential random vari- 

ables. Using Equation (4.45) as such, an analytical ex- 

pression for E[x(tl)] is not possible. However, based on 

a phenomenological justification, the following simplifica- 

tion can be achieved to obtain an approximate expression for 

E [x (tl) ] . 

Purely from phenomenological considerations, 

E (D1) » E(C1), because the air -mass type of convective 

rainfall events have very short durations. This in turn 

implies that, ßl 
» 82. Such has also been observed for 
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the point rainfall in Boston, Massachusetts (Grayman and 

Eagleson, 1969). Hence Equation (4.46) can be approximated 

as, 

-ß2s 
f(s) ti 02e ; s > 0. (4.47) 

Equation (4.47) states that the random interval T1 follows 

approximately an exponential p.d.f. Substituting Equation 

(4.47) into Equation (3.5) in Chapter 3, it can be shown 

that N(ti) follows a Poisson p.m.f. with parameter ß2. 

Note that such has been empirically fitted by Duckstein et 

al. (1972), for the point rainfall process, in Tucson, 

Chicago and New Orleans. 

Now E[Z(s)IT1 = s] can be calculated by using 

Equation (3.23) given in Chapter 3, and the assumptions in 

regard to {Yn} and M(B1,C1) given in Section 4.2, as 

follows: 

s 
E [Z (s) IT1 = s] = 

J 

E [Z (c) (C1 = c] f (c)dc 
0 

= JE[Y]E[M(Bic) IC1 = c]f(c)dc. 
0 

(4.48) 

Based on Equations (4.13) and (4.14), E[Y] = n0nr /6a. 

Since B1 is sub -basin under consideration, therefore from 



Equation (4.4) , E [M(B1,c) IC1 = el = alcv(B1) = aic. Sub- 

stituting these two equations into Equation (4.48), 

-a lc 
E [Z (s) IT1 = s] = (n0wr/6x) aicßle dc. 

JO 
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(4.49) 

Now substituting Equation (4.49), along with the approxima- 

tion given by Equation (4.47), into Equation (4.45), the 

average cumulative seasonal rainfall is obtained as, 

t 

J 
J(n0irr/6À) [X (tl) ] ti alcßle ß2 (tl-s) ß2e ds 

0 0 

t 
f1¡s -ß c s 

1 (rrrc/6 a ) aic ßle 1 ß 2e 2 ds. 
0 0 

Equation (4.50) upon simplification gives, 

- t 1) /ß2l E [X (t1) ti (n0r ß2 
ai/6a) { [ (l+tl)(1-e 

(4.50) 

+[(1 - e- ( ß2+ß1) t1 - .e- 
( ß2+ß1) t1( ß1+ß2) tl) / ( ßl+ß2) 2l 

- [(1+t H1 - e )/(ßl+ß2)l 

(4.51) 
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Now let us consider, for example, the case of winter 

rainfall in the Southwestern United States. The winter rain- 

fall is less intense than the summer rainfall but tends to 

persist for longer duration than the summer rainfall (Kao 

et al., 1971). Therefore let us assume that Ci for winter 

rainfall is gamma with parameter RD and say nl, and D' 1 

is gamma with parameters RD and say k0n1, i.e., 

E(Di) = K0E(Ci); K0 > 1. Further we assume that the re- 

maining assumptions outlined in Section 4.2 also hold for 

winter rainfall. Then Ti = Di + Ci has a gamma p.d.f. 

with parameters RD and (K0 +1)nl is equal to say n2. The 

p.d.f. of Ti can be expressed as 

n n -1 -R s 

f2,' (s) = f(s) = Ro2s 2 e 0 /n2!. 
1 

(4.52) 

The expectation of N(tl,t] in the winter season (tl,t] 

corresponding to the p.d.f. of T1 given by Equation (4.52) 

can be obtained as (Parzen, 1967, p. 177), 

n2-1 

E [N (ti,t) ] = 131 (t-tl) /n2 + (1/n2) 1 0/(1 - ei)] 
j=1 

exp [-1 (t-t1) (1 - si) ] , (4.53) 

where ci = exp(2Trij /n2), i = /T. Now the conditional 

expectation E[Z(s)ITi = s] can be calculated from Equation 
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(4.48), and then E[x(t,t1)] can be obtained using Equations 

(4.52) and (4.53). We do not actually perform these com- 

putations here since an analytical form for E[x(t,t1)] is 

not obtainable. 

With this we close this section on obtaining an ex- 

pression for the expectation of seasonal rainfall within a 

fixed season. The next section is devoted to the limiting 

distribution of the maximum cumulative rainfall per event. 

4.5. Limiting Distribution of the Maximum 
Cumulative Rainfall per Rainfall Event 

In order to derive the limiting c.d.f. of the maximum 

of a random number of Z(Cj)'s; j > 1, denoting the cumul- 

ative rainfall per rainfall event, we select the expression 

for the c.d.f. of Z(C1), as given by Equation (4.40), which 

is a particular case of Equation (4.35). Recall from Section 

4.3 that Equation (4.40) is applicable to those basins, which 

are large in comparison with the size of the storm cells. 

The reason for selecting Equation (4.40) is, that Equation 

(4.35) induces mathematical difficulties in obtaining the 

limiting c.d.f. of maximum of Z(Cj)'s; j > 1. Further, in 

order to keep the computations simple, take no = 1 in 

Equation (4.40). Then the c.d.f. of Z(C1) as given by 

Equation (4.40) simplifies to, 

ai -Xz'ßl/(ai+ßl) 
P{Z (C1) < z} = 1 

a'+ß e 
1 1 



ai -azß13/nr(ai+ßl) 
= 1 

ai 

since z' = 3z /Trrc. Let a constant 0 be given as 

el 
= 3aß1/nr(ai+ßl). 
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(4.54) 

(4.55) 

In view of Equation (4.55), Equation (4.54) can be simply 

written as, 

a' -e z 

P (Z (C1) < z) = 1 a'+8 e 1. 
1 1 

Recall from Equation (3.72) in Chapter 3, that 

V(n) = max Z (T .) = max Z (C . ) 

1 <j <n 3 1 <j <n 3 

(4.56) 

and the limiting c.d.f. of V(n) is given by Equation (3.74). 

In view of Equation (3.74), let the sequences {un} and {vn} 

be defined as, 

1 
u 

vn = --log n 
1 

; n > 1 . (4.58) 

Then the limiting c.d.f. of V(n) can be obtained as, 



' 

lim P{V(n) < unz + vn} = him [1 at+ e-(z+log n)]n 
n?oo nto, 1 1 

a'e z a' 

= him [1 - (ai+l)n]n = exp[- a1+ le-z] 
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(4.60) 

Now the limiting c.d.f. of V(Nn), denoting the 

maximum cumulative rainfall per event of a random number of 

rainfall events within (0,t1] up to the nth year; n > 1, 

can be obtained from Equation (3.79) in Chapter 3. Therefore 

substituting Equation (4.60) into Equation (3.79), the 

limiting c.d.f. is given by, 

lim P [V (Nn) < unz + vn] 
nToo 

m(t1)ai 
= exp[ e-z] 

1 1 

(4.61) 

where m(t 
1 

) = E [N (t1) ] . 

Derivation of the limiting c.d.f. for the more general 

case, i.e., when no > 1 in Equation (4.40), is not con- 

sidered here. Such considerations would involve more de- 

tailed analysis in regard to the selection of the constants 

{un} and {vn} then that given for the special case of 

no = 1. 
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This concludes the chapter on theoretical applica- 

tions. In the next chapter an example is considered to give 

a numerical demonstration of a few of the applications de- 

veloped in this chapter. 



CHAPTER 5 

NUMERICAL EXAMPLE, SUMMARY AND RECOMMENDATIONS 

5.1. Numerical Example 

This section is devoted to a numerical demonstration 

of a few important aspects of the mathematical applications 

given in Chapter 4. Specifically, the intent behind this 

numerical case study is two fold; (i) empirical justifica- 

tion of the c.d.f.'s of random variables that were used in 

Chapter 4 to develop mathematical models, and (ii) compu- 

tational demonstration of a few specific analytical results 

obtained in the earlier sections. 

The Atterbury watershed is selected for this nu- 

merical demonstration. This watershed is located near Tucson, 

Arizona and is about 18 mi.2 in area. It has a fairly dense 

network of both recording and non - recording raingages. A 

plan view of the Atterbury watershed is given in Figure 5.1. 

The fixed season is taken to be the summer season, 

during which the air mass type of convective rainfall occurs 

in and near Tucson. Typically, the summer season is com- 

prised of the interval from the second week of July to about 

the middle of September. Therefore the fixed interval 
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(0,t1], as given in the theoretical considerations, is now 

assumed to be the summer season. 

The summer rainfall due to air mass type of con- 

vective storms has very high spatial variability and gener- 

ally the storm cells occur in isolation both in time and 

space. Moreover, the durations of these cells, on the 

average, is in the order of thirty minutes or so. Therefore 

the following subjective criterion is used to first select 

the random durations of rainfall events. Twelve hour 

periods are chosen from 0001 to 1200 hours (noon) and from 

1201 to 2400 hours (midnight). The random duration of the 

rainfall events are then selected from within these twelve 

hour periods as follows. Continuous rainfall data are 

observed simultaneously at the recording rain gages R -2 and 

R -32 shown in Figure 5.1. Then the duration of a rainfall 

event is the time interval from the beginning of rainfall at 

any one of these two rain gages to the time when the rainfall 

terminates at both of these two rain gages. This informa- 

tion is selected for twenty -two rainfall events from within 

eight years of data as given in Table 5.1. The correspond- 

ing values of the random durations are also indicated in 

Table 5.1. Now, these durations are the values assumed by 

the random variable Cl. An exponential p.d.f. is hypo- 

thesised for C1 in Chapter 4. Figure 5.2 shows the fitted 
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Table 5.1. Summer Rainfall Data for Atterbury Watershed 

Date Gage R -32 Gage R -2 
Duration 
C1 

Cell Center 
Depth Gage 

1969 

Begins Ends Begins Ends Hours Inches 

9/4 1900 2120 2100 2300 ,4.00 1.12 R -21 
8/11 - - - - - 0.75 R -20 
8/7 1740 1830 - - .83 1.03 R -21 
7/6 - - 1430 1500 .50 0.62 R -5 
1968 

2100 
2245 

2130 
2315 

1800 
2215 

1900 
2340 5.66 - 

- 
- 
- 

8/19 

8/7 1600 1620 1630 1720 1.33 0.95 R -6 
7/30 - - 1830 1900 .50 0.85 R -16 
7/21 - - 1715 1735 .33 1.12 R -6 
1967 
-g 7f-5 1430 1445 - - .15 0.90 R -24 
7/29 - - 2000 2130 1.50 1.18 R -14 
7/17 0620 0930 2.10 R -21 

- - 0630 0930 3.17 1.37 R -6 
- - - , - 1.91 R -16 

7/12 0115 0345 0130 0340 2.50 1.51 R -21 
7/10 2100 2130 2130 2200 1.00 0.92 R -23 
1966 
8/19 - - 1900 1915 .25 1.11 R -11 
8/16 1715 1800 - - .75 1.28 R -20 
1965 
9/1-f 1400 1515 - - 1.25 1.23 R -17 
8/29 0430 0500 - - .50 1.27 R -21 
8/17 - - 0030 0200 1.50 1.40 R -1 
7/16 - - 1800 1900 1.00 2.08 R -9 
1964 
7722 - - - - - 1.91 R -29 
7/4 2030 2100 - - 0.71 R -32 

- - 1940 2100 1.33 1.50 R -1 
- - - - 1.30 R -20 

7/12 1700 1900 - - 2.00 1.23 R -29 
1963 
7/28 1830 1940 - - 1.26 R -24 

- - 1900 1940 1.17 1.45 R -13 
1961 
8/22 1600 2300 - - 1.93 R -18 

- - 2020 2240 6.66 2.26. R -9 
- - - - 1.56 R -26 
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exponential c.d.f. and the sample c.d.f. of Cl, with the 

estimated parameter ßl = .558 (hours). 

Next, in regard to the random variable, denoting 

the maximum cell depth (cell center depth), the following is 

done to obtain the observed values. Firstly, isohyets are 

drawn for the total rainfall per cell, using data from non - 

recording rain gages. Then the maximum observed rainfall 

amount is obtained for the center of a cell isohyet by taking 

the recorded rainfall amount from the rain gage that is 

closest to the isohyetal center. Table 5.1 gives the value 

of the maximum cell rainfall depths in inches, and the cor- 

responding rain gages at which these values are observed. A 

two parameter gamma p.d.f. is hypothesised for in 

Chapter 4. The parameters a and no are estimated from 

the observed data based on the method of moments. The sample 

c.d.f. and the fitted two parameters gamma c.d.f. are shown 

in Figure 5.3, with the estimated parameters X = 7.34 and 
/". 

n0 = 10. 

Finally, in regard to the conditional p.m.f. of the 

occurrence of number of cells over a sub -basin B1, recall 

that a Poisson distribution is hypothesised in Section 4.2.1 

of Chapter 4. However, the parameter ai, that denotes the 

conditional expectation (on C1) of the number of cells 

over B1, cannot be estimated properly in view of having 
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only twenty -two rainfall events. Therefore the following 

procedure is recommended, which seems important both from 

the viewpoint of estimating ai and verifying the hypo- 

thesis of a Poisson distribution. 

Let M(B1) denote the random variable giving the 

number of cells per rainfall event. Then the p.m.f. of 

M(B1) can be obtained by integrating the conditional p.m.f. 

over the random duration C1 as follows 

P{M (B1) = k} = JP{M(B1,c) = k l C1 = c} f(c) dc; 
0 

k > O. (5.1) 

Substituting Equations (4.21) and (4.20) from Chapter 4, into 

Equation (5.1), 

P{r1 (I31 = kl = 
co 

0 

= [al/ (ai+E31)) l/ (ai+ßl) ; k = 0, 1, 2, . . . , (5.2) 

Equation (4.2) represents a geometric distribution for the 

unconditional p.m.f. of the number of cells that can occur 

from a rainfall event over the basin Bi. Strictly from 

the data viewpoint, it is easier to obtain the p.m.f. of 

M(B1), since only the non -recording rain gages can be used 
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to interpolate the isohyets of the cells, which in turn are 

used to determine the number of cells per rainfall event. 

Use of Equation (5.2) in the estimation of ai is given 

below. 

In the first place, note that no gaged region sur- 

rounding the Atterbury watershed is considered. However, 

the actual basin from which the cells can also contribute 

to the cumulative rainfall over the Atterbury sub -basin, is 

bigger than the Atterbury sub -basin. This is because of the 

fact, that those storm cell centers that occur outside the 

boundary of Atterbury within a certain distance from it, 

can also contribute to the cumulative rainfall over the 

Atterbury sub -basin. To make this distinction clear, we 

denote Atterbury sub -basin by Ba and the basin surrounding 

Atterbury, from which a cell can contribute to the cumula- 

tive rainfall over Atterbury, by B. Clearly B1 Ba. 

Assume that a cell has a fixed radius of three miles, i.e., 

rc = 3 (Osborn, 1970). Then the boundary of the basin B1 

can be identified by drawing a boundary parallel to the 

Atterbury sub -basin boundary, at a distance of three miles 

from it. The area enclosed by the basin B1 is then ap- 

proximately equal to 128 mi.2. 

With the above formulation in view, we now estimate 

ai of the Poisson distribution corresponding to the basin 

B1. Fogel and Duckstein (1969) give the information in 



133 

regard to sixty -four rainfall events observed on Atterbury 

sub -basin. Their definition of an event implies the oc- 

curence of at least one storm cell center over the Atterbury. 

We assume that the p.m.f. of number of cells based on the 

definition of a rainfall event as given by Fogel and 

Duckstein, corresponds to the unconditional p.m.f. of the 

number of cells as given by Equation (5.2). Now out of 

the sixty -four rainfall events as given by Fogel and 

Duckstein (1969), fifty -four of them had only one cell center, 

nine of them had two and three of them had three cell centers 

located over Atterbury sub -basin. Based on the data, there 

are, on the average, 1.23 cell centers that can occur over 

Atterbury from a rainfall event. This average value, de- 

noted by E[M(Ba)], is obtained from Equation (5.2) to be, 

or, 

E[M(Ba)] = ßl/aa = 1.23 

aá = ßl/1.23 = .471 . 

(5.3) 

Thus within our formulation, .471 denotes an esti- 

mate of the average number of cell centers that can occur 

over Atterbury, given the duration of a rainfall event; pro- 

vided the rainfall durations have an exponential p.d.f. 

Recall that as represents the parameter of the Poisson 

p.m.f. for the Atterbury sub -basin, Ba. Now, using 
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Equation (5.3) in conjunction with the assumption, that the 

parameters aá and ai for the sub -basin Ba and the basin 

B1 respectively, are proportional to the areas of the basins, 

ai can be obtained as ai = .471 X 128/18 = 3.35. 

Finally, an empirical verification of the uncondi- 

tional p.m.f. of the number of cells over Ba, is not pos- 

sible presently, because no information is available on the 

relative frequency of zero cell centers over the Atterbury 

sub -basin. However the relative frequencies for 1, 2 and 

3 cells do suggest a geometric type p.m.f., as obtained in 

Equation (5.2) . 

In summary, the following estimates of the parameters 

are obtained to be used in Equations (4.35) or (4.40) giving 

the c.d.f. of the cumulative rainfall per rainfall event; 

al = 3.35, 
81 

= .558, X = 7.34, no = 10, rc = 3 and 

area of Ba = 18 mi.2. However, a small but important modi- 

fication is required in Equations (4.35) and (4.40), which 

arises due to the size and shape of the Atterbury sub -basin 

in relation to the size and shape of the thunderstorm cells. 

Recall from Section 4.2.2 in Chapter 4, that the upper bound 

on the random variable Q denoting the fraction of the 

cumulative rainfall from a cell that can occur over a basin, 

is set at 1. But presently, Atterbury has an area of only 

18 mi.2, whereas a cell has an area of 28.3 mi.2 (cor- 

responding to rc = 3 miles), therefore a maximum of roughly 
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70% of the total rainfall from a cell can ever occur over 

Atterbury. Thus the upper bound on Q becomes .7 in 

case of Atterbury sub -basin. In view of this, Equation 

(4.35) modifies to, 

P{z(c1) < z} 

n -1 

= 1 
0dr'7e-Xz'(1-OÖj)/qdq. 

(5.4) (+1)n0 
j=0 1-063 0 

A plot of the c.d.f. of Z(C1), as given by Equation (5.4) 

is shown in Figure 5.4, corresponding to different values of 

z in mi.2 inches. 

Similarly Equation (4.40), which represents a par- 

ticular case of Equation (3.35), in view of Equation (5.4) 

modifies to, 

p{Z (c1 < z} 

n 
0 
-1 

= 1 

ß1 0ö e-az'(1-0d)/7. 
(5.5) 

(oc +ß )n 
1 1 0 j=0 1-0dj 

A plot of Equation (5.5), corresponding to different values 

of z in mi.2 inches is given in Figure 5.5. 

Now, the modified form of Equation (4.35) as given 

by Equation (5.4), corresponds to the case where the random 

effect of the location of a cell on the cumulative rainfall 
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that can occur on the basin has been considered. On the 

other hand, Equation (5.5) is obtained on the assumption 

that the location of a cell does not affect the resultant 

cumulative rainfall over the basin, which is reasonable for 

those basins that are large in relation to the cell size. 

The influence of location of a cell on the c.d.f. of the 

cumulative rainfall per event from a small basin can be 

ascertained from Figures 5.4 and 5.5. 

The 'atom' at the origin of the c.d.f. of Z(C1) 

corresponds to the probability that no cell occurs over the 

basin B1 during the duration of a rainfall event over a 

region R that contains B1. Since no such region has been 

identified presently, therefore the existence of this 'atom' 

is kind of hypothetical. Moreover, the random duration C1 

is also defined with respect to a region, but in the above 

example it has been computed with respect to the Atterbury 

watershed. In this context, the c.d.f.'s of Z(C1) given 

in Figures 5.4 and 5.5 should only be considered demon- 

strative. 

Having obtained the c.d.f. of Z(C1), the limiting 

c.d.f. of the maximum cumulative rainfall per rainfall event 

can be computed. However, for Atterbury, n0 = 10, and 

the special case derived in Section 4.5 of Chapter 4, is for 

= 1. Therefore we do not give numerical computations for 

the limiting c.d.f. corresponding to Equation (5.5), since 
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for n0 > 1, the sequences {un} and {vn} will have to be 

redetermined. 

This concludes the numerical demonstration of the 

important results obtained in Chapter 4. Ensuing section 

contains a comprehensive summary of this study. 

5.2. Summary and Recommendations 

In summary, this study introduces a phenomenologic- 

ally oriented approach for building stochastic models of the 

cumulative rainfall in a space -time construct. The general 

theoretical developments given in Chapter 3 have the fol- 

lowing important features in comparison with the previous 

work on the point rainfall process, and in their own right, 

namely, 

(1) It represents a generalization of the previous work on 

the point rainfall process in two ways, i.e., 

(i) considerations leading to a particular stochastic 

dependence between the cumulative rainfall 

amounts per rainfall event and the number of such 

rainfall events within a season, through the 

random durations of rainfall events. The depend- 

ence seems particularly important, when consid- 

ering spatial rainfall over some region. However 

for the point rainfall process this dependence 

may not be very significant; 

(ii) a phenomenological approach leading to the 
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derivation of the c.d.f. of the cumulative rain- 

fall per rainfall event, as opposed to empirically 

fitting a c.d.f. to the cumulative rainfall per 

rainfall event. 

(2) An analytical result on the error bound for the con- 

vergence of the sum of a random number of random vari- 

ables, not necessarily independent, is given. 

(3) Use of the limiting c.d.f. of the maximum of a random 

number of random variables (cumulative rainfall per 

event), when the two are not necessarily independent, 

is given in the context of determining the 'design rain- 

fall. 

(4) Extension of the above results to multiple seasons within 

an year, such that the cumulative rainfall amounts per 

event between any two seasons are non - identically dis- 

tributed. 

Possible extensions of this study are possible along 

the following lines, such as, 

(1) Derivation of the c.d.f. of the cumulative rainfall per 

event at a fixed point in space, using a space -time 

framework as presented here. This would in turn relate 

the previous work on the point rainfall process to 

the present work on the space -time rainfall. 

(2) Use of this approach to simulate space -time. rainfall. 

The use of a theoretical framework as given here, 
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in the rainfall simulation would be an improvement over 

some previous simulation procedures, such as adopted by 

Grayman and Eagleson (1971), who simultaneously use 

both the empirical c.d.f.'s as well as the expected 

values of random variables to simulate rainfall in 

space and time. The simulated rainfall in turn may be 

used to estimate the c.d.f.'s of random variables de- 

fined on streamflows using an approach such as proposed 

by Gupta (1972). 

(3) Possibility of improving the error bound on the con- 

vergence of the c.d.f. of the seasonal cumulative rain- 

fall, to its limiting c.d.f. A 'tight' error bound can 

be used to determine the c.d.f. of cumulative rainfall 

over a few years period. 

(4) Considerations on determining the limiting c.d.f. of 

the maximum cumulative rainfall per event, using the 

general expressions of the c.d.f. of the cumulative 

rainfall per event as given by Equations (4.35) and 

(4.40) . 

(5) Considerations on other random variables defined on the 

process of space -time rainfall, than the ones con- 

sidered here. Such may be the time of occurrence of 

the maximum rainfall per event within a season, limiting 

behavior of its c.d.f.; crossing properties of the 

partial sums defined in terms of the normalized 
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cumulative rainfall within a fixed season over a se- 

quence of years, which in turn may be useful to 

analyse quantitative aspects of droughts defined in 

terms of the rainfall amounts. 

(6) Application of this approach to other basins in the 

United States and other areas of the world with an in- 

tent to verify some of the hypothesis and assumptions 

given here. 

(7) Possibility of relaxing some assumptions made in 

Chapter 4, to arrive at more 'realistic' forms of the 

c.d.f.'s for the cumulative rainfall per event. 



APPENDIX A 

DERIVATION OF THE SECOND MOMENT OF X(t1) 

N(t ) 

1 
E[X2(tl)] = E[[ l Z(T)]2I{ U {N(t 

1 
) = n}}]. 

j=1 3 n=0 1 

Since Z(Tj); j > 1 are i.i.d., therefore 

oo 

E [X2 (tl) ] = / E [{nZ2 (T1) + n (n-1) Z (T1) Z (T2) }I{N (t1) = n} ] 
n=1 

tl tl-s2 

_ E [nZ2 (sl) + n (n-1) Z (sl) Z (s2) 1 T1 = s1,T2 = s2 
n=1.10 0 

P{N(t1 - sl - s2) = n - 21dF (sl) dF (s2) 

= 

tl 

0 

tl 
co 

nF [Z2 (s1) I T1 
Js 

1 
n=1 

= 

] 

s1] P{N (t1-s1-s2) = n-2 }dF (s2) dF (s) l 

P{N(ti) = t1 - sl - s21dF(sl)dF(s2). 

This upon simplification gives 
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J 

tl 
E [X2 (t1) ] = E [Z2 (sl) I T1 = s1] {E [N (tl) ] + 1}dF (sl) 

0 

(tl (t1-s2 
+ 

I n (n-1) E [Z (sl) I T1 = sl] E [Z (s2) I T2 = s2] 
0 0 n=1 

P{N(t1 - s1 - s2) = n - 2}dF(s1)dF(s2) 



APPENDIX B 

A SECOND DERIVATION OF THE EXPECTATION OF X(tl) 

Consider the identity given by Todorovic (1970) as, 

E[Z(T ) (N(t )]dP. E [X (tl) ] = n 1 
n=1 f {Tn<tl} 

Since Z(Tn) depends on N(ti) only through Tn; n > 1, 

therefore, 

co 
( 

1 
j 

E [X(ti) ] = 
J J 

E (Z (Tn) (Tn = 8)dPdF(s) . 

n-1 0 {Tn-1 <t 1 
-s} 

Since Tn; n > 1 are i.i.d. as T1, therefore 

J 

ti - ( E[X(t 
1 

)] = E[Z(T ) (T1 = s] [J dP]dF(s) 
0 n=1 1 {Tn-1<t1-s} 

t1 co 

E [Z (T1) 
( T1 = s] dF (s) 

1 P{Tn-1 < t1 - s} . 
0 n=1 

In view of Equation (3.6), the above equation 

reduces to, 
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J 

tl 
E [X (t1) ] = E [Z (Ti.) T1 = s] dF (s) { 1 + E [N (tl-s) ] } 

0 

J 

tl 
= E [Z (Ti) IT1 = s]ra(t 

1 
-s)dF(s) 

0 

(tl 
+ 

E[Z (Ti) T1 = s]dF(s) 
0 



LIST OF SELECTED SYMBOLS 

Symbol Meaning 

x E A x is an element of the set A 

is contained in (contains) 

n 
U Ai the union of the sets 

i =1 

A1, ..., An 
n 
(1 A. the intersection of the sets 

i =1 
i 

A1, ..., An 

jö the empty set 

Ix1 absolute value of x 

is increasing to 

O of the order of 

I {A} the indicator function of a 

set A 

P probability measure 

R a geographic region 

Bi; 1 < i < r r mutually disjoint sub - 

basins within a region 

Cj 

ll 
j 

random duration of the jth 

rainfall event 

random dry duration preceding 

the jth rainfall event 
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T. 
(T3 -1ITj) 

Z(T.) = Z(C.) 

Z' (T.7 ) 

N (t1) 

148 

termination epoch of the 
jth 

rainfall event 

random interval between the 

terminations of the 

and the jth rainfall events 

the cumulative rainfall from 

the jth rainfall event 

the excess water yield from 

the jth rainfall event 

the number of rainfall events 

within a fixed season (0,t1] 

N(t0) = N(j) the number of rainfall events 

Ni(t1) = Ni = 1 N(j) 
j=1 

X (t1) 

I4(i3,C1) 

Y 
T2 

within (0,t1] during the 

. th year 

the number of rainfall events 

within a fixed (0,t1] up to 

the ith year 

the cumulative rainfall from 

a basin B under considera- 

tion (`R) within (0,t1] 

the number of storm cells that 

occur over a basin B(CR), 

during the random duration C1 

of a rainfall event 

the cumulative rainfall from 

the nth storm cell 



V (N (i)) = sup Z(T.) the maximum rainfall among 
1 <j <N(i) 7 

V(N.) = sup Z(T.) 
1 <j 

<Ni 

F() 

f () 

E [] 

E [N (t1) ] = m(t1) = m 

(Bi) 
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Z1, ... , Z (TN 
(i)) 

within 

(0,t1] during the ith year 

the maximum rainfall among 

Z1, ..., Z(TN ) within 

(0,t1] up to the ith year 

denotes the c.d.f. of a random 

variable (same notation is 

used for the c.d.f.'s of all 

the random variables) 

denotes the p.d.f. of a random 

variable 

denotes the mathematical ex- 

pectation of a random variable 

mathematical expectation of 

the number of rainfall events 

within (0,t1] 

denotes the area of the ith 

sub -basin (CR) 
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