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ABSTRACT 

The model choice problem in Hydrology is illustrated 

by means of the optimum levee design for flat rivers along a 

confluence reach. Special attention is given to the selec- 

tion of a probability distribution for the joint flood 

stages. 

The optimality criterion used is the minimization of 

construction plus expected flood damage costs. The main 

assumption in the mathematical model is that the levee 

profile is uniquely determined as a function of the levee 

heights at the extremes of the reach; thus the problem is 

reduced to the determination of the optimum pair of extreme 

levee heights. 

The selection of a probability distribution of flood 

stages, from a set of distributions estimated from the 

partial duration series, is performed using either one of 

two selection procedures: likelihood of the Chi -square 

statistic and sample likelihoods. A composite distribution, 

taking into account the model uncertainty, is also derived. 

The methodology presented is applied to the re- 

modeling of the levee on the west bank of the Zagyva River, 

in Hungary. A sensitivity analysis is performed, using the 

best ranking distributions according to the two model choice 

xi 
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procedures. The composite distribution appears to offer a 

reasonable choice. 



CHAPTER 1 

INTRODUCTION 

The problem of determining the optimum levee design 

for flat rivers along a confluence reach is presented here, 

giving special attention to the selection of the hydrologic 

model. 

1.1 Summary 

After an introductory discussion of flood pro- 

tection methods and the uncertainties in engineering design, 

the emphasis of the study is focused on the design of levees 

in flat rivers and the selection of a bivariate pdf to 

synthesize the hydrologic aspects of the system. 

Chapter 2 is devoted to the analysis of the 

hydraulic, hydrologic, and economic aspects of flood pro- 

tection levees in flat rivers, under random backwater 

effects. This analysis leads to the statement of the basic 

assumptions, and to the definition of the three major compo- 

nents of the mathematical model for the determination of 

the optimum levee profile. The hydraulic component will 

give the water surface corresponding to any valid pair of 

water stages at both ends of the levee reach; the hydro- 

logic component gives the probability of.any valid pair of 

water stages; finally, the economic component gives the 

1 



2 

total yearly cost (TYC) for a levee design alternative, as 

the sum of the construction cost and the expected flood 

damages for that alternative. The interaction between the 

major components is defined by the goal function. The 

exploration of the computational aspects of the goal 

function leads to the mathematical expressions that will 

finally be used in the implementation of the model. 

Chapter 3 deals with the selection of a probability 

distribution for the hydrologic submodel. It begins with an 

introduction to the model choice problem and its importance, 

especially when extreme events are considered. The pdf's 

to be used in Chapter 4 are presented next, giving their 

functional form and the equations for parameter estimation. 

In the last part of this chapter, two model selection 

criteria are presented: likelihood of the Chi - square 

statistic and sample likelihoods. The use of goodness of 

fit tests for a preliminary reduction of the candidate set 

is also considered. This chapter is closed with the deriva- 

tion of a composite model consisting in the sum of several 

probability distributions, weighted by their sample likeli- 

hood. 

In Chapter 4, the mathematical model defined in 

Chapter 2, and the model selection procedures discussed in 

Chapter 3 are used to determine the optimal levee profile 

for the remodeling of the existing levee on the west bank 

of the Zagyva River in Hungary. 
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The transformation of raw data into functional 

parameters for the hydraulic and economic submodels is 

briefly explained. The implementation of the hydrologic 

submodel, by the application of the model choice procedures, 

is explained in detail. Next, the computational aspects of 

the evaluation of expected losses are studied, and a further 

simplification is introduced to the model. In the final 

sections of Chapter 4, a sensitivity analysis is performed, 

using the best ranking pdf's from the model selection part. 

The optimum decisions and the total yearly cost surfaces are 

presented for five different pdf's. The results lead to the 

conclusion that, since the model uncertainty can not be 

completely resolved, the composite model, that takes into 

account the model uncertainty, is perhaps the most appro- 

priate, especially since an expected value approach has been 

adopted in the definition of the goal function. 

1.2 Floods and Flood Control 

Rivers, a very valuable natural resource for 

humanity, also produce each year tremendous material damage 

and loss of human lives due to floods. Every nation faces, 

in relation to its rivers, two simultaneous goals: first, 

to derive the mbst benefit from its rivers and, second, to 

minimize the damages and losses caused by floods. The 

second goal is what is called flood protection. Yevjevich 

(1974) summarizes the following methods that can be used, 
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alone or in combination, to protect a community or any 

valuable land against flood damage. 

1. Reduction of the flood peaks by the use of reser- 

voirs. The idea is to keep the river flow within 

safe limits by storing the excess water in a reser- 

voir upstream of the protected area. 

2. Confinement of the flow within predetermined 

channels. It consists in building a barrier 

parallel to the river channel and between the river 

and the protected area. Two types of barriers are 

in use: levees, which are earth dikes built with 

materials available at the site, and flood walls, 

which are masonry or reinforced concrete structures 

built parallel to the river. Levees are widely used 

because of their low cost. However, since they 

require a large base width, due to their flat side 

slopes, the cost of the land occupied by the levee 

may become too high in populated areas. In such 

case, the use of flood walls could be a more eco- 

nomical alternative. To have ari idea of the size of 

these structures, we cite Van Ornum (1914) who 

presents a typical levee cross -section in the 

Mississippi River. Such levee is 6.10 m high and 

36.58 m wide at the base, with a volume of 125.28 

m3 /m. The largest embankment on the Tisza River 

(Hungary) has a volume of 10.273 m3 /m, the same 
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author reports. The levee reach along the Zagyva 

River (Hungary) has a length of 60.4 km (Bogardi, 

Duckstein, and Szidarovszky, 1975). 

3. Reduction of the flood stage by increased speed. 

The flow speed can be increased by cleaning and 

straightening the channel. 

4. Diversion of flood waters. This method, used by the 

Egyptians in the Nile River, consists in flooding a 

large, shallow valley to reduce the flood peak 

downstream. 

5.. Reduction of the runoff by land management. Re- 

forestation of the basin provides some storage 

capable of regulating small runoffs. However, it 

is not effective in case of heavy precipitation. 

6. Zoning. It consists in legally restricting the use 

of the flood plain. 

7. Evacuation. It proves to be an effective solution 

when a warning system is available and the value of 

the land does not justify a more expensive form of 

protection. It consists in the evacuation of 

persons, livestock, and commodities from the 

threatened area when there is a certain risk of 

flood. 

8. Null alternatives. That is, do not take any pre- 

ventive measure. 
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Generally, a combination of several of the above 

methods is used. In the present work, only the design of 

levees will be considered. 

1.3 Uncertainties in Engineering Design 

Any engineering design is the re'sult of a best com- 

promise among physical, economical, social, and legal 

factors. In the design of a flood protection system, for 

example, the input may include: physical constraints 

(terrain, strength of materials, flood regime), social re- 

quirements (recreational, ecological, risk to human life), 

economical constraints (costs,.damages, budgetary restric- 

tions, cash flow, effect on navigation), legal regulations 

(federal, state, and city codes), etc. The output consists 

in the optimum (under the constraints imposed) combination 

of flood protection methods and the engineering specifica- 

tions for each component of the system. 

In the input for the design process, the value of 

many of the parameters is not certain. Some of them will 

change along the lifespan of the project; others will remain 

constant but are only known approximately. Several authors, 

such as Wood, Rodriguez -Iturbe, and Schaacke (1974) and 

Benjamin and Cornell (1970), have classified uncertainty 

into: natural, parameter, and model uncertainty. Other 

authors go further and also consider: economic, tech- 

nological, and strategical uncertainty (Bogardi, 1975; 
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Duckstein et al., 1975; Duckstein and Simpson, 1975). A 

brief review of these uncertainties follows. 

1.3.1 Natural Uncertainty 

It is associated with the stochastic nature of 

complex phenomena. It is present, not only in natural 

processes, but also in economic, social, and, in general, 

all kinds of phenomena that are too complex to be predicted 

deterministically (Bogardi, 1975). 

To cope with natural uncertainty, it is necessary to 

treat the uncertain parameters as random variables, and a 

probability distribution (pdf) must be assigned to the un- 

certain design parameters. At this point, the following 

question comes to mind: Should all the uncertain variables 

be randomized? Benjamin and Cornell (1970, p. 1) say: "If 

the degree of variability is small and if the consequences 

of any variability are not significant, the engineer may 

choose to ignore it (the uncertainty) by simply assuming 

that the variable will be equal to the best available 

estimate." Only those variables with a wide variability and 

with significant consequences associated with such varia- 

tions should be randomized. In flood protection, for 

example, the maximum flood peak is a highly uncertain 

quantity. Since the degree of protection is very much based 

in such value, improper estimation of the maximum flood 

peak leads to a considerable extra cost in terms of damages 
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or over -design. To take into account the natural un- 

certainty in the flood peak, the optimum levee height (H *) 

can be chosen such that minimizes the expected net cost of 

the project. 

Z(H*) = min[ IL(H,h)f(h)dh +, K(H)], (1.1) 
H h 

where 

Z(H) = net cost, 

L(H,h) = losses for a flood of height h with levee 

height H, 

K(H) = construction cost of a levee of height H, and 

f(h)dh = pdf of h, the flood level. 

1.3.2 Parameter Uncertainty 

To account for the natural uncertainty, the 

designer adopts a probabilistic model to synthesize the 

behavior of the uncertain variable. Then he has to 

estimate the parameters of the probabilistic model from a 

finite sample. This leads to uncertainty in the distribu- 

tion parameters, because of the randomness of the sampling 

process, in which different samples will lead to different 

parameter estimates for the same phenomenon. This new 

source of uncertainty is called parameter or sample un- 

certainty. In Bayes Decision Theory (BDT), both the natural 

and the sample uncertainty are taken into account by using 

the expected value of f(h) given the sample, where f(h) is 

the pdf of the uncertain variables. In the previous 
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example, the optimum levee height taking into account the 

natural and the sample uncertainty will be H* such that: 

Z(H*) = min [IL (H,h) f (h) dh + K(H)l, (1. 2) 

H h 
where 

f (h) dh = If (h a) g (a) da, 

a = parameter vector of f(h), 

g(a) = prior pdf of a. 

All other parameters and variables were defined earlier 

in this section. 

1.3.3 Model Uncertainty 

A theoretical model is "a quantitative description 

of a physical phenomenon" (Smallwood, 1968, p. 333). Most 

models are unable to exactly mimic the phenomenon under 

study. Such mismatch between real and modeled behavior 

constitutes in itself a source of uncertainty. 

Some phenomena are simple enough to be represented 

by a deterministic model, i.e., a more or less complicated 

functional relationship between inputs and outputs. However, 

most natural and social phenomena are too complex to be 

synthesized in a deterministic manner and a probabilistic 

approach must be used instead. Essentially, a probabil- 

istic model gives the probability of occurrence for each 

possible outcome of the real phenomenon. 

The choice of a probabilistic model can be based on 

theoretical considerations or on empirical observation. For 
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example, it is known that a process resulting from the sum 

of many independent causes is related to the normal distri- 

bution, and that a lognormal model is more appropriate when 

a multiplicative effect instead of an additive one is 

present. When the "internal mechanism" of the process is 

not known, model choice must be based on empirical observa- 

tion, i.e., on the historical records. Very often the 

sample size available does not permit a precise discrimina- 

tion among several pdf's that could explain a phenomenon. 

A typical case is that of hydrological extreme events. 

Here, the sample is abundant in realizations close to the 

center of the pdf, but very little is known about the tails 

of the distribution --the extreme events. In such case, the 

modeller may have several pdf's that fit the data equally 

well (or bad). The lack of sample information to choose 

the "true" model is an additional source of uncertainty 

associated with probabilistic models. 

"In recent years, considerable progress has been 

made on the development of statistical procedures for 

discrimination among alternative models" (Wood et al., 1974, 

p. 231). However, most of the research has been oriented 

toward the area of econometrics where the model choice 

problem is most often in terms of which variables are to be 

included in a regression model. Nevertheless, several 

authors, Gaver and Geisel (1974); Atkinson (1970); 

Dumonceaux, Antle, and Haas (1972), among others, have 
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dealt with the model choice among different families of 

distributions. The classical or non -Bayesian procedures are 

usually oriented toward statistical testing of hypotheses. 

The drawbacks of the classical procedures have been pointed 

out by Wood et al. (1974). We mention: (1) the need to 

compare the models by pairs, (2) the low power of the tests 

for small sample sizes, and (3) classical procedures do not 

allow the economic assessment of the model uncertainty. 

The following statement by Gaver and Geisel (1974, p. 65) 

adds one more point to the list: 

If a model has a positive probability (of being 
the true model), it contributes to our knowledge of 
future observations and there is no reason to 
neglect this contribution. Procedures that select 
one model are thus seen as approximations undertaken 
for simplicity of view or ease of computation. 

Bayesian procedures have been applied to model choice in 

econometrics by Gaver and Geisel (1974). Smallwood (1968) 

presents a Bayesian framework for simultaneous consideration 

of several alternate models. Wood et al. (1974) apply 

Bayesian procedures to model selection in a flood protection 

problem. Further details on model selection will be given 

later in the present thesis. 

1.3.4 Economic Uncertainty 

Economic uncertainty is associated with our lack of 

knowledge about the value of economic parameters such as 

costs, losses, and benefits. Several authors consider the 

economic uncertainty as a part of the model uncertainty. We 
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presume this is so because they consider the model as the 

whole mathematical entity used to represent the problem. 

However, in the case of flood control, for example, the 

model has at least three very definite components: the 

hydrologic component, the hydraulic component, and the 

economic component; not to mention other components such as 

social, political, ecological, etc. Each one of these 

components is subject to the three basic uncertainties: 

natural, sample, and model uncertainty. Strictly speaking, 

then, when we refer to economic uncertainty, we should imply 

the natural, sample, or model uncertainty in the economic 

component of a larger model. We did not explore the realms 

of economics and econometrics to see what has been done to 

cope with uncertainty in economic models. In water re- 

sources applications, it is apparent that the three basic 

uncertainties have not been fully accounted for in the 

economic component of the models. 

ECUP, Economic Uncertainty Programming (Szidarovszky 

et al., 1976, in press) is a procedure that accounts for 

the economic uncertainity (more precisely, the natural un- 

certainty in the economics). ECUP is based on the fact that 

the loss and cost functions can be estimated only at 

discrete points in the decision space (the height of a 

levee for example). It assumes that these discrete points 

in the loss and cost functions are distributed as dependent 

joint normal variates, where the means are the estimated 
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points and the covariance matrix reflects the uncertainty 

in such estimates. Monte Carlo simulation is used to 

compute the empirical pdf of the optimum design. The use of 

the pdf of the optimum design, instead of a unique optimum, 

enables the decision maker to consider the uncertainty in- 

volved in the selection of the final design value. ECUP 

also permits the assessment of the economic uncertainty in 

monetary units, i.e., the expected opportunity loss and the 

value of perfect information may be easily computed. The 

hydrologic component in the mathematical formulation to 

compute the optimum design for every set of simulated 

economic values can take into account the natural and sample 

uncertainty in the hydrologic variables by any of the 

methods mentioned here in the previous section. 

This concludes a brief review of the uncertainties 

in engineering design. The present work will focus on un- 

certainty in the pdf that synthesizes the hydrologic aspects 

of the problem. The parameter and the economic uncertain- 

ties will not be considered; the natural uncertainty is 

implicitly considered by assuming randomness in the 

hydrologic aspects of the problem. 

1.4 Scope 

In the present work, an attempt will be made to 

resolve the hydrologic model uncertainty for a realistic 

situation. Namely, the optimum levee profile under 



14 

stochastic flow regime is determined for the levee reach at 

the Zagyva River along 60.4 kilometers before its confluence 

with the Tisza River, in Hungary. 



CHAPTER 2 

PROBLEM DEFINITION AND DESCRIPTION 
OF THE MODEL 

The problem under consideration is the determination 

of the optimum levee profile for flood protection along a 

confluence reach under random backwater conditions. The 

relevant characteristics of the problem are now considered. 

The location of the levee near a confluence means 

that the water surface curves along the reach will depend on 

the flows in the tributary and in the main river, along with 

the hydraulic characteristics of the channel and the flood 

plain. The latter can be assumed to be known and constant; 

the former are essentially of a random nature and must be 

treated as such in the decision process. The optimization 

aspect of the problem implies the search for the alternative 

that maximizes net benefits or, equivalently, that minimizes 

construction costs plus losses. Since only the quantifiable 

aspects of the problem are considered here, this is an 

optimum from the economic viewpoint only. It will have to 

be modified prior to its implementation, in order to satisfy 

social and political requirements that have not been 

included in the model. 

15 



2.1 Hydraulic and Structural 
Considerations 

The fact that the levee is near a confluence com- 

plicates somewhat the computation of surface curves due to 

the backwater effect. In this case, the water profile not 

only depends on the flow in the tributary but also on the 

flow in the main river. Assuming steady flow in both 

rivers, the water profile is defined by the differential 

equation (Kuiper, 1965): 

dh Q2 
dx gdx K2(h,x) 

16 

(2.1) 

where x is the horizontal distance from the mouth of the 

river, h is the water stage at x, Ti is the average velocity 

through the cross section at x, g is the acceleration of 

gravity, Q is the discharge of the tributary, and K(h,x) is 

the conveyance of the cross section at x. 

The solution of this equation with initial values 

(hm,ht) at the extremes of the reach uniquely determines the 

water surface curve corresponding to the pair (hm,ht). 

Depending on the difference ht - hm, the water surface curve 

can be concave upward (MI or "damping" curve) if (ht - hm) 

is less than Dh; or concave downward (M11 or "draw down" 

curve) if (ht - hm) is greater than or equal to Dh, where 

Dh is the altitude difference between the gauges where hm 

and ht are measured. The "draw down" curves are associated 
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with floods in the tributary, and the "damping" curves with 

floods in the main river. 

The solution of Equation (2.1) is a boundary value 

problem. However, since the discharge Q can be expressed as 

a function of the water stage at the upper end of the curve 

(ht), it can be transformed into an initial value problem. 

When the geometry of the channel and the conveyance function, 

K(h,x), are both particularly simple, the equation can be 

solved analytically by conventional methods such as power 

series (Szidarovszky, 1974), Piccard's iteration, or quasi - 

linearization (Bellman and Kalaba, 1965). In a natural 

channel, however, that simplicity is almost never enountered, 

and numerical methods must be used. General methods avail- 

able include: Runge Kutta methods, linear multistep, pre- 

dictor corrector methods (Ralston, 1965), and difference 

method (also known as step method) (Szidarovszky, 1974). 

There are also specialized graphical methods such as the 

Ezra and the Escoffier methods (Henderson, 1966). 

For a computer solution of the equation, graphical 

methods are ruled out for obvious reasons. The first three 

of the general methods above mentioned require the equation 

to be expressed in explicit form, and the right hand side of 

the (explicit) equation must be evaluated a large number of 

times. The step method, consisting in the numerical solu- 

tion of the finite difference form of the differential 

equation, is computationally simpler than the other methods 
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and the points (x) where the function is evaluated can be 

restricted to predetermined cross sections. It appears then 

that the step method is the best suited for the solution of 

Equation (2. 1) . 

Overtopping occurs when the flood level is higher at 

some point than the existing levee. It is the most 

important mode of failure and the only one to be considered 

here. Other modes of levee failure are: water saturation 

and loss of soil stability, boils and hydraulic soil 

failure, and wave action (Bogardi and Zoltán, 1968). In 

addition to flood stages, the alternate modes of failure 

depend on other flood parameters such as: flood exposure, 

duration of the flood wave, and wind. A more detailed model 

could take into account these and other aspects of the flood 

protection problem. 

2.2 Hydrologic Considerations 

The hydraulic component of the model will produce 

the water profile corresponding to any pair of stages 

(hm,ht). If the most adverse pair to occur during the life 

span of the project were known, the optimum levee profile 

could be easily determined. However, due to the random 

nature of the water stages, the most adverse pair cannot be 

predicted. It is generally uneconomical to build a levee 

capable of standing extremely large (and unlikely) floods. 

Instead, a smaller structure is constructed and a certain 
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risk of failure is thereby accepted. The degree of risk 

involved is a function of the designed capacity of the levee 

and the probability of floods that could exceed such 

capacity. 

The ignorance about future floods is by no means 

total. Historical records provide valuable information 

about the flood regime and are the basis for the estimation 

of probability distributions (pdf's) of flood frequencies 

and flood discharges. The most common form of flow records 

are periodic stages (annual, daily, etc.) and partial 

duration series. Instead of periodic records of flow 

stages, the partial duration series only show stages above a 

certain base level b. Such records are, consequently, event 

based in nature and automatically condition the type of 

probabilistic model that can be obtained, as event -based 

models. 

In the case of a confluence, it is natural to expect 

some degree of correlation between the discharges (and also 

the stages) of the two rivers. Consequently, simultaneous 

records are required in order to estimate the joint pdf of 

flood stages. Bivariate partial duration series consist of 

all pairs (hm,ht) such that either or both stages exceed the 

basic levels. The sample space of the bivariate partial 

duration series can be defined as follows: 

S = {(hm,ht):.hm>bm, .OR. ht>bt}, (2.2) 
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and it can be divided into the mutually exclusive and 

collectively exhaustive events: 

El = {(hm,ht) :hm >bm, ht <bt }, (2.3) 

E2 = {(hm,ht):hm >bm, ht >bt }, (2.4) 

E3 = {(hm ,h 
t 
):hm<bm, ht >bt }, (2.5) 

where b bt are the basic flow levels in the main river 

and the tributary, respectively. The conditional pdf's of 

joint flood stages: fl(hm,htJEl), f2(hm,htlE2), and 

f3(hm,ht1E3), can be estimated from the súbsamples cor- 

responding to events El, E2, and E3, respectively. Those 

pdf's completely synthesize the hydrology of the problem for 

the purposes of the present study. 

2.3 Economic Considerations 

The two essential components of any economic enter- 

prise, namely, investment and benefits, appear here as 

construction (and maintenance) costs and reduction of flood 

damages. An economically optimum alternative is sought such 

that maximizes the total net benefit or, equivalently, 

minimizes total net cost. 

It is assumed here that construction cost, as a 

function of the levee height, and flood damages, as a 

function of the water stage, are available for every cross 

section along the reach. Because of its dependence upon 

random water stages, the total damage for a given levee 
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alternative must also be treated as a random variable. 

Different levee alternatives will be compared in terms of 

their total expected cost, which is defined as follows 

(where the underline denotes vectors): 

TEC = C(G) + I L (G,H) f (H) dH (2.6) 
D 

- - .- 

where: 

G is the profile of the levee, 

H is the (random) water profile, 

f(H) is the pdf of the water profiles, 

L(G,H) is the damages caused by a flood H when the 

levee profile is G, 

C(G) is the yearly construction cost of the levee, and 

D is the domain of all possible values of H. 

Since the expected damages are expressed on a yearly basis, 

the construction cost, which is a "one time" expense, must 

also be reduced to a yearly basis. This is done by multi- 

plying the initial cost by the discount factor associated 

with the life of the project and a chosen interest rate. 

2.4 A Model for Optimum Development 

As a conclusion from the economics of the problem, 

the goal function can be expressed as: 

min{C(G) + IL (G,H) f (H) dH} . (2.7) 
G D 

All the elements of the goal function have been defined in 

Equation (2.6). 
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The difficulty in obtaining an analytical expression 

for H, the solution of Equation (2.1), dictates the dis- _ 

cretization of the water and levee profiles. H and G will 

then represent the n- vectors [gl,g2,...,gn] and [hl,h2,..., 

hn], respectively, where gi or hi are the levee or water 

profile heights at the i -th cross section located at a 

distance x. from the confluence. 
1 

The goal function adequately synthesizes all the 

properties of the model. The decision variables 
gl, 

...,gn 

are the levee heights at the n cross sections; the hydraulic 

variables and relations are imbedded in the total loss 

function L(G,H); the hydrologic component is present in the 

pdf of water profiles; finally, the economics appear in the 

cost and loss functions and in the form of the goal function 

itself. The different components of the model will now be 

analyzed in detail and finally assembled together into a 

complete model. 

2.4.1 Construction Cost 

Construction cost functions are available for each 

cross section. The total building cost for a levee 

alternative with profile G is given by: 

n 
C(G) = E ci (gi) . 

i=1 
(2.8) 

where ci(gi) is the construction cost function for cross 

section i. 
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2.4.2 Flood Losses 

Flood damage functions are also available for each 

cross section. The function li(gi,hi) gives the damages 

when the levee is overtopped at cross section i. Obviously, 

li (gi,hi) > 0 for h.>g., - 

= 0 for h.<1- g.. (2.9) 

It is important to stress the fact that the function li not 

only refers to damages in the vicinity of the failure but 

to the total area reachable by the flood waters from the 

point of failure. 

Bogardi et al. (1975) have defined the failure 

mechanism of a levee reach in flat rives as follows. Based 

on the assumption that the levee follows its corresponding 

water profile (in other words, the water surface curve with 

stages gl and gn at its extremes), the failure point is 

determined as the first overtopped cross section from up- 

stream for a flood with a draw down curve; and the first 

one from downstream for a flood with a damping curve. 

The first assumption is based in the fact that if 

there is a section of the levee that is below this "optimum" 

profile, the levee will fail, precisely at that section, 

for some pair of stages (hm,ht) such that hm <gm or ht<gt or 

both. Hence the levee is not providing as much protection 

as it could. On the other hand, if there is a section that 

is higher than the "optimum" profile, it represents an 



unnecessary expense because it does not increase the total 

reliability of the structure. 

Based on the above assumptions, the total loss 

function adopts the form: 

n 
L(G,.H) = E lk(gk,hk)tk(G,H), 

k=1 

where lk(gk,hk) is the flood damage function for cross 

section k, tk(G,H) is an indicator function such that: 

tk(G,H) = 1 if: ht - hm < Dh, and: 

hl<gi, h2<g2,...,171k-lgk-1' 
hk>gk, 
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(2.10) 

OR: ht - hm >Dh, and: 

hn<gn' h 
n- lgn -l' " ''hk +l--gk +1 

hk > gk 

= 0 otherwise. (2.11) 

2.4.3 Making the Goal Function Suitable 
for Numerical. Evaluation 

Replacing the cost and loss terms in the objective 

function (2.7), the following expression is obtained: 

n n 
min{ E ck(gk) + I[ E lk(gk,hk)tk(G,H)]f(H)dH} (2.12) 
G k=1 H k=1 

Based on the assumption that, for heights at the 

extremes (gl,gn), the optimum levee profile follows the 

water surface curve with the same extremes, a substantial 

simplification to the decision problem can be introduced. 
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Namely, the reduction of the set of decision variables from 

the n- element set: [gl,g2,...,gn] to the two -element set: 

[glgn]. Taking also into consideration that the ordinates 

hl,h2,...,hn of the water surface curve are functions of the 

extreme stages (hl,hn), the goal function can be expressed 

in the form: 

n 
min f E c 

k (gk (gl,gn) ) + f f [ 2 . 

(gl,gn) k=1 hnhl k=1 

lk [gk (gl,gn) ,hk (hl,hn) ] tk [G (g1,gn) ,H (h1,hn] ] ' 

f(h1 ,hn)dh1dhn}. (2.13) 

In the numerical evaluation of expression (2.13), 

the generation of water profiles by the step method, for 

each point in the double numerical integration of the 

expected losses, may render the problem computationally un- 

feasible if the number of cross sections is moderately 

large. Even for a computer solution, it is necessary to 

introduce additional simplifications. 

5zidarovszky, Duckstein, and Bogardi (1975) have 

proposed a simplification consisting in the evaluation of 

the hk's by the linear regression model: 

hk = akht 1- bk + ckhm (2.14) 

where hm and ht are equivalent to h1 and hn, and the co- 

efficients ak, bk, and ck are estimated by least squares 

from a large number of profiles generated by the step 
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method. This simplification will be adopted here for 

reasons of computational speed. The vector h will sub- 

sequently denote the pair (hm,ht). 

2.4.4 Use of the Conditional pdf's in the 
Evaluation of the Expected Damages 

It has been mentioned earlier that the partial 

duration series can be used to estimate the conditional 

pdf's: f1(hm,htlEl), f2(hm,ht,E2), and f3(hm,htjE3). Their 

role in the evaluation of expected damages will now be 

investigated. Note: In the remainder of this section, the 

notation e1,e2,e3 will be used to denote El,E2,E3 in order 

to avoid confusion with the expected value E[ ]. 

Let N. be the number of events e. that occur in one i 1 

year, and Pi(Ni =ni), i = 1,2,3, the probability that event 

ei occurs ni times in one year. Also let Si be the set of 

pairs (hm,ht) corresponding to event ei. The following 

assumptions are made: 

1. The number of yearly occurrences of the events are 

independent; i.e., P(N 
1 
,N 

2 
,N 

3 
) = P1(N1) P2 (N2) 

P3(N3) . 

2. The losses are time independent functions of the 

water stages h = (hm,ht) and do not depend on the 

number of events per year or the time between floods. 

3. The flood stages h = (hm,ht) are assumed to be 

independent sample elements from the same family, 

for each type of event. 



Given that there are n1 events e1 in a year, the 

losses associated with the n1 -tuple of water stage pairs 

(hl,h2,...,h 11) are: 

n1 

YL = E L(hi) . 

i=1 

The conditional expected losses are: 

E[YL1N1=n1] = I .. f [L(h1)+(L(h2)+. ..+L(hnl) 
] S1 S1 

- 

f[hl,h,...,hn1]d[hl,h2,...,hn1 

By assumption 3, 

E [YL I N1=n1] = I . . . I n1L [h] [fl () dh] nl 
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(2.15) 

n1-1 
_ . 

nl [I L(h)f 1 (h) dh] [I .,.f Ifl (h) dh] 1 ] 

S1 S1 S1 

= n 
1 
E 
1 
[L] , where E1[L] 

= f L(h)f1(h)dh (2.16) 
S1 

This result can be extended to all three events, so that: 

E [YL I Nì i] = niEi [L] For ni events eì (ì =1, 2, 3) in one 

year, the losses are: 

3 

(TYLIN1=n1,N2=n2,N3=n3) = E niEi[L] 
i=1 

The total expected yearly losses are: 

E[TYL] = E E E [ E nìEi[L]]P(nl,n2,n3) 
n1=0 n2=0 n3=0 i=1 



By assumption 1, 

E [TYL] = E E E [ E niEi [L] ] P1 (nl) 
n1=0 n2=0 n3=0 1=1 

P2 (n2) P3 (n3) . 

Finally: 

E [TYL] = E1 [L] E [N1] + E2 [L] E [N2 + E3 [L] E [N3] . 

28 

(2.17) 

In conclusion, the expected damages can be computed 

by means of the conditional pdf's and there is not even need 

to determine the distributions of the yearly frequency of 

the flood events. 

2.4.5 Final Form of the Goal Function 

After incorporating the results of the preceding 

section, the final form of the goal function is: 

n 3 

min { E ck [gk (gmgt) ]+ E E[Ni] f L[G (gm, gt) , 

(gm'gt) 
k=1 i=1 Si 

H (hm,ht) ] fi (hm,ht) dhmdht} (2.18) 

2.5 The Complete Model 

The three major components of the model, name]y 

hydraulic, hydrologic, and economic, have thus been 

analyzed in detail. They will be assembled, along with an 

integration and a minimization routine, into the complete 

model. The assemblage is shown in Figure 2.1. 
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CHAPTER 3 

SELECTION OF THE HYDROLOGIC SUBMODEL 

In the present chapter, the problem of choosing the 

appropriate pdf for the hydrologic component of the model 

will be considered. The pdf of flood magnitudes is, 

obviously, a decisive component of the total model, since 

the final results are expected to be heavily dependent upon 

the type of distribution used to compute the expected 

losses. 

3.1 Generalities 

Since extreme events are considered, and samples 

contain small number of realizations of them, the model un- 

certainty is large. Two pdf's may fit a sample relatively 

well, but their tails may differ substantially. Since the 

losses associated with higher flood levels are large, the 

discrepancy in the tails is amplified manyfold as it is 

multiplied by the losses. 

The choice of a pdf to represent a natural 

phenomenon can be made on a causal basis when, as a result 

of his knowledge about the internal mechanism of the 

phenomenon, the modeller can conclude that it follows a 

certain probabilisitic model. There are also situations 

where the model selection is based on convenience and 

30 
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computational tractability; or even may have been regulated 

by design standards. Finally, the choice may be based only 

on the information contained in the sample. This is the 

approach to be used here, and it will be discussed in 

greater detail in the following paragraphs. 

3.1.1 Model Selection from 
Sample Information 

Given a sample of flood events, the problem is to 

determine the probability density function (pdf) that best 

models the phenomenon where the sample was taken from. This 

pdf will be used to predict the relevant aspects of the 

process in order to take some decision based on such pre- 

dictions. 

The simplest approach is to take the sample relative 

frequencies as the pdf itself. This is equivalent to assume 

that the future. will be like the past. Even for very large 

samples (uncommon in hydrologic problems), this approach 

has at least three serious drawbacks: (1) it ignores changes 

in the flow regime due to developments in the basin and in 

the river itself (for example urbanization, deforestation, 

and dredging); (2) it also ignores long term natural trends 

such as long term climatic changes; and (3) discrete records 

can produce serious distortions in the model, especially 

toward the tails. For example, if in the "true" model the 

probability of a flood between 50,000 and 60,000 cu ft /sec 

is .001, one occurrence of such a flood in a 100 year sample 
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would make this probability equal to .01, that is, ten 

times larger. 

A more rational approach is to assume that the 

"true" model belongs to one of the well known families of 

distributions, such as the normal, lognormal, gamma, etc. 

Once a set of candidate families has been decided upon, the 

parameters for one pdf of each family can be obtained by 

estimation methods such as maximum likelihood or the method 

of moments. Then, the selection of the "best" pdf can be 

based, for example, on how well it fits the sample. 

In relation to model choice, Wood et al. (1974, p. 

27) raise an important point: "Most hydrologic processes 

are so complex that no model yet devised may be the true 

model or that no hydrologic events follow one particular 

model." Consequently, it could be reasonably expected that 

a combination of models, for example a weighted sum bf 

individual pdf's from different families, would better 

"explain" the hydrologic process, than does a unique well 

known pdf. 

In the present work, pdf's from different families 

will be fitted to the historical records, and a composite 

model, consisting in the sum of the individual pdf's 

weighted by their sample likelihood, will also be con- 

structed. Some bivariate distributions (with non -zero 

correlation coefficient) will be used; but, since the 

sample correlation coefficient is low, independence will be 
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assumed in other models by taking the product of their 

marginal pdf's. The candidate distributions to be used, 

along with the estimators for their parameters, will now be 

presented. 

3.2 Distributions to be Used 

In the case study of the Zagyva River, considered in 

Chapter 4, several candidate distributions are selected in 

basis to the shape of the marginal histogram. This section 

presents the functional form of those distributions and 

their parameter estimators. The known base stages, bm and 

bt, of the partial duration series (see section 2.2) will be 

used as the "shift" or location parameter for distributions 

such as the lognormal or the exponential. The variables x 

and y will be used subsequently instead of hm and ht; also, 

E[.] and DT[.] stand for expected value and standard 

deviation, respectively. 

3.2.1 Lognormal Distribution 

The three parameter lognormal pdf (Johnson and Kotz, 

1970a, p. 112) has the form: 

f (x; 0, , 6) = ( 27 (x-0)6)lexp (-.5 [log (x-0) -c] 2/62) 

x > 0 (3.1) 

where 0 is the location parameter, 

C = E[log(x-0)], 

a = DT[log(x-0)]. 

(3.2) 

(3.3) 



For 0 known, the maximum likelihood estimators (MLE) of E 

and a are: 

= n-1 Elog(xi-0) 

6 = (n lE [log (xi-0) - 2) 1/2 
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(3.4) 

(3.5) 

3.2.2 Exponential Distribution 

The exponential distribution with two parameters 

(Johnson and Kotz, 1970a, p. 207) has the form: 

f(x ;A,0) = X- 1exp[- (x- 0)/a], x >0, X >0. (3.6) 

Where 0 is the location parameter, and X = E[x -0]. For 0 

known, the MLE for X is: 

a = n-1E(xi-0). (3.7) 

3.2.3 Gamma Distribution 

The gamma distribution (Johnson and Kotz, 1970a, 

p. 166) has the form: 

f(-.;a,ß.Y) = (x-Y)a-1 
exp[_(x-(x 

ß I' (a) 

x > y, a > 0, ß > 0. 

(3.8) 

Assuming that the parameter y is known, the MLE for a and 

are obtained by solving the equations: 

n-1[Elog(xi-Y)] = logP+4)(â) (3.9) 

log(x-y) = log(â) + log(ß), (3.10) 

where y') (a) = 
da 

[log (r [a]) ] (the "digamma" function) . 
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3.2.4 Beta Distribution 

Although the beta distribution does not have a tail, 

it will surely be useful as the marginal of ht in the 

conditional pdf: f(hm,htlE1) (cf. Chapter 2). The beta 

distribution (Johnson and Kotz, 1970b, p. 37) has the form: 

f (x; ab,p,g) = [B (p,g) (b-a) 
p+g-1] -1 (x-a) p-1 (b-x) q-1 

for: a<x<b; p>0; q>0; B(p,g) = 
r(P)r(q) (3.11) 

r(p+q) 

For a and b known, the MLE of p and q are obtained by 

solving the equations: 

-1 X. 

(p) - (p+g) = n Flog (b a) 

b-x. 
tp (q) - tp (p+q) = n -1F,log (b _ u.' 

where ii(.) represents the "psi" or "digama" function. 

3.2.5 Noimal Distribution 

The normal distribution (Johnson and Kotz, 1970a, 

p. 40) has the f.olm: 

f(x;u,cs) = [ 2Tr6]-_lexp[-.5(x-u)2/62]. 

The MLE for p and u are: 

Û = n-l(xi) 
(n-1E 2)1/2 2 

(3.14) 
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3.2.6 Truncated Normal Distribution 

Based on the fact that only flood magnitudes above 

a base level are being considered, it seems reasonable to 

expect that the tail of a normal distribution would fit the 

sample fairly well. The truncated normal distribution is 

then a common normal pdf, but defined only for values of x 

above certain value xL and multiplied by a normalizing 

constant. The distribution has the form: 

f (x. xL, u, cs) 

where: 

[K 2TQ]-lexp [-.5 (x-u) 26-2] 
, xL<x<co 

0, oo<x < xL 

(3.17) 

K = f 
(27).5exp(-.5u2)du, zL = (xT-u)/6. 

zL 

For known xL, the following equations, relating the first 

to moments, pi and u2, of the truncated distribution to the 

mean and variance of the complete distribution, can be 

obtained: 

Pi = [f (xL,u,6) /F(xL,u,c) ] + p (1) (3.18) 

u2 = (GxL +ep) [f(xi /p,a) /F(xL,u,a) +a2 +u2, (3.19) 

where 

f (xL, U, 6 ) = exp [-. 5 (xL-u) 2/62 ] /fTo 

(X) 

F(xL,u,6) = f f(u,a,cs)du. 
L 
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3.2.7 Bivariate Gamma Distribution 

In the literature, several forms of three -parameter 

bivariata gamma distributions can be found (see, for 

example, Mardia, 1970; or Johnson and Kotz, 1972). Ghirtis 

(1967) presents a method for estimation of parameters of the 

five parameter form of the "Double Gamma" distribution 

introduced by David and Fix (1961). The five parameter 

double gamma distribution (Ghirtis, 1967) has the form: 

f (x,y; ab, c, a, u) = 

k-lexp [- á- 
u] 

fu a-1 (x-au) b-1 c-leudu 
0 

where: 

k = abucT(a)r(b)r(c) 

m = minfx /A,y /p] 

a,b,c,A,p > 0 

x > 0, y > 0. 

The parameters a,b,c,A, and p can be computed by the 

equations ( Ghirtis, 1967): 

= k20/k10 

k02/k01 

a 
= k11k10k01/k20k02 

= k0/k20 - â 

c = k01/k02 - â 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

(3.25) 

Where k1. 
,. 3 

is the i,j -th cummulant of the population and can 

be estimated by the Fisher's bivariate k statistics: 



k10 = S10/n 

k20 = (n-1) -1 S10/n) 

kll = (n-1)-1(S11 - 
S10S01/n)' Sij = Exlyj. 

3.2.8 Truncated Bivariate 
Normal Distribution 

The truncated bivariate normal distribution, for y 

truncated at yL, has the form: 

f(x,Y;uxay ,a x ra y ,pYL) = 

exp [-. 5 ( z2-2pzw+w2) / (1-p2) ]/ (21rkaxay1-p2) 
where 

co 

k = I exp[-.5(z2-2pzw+w2)/(1-p2)]dY/(2rraa l-p2) 
Y YL 

z = (x - ux)/ax 

w = (Y - y) /ay 
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(3.26) 

Des Raj (1952) presents the following equations to compute 

the MLE of the parameters px, uy, ax, ay, and p, when the 

truncation point, yL, is known. 

v02 = aÿ(1- k'(zl -k')) 

v01 = ay(zl - k') 

Uy = YL - k'ay 

ux +. (z 
1 

) pax - v10 = 0 

(3.27) 

(3.28) 

(3.29) 

(3.30 



6y(z1 - 
x 

+ aypa 
x 

- v11 = O 

62 = 
v20 

- x(ux+2p6xz1) - (pQx)2k'z1 , 
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(3.31) 

(3.32) 

where via is the ij -th sample moment about the truncation, 

k' = (YL - uy)/Gy 

zl = 4)(M)/[1. - J (t)dt] 
k' 

(t) = (2;r) 
5eXp 

[ 5t2] . 

3.2.9 Truncated Bivariate 
Lognormal Distribution 

The truncated bivariate lognormal distribution for 

y truncated at yL has the form: 

f(x,Y;ex,ey,Ex, Ey,6x,6y,p,YL) = 

exp [-.5 (z2-2pzw+w2) / (1-P 
2 
)]/[k-0 ) (Y-0y) 0-x6y27kvl-p2J 

Ox < x < cc, ey < yL < y < (3.33) 

where 

z = (log(x-ex)-x)/ax 

w = (log (Y-Cy ) -) 
/6Y 

= E[log(x-Ox)] 

= E [log (y-Oy) ] 

ßx = 6 [log (x-Ox) ] 
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csy = cs[log(y-0y) ] 

7 
exp(-u2/2) du 

k = I , with zL = (log(yL-0y) - y)/cy- 
zL /TIT - 

For known yL and location parameters, 0x and 0y, the 

parameters Ex, ;y, ßx, 6y, and p can be computed as in the 

truncated bivariate normal after making the transformation; 

x' = log(x - Ox) (3.34) 

y' = log(y - 0y). (3.35) 

3.3 Criteria for Model Selection 

The point has finally been reached where a set of 

distributions is available to choose from. Each pdf belongs 

to a different family and, when its parameters have been 

estimated by the method of maximum likelihood, it is the 

most likely source of the data in the sample, given that 

the model space is restricted to that particular family 

When confronted with the data, some of the candidates will 

show such poor fits that they could be discarded at once. 

More powerful tools will be required, however, to discrimi- 

nate between those models that fit the sample equally well. 

A review of the most relevant methods for the purposes of 

the present work is presented in the following sections. 
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3..3.1 Goodness of Fit 

Several model verification methods are based in 

"goodness of fit" criteria; that is, a comparison between 

the relative frequencies contained in the sample (histogram) 

and those predicted by the hypothesized model. A quick 

visual comparison of the histogram and the (discretized) pdf 

may point out enough discrepancy to reject the model. 

Except for obvious or extreme cases, the subjective 

judgment involved makes this method inappropriate. 

Statistical goodness of fit tests constitute a more 

objective and precise way to measure discrepancies between 

the model and the sample. The Chi square and the Kolmogorov- 

Smirnov (KS) are the most widely used goodness of fit tests. 

(A very good presentation on the application of these tests 

can be found in Benjamin and Cornell, 1970, Chapter 4.) 

Actually, these tests are not designed for model choice, but 

to test statistical hypotheses of the form: "The random 

variable x is distributed fo(x;0o) "; where fo is a partic- 

ular pdf, and Oo is a point in its parameter space. 

The Chi square goodness of fit test is based on the 

statistic: 

where 

k (Ni-nPi)2 
D = E 

i=1 
nP. 

i 

Ni = the number of sample points in interval I., 
J 

Pi xfl. 
fo(x;0o)dx, and 

J 

(3.36) 
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n = the sample size. 

For: k = number of intervals, p = number of parameters 

estimated from the sample, the statistic D is approximately 

distributed Chi square with k - p - 1 degrees of freedom. 

The Kolmogorov- Smirnov goodness of fit test is 

based on the statistic: 

D = Max¡Fn(x) - F(x) I, (3.37) 

where Fn(x) is the sample cumulative distribution function, 

and F(x) is the hypothesized CDF (cumulative distribution 

function). The KS goodness of fit test has the advantage 

that it does not recuire the définition of a priori 

intervals, as in the Chi square test. On the other hand, it 

should only be used for continuous univariate distributions, 

and when the distribution has been obtained independently of 

the sample. (In other words, the sample can not be used to 

estimate the parameters of the distribution.) When the 

parameters have been estimated from the sample, the critical 

(rejection) value should be smaller (Benjamin and Cornell, 

1970, p. 488). 

In the Chi square and the Kolmogorov -Smirnov 

goodness of fit tests, the null and the alternative 

hypotheses take the form: 

Ho: x is distributed fo(x;0o), 

Hl: x is not distributed fo(x;0o), 

and the critical region is: D > c. The computation of the 
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type I error, P(D > clHo) is a simple matter. However, 

since the alternative hypothesis is in a very general form, 

the type II error, P(D < ctH1), can not be computed. 

Although the goodness of fit tests are not intended 

for discrimination between models, they can be used for a 

"preliminary screening" of the set of candidate pdf's to 

discard those that are rejected at a given significance 

level (say, 5%). 

3.3.2 Most Likely Value of the 
Goodness of Fit Statistic 

Benjamin and Cornell (1970) suggest the use of the 

Chi square statistic as a tool for model choice by selecting 

the model for which the likelihood of the observed value of 

the corresponding closeness -of -fit statistic is largest. 

Such value is more related to the mode of the Chi square pdf 

than to the miniumum value of the statistic. This criterion 

is based on the fact that the minimum value of the Chi 

square statistic is not the most likely outcome (except for 

the distribution with two degrees of freedom, where it is 

zero). In order to compare models using this criterion, it 

is necessary to have the same number of degrees of freedom 

for all models. 

3.3.3 A Composite Model Based 
on Sample Likelihoods 

Wood et al. (1974) have used the sample likelihoods 

to account for model uncertainty within a Bayesian 



framework. They formulated the following composite model: 

K. 
f(q) = EK* P' (0i =1) ii (q), 

where 

fi(q) = the "Bayesian Distribution" given model i, 

= 1 if f. is the true model, 
O. { 

= 0 otherwise, 
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(3.38) 

P'(ei =1) is the prior probability of fi being the true 

model, 

Ki is the marginal likelihood function of the observa- 

tions for model i. 

For A = Model parameters, 

K. = If(gIAi,Mi) f(Ai1Mi) dA. 

K* = EKi'P'(ei=1). 

A Bayesian approach has not been attempted here 

because of the complexity of the Bayesian distribution in 

the bivariate case. (The Bayesian distribution takes into 

account the parameter uncertainty.) Nevertheless, a similar 

composite model can be developed without taking into account 

the parameter uncertainty. 

Let: 

f(x10) = E 0kfk (x) 
k=1 

so that the composite model has the form: 

f(x) = !f(xI0)f(0)d0, 

where 0 is an m vector such that: 

(3.39) 



and 

Ok 
{ 

= 0 otherwise 

= 1 if fk(x) is the true model, 

m 
E 0= 1. 

k=1 
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Notice that this definition reduces the possible values of 

0 to: 100...0, 010...0, 001...0, ..., 000...1. The likeli- 

hood function given a sample .. is: 

n m 
L(xI 0) = lI [ E 0kfk(xi) 

] 

i=1 k=1 

_ E Ok [Efk (x.)] 
k i 

= E OkLk () . 

k 

Notice that there are no crossproducts because of the 

restrictions imposed on 0. Also, Lk(x) is the sample 

likelihood for model k. 

Let the prior pdf of a be: 

m 
V(0) = E O.p' (0.=1) , 

i=1 

(3.40) 

(3.41) 

where p'(0 =1) is the prior probability of model i. Given 

a sample x = (xl,x2,...,xn), the prior pdf of O can be 

updated using Bayes Theorem: 

f"(0Ix) f(x101 f.' (0) 

f (x) 

L(xI0) f' (0) 
If(x10)f' (0`d0 



where 

[EOiLi (x)] ' [EOlP' (Oi=1) ] - 
I [EOlLi (x) ] ' [EOiP' (Oi=1) ] dO 

O.L. E (x) P' (Oi=1) 

L. (x) P' ( Oi=1) 

= EOiP" (0i=1) 

L. (x) 'P' (0.=1) 
- P"(8i=1) - 
- 
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(3.42) 

are the posterior model probabilities. 

The composite model can now be updated by replacing 

thr posterior pdf of 0: 

f(x) = f (xt0)f "(0)d0 

= 1 1 E 0 . [EO . P" (Oi =1) ] dO 

= Ef. (x)P" (Oi =1) . 

So the composite model is a linear combination of the 

(3.43) 

candidate models, weighted by their posterior probabilities. 

In the case of equal prior model probabilities P'(0i= 1) =P', 

(reflecting perhaps a state of total ignorance about the 

true model) the posterior model probabilities become: 

P" ( Oi=1) = 
EL (x) 

i - 

Li (x) 
(3.44) 

that is, proportional to the sample likelihood given that 

each model is the true model. 
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3..3.4 Use of Sample Likelihoods 
for Model Selection 

In addition to the composite model, the performance 

of the posterior model probabilities P "(Oi =l) will be 

studied here, as a criterion for ranking the competing 

models for selection. At this point, the choice is not 

among families of distributions but, rather, among the 

pdf's with the maximum sample likelihood from each family. 

Hence, the pdf so chosen has the maximum sample likelihood 

ai»ang all the possible pdf's in all the families con- 

sidered. This does not intend to be a proof that it is the 

best model; but at least an intuitive argument in its 

favor. 



CHAPTER 4 

NUMERICAL RESULTS 

The general model defined in Chapter 2 and the model 

selection procedures described in Chapter 3 will now be 

applied to the case of the optimum levee profile for the 

Zagyva River, an important tributary of the Tisza River, 

both located in Hungarian territory. The low lands to the 

west of the Zagyva River are protected by a 60.4 km levee 

reach between the Jasztelek gaging station and the mouth in 

the Tisza River, at Szolnok. The existing levee, shown in 

Figure 4.21 (p. 92), does not follow a water surface. The 

implementation of the model will take into account that when 

the existing levee is higher than the proposed one, the 

existing height should be used. The average slope between 

the two ends of the reach is .01%. 

Wetted cross sectional areas and hydraulic radii 

have been determined for 49 cross sections along the reach. 

Construction costs and flood losses for different levee 

heights are also available for each cross section 

(Szidarovszky et al., 1975; Bogardi et al., 1975; 

Szidarovszky and Yakowitz, 1976). 

48 
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4.1 Implementation of the Hydraulic 
and Economic Submodels 

The hydraulic infoLmation to be used in the genera- 

tion of water surface profiles has been synthesized by 

Szidarovsz'.y et al. (1975) in a linear regression model that 

gives the water level at each cross section as a function of 

the water levels at the ends of the reach (see Equation 

[2.14]). Two different sets of regression coefficients are 

used depending on the type of water surface curve: concave 

upward or "damping," when (ht -hm) < 6.5m; concave downward 

or "draw down" when (ht -hm) > 6.5m; where 6.5m is the 

altitude difference between the two gaging stations at both 

ends of the reach. Tables A.l and A.2 show a listing of 

the coefficients ak, bk, and ck for damping and draw down 

surface curves. 

The economic submodel has been implemented with the 

construction costs and flood damage data used by Bogardi et 

al. (1975). Two modifications, however, have been 

introduced: (1) instead of piecewise linear functions, 

quadratic functions have been fitted to the data, and (2) 

the damage functions have been extrapolated beyond existing 

data by fitting them to a square root function. The 

damage functions have then the form: 

f (h) = 

ah` + bh + c, h < - 2á - d, a < 0, 

(h - e) ' S + g, h > - b - d 
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where h is- the levee height, and a, b, c, d are known 

constants (obtained from the damage data), and, 

e = - 2a 
- [4a(- 

2á 
- d) -F 2b]-.5 

g = f(- 
2a 

- d) - (- 
zá 

- d - e) . 

Figures 4.1 and 4.2 show typical cost and damage functions. 

The cost and damage coefficients are listed in Tables A.3 

and A.4 respectively. 

4.2 Imp_.mentation of the Hydrologic 
Submodel 

The hydrologic submodel consists in the joint 

probability density function of flood magnitudes. A set of 

candidate pdf's will be determined from the historic records 

and the methods discussed in Chapter 3 will be applied for 

the selection of one pdf. A composite model, combining 

some of the candidate pdf's will also be constructed. 

4.2.1 The Sample 

The joint partial duration series for 36 years is 

available. Figure 4.3 shows a plot of the 68 sam points 

and Table A.5 presents a listing of the sample. It is 

important to realize that the sample only contains pairs 

(x,y) of water stages at both ends of the reach such that 

x > XL and /or y > YL, where XL = 85.95m and YL = 91.04m are 

the base levels. In other words, a simultaneous reading was 
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taken only if the water surface was above the base level in 

the tributary and /or in the main river. 

This sample space is, in fact, a subset of the set 

of all possible values of (x,y), and it could be considered 

as an "L- shaped" tail of a bivariate distribution. An un- 

successful attempt was made to estimate the underlying 

( "complete ") distribution from such "L- shaped" truncated 

sample. As an alternative, it was shown in Chapter 2 how 

the sample space can be divided into two or more events, so 

that the joint magnitude pdf's, conditional upon the 

occurrence of such events, can be computed. It was, then, 

decided to divide the sample space into two subsets (see 

Figure 4.3): event El, corresponding to flood in the main 

river only; and event E2, corresponding to floods in the 

tributary. The sample contains 21 occurrences of event El 

and 47 occurrences of event E2. Hence, the expected number 

of events per year can be estimated as: 

E[N1] = 21/36 = .58333, (4.1) 

E[N2] = 47/36 = 1.3056. (4.2) 

4.2.2 Candidate pdf's 

After consideration of the marginal sample histo- 

grams, it was decided to fit a number of pdf's to the 

sample at hand. Since the sample correlation coefficients 

are small (less than .10) both bivariate pdf's and products 

of independent marginal pdf's 'will be used. The equations 
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for estimation of parameters have been presented in Chapter 

3. It will be noticed that the two sets of candidates are 

not identical. The candidate pdf's were selected in basis 

to the shape of the marginal histograms. The pdf's to be 

used and their estimated parameters are presented in Tables 

4.1 and 4.2. 

4.2.3 Goodness of Fit Tests 

Using r-. a (probability of type I error) of 5%, 

univariate Chi- square tests were run for the marginal pdf's. 

The results of these tests are shown in Table 4.3. Based on 

the results of these tests, the set of candidate pdf's will 

be reduced to those not rejected at the 5% level. It is 

important to mention that the Kolmogorov -Smirnov test did 

rit show enough discriminatory power in this particular 

situation. Using the K -S test, none of the candidate 

marginals is rejected at the 5% le,_l. 

Using an a of 5%, bivariate Chi- square tests were 

run for the products of the non- rejected marginals, and for 

the bivariate distributions. Tables 4.4 and 4.5 show the 

results of these tests and also the abbreviations to be used 

subsequently in this text. It can be concluded from Tables 

4.3 through 4.5 that this case study has too few degrees of 

freedom to make any valid inference; nevertheless, the 

methodology is illustrated. 
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Table 4.4. Results of Bivariate Chi - square Tests for 
Candidate pdf's to f (x, y 1 El) -- Abbreviated 
names also given. 

Abbreviation Y,2 stat. D.F. Reject 

Product of independent marginals 

fx(x1El).fy(171E1) : 

Exponential.Lognormal 
Exponential.Exponential 
Exponential.Gamma 
Exponential.Beta 
Beta.Loanorma1 
Beta.Exponential 
Beta,G=a 
Beta.Beta 

f (x,yIEl) : 

Bivariate Lognormal 
Doubt=_: Gamma 

E.L 6.622 4 No 
E.E 6.518 5 No 
E.G 4.715 4 No 
E.B 4.069 4 No 
B.L 5.296 3 No 
B.E 5.253 4 No 
B.G 3.389 3 No 
B.B 

Bivariat:e pdf' 

2.872 3 No 

BVL, 5.715 2 No 
DBG 4.272 2 No 
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Table 4.5. Results of Bivariate Chi -square Tests for 
Candidate pdf's to f(x,yIE2) -- Abbreviated 
names also given. 

Abbreviation x2 stat. D.F. Reject 

Product of independert marninals 

fx(x¡E2).Fy(YIE2): 

Normal.Lognormal N.L 

Nor.mal. Truncated- 
Lognormal N.TL 

Normal.Gamma N.G 

Norma.l. Truncated- 
Normal N.TN 

Bivariate Dd.f_'s 

f(x,yIE2): 

Bivariate Normal BVN 

Bivariate Lognormal BVL 

13.752 9 No 

9,214 9 No 

10.374 9 No 

10.064 9 No 

8.736 8 No 

14.293 8 No 
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4.2.4 Selection of the "Best" pdf 

There were initially, 18 candidate pdf's for 

f(x,yIEl) and 14 pdf's for f(x,yIE2). By the use of 

goodness of fit tests, these sets have been reduced to 10 

and 6 candidates, respectively. Two different criteria 

will be now used to select the "best" pdf, namely, sample 

likelihoods and likelihood of the Chi -square statistic. 

Finally, a composite model as defined in Chapter 3 will be 

constructed. 

4.2.4.1 Likelihood of the Bivariate Chi -Square 

Sta =..stic. Bivariate Chi- square statistics were recomputed 

for the non -rejected pdf's in order to have the same number 

of degrees of freedom in each group: the Chi- squ ;re 

statistics for the candidates of f(x,yjEl)- have three 

degrees of freedom, and those of f(x,y1E2) have eight 

degrees of freedom. Tables 4.6 and 4.7 present the Chi - 

square statistic for each candidate and its corresponding 

value of the ordinate in the Chi - square pdf with three or 

eight degrees of freedom, for f (x,y ¡E1) and f (x,y 1 E2) , 

respectively. According to these tables, the models 

beta-beta for f(x,y1El) and normal truncated lognormal for 

f(x,y'E2) should be selected as the "best" models. 

4.2.4.2 Sample Likelihoods. Weights for each 

model were computed according to the definition given in 

Chapter 3 (Equation [3.44]) and are presented in Table 4.8. 
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Table 4.8. Weights for Candidate pdf's Based on Sample 
Likelihoods 
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f (x,ylEl) f (x,yIE2) 

pdf weiç:' t pdf weight 

E.L .0167 N.L .1433 

E.E .0025 N.TL .129E' 

E.G .0123 N.G .4586 

E.B .0084 N.TN .0173 

B.L .3721 BVN .2496 

B.E .0536 BVL .0018 

B.G .2657 

B,B .1769 

BVL .0709 

DBG .0210 

Normalizing factor is: Normalizing factor is: 

ELk = 4.37551 E-14 ELk = 9.8024624 E-59 
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According to Table 4.8, the models beta-lognormal for 

f(x,y1El) and normal gamma for f(x,y1E2) should be selected 

as the "bes " models. 

4.7.4.3 A Composite Model. A composite model can 

now be defined according to expression (3.43). Disregarding 

the models with weight less than .05, and readjusting the 

weights so that they add up to 1.00 the following composite 

models are obtained: 

fc(x,y1El) = .42fB.L + .30fB.G + .20fB.B + .08fBVL 

fc(x,y1E2) _ .15fN.L .47fN.G .25fBVN 
+ .13fN.TL 

where the subindices are the abbreviations used to name the 

candidate models (see Tables 4.4 and 4.5). 

4.2.5 Summary and Remarks 
on Model Select._ on 

Two sets of pdf's (for f (x,y (El) and f (x,y ¡ E2) were 

studied in order to determine the most appropriate model, 

given the sample at hand. After eliminating those pdf's 

that were rejected at the 5% level with the Chi- square test, 

two criteria were used to rank the remaining candidate 

models: the likelihood of the Chi- square statistics and 

the sample likelihoods. Figure 4.4 presents the relative 

ranking of the pdf's for the two choice criteria. The 

rat'igs shown were obtained in the following manner: for 

each set of pdf's and for each choice criterion, a rating 
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f (x ,y IEi) f. (x ,y 11.2) 

') Sample ., Sar:il)le 
X- Likelihood X` I ikelihL, d 

r-B B. L 1. 0 --N . TL -N. G 1. 0 B. B 
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0.6- 

0.5 

0.4 
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0. 0- 

0011, 

-N. L. 

rT., `r 
1) 1. 

Figure 4.4. Relative Ranking of Candidate pdf's 
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between 0 and 1 was obtained for each element of the set by 

dividing its index (Chi- square probability or sample likeli- 

hood weight) by the greatest index in the set, for the 

criterion considered. Table 4.4 could also be viewed as a 

multicriteria decision problem. It would be interesting to 

apply some of the existing methods (euch as ELECTRE, 

Be;youun, Roy, and Sussmann, 1966) to make a selection under 

the two criteria simultaneously. 

It can be concluded from Figure 4.4 that the two 

choice criteria considerably disagree. Two factors seem to 

have contributed to this result. First, the small sample 

size used, especially for event El. A five -parameter 

bivariat distribution requires at least 7 cells to be 

defined in the sample space for the application of the Chi - 

square test. For a sample of 21 points, the requirement of 

having at le-; st, 5 points per cell cannot be et. This 

situation makes the results of the Chi - square tests rather 

unreliable. Again, the example is for illustrative 

purposes only. A second factor that may bias the results 

of the Chi - square test is the arbitrariness in the defini- 

tion of the cells. It could perfectly happen that a given 

arrangement of cells might favor a particular pdf or group 

of pdf`s and disfavor others. It was also realized that the 

sample likelihoods are extremely sensitive to errors in the 

normalizing constants (commonly used in the truncated 

models). A 1% error in such constant, making the computed 
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probabilities 1% larger, will double the sample likelihood 

in a sample of 70 points. This will erroneously increase 

the degree of importance of a model. 

It also appears from the result that the sample 

likelihoods have a better ability to discriminate between 

models. This is well illustrated in Table 4.6, where for 

f(x,ylE.) only three models out of ten have a weight 

greater than .10. This ability to reduce the choice set in 

a very definite manner is a desirable feature in a model 

selection procedure. 

When models are ranked to make a selection, it is 

possible that two or more models rank very close together. 

When the sample likelihoods are used, the weights so 

obtained are actually the posterior probabilities of each 

model being the true one. In susl case, a composite model 

(as defined in Equation [3.18]) could be used, rather than 

making a more or less arbitrary choice of a unique pdf. 

4.3 Cc ".mutational Considerations 

Before going into the aced-1 numerical results, it 

is necessary to give some attention to the computer imple- 

mentation of the model. A listing of the program is 

presented in Appendix B. The implementation of the model 

is relatively simple; however, it is necessary to consider 

here the computational aspects of the evaluation of expected 
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losses, which ,proved to be a critical factor in terms of 

executinn tie. 

4.3.1 Integration Region for 
Expected Losses 

Basically, the integration reginn for the evaluation 

of expected losses is the sample space itself. However, 

since the water level at the main rive r (x) cannot be 

greater than the water level at the tribute, y (y), the addi- 

tional constraint x < y must be introduced. The basic 

integration region is then: 

S1: x<y, x>85.95, 88.10<y<91.04 (4.3) 

S2: x<y, x>77.9, y?91.04 (4.4) 

The basic integration region is shown in Figure 4.5. 

Y 

g 

A 

A 

1 

3 

gm 

Figure 4.. 5. Regions in the Space of (x,y) for a Design 
Alternative 

(gm,gt) 



4.3.2 Convergence Problems in 
Numerical Integra -.tion 

Using Siij on's numerical integration, the evalua- 

tion of expected damages:' 

ff L(Qm,gt,x,y)f(x,y)dxdy 
(x,y)ES1US2 
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(4.5) 

where: 

L(gm,gt,x,y) = damages for water stag s (x,y) with 

levee alternative (g ,g ), m t 

f(x,y) = pdf of water stages, 

presents convergence problems because of the existence of 

a region where the damages are zero, and a jump to ndn -zero 

damages across the boundary of such region. Consequently, 

the properties of the integration region were studied in 

det Ll and are discussed in the following paragraphs. 

Given a levee design alternative (gm,gt), three 

regions can be defined in the space of water stages (x,y). 

The three regions are shown in Figure 4.5. Water stage 

pars in region 1 do not cause any damages because the levee 

provides enough protection, and no overtopping .n occur. 

Pairs in region 3 will always produce damages, and the 

losses will be associated with the failure of either end 

(but not both) of the levee reach. Water stage pars in 

region 2 may or may not produce failure of the levee, and it 

will not be at the extremes of the reach but somewhere in 

between. Such failures are called here "internal failures." 
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A detailed analysis showed that region 2 is a very 

narrow strip (with average width of .Ol:n) located along the 

segments AB, BC (in Figure 4.5). Experience with the model 

demonstrated the high cost, in terms of computer time, of 

including region 2 in the evaluation of expected losses. 

Consequently, it was decided to disregard partially region 

2 by computing expected losses over the area to the right 

and above the scments AB and BC. This simplification 

introdu .d substantial savings in execution time without 

much loss in accuracy. 

In the final implementation, the basic integration 

ar I was divided into 4 subregions in order to handle the 

discontinuity of the loss function. Figure 4.6 shows these 

regions fcr a typical levee design alternative 
(gm`gt) 

Notice that region 1 corresponds to event El, and regions 

2, 3, and 4 correspond to event E2. 

As will be explained in Appendix B, the program may 

be run either to determine the total yearly cost (TYC) of 

individual design alternatives, or to automatically find 

the optimum alternative. 

4.4 Determination of the Optimum 
'_,c vee Profile 

The problem of model selection has not completely 

been solved as far as determining a unique best pdf. 

Nevertheless, the number of candidate pdf's has been sub- 

stantially reduced. In addition, the composite model seems 
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to be the most reasonable choice, because it "integrates 

out" the model uncertainty. The next stage is a sensitivity 

analysis, to determine up to what extent the most likely 

models affect the final decision. 

4.4.1 pdf's to be Used 

The complete model will bé run for several combina- 

tions of pdf's (f(x,y1E1), f(x,y1E2)), and the sensitivity 

of the optimu-q decision to the pdf's will be studied. The 

results of such analysis will give the designer an addi- 

tional piece of information for the final selection. 

In addition to the best ranking pdf's in each 

group, the model will also be run for other candidate 

models to illustrate the effect of the hydrologic submodal 

up( -1 the final result. The pdf's to be used are: 

f(x,y1El): B.B, E.B, B.E, B.L, 

f(x,y{E2): N.TL, BVN, N.L, N.G. 

The shape of the marginal distributions, shown in Figures 

4.7 through 4.10, was also taken. into account to select the 

additional models. 

4.4.2 Preliminary Results 

The model was initially run for a few design 

alternatives using the 16 possible pairs of pdf's 

(f (x,y El) , f (x,y 1 E2)) . The results of this preliminary 

run showed: 
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1. The optimum design alternative lies in the region 

gm > 90. 

2 The variation of the TYC with the change of models 

for El, f(x,y!El), decreases as gm increases, and 

is zero for gm > 91. This is a consequence of the 

properties of the marginal pdf's fx(xjEl) and the 

shape of the integration region for the expected 

losses. 

It can be verified in Figure 4.6 that the integra- 

tion area of event El (area 1 in figure) decreases as gm 

increases and is zero for gm > 91.04. Two more points must 

also be taken into account: (1) the expected number of 

yearly occurrences of event E2 is twice as large as that of 

event El; and (2) the probability of water stages in the 

main river, x, being greater than 89m is very small.. See 

Figure 4.7. 

As a consequence of the preliminary results, the 

16 model pairs were grouped into the following 4 types, 

according to f (x,y I E2) : 

Type I: f(x,yIE2) = N.G, 

Type II: f(x,yIE2) = BVN, 

Type III: f(x,yIE2) = N.L 

Type IV: f(x,yIE2) = N.TL. 
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4.4.3 Optimum Design Alternatives 

The optimum design alternative was determined for 

the above 4 types and for the composite model. Figures 4.11 

through 4.15 show the contours of the TYC surfaces for the 

different alternative models. Figures 4.16 and 4.17 show 

the variation of the TYC with the levee height at one end 

of the reach while the other end is kept constant at its 

optimum value for each model type. 

The optimum levee design alternatives are shown 

graphically in Figure 4.18 and are listed in Table 4.9. 

Table 4,9. Optimum Design Alternatives 

Type f (x,y(E2) gm gt TYC 
Construction Expected 

cost losses 

I N.G 91.4 94.6 15.24 132.39 3.32 

II BVN 91.6 94.3 15.36 136.63 3.64 

III N.L 91.4 96.6 26.03 209.41 27.33 

IV N.TL 91.4 94,4 14.37 126.37 3.00 

Composite 91.5 95.0 18.46 145.26 5.38 
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4.4.4 Discussion of Results 

The first fact noticed in Figure 4.18 is that the 

optimum for the lognormal model is significantly deviated 

from the rest of the models. Figures 4.11 through 4.15 also 

show that the TYC for the N.L model is consistently higher 

than for the other models. 

This deviation can only be explained in terms of 

the marginal distributions fy(ylE2) (see Figure 4.10). The 

lognormal distribution, in this case, has the longest tail 

among the pdf's considered. Taking, for example, the gamma 

distribution, which appears to be close to the lognormal in 

Figure 4.10, it can be verified that the probability of y 

being grater than 95.0 is approximately .0006 for the gamma 

and .0118 for the lognormal. That is, about twenty times 

larger. When these small quantities are multiplied by the 

damages, generally above 1000 cost units, the differences in 

the expected losses are within the range of variation 

observed. 

At a first glance, it might be expected that the 

differences would disappear as the levee height at the 

tributary (gt) tends to 91.04; that is, when the area under 

all distributions fy(yIE2) is 1.0. However, this does not 

occur, because for levee heights gt < 93.7 (the existing 

levee height at the tributary) the losses due to event E2 

become constant. Figure 4.19 illustrates a typical case 
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of the variation of flood damages due to event E2, with the 

increase of gt, for the 4 marginals considered. 

The results obtained for the lognormal models 

illustrate very well the effects of the tail of a distribu- 

tion upon decisions based on extreme events. For the model 

choice criteria used here, the models with lognormal 

marginal in y ranked poorly enough not to be selected as the 

"best" model; and, even in the composite model, its in- 

fluence is greatly reduced by a low weight. If a more 

simplistic model choice procedure had been used, it is 

probable that the lognormal marginal had been chosen because 

its parameters are easy to estimate and the evaluation of 

the function itself is easy, too. On the other hand, 

results such as obtained for the lognormal not always should 

be regarded as undesirable. For example, if a minimax 

decision procedure were used, this result would be worth 

much attention. 

It is also worth noticing the steep descent in the 

TYC with the increase of gm. This suggests (under the 

assumptions of the model) that the existing levee does not 

provide enough protection toward the end at the main river, 

and that any improvement must be first done toward that end 

of the levee reach. 

The construction cost surface (shown in Figure 

4.20) in conjunction with the TYC surface, can be used to 

determine the most cost effective stages of development in 
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case the project is not accomplished all at once. The 

trajectory a, b, ..., h in Figure 4.15 (the composite model) 

shows the development program with successive investments of 

20 million Forints. 

Figure 4.21 shows the optimum levee profile for the 

composite model, along with the existing levee profile. 

Notice that the vertical scale is extremely exaggerated. 

One unit length in the vertical scale represents 1.Om 

whereas in the horizontal represents about 1200 m. 

Clearly this result does not imply that the existing 

levee has been poorly designed. Assumptions have been made 

along the way, in part with respect to the loss functions 

that might have exaggerated the necessity for reinforcement 

of the levee. Other difficulties in the procedure are 

discussed in detail in the next chapter. 
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CHAPTER 5 

DISCUSSION AND CONCLUSIONS 

5.1 Discussion 

Some points have been raised along the development 

of this work. They will now be discussed in relation to 

each submodel; however, since the hydrologic submodel 

occupies most of this thesis, it will be divided here as: 

methodologyfpdf fitting, and model choice. 

5.1.1 Hydraulics 

The gaging station on the Tisza River is located 

downstream of its confluence with the Zagyva River. The 

fact that the readings for the main river are directly 

affected by the tributary was not taken into consideration 

in the implementation of the model for the Zagyva River. 

The effects of this assumption upon the final results were 

not explored in the present work. 

5.1.2 Economics 

The accuracy of the economic information has not 

been questioned here, especially in relation to the flood 

losses. Quadratic loss functions are commonly used in 

theoretical works but this does not imply that they are of 

common occurrence in the real world. The loss functions 
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in this example probably exaggerated the flood damages. For 

example, the assumption that the damages become approxi- 

mately constant beyond a certain flood level, and its 

implementation by the use of a square root function is 

reasonable. However, the implicit assumption made here, 

that this "leveling" of the losses occurs after the 

quadratic function reaches its maximum is not necessarily 

true. 

5.1.3 Methodology 

The use of water stages instead of discharges 

presented some problems for the distribution fitting and may 

have affected the final decision. The transformation 

operated upon the random discharges by the shape of the 

channel and the flood plain adversely affects the resulting 

behavior of the random stages. The cross sectional area 

increases more than linearly as the water rises. Hence, 

even if the pdf of the discharges has a long tail, the pdf 

of the stages will have a shorter tail (if any). The 

fitting of exponential type distributions to water stages 

may, consequently, erroneously increase the expected 

damages. It seems that a better approach would be, when 

possible, to obtain the distribution of the discharges, and 

then use the stage /discharge relationship to determine the 

water levels. 
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The properties of the integration area for the 

evaluation of expected damages, discussed in Section 4.3, 

open the possibility of a further simplification of the 

model, that surely will improve the manageability of the 

whole problem. It is based on the assumption that the 

levee follows a water profile, and it consists in the con- 

sideration of levee failures at the extremes of the reach 

only. This makes the expected losses dependent only upon 

the damage functions of the two extreme cross sections and 

eliminates the need to generate water profiles for each 

possible pair of water stages. 

5.1.4 pdf Fittings 

One major difficulty at the beginning of this thesis 

was trying to estimate a single bivariate pdf from an "L- 

shaped" tail. This proved to be a difficult estimation 

problem; and only very simple cases (linear truncations, 

univariate cases, etc.) were found in the literature con- 

sulted. The division of the sample space and the use of 

conditional distributions is, however, a valid approach too, 

and it completely satisfies the needs of the problem treated 

in this thesis. 

The location parameters of some distributions were 

assumed to be known, in order to simplify the parameter 

estimation in the example of the Zagyva River. The use of 

the base levels, xL = 85.95 and yL = 91.04, as the location 
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parameters for the lognormal, exponential, gamma, and beta 

distributions seems rather reasonable. Other parameters, 

such as the location parameter for the truncated lognormal 

distribution and the "b" parameter for the beta distribution, 

were fixed in a more arbitrary fashion, after a subjective 

judgment of the sample. 

5.1.5 Model Selection 

Although the model selection procedures used here 

were relatively successful in reducing the choice set, the 

discrepancy between the two methods suggests the need for 

additional study (for example, using simulation) of the 

performance and accuracy of such methods. It also suggests 

the need for extreme caution and awareness of the possible 

pitfalls in their application. 

The deviation of the optimal decision and the in- 

flated total yearly costs obtained for the lognormal model 

in the case of the Zagyva River clearly illustrate the 

importance of model selection for decision making based on 

extreme hydrologic events. 

5.2 Conclusions 

The following points can be concluded from the 

present work: 

1. When expected damages of extreme events are sought, 

the problem of estimating a bivariate pdf from an 

"L- shaped" truncated sample may be overcome by 
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proper subdivision of the sample space and the use 

of conditional pdf's. 

2. Using standard goodness of fit tests, the distribu- 

tions of different families can be fitted to the 

joint flood magnitudes in the Tisza and the Zagyva 

Rivers. 

3. None of the marginal distributions considered can be 

rejected at the 5% confidence level by the 

Kolmogorov - Smirnov test. 

4. The two model selection procedures presented here 

can be successfully applied to reduce the set of 

candidate pdf's. However, the ordering of the 

distributions is different for the two criteria. 

5. Model selection by sample likelihoods is very 

sensitive to numerical errors in the normalizing 

constant of a distribution. 

6. Under the likelihood of the Chi - square statistic 

criterion, the best ranking distribution of water 

stages are: the Beta.Beta for the conditional on 

event El; and the Normal.Truncated -Lognormal for 

the conditional on event E2. Under the sample 

likelihoods criterion, the best ranking distribu- 

tions are: the Beta.Lognormal for the conditional 

on event El; and the Normal.Gamma for the condi- 

tional on event E2. The composite model is a 

weighted sum of the Beta.Lognormal, Beta.Gamma, 
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Beta.Beta, and Bivariate Lognormal distributions for 

the joint pdf of water stages conditional upon event 

El; and a weighted sum of the Normal.Lognormal, 

Normal.Gamma, Bivariate Normal, and Normal.Truncated - 

Lognormal distributions, for the joint pdf of flood 

magnitudes conditional upon event E2. 

7. For decisions based on expected values, the 

composite model represents a very good alternative, 

because it takes into account the model uncertainty. 

In the case of flood protection for the Zagyva 

River, the decision rached with the composite model 

lies within the range of variation of those obtained 

with the component models. 

8. The discontinuity in the integration for the eval- 

uation of the expected losses plays a critical role 

in the speed and accuracy of the results, and it 

should receive special attention in similar problems. 

9. Using the composite model, the optimum levee design 

has a height (over the sea level) of 95.Om at the 

tributary, and 91.5m at the main river. Its initial 

construction cost has been computed as 145.26 

million Forints and has an expected total yearly 

cost of 18.46 million Forints. (One Forint is 

approximately $0.05 U.S.) 

10. According to the model formulated here, the total 

yearly cost of the levee system for the Zagyva River 
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is sensitive to the type of distribution used for 

the joint probability of flood stages conditional 

upon event E2, and is not sensitive to the distribu- 

tion of flood stages given event El. 

11. Under the economic assumptions of the case study, 

the results of all the models considered show high 

investment returns for the improvement of the levee 

toward the downstream end of the reach. 
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Table A.1. Regression Coefficients, 

_ 

Draw Down 

K A(K) 8(K) C(K) 

1 -0.000 -0.000 1.000 
2 .031 6.335 .891 
3 .040 14.482 .785 
4 .088 17.368 .700 
5 .341 12.026 .491 
6 .598 3.220 .320 
7 .628 6.407 .251 
8 .606 9.944 .234 
9 .712 4.149 .189 

10 .745 4.238 .7.54 
11 .678 16.155 .089 
12 .561 28.698 .070 
13 -.545 33.021 .039 
14 .567 32.838 .022 
15 .590 30.825 .020 
16 .596 30.329 .020 
17 .604 29.690 .019 
18 .707 20.834 .016 
19 .729 19.341 .010 
20 .756 17.213 .008 
21 .918 3.517 .001 
22 .924 3.075 .001 
23 .940 1.847 .000 
24 .983 -1.694 -.001 

1.001 -3.196 -.001 i5 
6 .997 -2.704 -.001 

27 .994 -2.298 -.001 
28 1.001 -2.944 -.001 
29 1.014 -4.005 -.000 
30 1.007 -3.309 .000 
31 1.013 -3.896 .000 
32 1.004 -3.028 .000 
33 1.011 -3.394 -.001 
34 1.027 -4.783 -.001 
35 1.056 -7.?P2 -.001 
36 1.046 -6.339 -.001 
37 1.046 -6.174 -.001 
38 1.044 -5.807 -.001 
39 1.034 -4.795 -.000 
40 1.002 -1.722 -.001 
41 .965 1.887 -.002 
42 .993 -.446 -.001 
43 1.038 -4.477 -.001 
44 1.033 -4.006 .000 
45 1.033 -3.827 .000 
46 1.028 -3.239 .001 
47 1.021 -2.379 .000 
48 .970 2.751 -.000 
49 1.000 -0.000 -0.000 
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Table A.2 Regression Coefficients, Damping 

K A(K) B(K) C(K) 

1 -0.000 -0.000 1.000 
2 .001 -.036 1.000 
3 .001 -.080 1.000 
4 .004 .140 .994 
5 .00R -.087 .993 
6 .020 .324 .976 
7 .026 .383 .969 
8 .026 .404 .968 
9 .038 .577 .955 

10 .044 1.002 .943 
11 .058 2.217 .915 
12 .080 3.94? .873 
13 ..105 4.930 .836 
14 .155 6.984 .761 
15 .162 7.061 .753 
16 .164 7.058 .751 
17 .1E6 7.045 .749 
18 .199 6.198 .725 
19 .247 6.703 .670 
20 .280 6.458 .639 
21 .430 3.572 .519 
22 .455 3.076 .499 
23 .510 1.699 .458 
24 .571 -.875 .426 
25 .623 -2.950 .397 
26 .653 -3.839 .377 
27 .684 -4.825 .356 
28 .711 -5.838 .340 
29 .736 -6.794 .326 
30 .753 -7.210 .314 
31 .768 -7.816 .306 
32 .773 -7.970 .303 
33 .801 -8.479 .280 
34 .833 -9.360 .258 
35 .867 -10.745 .240 
36 .876 -10.333 .226 
37 .890 -9.798 .206 
38 .918 -10.694 .188 
39 .949 -11.270 .164 
40 .972 -11.992 .150 
41 .978 -9.799 .119 
42 .998 -9.579 .098 
43 1.041 -12.414 .088 
44 1.072 -14.486 .080 
45 1.014 -4.228 .025 
46 .979 -.095 .015 
47 .960 2.563 .008 
48 .994 .214 .003 
49 1.000 -0.000 -0.000 
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Table A.3. Construction Cost Coefficients 

K A(K) 8(K) C(K) 

1 .036 -5.834 234.070 
2 .108 -17,0R7 664.606 
3 .215 -35.798 1485.428 
4 .688 -121.165 5333.568 
5 .448 -76.802 3286.436 
6 .321 -54.481 2302.726 
7 .159 -26.703 1119.619 
6 .244 -42.095 1813.577 
9 .164 -27.750 1169.944 

10 .193 -33.153 1418.798 
11 .156 -26.445 1117.R13 
12 .197 -33.761 1441.231 
13 -.223 -38.341 1648.1Q2 
14 .221 -38.116 1638.571 
15 .202 -35.507 1558.123 
16 .169 -29.111 1252.673 
17 .384 -66.909 2909.016 
18 .416 -73.051 3209.520 
19 .189 -32.6Q0 1412.818 
20 .360 -61.140 2588.340 
21 .261 -45.226 1°53.155 
22 .196 -34.303 1502.890 
23 .161 -28.145 1225.649 
24 .148 -26.256 1163.920 
25 .105 -18.263 792.593 
26 .133 -23.240 1010.707 
27 .100 -16.923 711.923 
28 .142 -24.931 1090.989 
29 .139 -24.258 1058.578 
30 .143 -25.237 1109.478 
31 .127 -21.971 950.012 
32 .144 -25.306 1106.019 
33 .109 -18.885 816.237 
34 .127 -21.989 951.170 
35 .113 -19.927 874.000 
36 .107 -18.500 799.173 
37 .122 -21.623 954.492 
38 .131 -23.219 1026.071 
39 .124 -21.982 968.576 
40 .105 -18.339 794.990 
41 .143 -25.729 1158.842 
42 .160 -28.793 1293.940 
43 .142 -25.660 1156.300 
44 .104 -18.338 801.914 
45 .129 -23.115 1034.342 
46 .164 -33.671 1535.726 
47 .151 -27.282 1229.311 
48 .103 -18.550 835.034 
49 .031 -5.684 259.403 
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Table A.4. Damage Coefficients 

K A(K) B(K) C(K) 

1 -16.000 2944.000 -132605.000 
2 -5.600 1035.760 -45066.224 
3 -4.800 890.160 -38436.968 
4 -2.400 453.040 -18529.696 
5 -2.000 377.400 -14948.720 
6 -2.000 376.200 -14835.680 
7 -2.000 373.400 -14573.320 
8 -2.000 371.400 -14387.120 
9 -2.000 373.000 -14536.000 

10 -2.000 370.200 -14275.880 
11 -2.000 389.400 -15943.920 
12 -2.000 386.200 -15633.680 
13 -2 -.000 386.200 -15633.680 
14 -2.000 386.600 -15442.320 
15. -2.000 386.600 -16442.320 
16 -2.000 386.600 -16442.320 
17 -2.000 386.600 -16442.320 
18 -2.000 388.600 -16636.120 
19 -2.000 388.600 -16636.120 
20 -2.000 395.000 -17263.000 
21 -2.000 395.800 -17342.080 
22 -2.000 396.600 -17421.320 
23 -12.000 2234.400 -101849.320 
24 -2.000 399.400 - 17699.920 
25 -2.000 400.200 -17779.880 
26 -2.000 401.000 -17860.000 
27 -2.000 403.000 °18067.000 
28 -2.000 403.000 -18061.000 
29 -2.000 403.400 -18491.320 
30 -2.000 403.800 -18531.680 
31 -2.000 404.600 -18612.520 
32 -2.000 405.400 -18693.52C 
33 -2.000 405.400 -18693.520 
34 -2.000 406.200 -18774.680 
35 -2.000 407.000 -18856.000 
36 -2.000 407.000 -18856.000 
37 -2.000 408.600 -19019.12.0 
38 -2.000 408.600 -19019.120 
39 -2.000 409.000 -19060.000 
40 -2.000 409.400 -19100.92G 
41 -2.000 411.000 -19265.000 
42 -2.000 411.000 -192.65.000 
43 -2.000 413.000 -19471.000 
44 -2.000 413.800 -19553.680 
45 -2.000 415.400 -19719.520 
46 -2.000 415.400 -19719.520 
47 -2.000 415.000 -19678.000 
48 -2.000 416.200 -19802.680 
49 -6.222 1228.044 -58838.582 
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Table A.5. Sample of Flood Magnitudes 

POINT 
NUMBER X Y 

POINT 
NUMBER X Y 

1 86.08 88.34 35 80.34 91.33 
2 86.18 88.28 36 80.57 92.48 
3 88.26 89.14 37 80.58 92.70 
4 87.69 88.62 38 80.53 91.81 
5 88.00 89.92 39 80.69 91.18 
6 87.38 88.88 40 80.79 91.43 
7 87.98 88.34 41 80.81 91.46 
8 87.80 88.37 42 81.53 91.41 
9 86.53 88.38 43 81.85 91.10 

10 86.01 88.54 44 81.87 91.28 
11 86.02 88.36 45 81.85 91.21 
12 86.23 89.48 46 82.20 91.68 
13 86.79 88.92 47 82.53 91.38 
14 87.29 88.94 48 83.05 91.48 
15 86.07 88.94 49 83.29 92.58 
16 86.05 90.68 =0 83.33 92.03 
17 86.01 89.38 51 93.55 91.96 
18 86.19 88.94 52 33.55 92.10 
19 86.07 89.97 53 83.65 91.48 
20 86.07 88.34 54 83.80 92.80 
21 88.39 00.28 55 84.43 91.54 
22 86.36 91.82 56 84.49 91.14 
23 86.51 92.04 57 84.68 91.68 
24 87.00 91.24 58 84.93 91.26 
25 87.11 92.30 59 85.11 92.60 
26 87.46 91.12 60 85.15 91.55 
27 87.58 92.57 61 85.23 91.40 
28 87.67 91.13 62 85.33 91.75 
29 88.25 91.15 63 85.43 91.30 
30 86.95 91.62 64 85.44 91.58 
31 77.97 91.88 65 95.50 91.38 
32 78.87 91.77 66 85.59 92.90 
33 79.21 91.68 67 85.93 91.60 
34 79.61 91.69 68 85.97 91.82 

22 ________22 

105 



APPENDIX B 

PROGRAM LISTING 

106 



107 

Czzzzzzz= ==s=z=z = =s == sass= s= aaszsassaszaassa=sasaasasasssss 
C PROGRAM LEV3. 
C THIS IS THE MAIN PROGRAM FOR THE LEVEE DESIGN 
C PROBLEM. LEV3 READS THE INPUT DATA, SETS UP TABLES 
C TO BE USED BY OTHER ROUTINES, CONTROLS PROCESING OF 
C INDIVIDUAL ALTERNATIVES OR THE MINIMIZATION PROCESS 
C IT ALSO STOPS EXECUTION AT THE END OF DATA. 
C CALLS. SLGEN,SLVE 
C CALLED PY. NONE 
C IMPORTANT VARIABLES AND COMMON AREAS. 
C /PARAM/ = CONTAINS PARAMETERS OF DISTRIBUTIONS TO 
C BE USEr). 
C /LMTS1/ = CONTAINS BASIC INTEGRATION LIMITS. 
C /BLDM/ = CONTAINS COEFFICIENTS OF ADJOINT DAMAGE 
C FUNCTION. 
C /SCHAR/ = CONTAINS SEARCH AREA FOR MINIMIZATION. 
C /CONST1/ = CONTAINS CONSTANTS FOR NUMERICAL INTEGRA 
C TION ROUTINE. 
C BETA(I,J,K) = J -TH CORRELATION COEFFICIENT FOR THE 
C I -TH CROSSSECTION WITH THE K -TH TYPE 
C OF CURVE. (K =I DRAW DOWN, K =2 DAMPING 
C SURFACE CURVE). 
C CDLTH = ALTITUDE DIFFERENCE BETWEEN GAUGING STATION 
C CDP = STEP SIZE FOR MINIMIZATION. 
C CDPMN = MINIMUM COP 
C CER = TOLERANCE FOR INTEGRATION ROUTINE. SEE MULSMP 
C CTCF(I,J) = J -TH COST COEFFICIENT FOR THE I -TH 
C CROSSECTION. 
:C C1DM(I),C12DM(I) = COEFFICIENTS FOR THE ADJOINT 
C DAMAGE FUNCTION FOR THE I -TH CROSSECTION. 
C DLTH = CDLTH 
C DMCF(I,J) = J -TH COEFFICIENT FOR THE I -TH DAMAGE 
C . FUNCTION 
C DP = CDP 
C DPMN = CDPMN 
C DSGN(I) = LEVEE HEIGHT AT CROSSECTION I FOR A 
C CURRENT DESIGN ALTERNATIVE. 
C EXLVE(I) = LEVEE HEIGHT AT CROSSECTION I FOR 
C EXISTING LEVEE. 
C G1 = LEVEE HEIGHT AT THE MAIN RIVER. 
C G49 = LEVEE HEIGHT AT THE TRIBUTARY END. 
C IBUG1 = CONTROL FOR INTEGRATION ROUTINE. K =1 PRINTS 
C INTERMEDIATE RESULTS, K =2 DO NOT. 
C IDSPL = SAMPLE NUMBER, FOR DATA IDENTIFICATION. 
C ISRCH = CONTROL. ISRCH = 0 FOR INDIVIDUAL ALTERNATI 
C VES, ISRCH = 1 FOR MINIMIZATION. 
C ITRC = CONTROL. ITRC =2 PRINTS INTERMEDIATE RESULTS, 
C ITRC = 1 DO NOT. 
C ITYD = DISTRIBUTION CODE NUMBER FOR EVENT E2 
C ITYU = DISTRIBUTION CODE NUMBER FOR EVENT El. 
C KIXITO = CONTROL USED TO LIMIT THE TOTAL NUMBER OF 
C ITERATIONS IN MULSMP. SEE MULSMP. 
C KMAXI = MAXIMUM NUMBER OF ITERATIONS IN EACH 
C KMAXI = MAXIMUM NUMBER OF ITERATIONS IN EACH 
C DIMENSION FOR MULSMP. SEE MULSMP. 
C KNTXSC = NUMBER OF CROSSECTIONS. 
C NTXSC = KNTXSC. 
C TYC = TOTAL YEARLY COST. 
C WPRFL(I) = WATER LEVEL AT CRCSSECTION I. 
C XINT = BASE LEVEL FOR X. 
C XL,XS = INTEGRATION LIMITS. 
C XM1DM(I) = POINT BEYOND WHICH ADJOINT DAMAGE 
C FUNCTION IS USED FOR THE I -TH CROSSECTIO 
C YINT = BASE LEVEL FOR Y. 
C YL.YS = INTEGRATION LIMITS. 
C INPUT /OUTPUT. 
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C IÑPUT SEQUENCE. 
C PROGRAM CONSTANTS, 1 CARD, SEE STATEMENT 102 - 1 
C - PROGRAM CONTROLS. ITRC =U /2, IBUG =1/00 ISRCH =1 /0. 
C SEARCH AREA. SEE ÇTATEMENT 114 - 1. 
C - DAMAGE COEFFICIENTS. 
C CONSTFUCTION COEFFICIENTS 
C - REGRESSION COEFFICIENTS. FIRST DRAW DOWN, THEN 
C DAMPING. 
C - INTEGRATION LIMITS. 
C - PARAMETERS OF DISTRIBUTION. FIRST PDF FOR El. 
C THEN, PDF FOR E2. TO END DATA AND STOP PROGRAM, 
C PUT TWO BLANK CARDS INSTEAD. 
C - DESIGN ALTERNATIVE OR STARTING POINT FOR OPTIMI- 
C ZATION. (LAST ALTERNNATIVE, PUT G1 .LT. O. THIS 
C FORCES A BRANCH TO READ A NEW DISTRIBUTION). 
C = = = = = = =_ == _ = 

PROGRAM LEV3(INPt1T.OUTPUT) 
DIMENSION IDPDFt!(19),IDPDFD(14) 
COMMON BETA( 50, 3,?), DMCF(50,3),CTCF(50,3).EXLVE(50) 

1, WPRFL( 50) ,DSGN(50).NTXSC,DLTH,ITRC,IBUG1 
COMMON/ PARAM /PU(10),PD(10),ITYU,ITYD,BAR 
COMMON /LMTS1 /XL,YL,XS,YS,XINT,YINT 
COMMON / BLDM /CIDM(50),YM1DM(50),C12DM(50) 
COMMON /SCHAR /XSCHL.YSCHL,XSCHS,YSCHS 
COMMON /CONST1 /CER,KMAXI,KIXITO 
DATAIDPDFU / "LG "," BVL" , "L.B ", "E.G ". "E.L ", "F.B ", "DBG ", 

1 "G . L ", "G . B" , N . N" . "G. G", "L . L ", "L . E ", "E . E "," B. L", "B . E " 
2 "B.G ", "8.B","G.F "/ 
DATA IDPDFD/" NTL" , "BVN ", "NG1', "GTL ". "GTN ", "G.G ", "BVL ", 

1" LTN"," L. G" , "N.L ", "G.L ", "L.L ", "LTL ", "NTN "/ 

C READS PROGRAM CONSTANTS 

READ 102,CDLTH,CDPMN,CDP,CER,XINT, YINT,KIXITO,KMAXI, 
1 KNTXSC 

102 FORMAT(6F1O.0,3I5) 

NTXSC = KNTXSC 
DLTH = COLIN 
DPMN = CDPMN 

C READS PROGRAM CONTROLS 

READ 111,ITRC,IBUG1,ISRCH,BAR 
111 FORMAT(3I1,F10.0) 

C READS SEARCH AREA 

READ 114, XSCHL,YSCHL,XSCHS,YSCHS 
114 FORMAT(4F1C.0) 

C READ DAMAGE COEFFICIENTS 

DO 10 I = 1,NTXSC 
READ 100,(DMCF(I,J),J =1,3) 

100 FORMAT(3E2C.I1,F10.0) 
IF(ITRC - 2)04,04,10 

04 PRINT 251,(DMCF(I.J),J =1,3) 
251 FORMAT(" DMCF ",3E15.7) 
10 CONTINUE 

C 
C 

COMPUTE PARAMETERS OF SECOND DAMAGE EON. TO BE USED 
WHEN H(I) .GT. XM1DM(I) FOR I =1,49 =XSECTION NUMBER. 

DO 63 I 2 1,NTXSC 
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XM1DM(I) = -.5 *DMCF(I,2) /DMCF(I,1) - .5 
C1DM(I)= XM10M(I) - 1. /((4. *DMCF(I,1) *XM1DM(I) + 

A 2. *DMCF(I,2)) * *2) 
C12DM(I) = DMCF(I,1) *(XM1DM(I) * *2) + 

1 DMCF(I,2) *XM1DM(I) + DMCF(I,3) - SORT(XM1DM(I) - 
2 C1DM(I)) 

63 CONTINUE 

C READS CONSTRUCTION COST COEFFICIENTS AND EXISTING 
C LEVEE HEIGHTS. 

DO 15 I = 1,NTXSC 
READ 100,(CTCF(I,J),J= 1,3),EXLVE(I) 
IF(ITRC - 2)12,12,15 

12 PRINT 252,( CTCF(I,J),J= 1,3),EXLVE(I) 
252 FORMAT(" CTCF ",3E15.7," EXLVE ",F10.2) 
15 CONTINUE 

C READ REGRESSION COEFFICIENTS FOR WATER PROFILE 
C GENERATION. FIRST DRAW DOWN, THEN DAMPING. 

READ 101,((( BETA( I,J,K),J =1,3),I =1,NTXSC),K =1,2) 
101 FORMAT(3E20.8) 

C SET REGR C-OEFF FOR H1 H49 

BETA(1,2,1) = 1.0 
BETA(1,2,2) = 1.0 
BETA(NTXSC,3,1) = 1.0 
BETA(NTXSC,3,2) = 1.0 
IF(ITRC - 2)17,17,401 

17 PRINT 101,((( BETA( I,J,K),J =1,3),I =1,NTXSC),K =1,2) 
401 CONTINUE. 

C READS INTEGRATION LIMITS 

READ 299,XL,YL,XS,YS 
299 FORMAT(4F10.0) 
301 CONTINUE 

C READS PARAMETERS OF'DISTRIBUTION 

READ 112,PU,ITYU,IDSPL,PD,ITYD 
112 FORMAT( 10F7 .0,T77,I2,A2, /,10F7.0,T77,I2) 

C STOPS BY END OF DATA ( TWO BLANK CARDS) 

IF(ITYU .GT. 19 .OR. ITYU .LE. 0) STOP 11 
IF(ITYD .GT. 14 .OR. ITYD .LE. 0) STOP 11 
PRINT 236 

236 FORMAT(1H1) 
PRINT 237,IDPDFU(ITYU),PU 
PRINT 237,IDPDFD(ITYD),PD,IDSPL 

237 FORMAT(" JOINT MAGNITUDE PDF = 31,43," no 

1 "PARAMETERS= ",3E10.4,/,7E10.4," SAMPLE = ",A2) 

C READS A LEVEE ALTERNATIVE OR STARTING POINT FOR 
C MINIMIZATION. 

302 READ 113,G1,G49 
113 FORMAT(2F10.0) 

C IF G1 .LT. ZERO, GRANCHES TO READ NEXT DISTRIBUTION 

IFCG11301,301,304 
304 IF(ISRC4)306,306,307 
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C ISRCH =0 MEANS INDIVIDUAL ALTERNATIVES. PROCEEDS TO 
C EVALUATE TYC OF ALTERNATIVE JUST READ. 

306 CALL SLVE(G1,G40,TYC,IWHT) 
GO TO 302 

307 CONTINUE 

C MINIMIZATION PROCEDURE 
C PZMN,PXMN,PYMN, ARE USED TO SAVE THE LOWEST POINT 
C COMPUTED IN AN ITERATION, SO NEXT ITERATION STARTS 
C AT SUCH POINT. 

PZMN = 1.E20 
DP = EDP 
ITRBL = 0 

C COMPUTES TYC AT THE VERTICES OF A TRIANGLE 0,1,2 

PX0 = G1 
PY0 = G49 

309 PCY = 1. 
PCX = 1. 
CALL SLGEN (PXO,PYO,PCX,PCY,DR,PZO,KLOST) 
IF(KLOST)351,352,352 

352 CONTINUE 
311 CONTINUE 

IF(PZO - PZMN)430.432,432 
430 CONTINUE 

PXMN = PX0 
PYMN = PY0 
PZMN = PZO 

432 CONTINUE 
PX1 = PXO + DP 
PY1 = PYO 
PCX = 1. 
PCY = O. 
CALL SLGEN (PX1,PY1.PCX,PCY,DP,PZ1,KLOST) 
IF(KLOST)351,353,353 

353 CONTINUE 
IF(PZ1 - PZMN)410,412,412 

410 CONNTINUE 
PXMN = PX1 
PYMN = PY1 
PZMN = P71 

412 CONTINUE 
PX2 = PXO 
PY2 = PYO + DP 
PCX = O. 
PCY = 1. 
CALL SLGEN( PX2, PY2,0CX,PCY,DP,P72,KLOST) 
IF(KLOST)351,354,354 

354 CONTINUE 
IF(PZ2 - PZMN )420,422,422 

420 CONTINUE 
PXMN = PX2 
PYMN = PY2 
PZMN = PZ2 

422 CONTINUE 

C COMPUTES DIRECTION OF THE MAX SLOPE IN PLANE 
C PASSING THRU POINTS 0,1,2 

PX10 = PX1 - PXO 
PY10 = PY1 - PYO 
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PZ10 = PZ1 - PZ0 
PX20 = PX2 - PXO 
PY20 = PY2 - PYO 
PZ20 = PZ2 - PZO 
PXO = PXMN 
PYO = pYMN 
PZO = PZMN 
DEN1 = PX20#pY10 - PX10*PY20 
IF(DEN1)316,317,316 

317 IF(ITRBL)318,318,319 
319 PRINT 223 
223 FORMAT(" SLOPE TROUBLE") 

GO TO 301 
318 ITRBL = 1 

PX0 = PXO + 2.*DP 
PYO = PYO + 3.*DP 
GO TO 309 

316 CONTINUE 
PA = (PY20*P7_10 - PY10$PZ20)/DEN1 
PB = (PX1C*PZ20 - pX20*PZ10)/DEN1 
PAMDL = SORT(FA#PA + PB*PB ) 

PA = PA/PAMDL 
PB = PB/PAMDL 

C COMPUTES TYC ALONG MAX SLOPE DISRECTION, UNTIL 
C TYC STARTS INCREASING AGAIN. T-FN FORMS A NEW 
C TRIANGLE AND STARTS ALL OVER. 

PX1 = PXO 
PY1 = PY0 

321 PX1 = PX1 + PA*DP 
PY1 = PY1 + PB*DP 
PCX = PA*.5 
PCY = PB*.5 
CALL SLGEN(PX1,PY1,PCX,PCY,DP,PZ1,KLOST) 
IF(KLOST)351,355,355 

355 CONTINUE 
IF(PZO - PZ1)323,323,325 

325 PXO = PX1 
PY0 = PY1 
PZ0 = PZ1 
GO TO 321 

323 DP = .5*DP 
PRINT 247,DP 

247 FORMAT(/," DP= ",E15.7) 
ITRBL = 0 

C 
C 

STEP SIZE IS REDUCED IN EACH ITERATION. 
MINIMIZATION STOPS WHEN STEPSIZE LESS THAN DPMN. 

IF(DP - DPMN)331,311,311 
331 PRINT 224,DPMN 
22.4 FORMAT(" DP .LT. ".E15.7) 

GO TO 301 
351 PRINT 249 
249 FORMAT(" * ** SEARCH OUT OF AREA * * * ") 

GO TO 301 
END 
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C= = - - - -= _ 

C SUBROUTINE CONSTR. 
C GIVEN THE LEVEE IN DSGN, CORRESPONDING TO THE WATER 
C PROFILE GENERATED BY HYDRA WITH INPUT (G1,G49), 
C 1) ADJUSTS DESIGN TO EXISTING LEVEE BY MAKING 
C DSGN(I) = EXLVE(I) IF THE PROPOSED LEVEE IS LOWER 
C THAN THE EXISTING AT CROSSECTION I. 
C 2) COMPUTES CONSTRUCTION COST. 
C VARIABLES. 
C CCOST = CONSTRUCTION COST, IS RETURNED 
C INPUT INFO. COMES THRU COMMON / / 
C OUTPUT INFO. CONSTRUCTION COST I CCOST 
C - FINAL LEVEE PROFILE IN DSGN 
C - PRINTS PROFILE AND COST, IF REQUIRED 
C CALLS. NONE 
C CALLED BY. SLVE 
C - - -= 

SUBROUTINE CONSTR(CCOST) 
COMMON BETA( 50, 3, 2), DMCF(50,3),CTCF(50,3),EXLVE(50) 

1, WPRFL( 50) ,DSGN(50),NTXSC,DLTH,ITRC,IBUG1 
CCOST = 0. 
DO 10 I = 1,NTXSC 
IF(DSGN(I) .GT. EXLVE(I)) GO TO 15 
DSGN(I) = EXLVE(I) 
XCOST = 0. 
GO TO 18 

15 Z = DSGN(I) 
XCOST = CTCF(I,1) *Z *Z + CTCF(I,2)*Z + CTCF(I,3) 

18 CONTINUE 
IF(ITRC - 2)77,77,7B 

77 PRINT 201,I,DSGN(I).XCOST 
201 FORMAT(" DSGN ",I2,2E15.7) 
78 CCOST = CCCST + XCOST 
10 CONTINUE 

RETURN 
END 

C 
C SUBROUTINE DAMAGE 
C GIVEN A LEVEE PROFILE (IN DSGN) AND A WATER PROFILE 
C (IN WPRFL), COMPUTES FLOOD DAMAGES BY DETERMINING 
C THE FAILING CROSSECTION AND USING THE CORRESPONDING 
C DAMAGE FONCTION. 
C VARIABLES. 
C /BKTFL/ SEE SLVE 
C H1,H49 WATER LEVEL AT MAIN RIVER AND TRIBUTARY. 
C KTFL(I) IS INCREASED BY 1 IF CROSSECTION I FAILS. 
C VLDMG VALUE OF DAMAGES (RETURNED) 
C WPRFL CONTAINS WATER PROFILE GENERATED BY HYDRA 
C INPUT INFO. H1,H49 THRU ARGUMENTS 
C DAMAGE COEFFICIENTS THRU COMMON/ / 
C AND /BLDM/ 
C OUTPUT INFO. VLDMG = DAMAGES, KTFL IS MODIFIED EACH 
C TIME A FAILURE OCCURS. 
C CALLS HYDRA 
C CALLED BY FINT1,FINT2,FINT3. 
C= 

SUBROUTINE DAMAGE(H1,H49,VLDMG) 
COMMON BETA(50, 3. 2),. DMCF(50,3),CTCF(50,3),EXLVE(50) 

1, WPRFL( 50) ,DSGN(50),NTXSC.DLTH,ITRC,IBUG1 
COMMON / BLEM /C1DM(50),XM1DM(50),C12DM(50) 
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COMMON /BKTFL /KTFL(49) 

G1 DSGN(1) 
G49 = DSGN(NTXSC) 

C FINDS FIRST FAILING X.- SECTION LOOKING FROM DOWN UP 
C OR FORM UP DOWN DEPENDING ON SURFACE CURVE (DD OR 
C DAMPING) 

KT = 1 
IF((H49 - H1) .LT. DLTH) KT = 2 

IF(KT 1)71,71,72 

C NEXT 8 STATEMENTS. SEE IF FAILING X- SECTION AT THE 
C EXTREMMES. IF SO, SKIPS PROFILE GENERATION. 

71 IF(H49 - G49)91,91,82 
82 I = NTXSC 

Z = H49 
GO TO 27 

72 IF(H1 - G1)91,91,92 
92 I = 1 

Z = H1 
GO TO 27 

91 CONTINUE 

C FINDS WATER PROFILE CORRESPONDING TO (H1,H49). 
C PROFILE RETURNED FROM HYDRA IN WPRFL. 

CALL HYDRA(H1,H49) 

DO 10 KI = 1,NTXSC 
I = KI 
IF(KT - 2)11,11,12 

11 I = NTXSC - K I + 1 

12 IF(WPRFL(I) .GT. DSGN(I)) GO TO 25 
10 CONTINUE 

C NO OVERTOPPING, VLDMG = D 

VLDMG = O. 
RETURN 

C OVERTOPPING AT XSECT I, CALC VLDMG 

25 Z = WPRFL(I) 
27 CONTINUE 

KTFL(I) = KTFL(I) + 1 

IF(Z LE. XM1DM(I)) GO TO 31 

C IF Z GREATER THAN XM1DM(I), SQUARE ROOT DAMAGE 
C FUNCTION IS USED. 

VLDMG = SORT(Z - C1DM(I)) + C12DM(I) 
RETURN 

31 CONTINUE 
VLDMG = DMCF(I,1)#Z*Z + DMCF(I,2)*Z + DMCF(I,3) 

END 
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C = == 
C SUBROUTINE HYDRA. 
C GIVEN A WATER STAGE PAIR (H1,H49), GENERATES WATER 
C PROFILE INTO WPRFL. 
C VARIABLES EXPLAINED IN OTHER ROUTINES. 
C INPUT INFO. H1,H49 WATER LEVELS AT BOTH ENDS OF THE 
C REACH. (THRU ARGUMENTS) 
C REGRESSION COEFFICIENTS B(I,J,K) THRU COMMON 
C OUTPUT INFO. WPRFL CONTAINING WATER PROFILE (COMMON 
C CALLS. NONE 
C CALLED RY DAMAGE, SLVE 
C 

SUBROUTINE HYDRA(H1,H49) 
COMMON BETA( 5G, 3, 2), DMCF(50,3),CTCF(50,3),EXLVE(50) 

1, WPRFL( 50) ,DSGN(50),NTXSC,DLTH,ITRC,IBUG1 

C DETERMINE TYPE OF PROFILE TO BE GENERATED 

KT = 1 
IF((H49 - H1) .LT. DLTH) KT = 

DO 10 I = 1,NTXSC 
WPRFL(I) = BETA(I,1,KT) + BETA(I,2,KT)*H1 + 

U BETA(I,3,KT)#H49 
10 CONTINUE 

C INSURE MONOTONICITY 

DO 20 I = 2. NTXSC 
IF(WPRFLiI) - WPRFL(I-1)) 16,17,17 

16 WPRFL(I) = WPRFL(I-1.) 
17 IF(WPRFL(I) .GT. WPRFL(NTXSC)) WPRFL(I) = WPRFL(NTXSC) 
20 CONTINUE 

RETURN 
END 

C 
C SUBROUTINE SLGEN. 
C GENERATES ALTERNATIVES (G1,G4Q) AND CONTROLS COMPU- 
C TATION OF TYC DURING MINIMIZATION. 
C IF THE INTEGRATION ROUTINE DOES NOT CONVERGE FOR 
C (PX,PY), GENERATES A NEW POINT AS A FUNCTION OF 
C PCX,PCY,DP.. IF SEARCH GOES OUT OF AREA RETURNS 
C KLOST = -1 
C VARIABLES. 
C DP STEP SIZE 
C IWHT = C IF SOLVE OBTAINED TYC. = 1 IF SLVE DID NOT 
C BECAUSE OF CONVERGENCE PROBLEMS. 
C KLOST = -1 IF SEARCH IS OUT OF AREA, = 0 OTHERWISE. 
C PCX,PCY RELATIVE STEPSI7E FOR X AND Y 
C PX,PY (INPUT) ALTERNATIVE TO BE EVALUATED. IF NO 
C CONVERGENCE, ITS VALUES ARE CHANGED TO THE NEW 
C POINT GENERATED BY SLGEN. 
C PZ TYC FOR (PX,PY) 
C XL,XS,YL,YS SEARCH AREA LIMITS. 
C INPUT INFO. PX,PY,DP,PCX,PCY, FROM LEV3 (ARGUMENTS) 
C TYC,IWHT FROM SLVF. 
C OUTPUT INFO. PX,PY,PZ,KLOST TO LEV3 VIA ARGUMENTS 
C XsY TO SLVE VIA ARGUMENTS 
C CALLS SLVE 
C CALLED BY LEV3 
C = = == _ -= .- . _ -- . _ 2"..- 2 
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SUBROUTINE SLGEN (PX,PY,PCX,PCY,DP,P7,KLOST) 
COMMON /SCHAR /XL,YL,XSsYS 

Kl OS T = 0 
X = PX 
Y = PY 

05 IF(X .LT. XL .f1R. X .GT. XS) GO TO 335 
IF(Y .LT. YL .OR. Y .GT. YS) GO TO 335 
IF(X .GE. Y) GO TO 335 
CALL SLVE(X,Y,TYC,IWHT) 
IF(IWHT - 1)10,20,20 

20 PX = X 
PY = Y 
P7 = TYC 
RETURN 

10 X = X + PCX*DP 
Y = Y + PCY*DP 
GO TO 05 

335 KLOST = -1 
RETURN 
END 

C 
C SUBROUTINE SIVE. 
C GIVEN A LEVEE DESIGN ALTERNATIVE (X,Y), SLVE GENE 
C RATES LEVEE PROFILE, COMPUTES CONSTRUCTION COST, EX 
C PECTED LOSSES AND TOTAL YEARLY COST (TYC) 
C VARIABLES. 
C BAR NOT USED 
C CCOST CONSTRUCTION COST (INITIAL) 
C COSTD CONSTRUCTION COST DISCOUNTED (YEARLY) 
C DSGN(I) LEVEE HEIGHT AT CROSSECTION I FOR PROPOSED 
C LEVEE (X,Y) 
C ER = CER SEE MULSMP 
C EXLVE EXISTING LEVEE 
C IBUG = IBUG1 SEE MULSMP 
C ITYD,ITYU DISTRIBUUTION CODE NUMBERS SEE LEV3 
C IWHT INDICATOR RETURNED TO CALLER. = 1 NORMAL PETUR 
C =0 INTEGRAL DIDNOT CONVERGE. 
C IXIT = IXITO SEE LEV3, MULSMP 
C IXIT14 USED TO PRINT IXIT OF EACH REGION. 
C KXITO = IXITO 
C KMAXI = MAXI 
C KTFL(I) USED TO PRINT THE NUMBER OF TIMES 
C CROSSECTION I FAILED IN THE PROCESS 
C KXIT INDICATOR PRINTED. = 0 IF ALL REGIONS CONVERGE 
C MAXI SEE MULSMP 
C ND SEE MULSMP 
C PD,PU PARAMETERS OF DISTRIBUTIONS IN USE. (FOP E2 
C AND El RESPECTIVELY) 
C TYC TOTAL YEARLY COST 
C VALUE SEE MULSMP 
C V11...3 VALUE FOR REGIONS 1...3. 4 AND 5 UNUSED. 
C WPRFL WATER PROFILE. 
C XINT,YINT SEE LEV3 
C XL2,XS2YL2YS2 ACTUAL INTEGRATION LIMITS 
C INPUT INFO. (X,Y) LEVEE ALTERNATIVE, FROM LEV3 OR S 
C SLGEN, VIA ARGUMENTS. 
C / CONST1/ CONSTANTS FOR MULSMP 
C WPRFL FROM HYDRA. VIA COMMON 
C CCOST FROM CONSTR 
C DSGN "MODIFIED BY CONSTR, VIA COMMON 
C VL1...3 FROM MULSMP, VIA ARGUMENTS (VALUE). ARE 
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C EXPECTED LOSSES FOR EACH REGION. 
C OUTPUT INFO. PARAMETERS FOR CONSTR,HYDRA AND MULSMP 
C TYC,IWHT TO LEV3 OR SLGEN VIA ARGUMENTS. 
C PRINTS 3 LINES OF RESULTS FOP EACH LEVEE ALTERNATIV 
C PLEASE SEE LAST 10 STATEMENTS IN SLVE. 
C CALLS CONSTR, HYDRA, MULSMP. ALSO CALLS FINT102,3, 
C ALIM1,3, BLIM1,3 THRU MULSMP. 
C CALLED BY LEV3,SLGEN. 
C 

SUBROUTINE SLVE(X,Y,TYC,IWHT) 
EXTERNAL ALIMI, ALIM3 ,BLIM10BLIM3,FINT1,FINT2,FINT3 
DIMENSION 1XIT14(5) 
COMMON BETA( 50, 312), DMCF(50,3),CTCF(50,3),EXLVF(50) 

1s WPRFL( 50) ,DS(N(50),NTXSC,DLTH0ITRC,IBUG1 
COMMON / PARAM /PU(10),PD(10),ITYU,ITYD,BAR 
COMMON/ LMTS1 /XL1,YL1,XS1sYS1,XINT,YINT 
COMMON /LMTS2 /XL2,YL2,XS2sYS2 
COMMON /BKTFL /KTFL(4Q) 
COMMON /CONS TI /C ER,KMAXI,KIXITO 
DATA IFLAG /C /,ITSK,KBLAN / " * * *"," "/ 

C FIRST TIME CALLED SETS UP PARAMETERS FOR MULSMP 

IF(IFLAG)10,-1O920 
10 IFLAG = 1 

ND = 2 
IXITO = KIXITO 
MAXI = KMAXI 
ER = EER 
'BUG = IBU6I. 

C UPPER INTEGRATION LIMIT FOR BETAPDF IN X IN F1 
XSBETA = 8E.499 

20 CONTINUE 
DO 16 I = 1,49 

16 KTFL(I) = 0 

C GENERATES WATER PROFILE CORRESPONDING TC PAIR (X,Y) 

CALL HYDRA(X,Y) 

C MOVES PROFILE TO DESIGN. 

DO 30 I = 1,NTXSC 
30 DSGN(I) = WPRFL(I) 

C OBTAINS FINAL DESIGN AND CONSTRUCTION COST 

CALL CONSTP(CCOST) 
CALL SECOND(TA) 

C OBTAINS EXPECTED LOSSES 

VL1 = O. 
VL2 = 0. 
VL3 = O. 
VL4 = O. 
IXIT14(4) = 1 

C INTEGRATION OVER REGION 1. EVENT 1, DISC ON XL 

XL2 = X 
XS2 = XS1 
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YL2 = YL1 
YS2 = YINT - .01 

C CHECK IF BETA DISTR. IS USED IN X VARIABLE FOR El 
GO TO( 2, 2, 2, 2, 2, 2. 2,2,2,2,2,2,2,2,1,1,1,1,2),ITYU 

C WHEN A BETA DISTRIBUTION IS USED FOR X IN EVENT E1 
C UPPER LIMIT IS XSBETA. 

1 CONTINUE 
VL1 = O. 
IXIT14(1) = 1 

IF(X .GT. XSBETA) GO TO 3 
XS2 = XSBETA 

2 CONTINUE 
IXIT = IXITO 
CALL 

1MULSMP(ND, ALIMI, BLIMI .,MAXI,ER,FINTI,VLI,IXIT,IBUG) 
IXIT14(1) = IXIT 

3 CONTINUE 

C INTEGRATION OVER REGION 2. EVENT 2, DISC ON XL 

XL2 = X 
XS2 = XS1 
YL2 = YINT + .01 
YS2. = Y 
IXIT = IXITO 
CALL 
1MULSMP(ND,ALIM1,BLIM1,MAXI,ER,FINT2,VL2,IXIT,IBUG) 
IXIT14(2) = IXIT 

C INTEGRATION OVER REGIONS 3,4. 

XL2 = XL1 
70 CONTINUE 

C INTEGRATION OVER REGION 3 DISC ON YL 

YL2 = Y 
XS2 = EXLVF(1) 
YS2 = YS1 
IXIT = IXITO 
CALL 
1MULSMP(ND,ALIM3,BLIM3,MAXI,ER,FINT3,VL3,IXIT,IBUG) 
IXIT14(3)= IXIT 

C INTEGRATION OVER REGION 4 

XL2 = EXLVE(1) 
YL2 = Y 
XS2 = XS1 
YS2 = YS1 
IXIT = IXITO 
CALL 

IMULSMP(ND, ALIMI, BLIMI ,MAXI,ER,FINT2,VL4,IXIT,IBUG) 
IXIT14(4) = IXIT 
KX1T = IXIT14( 1 ) *IXIT14(2) *IXIT14(3) *IXIT14(4) 
VALUE =. 583333333333 *VL1 +1.30555555556 *(VL2 +VL3 +VL4) 

C NOTE. .583333333333 =21/36, 1.3055555555= 47/36, ARE 
C EXPECTED NUMBER OF EVENTS PER YEAR. 

CALL SECOND(TB) 
TT = TB - TA 
COS-TD = .09*CCOST 
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C NOTE. .09 IS DISCOUNT FACTOR. 

TOTEX = VALUE + COSTD 
TYC = TOTEX 
IO = ITSK 
IWHT = 0 
IF(KXIT - 1)41,42,41 

42 IO = KBLAN 
IWHT = 1 

41 CONTINUE 
PRINT 2.01,X,Y,(KTFL(J),J =1,49) 

201 FORMAT( "OG1 = ",F7.3," G4Q= ",F7.3," FAIL = ",49I1) 
PRINT 2O2,000ST.COSTD.VALUE,TOTEX,TT 

202 FORMAT(" CC = ",E12.6," YC = ",E12.6," EL= ",E12.6," TYC = ", 
1 E12.6," TIME= ",F7.3," SEC ") 
PRINT 203 ,4L1,VL2,VL3,VL4,VL5.IXIT14,I0 

203 FORMAT(" V1 = ",E12.6," V2= ".E12.6," V3= ",F12.6," V4 = ", 
1 E12.6," V5= ",E12.6," IXIT= ".5I1,1X,A3) 
RETURN 
END 

C 
C SUBROUTINE MULSMP. 
C MULTIPLE NUMERICAL INTEGRATION BY SIMPSON "S RULE. 
C WRITTEN BY JEFF SMITH, U OF A 1974. 
C CALLS FINT1,2,3, ALIM1,3, BLIM1,3 
C CALLED BY SLVE. 
C EXPLANATION CF ARGUMENTS. 
C 
C N = MULTIPLICITY OF THE INTEGRATION. N .LE. 5. 
C ALIM = NAME OF FUNCTION ROUTINE DEFINING LOWER LIMITS 
C BLIM = NAME OF FUNCTION ROUTINE DEFINING UPPER LIMITS 
C MAXI = THE MAX. NO. OF ITERATIONS THE ROUTINE MAY DO. 
C E = FRACTIONAL ERROR, MEANING 
C IF V(I)= VALUE OF INTEGRAL ON THE I -TH ITERATION 
C THEN THE PROBLEM IS CONSIDERED SOLVED WHEN 
C E * ABS(V(I)) .GT. ABS(V(I)- 1i(I +1)). 
C FINI = NAME OF FUNCTION ROUTINE DEFINING THE INTEGRAND 
C VALUE = LAST APPROXIMATION TO THE INTEGRAL. 
C IXIT. AS AN INPUT CAN BE USED TO SPECIFY THE TOTAL 
C MAXIMUM NUMBER OF ITERATIONS ALLOWED. (MAXI IS FOR 
C EACH DIMENSION AND IS NOT GOOD TO LIMIT EXEC. TIME 
C * * *IF USED TO CONTROL NUMBER OF ITERATIONS, IXIT MUST 
C BE RESET BEFORE EACH CALL * ** 
C IXIT AS AN OUTPUT PARAMETER MEANS. 
C IXIT = 1 MEANS NORMAL RETURN 
C 2 MEANS NO CONVERGENCE 
C 3 MEANS LOWER .GT. UPPER LIMIT. 
C 4 MEANS TOTAL MAXIMUM OF ITERATIONS EXEDED 
C IBUG = 1 MEANS PRINT EACH APPROXIMATION TO INTEGRAL. 
C 
C = = = = = =___ =____ == _ --_ 

C 

SUBROUTINE MULSMP (N, ALIM,BLIM.MAXI,E,FINT,VALUE, 
1 IXIT,IBUG) 
DIMENSION A( 5), B( 5), FA (5),FB(5),XH(5),XIR(5),XHA(5), 

1 XJ(5),INDEX(5), XNEW (5),FNEWX(5),XI(5),S(5),XE(5), 
2 K(5),XIP(5) 

KOUNT = 0 
MXCNT = IXIT 
IF(MXCNT .LE. 5) MXCNT = 10000 
I=N 
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3 DO 1 L=1,I 
J=I + 1 - L 
K(J)=1 
A(J) = ALIM(J,XNEW) 

1 XNEW(J)=A(J) 
2 I=1 

XNEW(1)=A(1) 
FA(1)=FINT(XNEW) 
8(1) = BIIM(l,XNEW) 
XNEW(1)=B(1) 
FB(1)=FINT(XNEW) 

C 
1000 XH(I)=B(I)-A(I) 

IF (.25 * XH(I) .EQ. 0.) GO TO 4 
IF (XH(I) .LT. O.) GO TO 5 
XIR(I)=0.5*XH(I) 
XHA(I)=XIR(I)/3. 
XJ(I)=XIR(I)*(FA(I)+FB(I)) 
INDEX(T)=0 
XNEW(I)=A(I)+XIR(I) 

C 
1006 IF (I .EO. 1) GO TO 14 

15 I=I-ï 
CO TO 3 

14 FNEWX(1)=FINT(XNEW) 
C 
1001 IF (INDEX(I) .GT. 0) GO TO 1003 
1002 INDEX(I)=INDEX(I)+1 

KOUNT = KOUr?T + 1 

XI(I)=XHA(I)*(FB(I)+FA(I)+4.*FNEWX(I)) 
1004 XJ(I)=0.25*(XJ(I)+3.*XI(I)) 

INDFX(I)=INDEX(I)+1 
KOUNT = KOURT + 1 

IF(KOUNT .GT. MXCNT) GO TO 7776 
IF (INDEX(I) .GT. MAXI) GO TO 1011 

1010 XH(I)=0.5*XH(I) 
IF (.5 * XH(I) .EQ. 0.) GO TO 7 
XNEW(I)=0.5*XH(I)+A(I) 
S(I)=0.0 

1005 IF (XNEW(I) .LT. B(I)) GO TO 1006 
1007 XIP(I)=(XJ(I)+XH(I)*2.*S(I))/3. 

77 IF(IBUG .EQ. 1) PRINT 2000,IXIP(I),(XH(I333),I333=1,N 
2000 FOR"tAT(40X,I591PF20.10.r5(E12.2)) 

XE(I)=ABS (E*XIP(I)) 
IF (ABS(XIP(I) - XI(I)) .LE. XE(I)) GO TO 1009 

1008 XI(I)=XIP(I) 
GO TO 1004 

1003 S(I)=FNEWX(T)+S(I) 
XNEW(I)=XNEtW(I)+XH(I) 
GO TO 1005 

C 
4 XIP(I) = 0. 

C 
1009 IF (I .EQ. N) GO TO 16 

17 I1=I+1 
J=K(I1) 
GO TO (11,12,13),J 

C 
11 FA(I1)=XIP(I) 

K(I1)W2 
B(I1) = BLIM(I1,XNEW) 
XNE4((Il)=B(I1) 
GO TO 3 

C 
12 FB(ï1)=XIP(I) 

K(I1)=3 



I=IT 
GO TO 1000 

C 
13 FNEWX(II)= XIP(I) 

I =I1 
GO TO 1001 

16 VALUE =XIP(N) 
IXIT = 1 

1014 RETURN 
C 
C ERROR EXITS 

C 

C 

C 
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1011 PRINT 1012, I, INDEX(I) 
1012 FORMAT (4HOTHE,I3,34H INTEGRAL HAS NOT CONVERGED AFTER 

X,I3,11HITEPATIONS) 
* * * * * # * # * ** * #* 
VALUE = XIP(N) 
* * * * * * * * * ** * ** 
IXIT = 2 
GO TO 1014 

5 PRINT 6, Is A(I), Is B(I) 
6 FORMAT (///12H NOTE.....A(I2s2H)= 1PE20.8/ 
61 10X2HB(12,2H) =E20.8) 

VALUE = 0. 
IXIT = 3 
GO TO 1014 

7 PRINT ß, I, INDEX(I), Is A(I), I, B(I) 
8 FORMAT( / / /." THE STEP SIZE FOR THE ",I1s "INTEGRAL = O " 
1 "ON THE ",I5," ITERATION.", / /s" A( ",I1s. ") = ",1PE15.4, 
2 /," B(",I1, ") = ", E15.4) 
XIP(I) = XI(I) 
GO TO 1009 

7776 PRINT 6777sMXCNT 
6777 FORMAT(31H TOTAL NUMBER OF ITERATIONS GT sI10) 
C * * * * * # # # * * * * ** 

VALUE = XIP(N) 
C * * * * * * * * * * * * #* 

IXIT = 4 
GO TO 1014 
END 

C 

C 
C FUNCTION FINTI. 
C COMPUTES INTEGRAND FOR EXPECTED LOSSES IN REGION 1. 
C THIS IS THE GENERAL VERSION FOP INDIVIDUAL PDF"S 
C AND MAY BE INTERCHANGED WITH THE COMPOSITE MODEL 
C VERSION 
C VARIABLES 
C /PARAM/ PRAMETERS OF DISTRIBUTIONS BEING USED. 
C INPUT INFO. Z(1)= X,Z(2) =Y. (INVERTED IN FINT3) 
C OUTPUT INFO. FINT1 
C CALLS ALL PDF "S, DAMAGE 
C CALLED BY MULSMP , GIVEN AS ARGUMENT BY SLVE. 
C = = == = = =_ === == __ =---- ----- - - -- 

FUNCTION FINT1(Z) 
DIMENSION 7(2) 
COMMON /PARAM /PU(10),P0(10),ITYU'ITYD 

C Z(1) =XsZ(2) =Y 
X = Z(1) 
Y = Z(2) 
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CALL DAMAGE(X,Y,VDMG) 
GO TO(1,2,3s4,5,6,7,8,9 ,10,11,12,13,14.15,16,17,18.19) 

1 , ITYU 
C 

01 CO01 NTINUE 
T1 = ULGN(X,PU(1).PU(2),PU(3)) 
T2 = UGAr9(Y,PU(4),PtJ(5),PU(6),PtJ(7)1 
FINT1 = VDMG*T1*T2/aU(10) 
GO TO 90 

C 02 BVLOG 
02 CONTINUE 

FINT1 = ßVLGN(X,Y,PU(1),PU(?),pU(3),PU(4),PU(5),P(J(6), 
1 PU(7))/PU(10)*VDMG 
GO TO 99 

C 03 L.B 
03 CONTINUE 

Ti = ULGN(X,PU(1),13U(2),PU(3)) 
T2 = UBFTA(Y,PU(4),PU(5),PU(6),PU(7),PU(8)) 
FINTI = VDMG*T1*T2/PU(10) 
GO TO 99 

04 E.G 
04 CONTINUE 

Ti = UEXP(X,PU(1).PU(2)) 
12 = UG4M(Y,PU(3).PU(4),PU(5).PU(5)1 
FINT1 = VDMG*T1*T2/PU(10) 
GO TO 99 

05 E.L 
05 CONTINUE 

T1 = UFXP(X,PU(1),PU(2)) 
T2 = ULGN(Y,PU(3),PU(4),PU(5)) 
FINTI = VDMG*T1*T2/PU(10) 
GO TO 99 

C 05 E B 

06 CONTIt'UE 
Ti = UEXP(X,PU(1).PU(2)) 
12 = UBETA(Y,PU(3),PU(4),PU(5),PU(6),PU(7)) 
FINT1 = VDMG*T1*T2/PU(10) 
GO TO 99 

C 07 DOURG 
07 CONTINUE 

FINTI = BVGM(X,Y,PU(1),PU(2),PU(3),PU(4),PU(5),?U(6). 
1 PU(7),PU(8))/PU(10)*VDMG 
GO TO 99 

C OB G.L 
08 

O Ti ÇUGÁM(X,PU(1),PU(2),PU(3),oU(4)) 
T2 = ULGN(Y,PU(5),PU(6),PU(7)) 
FINT1 = VDMG*T1*T2/PU(10) 
GO TO 99 

C 09 G.B 
09 CONTINUE 

Ti = UGAM(X,PU(1),PIJ(2),PU(3).PU(4) ) 

T2 = UBETA(Y,PU(5),Pi,J(6),PU(7),PU(8),PU(Q)) 
FINT1 = VDMG*T1*T2/PU(10) 
GO TO 99 

C 10 N.N 
10 CONTINUE 

Ti = UNOR(X,P(J(1),P(1(,)) 
T2 = UNOR(Y,PU(3),PU(4)) 
FINT1 = VDM.G*T1*T2/PU(10) 
GO TO 99 

C 11 G.G 
11 CONTINUE 

T1 = UGAM(X.PU(1),PU(2),PU(3).pU(4)) 
T2 = UGAM(Y.PU(5),PU(6),PU(7),PU(9)) 
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FINT1 = VDMC*T1#T2/PU(10) 
GO TO 99 

12 
12 CONTINUE 

Ti = ULGN(X,PU(1),PU(2),PU(3)) 
T2 = ULGN(Y,PU(4),PU(5),PU(6)) 
FINTI = VDMG*T1*T2/PU(10) 
GO TO 99 

13 CONTÌNÚE 
T1 = ULGN(X,PU(1),PU(2),PU(3)) 
T2 = UEXP(Y,PU(4),pU(5)) 
FINTI = VDMG*T1*T2/PtJ(10) 
GO TO 99 

14 
14 CONTINUE 

T1 = UEXP(X,PIi(1)sPIJ(2)) 
T2 = UEXP(Y,PU(3),PU(4)) 
FINTI = VDMG*T1*T2/PU(10) 
GO TO 99 

C 15 B.L 
15 CONTINUE 

T1 = UBETA(X,PU(1),PU(2),PU(3),PU(4).PU(5)) 
T2 = ULGN(Y,PU(E),PU(7),PU(8)) 
FINTI = VDMG*T1*T2/PU(10) 
GO TO 99 

16 
16 CONTINUE 

Ti = UBETA(X,PU(1),PU(2),PU(3),PtJ(4),PU(5)) 
T2 = UEXP(Y,PU(6),PU(7)) 
FINTI = VDMG#T1*T2/PtJ(10) 
GD TO 99 

C 17 B.G 
17 CONTINUE 

T1 = UB`ETA(X,PU(1),PU(2),PU(3),PU(4),PU(5)) 
T2 = UGAM(Y,P(,i(6),PU(7),PU(8),PU(9)) 
FINTI = VDMG*TI*T2/PU(10) 
GO TO 99 

C 13 B.B 
18. CONTINUE 

Ti = UBETA(X,PU(1),PU(2),PU(3),PU(4),PU(5)) 
T2 = UBETA(Y,PU(6),PU(7),PU(8),PU(9),PIJ(10)) 
FINT1 = VDF'G*T1*T2 
GO TO 99 

C 19 G.E 
19 CONTINUE 

Ti = UGAM(X,PU(1),PU(2),PU(3),PU(4)) 
72 = UEXP(Yá°U(5),PU(6)) 
FINTI = VDMG*T1#T2/PU(10) 
GO TO 99 

99 RETURN 
END 



C=====_ 
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C FUNCTION FI.NT2. 
C COMPUTES INTEGRAND OF EXPECTED LOSSES TN REGION 2 
C THIS IS THE GENERAL VERSION FOR INDIVIDUAL PDF "S 
C AND MAY BE INTERCHANGED WITH THE COMPOSITE MODEL 
C VERSION 
C /PARAM/ PRAMETERS OF DISTRIBUTIONS BEING USED. 
C INPUT INFO. Z(1)= X,Z(2) =Y. (INVERTED IN FINT3) 
C OUTPUT INFO. FINT2 
C CALLS ALL PDF "S, DAMAGE 
C CALLED BY MULSMP , GIVEN AS ARGUMENT BY SLVE. 
C 

FUNCTION FINT?(Z) 
DIMENSION Z(?) 
COMMON /PARA'1/PU(10),PD(10),ITYU,ITYD 

C USES PDsITYD 
X = Z(1) 
Y = Z( 2) 
CALL DAMAGE(X,Y,VDMG) 
GO TO(O1s02s03s04,05s06,07,0Rs09,10,11,12,i3,14),ITYD 

C 01 N.TL 
01 CONTINUE 

T1 = UN(7R(X,PD(1),PD(2)) 
T2 = ULGN(Y,PD(3),PD(4),PD(5)) 
FINT2 = VDNG*T1*T2/PD(10) 
GO TO 99 

C 02 BVNOR 
02 CONTINUE 

FINT2 = VDMG*F3VNML(XsY,PD(1),PD(2)sPD(3),PD(4),PD(5)) 
1 /PD(10) 
GO TO 99 

C 03 N.G 
03 CONTINUE 

T1 = UNOR(XsPD(1),PD(2)) 
T2 = UGAM(Y,PD(3),PD(4),PD(5),PD(6)) 
FINT2 = VDMG*T1*T2/PD(10) 
GO TO 99 

C 04 r,. TL 
04 CONTINUE 

Ti = UGAM(X,PD(1),PD(?)sPD(3)sPD(4)) 
T2 = ULGN(Y,PD(5),PD(6),PD(7)) 
FINT2 = VDMG#T1*T2/PD(10) 
GO TO 99 

C 05 G.TN 
05 CONTINUE 

T1 = UGAM,(XsPD(I),PD(2),PD(3),PD(4)) 
T2 = UNOR(Y,PD(5),PD(6)) 
FINT2 = VDMG*TI*T2/PD(10) 
GO TO 99 

C 06 G.G 
06 CONTINUE 

T1 = UGAM(X,PD(1),PD(2),PD(3),0D(4)) 
T2 = UGAM(Y,PD(5),PO(6),PD(7),PD(8)) 
FINT2 = VDMG*T1*T2/PD(10) 
GO TO 99 

C 07 BVLOG 
07 CONTIN(!F 

FINT2 = BVI.GN(X.,YaPD(1),PD(2),PD(3),PD(4),PD(5),PD(6), 
1 PD(7))/PD(10)*VDMG 
GO TO 991 

C OB L.TN 
08 CONTINUE 

T1 = ULrN(X,PD(1),PD(2),PD(3)) 
T2 = UNOR(Y,PD(4),pD(5)) 
FINT2 = VDNG*T1#T2/PD(10) 



GO TO 99 
C 09 L.G 
09 CONTINUE 

T1 = ULGN(X,pD(1).PD(2),PD(3)) 
T2 = UGAM(Y,PD(4),PD(5),PD(6).PD(7)) 
FINT2 = VDMG#T1*T2/PD(10) 
GO TO 99 

c lo N.L 
10 CONTINUE 

T1 = UNOP(X,PD(1).PD(2)) 
T2 = ULGN(Y,RD(3),aD(4)10PD(5)) 
FINT2 = VDMG*T1*T2/PD(10) 
GO TO 99 

C 11 G.L 
11 CONTINUE 

Ti = UGAM(X,PD(1),PD(2),PD(3),PD(4)) 
T2 = ULGN(Y,QD(5),PD(6),PD(7)) 
FINT2 = VDMG*T1*T2/PD(10) 
GO TO 90 

C 12 L.L 
12 CONTINUE 

Ti = ULGN(X,PD(1),PD(2),PD(3)) 
T2 = ULGN(Y,PD(4).PD(5),PD(6)) 
FINT2 = VDMG*T1*T2/PD(10) 
GO TO 99 

13 
13 CONTINUE 

Ti = ULGN(X,PD(1),PD(2).PD(3)) 
T2 = ULGN(Y,PD(4),PD(5),PD(E,)) 
FINT2 = VDD'G*T1*T2/PD(10) 
GO TO 90 

C 14 N.TN 
14 CONTINUE 

T1 = UNC1R(X,PD(1),PD(2)) 
T2 = UNt_lR(Y,pD(3),PD(4)) 
FINT2 = VDMG*T1*T2/PD(10) 

99 RETURN 
END 

C 
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C FUNCTION FINT3. 
C COMPUTES INTEGRAND OF EXPFCTEDLOSSES IN REGION 3 
C THIS IS THE GENERAL VERSION FOP INDIVIDUAL PDF "S 
C AND MAY BE INTERCHANGED WITH THE COMPOSITE MODEL 
C VERSION 
C /PARAM/ PRAMETERS OF DISTRIBUTIONS BEING USED. 
C CALLS ALL PDF "S, DAMAGE 
C CALLED BY MULSMP , GIVEN AS ARGUMENT BY SLVE. 
C 

FUNCTION FINT3(7) 
DIMENSION Z(2) 
COMMON /PARAM /PU(1O).PD(10),ITYU,ITYD 

C USES PD,ITYD 
X = Z(2) 
Y = 7(1) 
CALL DAMAGE(X,Y,VDMG) 
GO TÇ( 01. 02, 03, 04, 05, 06 ,07,08,09,10,11,12,13,14),ITYD 

01 N.TL 
01 CONTINUE 

T1 = UNOR(X,PD(1),PD(2)) 
T2 = ULGN(Y,PD( ?),PD(4),PD(5)) 
FINT2 = VPMG *T1 *T2/PD(10) 
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GO TO 99 
C 02 BVNOP 
02 CONTINUE 

FINT2 = VDMG#BVNML(X,Y,PD(1),PD(2),PD(3),PD(4),PD(5)) 
1 /PD(10) 
GO TO 99 

C 03 N.G 
03 CONTINUE 

T1 = UNOR(X,PD(1),PD(2)I 
12 = UGAM(Y,PD(3),PD(4),PD(5),PD(6) ) 

FINT2 = VDMC*T1*T2/PD(10) 
GO TO 99 

C 04 G.TL 
04 CONTINUE 

Ti = UGAM(X,PD(1),PD(2),PD(3).PD(4)1 
T2 = ULGN(Y,PD(5)5,PD(6),PD(7)) 
FINT2 = VDN,C*T1*T2/PD(10) 
GO TO 99 

C 05 G.TN 
05 CONTINUE 

Ti = UGAM(X,PD(1),PD(?),PD(3),PD(4)) 
T2 = UNOR(Y,PD(5),PD(6)) 
FINT2 = VDMG*T1*T2/PD(10) 
GO TO 99 

C 06 G.G 
06 CONTINUE 

Ti = UGAM(X,PD(1),PD(2),PD(3),Pr)(4)) 
T2 = UGAt°4(Y,PD(5),P0(6)+PN7),PD(8)) 
FINT? = VON'C*T1*T2/PD(10) 
GO TO 49 

C 07 BVLOG 
07 CONTINUE 

FINT2 = BVLGN(X.Y,PD(1),PD(2),PD(3),PD(4),F0(5),PD(6), 
1 PD(7))/PD(10)V()MG 
GO TO 99 

C OR L.TN 
08 CONTINUE 

Ti = ULGN(X,PD(1),PD(?),PD(3)) 
T2 = UtiOP(Y,PD(4),PD(5)) 
FINT2 = VD1'G*T1'FT2/PD(10) 
GO TO 94 

C 09 L.G 
09 CONTINUE 

T1 = ULGN(X,PD(3),PD(2),PD(3)) 
T2 = UGAM(Y,PD(4),pD(5)sPD(E)Ph(7)) 
FINT2 = VDN'G*T1*T2/PD(10) 
GO TO 99 

C 10 N.L 
10 CONTINUE 

Ti = UNnR(X,PD(1),PD(2)) 
T2 = ULGN(Y,PD(3),PD(4),PD(5)) 
EINT?_ = V0MG*T1*T2/PD(10) 
GO TO 99 

C 11 Gol 
11 CONTINUE 

T1 = UGAN+(X,PD(1),DD(2),PD(2),PD(4)) 
T2 = ULGN(Y,PD(5),PD(6),pD(7)) 
FINT2 = VON4G*T1*T2/PD(10) 
GO TO 99 

12 Lot. 
12 CONTINUE 

T1 = ULGN(X,PD(1),PD(2),PD(3)) 
T2 = ULGN(Y,PD(/,),PD(5),PD(6)) 
FINT2 = VDMG*T1*T2/PD(10) 
GO TO 99 

C 13 L.TL 
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13 CONTINUE 
Ti = ULGN(X,oD(1),PD(2),PD(3)) 
T2 = ULGN(Y,PD(4),PD(5),PO(6)) 
FINT2 = VDMG *T1 *T2 /PD(10) 
GO TO 99 

C 14 N.TN 
14 CONTINUE 

T1 = UNOR(X,PD(1),'D(2)) 
T2 = UNOR(Y,PD(3),PD(4)) 
FINT2 = VDMG #T1 *T2 /PD(10) 

99 CONTINUE 
FINT3 = FINT2 
RETURN 
END 

C 
C FUNCTION ALIMI. 
C COmPUTES LOWER INTEGRATION LIMITS FOR REGIONS 1.2 
C USES X(1) = X. X(2) = Y. YL2 IS THE LOWER LIMIT FOR 
C Y. THE LOWER LIMIT FOR X IS DETERMINED AS THE POINT 
C WHERE THE DAMAGES BECOME NONZERO. 
C INPUT INFO. 
C X(1) COPRFSPONDS TO X 

C X(2) COFRESPGNDS TO Y 

I DETFPMINES WFTHFR X OR Y LIMITS IS REQUIRED. 
C OUTPUT INFO. ALIMI = VALUE OF LOWER. LIMIT. 
C CALLS Di1AGF 
C CALLED EY MULSMP 
C 

FUNCTI3N ALTM1(I,X) 
DIMENSION X(?) 
COMMON /LMTS2/XL2,YL2,XS2,YS2 
GI = XL2 
IF(I - 1)05,10,20 

05 STOP 322 
20 ALIM1 = YL2 

RETURN 
10 DG = .15 

EPSLIM = .01 
YY = X(?) 
XX = G1 + .001 
ISWCH = 1 

23 CALL DAMAGE(XX,YY,VDMG) 
IF(VDMG)25,25,3C 

25 ISWCH = 0 
XX = XX + DG 
GO TO 23 

30 IF(ISWCH)32,32,33 
33 ALIMI = XX 

GO TO 80 
32 XP = XX 

X0 = XX - DG 
35 IF(ABS(XP - XO) - EPSLIM)37,37,38 
37 ALIMI = XP 

GO TO 30 
38 XX = .5*(X0 + XP) 

CALL DAMAGE(XX,YY,VDMG) 
IF(VDMG)41,41.,42 

41 XO = XX 
GO TO 35 

42 XP = XX 
GO TO 35 
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80 IF(ALIM1 - YY)F1,81,92 
82 ALIM1 = YY 
81 

ENDURN 

C 
C FUNCTION BLIM1 
C COMPUTES UPPER LIMITS FOR INTEGRATIN OVER REGIONS 1 

C AND 2. USES X(1) = X, X(2) = Y. 
C CALLS NTNE 
C CALLED EY MUISMP 
C 

FUNCTION BIIMI(I,X) 
DIMENSION X(2) 
COMMON /LM1S2 /XL2.YL2,XS2,YS2 
IF(I - 1)C5,10,20 

05 STOP 323 
20 BLIM1 = YS2 

RETURN 
10 BLIM1 = XS2 

IF(BLIM!. - X(2))30,30,32 
32 BLIM1 = X(2) 
30 RETURN 

END 

C FUNCTION ALIM3. 
C COMPUTES LOWER LIMITS OF INTEGRATION FOR REGION 3. 
C USES X(1) = Y, X(2) = X. THE LOWER LIMIT FOR X IS 
C XL29 AND THE LOWER LIMIT FOR Y IS DETERMINED AS THE 
C POINT WHERE THE DAMAGES BECOME NONZERO. 
C INPUT INFO. 
C X(1) CORRESPONDS TO Y. 
C X(2) CORRESPONDS TO X 

G I DETERMINES +WETHER X OR Y LIMIT IS REQUIRED. 
C OUTPUT INFO. 4L113 = VALUE OE LOWER LIMIT. 
C CALLS DAMAGE 
C CALLED bY MtULSM °. 
C = - 

FUNCTION ALIM3(I.x) 
C GIVES LOVER LIMITS FOR INTEGRATION OVER REGION 3 
C ALIM3,BLIM3,FINT3. X(1) = Y, X(2) = X 

DIMENSION X(2) 
COMMON! /LMTS2 /XL2,YL2.XS2,YS2 
IF(I - 1)055,10,20 

05 STOP 332 
20 ALIM3 = XL2 

RETURN 
10 DG = .16 

FPSLIM = .01 
XX = X(2) 
YY = YL2 + .001 
ISWCH = 1 

23 CALL DAMAGE(XY,YY.VDMG) 
IF(VDMG)2,25,30 

25 ISWCH = 0 
YY = YY + DC 
GO TO 23 
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30 
33 

32 

35 
37 

38 

41 

42 

80 
82 
81 

C 
C 
C 
C 
C 
C 
C 

IF(ISWCH)32,32,33 
ALIM3 = YY 
GO 
YP TOYYO 
YO = YY - DG 
IF(AgS(YP - YO) - EPSLIM)37,37,38 
ALIM3 = YP 
GO TO 80 
YY = .5$(YP + YO) 
CALL DAMAGE(XX,YY,VDMG) 
IF(VDMG)41,41,42 
YO = YY 
GO TO 35 
YP = YY 
GO TO 35 
IF(ALIm3 - XX)82,81,81 
ALIM3 = XX 
RETURN 
END 

FUNCTION BLIM3. 
COMPUTES UPPER LIMITS OF INTEGRATION 
USES X(I) = Y,X(2) = X. 
CALLS NONE. 
CALLED BY MULSmR 

FOR REGION 3. 

FUNCTION BLIM3(I,X) 
DIMENSION X(2 ) 

COMMON /LMTS2 /XL2,YL2,XS2,YS2 
IF(I - 1)05,10,20 

05 STOP 333 
20 BLIM3 = XS2 

RETURN 
10 BLIM3 = YS2 

IF(BLIM3 - X(2))32,30,30 
32 BLIM3 = X(2) 
30 RETURN 

END 

C 
C FUNCTION t1LGN. 
C COMPUTES UNIVARIATE LOGNORMAL PDF. 
C ARGUMENTS. 
C T LOCATION PARAMETER 
C XM EXPECTED VALUE OF LOG(X -T) 
C DT STANDAR DEVIATION OF LOG(X -T) 
C CALLED BY FINT1,FINT3. 
C 

FUNCTION ULCN(X,T,XM,DT) 
U = X - T 
UL = (ALOG(U) - XM)/DT 
UL = -.5*Lit. *t1L 
IF(UL + b73.)10,101.20 

10 ULGN = O. 
GO TO 15 

20 ULGN = EXP(UL)/(2.506628275*DT#U) 
15 CONTINUE 

3 



RETURN 
END 

C 
C FUNCTION UEXP. 
C COMPUTES UNIVARIATE EXPONENTIAL DISTRIBUTION. 
C ARGUMENTS. 
C T LOCATION PARAMETER 
C R EXPECTED VALUE OF (X -T) 
C CALLED BY FINT1,FINT3. 
C 

FUNCTION UEXP(X,T,R) 
U = -(X -T) /R 
IF(U + 673.)10,l0,20 

10 UEXP = O. 
RETURN 

20 UEXP = EXP(U) /R 
RETURN 
END 

C 
C FUNCTION UGAM, 
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C COMPUTES UNIVARIATE GAMMA PDF, 
C ARGUMENTS. 
C A ALFA 
C B BETA 
C C (AMA (LOCATION PARAMETER) 
C BAGA = (P * *A)*G(A), VHERE G(.) = GAMMA FUNCTION 
C CALLED BY FINT1,FINT3. 

C 
FUNCTION UGAm ( X, A, R,C. RAGA) 
U = -(X-C)/B 
IF(U + 673.110,10,20 

10 UGAM = O. 
RETURN 

20 AM1 = A - I. 
UGAM = ((X-C)**AM1)*EXP(U)/BACA 

EN 
pURN 

C 
C FUNCTION UBETA. 
C COMPUTES UNIVARIATE BETA PDF. 
C ARGUMENTS. 
C A,B,P,Q, AS DEFINED IN FUNCTIONAL FORM OF BETA PDF. 
C DEN = G (P) *G(Q) /G(P +O) #(B- A) *4(P +Q -1), WHERE G(.) I 

C IS THE GAMMA FUNCTION. 
C CALLED BY FINT1,FINT3. 
C 

FUNCTION UBETA(X,A,B,P,Q,DEN) 
IF(X- A)10,10,20 

20 IF(B- X)i0,10,30 
10 UBETA = 0. 

RETURN 
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UBETA = ((X- A) * *(P- 1.)) *((B- X) * *(Q-1.)) /DEN 
RETURN 
END 

C 
C FUNCTION UNOP. 
C COMPUTES UNIVARIATE NORMAL PDF. 
C ARGUMENTS. 
C XM MEAN OF X 

C DX STANDARD DEVIATION OF X. 
C CALLED BY FINT1.FINT3. 
C 

FUNCTION UNOR(X,XM,DT) 
U = (X - XM) /DT 
U = -.5 *U *U 
IF(U + .673.)10.10,2.0 

10 UNOR = O. 
RETURN 

20 UNOR = EXP(V)/(2.506628275*DT) 
RETURN 
END 
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C 
C FUNCTION BVLGN. 
C CO1PUTES BIVARIATE LOGNORMAL PDP. 
C ARGUMENTS. 
C XC LOCATION PARAMETER OF X 

C XML MEAN OF LOG(X-XC) 
C DTXL STANDARD DEVIATION OF LOG(X-XC) 
C RO CORRELATION COEFF7CIEtiT BETWEEN LOG(X-XC).(Y-YC) 
C YC LOCATION PARA'^TFR OF Y 
C YML MEAN OF LOG(Y-YC) 
C DTYL STANDARD DEVIATION OF LOG(Y-YL) 
C CALLED BY FINT1,FI">>T3. 
C = - 

FUNCTION BVLGN( X,Y.XC,XML.DTXL.Pf,YC,YML,DTYL) 
Cl = 1. - RO *PO 
C2 = 1. /( 6.283185308 *SQRT(C1) *DTXL *DTYL) 
XSH = X - XC 
YSH = Y - YC 
IF(XSH)31,31,32 

32 IF(YSH)31,31,33 
31 PRINT 202,X,Y 
202 FORMAT( "0 * * ** FROM LOGNORMAL BV, (X.Y)= ",2E15.7) 

STOP 51 
33 XSHL = ALOG(XSH) 

YSHL = ALOG(YSH) 
71 = (XSHL - XM() /DTXL 
Z2 = (YSHL - YML) /DTYL 
0 = -.5 *(Z1 *Z1 - 2. *Z1 *Z2 *RO + Z2 *72)/C1 
IF(Q + 673.)21.21, 2.5 

25 BVLGN = EXP(Q) *C2 /(XSH *YSH) 
RETURN 

21 BVLGN = O. 
RETURN 
END 



C 
C FUNCTION BVGM. 
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C COMPUTES DOUBLE GAMMA PDF. 
C ARGUMENTS. 
C (CG. FUNCTIONAL FORM IN CHAPTER 3) 
C CLAM LAMBDA 
C CMU MU 
C A,B,C SAME AS IN DEFINITION. 
C COEF = 1/( CLAM * *A *MU * *C *G(A) *G(B) *G(C)) WHERE G(.) 
C IS THE GAMMA FUNCTION. 
C XC,YC LOCATION PARAMETERS OF X AND Y. 
C CALLS INTGM. 
C CALLED BY FINT1.FINT3. 
C 

FUNCTIO^.' F3VGI(xX,YY,CLAf1,C`111,A,B,C,COFF,XC,YC) 
COMM0N/ißDBr/DUMY(6),ERRG,oMINC, 
COMMON/BINT/XL,YM,AM1,BM1,Cm1 
ERRG = .Of' 
DXMNG = .0001 
AM:1. = A - 1. 
BM1 = B - 1. 
CM1 = C - ]. 
X = XX - XC 
Y = YY - YC 
XL = X/CLAM 
YM = Y/CMU 
UM = YM 
1F(XL - YM)]5,15,25 

15 UM = XL 
25 CONTINUE 

IF(UM)BP,84,PP 
89 BVGM = 0. 

RETURN 
88 CONTINUE 

D = -XL-YM 
IF(D + 673.)P9.21,21 

21 CALL INTGM(UM,RES,IER) 
IF(IFR)22,23,22 

22 PRINT 201,XX,YY 
201 FORMAT(i/ *4** TNTGM NO CONV. (XX,YY)=",3E15.7) 
23 BVGM = EX.P(D)*RES*COEF 

RETURN 
END 

C - - - - - 
C SUBROUTINE INTGM. 
C COMPUTES INTEGRAL TERM IN EXPRESSION FOR DOUBLE - 
C GAMMA POF, USING S IMPSO''JS RULE. 
C INPUT /OUTPUT INFO. 
C XF UPPER LIMIT FOR INTEGRAL. 
C RES VALUE OF INTEGRAL (RETURNED) 
C IER INDICATOR (RETURNED) = 0 IF NORMAL RETURN. 
C .NE. 0 IF NO CONVERGENCE 
C /BDBG/ PARAMETERS OF DOUBLE -GAMMA PDF AND TOLERANCE 
C FOR INTEGRATION 
C CALLED BY BVGM. 
C 

SUBROUTINE INTGM(XF,RES,IER) 
COMMON /BDPG /C L AM,C ̀ 1O, A, B, C, COEF, ERRG, DXMNG 
COMMON /BII i /XL,YM,AMI.PM1.CM1 
F(Z) _ (Z*'AM1)4-((XL - Z) **BM1) *((YM - 7) * *CM1) *FXP(7) 

C SHOULD BE SO = F(0.) + F(XF) BUT BOTH APE = O. 



SO =- O. 
D = XF 
S2 = 0. 
NI = 1 

05 DX = D/FLOI+.T(NI) 
IF(DX - DXVNG)11,12,12 

11 IER = 1 
RES = VN 
RETURN 

12 CONTINUE 
X = .5*DX 
S1 = O. 
DU 10 I = 1,NI 
Si = Si + F(X) 
X = X + DX 

10 CONTINUE 
C SHOULD BE (SC + ) BUT SO = 0 

VN = (2.#S2 + 4.*S1)*DX/6. 
IF(NI - 1)17,17,14 

14 IF(ABS(1. - VOLD/VN) - FRRG)15,15,17 
17 S2 = S2 + S1 

NI = NI*2. 
VOLD = VN 
GO TO 05 

15 CONTINUE 
IER = 0 
RES = VN 
RETURN 
END 

C 
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C FUNCTIOti BVNmL. 
C COMPUTES BIVARIATE NORMAL POF. 
C ARGUMENTS. 
C XM MEAN OF X 

C DTX STANDARD DEVIATION OF X 

C RO CORPFLATION COEFFICIENT 
C YM MFAN OF Y 

C DTY STANDARD DFVIATION OF Y. 
C CALLED BY FINTI,FI'JT3 
C 

FUNCTION BVNML(X,Y,XM,DTX,YM,DTY,RO) 
Z1 = (X - XM)/DTX 
Z2. = (Y - YM)/DTY 
Cl = i. - PO*RO 
C2 = l./(6.2831B530°*SORT(C1)*DTX*OTY) 
0 = -.5*(Z1-'-71 - 2.*Z1*Z2*R0 + Z2*Z2)/C1 
IF(Q + 673.)24,25,25 

25 BVNML = EXP ( 0 ) *C2 
RETURN 

24 BVNML = O. 
RETURN 
END 
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C 
C FUNCTION FINTI. 
C COMPUTES INTEGRAND FOR EXPECTED LOSSES IN REGION 1. 
C THIS IS THE VERSION FOR THE COMPOSITE MODEL AND MAY 
C BE INTERCHANGED WITH THE GENERAL VERSION WHEN INDI- 
C VIDUAL PDF"S APF USED. 
C VARIABLES IN DATA ARE PARAMETERS OF DISTRIBUTIONS 
C Wl...w4 ARE WEIGHTS CF COMPONENT PDF"S 
C INPUT INFO. 7(1)= X,Z(2) =Y. (INVERTED IN FINT3) 
C OUTPUT INFO. PINT' 
C CALLS ALL PDF "S IN THE COMPOSITE MODEL FOR EVENT El 
C DAMAGE 
C CALLED BY MULS(°`P GIVEN AS ARGUMENT BY SLUE. 
C _ - -- 

FUNCTION FINT1(Z) 
DIMENSION 7( ?) 
DATA XC2, XM L2, DTXL? ,R02,YC2,YML2,DTYL2.P102 /E5.Q9, 

1 -.9001'Q,1.._ 527"..08521,88.10,- (1.419 14,0.322?B4O.Q7/ 
DATA AX159B. X15, PX15, QX15 ,DENX15 /85.95,88.50,0.536018, 

1 0.975502.3.0547 / 
DATA TY15, YM1 5, DTY15, P1015 /PR.10,- C.41954,0.822RP,1.01 
DATA AY1 8,PY1E.PY190Y1P,DEL'Y1B.P1018 /8ß.10,N1..04, 

1 1.1201.8,2.378,94 5.1 F49,1.00/ 
DATA A Y17, FY17, CY17, BGY17 ,?1017/1.72905,0.52162,8P.10, 

1 0.29.88.1.00/ 
DATA Wl , W2, 4'3, W4 /. D8, .42, .20, . 30/ 
X = Z(1) 
Y = Z(2) 
CALL DAMAGE ( X, Y,VDMG) 

C BIVARIATF LOGNORMAL COMPONENT. DISTA. CODE = 02 
F1 = BVLGN(X, Y, XC2, XML2, DTXL2, RO2, YC Z, Y'1L2, D'1 YL2) /P102 

C BETA -LOGNORMAL COMPONENT. DISTRIBUTION CODE = 15 
TI = UBFTA (X,AX150BX15,PX15,OX159DENX15) 
T2 = ULGN(Y,TY15,Y115,DTY15) 
F2 = Tl *T2/P1015 

C BETA. BETA COMPONENT. DISTRIBUTION CODE= 18 
C T1 = UBETA(...) = SAME. AS ABOVE 

T2 = U3ETA (Y,AY18,BY18,PY1R,0Y18,DENY18) 
F3 = T1 *T2 /P1018 

C BETA -GAMMA COMPONENT. DISTRIBUTION CODE = 17 
C T1 = UBETA(...) = SAME AS ABOVE 

12 = UGAM(Y,AY17.BY17,CY17,BGY17) 
F4 = TI *T2/P1017 
FINTI = (W1 *F1 + W2 *F2 + W3 *F3 + W4 #F4) *VDMG 
RETURN 
END 

C = 
C FUNCTION FINT2. 
C COMPUTES INTFGR.AND OF EXPECTED LOSSES IN REGION 2 
C THIS IS THE VERSION FOR THE COMPOSITE MODEL AND MAY 
C BE INTERCHANGED WITH THE GENERAL VERSION WHEN INDI- 
C VIDUAL PDF "S ARE USED. 
C VARIABLES IN DATA ARE PAPAMFTFRS ryF DISTRIBUTIONS 
C W1... W4 ARE W ET GHTS OF COMPONENT PDF"S 
C INPUT INFO. Z(1) =X,Z(2) =Y. (INVERTED IN FINT3) 
C OUTPUT INFO. FINT2 
C CALLS ALL PDF"S IN COMPOSUTE MODEL FOR EVENT E2, 
C DAMAGE 



C 
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FUNCTION FINT2(Z) 
DIMENSION 7(2) 
DATA. XMI,DTX1/P3.7047,2.6437/ 
DATA TY1,YM1,DTY1,P1 01/87.00,1.47267,.152982,.6599 / 
DATA XM2,DTX2, YM2 ,DTY2,PO2,P1C2 /á3.6095,2.73228, 

1 91 .1749,(;.8745,0.09438,0.52146 / 
DATA AY3,BBY3, CY3, BDY3 ,P103 /1.72813,0.387949,91.04, 

1 0.17 9002_, 2 / 
DATA TY10,YM1C,DTY10,P1010 /91.04,- 0.71632,0.á710F, 

1 0.930122/ 
DATA W1 ,W2,W3,W4/.255,.467,.146,.132/ 
X = 7(1) 
Y = Z(2) 
CALL DAMAGE(X,Y,VDMG) 

C BIVARIATE NORMAL COMPONENT. DISTRIBUTI!7N CODE = 02 
F1 = BVNML (X,Y,XM2,DTY2,YM2,DTY2,R02_)/P102 

C NORMAL-GAMMA COMPONENT. DISTRIBUTION CODE = 03 
T1 = UNGR(X,Xt'1,DTX1) 
12 = UGAM(Y, AY3,dY3,CY3,PC,Y3) 
F2 = T1*T2/P103 

C NORMAL-LOGNORMAL COMPONENT. DISTRIBUTION CODE = 10 
C Ti = UUOR(...) = SAME AS ABOVE 

T2 = ULGN(Y,TY1O,YM10,DTY10) 
F3 = Tl *T2 /P1010 

C NORMAL- TRUNCATED LOGNORMAL COMPONENT. CODF= Cl 
C T1 = UNOP (...) = SAME AS ABOVE 

T2 = ULCN(Y,TY1,YMI,DTY1) 
F4 = Tl *T2 /P101 

FINT2 = (W1#F1 + W2*F2 + Vt3*F3 + W4*F4)*VDMG 
RETURN 
END 

C 
C FUNCTION FINT3. 
C COMPUTES INTEGRAND OF EXPECTFDLOSSFS IN REGION 3 

C THIS IS T-lE VERSION FOR THE COMPOSITE MODEL AND MAY 
C BE INTERCHANGED WITH THE GENERAL VERSION WHEN INDI- 
C VIDUAL PDF " +S ARE USED. 
C VARIABLES IN DATA ARE PARAMETERS OF DISTRIBUTIONS 
C W1...W4 ARF WEIGHTS OF COMPONENT PDF "S 
C INPUT INFO Z(2) =X, Z(1)= Y.(INVERSION IN FINT1,2) 
C OUTPUT INFO. FINT3. 
C CALLS ALL PDF"S 11F COMPOSITE MODEL FOR EVENT E2 
C DAMAGE. 
C 

FUNCTION FINT3(Z) 
DIMENSION Z(2) 

DATA XM1.PTX1/83.7047,2.6437/ 
DATA TY1, Y'' 1, DTY1, P1 01/P7.00,1.47267,.152B8B,.6599/ 
DATA XM2,DTX2, YM2 ,DTY2,RO2,P102 /P3.6095,2.7322P, 

1 91 .1749,C.P-'745.0.09438,0.52146/ 
DATA AY,FY3,CY3,BGY3,P103 /1.72813,0.387949,91.04, 

1 0.173002,C.ß4'52 / 
DATA TY10, YM10, DTY10 ,P1C10/91.04,- 0.71632,0.27106, 

1 0.930122/ 
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DATA W10 .12,443,W4/.2550.467,.146,.132/ .146,.132/ 
X = Z(2) 
Y = Z(1) 
CALL. DAMAGE(X,Y,VDMG) 

C RIVARIATF NORMAL COMPONENT. DISTRIBUTION CODE = 02 
F1 = BVNML( X,Y,XM2DTX2,YM2,DTY2,R02) /p102 

C NORMAL -GAMMA COMPONENT. DISTRIBUTION CODE = 03 
T1 = UNOR(X,XMI,OTX1) 
12 = UGAM(Y,AY3,BY3.CY3,BGY3) 
F2 = Tl *T2 /P103 

C NORMAL- LOGNORMAL COMPONENT. DISTRIBUTION CODE = 10 
C T1 = UNOR(...) = SAME AS ABOVE 

T2 = ULGN(Y,TY10,YM10,DTY10) 
F3 = Tl *T2/P1010 

C NORMAL -TRUNCATED LOGNORMAL COM °ONFNT. CGOF= 01 
C T1 = UNOR (...) = SANE AS ABOVE 

T2 = ULGN(Y,TY1,YM1,DTY1) 
F4 = T1 *T2 /R101 

FINT3 = (W1* F1 + W2 *F2. + W3 *F3 + W4 *F4) *VDMG 
RETURN 
END 



NOTATION 

b m 
Basic flow level for the main river 

bt Basic flow level for the tributary 

C(G) Total construction cost of levee with profile G 

ci(.) Construction cost function for cross section i 

D Domain of water profiles 

E1,E2,E3 Flood events 

f (H) pdf of water profiles 

G Levee profile; the vector (gi,g2' " .,gn) 

g 
Levee height at cross section i 

gm Levee height at main river (same as gl) 

gt Levee height at tributary end (same as gn) 

h A flood stage pair (hm,ht) 

H Water profile; the vector (h1,h2,...,hn) 

h. Water level at cross section i 
i 

hm Water level at main river (same as hl) 

ht Water level at tributary end (same as hn) 

L(G,H) Losses caused by flood H with levee G 

l.(.,.) Damages function for cross section i 

S Sample space 

TEC Total expected cost 

tk(G,H) Indicator function; see Equations (2.10) and (2.11) 

TYC Total yearly cost (usually in million Forints) 

x Water level at thé main river (also hl or hm) 
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Base level for main river (also bm) 

y Water level at the tributary (also hn or ht) 

yL Base level for the tributary (also bt) 
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