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ABSTRACT 

This thesis presents a methodology for obtaining the optimal design 
capacity for sediment yield in multipurpose reservoir design. A sto- 
chastic model is presented for the prediction of sediment yield in a 
semi -arid watershed based on rainfall data and watershed characteristics. 
Uncertainty stems from each of the random variables used in the model, 
namely, rainfall amount, storm duration, runoff, peak flow rate, and 
number of events per season. 

Using the stochastic sediment yield model for N- seasons, a Bayesian 
decision analysis is carried out for a dam site in southern Arizona. 
Extensive numerical analyses and simplifying assumptions are made to 
facilitate finding the optimal solution. The model has applications in 
the planning of reservoirs and dams where the effective lifetime of the 
facility may be evaluated in terms of storage capacity and of the effects 
of land management on the watershed. Experimental data from the Atter- 
bury watershed are used to calibrate the model and to evaluate uncer- 
tainties associated with our knowledge of the parameters of the joint 
distribution of rainfall and storm duration used in calculating the 
sediment yield amount. 
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CHAPTER 1 

THE EVENT -BASED SEDIMENT YIELD MODEL 

This thesis will be concerned with determining the optimal size of a 
multipurpose reservoir based on the sedimentation characteristics of the 
watershed upstream from this reservoir. Thus, this problem is approached 
in three stages. More precisely, given the rainfall, storm duration, and 
economic characteristics of the watershed in question, the decision to be 
made is how large should the reservoir be designed to allow for the 
accumulation of sediment over the projected lifetime of the project. The 
first stage involves the development of an event -based stochastic model 
of the sediment yield process. Second, the extension of this model from 
a single event to a seasonal one and then to an N- season model to obtain 
the total sedimentation over an N -year period of lifetime. Finally, due 
to our uncertain knowledge about the parameters a and ß of the bivariate 
distribution of rainfall and storm duration, a Bayesian analysis is 
carried out to assess the uncertainties associated with these variables 
and the effect on the decision variable. This goal is achieved through 
the use of the N- season model, together with the concepts of Bayesian 
decision theory to find the optimal design capacity for sediment yield. 

In the planning and development of multipurpose reservoirs, it is 

necessary to make an allocation of storage space for sediment accumula- 
tion. This accumulation affects the design of the dam in that it 

influences the active storage capacity requirements, outlet sill eleva- 
tions, recreational facilities, and backwater conditions (Borland and 
Miller, 1958). It is extremely important that sedimentation be accurately 
estimated as it is a very expensive process to remove the sediment once 
it has settled into the facility. 

This work will rely on the theoretical and empirical works of others, 
particularly on sediment results by Wischmeier (1959, 1960), Wischmeier 
and Smith (1960, 1965) , and Wischmeier, Smith, and Uhland (1958) ; on 
Bayesian decision theory by Davis (1971), Davis, Kisiel, and Duckstein 
(1972), Raiffa and Schlaifer (1961), De Groot (1970), and Feller (1966); 
and on rainfall by Duckstein, Fogel, and Kisiel (1972). 

Background of the Problem 

A sediment event is defined as the product of erosion from any 
runoff- producing storm over a watershed. In other words, a sediment 
event is of sufficient intensity to the point that runoff occurs. The 
independent variables are rainfall amount from the storm (xi, in inches), 

the duration of the storm over time (x2, in hours), and the time of con- 

centration (a2, in hours). The time of concentration is defined as the 

average length of time it takes for the precipitation to reach the outlet 
of the watershed. In addition to these variables, the model must take 
into account the individual characteristics of the watershed under study. 

1 



In the past, a variety of methods have been used to obtain estimates of 

sediment yield. Among others (Task Committee on Sedimentation, 1973), 

there are the area -increment method and the empirical area -reduction 

method (Borland and Miller, 1958). The universal soil -loss equation 

proposed by Wischmeier et al. (1958) is currently being used by the U. S. 

Soil Conservation Service. All of the work mentioned thus far has been on 

a deterministic level. Woolhiser and Todorovic (1974) have developed a 

stochastic model of the sediment yield process where the total seasonal 

(yearly) sediment yield is treated as the sum of a random number of ran- 

dom events (variables), assumed to be mutually independent and identically 

distributed. Their approach will be used in part here. A literature 
review tends to show that there is no widely accepted method of computing 

sediment yield in dam or reservoir design and that there are no methods 
that treat the sediment yield estimation problem in a probabilistic 
fashion based on the actual independent variables involved and the 

individual watershed characteristics. 

This exposition takes the deterministic model of Wischmeier et al. 

(1958) modified for individual events and, using a joint distribution of 
rainfall (xl) and storm duration (x2), obtains the probability density 

function (pdf) of sediment yield of a per event basis. This model was 

chosen because it accounts for runoff and peak flow rate in terms of 
rainfall amount and storm duration. It also accounts for the time of 

concentration, but rather than considering it a random variable, a constant 

average value is used in this study. 

The next section presents the actual derivation of the sediment yield 

model. Also presented is an illustrative example. 

Sediment Model 

The universal soil -loss equation mentioned earlier has provided 

reasonable estimates of sedimentation in the past and will be the choice 
here for the randomization. This equation as modified by Williams and 

Hahn (1973) gives the sediment yield on a per event basis. It is a func- 

tion of watershed characteristics and practices and runoff volume and 

peak flow rate. As mentioned before, an event is defined here as the 

sediment products of a runoff- producing type storm. Since the runoff 
volume and peak flow rate are direct functions of rainfall (xl) and storm 

duration (x2), these two random variables are of major concern. The 

modified universal soil -loss equation is: 

Z = 95(Qgp)56KCP(LS), tons 

where Z = sediment yield in tons, 
Q = runoff volume in acre -feet, 
qp = peak flow rate in cfs, 

K = soil erodibility factor, 
C = cropping- management factor, 

2 
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P = erosion control practive factor, and 
LS = slope length and gradient factor. 

Values for K, C, P, and LS may be computed, using the algorithms outlined 
by Williams and Berndt (1972). These algorithms make use of available 
data on soil type, topographic maps, and on -site estimates. Due to the 
form of the rainfall and duration data available, a conversion constant 
(to be defined later) is introduced to convert Z from tons to acre -feet, 
and Q in inches to acre -feet. The values of Q and q are computed from 
the Soil Conservation Service formulas: 

xl 
2 

Q (x + s) , 
acre -inches (2) 

where Q = runoff volume in acre-inches, 
xl = effective rainfall in inches (rainfall less a constant initial 

abstraction), and 
S = watershed infiltration constant; 

and 

- 

484AQ 
cfs qp + ' (3) 

where A = drainage area of watershed in square miles, 
al = constant (.50), 

x2 = storm duration in hours, and 

a2 = time of concentration of storm in hours (assumed constant for 
a given watershed). 

By substituting Equations 2 and 3 into Equation 1, and defining the con- 

version constant ao as ao = 484A2(640)/12, where area is in square miles, 
we get 

4 

;O] ).56W 
acre -feet (4) 

(xl + S) (alx2 + a2) 

where W = 95KCP(LS)(2000) /(mean sediment density x 4.356 x 104). To 
obtain the distribution function of sediment yield, we need the joint 
distribution of rainfall and storm duration f(xl,x2). Crovelli (1971) 

has proposed a bivariate gamma pdf. This distribution possesses many of 
the properties consistent with the empirical properties of certain storms. 
The data from the Atterbury Experimental Watershed were used to conduct 
a Kolmogorov- Smirnov goodness -of -fit test on the marginal distributions 
of rainfall and storm duration. The distributions could not be rejected 
at the 10% level of significance, so the bivariate gamma pdf was assumed 
to be an acceptable fit of the random properties of storms over the 
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Atterbury watershed. The parameters of this distribution were estimated 
by the method of maximum likelihood of the marginal distributions. The 

bivariate gamma pdf of rainfall amount and storm duration is 

f(xi,x2) = 

a6exp - 6x1(1 - exp - ax2) if 0 < x2 < 
a 
x1 

a6exp - ax2(1 - esp - ex1) if 0 < x1 < x2 

(5) 

where a,6 > 0, 0 < x1 < co, and 0 < x2 < 00. 

Given n pairs of rainfall and duration values (Ri,Di) with n1 pairs 

such that aDi < 
6R. 

and n2 pairs such that aDi > 
6R. 

and n = n1 + n2, 

the likelihood values may be computed from 

n2 n1 

LIKELIH(a,ß)= Can exp - a E D. II (1 - exp - aDi)] 
j=1 3 1=1 

n1 n2 

Len exp - ß E Ri II (1 - exp - eR.)] 
i=1 j=1 

(6) 

To obtain Fe(Z), it is necessary to integrate the joint pdf in terms of 

the conditional and marginal distributions. 

CO 

Fe(z < Z) = I P(z < Z x1 = x)f(x1)dx1 
o 

4 

= I P([ 
oxl ].56 

Zlxl 
o (x1 + S) (a1x2 + a2) 

4 
cx1 

= J P(x2 > dlxl = x)f(x1)dx1 
o (x1 + S) 

where c = ao /a1(W /Z)1/.56 and d = a2 /a1. We also let 
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4 
cxl 

11)(x, Z) = 

S) 
2 

d 
(x 

1 
+ S) 

and we have 

Fe(z < Z) = f f f(xl,x2)dx2dx1 
o ip(xl,Z) 

(7) 

Since t,(xl,Z) is defined over both regions of Equation 5, Equation 7 

must be broken into four separate regions. Figure 1 illustrates the 
joint pdf f(xl,x2) and the sediment function 11)(xl,Z). Note that the 

curve is defined on both sides of x2 = 
a 

xl, so the region of integration 

from 11)(xl,Z) to infinity must be partitioned and the boundary points x1 * 

and x2*c are obtained by solving the equations Ip(xl,Z) = 
a 

xl and 

11,(xZ) = 0, respectively. The resulting expression is then 

x 
1 
** x 

1 
% 

a 1 

Fe(z < Z) = I I aßexp - ßx,(1 - exp - ax2)dx2dx1 
o o 

xl a x1 
+ I I aßexp - ßx1 (1 - exp - ax2)dx2dxl 

x 
1 
** x Z) 

l' 

x 
1 

* 
1 

+ I I aßexp - ax2(1 - exp - ßxl)dx2dx1 
o ß 

a x 

+ I f aßexp - ax2(1 - exp - ßxl)dx2dxl 
x1sY ip(x1,Z) 

It was not possible to obtain closed form expressions for all of the 
above terms; however, the simplest form obtained was 
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Figure 1. Bivariate gamma distribution of rainfall amount and 
storm duration 

x1 = rainfall amount; x2 = storm duration. Note the sediment 
yield function, (xi 
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Fe(z < Z) = 1 - exp - ßx1%e(ßxlx + 1) + (1 t ad)(exp - ßx1'^* 

- exp - ßx1%) + ac exp - ßxl;: E (ß(x l" + S) 

2 

t l)(2S-) - (xl:;+S)2-S2(6+x ,S+S) ] 
.... 

+ ac exp - 
ßxi' 

[ (ß(xl + S) + 1)( - 2S) 

2 

+ (xl* + S)2 + S2 6 + 
x 
T S) ] + aßcS3 (ßS 

1 

x %: + S k 

+ 4) exp ßS [ ln xlx,:i S+ E 
k.ß) [xl;° S)]c 

2 k=1 

CO 

- (x l,:., + S)k ]] + ßL I exp - alp(x1,Z)dxl 
x 
1 

CO 

- I exp Z) - ßx1)dx1 ] 

x '.-.'c 

1 

(8) 

The procedure to compute Fe(Z) is to first calculate the constant 

c = 
o (W/Z)1/.56 

1 

then to calculate the roots x 
1 
* and x2^%`, to evaluate the constant terms 

in Equation 8, the series term, and, finally, the integral terms. Con- 

vergence of the series term to 20 decimal places was obtained within 60 

to 70 terms. The two integrals were evaluated using Simpson's rule in 

which the upper bound on the absolute error between successive iterations 

was arbitrarily preset at 10 -8. The two integrands are exponentially 
asymptotic and converge so rapidly that the contribution of their sum was 

less than 10 -3. 

Data from the Atterbury watershed were used to compute Equation 8. 

Mean rainfall and storm duration values were available for individual 
rainfall events over a period of 14 years. These values were used to 

compute the marginal maximum likelihood estimates of a and ß. Figure 2 

illustrates the distribution function obtained from Equation 8 for these 

particular parameter values. Computations of 56 values consumed approxi- 

mately 10 to 15 seconds of computer time, depending on the convergence 
rate of the integration routine. The pdf of sediment yield for a single 
event was calculated from the values of F 

e 
(Z), using the definition of 

the derivative (Figure 3). Thus, it is possible to compute the proba- 
bility of Z units of sediment given only n pieces of data which are used 
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to estimate the parameters a and (3. The mean and variance for this pdf 

may be calculated by using the Riemann -Stieljes definition of integration. 

The first two moments of Fe(Z) are defined by 

and 

co n 
E(Z) = I Z dFe(Z) = E Z CCFe(Zi+1) - Fe(Zi)] 

o i=1 

n 

E[(Z - u)2] = f Z2 dFe(Z) = E Z2 
[Fe(Zi+l) 

- Fe(Zi)] - [E(Z)]2 

o 1=1 

After computing the mean and variance of Fe(Z), the parameters of a two - 

parameter gamma distribution are fit to the mean and variance. The two - 

parameter gamma pdf is 

with 

Fe(Z) _ 

P 
e 

r 
e 

e 

reZre lexp - aeZ 

2 re 
ae 22 

e 

I'(re) , Z > 0 

2 
P e 

r - 

e 

Pe 
a -- 
e a 

e 

Figure 3 also shows the empirical pdf and the approximation by the gamma - 

2 pdf, with Ae = .00716, re = .60027, and ue = 83.800 acre -feet. 

The next step will be to extend the event pdf to a seasonal distri- 

bution and finally to a N- season model. This is necessary in order that 

we may use Bayesian decision theory, since the decision being made is 

dependent on the number of seasons to be considered in the lifetime of 

the project. 
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CHAPTER 2 

EXTENSION OF THE EVENT -BASED MODEL TO 
A SEASONAL SEDIMENT MODEL 

Here, the distribution computed in the last chapter is first extended 

to a seasonal pdf, then to a pdf over N seasons, where N is the lifetime 
of the facility under consideration. 

Since the individual sediment events are hypothesized 
the seasonal distribution of sediment yield may be defined 
n mutually independent and identically distributed gamma -2 
pdf is represented as 

nreZnre - 1eXp(-XeZ) 

fs(Z) - 

e 

to be gamma -2, 
as the sum of 
events. This 

( 9 ) 

nr nr 
with us - 

e 
and ßs2 = 2 . The critical assumption is that the number 

e X 
e 

of events per season is always the same; i.e., n is a fixed quantity from 
season to season. In order to be more realistic, n should be taken as a 

random variable. Todorovic and Yevjevich (1969) and Duckstein et al. 

(1972) have shown that seasonal rainfall events for many areas, including 
the Atterbury watershed, are distributed in a Poisson fashion. Using 
this result, the sum of n gamma -2 events defined earlier may be convoluted 
with the Poisson probability of n events occurring (Feller, 1966). Thus, 

the seasonal distribution becomes 

kreZkre - leXp(-X 
e 

- 

f 
s 
(Z) = e-n E 

(n)k 
ae 

k' I'(kre) 
(10) 

where n is the average number of storms per season (= 12.5 for Charleston 
watershed). The index starts at zero because the gamma function in the 
denominator is undefined at k = O. It is heuristically assumed that the 
probability of zero events is extremely small. 

The seasonal mean and variance, us and ßs2, may be calculated 

directly without knowing the parameters of the actual seasonal distribu- 
tion of fs(Z). Benjamin and Cornell (1970) outline the formula for the 

mean and variance of the pdf of a sum of a random number of random events 
mutually independent and identically distributed as: 

us = E(n)E(Z) 

Qs2 = E(n) var(Z) + var(n) [E(Z)]2 

11 



The same method may be used to obtain the mean and variance of the dis- 

tribution of N seasons. The first two moments of this pdf are: 

pL = N ps 

cL2 Qs2 

The 'value obtained for pL is the design estimate on which the decision is 

made; i.e., the volume of sediment that should be allowed for in designing 

the reservoir. 

To illustrate the above, data from Atterbury Experimental Watershed 

is used. Throughout the example, the maximum likelihood estimates of 

the marginal distributions are used. 

Example: Atterbury Data Applied to Charleston Watershed. 

a = 1.84 
K = 0.60 
C = 0.80 
P = 0.10 

LS = 0.50 
S = 2.50 

= 2.58 
A = 1220 mi 
a = 3.83576 x 1010 
á = 0.50 
a2 = 6.989 

Figure 2 illustrates the distribution function for the event -based case. 

The solid line on Figure 3 shows the pdf obtained from Figure 2, using 

the definition of derivative. The crosses indicate the 2- parameter 

gamma approximation. Note the extremely good fit in the tail. Both 

curves tend to infinity as Z goes to zero, although the differences 

become slightly more pronounced. Several curves were calculated to sub- 

stantiate the 2- parameter gamma approximation. The seasonal mean and 

variance are 

ps = E(n)E(Z) = 1,050 

cs 

s 
2 = E(n) var(Z) + E(Z)2 var(n) = 234,000 

and the lifetime mean and variance for N = 100 years are 

pL = 100 ps = 105,000 

aL2 = 100 
Qs2 

= 23,400,000 

Note here that the coefficient of variation (100 o /p) is around 4 per- 

cent. This fact will be of major importance in the decision theory 

chapters. 

To summarize, a model for sediment yield has been developed, which . 
accounts for the probabilistic nature of the process through the 
random variables -rainfall amount xl and storm duration x2. The model has 
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been extended to provide a means of estimating the amount of sedimenta- 
tion first on a seasonal basis, then over a period of N seasons. 

The study will now proceed to the decision theory aspects of the 
sediment design problem. The next chapter will present the Bayesian 
decision methodology in general form before its application to the 
sedimentation problem in Chapter 4. 

13 



CHAPTER 3 

MAKING THE OPTIMAL DECISION 

Davis et al. (197) have adapted methodology developed by Raiffa and 
Schlaifer (1961) and Howard (1966) for finding optimal alternatives to 
hydrologic design problems through the use of Bayesian decision theory. 
The first step in the application of this theory is the identification of 
the goal; that is, at the same time the decision to be made and its 

alternatives, a, must be defined. Next, a goal or loss function.L(a,@) 
must be constructed in which the state or uncertain variables, @, must be 
selected. The state variables in this study are the uncertain parameters 
a and ß of the joint distribution of rainfall and storm duration, so that 
the symbol @ is a vector of the state variables a and f3. To make the 
decision, it is necessary (1) to calculate the expected value of the goal 
function for each alternative, and (2) to choose an alternative to mini- 
mize the expected value of the goal function. It then remains to evaluate 
the decision and determine the expected opportunity loss due to the uncer- 
tain parameters in the problem. The calculation of the expected value of 
the goal -loss function for each alternative is defined as the risk of that 
alternative. Given the state and decision variables, their respective 
pdf's, and the loss function, the Bayes solution is obtained by choosing 
the alternative a* that minimizes the risk: 

BR(a*) = min f L(a, @)f( @)d@ (12) 

a 

Next, the decision must be evaluated. If the true values, @t, of 

the state variables were known, the alternative chosen, at, would be the 
one that minimized the loss function for @t: 

L(at, @t) = min L(a,@ ) 

a 

The decision has been made to use the alternative a*, which may be a 
nonoptimal choice. In making this selection, an opportunity loss (OL) is 

suffered: 

OL(a*,@t) = L(a*,@t) - L(at,@t) 

The value of 
t 

is not known, but the pdf, f(@), is known, so an expected 

opportunity loss (EOL) may be calculated: 

EOL(a) = J[L(a*,@) - min L(a,(3)] f(0)d0 
a 

The expected opportunity loss represents the expected value of perfect 
information and may be used to judge the effect of uncertainty as 
embodied in f(@) on the performance of the project. The pdf f(@) is 

known as the posterior distribution. It is calculated from Bayes rule, 
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Using the likelihood function of the state variable LIKELIH(6) and the 

prior distribution of the state variables, i.e., PRIOR(6). The actual 

expression which yields the posterior distribution will be given later. 

The next step is to define the loss function, prior, and posterior 

distributions of the state variables in the context of the sediment 

yield problem. 

The loss function defined by Jacobi (1971) is used for assessing the 

expected value of additional information. This particular type of loss 

function, known as the linear terminal opportunity loss function, is: 

Ko(a - Z) if a > Z (overdesign) 

L(a,Z) 
Ku(Z - a) if a < Z (underdesign) (13) 

The function proposed by Jacobi was modified by a scalar amount to account 
for the economic losses associated with decreasing water storage over time. 
This constant is embedded in constants Ku and Ko, which are defined later. 

The posterior pdf of 6 is defined by Bayes rule as: 

POST(Bldata) - 
PRIOR(6) LIKELIH(6)Idata) 

(14) 
f[numerator]d6 

Having defined the critical elements of the problem, it is now necessary 

to conduct the search for the optimal solution. This step has been 
greatly simplified by the linearity property of the loss function. 
According to Raiffa and Schlaifer (1961, pp. 195 -197), by taking partial 

expectations over the distribution on the decision variable and the loss 
function, the expression which must be solved represents a cumulative 

distribution over the decision variable. The equation to be solved is: 

find a* such that 

a* K 
u 

F(a*) = I I f(Z I6)POST( 6ldata)dZd6 = K + K 
6 o u o 

(15) 

where Ku and Ko are defined in Equation 13. As can be seen in Figure 13, 

the loss function depends on the alternative chosen, a, and the actual 

state of nature Z. The variable Z is the decision variable in the sedi- 
ment yield problem and represents the mean number of acre -feet of sedi- 

ment of the pdf of sedimentation for an N -year period. This quantity is 
also equivalent to the uL term in Equation 11. While the pdf f(Z16)can 

be computed through an extension of Equation 9, the use of an indicator 
function greatly reduces the computation time required to generate the 
pdf f(Z1 6). Returning to Equation 15, it can be seen that POST(Oldata) 
and f(Z 6) are known and Ku and Ko are defined; integration of Equation 

15 is carried out for each a* until the value K 
u 
/(K 

u 
+ Ko) is achieved 

within some prespecified error bound e. In other words, the problem 
becomes: find a* such that 
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or 

or 

Ku 
a-'' F_1 K+ K 

u o 

F(a*) 
K u 

Ku K 
e 

u o 

a* K u 
J f f(ZI6)POST(Oldata)dZdO 

K + K 
< E 

8 o u o 
(16) 

It now remains to apply the above equation to the sediment yield problem. 
The next chapter will consist mainly of the above concepts adapted to the 
problem with basic notational changes as required. 
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CHAPTER 4 

ADAPTATION OF BAYESIAN METHODOLOGY 
TO THE SEDIMENTATION PROBLEM 

The purpose of this chapter is to apply the concepts presented in 
the last section to the sediment yield problem. After defining the loss 
function and the distributions in a Bayesian framework, a discussion of 
the various computational problems and simplification is undertaken and 
an actual case study is presented. 

First, the constants Ku and Ko are defined in order to illustrate 

completely the elements of the loss function. The (a) term is the alter- 
native chosen and the 2-term is the state of nature or actual amount of 
sedimentation over the lifetime of the project. These quantities appear 
in the definition of the general loss function in Equation 13. Naturally, 
the decision maker would like to choose a = Z, but this is where uncer- 
tainty arises. The constant terms in the loss function are: 

w = PK1 (1 + i)n - ws 

where P = proportionality factor between total sediment load and sus- 
pended load (= 1.1), 

K1 = unit cost of construction (_ $150 /acre -ft), 

i = interest rate of borrowed dollars (4.78 %), 
n = years between commencement of loan and start of reservoir 

operation (= 10 yr), and 
Kas = water storage value (= $53 /acre -ft); 

and 

1 1 1 
Ku = P . K2 

(1 + 
r)M 

+ (1 + 
r)2M 

+ . . . + 
(1 + 

r)N-M 

+ 

1 

N 
] 

+ ws 
(1 + r) 

where K2 = unit cost for removal of sediment ($1700 /acre -ft), 

r = interest rate for discounting (= 4.78 %), and 
M = constant time interval between removals (25 yr). 

(17) 

The definition of the posterior distribution is difficult in that 
the property of "natural conjugates" is not present here; that is, the 
posterior and prior distributions are not of the same family. It is thus 

necessary to integrate the denominator of Equation 14 everytime the pdf 
is updated. Also present here is the problem that the form of the pdf of 

the prior distribution is not known. As a consequence, it is assumed 
that no prior knowledge of the data exists. In effect, we are assuming 
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that the prior pdf is a uniform distribution. There is a conflict here 

since there is no guarantee that the variables range over a finite inter- 

val. A numerical simplification to be illustrated later was used to 

reduce the interval to a finite range where a uniform distribution is 

defined. Basically, this was achieved by restricting the regions of 

integration in Equations 14 and 15 to an area of most dense likelihoods. 

In other words, instead of integrating over the entire space, integration 

is performed only over the most likely area in 

POST(a,ßldata) = 
1LIKELIH(a,ß 

I I 1LIKELIH(a,ß 
ß a 

data) 
data)dadß 

Replacing the posterior distribution in Equation 15 by its more explicit 

representation, the problem becomes: find a* such that 

a* 
I I I f(Zla,ß)LIKELIH(a,ßldata)dZdadß 
ß a o u 

I I LIKELIH(a,ßidata)dadß 
ß a 

For notational purposes defined: 

C = f I LIKELIH(a,ß)dadß 
ß a 

K 
u KO 

e 

u o 

(19) 

(18) 

At this point, the determination of the form of the pdf f(Z +a,ß) has 

not been pursued. However, it was found that it was not necessary to 

compute the pdf, since an indicator function simplification was intro- 

duced based on a result obtained in the section on development of the 

sediment yield model which eliminated the necessity of having to calcu- 

late the explicit probabilities. This simplification will be explored 

later. Since f(Zla,ß) depends on a and ß, each time the values a and ß 

are change in the numerical integration of Equation 18, a new pdf of Z 

must be calculated. This difficulty may be overcome quite readily as 

shown in the next section where the simplifications mentioned here are 

illustrated in greater detail. 
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CHAPTER 5 

NUMERICAL CONSIDERATIONS ASSOCIATED WITH 
THE COMPUTATION OF EQUATION 18 

Since the values a and ß may take on a possible range from zero to 

infinity, Equation 18 becomes: find a%° such that 

00 co a* K 

F(a') = -III f(Zla,ß)LIKELIH(a,ß) ldata)dZdadß , u < e - 
0 0 o u o 

There are two major methods of numerical simplification: 

1. Restrict a and ß to a finite area to uphold the uniform prior 
assumption and to reduce the regions of integration. 

2. Use linear regression to obtain the relationship between Z and 
a and ß, since Z had to be recalculated every time a or ß 

changed in the numerical integration routine. Then, an indi- 

cator function is used to avoid the computation of the pdf 
f(Zla,ß) every time a or ß changes. 

In the first simplification, the infinite regions of integration were 
restricted to the most likely area in terms of the likelihood function. 
This technique has been used successfully by Yakowitz, Duckstein and 
Kisiel (1974). This area was obtained by repeatedly evaluating the 
likelihood function (Equation 6) over a coarse grid and defining the area 
as shown in Figure 4. The rectangular boundaries were arbitrarily fit as 

shown, due to the simple forms associated with the straight lines. From 
Figure 4, the parameters a and ß range over the following regions: 

.4324(3 + .2932 < a < .4324(3 + 1.4932 

1.75 < ß < 3.60 (20) 

So now the regions of integration are much more compatible with the 
uniform distribution assumption. 

The Indicator Function 

The discussion of the second set of numerical simplifications is 
somewhat more involved. Since f(Zla,ß) must be calculated everytime a 
and ß change in the numerical integration, an indicator function is 
introduced to avoid this calculation. 

The basis for using this special function is the fact that the 
coefficient of variation found earlier is small, which indicates a highly 
peaked distribution. In fact, to use the indicator function, it is 
assumed that there is a spike about Z somewhere in or out of the interval 
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[0,a*]. If the pdf f(Z a , ß) lies within the region [0,a*], the assump- 
tion that it is a spike indicates that since it is a pdf, the value of 
the integral must be one (Figure 5). If the value of Z is outside the 
interval [O,a*], then it is assumed the entire pdf lies outside the inter- 
val and the integration from zero to z* yields a zero (Figure 6). Thus, 
in the numerical integration of Equation 18, each time a or ß changes 
value, the inner integral over Z is either a zero or a one rather than a 
specific probability. Since this pdf does depend on a and ß, however, a 

relationship between a, ß, and Z is needed so that a Z value may be calcu- 
lated rapidly from the a and ß values to be used in the indicator func- 
tion. The mathematical form of the indicator function is: 

OifZ>a* 
I(Z = 

[0 , a% ] 
1 if Z < a* 

Once the relationship between a, ß, and Z is found, Equation 18 is reduced 
from a triple integration to a double integration, which represents an 
appreciable savings in computing time. 

The Regression Relationship 

The next obvious question is how can the values of Z be calculated 
quickly from the changing a and ß values. As the numerical integration 
procedure used here was Simpson's rule, the ß value is held constant 
while the integration takes place over the variable a and then Z; then 
ß is incremented and the process is repeated until all the limits are 
reached. Since it takes 10 seconds of computer time to calculate a 
single Z value from an (a,ß) pair, if 400 integration points are used by 
the Simpson routine (and this is conservative), the evaluation of Equa- 
tion 18 takes at least 4,000 seconds or 66 minutes of computer time for 
each a* value used in the search; then many iterations may be necessary. 
Since such a computation is economically infeasible, the following simpli- 
fication is introduced. A set of 20 points is extracted from the likeli- 
hood map (circles on Figure 4); this set is felt to be a representative 
sample of the region. In this manner, the actual calculation of the Z 

values associated with the 20 pairs consumes a total of 200 seconds. 
From +ti ; point, a setpwise linear regression program was used to obtain 
4-, ..oefficients of the least squares polynomial through the region. The 
rorm of the polynomial is: 

Z = Pu(a,ß) = aoa + aiß + a 
2 
-a 

2 
+ a3ß2 + a4aß + a5 (21) 

Thus, in the program to evaluate Equation 18 as a and ß change, the value 
of Z is calculated using Equation 21 and an indicator function subroutine 
makes the test on the position of Z relative to [O,a*] and returns either 
a zero or a one. It is necessary to check the smoothness of Equation 21 
prior to using it to insure that the polynomial will accurately represent 
the relationship. The constant C was evaluated in 9 seconds, using the 
Simpson's rule program mentioned above. This program allows the user to 
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prescribe the absolute error between successive iterations of the inte- 

gration. The calculation of C utilizes an error bound of 10 -3. 

The above, simplifications reduced Equation 18 to the following 
expression: find a* such that 

6 
2 a2'(6) 

F(a*) = 
1 I I I(Z[0,a*]la,8)[Equation 6]dad8 

ßl al'(ß) 

K 
u 

K + K 
< 

u o 

(22) 

In the actual program which performed the search for a%°, the following 
strategy was utilized 

If 
i 

F( ai . %`) 

If .( F(ai*) 

K 
u l 

K + K 
U o 

< c, stop; (23) 

K 
ai'(1+d) if d < 0 

K+ K }= d > e, set ai+1 
u o a. *(1-d) if d > 0 

i 

To summarize, the steps of a general purpose algorithm are defined 
to provide guidelines for the use of this methodology for multipurpose 
reservoir design with respect to sedimentation. The case study following 
this outline is an illustration of both the methodology and the theory. 
The algorithm consists of nine specific steps: 

1. Define the watershed constants, K, C, P, LS, drainage area A, 
infiltration constant S, al, a2, and the mean sediment density. 

Calculate W = 95KCP(LS)2000 /(mean sediment density x 4.356 x 104) 

and ao = 484A2(640)/12. 

2. Compute the likelihood map over a and ß to determine the inte- 
gration regions. 

3. Extract a representative sample of points from the region. 

4. Calculate the N -year lifetime means for each of these points. 

5. Fit a polynomial pu(a,ß) to these points. 

6. Check pu(a,ß) to insure smoothness over the integration regions. 

7. Define the linear terminal loss function and the values of its 
associated parameters K 

u 
and K 

o 
. 
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8. Set a* and calculate 

ß2 a2(ß) 
F(a%`) = 

1 
- ! I I(ZE3 

,a.o] 
Ia,B)LIKELIH(a,8 Idata)dad8 

81 al(8) 

9. Search for a* under the strategy outlined in Equation 23 until 
F(a ̂) - K 

u 
/(K 

u 
+ Ko) < c, then stop. 

Certain steps would require more computation if a different watershed 
were being examined; however, this extra work would be of a minimal 
nature. 
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CHAPTER 6 

CASE STUDY -- CHARLESTON DAM SITE 

The Charleston Dam site is approximately 24 miles south of Benson, 
Arizona, on the San Pedro River. This area was recognized as a dam site 
as early as 1909 (Schwalen, 1961). However, since the instigation of the 
first Central Arizona Project Report in 1941, the dam has been awaiting 
construction in conjunction with the Tucson Aqueduct to provide addi- 
tional water resources to the city of Tucson, Arizona, and to help reduce 
the rapid depletion of the groundwater supply now taking place. The 
original dam design allows for 238,000 acre -feet of water below the 
spillway crest. Of this, 116,000 acre -feet are alloted for flood 
protection. 

As a basis for comparison, the results of the study made by 
Schwalen (1961) will be used to evaluate the expected amount of sedimen- 
tation over the lifetime of the project. Schwalen estimated the useful 
life of the project at 200 years based on an annual estimate of 630 
acre -feet, using a suspended sediment density of 70 pounds per cubic 
foot. The method consisted of taking actual measurements of the sediment 
at the dam site and obtaining sediment yield in tons per day for each day 
in the 3 -month summer rainy season. Almost all of the sediment deposited 
in the proposed reservoir would occur during this time. The drainage 
into the facility comes from the Charleston watershed with an area of 
1,220 square miles. 

Since rainfall and storm duration data are not available for the 
Charleston watershed on a per event basis, data from the Atterbury Experi- 
mental Watershed are used. This is justified on the grounds that rainfall 
and duration characteristics of the convective storms occurring over both 
watersheds were the same (M. M. Fogel, School for Renewable Natural 
Resources, University of Arizona, personal communication, 1974). 

This case study will follow the algorithm outlined in the last chap- 
ter. At each step, the computational difficulties and programs will be 
discussed as they arise. 

Step 1. Definition of Watershed Constants 

For the Charleston Dam site, the values of K, C, P, and LS were 
estimated by a hydrologist rather than using the algorithms proposed by 
Williams and Hahn (1973). The accuracy of the estimates was considered 
to be of minimal importance since the purpose of the study is the 
definition of a method. 

Soil-erodibility factor 
Cropping- management factor 
Erosion control practice factor 
Slope length and gradient factor 
Infiltration constant 
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K = 0.60 
C = 0.80 
P = 0.10 

LS = 0.50 
S = 2.50 



Peak flow equation constant 

Time of concentration constant 

Conversion constant 

Combined constant 

a1 = 0.50 

a2 = 6.989 

a 
0 

= 3.83576 x 1010 

W = 1.49547 x 10-3 

Step 2. Computation of the Likelihood Map 

Using Equation 6 and the Atterbury data, the likelihood map of the 
parameters a and S was calculated. As can be seen on Figure 4, the 

boundaries of the most dense section of the likelihood map are well - 
defined. This figure also shows the parallelogram boundary section 
around the integration region. This distance between each likelihood 
value is exactly 0.05, and the corners of the parallelogram define lines 
shown on the graph. These lines determine the inner limits of the inte- 
gration over a. Likewise, the top and bottom of the parallelogram define 
the limits over S. The limits of integration are equivalent to those in 
Equation 20. 

Steps 3 to 6. Sample Points from Likelihood Region 

The circled points in Figure 4 represent the data values used in 
computing the polynomial for the indicator function. For each a and S 

value circled, the lifetime mean sedimentation is calculated. These 

values are shown in Table 1. After the points and means are used to 
compute the polynomial pu(a,S), the polynomial is evaluated to insure 

that the function is smooth. Table 1 also shows the calculated poly- 
nomial values. The calculated polynomial is: 

Z = pu(a,(3) = .224a - 27.4038 + .197a2 + 3.79652 

- .298aß + 56.358 

Step 7. Definition of Loss Function 

The loss function as defined in Equation 13 for the values given in 

Equation 17 becomes: 

210.19 (a - Z) if a > Z (overdesign) 
L(a,Z) = 

888.89 (Z - a) if a < Z (underdesign) 

i.e., K 
u 

= 888.89 and K 
o 

= 210.19 and K 
u 
/(K 

u 
+ K 

o 
) = 0.8087. 
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Table 1 . Data points for regression 100 -year mean sedimentation as a 
function of cr and ß 

Polynomial fit also given. 

a p ZL Pu id ,p 

1.60 1.75 20.593 x 104 20.009 

1.65 1.85 18.773 18.600 

1.50 2.10 14.983 15.335 

1.75 2.05 15.769 16.005 

1.55 2.70 9.548 9.542 

1.70 2.55 10.648 10.752 

1.84 2.58 10.479 10.500 

1.85 2.20 13,968 14.249 

1.85 3.00 7.882 7.665 

1.95 2.45 11.548 11.701 

2.0 3.35 6.380 6.306 

2.05 2.70 9.661 9.606 

2.10 2.10 15.255 15.519 

2.15 2.95 8.226 7.975 

2.20 3.10 7.529 7.217 

2.30 2.55 10.828 10.903 

2.35 3.40 6.231 6.209 

2.45 3.60 5.389 5.907 

2.50 3.0 8.029 7.786 

2.55 2.70 9.802 9.769 

2.60 3.35 6.444 6.384 
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Step 8. Calculation of F(a* ) 

The value of C is the quantity defined in Equation 19. Using 

Simpson's rule, this value was found to be: C = 5.2266 x 10 -17. The 

error bound e, was taken to be 10 -3. The initial estimate of a* was 
taken to be 5.0. 

Step 9. Finding the Solution 

The optimum point at which the search stopped was 0.8087. The compu- 

tation of the optimum alternative required 41 seconds of computer time 
and the results were printed out at each iteration. Five iterations of 
a* were required before the optimum was reached. Using the method of 

Schwalen (1961), his estimate would yield 63,000 acre -feet over a 100 -year 
period. The optimum calculated by the Bayesian method is about twice 
that value at 127,570 acre -feet. The difference is significant in that 
the Bayesian estimate reflects the economic characteristics of the process. 

As a check, the expected opportunity loss (EOL) is calculated to 
assure that the theory is correct. The expected opportunity loss is 
calculated from the following expression: 

13 
2 

a2(ß) 

EOL(a) = C J J L(a,Z)LIKELIH(a,Idata)dadß 
ßl 

(11(ß 
) 

(24) 

The integration is carried out over all values of the optimum a* for 
different alternatives, a. Figure 7 illustrates the curve generated by 
repeatedly solving Equation 24. The optimum point found by this method 
was 127,000 acre -feet, which compares accurately with the value found by 
the search method. This additional evidence reinforces the conclusion 
that the estimate according to Schwalen's (1961) method may be too low. 
The mean of the 100 -year pdf was calculated using the maximum likelihood 
estimates of the parameters a and ß. This value was found to be 104,000 
acre -feet. The mean was also calculated using numerical integration. 
This expression was: 

(3 
2 

a2(ß) 

ZBayes C f 
I (Zla,ß)LIKELIH(a,ßldata)dadß 

13 

1 
a1(ß) 

The value of this expression was 106,000 acre -feet. This indicates that 
the estimate obtained which ignores the uncertainty in the process is 

conservative. 
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CHAPTER 7 

DISCUSSION AND CONCLUSIONS 

The proposed methòd and model have several shortcomings. First, the 
Bayesian approach utilizes a linear loss function when, in fact, the 
losses may bear no resemblance to linearity. Due to some of the simpli- 
fications, the optimal solution may be inaccurate. The use of the indi- 
cator function may not have been valid. It can be shown that the pdf of 
the 100 -year distribution of sediment approaches the normal distribution 
in the limit (Gupta, 1973); it might have been better to substitute a 
normal distribution instead of the indicator function. To do so would 
have compounded the numerical problems. The assumption that the prior 
distribution on the state variables is uniform may not have been entirely 
correct. One of the more difficult problems with the model itself is the 
lack of data. Only 33 events were available from which to obtain the 
estimates of a and ß. As the number of data points was small, the maxi- 
mum likelihood estimates of the parameters for the joint distribution of 
rainfall and duration, a and 6, could not be obtained due to the noncon- 
vergence of the maximum likelihood- estimating equations. The fact that 
the actual data from the Charleston watershed was not used may also have 
caused some variation. The elements of the universal soil -loss equation 
were designed for small watersheds, certainly smaller than the Charleston 
watershed. The random variable of time of concentration, a2, probably 

should not have been constant. The estimation of the watershed constants 
in the equation is also subject to a great deal of variation. 

The application of this type of analysis to a process in which indi- 
vidual events distributed in a gamma fashion and where an accumulation of 

some quantity is involved should be sought. There may be bacteriological 

population growth problems in which there are accumulations distributed 

in a gamma fashion where the event would be a reproductive cycle. It 

would be a natural extension of this work to analyze the sensitivity of 

the optimal solution to physical parameters, such as the watershed con- 
stants, or economic ones, such as interest rates and time between loan 
and reservoir operation, etc. Other Bayesian quantities, such as the 

value of perfect information or the expected net gain or sampling, could 
be computed. As an alternative approach to generating the event -based 
distribution from the conditional and marginal distributions, the trans- 
formation defined by Equation 4 of random variables may actually be 
performed to see if the pdf is indeed gamma. There are numerical diffi- 

culties associated with this approach, but it would provide a valid check 

of the gamma -2 approximation assumption in that the same results should 
be expected. 

The approach taken in this thesis is based on empirical and heuristic 
considerations. It was felt that the model developed here represents 
nature more accurately in making an optimal choice than many other tools 
of the reservoir designer. Not only does it represent nature, but it 
also takes into account the economic considerations involved, which, for 

example, the method of Schwalen (1961) does not. 
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In conclusion, the following points have been demonstrated: 

1. For the Atterbury Experimental Watershed, a bivariate gamma 
distribution could not be rejected for the joint pdf of rain- 
fall depth xl and storm duration x2 of the storms observed 

over that area. 

2. The pdf of sediment yield for an individual storm is approxi- 
mately distributed as a 2- parameter gamma pdf. 

3. Since storms were found to arrive in a Poisson manner, the mean 
and variance of sediment yield for N seasons can be found 
without actually determining the pdf itself. 

4. Restricting the regions of integration to the most likely 
values proved to be a great help in reducing computer times. 
Any loss of accuracy was felt to be minimal in terms of 
computer time savings. 

5. The assumption that the distribution of Z is highly peaked may 
be justified due to the low coefficient of variation of the 
pdf. Furthermore, the variance decreases as more data are 
obtained with time. 

6. The use of a linear regression model to relate the lifetime 
mean and the rainfall -duration parameters, a and 3, was found 
to be acceptable because of the low residual sums of squares. 
Also, the error between the estimate with the largest deviation 
and the true value was approximately 2 percent. 

7. The optimal design sediment capacity for the Charleston Dam is 
approximately 127,570 acre -feet in a 100 -year period; that is, 
127,570 acre -feet should be allotted to sedimentation over that 
time in order that flood protection would not be diminished 
during the project lifetime. An estimate of 127,000 acre -feet 
was obtained as the optimum design, using the expected oppor- 
tunity loss method. This estimate served to verify the theory 
presented here. Thus, the two estimates indicate that the sedi- 
mentation allocation should be greater than previously thought. 
The calculation of the means with uncertainty and without uncer- 
tainty also supports this hypothesis. 
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NOTATION 

A Drainage area of watershed (square miles). 

a Alternative action or. decision (may also be used to repre- 
sent set of all possible decisions). 

a* Optional decision. 

ao Conversion constant (484A2(640)/12) . 

a1 Constant ( = 0.40). 

a2 Mean time of concentration of storm in hours. 

C Cropping- management factor. 

K Soil erodibility factor. 

Ku,Ko Coefficients of linear loss function. 

LS Slope length and gradient factor. 

Mean number of events per season. 

P Erosion control practice factor. 

Q Runoff volume in inches. 

qp Peak flow rate in cfs. 

S Watershed infiltration constant. 

xl Random variable of rainfall amount in inches (R). 

Random variable of storm duration in hours (D) . 

Z Sediment yield amount in acre -feet. 

Bayes estimate of mean sediment yield for the lifetime 
ayes 

distribution. 

a Parameter of f(x1,x2). 

ß Parameter of f(xl,x2). 

e Error bound on optimizing search accuracy. 

2 
ae,re Parameters of 2- parameter gamma pdf fe(Z). 

2 

u e'ce 
Mean and variance of single event distribution fe(Z). 
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2 

s'os 

PL( 
=27 

,QL2 

Pu(a,ß) 

A = <a,ß> 

f(xl,x2) 

f (Z) e- 

F (Z) e- 

fs(Z) 

f(Zla,ß) 

Mean and variance of seasonal distribution f (Z). 
s 

Mean and variance of lifetime distribution f(Zla,ß). 

Least squares regression line for Z. 

State variable vector. 

Joint bivariate gamma pdf of rainfall amount and storm 
duration. 

Probability density function of sediment yield Z for a 

single event. 

Cumulative distribution function of sediment yield Z for a 

single event. 

Probability density function of sediment yield Z for a 

single season. 

Lifetime probability density function of sediment yield Z. 

F(Z <a*),F(a*) Cumulative distribution of decision variable Z. 

LIKELIH(a,ß) Likelihood function of parameters a and ß, parameters of 
the joint pdf of rainfall and duration. 

L(a,A) 

EOL(a) 

PRIOR( A) 

Economic loss or goal function for alternative a, depending 
on state variable A. 

Expected opportunity loss for alternative a. 

Prior pdf of state variable A. 

POST(A I data) , 

f(A), 
POST(a,ßIdata) Posterior distribution of state variables. 

I(Z 
[0 ,a] ,, Ia,ß) Indicator function for f(Zla,ß) about Z. 
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