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ABSTRACT 

This dissertation contains a discussion concerning the validity 

of the principle of optimality and the dynamic programming algorithm in 

the context of discrete time and state multistage decision processes. 

The multistage decision model developed for the purpose of the investi- 

gation is of a general structure, especially as far as the reward func- 

tion is concerned. The validity of the dynamic programming algorithm 

as a solution method is investigated and results are obtained for a 

rather wide class of decision processes. The intimate relationship 

between the principle and the algorithm is investigated and certain 

important conclusions are derived. 

In addition to the theoretical considerations involved in the 

implementation of the dynamic programming algorithm, some modeling and 

computational aspects are also investigated. It is demonstrated that 

the multistage decision model and the dynamic programming algorithm as 

defined in this study provide a solid framework for handling a wide class 

of multistage decision processes. 

The flexibility of the dynamic programming algorithm as a solu- 

tion procedure for nonroutine reservoir control problems is demonstrated 

by two examples, one of which is a reliability problem. 

To the best of the author's knowledge, many of the theoretical 

derivations presented in this study, especially those concerning the 

relation between the principle of optimality and the dynamic programming 

algorithm, are novel. 

viii 



CHAPTER 1 

INTRODUCTION 

The dynamic programming algorithm and the principle of optimality 

as introduced by Bellman in the early 1950's have since been the subject 

of a continuous research effort, especially as related to stochastic 

processes. After the pioneering work of Bellman, Howard and others, 

certain fundamental questions concerning their validity have been raised. 

It was realized (Karlin, 1955) that any meaningful discussion on these 

subjects should be conducted in the context of the decision process under 

consideration. The result was that multistage decision processes started 

to be classified according to certain properties of the elements cf the 

process such as state spaces, decision sets, reward functions, etc. This 

study is restricted to processes in which the state space(s) and the set 

of decision stages are countable, and which are often referred to as dis- 

crete processes. 

The investigation will concentrate on two subjects: first, the 

development of a multistage decision model and second, the validity of 

the principle and the algorithm in the context of the model developed. 

In Chapter 2, the multistage decision model is developed and some 

of its basic properties are analyzed. The concept of sufficient statis- 

tics is used to show how the dimensionality of the original (complete) 

problem may be reduced without affecting the optimality of the rewards. 

1 
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Chapter 3 includes the formal definitions of the principle of 

optimality and the dynamic programming algorithm and an extensive study 

concerning their validity. An important conclusion concerning the va- 

lidity of the principle of optimality is derived. An attempt is made to 

clarify the ambiguity concerning the relation between the principle and 

the algorithm. It is shown that indeed the principle of optimality and 

the dynamic programming algorithm are intimately related and this rela- 

tion is specified. The notions of the principle of optimality and the 

dynamic programming algorithm as introduced in this study are compared 

with others and their generality is emphasized. 

Chapter 4 is devoted to the investigation of a potential method 

of reducing the computational load often encountered when implementing 

the algorithm. By means of two simple reservoir control problems, it is 

demonstrated that analytical considerations may be extremely effective in 

reducing the computational load. 

The study is concluded by investigating the elements of the model 

from a modeling viewpoint. Two nonroutine reservoir control problems are 

introduced and it is demonstrated how the model may be used to solve them, 

using the dynamic programming algorithm. In contrast to certain comments 

made recently in the hydrologic literature, it is demonstrated how the 

dynamic programming algorithm can be used to handle probabilistic 

constraints. 

Each of the above chapters concludes with a discussion in which 

the contribution of this study to the state -of- the -art is specified. 
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The reference material includes a list of most of the symbols 

used in Chapter 2 and Chapter 3 (Appendix A). The computer program used 

to solve the "range" problem introduced in Chapter 5 is presented in 

Appendix B. 



CHAPTER 2 

THE MULTISTAGE DECISION MODEL 

The multistage decision model introduced in this chapter is 

developed and formulated so as to provide a convenient mathematical 

framework for (a) investigating the properties of the optimal decisions, 

and consequently (b) the construction of a solution procedure. In other 

words, the model is designed for analytical purposes. 

The structure of the model is determined by a sequence of defi- 

nitions. In this chapter, neither the motivation for choosing the 

specific definitions nor their physical interpretation are elaborated; 

this will be done in Chapter 5 where the modeling aspects of the multi- 

stage decision process are discussed. 

2.1. Mathematical Formulation of the 

Complete Multistage Decision Model 

The model developed in this chapter is a modified version of 

Hinderers (1970, pp. 5 -47) model. The elements of the model will be 

first defined followed by a formal definition of the model itself. 

Definitions 

Definition 2.1. The set Iji of decision stages is the set of 

positive integers. More specifically: i _ {n: n = 1, 2, . . .} .j 

The set I identifies the stages in which the decision maker is 

allowed to make decisions and consequently to implement the corresponding 

actions. It should be noted that * consists of countably many elements. 

4 
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Definition 2.2. The state space, S2 

n 
, associated with the nth 

decision stage is a nonempty countable set containing the elements x 
n 

called states. The set S2 = U R is called the universe and the set 
T n 

nets 

R = (SZn: ne*) the set of state spaces. 

Definition 2.3. A trajectory, x 
n 

, associated with the nth 

decision stage is a sequence of states. More specifically, 

xn = (x1, x2, . . ., xn) xie52i, i = 1, 2, . . ., n. 

The set of all the trajectories associated with the nth decision stage 

will be denoted by ,i.e.: ñ 

Rn = 21 x 02 x . . . x 52n, ne* 

and 

X. = S21 x S22 x . . 

The ith coordinate of xn will be denoted by xn(i), i.e., xn (i) eçti, 

i < n.j 

Definition 2.4. The decision set, *, is a nonempty set containing 

the elements d called decisions. 

The set 1 contains all the decisions available to the decision 

maker. However, not all the elements of i are available at a given 

decision stage. Moreover, at any decision stage the decisions available 

to the decision maker may depend either on the previous and current states 

and /or the previous decisions already made. In other words, the set of 

alternative decisions available to the decision maker at the nth stage 

may depend on the history of the process as far as states and decisions 

are concerned. 

Definition 2.5. The history space, H 
n 

, associated with the nth 

decision stage is the set given by: 



with 
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fin = 
D1 

x x S22 x . . . x0 x S2n, ne 0 

H=S21x xS22x x. . . 

The elements hn of Hn are called histories. 

Definition 2.6. The sequence D = {D } J. of adnissible decision 
n net 

maps is a sequence of maps from certain sets Hn C Hn to the set of all 

nonempty subsets of with the property that 

H1 - 
2 
1 

Hn +l = {(h,d,x): heHn, deDn(h), xeS2n +1} 

Dn is called the admissible decision map associated with the nth decision 

stage and D (h ) the set of admissible decisions at (h , n), whereas H 
n n n n 

is called the set of admissible histories at the nth decision stage. Let 

W 
n 

be defined as: 

Wn = {(hn,d): hneHn, deDn(hn)}, ne0 

Hn +l 
can be written then as 

Hn +l = Wn x °n +l 

The dynamics of the process is assumed to be a statistical one in 

the sense that given the history hneHn at the nth decision stage, where 

the decision dneDn(hn) is made, the next stage of the system, xn 
+1, 

is 

selected from Qn 
+1 

according to a mass function defined over Stn 
+1' 

Definiton 2.7. The law of motion, F, is a sequence of families 

of mass functions. More specifically, F = {fn)ncil., where fn is a real 

valued function defined on Hn x 1 x Stn with the property that 

(1) 0 < 
fn (hn' dn'xn+1) 

.< 1, hneHn, dneDn(hn)' 
xn+1e2n+1' 

neI 

and 
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(2) 
E 

fn(hn' dn' xn+1) 
= 1, hneHn, dneDn(hn), ne* 

xn+l eR r.+l 

f 
n 

is called the law of motion associated with the nth decision stage 

whereas fn (hn, dn, ') is called the conditional mass function of 
xn +1 

given hn and dn.j 

Notice that the state of the system at the first decision stage 

is not specified by F. 

Definition 2.8. The.initial condition, Po, is a real valued 

function on S21 with the property: 

(1) 0 < Po (x1) < 1, xicQ1 

and 

(2) E P 
o 
(x 

1 
) = 1. j 

xleDl 

The initial state of the system is allowed then to be specified 

by means of a mass function defined on 521. Obviously if there exists 

x °c01 such that Po(x °) = 1, x° may be considered as the initial state. 

In order to establish a preference order over the set H., with 

each element of H a reward is associated. 

Definition 2.9. The reward function, L, is a sequence of real 

valued functions defined on fig. More specifically, L = 
{Ln 

}ne,,ç, such 

that for each neT, Ln is a real valued function defined on H..j 

Now that the elements of the decision model are defined, the 

formal definition of the complete multistage decision model is introduced. 

Definition 2.10. A complete multistage decision model (abbre- 

viated CMDM) is any qunituple (Q, D, F, Po, L) where: R = {Stn: ne40 is a 

set of state spaces, D = {D } is a sequence of admissible decision maps, 
n nc1 
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F = 
{fn 

}neJ. is a law of motion, Po is an initial condition and 

L = 
{Ln}neJ. 

is a reward function, as defined above.j 

The procedure used by the decision maker while making his deci- 

sions at the different decision stages will be defined now: 

Definition 2.11. A strategy, S, associated with the model (Q, 

D, F, Po, L) is a sequence of maps from Hn to I1). More specifically 

S = 
{Sn 

}rie , where Sn is a map from Hn to I, ne*.j 

When using the strategy S = IS } J. and observing the history 
nncbt 

h 
n 
eH 

n 
at the nth decision stage, d 

n 
= S 

n 
(h 
n 
)c1 is the decision taken. In 

order for the strategy S to be feasible, it is required that S 
n 
(h 
n 
)eD 

n 
(h 
n 
). 

Definition 2.12. The strategy S associated with the model (Q, D, 

F, P 
o 

, L) is said to be feasible if S 
n 

) = D (h ) , vncr , h cH 
n n n n n n 

The set of all the feasible strategies associated with the model will be 

denoted by SS.j 

The application of the feasible strategy, S, associated with the 

model (Q, D, F, Po, L) generates a process: the process induced by S, 

which schematically may be described as follows: 

The process starts at the first decision stage, n = 1, at some 

x1cÇ21 selected from 
Q1 

according to the initial condition Po; then the 

action S1(x1 ) is taken and the system moves to some state x2c522 selected 

according to the conditional mass function f1(x1, S1(x1),); then the 

action S2(x1,S1(x1), x2) is taken and the system moves to some point 

x3eS23 selected according to f2(xl, S1(x1), x2, S2 (xl, S1(x1), x2), ), 

etc. 

The first concern of the decision maker is then the construction 

of a feasible strategy. 
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Definition 2.13. The multistage decision problem associated with 

the model (St, D, F, Po, L) is the construction of a feasible strategy. 

The strategy S is said to be a feasible solution to the problem if it is 

feasible. 

Obviously, in addition to the feasibility of S the decision maker 

is also interested in the histories that may be produced by S which affect 

the rewards associated with the process. In order to select an element 

of SS that will optimize the reward, an optimality criterion is to be 

determined. 

The discussion will be restricted to situations in which the 

expected value of the reward is used as a measure of effectiveness. 

For this purpose, it will be shown that the expected value criterion is 

meaningful, at least mathematically. 

Definition 2.14. Let (p, D, F, Po, L) be a complete model. The 

CO 

product 2 = X St is called the sample space associated with the model 
n =1 

and its elements will be denoted by w. Three sequences of functions 

will be associated with the sample space: 

(1) - {n}nei;i : 
S2 -} Stn ,nE* 

n 
(2) n = {nn}ne1$1 nn : S2 -} X Q. ,nEil; 

i=1 

(3) = : S2 -} X Q. ,ne* 

í=n 

where: En(w) = xn, nn(w) _ (xi, x2, . . ., xn), n(w) _ (xn, xn +l' 
. . .) 

w = (xl, x2, . . . )60. 

fin, nn, and C 
n 

will be referred to as the present, past, and future state 

functions associated with the nth decision stage, respectively. 
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Definition 2.15. Let (9, D, F, Po, L) be a complete model and S 

a feasible strategy associated with it. Consider the probability space 

(St, tp, Ps) where: 

(1) P is the sample space associated with the model; 

(2) Y' is the infinite product o -algebra determined by the factors con- 

sisting of all the subsets of S2 

n 
, ne; 

(3) Ps is the unique probability measure on tP with the property that: 

Ps (xl, x2, . . ., xn) = Po(xl)fl(xl, S1, (x1), x2) . . 

fn- 1(hn- l'Sn- 1(hn- 1)'xn) 

where P 
o 

is the initial condition, f. is the law of motion associated i 
with the ith decision stage, and 

hn -1 = (xl, 
S1(xl), x2, S2(xl, S1(x1), x2), . . ., xn -1) 

(St, f,, is is called the probability space induced by S and Ps the prob- 

ability measure induced by S.j 

The existence and uniqueness of Ps and (S2, Ps) are guaranteed 

by the structure of the model. (For details, see theorem of Kolmogoroff 

or theorem of Tulcea, cf. Loeve, 1960, p. 137). 

Definition 2.16. Let (9, D, F, Po, L) be a complete model, S 

a feasible strategy and (S2, i, Ps) the probability space induced by S. 

Let also 
hn 

(xn) be the history associated with xn and S, i.e.: 

hn,s 
(xn) = (xl, S 

1 
(x 

1 ' 

x2, S2 (x1, S 
1 
(x 

1 ' 

x2), . . ., xn) with 

xn = (xl, x2, . . . , x11) . 

The expected value of L1 assiciated with the strategy S and denoted by 

R(S) is called the total reward associated with S. More specifically, 

R(S) = E[ts(w) ] 

where is (w) = L1 
(h., 

(yw)) ) 
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The strategy S* is said to be an optimal feasible solution to the 

problem associated with the model if: 

(1) S*cSS 

and 

(2) R(S *) > R(S), vScSS. 

The set of all the optimal feasible strategies will be denoted by SS* and 

R* = R(S *), S*cSS* will be called the optimal feasible total reward 

associated with the model. 

Suppose that the process starts at n =1 by applying the strategy 

S'eSS and that at the nth stage hn is observed. At this point the strat- 

egy S"eSS is applied and the process continues under S" for all i > n. 

The situation the decision maker encounters at (hn, n) may be considered 

as a modified problem. 

Definition 2.17. Let (R, D, F, Po, L) be a complete model and S 

a feasible strategy. The conditional expectation of L 
n 

given h 
n 

asso- 

ciated with S denoted by Rn(hn,S) is called the reward associated with 

the strategy S at the modified problem (hn,n). More specifically, 

R 
n 
(h 
n 
,S) = F[Qn,s(w) !hn) 

where kn (w) = 
Ln (h, s ( (w)) ) 

The strategy S' is said to be an optimal feasible solution to the modi- 

fied problem (hn, n) if 

(1) S'cSS and (2) Rn(hn,S') > Rn(hn,S), vScSS, 

and for such a strategy R 
n 
*(h 

n 
) = Rn(hn,S') is said to be the optimal 

feasible reward associated with the modified problem (hn,n).j 

It should be noted that when considering R (h ,S), it is not re- 
n n 

quired that hn is actually observed by S. 
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2.2. Sufficient Statistic and 
the Reduced Model 

The elements Dn, fn, and Ln of the complete model assumed to de- 

pend on the histories in the sense that D 
n 

= D 
n 
(h), fn = f 

n 
(h 
n 

, , ) and 

Ln = Ln (hoe). In many situations this dependence does not require a full 

knowledge of h but rather may be determined by codensing the information 

contained by h. The ability to condense the information contained by h 

and still preserve the basic characteristics of the process may signifi- 

cantly reduce the dimension of the problem associated with the model. 

This is the motivation for using the concept of sufficient statistic. 

Definitions 

Definition 2.18. Let (Q, D, F, Po, L) be a complete multistage 

decision model and T = 
{tn 

}rie,. a sequence of maps from Hn to Un where 

{Un }neii, 
is a sequence of arbitrary sets. The sequence T = {t 

n 
} 

ncIll 
is 

called a sufficient statistic of the complete model if it has the fol- 

lowing properties: 

(1) to is a surjective map vne/It, 

(2) D(h) = D' (t 
n 
(h)) vnc4i, heH 

n 
, 

(3) fn(h,d,x) = fn' (tn(h) ,d,x) , vnc4î, dcDn(h) , xcSZn 
+1' 

(4) Ln(hn'dn'xn +1'dn +1' 
. . .) = Ln'(tn(hn'), dn', xn +1'' do +1,' 

) 

for all hn, hn'eHn, xi, xi'cS2i, i > n +l, d.cD. (h.), d.'eD.'(t.(h.')), 

j > n for which 

(4.1) tn(hn) = tn(hn') 

(4.2) hn+1 (hn'dn'xn+l) ' hn+1 
= 

(hn'dn'xn+1) 

h. _ (h. , di-1, x ) , h = (h' . 
i 

,d: ,x:), i > n+l 
i i -1 i-1 i 
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(4.3) t i(hi) = ti (hi) , i > n +l 

for some functions D 
n 
', f' 

n 
and L' 

n 
, ne* such that D 

n 
': U 

n 
-} 11), fn': 

Un x * x Stn 
+1 } * and Ln': Un x * x Pn +1 x * x n +2 x -' *. 

(5) If hn, h'dHn, then tn(hn) = tn(hn') implies 
n 

to +l(hn,d,x) to +l(h',d,x) 

for all deDn(hn) = D' (tn [hn]) , xe2n 
+1' 

The sequences D' = 
{D' 

}rie , F' = 
{f' n 

}rie , and L' = 
{Ln 

}neJ. are called the 
n 

reduced admissible decision maps, the reduced law of motion, and the re- 

duced reward function, respectively. 

The sufficient statistic T defines certain functions which will 

be useful when investigating the relationship between D, F, L and D', F' 

and L'. 

Definition 2.19. Let (e, D, F, Po, L) be a complete model and 

T = {tn }ne a sufficient statistic associated with it. Let V = 
{Vn) 

be the sequence of maps defined on Un x ] x Stn 
+1 

with values in Un 
+1 

such that: Vn 
+1 (un' dn' xn +1) = to +1 (hn +l) 

for all hn 
+l (hn, dn' xn +l) 

for which u tn(h11), as defined by prop- 

erty (5) of T as described in Definition 2.18. The sequence V is called 

the transition function associated with the sufficient statistic T. 

Let r = {r } be the sequence of maps from U to the set of 
n nel n 

all subsets of H 
n 

such that: 

r (u) _ {h : h eH , t (h ) = u , ne*1, u cU 
n n n n n n n n n n 

The sequence will be called the partition function associated with the 

sufficient statistic T.) 

It should be noted that the sequences V and 1' are uniquely deter- 

mined by the sufficient statistic T, and that there always exists a 
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sufficient statistic, i.e., there always exists the trivial sufficient 

statistic: T = {tn: tn(hn) = hn, hnaHn }ne . 

Now that the elements D', F', L' and T are defined, the notion 

of a reduced model is introduced. 

Definition 2.20. Let (e, D, F, Po, L) be a complete model, T 

a sufficient statistic, and D', F', and L' the sequence of reduced ad- 

missible decision maps, reduced law of motion and reduced reward function 

associated with T, respectively. The quintuple (R, D', F', Po, L') is 

called the reduced multistage decision model (RMDZ) associated with the 

complete model and T.) 

The decision making procedure associated with the RNDM is similar 

to that used in the CMDM only that in this case un = tn(hn) is observed 

rather h itself. Notice that since D' (t (h )) = D (h ), the set of 
n n n n n n 

alternative decisions available at (un, n) is identical with the 

set available at (h 
n 
,n), vh 

n 
for which t 

n 
(h 
n 

) = u 
n 

. 

Definition 2.21. A strategy, G, associated with the reduced 

model (G2, D', F', Po, L') is a sequence of maps from Un to 1. More 

specifically, G = {Gn }rie such that Gn: Un ->If, vnc*. The strategy 

G is said to be feasible if G (u )eD'(u ), vnc1$, u cUn. The set of all nn nn n 

the feasible strategies associated with the reduced model is denoted by 

GG.j 

Definition 2.22. The multistage decision problem associated with 

the reduced model (Q, D', F', Po, L') is the construction of a feasible 

strategy. The strategy G is said to be a solution to the problem if it 

is feasible. 



15 

As in the case of the complete model, each element of GG induces 

a probability space (Q, 1y, PG) , where S2 and iy are as defined in Defini- 

tion 2.15 and PG is the unique probability measure as defined by F'. 

Definition 2.23. Let (R, D', F', Po, L') be a reduced model and 

G a feasible strategy associated with it. The probability space (Q, , 

PG) is called the probability space induced by G where Q is the sample 

spaceoy is the a- algebra on Q as defined in Definition 2.15 and PG is 

the unique probability measure on 1p such that: 

PG (Cn +1 (w) 
= xn 

+llnn(w) 
= 

n 
) fn(un,Gn(un), 

xn 
+l) 

where: w = (xn, xn +1' xn +2, . . .), un = 
tn(hn), and 

hn = (xn(1), G1(t1(xn(1))), . . ., xn(n)) 

PG is called the probability measure induced by G. The expected value of 

L' associated with the strategy G, denoted by R'(G) is called the total 

reward associated with G. More specifically, 

R' (G) = EK(w) ) 

where: i(w) = L1(tl( 1(w)), Gl(tl(C1(w))), C2(w), . . .). 

The strategy G* is said to be an optimal feasible strategy if: 

(1) G *eGG 

and 

(2) R'(G*) > R'(G), y GeGG. 

The set of all the optimal feasible strategies associated with the model 

will be denoted by GG *, and R'* = R'(G *), G *eGG* will be called the 

optimal feasible total reward associated with the model. The conditional 

expectation of L' associated with G given u , 111(u denoted by '(u ,G) is 
n n n 

called the reward associated with G at the modified problem (un,n). More 

specifically: 
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R'(un,G) = EEL' G(m)Iun] 

where: 1Cn,G(w) = L' (tn(hnG(nn(w))), Gn(un), 
n +l(w), 

. . .) 

and hn,G(xn) _ (xl, G, (tl(x1)), . . . xn). 

The strategy G' is said to be an optimal feasible solution to the modi- 

fied problem (u 
n 

, n) if: 

(1) GeGG 

and 

(2) R'(u ,G') > R'(u ,G), y GeGG, 
n n - n n 

and for such a strategy R' 
n 
*(un ) = R'n (u 

n 
,G') is said to be the optimal 

feasible reward at (u 
n 
,n).j 

Suppose that while making the decisions there is a choice be- 

tween the use of strategies depending on histories vs. strategies de- 

pending on the sufficient statistics. Which option will be advantageous 

as far as the rewards are concerned? In order to show that the two op- 

tions produce the same results, the concept of images is introduced. 

Definition 2.24. Let (S?, D, F, Po, L) be a complete model, T 

a sufficient statistic associated with it, and (R, D', F', Po, L') the 

corresponding reduced model. Let IC: GG -> SS be the map determined as 

follows: 

Ic(G) _ {S : S (h ) = G (t (h )), h eH } 
n n n n n n n n neg1 

The strategy S = Ic(G) is called the complete image of G..; 

Lemma 2.1. Let (R, D', F', Po, L') be the reduced model asso- 

ciated with the complete model (R, D, F, Po, L) and the sufficient 

statistic T. Then, 

(1) Rn(hn, le (G)) = R' (tn (hn), G) , 
vneN, hncHn, GeGG, 

and 
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(2) R (Ic (G)) = R' (G) , vGcGG. 

Proof: (1) Let G be any arbitrary element of GG and S the 

complete image of G, i.e., S = Ic(G). By construction GGG implies that 

SeSS and from the relation between F and F' it is given that Ps = PG. 

Since from the relation between L and L' it follows that 

G 
n 
(u 
n 
), x 

n +l 
, . . .) = L 

n 
(h 
n 

, S- 
n 
(h 
n 
), x 

n +l 
, . . .) 

n n 

for all nail, hn6Hn for which tn(hn) = un and xicf i > n, it also fol- 

lows that 

R (h , S) = R' (t (h ) , G), net, h eH 
n n n n n n 

(2) From the definitions of R and R' it follows that 

and 

R(S) = E R1(x1,S) Po(xl) 
x16521 

RI(G) = E R1'(tl(x1), 
xlcS21 

Using the first part of the Lemma for n =1 it is given that 

R(S) = R' (G) . 

The above lemma implies that as far as the rewards are concerned 

the complete model is as good as the reduced model. 

Definition 2.25. Let (Q, D, F, Po, L) be a complete model and T 

a sufficient statistic associated with it. For each ScSS and neiji, 

construct the sequence of strategies as follows: 

(1) for i =n set: 

Sm (11m) 

S (h ) , m n , h 6H 
m m m m 

S (h*(h )), m = n, h 6H 
m m m m 

where h*(h 
n 

) is sonne arbitrary element of i 
n 
(t 

n 
(h 
n 

)) for which 



18 

Rn(h *(hi),Si 
-1) Rn(h,Si -1), 

vhcr (ti(hi)) and Rn(hi,Si 
-1) 

is 

the expected value of Ln given hi associated with the strategy Si 
-1. 

Any sequence 
{S1)i. >n 

constructed as described above is said to be 

generated by S at n. The strategy S' = lim Si will be denoted by Ir(S) i- 
and called the strategy generated by S at n. For n =1 the strategy 

Ir(S) = IIr(S) is called a reduced image of S.J 

Notice that by construction, the uniqueness of Ir(S) is not 

guaranteed, and depends on the choice of h *(hi), if any. However, the 

above definition guarantees that every reduced image, S', of S has the 

following property: 

S'(hn) = S'(h'), vhn, h' for which tn(hn) tn(h') and thus the 
n n n 

strategy GEGG constructed by setting C(u) = S'(h 
n 

) for any arbitrary 

hncl'n(un) is well defined. 

Lemma 2.2. Let (Si, D', F', Po, L') be the reduced model asso- 

ciated with the complete model (:2, D', F', Po, L') and the sufficient 

statistic T. Let also {S1). be a sequence of strategies generated by 
1 >n 

ScSS at n. Then, R 
n 
(h 
n 
,sl) > R 

n 
(h 
n 
,S) vh 

n 
el, i>n. 

Proof. The lemma will be proven by induction on i. For i = n 

the relation R 
n 
(h 
n - ,Sn) > R 

n 
(h 
n 
,S), vh 

n 
cH 

n 
is guaranteed by the structure 

of Sn, T and R. Assume that the inductive hypothesis is true for 

i = n +l, n +2, . . .m. In particular assume that it is true for i =m, i.e.: 

R n(hn,S 
m 

) > Rn(hn,S), vhncHn. 

Consider i = m+l for which 

and 

Rn(hn,Sm+l) = E (Rn(hn,Sm+l 
n+1' 

., xm+1)3 

m m. 
R 
n ( t'n' 

S) = E Rn ( hn' S i 

xn+1' 
..., 

xi:ri-1) 
] 
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where the expectations are taken with respect to (x . . ., x ). By 
n +1 m +1 

construction Sm+ 1(hk) = Sk(hk) k < i so that the definition of {Si }i >n 

implies that 

R (h ,Sm+l)J > R (h ,Sm)1 
n n xn 

+l' " xm+l n n xn 
+1' . . ' xm+l 

m+1 

for all hnEHn, and (xn +1' . . . xm+l)e X Ok. 
k =n +1 

From the definition of 
{Si 

}i it also follows that: 

PSm(xn 
+l' 

. , xm+l1hn) = 
P 
S +l (xn 

+l' 
. . .,xm+ljhn) 

for all hnEHn and (xn 
+1' . ., xm+1) e X Pk, and thus 

k =n +l 

R (h , 

Simt-1) 
> R (h , S) , vh EH 

n n - n n n n 

and the inductive hypothesis is true for i =m+l, and hence it is true 

for all i > n.j 

The results obtained by Lemma 2.1 and Lemma 2.2 yield then, 

Theorem 2.1. Let (R, D', F', Po, L') be the reduced model asso- 

ciated with the complete model (Q, D, F, Po, L) and the sufficient 

statistic T. Then 

(1) R *(h ) = R ' *(t (h )), vne1, h eH 
n n n n n n n 

and 

(2) R* = RI* 

provided that the above exist. 

Proof: (1) Let (hn,n) be any arbitrary modified problem for 

which Rn *(hn) exists. In other words, 

R 
n 
*(h 

n 
) = R 

n 
(h 

n 
,S') for some S'ESS. 

Let G' be the reduced image of S' at n: i.e., 

G' = 
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From Lemma 2.2 it follows then that 

R' (tn (hn) , G') > Rn* (hn) 

However, from Lemma 2.1 it follows that 

n(hn,Ic(G')) = R'(tn(hn),G') 

which implies then that 

R 
n 
*(h 

n 
) = R 

n 
'*(t 

n 
(h 
n 
)). 

(2) Let S *cSS and G *CGG* be any optimal feasible solutions to 

the problems associated with the complete and reduced model respectively. 

In other words, 

R* = R(S *) , and R'* = 10(G*) 

From Lemma 2.1, it is known that 

R* > R(Ic(G *)) = R'(G *) = R* 

while from Lemma 2.2 it follows that 

R' *(II(S *)) > R(S ̂') = R* 

Thus, 

R* = R(S *) = R(G *) = R' *.j 

Theorem 2.1 implies that trying to optimize the rewards the use 

of the complete and the reduced model will provide the same results. As 

far as computation is considered, often the reduced model is advantageous 

as will be demonstrated in Chapter S. 

2.3. Special Types of Multistage 
Decision Models 

Certain properties of R, D, F, L, and T are often used as 

classification criteria. In this section, a number of these criteria 

are introduced. 
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Definitions 

Definition 2.26. A complete model for which there exists the 

sufficient statistic: 

T = {tn: tn(hn) = xn, hncHdnelil 

is called a Markovian model. If in addition the model is such that: 

Stn = SZ, vnel , Di = Di and fi = fj , y i, j cI$ , the model is said to be 

stationary.j 

In many situations the actual process is such that the number of 

decision stages is finite, say N. If the model presented in this chapter 

is to be used it is necessary then to construct dummy decision stages, 

reward functions, etc., for decision stages greater than N. The notion 

of a truncated model as will be introduced now is not restricted to the 

above situation and also represents a situation where given the problem, 

that is, the history at n = N, the rest of the decision process is already 

determined as far as the decisions at decision stages greater than N are 

concerned. 

Definition 2.27. Let (R, D, F, Po, L) be a complete model for 

which D = {D 
n 

) is such that 

Dn(hN,d,x1i+1 
. . ., xn) = 6n(hN) , n > N 

where 6n is a function defined on HN with values in *. It is said then 

that the model is truncated at N which is indicated by writing: (R, D, 

F, Po, L)N.J 

As far as the reward function is concerned in many situations it 

has the following structure. 

Definition 2.28. Let (R, D, F, Po, L) be a complete model for 

which L = 
{Ln 

}n£ is such that for all net 
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Ln(hn'dn,xn +1' 
. . .) = 

rn(hn,dn,xn +1) 
+ Ln +l(hn +1,dn +1' . . .) 

where rn is a real valued function defined on Hn x * x Stn 
+1. 

It is said 

then that L is an additive reward function. 

Most of the early investigations concerning multistage decision 

models have been restricted to additive reward function. Hinderer's 

(1970) model, for example, treats only additive reward functions. At 

this stage of the analysis, the only properties of L that have been 

specified are the domain of definition, H., and the range, *. 

2.4. Discussion 

The multistage decision model presented in this chapter belongs 

to the class of models often referred to as discrete dynamic programming 

models or discrete time state models (Blackwell, 1962; Aris, 1964, 

Maitra, 1968, Miller and Veinoff, 1969, and others). 

Following the pioneering work of Bellman (1952, 1953, 1954, 1957) 

and Howard (1960), the class of multistage decision models has been ex- 

panded significantly especially as far as the structure of the reward 

function is concerned (Mitten, 1964, 1974; Denardo, 1965; Sobel, 1975). 

In this section, the basic characteristics of the elements of 

the model will be discussed including possible modifications for handling 

processes other than the one for which the model was originally designed 

for. 

The Set of Decision Stages, I 

The model is concerned with processes having countably many 

decision stages. For truncated processes, one can still use the model 

by constructing dummy decision stages. It is also assumed that the 
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process is a serial one. Nemhauser (1966) has shown how certain non - 

serial processes may be decomposed into a set of serial processes each 

of which is treated by methods applicable to serial processes. If 

there is uncertainty concerning the sequence of decision stages to be 

realized, it is possible (Denardo, 1965) to embed the decision stages 

in the state spaces while using dummy variables for the decision stages 

themselves. 

The Set of State Spaces, R 

The basic characteristic of R is that its elements 52 

n 
are count - 

able sets. For models allowing noncountable state spaces see Blackwell 

(1965), Sirjaev (1970), and Hinderer (1970). It was purposely determined 

to explicitly indicate that the state spaces need not be identical. 

For truncated processes there is a need to construct dummy state spaces 

for dummy decision stages which for convenience often may consist of one 

element only. 

Admissible Decision Map, D 

As will be indicated in Chapter 5, the construction of D is 

based on two types of constraints: the first has to do with the 

availability of decisions at the modified problem (hn,n) while the second 

involves constraints imposed on 0 
n 

. In some models, Yakowitz (1969), for 

example, these two types of constraints are explicitly formulated. At 

this stage it should be emphasized that in contrast to Askew's (1974) 

comment, probabilistic constraints can also be handled by the sequence 

D, as indicated by Hellman and Dreyfus (1962), White (1974), and as will 

be demonstrated in Chapter 5. 
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The Law of Motion, F 

Deterministic processes as far as the dynamics of the process is 

concerned may be treated as a degenerate case of the statistical law of 

motion introduced in the model. It should be noted, however, that even 

if the law of motion is a deterministic one, an expected value criterion 

still may be meaningful if some uncertainty is involved in the rewards 

associated with the process. 

Initial Condition, Po 

As in the case of F, a deterministic process may be formulated 

(as far as the initial condition is concerned) by setting Po(x1) = 1, 

for that element x1c521 which is the initial state of the process. 

The Reward Function, L 

While in Hinderer's model the reward function is assumed to be 

additive, no assumptions are made as to the structure of Ln other than 

specifying its domain of definition H. and its range *. It should be 

noted, however, that nonreal valued function may also be considered 

when modeling multistage decision processes. Mitten (1974) and Sobel 

(1975), for example, introduce a reward function for which, Ln(h.) = h. 

for this type of a reward function a modified optimality criterion is 

needed since the expected value is no longer suitable. 

The Sufficient Statistic, T 

Hinderer's definition has been modified so as to account for the 

general form of L used in the model. Since the uniqueness of T is often 

not guaranteed, its construction may be considered as a modeling problem. 
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More on the role of sufficient statistics in the modeling of decision 

process can be found in Sirjaev (1970). 

Optimality Criterion 

The optimal feasible solutions are defined as those strategies 

maximizing the total reward, which in itself is the expected value of 

L1. If the objective is the minimization of the reward, L1 is taken as 

the original objective function multiplied by -1. Alternatively, the 

definition of the optimal solution may be modified so that an optimal 

strategy will be such that it minimizes the total reward. Optimality 

criteria other than the expected value, such as the minimax (Nemhauser, 

1966) and the average cost (Derman, 1966) may also be used in the 

context of the model presented in this chapter by redefining the notion 

of optimality as far as the strategies and the rewards are concerned. 

As far as modeling flexibility is concerned, the model covers a 

rather wide class of multistage decision processes. Moreover, its use 

may be extended even more by minor modifications in the structure of its 

elements. 



CHAPTER 3 

THE DYNAMIC PROGRAMMING ALGORITHM AND 
THE PRINCIPLE OF OPTIMALITY 

In this chapter, an algorithm for the construction of feasible 

solution(s) to the multistage decision problem is discussed: the 

dynamic programming (DP) algorithm. It will be shown that the algorithm 

provides optimal feasible solutions to a certain class of multistage 

decision problems. Also to be discussed are: the principle of opti- 

mality (PO) and a class of models for which it holds, and the relation 

between the principle and the algorithm. 

3.1. The Dynamic Programming Algorithm 

The DP algorithm traces back to Bellman (1952) where it was used 

for the construction of optimal feasible strategies for rather simple 

multistage decision problems. Although the DP algorithm as defined in 

this chapter is very similar to algorithms defined elsewhere, Yakowitz 

(1969) for example, it should be noted that it is defined in the context 

of a multistage decision process which is not necessarily truncated. 

Since for every CMDM there exists a sufficient statistic and thus a 

RHDM, the DP algorithm will be formulated for reduced models with the 

understanding that when used for complete models the trivial sufficient 

statistic may be used. 

26 



Definitions 

Definition 3.1. Let (G, D', F', Po, L') be a R DM and K an 

element of i . Consider the following algorithm for constructing the 

sets GGn, n < K of strategies: 

Step 1. For n = K and uCUK construct the set AK(u) of all 

strategies G'eGG statisfying the condition 

RK(u,G') = max R(u,G) (3.1) 

GeGG 

and let AK = {G': G'EAK(u), uCUK }. 

Also let BK(u) be the subset of DK(u) such that 

rd: {d = GK(u), G'CAK(u) }, if AK(u) 0 

Bk(u) = d: {d = GK(u), G'EAK} , if AK(u) _ 0, AK 0 

LDK(u) otherwise 

Construct the set GGK of strategies GK such that 

GGK = 

r 

{GK: G`eAK, GkK(u) eBK(u) } if A 0 

GG otherwise 

Step 2. For n < K and uEU 
n 

construct the set An(u) of all the 

strategies G'EGGn 
+1 

satisfying the condition 

R'(u, G') = max R'(u, Gn 
+1) 

Gn +leGGn +l 

and let An = {G': G'cAn(u), ucUn }. 

Also, let Bn(u) be the subset of D'(u) such that 

d: {d = G'(u), G'EAn(u) }, if An(u) 0 0 

Bn(u) = d: {d = C'(u), G'cAn }, if A(u) = 0, An ß 

D'(u) otherwise 

Construct the set GGn of strategies Gn such that 

(3.2) 

27 
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GGn = {Gn: 

GGn+l 

GneAn, Gnn(u)eBn(u)}, if An 0 

otherwise 

Step 3. Construct the set GG° of strategies G° such that 

GG° = {G °: G °CGG1, R'(G °) > R'(G1), y G1EGG1} 

The above procedure is called the dynamic programming algorithm and the 

sets GGn, n < K the dynamic programming solutions for the nth decision 

stage. The decision stage n = K is called the initial decision stage 

associated with the algorithm. The set GG° is called the set of solution 

produced by the DP algorithm. Equation 3.2 associated with the second 

step of the algorithm is called the dynamic programming equation. The 

dynamic programming equation is said to hold at (u,n), n < K if: 

R' (u, Gn) = max R (u,G), vGncAn(u) 
n 

GEGG n 

and it is said to hold if it holds for every modified problem (u n 
,n), 

u 
n 
eU 

n 
, n <_K.) 

Remarks. (1) The structure of the algorithm guarantees that 

GG° 0 and GG °cGG. In other words, all the DP solutions are feasible. 

(2) The decision stage K where the algorithm starts is not 

specified. For truncated models, K may be set to N, however, this is 

not a requirement. 

(3) It is still left to be shown under what conditions the ele- 

ments of GG° are optimal feasible. 

(4) Notice that the elements G 
K 

of GG 
K 

are not required to be 

optimal feasible for all uKCUK but rather every G eGG K is required to 

be an optimal feasible solution for at least one element uKCUK. 

(5) In order to start the algorithm at n = K, a method is needed 

for solving equation 3.1. For truncated models, however, with K = N the 
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solution of equation 3.1 is often a straightforward procedure. More 

details concerning the first step of the algorithm may be found in 

Denardo (1965). 

A modified algorithm designed for (but not restricted to) 

truncated models is now introduced. 

Definition 3.2. Let (R, D', F', Po, L') be a RMDM and K an ele- 

ment of Ìt. Consider the following procedure of constructing the sets 

GGn, n < K of strategies Gn: 

Step 1. For n = K constructs the set GG of strategies GK such 

that: GGK = {G : GKCGG, RK(u, G) = RK^(u) 

for all ueUK for which RK *(u) exists). 

Step 2. The same as Step 2 in Definition 3.1. 

Step 3. The same as Step 3 in Definition 3.1. 

The above procedure is called the modified dynamic programing 

algorithm. 

Remarks. (1) The modified algorithm does not guarantee that 

GG° 0 0. 
K 

(2) In order to guarantee that GG # 0 and consequently GG° # 0 

it is required that the process is such that GG includes a strategy which 

is simultaneously optimally feasible for all ucUK, for which RK *(u) exists. 

(3) For truncated models, the modified algorithm is similar to 

the algorithm defined in Definition 3.1. 

The next step is to show that there exists a class of multistage 

decision problems for which the DP algorithm produces optimal feasible 

solutions. 
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Definition 3.3. The reduced multistage decision model (R, D', F', 

Po, L') is said to be regular if: 

R' *(un) = max R'(un,G) 
n 

GeGG 

exists for all uncUn, ncIT.j 

For example, if Dn '(un ) is finite for all u 
n 
cU 

n 
, net it follows 

that the model is regular. 

Definition 3.4. Let (R, D', F', Po, L') be a RMDM. The reward 

function L' = {L'} J. is said to be separable under expectation if there 
n ne4 

exists a sequence{} of real valued functions defined on Un x 
]r 

x 

such that: 

Rn(un, Glxn +1) 
- Pnkun, Gn(un), Rn +1 (un +1,G)) 

for all neII, u 
n 
eU 

n 
, GeGG and x 

n +l 
cS2 
n +l 

where u 
n +l 

= V 
n 
(u 
n 

, G 
n 
(u 
n 
), x 

n +l 
). 

The reward function is said to be a type Shoshana reward function if L' is 

separable under expectation and R'(un,Glxn 
+1) 

is monotone increasing with 

n +1 ' and a type Moshe reward function if it is separable under expecta- 

tion and Rn(un, Glxn +1) is strictly monotone increasing with R1'1+1. 

Similarly, the model is said to be a type Shoshana and type Moshe model 

if L' is type Shoshana and type Moshe reward function, respectively. 

Examples 

A number of reward functions are introduced now and their prop- 

erties are investigated on the basis of the discussion presented above. 

Example 3.1. Consider the reward function L' where: 

L' _{Ln: Ln (un, d11, xn+1' dn+l' .. .) = 

i>n 
ri(ui'di)}ne( 

and ri is a real valued function defined on Ui x 1, iei!. L 
t 

can also be 

written as: Ln(ull, dn' xn+1 . 

' 

.) 
rn(un' dn) + Ln+l (u11+1' 

dn+1' 
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Thus, R'(un, Glxn 
+1) rn(un, Gn(un))+ 

Rn 
+1 (un +1' 

G) and hence L' 

is a type Moshe reward function. 

Example 3.2. Consider the reward function L' where: 

L' = {L': L'(u , d , x , 

i 
. .) = exp( E r (u ,c1.)} 

n n n n n+1 n i ne4i 

and r. is as defined in Example 3.1. Ln can also be written as: 

' ) _ {exp(r (u ,d ))} exp{ E r.(u.,d.)} Ln(un,dn,xn+1, ' ' 

n n n 
i>n+l 

i i i 

= {exp(rn(un,dn)) }* 
Ln +1(un +1' 

do 
+1'xn +1' 

') 

Thus, R'(un, Glxn 
+1) 

= {exp(rn(un,dn))} . R' 
1(un +1' C), do = Cn(un) 

n 

and hence L' is a type Moshe reward function. 

Example 3.3. Consider the reward function L' where: 

L' = {Lñ: Ln(un'dn'xn+l' . .) _ di}rie4 

i>n 
or 

Ln(un'dn'xn+1' ` 

. .) 
- 

d 
Ln+l(un+1' 

dn+1' 
xn+2' ' ' ') 

Thus, R'(un, Glxn 
+l) - 

do RI", G) , do = C (un). 
n 

If contains only positive elements then L' is a type Moshe reward func- 

tion. If II) contains only non -negative elements, then L' is a type 

Shoshana reward function. 

Example 3.4. Consider the reward function L' where: 

L' = {L': 
L'(un'dn'xn +l' 

. ..) = max(un(1), 
max 

{xi })) where 
i>n 

un(1) = max 
{xi 

}, ne For this case it follows that, 
i <n 

Ln(un,dn,xn +1' . `) - Ln +l (u n +1, 
do 

+l' xn +2' ') 

and thus, 

Rn(un' 
Glxn 

+l) = 
Rn 

+l(un +1' G) ' un +1 = Vn(un'dn'xn +1)` 

Hence, L' is a type Moshe reward function. 
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Theorem 3.1. Let (Q, D', F', Po, L') be a regular reduced type 

Shoshana multistage decision model for which there exists Keg and GeGG 

such that 

Then, 

and 

R'(u, G') = max R'(u, G), vueUK 
GeGG 

(1) R:1( u, Gn) = max R'(u,G), vn<K, ueU , GneGGn 
GeGG 

n n 

(2) R'(G °) = max R'(G), vG °eGG° 
GeGG 

where GGn is the set of the solutions produced by the DP algorithm at n 

and GG° is the set of the DP solutions. 

Proof: It should be noted that under the above conditions the 

DP algorithm and the modified DP algorithm are identical. 

(1) The first part of the theorem will be proven by induction on 

n. For n = K, the inductive hypothesis is true by the conditions specified 

by the theorem. Assume that the inductive hypothesis is true for n 

R -1, K -2, . . .m. In particular, assume that it is true for n = m, i.e.: 

Rm(u, Gm) > R(u,G), vueUm, GmeGGm, GeGG. 

Consider n = m -1 for which 

Rm-1 
' 

(u'G) 
e52 

pm-1 (u' Gm-1(u), 
Rm (u 

m 
,G)) fm-1(u' 

x 
Gm-1(u)'xm) 

m m 

From the monotonicity of Gm -1' the definition of the DP algorithm and 

the inductive hypothesis at n = m it follows then that: 

R' 
1(u' 

Gm 
-1) 

> 
Rm- 

1(u,G), vueUm 
-l' 

Gm- 
1eGGm -1, 

GeGG. 

Thus, the inductive hypothesis is true for n = m -1 and hence it is true 

for all n < K. 



33 

(2) By definition, R'(G) = E Ri(tl(x1), G) Po(xl) 
xleS21 

From the first part of the theorem it follows then that 

R'(G °) = max R(G), vG °eGG° 

GeGG 

Notice that from the definition of the DP algorithm 

R'(G') = R'(G "), yG', G "eGG °.j 

Remarks. (1) Notice that the conditions specified in Theorem 3.1 

do not require that the model would be truncated. 

(2) Theorem 3.1 does not provide an answer as to the optimality 

of G °eGG° at modified problems associated with n > 

3.2. The Principle of Optimality 

Consider the following situation: an optimal feasible strategy 

is to be constructed for a given reduced model and suppose that it can 

be shown that G* is such a strategy. Suppose now that the process in- 

duced by G* starts and that the modified problem (u,n) is observed. Two 

basic questions arise: 

(1) Is G* an optimal feasible solution to the modified problem 

(u,n)? In other words, is it true that 

R'(u, G *) > Rn(u,G), vGeGG. 

(2) Is G* an optimal feasible solution to R' (.Iu,n)? In other 

words, is it true that 

R'(G *Iu,n) > R'(G(u,n), vGeGG. 

Theorem 3.1 provides only a partial answer to the first question; 

that is, if the model is a regular type Shoshana model and G *eGG °, then 

for all n <K , G* is optimal feasible for every modified problem (u,n). 

However, there is no guarantee that for models other than the one 
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specified by Theorem 3.1 this condition holds nor is it guaranteed for 

optimal strategies which are not produced by the DP algorithm. 

The principle of optimality is designed to provide a more com- 

plete answer to the questions introduced above. Before presenting the 

formal definition of the principle, some elements related to it are 

defined. 

Definitions and Theorems 

Definition 3.5. The state observing function associated with 

the reduced model (Q, D', F', Po, L') is the sequence 0 = 
{On 

}ne of 

maps from GG to the set of all subsets of Xn such that 

0n(G) _ {xn: PG(nn = xn) > 0), ne11, G£GG 

which is called the set of trajectories observed under G at n. Similarly 

the sets 

Hn(G) = {hn,G(xn): xrie0n(G)} 

and 

Un(G) = {un: un = tn(hn) , hnEHn(G) ) 

are called the set of histories observed under G at n, and the set of 

statistics observed under G at n, respectively. 

It should be noted that the existence of and uniqueness of 0 is 

guaranteed by the structure of the model and that Hn(G) and Un(G) are 

well defined. 

Definition 3.6. Let (ft, D', F', Po, L') be a reduced multistage 

decision model and 0 the state observing function associated with it. 

Let G* be any optimal feasible strategy associated with the model. The 

principle of optimality is said to hold if with probability one G* is 
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also an optimal feasible solution to every modified problem (u 
n 
,n) for 

which uneUn(G *).) 

It will be shown that the principle of optimality holds for type 

Moshe models. First, however, its validity will be shown for complete 

type Moshe models. 

Theorem 3.2. Let (Q, D, F, Po, L) be a complete type Moshe mul- 

tistage decision model. Then, the principle of optimality holds.) 

Proof. Let S* be any arbitrary optimal feasible strategy asso- 

ciated with the model. In contradiction to the statement specified by 

the theorem assume that there exist nc1I, h°EHn(S' *) and S'cSS such that 

R (h °, S') > R (h °, S *). 
n n n n 

S*.i(hi) = 

Consider the strategy S ** defined as follows: 

, i < n, h.eH. i i 
hieH , > n i(S'Ihri,n) 

otherwise 

S*(h.) 
i i 

Si(hi) 

S *(h.) i i 
where H.(S'Ih°,n) 

{hi 
s,(xi): xic0.(S'Ih ,n)} 

i n 

is the set of all the histories observed under S' at i given that the 

modified problem (h °n ,n) is observed. From the structure of S ** it 

follows that S * *cSS and that 

R (h °,S * *) 
> R (h °,S *) n n n n 

and 

Rn(hn,S *) = Rn(hn,S *), vhnc {h:hcHn, h i h°) 

From the strict monotonicity of a type Moshe reward function and the fact 

that h cHn(S*) = Hn(S* *) it follows then that R (S * *) > R (St). This, 

however, contradicts the optimality of S* and hence there exist no such 

net, h°cHn, and S'cSS. It follows then that Rn(hn,S *) > Rn(hn,S), 
n 

vnclll, h cH (S*) , SeSS. ) 
n n 
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In order to show that the principle of optimality holds for re- 

duced type Moshe models in general, i.e., not necessarily for those 

associated with a trivial sufficient statistic, the results obtained from 

Theorem 2.1 and Theorem 3.2 will be combined to yield: 

Theorem 3.3. Let (Q, D, F, Po, L) be a complete multistage deci- 

sion model, T a sufficient statistic associated with it and (Q, D', F', 

Po, L') the corresponding reduced model. Then, if (Q, D', F', Po, L') is 

a type Moshe model the principle of optimality holds.j 

Proof. Let G* be any arbitrary optimal feasible strategy asso- 

ciated with the reduced model. Assume that there exist nel*, u °eUn(G *) and 

G'eGG such that 

R' (u °, G') > R' (u °, G *) 
n n n n 

From Theorem 2.1 it follows that S* = Ic(G *) is an optimal feasible 

strategy for the complete model. Thus, 

R (h °, Ic(U'))> R (h° Ic(G *)) 
n n n n 

for some heHn(Ic(G *)). This contradicts, however, Theorem 3.2 and thus 

there exists no such neI, °eUn(G *) and G'eGG for which 

Rt(u° Gt) > R'(u° G*) n n n n 

and hence the principle of optimality holds. Notice that the structure 

of Ic(G *) implies that if urieUn(G *) then there exists at least one element 

h °eH (Ic(G *)) such that t (h °) = u °.) 
n n n n n 

In the next section the relation between the principle and the 

algorithm will be discussed without restricting the investigation to a 

specific model. 
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3.3. The Relation Between the Principle 
of Optimality and the DP Algorithm 

Suppose that it can be shown that the principle of optimality 

holds for a given multistage decision model. Does this information imply 

that the DP algorithm produces optimal feasible solutions? Similarly sup- 

pose that it can be shown that for a certain multistage decision model 

the DP algorithm produces optimal feasible solutions. Does this imply 

that the principle of optimality holds? 

The DP algorithm and the principle of optimality have been thus 

far discussed in the context of specific models (type Shoshana and type 

Moshe). In order to answer the questions presented above for the general 

case, i.e., not necessarily for type Moshe /Shoshana models, the models 

under investigation will be such that both GG° and GG* are not empty. 

The questions raised above are extremely important from the 

theoretical viewpoint and have been raised by many investigators 

(Yakowitz, 1969; Hinderer, 1970; and others). 

Theorems 

Theorem 3.4. Let (p, D', F', Po, L) be a reduced multistage 

decision model for which 

(1) GG* i ß 

and 

(2) The principle of optimality holds. 

Let K be any arbitrary element of Ì and GG° the set of strategies 

produced by the DP algorithm starting at K. Then, 
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GG °cGG* 

In other words, the DP algorithm produces optimal feasible strategies. 

Proof: It will be shown by induction on n < K that for every 

G *eGG* there exists an element GneGGn such that: 

G'(um) = Gt*(um), vm > n, umcUm(G *) 

For n = K the principle of optimality implies that 

I (uK,G *) > RK(u G), vuKEUK(G *), GeGG 

Since UK(G *) y 0 it follows then from the structure of the algorithm 

that there exists GKEGGK such that 

Gm(um) = Gm(um), ? K, umeUm(G*), 

and hence the inductive hypothesis is true for n = K. Assume that the 

inductive hypothesis is true for n = K -1, K -2, . . ., i. In particular 

assume that it is true for n = i, i.e., for each G'' *eGG'* there is an 

element GieGG1 such that 

Gi(u ) = G *(u ), m > i, u eU (G*) 
in m m in - m m 

Consider n = i -1, for which the principle of optimality implies that: 

R! 
i_-1(ui-l'G*) 

> R! 
í-1(ui-l'G)' i-leUi-1(GT), 

GeGG 

From the structure of the algorithm then it follows that there exists 

Gi- 1EGGi -1 such that 

Gm-1(um) = G*(u) , m > i -1, umCUm(G *) 

Notice that by the inductive hypothesis at n = i it is guaranteed that 

such strategy exists. 

Thus the inductive hypothesis is true for n = i -1 and hence it is 

true for all n < K. In particular it is true for n = 1, i.e., for each 

G *eGG* there is a strategy G1 EGG1 such that 

G1(un) = C(U) , vie t, u11cUn (G *) 
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which implies that 

RI(G 
1 
) = R'(G *) = R'* 

and thus G1eGG °. Since from the definition of the DP algorithm it 

follows that 

R'(G') = R'(G "), vG', G "cGG° 

R'(G ) = R'(G *) implies then that 

R'(G °) = R' *, vG °cGG° 

and thus GG °cGG *.j 

An interesting question concerning therelation between the DP 

algorithm and the principle of optimality is the following one: suppose 

that for a given reduced model GG° is shown to be a subset of GG *, in 

other words, it can be shown that all the strategies produced by the DP 

algorithm are optimal feasible. Does this imply that the principle of 

optimality holds? 

The answer to the above question is provided by the following 

theorem. 

Theorem 3.5. Let (R, D', F', Po, L') be a RMDM for which the DP 

algorithm produces optimal feasible strategies, i.e.: GG °cGG* for some 

Then, the principle of optimality does not necessarily hold. 

Proof: The theorem will be proven by constructing a counter- 

example. Consider the complete multistage decision model (A, D, F, Po,L) 

whose elements are as follows: 

R = {Rn: Stn = {x: x =0,1 }, n= 1,2,3,4, Stn = {1} n > 5)) 

D = {Dn: Dn(h) = (d: d = d', d"), n = 1,2,3, Dn(h) = (d'), n > 4} 

F = {fn: fn(h,d',1) = 1, fn(h,d",0) = 11n4 
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Po(1) = 1 

L = {Ln: Ln(hw) = n xi}nEli. 

i>n 

It can be easily verified that T = {tn(h) = xn, hncHn }rie* is a sufficient 

statistic and thus (0, D', F', Po, L') is a RMDM, where 

D' = {D': D'(x) = (d: d = d',d"), n = 1,2,3, D'(x) _ (d'), n > 4) 
n n 

F' = {f': f'(x, d', 1) = 1, fn(x, d ", 0) = 1)nc 

Po (1) = 1 

L' = {L': L(x,d,x n n n nn +1, ' . ) = n xi}nei 
i>n 

By inspection, it can be verified that 

R'(xn, 
Grxn 

+1) = xn 
Rn 

+1(xn +1' G) 

and since x n- > 0, L' is a type Shoshana reward function. 

It can be easily verified that 

Rñ(x) = 

lr 

1, n > 5 

l.. 0, n <3 

Since L' is a type Shoshana reward function and the model is both regular 

and truncated, Theorem 3.1 can be used to conclude that all the strategies 

produced by the DP algorithm are optimal feasible. Consider the strategy 

G* having the following form: 

d" , xl = 1 

G (x 
1 1 d' xl = 0 

d' , x2 = 1 

G2(x2) = 

d , x2 = 0 

d' , x3 = 1 

x3 

G*(xn) = d' , n > 4 
n 
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It can be verified that G* is feasible and that the only history observed 

under it is 

H.(G *) = {1, d ", 0, d', 1, d', 1, d', . . .1, d', 1, . . .} 

Thus, R(G *) = 0 and hence G *EGG *. However, at n = 3 and x3 = 1 the 

strategy G* yields: 

103 (1, G *) = 1 > R3(1) = 0 

Thus, the optimal feasible strategy G' is not optimal at a modified 

problem observe by it with positive probability and hence the principle 

of optimality does not hold.j 

Suppose that for a certain RMDM there is an optimal feasible 

strategy which is also optimal feasible at all the modified problems 

observed by it with positive probability. Does this imply that the 

principle of optimality holds? 

Theorem 3.6. Let (Q, D', F', Po, L') be a RMDM and GG* ß its 

set of optimal feasible strategies. Then the fact that Rn(un,G *) _ 

R 
n 
*(u 

n 
), vnE1I, u 

n n 
EU (G *) for some G *EGG* does not guarantee that the 

principle of optimality holds. 

Proof. The counterexample introduced in Theorem 3.5 indicates 

that at least one element of GG'* is simultaneously optimal at all the 

modified problems it produces. However, as shown in Theorem 3.5, the 

principle of optimality does not hold.j 

Remarks. An important conclusion derived from Theorem 3.5 is 

that the optimality of the DP solutions does not guarantee that the 

principle of optimality holds. In other words, if the modified problem 

(un,n) is observed with positive probability by some G °cGG° there is no 

guarantee that there exists an element in GG° which is optimal feasible 



42 

at this point. Moreover, suppose that the modified problem (un,n) is 

observed with un such that un Un(GG *) where Un(GG *) is the subset of Un 

whose elements are observed with positive probability by at least one 

element of GG *. Is there some G *cGG* which is optimal feasible at (u 
n 

, 

n 

n)? A partial answer to this question will be provided in the following 

section. 

3.4. The Optimality Equations and 
Hinderer's Comment 

As.was indicated earlier, Hinderer considers additive reward 

function so that: 

Rn(hn,$) = rn(hn,Gn(hn)) + 
x 

E Rn+l(hn+1'S) fn(hn'Gn(hn),xn+1) 

n+l n+l 

where: hn 
+1 (hn, Gn(hn)' xn +1) . 

Let R*(hn) be the optimal feasible reward associated with the 

modified problem (hn,n). It can be shown (Bellman, 1957; Dynkin, 1965, 

and others) that for regular models any optimal feasible strategy satis- 

fies what Hinderer (1970, p. 21) calls the systems of optimality 

equations: 

Rn(hn) max 
+ x eSi 

Rn+l(hn+l) 
fn(hn'd'xr.+l)) 

n 
(h 
n 

) 

n+1 n+1 

for all ncli, h 
n 
cH 

n 
. 

While discussing the relation between the principle of optimality 

and the systems of optimality equations (0E), Hinderer states the 

following: 

. . . the importance of the principle does not rest so much on 
the fact that it furnishes a necessary condition for the optimality 
of a policy but in the fact that it is often regarded as a con- 
venient tool for deriving the optimality equation (0E) . . . which 
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on its part is the starting point for many investigations in 

dynamic programming. However, to the best of our knowledge 

there has never been given a rigorous proof of the OE in the 

general case by means of the principle, though the proofs of 

the OE and the principle show some similarities . . . we 

shall give a proof of the OE by means of the principle under 

rather restrictive assumptions . . . we also remark that some- 

times in the literature the principle and the OE are regarded 

as the same statement, though these are definitely two dif- 

ferent things . . .(Hinderer, 1970, p. 14). 

Translating Hinderer's comment to the context of the multistage 

decision model developed in this study requires first the definition of 

the term "optimality equations." 

Definitions and Theorems 

Definition 3.7. Let (Q, D, F, Po, L) be a CMDM for which L' is 

separable under expectation. We say that the system of optimality 

equations: 

Cn(hn) = max Ep (hn' d, Rñ+1(hñ+1)) 
fn(hn'd'xn+l) 

deDn(hn) xn+le n+l 

holds if 

R *(h ) = C (h ) vne21, h cH 
n n n n n n 

where Rn *(hn) is the optimal feasible reward associated with the modified 

problem (hn,n).., 

It will be shown that the system of optimality equations holds 

for a regular type Shoshana model by showing first that for a regular type 

Shoshana model there is an optimal feasible strategy which is also optimal 

for all modified problems. 

Theorem 3.7. Let (R, D, F, Po, L) be a regular type Shoshana 

model and SS its set of feasible strategies. Then there is an element 

S'eSS such that: 
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Rn(hn, S') = Rñ(hn) , vn4, hncHn 

where Ri(hi) is the optimal feasible reward associated with the modified 

problem (h.,i).) 

.Proof. Let SShn'n be the set of all the optimal feasible strat- 

egiesShn'n associated with the modified problem (hn,n). Consider any 

arbitrary modified problem (h,n) and any arbitrary element Sh'n of SSh,n 

Construct the sequence 
{Si 

}i of strategies as follows: 

For i = n set 

S?(h.) 
3 J 

For i > n set 

i 
S.(h.) 
J J 

= Sh'n(h.) 
J J 

S-1(hj 

hi, i 
S. (hj) 

h.eH.. 
J J 

j < i , hj eli 

j? i , hj =(hi, di, . . 

where Shl'1 is an arbitrary element of SSh 'l. By induction on i > n 

it will be shown that: 

Rn(h,Si) > Rn(h,Sh'n). 

For i = n the inductive hypothesis is true by the structure of Sn. 

Assume that the inductive hypothesis is true for i = n +1, n +2, . . .m. 

In particular assume that it is true for i. = m, i.e.: 

Rn(h,Sm) > Rn(h,Sh'n) 

Consider i = m+l for which the structure of Sm+ 1 implies that 

Rm+1(hm +1' S 1) > Rm+1(hm+1' Sm)' vhm +1 cHm+1 

From the monotomicity of L it follows that 

+l) 
> Rn(h,Sm) 

and thus 

Sm+l) hen) 

and the inductive hypothesis is true for i = m+l and hence it is true 
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for all i > n. Let S *h'n = lim Si for which 
1.400 

Rn(h, S *h'n) > Rn(h, Sh'n) = R*(h). 

Notice that S *h'n is feasible. Now construct the strategy S' as follows: 

S' (hm) = 

S(h ) m< n , h eH 
m m m m 

Smhn'n (hm) m > n , hm = (hn, dn, . . .) 

where S is any arbitrary element of SS. From the inductive hypothesis 

it follows that 

R (h , S') > R (h , Shn'n) ef, h eH 
n n - n n 

, n 
n n 

and hence the theorem is true. 

It will be shown now that the system of optimality equations holds 

for any regular type Shoshana model. 

Theorem 3.8. Let (R, D, F, Po, L) be a regular type Shoshana 

complete multistage decision model. Then, the system of optimality 

equation holds. 

Proof. By definition, 

Cn(hn) 
deDa(h xEs5 pn (hn'd'Rn+1(hn+l)) fn(hn'd'xn+1) 

n n n+l n+l 

with hn 
+1 

(hn, d, xn 
+1) 

Since any optimal feasible strategy at (h 
n 
,n), say S *11, is feasible, it 

follows that: 

R *(h ) < C (h ) . 

n n - n n 

Suppose that there exists d *EDn(hn) such that 

x 
E 

ES2 
p(hn'd*'R1i+1(hn-t1)) fn(hn,d*'xn+1) > }:ñ(hll) 

n+l n+1 
n 

This contradicts Theorem 3.7, since it implies that there is no optimal 
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feasible strategy for both h and all the elements h ell . Thus, 
n m m 

Cn(hn) < R*(hn) 

which yields that 

R *(h ) = C (h ) , vneII, h eH 
n n n n n n 

and hence the theorem is true. 

Remarks. (1) It was shown that the system of optimality equa- 

tions holds for regular type Shoshana models (Theorem 3.8). It was also 

shown (Theorem 3.5) that the principle of optimality does not necessarily 

hold for type Shoshana models, and thus the principle of optimality is 

not a necessary condition for the system of optimality equations to hold. 

(2) Let Hn(SS*) be the set of all histories observed with posi- 

tive probability under at least one optimal feasible strategy. Then one 

can use the principle of optimality to show that: 

R*(h) = Cn(hn) , vne*, hneHn(SS*) . 

This, however, does not provide an answer as to histories not included in 

Hn(SS *). 

(3) The last two theorems are concerned with complete models. 

Using the analysis presented in Chapter 2, it can be shown that the last 

two theorems are valid also for reduced models. 

It will be shown now how the validity of the optimality equations 

can be proven by means of the principle of optimality by imposing certain 

conditions on the structure of the model. 

Lemma 3.2. Let (R, D, F, Po, L) be a regular type Moshe complete 

multistage decision model with F such that: 

fn(hn, d, Xn +l) > 
0 , vne?, hneHn, deDn(hn), xn +lc°n +1' 

Then, the system of optimality equations holds. 
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Proof. Notice that since any type Moshe model is also a type 

Shoshana model, Theorem 3.8 can be used to show that the above lemma is 

true. However, the objective is to prove the lemma by means of the 

principle of optimality. It is known from Theorem 3.2 that the principle 

of optimality holds for a type Moshe model. Also, it is known that: 

R*(h ) < C (h ) vnei , h cH 
n n- n n n n 

Since for the model under consideration Hn(SS *) = Hn the definition of 

the principle of optimality implies that 

R*(h 
n) 

> Cn(hn) vne1I, hncHn 

because otherwise there will be a contradiction to the validity of the 

principle. Thus, 

R*(h ) = C (h ) , vneN, h cH .j 
n n n n n n 

The assumptions made in Lemma 3.2 are not as restrictive as those 

made by Hinderer. Moreover, Lemma 3.2 deals with a type Moshe model 

while Hinderer restricts his proof only to models with additive reward 

functions. 

3.5. Bellman's Multistage Decision Model 

When modeling a certain multistage decision process, L1 is 

usually uniquely determined by the process. The other elements of L, 

i.e., 
{Ln)n 

are constructed in such a way that the resulting L may be 

handled by the available solution methods such as DP. Thus, in many 

cases L is determined subjectively, so to speak. Suppose that a certain 

decision process is investigated and L 
1 

is the function of interest. 

One can always set: 

L 
n 
(h ) = Ll(h), vnei, hcH03 
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or for the reduced model 

n' (u 
.'(t , , , . . . , , .) 

Ln'dn'xn +1' ) = L1 
1 
(x 

1 
)d 

2 
x 
2 

x 
n 

d 
n 

x 
n +l 

, 

for all ne *, un = tn(hn), hn = (xl,dl,x2, . . .xn). 

The above structure of L' = 
{Ln 

}rie implies that 

R'(un,G) = E Rn 
+1(un +1'G) fn(un,Gn(un),xn +1) 

xn +leQn +1 

with un 
+1 = Vn(un' Gn(un), xn +1). 

Obviously L' is a type Moshe reward function so that the principle of 

optimality holds and the DP algorithm produces optimal feasible solutions. 

Since no assumption concerning Li is made, it follows then that the 

principle of optimality holds for all those multistages for which L' is 

as described above, no matter what the structure of LT is. 

Definitión, Theorem, and Example 

Definition 3.8. Let (f, D', F;, Po, L') be á RMDM for which L' 

is such that 

L' _ {I.': L'(tn(hn),dn,x11+1' . . .) = Li(t1(x1),dl, . . .,xn, 

with hn = (x1,d1,x2, . ., xn)cHn }rie dn, . . .) 

Then L' is said to be a type Bellman reward function and the model a type 

Bellman model. 

Theorem 3.9. Let (Q, D', F, Po, L') be a type Bellman model for 

which GG* 0. Then the principle of optimality holds and GG °cGG ̂. 

Proof. From the definition of a type Bellman model it follows 

that: 
Rn("n'Glxn+l) 

= 
Rn+1(un+1'G)' un+1 - Vn(un'Gn(un)'xn+l) 

so that L' is a type Moshe model and thus from Theorem 3.3 and 3.4 it 

follows that the principle of optimality holds and that GG °cGG *.j 
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The last theorem is rather interesting, because it implies that 

the principle of optimality holds for all multistage decision models 

having a type Bellman reward function. Since when formulating the model 

often only Li is specified, it implies that every multistage decision 

model may be formulated as a type Bellman model. This implies that the 

principle of optimality holds essentially for all multistage decision 

models in the sense that every multistage decision model may be formu- 

lated also as a type Bellman model. However, as far as the practical 

implications of the above discussion are concerned, it should be noted 

that for such models the amount of computation involved in the implemen- 

tation of the DP algorithm is very close to the amount needed for total 

enumeration. Thus, the validity of Theorem 3.9 is significant as far as 

theory and modeling are concerned but does not improve the situation as 

far as solutions procedure are concerned. For a type Bellman model, it 

can be written then that: 

R' (GI u ) = R' (u , G) vanc1, u cU , GeGG 
n,n n n n n 

where R` (GI u ,n) is the total reward given that the modified problem 

(u ,n) is observed, and from n on the strategy G is used. Thus, u 

should include all the information needed for evaluating R' which in 

most cases results in a rather large set U1 as far as the number of 

elements in U 
n 

is concerned. This implies that many dynamic programming 

equations have to be solved and thus a relative heavy computational load 

is expected. 

The advantage then of not using a type Bellman model has to do 

with the dimension of U . 

n 
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Example 3.5. Consider the complete multistage decision model 

(Q, D, F, Po, L) for which L1 has the following structu 

L1(xl,dl,x2, . . .) = E r.(x.,d.) 
i >1 

where ri is a real valued function defined on Ç?. X 1). Obviously, if the 

objective is the maximization of R, and if a type Bellman reward function 

is used as L, any sufficient statistic to be introduced should have the 

property that one of the coordinates of u 
n 

should indicate the quantity 

n -1 

E r.(x.,d.). This implies that at least this coordinate of u may take 

i =1 
1 i i n 

many values, especially for large n, so that at some n = K, where the DP 

algorithm starts (suppose that the model is truncated at K) many dynamic 

programming equations have to be solved. 

If instead L is such that 

Ln(xl,dl, . . .) = E ri(xi,di) 

then when constructing a sufficient statistic, none of the coordinates 
n -1 

of u is required to indicate the quantity E r.(x.,d.) and thus the 
n 1=1 

i. 1 1 

dimension of U is reduced as compared with the type Bellman model. The 

computational and modeling aspects of the DP algorithm will be discussed 

in Chapter 4 and Chapter 5, respectively. 

3.6. General Discussion 

One of the basic difficulties involved in comparing different 

formulations of the DP algorithm and the principle of optimality has to 

do with the different contexts (models) in which they are defined. The 

comparison becomes even more difficult due to the lack of formal defini- 

tions of the algorithm and the principle in certain works. It was 
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chosen to relate this work to works done by Bellman (1954, 1957), Denardo 

(1965) and Hinderer (1970) with the understanding that the differences 

in the models used in each case prevents a complete and detailed 

comparison. 

3.7. The DP Algorithm 

As indicated by Bellman (1957, p. 85), the DP algorithm for 

stochastic processes with countably many decision stages and state 

elements has the following form (using our notation): 

R *I max E R *) f (h ,d,xn ). 

hn'n deDn(hn) xn 
+lcQn +1 hn +l,n +l 

n n +1 

where R *I is the optimal value of the total reward given that (hn,n) 

n 
,n 

is observed and an optimal feasible strategy as far as 
Rib n +1 

is 

n +1' 

concerned is used. Thus, as defined by Bellman, the DP algorithm is 

used for type Bellman models. When applying the algorithm, Bellman had 

demonstrated that for certain reward functions, similar results may be 

obtained by using the relation: 

Rn(hn) 
deD (h ) x e 

pn(hn'd'Rñ+1(tln+1)) fn(hn'd'xn+1) 

n n n+l 
St 

n+1 

with hn 
+1 (hn,d,xn +1). 

Most of the examples used by Bellman in his early publications 

were such that L was additive. 

Mitten (1964) and later Denardo (1965) have shown that the DP 

algorithm may also be used for reward functions having (a) certain mono - 

tomocity (type Shoshana) property, and (b) certain convergence properties. 

The model introduced in Chapter 2 does not require any convergence 

properties but instead for type Shoshana models it requires that there 
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will be a simultaneous optimal feasible solution at all modified problems 

associated with the K -th decision stage, where the DP algorithm starts. 

Moreover, for type Moshe models it was shown that the DP algorithm may 

be used even if the above condition is not satisfied, and that the only 

requirement for this case is that for each ueUK there will be at least 

one optimal feasible solution. 

Hinderer (1970) does not discuss the DP algorighm in the frame- 

work of a solution procedure but rather uses the system of optimality 

equations to describe the relation between the optimal solutions of 

successive modified problems. As indicated earlier, Hinderer's model 

is restricted to additive reward functions only. 

3.8. The Principle of Optimality 

It is extremely important to read the definition of the principle 

of optimality (not necessarily the version introduced here) in the con- 

text of the model used to describe the decision process under considera- 

tion. Much of the criticism surrounding Bellman's "version," for example, 

(Denardo, 1965, p. 36; Hinderer, 1970, p. 14; and others) could have 

been partially avoided by interpreting it in the context it was originally 

introduced. It is not suggested here that Bellman's definition is 

absolutely clear in the context it was introduced, but rather that cer- 

tain amount of the ambiguity often related to it may have been avoided. 

As introduced by Gellman (1957, p. 83) for a deterministic type 

Gellman model, the definition is as follows: "PRINCIPLE OF OPTIMALITY. 

An optimal policy has the property that whatever the initial state and 

initial decision are, the remaining decisions must constitute an optimal 
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policy with regard to the state resulting from the first decision . . ." 

(Bellman (1957, p. 83). The formal proof provided by Bellman to support 

the above statement is as follows: "A proof by induction is immediate" 

(Bellman, 1957, p. 83). 

While the above statements are true for type Bellman models 

(Theorem 3.9) it can be shown (Theorem 3.5) that there are models for 

which the above statements do not hold. As indicated by Yakowitz (1969, 

p. 43), "The principle of optimality must be proved to be consistent with 

the criterion already established." 

It seems as if the basic cause for the ambiguity surrounding 

Bellman's principle has to do with the notion of optimality used when 

defining the optimal solution. Since Bellman defines his optimal policy 

as: "An optimal policy is a policy which maximizes a preassigned func- 

tion on the final state variables . . ." (Bellman, 1957, p. 82), the 

above statement is meaningful then only in the context of optimality 

criteria related to the final state variables and thus, the principle 

of optimality as defined by Bellman should he read in the context of 

type Bellman models. 

Denardo (1965, p. 37) introduced another version of the principle 

of optimality which in the context of the model developed here may be 

described by Theorem 3.7. In other words, Denardo's principle states 

that for certain decision models there exists an optimal feasible solu- 

tion which is also optimal feasible at all modified problems. 

Hinderer (1970, p. 9) is using the notion of 17-optimal to indi- 

cate that it is not required from the optimal strategy to be optimal 

feasible at every x1c21. This is exactly the notion of an optimal 
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strategy used here (see Definition 2.18 and 2.26). As far as Hinderer's 

principle of optimality is concerned (Hinderer, 1970, p. 19 [Theorem 3.8]), 

again it is equivalent to the notion introduced here which may be also 

considered as a modification of Yakowitz's (1969) version. 

To the best of the author's knowledge, Theorem 3.3 provides the 

most general conditions for the validity of the principle of optimality 

in the context of discrete models. 

3.9, The Relation Between 
the DP, PO, and OE 

As was indicated by Hinderer (see Section 4 of this chapter), 

there appears to be certain ambiguity concerning the relation between the 

principle of optimality, the dynamic programming algorithm, and the system 

of optimality equations. Similarly, Yakowitz (1969, p. 43), when dis- 

cussing the relation between the DP algorithm and the principle of opti- 

mality states, in the context of his adaptive control process (ACP): 

A rather puzzling situation is that in the engineering literature, 
DP is used freely, and for the most part correctly, to obtain 
solutions to statistical problems. When authors justify their 
procedures, it is usually by appealing to the principle of 
optimality . . . which is often copied verbatim. Such an ex- 
position is odd in two respects: First, the principle of op- 
timality should not be stated axiomatically, since the ACP 
problem already has sufficient structure to define a solution. 
The principle of optimality must be proved to be consistent with 
the criterion already established. This author is unaware of 
such a_ published proof and finds it difficult to supply. Second, 

the principle tells us that any solution to a problem must have 
the property that it is also a solution to all modified problems 
which occur. This does not imply that a strategy constructed by 
the DP to have his property is necessarily a solution. That a 

strategy so constructed is a solution is the statement of the DP 
theorem for ACP's, which was relatively easy to prove. In our 
analysis, we have fully justified the use of DP without reference 
to the principle of optimality . . . ( Yakowitz, 1969, p. 43). 
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Theorem 3.4 as introduced in this chapter may be used to "explain 

the engineers" appeal to the principle of optimality. In other words, 

if one can show that for a given model the principle of optimality holds 

(as defined in this chapter), then the strategies produced by the DP 

algorithm are optimal feasible. 

It should be noted that while for type Shoshana models it was 

shown that the DP solutions are optimal feasible without appealing to the 

principle of optimality, for the general case it was necessary to appeal 

to the principle. 

To the best of the author's knowledge, Theorem 3.4 is the only 

proof available in the literature to the claim that the existence of an 

optimal solution and the validity of the principle of optimality imply 

that the DP solutions are optimal feasible. 

On the other hand, Theorem 3.5 implies that the principle of op- 

timality is not a necessary condition for the DP algorithm to provide 

optimal feasible solutions, and thus it is concluded that at most, the 

principle of optimality is a sufficient condition (together with the 

condition GG* 0) for the DP solutions to be optimal feasible. 

It is, therefore, recommended that statements like: "The 

mathematical formulation of the principle of optimality is called dynamic 

programming . . .;'and "Dynamic programming is a method of decomposition 

based upon Bellman's principle of optimality . . ." (Beveridge and 

Schechter, 1970, p. 679), be carefully examined before introduced into 

textbooks. 



CHAPTER 4 

THE ROLE OF ANALYTICAL CONSIDERATIONS 
IN THE IMPLEMENTATION LEMENTATION OF THE 
DP ALGORITHM -- AN EXAMPLE 

One of the limitations of the DP algorithm as a solution pro- 

cedure for multistage decision problems has to do with the amount of 

computation and storage requirements involved in solving the DP equa- 

tions. Consider, for example, a Markovian model truncated at N for which 

Sti = s2j = St, i, j < N and Dn(x) = * V n < N, xe?2. Let M(1) and M(Th be 

the number of elements in * and SZ respectively and assume that they are 

finite. One can solve the multistage decision problem associated with 

the above model by total enumeration. In this case, the set GG may be 

constructed by construting NT = 
M(y)NTI(S?) 

strategies and conducting 

N 
T 
-1 comparisons. For N = M(*) = M(?) = 100, which are often encoun- 

tered in large scale systems, this amounts to NT = 1020,000 which is a 

rather heavy computational load. If instead, the DP algorithm is used, 

starting at N, N11(5) = 104 dynamic programming equations have to be 

solved, each of which requires M(*) = 100 iterations, which amounts to 

NDP = 106 computations of rewards, and N11(S2) M( * -1) = 99.10 
4 
=10 

6 
com- 

parisons. Although the above problem can be handled rather easily by 

the present generation of computers, using the DP algorithm, the computa- 

tion cost may be high especially in cases where sensitivity analysis is 

needed. In any event, it is desired to develop procedures for solving 

the DP equations, which when solving a given equation will not require a 

56 
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complete search over the elements of *. In other words, procedures other 

than "crude dynamic programming" are desired. 

In this chapter, the potential role of analytical considerations 

in reducing the computational load associated with the implementation of 

the DP algorithm is demonstrated. As will be demonstrated later, in 

certain models there is a close relationship between the optimal strate- 

gies associated with the modified problems at a given decision stage. 

More specifically, suppose for example that the modified problem (un,n) 

is to be solved and that Gun'n is found to be an optimal feasible strat- 

egy. In certain situations the optimality of Gun'n at (un,n) implies that 

the optimal strategy at (u 
n 
',n) for some u'EU 

n 
, may be determined by 

searching only on a "small" subset of D'(u'), determined by Gun n. 

It will be demonstrated how certain characteristics of the ele- 

ments of the model may significantly reduce the amount of computation 

involved in the implementation of the DP algorithm. It should be realized 

however, that the investigation presented here should be considered a 

demonstration of the potential role of analytical consideration in the im- 

plementation of the DP algorithm and not a method as such. Without under- 

estimating the computation load that the present generation of computers 

can handle and more so with respect to the future generations, the role 

of analytical methods should not be ignored. 

The two examples to be introduced in the discussion are simple 

cases of the class of models to be referred to as "mass balance type of 

models." 
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4.1. Mass Balance Type of Models 

Many natural and management processes are based on the principle 

of mass conservation, as far as the dynamics of the process is concerned. 

The mass balance equation can be written schematically as follows: 

Change in storage = Input - Output 

Often the input and /or the output are decision variables involved in a 

multistage decision process. For example, many reservoir control proc- 

esses are characterized by a mass balance equation and so are many in- 

ventory situations. Let x 
n 

be the storage level at time n, O 
n 

the output 

during (n, n +l) and qn the input during (n, n +l). Thus, 

xn +1 - xn + qn - On 

The investigation will be restricted to situations where the output On 

is determined (either deterministically or statistically) by a decision 

ti 

variable d 
n 

and q 
n 

is a realization of a random variable q 
n 
whose distri- 

bution function is known. As often done when implementing the DP 

algorithm, xn, dn, qn, and On are assumed to be integers. In terms of 

the decision variable, d 
n 
,the mass balance equation can be written as 

follows: 

x + gn - dn 2:14 
n+1 

xn +l 1 an + qn do n +l < xn + qn do < Mn +l 

mn +l 
xn 

+ qn do 

where Mn +1 
and mn 

+l 
are the maximum and minimum storage levels allowed at 

time n +l, respectively. The relation between do and On can be written 

then as follows: 



On(dn,gn,xn) 

ñ- mn xn + qn - dn > 
Mn+1 

do Mn+1 
> 
xn + qn - 

dn 
> mn+1 

xn + gn - ñ xn + gn - do.< mn+1 

It is given then that m < x < M , vnel where in and M are positive n- n- n n n 

integers. 

Let Pn be the probability mass function of qn and assume that 

Pn(gn) = 0, vqn > MQn, for some positive integer MQn. Pn can be used 

then to construct the conditional probability mass function of En +l 

given and d where F. is the random variable whose realization is 
n n z 

denoted by xi, iel, i.e.: 

Pr(xn+llxn,dn) 

Pn (qn eBn) 

Pn(gn=xn+1-xn+dn) 

Pn(gneAn) 

xn+l 
- mn+1 

mn+l < xn+]. < Mn+l 

xn+l 
= 
Mn+l 
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< = {q where: Bn 
{qn' qn 

x -d -m 
- n n n +1 

} andA 
n n : g n 

Mn 
+l xn + do 

} 

For the purpose of the investigation, all RMDM having the above 

form for f' will be defined as mass balance type of models. 

Definition 4.1 

Let (R, D', F', Po, L') be a Markovian multistage decision model 

with the following structure: 

(1) 
R = 

{c? : S2n {mn' mn+1' , Mn } , ne41 } 

(2) 

(3) 

Dñ (xn) = {d: d = mdn(xn), mdn(xn)+1, . 

Pn(gneBn(xn,d)) 

. ., MDn(xn)}rieq 

xn+1 
= 

Mn+1 

fn(xn'd'xn+l) -1Pn(qn - xn+1 
- xn + dn) 

P 
n 
(q 

n 
eA 

n 
(x 
n 
,d)) 

' 
mn+1 

xn+1 

xn+1 - mn+1 

Mn+1 
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where q 
n 

is a random variable with a probability mass function P 
n 

, ncÌI, 

ñ(xn,d) = {q: xn + qn do < mn +1} and 

gn(xn,d) = {q: + qn - do > Mn +l) 
. 

, 

(` ) Ln (xn' dn' xn+1' 
. . ) = E ri(xi,di), 

i>n 

where: m 
n 

, M 
n 

, and 
n 

, ND 
n 

are all integers and r. is a real valued func- 

tion defined on *2, vie*. Then, (Q, D', F', Po, L') is said to be a 

standard mass balance type of model. 

In the context of reservoir control processes the elements of a 

mass balance type of model may be interpreted as follows: 

n = time of release 

xn = storage level in the reservoir at time n. 

d 
n 

= target release for the period (n, n +1) 

q 
n 

= inflow to the reservoir during (n, n +l) 

r 
n 

(x 
n 
,d 
n 
)= the expected value of the reward when the target release is 

do and the storage level is xn. 

ñ = minimum storage level allowed at time n. 
M 
n 

= maximum storage level allowed at time n. 

mdn (xn) = minimum target release allowed at time n if the storage 

level is x 
n 

. 

n 

MD 
n 

(x 
n 

) = maximum target release allowed at time n if the storage 

level is x 
n 

. 

n 

If the time- horizon under consideration is finite, say N, rn(xn,dn) E 0 

vn >N, and dummy state and decision elements are constructed for n > N. 

Notice that since rn(xn,dn) was defined as the expected value of 

the reward associated with xn and dn, it may include a penalty often 
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imposed whenever shortage or overflow is realized. The objective is to 

construct a release strategy that will maximize the expected value of the 

total benefit (reward). As far as the initial condition is concerned, a 

special form for Po is not required. 

Two types of reward functions will be considered; one corresponds 

to {rn }n for which every rn is concave and the other to the case 

where rn are all convex. 

Example 4.1 

Let (5:2, D', F', Po, L')N be a truncated mass balance type of 

model for which 

(1) mn = o, mdn(xn) = o, MDn(xn) = max {xn, MD}, n = 1,2, . . . N, 

x e 
n 

S2 

n 

(2) gncQn = {0, 1, . . ., MQn }, ne*. 

(3) rn(xIl,dn) = r' (dn) , n = 1, 2, . . . N, xncStn 

where r' is a concave monotone increasing function, and r'(dn) E 0 n >N. 
n 

It will be shown that there exists an optimal feasible strategy G *CGG such 

that: 

G 
n 
*(x +1)c {G 

n 
*(x), G 

n 
*(x 

n 
) +1} , vnelr, 

Proof: The following notation will be used: 

(1) y 
n 

= x 
n 

- d 
n 

, (Notice that M 
n 

> y 
n - > 0). 

(2) R *(x) = max R ' (x, G) 
n 

GcGG n 

(3) R,n(yn) = E R* 
+1(Yn + qn) Pn(gn) 

gn£Qn 

(4) For simplicity ri(di) will be used for ri'(di). 
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Using the inductive hypothesis: 

(t.1) kn is monotone increasing function of yn, and 22. n(y) > 

kn(y-l) + kn(y +l) 

(t) (t.2) Gn *(x+1) c {Gn *(x), Gn *(x) +1 }, vxc2 
+1' 

for some G *EGG* 

(t.3) Rn* is monotone increasing function of xn and 2 Rn *(x) > 

Rn *(x -1) + Rn *(x +1). 

it will be shown that at least one of solutions obtained by the DP al- 

gorithm, starting at K = N statisfies the relation indicated above and 

since the model is a type shoshana model, from theorem 3.1 it follows 

that this solution is optimal feasible. Let start the DP algorithm at 

K = N, in which by the definition of the algorithm all the elements of 

GGK are optimal feasible for all the modified problems (xK, K) with 

RK*(x) = rK(min {x, MDn }) and GK (xK) = min {xK, MD 
n 

}. By inspection, 

using the structure of rK it follows that the inductive hypothesis is 

true for n = K. Assume that the inductive hypothesis is true for n = 

K -1, K -2, . . .m. In particular assume that it is true for n = m, i.e., 

(1) kn is monotone increasing and 2kn(y) > kn(y -1) + kn(y +l). 

(2) Gm (x) < Gm(x +l) < G(x) + 1, vxcc for some GmEGGm 
m - m - m n m 

(3) R* is monotone increasing and 2Rn *(x) > Rr*(x -1) + R *(x +l) 

Consider now n = m -1 = i. By definition, L. can be written as follows: 

ki(y) = E R* (y +q) Pi(q) , 
0 < yi < Mi 

gEQi 

Consider any element y from the set {l, 2, . . ., M. -1 }, for which 

ki(y+l) = E Rm (y+l+q) Pi(q) 

gEQi 

ki(y) ° E Rm (y+q) Pi(q) 

q£Qi 
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I, (y-1) = E Rm(y-1+q) P1(q) 

QEQi 

Since R* is monotone increasing (under the inductive hypothesis at n-m) 

it follows thati. is also monotone increasing. 

Let A(y) = 2ki(y) - ki(y +l) - ki(y -1), which can also be written 

as A(y) = E [2R*(y +q) - [R*(y +l +q) + Rm(y- l +q)]] Fi(g). 

gcQi 

From the inductive hypothesis at n =m it follows then that: 

2 R *(y +q) > Rm(y +1 +q) + R *(y -1 +q) 

so that L(y) = 2ki(y) - 2i(y +l) - ki(y -1) > 0 and thus (t.l) is true for 

i = m -l. Let x be any element of the set {1, 2, . . ., Mi -1} and let 

di = G.(x) for some arbitrary GieGGi. Thus, 

£.(x-d5 > r.(d) + 2,(x-d), vdeD 
n 

' (x) - 

Notice that since Dn'(x) is finite and L' is a type Moshe function, 

R *(x) = r. (dl) + k, (x -dl) > r.(d) + k,(x -d) , vdeD ' (r.) and R 1(x) exists. 

In particular, r.(di) + k.(x -dl) > r.(d) + k.(x -d), vd < di. Since from 

(t.l) at i it is given that ki(x +1 -dl) - ki(x -dl) > ki(x +l --d) - ki(x -d), 

vd < di it follows then that, ri(di) + ki(x +l -dl) > ri(d) + ki(x +l -d), 

vd 
<di 

which implies that Gi(x +l) > dl = G. (x). Notice that if dl is 

feasible for (x,i) it is also feasible for (x +l,i). Suppose now that 

there exists ô > 2 such that (d * +(5)FD.(x +1) for which 

ri(d * +d) + ki(x +l - [dl +d]) > ri(dl +l) + k1(x +1 - [d +1)) 

Thus, 

ri(di+d) + ki(x+l - [di+d]) > ri(d+1) + k(x-d) . 

From the monotomicity and concavity of ri it follows then that 

ri(dl+ (5-1) + ki(x - [dj+ ö -1]) > ri(dl) + ki(x -d1) 

This, however, contradicts the optimality of d 
i 

for (x,i). Thus, 
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Gi(x+l) < di +l and hence Gi(x +1)e {G1(x), G(x) + 1} so that (t.2) holds 

for n =i. In order to show that (t.3) holds, the relation between Ri(x -1), 

Ri(x) and Ri(x -1) will be investigated for any xe {1, 2, . . ., 

Let Gi be any element of GGi for which Gii(x) < Gii(x +l) < G.i(x) + 1, 

vxcS2i. (It has already been shown that such a strategy exists.) Let 

G.i(x -1) = d 
- 

, G1(x) = di and G.i(x +l) = d+ for some arbitrary xc(]., 2, 

. . . 14.-1}. 

following: 

The possible combinations of d 
- 

, dl, and d+ are the 

(1) d =di =d+ 

(2) d = di -1, d+ = di 

(3) d = di, d+ = di 

(4) d = di -1, d+ = di + 1 

Case 1. d = di, d+ = di 

For this case, 

Ri(x+1) = ri(di) + Qi(x +1 -dl) 

R (x) = ri(di) + Qi(x -dl) 

R (x -1) = ri(di) + Qi(x -1 -dl) 

From (t.l) it follows then that Re.c is monotone increasing and 

2Ri(x) > Ri(x +l) + R(x -1) 

Case 2. d = di -1, d+ = di 

For this case, 

Ri(x +l) = ri(di) + ii(x +l -dl) 

Ri(x) = ri(di) + R.i(x -di) 

Ri(x -1) = ri(di -1) + Qi(x -di) 

and 
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A(x 1, x) = Ri(x+1) - Ri(x) = ki(x+l-di) - ki(x-di) 

A(x, x-1) = Ri(x) - Ri(x-1) = ri(di) - ri(di-1) 

so that 

AA = A(x,x-1) - A(x+l,x) 

= r 
i 
(di) + k 

i 
(x-di) - [r 

i 
(d1-1) + £ 

i 
(x-(di-1)] 

Since d 
i 

is optimal at (x,i), 

ri(di) + ki(x -d1) > ri(d 
i 
-1) + ki(x- (d1 -1) 

and thus AA > 0 which implies that 

2Ri(x) > Ri(x+l) + Ri(x-1). 

Case 3. d = di, d+ = d1+1. 

For this case: 

Ri(x+l) = ri(di+l) + ki(x-d) 

Ri(x) = ri(d1) + ki(x-d1) 

Ri(x-1) = ri(d1) + ki(x-1-d1) 

so that 

A(x+l,x) = ri(di-1) - ri(d1) 

A(x,x-1) = ki(x-d1) - ki(x-1-d1) 

and 

AA = ri(di) + ki(x -d1) - [ri(d1 +1) + ki(x- 1 -d1)] 

Since d = d1 it follows that d1 + 1 < x so that d1 + 16Dn'(x) and thus 

AA > 0 which implies that: 

2Ri(x) > Ri(x+l) + Rî(x-1). 

Case 4. d = di -1, d+ = d1 +1. 

For this case: 

Ri(x+l) = ri(di+1) + ki(x-d1) 

Rl(x) 
ri(di.) 

+ ki(x-di) 
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Ri(x-1) = ri(di-1) + R,i(x-d) 

Since ri is monotone increasing concave function it follows then that 

2R *(x) > Rt(x +l) + R:`(x -1) and R* is monotone increasing. - 

It is still necessary to show that Ri is monotone increasing for 

Cases 2 and 3. By definition: 

Ri(x +l) > ri(di) + Qi(x +l -di) and 

Ri(x) = ri(di) + Qi(x -di) 

Since 
ti 

is monotone increasing so is R. Thus, (t.3) is true and hence 

t is true for all n < K. 

Since GG° contains only optimal feasible solutions and every 

G1EGG1 is optimal feasible at all x1ec21 (L is type Moshe model) it fol- 

lows then that GG° = GG1 and hence there exists G °EGG* with the above 

properties. 

Remarks. (1) It should be noted that not all the elements of GG° 

have the above property. However, if ri is strictly monotone increasing 

that since L' is a type Moshe function it can be shown that all the ele- 

ments of GG° are with the above property. 

(2) From the DP algorithm viewpoint, the above results indicate 

that while solving the DP equation. for (x,n) the search may be restricted 

to two possible values for Gn(x), i.e.: Gn(x)e {Gn(x -1), Gn(x -1) + 1 }. 
n n n n 

Since for x = 0, D'(0) _ {0 }, Gn(0) can be set to zero, n = 1, 2, . . ., 
n n n 

N and then the DP equation for xn = 1, 2, . . ., Mn can be solved in a 

successive manner using the fact that Gnn (x +l) e{Gn(x), Gñ(x) + 1}. 
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Example 4.2 

Consider the model introduced in Example 4.1 with the following 

modifications: 

(1) 
MDN = 

MN 

and 

(2) r' is monotone increasing convex function, vn = 1, 2, . . . 

N and rn ' E O n > N. 

It will be shown that there exists an optimal feasible strategy G* such 

that 

G*(x)e {0, min[x, MDn)} , n = 1, 2, . . . N. 

Proof. Using the notation introduced in Example 4.1, it will be 

shown that the following,ínductive hypothesis is true for n < N. 

(t.l) £ 
n 

is monotone increasing and 29.(x) < £ 
n 
(x +l) + £ 

n 
(x -1) 

(t) (t.2) Gn(x) e {O, min (x, MD)), vxS2n, for some GnEGGn, 

(t.3) R* is monotone increasing and 2R*(x) < R*(x +l) + R *(x -1). 

Let start the DP algorithm at n = N = K. Obviously, 

RK(xn) = rK(xK) , 

and there exists GK GGK such that GK(xK) = xK. It is also followed that 

£K(y) E 0, vyaK Thus, (t) is true for n = N = K. Assume that (t) is 

true for n = K -1, K -2, . . ., m. In particular, assume that it is true 

for n = m, i.e.: 

(1) £ is monotone increasing and 2£ (x) < £ (x +l) + £ (x -1) 
m n - n n 

m m m 
(2) G (x)e(0, min (x, MDm) } for some Gm EGG vxcS2m. 

(3) R* is monotone increasing and 2R*(x) < R*(x +l) -4- R *(x -1). 
m m - m to 

Consider n = m -1 = i. 
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To show that (t1) is true the same procedure as was used in 

Example 4.1 may be used but this time from the property of R* it follows m 

that t. is increasing and 2i (x) < Q,(x+l) + 2.(x -1). Let Gt be any 

arbitrary element of GGi, and Gi(x) = di for an arbitrary element of the 

set {l, 2, . . ., M -1 }. Thus, 

ri(di) + Li(x -di) > r.(d) + L.(x -d), vdc D(x). 

Notice that since L' is a type Moshe function it follows that: 

R'(x) = ri(di) + 

In particular, 

r.(di) + L.(x -dl) > r.(d) + R..(x -d), vd < di. 

Since r. is monotone increasing convex function, it follows that: 

r.(di +l) + 2,(x -dl) > r.(d +l) + 2.(x -d) 

From (t.1) at i it is implied that 

r.(di +l) + L,(x - (d1 +l)) > r.(d +l) + 2.(x- (d +l)), vd < d.. 

In particular for d = di - 1: 

r.(d +1) + i.(x- (dl +l)) > r.(di) + 2.(x -dl) 

Thus if d is optimal and d < min {x, MDi), d + 1 is also optimal. 

Moreover, if (di +d)cD1(x), then, 

r. (dl +d) + i. (x- (dl +d)) > r. (d +d) + ,, (x -(d +d) ), vd < di 

so that if dl is optimal so is min {x, MDi }. Thus there exists a 

strategy GicGGi such that 

Gi(x) e {0, min (x, MDi) ) . 

and (t.2) is true for n = i. 

To show that (t.3) is true for n = i, the relation between 

Rl(x -1), R(x) and R(x +l) be investigated for soma arbitrary 

element xc(l, 2, . . ., Mi -1). It is known that there exists a strategy 
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GieGGi such that di = Gi(x)cf0, minx, MDI)) for some xc {1, 2, . . ., 

M1-1}. Let C(x,d) = ri(d) + 9.(x -d) and assume that di = O. Thus 

(1) Ri(x) = C(x, 0) 

(2) Ri(x +1) > C(x +1,0) 

(3) Ri (x -1) > C(x -1,0) 

It follows then that: 

t(x +l,x) = Ri(x+l) -R(x) > c(x +1,0) - c(x,0) 

E(x,x -1) = Ri(x) - Ri(x -1) < c(x,0) - c(x -1,0). 

and thus, 

AA = A(x +l,x) - A(x,x -1) > c(x +1,0) + c(x -1,0) - 2c(x,0) 

or AA > R.i(x +l) + Qi(x -1) - 21.(x) 

and from (t.l) it follows then that A0 > 0 which implies that 2R(x) < 

Ri(x +l) + Ri(x -1). Suppose that di = min {x,MD.} = MIN. If x > MDn then 

MIN = MD. and thus dl = MD. so that 

Ri(x) = c(x,MD1) 

Ri(x+l) > c(x +1,MD.) 

R (x -1) > c(x -1, MD.) 

and, 

dM > k.(x+l - MD.) + £.(x -1 - MD.) -22..ì(x -MD.) and from (t.1) 
1 

it follows then that AA > 0 so that again 2R (x) < R (x +l) + R (x -1). 

If x < MDi then di = x and Ri(x) = c(x,x). It is also known that for 

this case, 

Ri(x +l) > c(x +l, x +l) = ri(x +l) + k(0) 

Ri(x -1) > c(x -1, x -1) = ri(x -1) + kì(0) 

so that for this case, 

AA > ri(x+1) + ri(x -1) - 2ri(x) 
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and since ri is convex, A0 > 0 which implies that 2Ri(x) < Ri(x+l) + 

Ri(x -1. Suppose that x = MD. and thus di = x = MD., for which: 

Ri(x) = c(x,x) 

Ri(x+l) > c(x+l, x) 

Ri(x-1) > c(x-1, x-1) 

so that 

AA > ri(x +l) + ri(x -1) - 2ri(x) + 2i(1) - ß.i(0). 

From the convexity of ri and (t.l), it follows then that AA > 0 which 

implies that 2R 
i i 

(x) < R *(x +l) + R *(x -1). To show that R* is monotone 
i i 

increasing let x be any arbitrary element of {1, 2, . . ., Mi -1 }, and 

di = Gi(x) for some strategy GiEGG1 with the properties mentioned above. 

Thus, 

Rt(x+l) > c(x+l, di) = r.(di) + Q.(x+1 - dl) > r.(dl) + Q.(x-dl) - i i - 

and hence R(x +l) > R(x). Thus (t.3) is true then for n =1 and hence 

the inductive hypothesis is true for all n < N = K. Since L' is a type 

Moshe function it follows that GG° = GG1 and that GG °CCG *. Thus at 

least one strategy G *CGG* is such that 

G*(x)e {0, min(x, MDn) }, n = 1, 2, 3, . . ., N, xe52n.j 

It will be shown that in addition to the above property of G*, 

it also has the following characteristics: 

(1) If for some x > MDn G*(x) = 0 then G*(x') = 0 vx' > x. 

and (2) If for some x > MD G *(x) = MD then G *(x') = AID 
n n n n n 

Proof: (1) Since C*(x) = 0 is optimal for (x,n) it follows that, 

r(0) + L(x)>r(MD) + Q 
n 
(x -MD 

n 
) 

Using the property specified by (t.l), 
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rn(0) + n(x+S) > rn(MDn) + n(x+S - MDn) , d > 0 

and hence G*(x1 = x +6) = 0 

(2) Since G*(x) = MDn is optimal at(x, n) it follows that 

r 
n 
(MDn ) + L, 

n 
(x -MDn) > r 

n 
(0) + k 

n 
(x) - 

Using the property specified by (t.l) it follows that: 

r (MD ) + i (x -S -MD) r (0) + Q (x -6), v6 < x -MD 
n n n 

> - n n - n 

Thus, G *(x' _ x-6) = MD 
n 

is optimal for all MD 
n 

< x' < 
n - - 

The above discussion concerning the properties of G* indicates 

that additional reduction in the computation may be achieved by using 

the following procedure: 

(1) For xn = MD check the relation between cl = c(xn,0) and c2 = c(xn,xn). 
n 

If c2 > cl set Gn*(x) = 0, vx > MDn. If c2 > cl set G*(x) to either 0 or 

MDn by solving the DP equations. 

(2) For xn = Mn check the relation between cl = c(xn,0) and c2 = c(xn, 

MDn). If c2 > cl set G*(x) = MD 
n' 

vx .< Mn. 

(3) Go to (1) and repeat the procedure for x' = x +l. 

(4) Go to (2) and repeat the procedure for x' = x -1. 

In other words, computational savings may be achieved by solving 

the DP equations in an alternating manner (as far as x 
n 

is concerned) in 

the range (MD 
n 

, Mn). 

Example 4.3 

Let r'(dn) = en do where en is a positive constant, i.e., rn is 
n 

a linear reward function. Since r satisfies the assumptions made in 
u 

both Example 4.1 and Example 4.2, it follows that: 



0 x < x* 
= n 

min {x,rin} 
x > 

x* 
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for some G *eGG *, where x* is some critical value of the storage level. 

In this case, the solution for G* involves the construction of the set 

{x*: n = 1, 2, . . ., N }, which can be done by using the DP algorithm. 

As was indicated above, the examples considered in this chapter 

were introduced to demonstrate the role of analytical considerations in 

the implementation of the DP algorithm. An interesting question related 

to the above examples is the following one: how will the structure of G* 

considered above be affected by permitting do to be greater than xn and 

imposing some penalty for cases where x 
n 
+ q 

n 
< d 

n 
? 

4.2. Discussion 

The investigation presented in this chapter should be considered 

as an example rather than a method. The only objective considered when 

formulating the above decision model and demonstrating some solution 

procedures was to demonstrate that analytical considerations may be a 

basis for computational procedure for overcoming the dimensionality 

curse. More specifically, results obtained by Bellman (1957, pp. 19 -25) 

and Nemhauser (1966, pp. 53 -55) for deterministic process with continuous 

reward functions have been extended. Convex and concave reward functions 

are often used in the design and operation of water resources systems 

(Dorfman, 1962) so that the results obtained in this chapter may be 

applicable to practical problems in reservoir control. 

It seems as if a combination of numerical analysis procedures 

(Larson, 1968; Heidari, 1970) and analytical ones like the one presented 
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in this chapter may be used to overcome difficulties concerning the di- 

mensionality of the DP problems. 

It should be emphasized that the examples presented in this 

chapter on the context of reservoir control are of a general form and 

may also be used in the context of allocation and inventory problems. 



CHAPTER V 

THE MODELING OF A MULTISTAGE DECISION PROCESS 

One of the advantages of the DP algorithm as a solution procedure 

is that it can handle a rather wide class of multistage decision problems. 

However, before starting the first step of the algorithm, the problem 

under consideration should be formulated as a multistage decision prob- 

lem. Moreover, in order to guarantee that the DP algorithm indeed pro- 

vides optimal feasible solutions, the formulated problem should have 

certain properties as far as the structure of its element is concerned. 

As an example, it was shown that certain type Shoshana models can be 

handled by the DP algorithm (ignoring for a moment the computational 

aspects). Thus, if the problem under consideration can be formulated 

by a type shoshana model, it is guaranteed that all the solutions ob- 

tained by the DP algorithm are optimal feasible. There are indications, 

however, that in practice the modeling of a multistage decision process 

is not a trivial matter. 

In this chapter, a modeling framework to be used while formu- 

lating the problem under consideration as a multistage decision problem 

is introduced. In order to emphasize the importance of the modeling 

stage, consider the following illustrative example. 

5.1. Example 

Consider the following problem: 
N 

max c = r yi, subject to: y.eY., i = 1, 2, . . ., N. 

i =1 
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where: 

Y1 Y2' . . . YN are subsets of the set of integers. 

The following may be considered as a potential model for han- 

dling the problem. 

Attempt #1 

Let (fit, D, F, Po, L)N be a CMDN where: 

Q = {Stn: Stn = (1) , ne*) 

D = {Dn: .Dn(hn) = Yn }ne* Y. = {1} i > N 
i 
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F = {fn: fn(hn,d,l) = 1, hneHn, dneDn(hn) }rie* 

Po (1) = 1 

L = {Ln: Ln(ho) = 7 di }ne 
i >n 

ll 

N 
If all the elements of U Y. are non -negative, it can be easily verified 

i =1 
that the model is a type Shoshana model and that if the DP algorithm 

starts at K = N optimal feasible solutions are obtained. However, if the 

above condition is not satisfied, the model is not a type Shoshana model 

and thus, there is no guarantee that the DP solutions are optimal 

feasible. 

In order to formulate the problem as a problem associated with 
N 

a type Shoshana model for cases where U Y. contains negative elements 
i =1 

i 

consider the following. 

Attempt # {2 

Consider the complete model (R, D, F, Po, L)N where Q, D, F, 

and P 
o 

as defined above and 
o 

L = {L : L (ham) = II d = il d . } 
n n 

i =1 i i =1 1 
null 



Using the sufficient statistic, 

n-1 
T = {t : t(h) = n di} 

i=1 

it can be shown that the reduced model associated with (R, D, F, Po, L) 

and T is a type Shoshana model and that the DP solutions are optimal 

feasible. For this model, 

n-1 
Un = {un: un = n di} , 

i=1 

n = 1, 2, . . . , N 
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and thus depending on Yi, 1 =1, 2, . . ., N,Un may include a relatively 

large number of elements. Thus, although the above (reduced) model may 

be used as a framework for solving the problem, the DP algorithm may re- 

quire solutions to a large number of DP equations. 

In order to reduce the dimensionality of the problem, consider 

the following. 

Attempt 113 

Consider the complete model (R, D, F, Po, L)N where R, D, F, and 

Po are as defined above, and 

where 

n-1 
L = {Ln: L 

n 
(h.) = SIGN ( Tr d.) 

' d.} 
ne 

* 
i=1 1 i> n 

1.-1 t < 0 

SIGN (t) = 0 t = 0 , te4. 

1 t > 0 

Consider the following sufficient statistic: 

n-1 
T = {tn: tn(hn) = SIGN ( ir di) 

}ne* 
. 

i=1 
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It can be easily verified that the reduced model associated with the com- 

plete model and T is a type shoshana model and that the DP algorithm 

provides optimal feasible solutions. Notice that in this case Un = 

{ -1, 0, l }, vne* and in most cases (unless the problem is extremely 

simple) contains less elements than the one introduced in the previous 

attempt. 

Thus, the reduced model defined in the third attempt seems to be 

more efficient than the previous ones. Notice, however, that the third 

model has the disatrange that at the modified problem (un,n) the original 

reward function trying to maximize is not treated explicitly. Thus the 

choice between the models may be determined by the information desired 

when solving the modified problems -- taking into consideration the compu- 

tational implicatins of such a choice. 

From the modeling viewpoint it is important to realize that often 

more than one model is available to mathematically desirable the process 

under consideration. When making the decision concerning the model to be 

used, it is important to investigate the implications of such a decision 

as far as computation and other aspects of the situation are concerned. 

In addition, often the problem under consideration is not pre- 

sented in an explicit mathematical form so that there is also a need (from 

the modeling viewpoint) to present the problem under consideration in an 

explicit mathematical form. 

The modeling framework developed in this chapter is designed for 

what may be called the preparation stage in which the process under con- 

sideration is mathematically formulated. 
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5.2. Modeling Framework 

The modeling of a multistage decision process is often far from 

being a routine procedure. It starts with the identification of the 

objects related to the process, followed by the investigation concerning 

the relation between them which often includes feedbacks to the first 

step, and then ends with the formulation of the model. Once the model 

is mathematically formulated, potential solution procedures are 

considered. 

In practice, however, there is a tendency to reach the solution 

procedure, the DP equations as an example, as soon as possible so that 

often the first two steps of the modeling procedure are either over- 

simplified or totally ignored. This type of "short- cuts" in the modeling 

procedure often limits the use of the DP algorithm as a solution proce- 

dure as will be indicated later. 

The elements of the multistage decision model will be investi- 

gated now from a modeling viewpoint. 

Decision Stages 

The set of decision stages often consists of either time and /or 

space elements. When identifying the decision stages, it is essential 

to also identify the direction of the process as far as its evolution is 

concerned. For example, there is a need to identify loops, branches, (if 

any) and determine the direction of the process as far as the decision 

stages are concerned. If the process is non -serial, it should be con- 

verted into a set of serial processes linked together. If the process 
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is truncated, the last decision stage should be carefully defined. 

Finally, the decision stages are ordered, usually by indexing. 

State Spaces 

Once the set of decision stages is defined with each of its 

elements, a state space is to be defined. The state spaces are not 

necessarily identical, although in most cases they consist of elements 

of the same type. When constructing the state space for a given deci- 

sion stage, say n, the following considerations should be made: 

(1) The nth state space should include all the elements needed 

to describe the situation of the system at the nth stage, as related to 

the dynamics of the process under consideration. 

(2) If certain constraints are imposed on the system at time n, 

they should be specified by the elements of the state space. 

(3) The state space should include all the elements needed in 

order to determine the set of decisions available at that stage. 

(4) The state space should include all the elements associated 

with the nth decision stage that may affect the reward associated with 

this stage. 

Although as a routine it is preferable to include more elements 

than needed rather than to exclude some, it is recommended to verify that 

no redundant elements are included in the state spaces. 

Decision Sets 

The decision set associated with the nth decision stage given a 

certain realization of the process up to this stage should include all 

the decision elements that are feasible under these conditions. The 
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feasibility of a decision is chedked according to two different criteria. 

First, the availability of the decision is checked, i.e., it is to be 

determined whether the decision is indeed available to the decision maker 

at that point of the process. Then it should be checked whether the 

decision satisfies the constraints imposed on the system. From the 

modeling viewpoint, it is recommended to construct the set Dn(hn) by 

intersecting two sets: the set of decisions available to the decision 

maker at (hn,n) and the set of decisions satisfying the constraints im- 

posed on the processes. It should be noted that when checking whether a 

certain decision satisfies the constraints often, the law of motion 

governing the process is to be examined. 

The Law of Motion 

When constructing the law of motion of the process, it is recom- 

mended to determine first whether the law of motion under consideration 

is deterministic or else statistical. More specifically, if the elements 

of the state spaces are multidimensional variables, it is recommended 

to identify those coordinates of the state element that are governed by 

a statistical law of motion and those governed by a deterministic law. 

Once the law of motion is defined, it is recommended to reexamine the 

state spaces and the decision sets in order to verify (1) that they are 

complete and satisfy the constraints, and (2) that they do not include 

redundant elements. 

Initial Condition 

Although the initial condition is introduced in the discussion 

as a function describing (statistically) the initial conditions of the 
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process, it can also be used for the purpose of sensitivity analysis. 

Thus, even for deterministic processes a "statistical form" of the ini- 

tial condition may be considered when the effects of the initial condi- 

tion of the process are to be investigated. 

Reward Function 

Two basic characteristics of the reward function should be first 

specified; the domain of definitions of L1 and its range. More specif- 

ically, in many situations L1 is defined on a subset of H. and its range 

is a subset of ]. Once the structure of L1 is determined, the possibility 

of decomposing it into a sequence 
{Li 

}.>1 of real valued functions so 

that L = 
{Ln 

}ncJ. will have certain desired properties, for example, 

additivity, separability under expectation, etc. should be investigated. 

Notice that often L1 is uniquely determined by the process under consid- 

eration while the decomposition of L1 is not necessarily unique. It is 

important then to examine all the potential decompotions of L1. Once L 

is constructed, it is recommended to reexamine the structure of the state 

spaces and the decision sets in order to make sure that they are complete 

as far as the domain of definition of L1 is concerned. 

Sufficient Statistic 

The construction of (non -trivial) sufficient statistics, if any, 

is motivated primarily by computational considerations. The non - 

uniqueness of the sufficient statistic suggests the notion of "minimal 

sufficient statistic." Generally speaking, the efficiency of a suffi- 

cient statistic may be measured, so to speak, by the number of dynamic 

programming equations one has to solve when implementing the DP algorithm 
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(if the algorithm can be used for the particular problem), as compared 

with the number of equations needed for the complete model. Thus when 

making the decision as to the sufficient statistic to be used, the num- 

ber of elements in Un, ne*, may be used as a decision criterion. 

The discussion presented above should not by any means be con- 

sidered as a set of instructions to be followed whenever the modeling of 

a multistage decision process is considered. Rather, it should serve as 

a guide when constructing the elements of the model. The points made in 

the discussion will be illustrated by the modeling of two reservoir 

control problems. 

5.3. Reservoir Control 
Models 

The models to be introduced in the following sections should be 

considered as illustrative ones. No elaboration on the physical justifi- 

cation for choosing certain reward functions will be made, and no justi- 

fication for the use of the expected value approach as an optimality 

criterion will be given. The only objective is the demonstration of the 

modeling flexibilities provided by the model developed in Chapter 2. The 

first example demonstrates the flexibility of the model and the DP 

algorithm as far as the handling of probabilistic constraints is con- 

cerned, and is based on a comment (Sniedovich and Davis, 1976) related to 

a paper by Askew (1974). The second example demonstrates the flexibility 

of the model and the DP algorithm as a modeling and solution procedure, 

as far as the structure of the reward function is concerned; the problem 

associated with the minimization of the expected value of the range of 

fluctuation of the storage level in a reservoir will be considered. 
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5.4. A Reliability Problem in 

Reservoir Control 

The operation of a reserovir of capacity MC is to be determined 

for the next N years. The maximum target release associated with the 

nth year is given by MRn, n <N. The inflow to the reservoir is described 

by the sequence { 
`In 

of independent random variables whose probability 

mass functions 
{pn 

}n =1 are known. Let Qn = {qn: qn = 0, 1, 2, . . .MQn} 

be the set of values q 
n 

takes with positive probability. Suppose that at 

the nth year, n < N, the storage level x 
n 

is observed and the target re- 

lease d 
n 

is selected. The decision maker may face the following 

situations: 

(1) do > xn. For this case the following process takes place: 

First, the quantity x 
n 

is released, followed by some input q 
n 

determined 

by p . Then the quantity min [d - x , q ] is released. If q < d - x 
n n n n n n n 

the shortage 
s 

= d 
n 

- x 
n 

- q 
n 

is experienced and the storage level at 

the beginning of the next year is zero. If xn + qn - do > MC, the over- 

flow L 
o 

= x 
n 
+ qn - d 

n 
- MC is experienced and the storage level at the 

beginning of the next year is MC. If 0 < xn + qn - do < MC there is 

neither a shortage nor an overflow and the storage level at the beginning 

of the next year is xn + qn - dn. 

(2) xn > dn. For this case the following process takes place: 

First, the quantity d 
n 

is released, followed by some input q 
n 

determined 

byp 
n 

. Ifx 
n 
+q 

n 
-d 

n 
>MC the overflow d 

o 
=x 

n 
+q 

n 
-d 

n 
-MC is 

experienced and the storage level at the beginning of the next year is 

MC. If xn + qn - do < MC no overflow is experienced and the new storage 

level is xn + qn - dn. 
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In order to eliminate non -feasible situations, it is assumed that 

given the storage level x 
n 

the only target releases d 
n 

to be considered 

are those satisfying the condition: d 
n 

< x 
n 
+ MQ 

n 
. The reward asso- 

ciated ciated with each year is a function of (a) the target release, and (b) 

the shortage /overflow experienced during that year. 

The objective is to construct a release strategy for the N year 

period which will maximize the expected value of the sum of the yearly 

rewards, subject to the "safety factor" o defined as the minimal prob- 

ability of no shortage allowed during the N years period. In other 

words, the probability of at least one shortage during the period [1,N] 

should be less than 1 - o. 

The above situation will be formulated as a multistage decision 

process using the model developed in Chapter 2 and it will be shown that 

the DP algorithm may be used for the construction of the set of optimal 

feasible strategies. 

The elements of the multistage decision model representing the 

above process are to be constructed. 

Decision Stages 

Since the period of interest consists of finitely many years, it 

is obvious that the model is truncated, which will be indicated by in- 

dexing the set of decision stages, by N, that is *N = {n: n = 1, 2, . . . }. 

State Spaces 

As far as the motion of the process is concerned, that is, the 

changes in the storage levels in the reservoir, the nth state space 

should include elements describing the storage level in the reservoir. 
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However, since the reward associated with the nth year depends on the 

magnitude of the shortage /overflow if any, it should also include ele- 

ments describing these events. As a first attempt, consider the fol- 

lowing state spaces: 

21 
= {xl: xl = 0, 1, 2, 

Stn = {xn: xne(- MRn- 
1,- 

MRn- 
1+ 

1,... ,0,l,...,MC,MC +1,...MC +MQn 
-1) }' 

n= 2,...,N +1 

Thus, x < 0 indicates that a shortage of xn occurred and xn > MC indi- 

cates that an overflow of x 
n 

- MC occurred. Notice that the discritiza- 

tion of the stage spaces is often done subjectively. For n > N the stage 

spaces may be constructed arbitrarily, for example, S¿1 ={01, vi > N +1. 

Decision Sets 

It will be assumed (for simplicity) that the.range [0, MR] is 

discretized such that the elements do are expressed in the same units as 

used in the description of the state spaces. Furthermore, let MR be the 

maximum yearly release capacity over the period: [1,N], i.e.: 

MR = max {MR }. Thus, 
n= 1,2,...N 

k= {d: d= 0, 1, 2, . . . , MR). 

Notice, however, that not all the elements of i are available at a given 

year. Let Dn(hn) be the set of admissible decisions associated with (hn, 

n). It is known that every element do of Dn(hn) is such that: 

do c {0, 1, 2, . . ., MRn). 

However, in order to satisfy the safety factor a all the elements of 

Dn(hn) should guarantee that a is not violated. Given the history hn and 
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the decision dne {0, 1, 2, . . ., MRn} the probability of failure during 

the nth year is computed as follows: 

Pr(failure during the nth yearlhn,dn) E 
pn(gn), 

e 
qn 

A 
n 

A 
h 

= {qn: yn(xn) + qn - dn} 

where: 0 
n 

< - 

y n (xn ) 
= 

0 

x 
n 

0 <x 
n 
<MC 

MC x > MC 

x 

n - 

Since the safety factor o should be satisfied during the entire period 

[1,N], the state spaces should include additional information so that 

when making the decision at (hn,n) only feasible decisions will be con- 

sidered. For this purpose, let en be the probability of no failure 

during the period [1, n -1]. This probability is uniquely determined by 

the strategy used during the period [1, n -1], the sequence 
{P.)n -1 

and 

the initial storage level or else the distribution of the initial storage 

level. Since 1 consists of finitely many elements, there are finitely 

many strategies and hence at each decision stage say n, they are finitely 

many feasible values for en. Let En be the set of the values en may take. 

Consider the following stage spaces: 

21 = 21 x El , El = { 1) 

52 = 0 1 x E n-2, . . . , N 
n n n 

Stn = Ç x EN , n > N . 
n 

As will be shown later, all the elements of En are in the range [a,l], 

Suppose now that the history hn = [(x1,el), dl, (x2,e2),d2, . . ., 

(xn,en)] is observed, the decision d made and the value of en 
+J 

is to 
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be computed. By definition: 

0 q < dn - yn(xn) 

en+1 

hn'dn'gn en gn ? dn - yn(xn) 

or 

en+1 
I n n 

= en Pr (gn ? dn - Yn(xn)) 

= e 
n 

E p (q ) 

qn>dn-yn(xn) 

In order to satisfy the safety factor a all the elements do of Dn(hn) 

should be such that: 

e = e 
n 

p(q)>a 
n+lh,d n q>d-yx 

n n n- n n n 

It follows then that 

D (hn) _ {dn: dne{0,1,. . .MRn}, en E pn(gn) ? a, er1eEn}, n=1,2,...N 

gn n n d -y(h) n 

For n > N set: Dn(hn) = {0 }. 

The Law of Motion 

Using the above definitions of yn(xn) and en, it follows that: 

fn(hn'dn'(xn+l'en+l)) 

E pn(gn) 

q 
n- n 

(x 
n 
)+d 

n 
' xn+l - 

MC 

pn(gn) 0<xn+l<MC en+l enEpn(gn) 

gn?dn-Yn(xn) 

E 
Pn(gn) xn+l 

= 0 

<d 
qn n -yn 

x 
n ) 

0 otherwise 
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Notice that a.< en +1 < 
en so that el = 1 implies that a < en < 1. For 

n > N any arbitrary mass function fn may be used. 

Initial Condition 

If the initial storage level is known, say x °, let Po(x °,1) = 1. 

If the initial storage level is described by a probability mass function, 

P', over the range {0, 1, 2, . . . MC} set 
o 

Po(x1,1) = P'(xl), x1c {0, 1, 2, . . . MC }. 

Notice that by definition El = {1 }. 

Reward Function 

Let rn(dn, xn +1) 
be the reward associated with the nth year given 

that the target release is do and the modified storage level of n +l is 

xn +1. 
Thus, 

r .( d , x' ) = r ( d , x" ) , 0 < x"- x' < MC - n n+l - 

The objective function may be written then as follows: 
N 

L1(h.) = E ri(di,xi 
+1) ri - 0 

i =1 

The reward function L = 
{Ln 

}nc can be written then as: 

N 

Ln(h) = E ri(di,x. 
) 

n < N 

t i >1+1 

so that 

and thus 

i > N. 

Ln(h.) E 0 , n > N. 

L 
n 
(h ) = rn(di, xi+1) + Ln+l(h.) , ne* 

Rn(1in, SI jxn+l'en+1}) 
= rn(Sn(ii11) ,>_n+1) + Rn+l(hn?l'S) 

so that L = 
{Ln 

}neJ. is a type Moshe reward function. 
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Sufficient Statistic 

The structure of R = {Rn: nc4 }, D = 
{Dn) 

F = {fn }neL and 

L = 
{Ln 

}neA indicate that the process is Narkovian and thus we may 

consider the sufficient statistic: 

T = {tn: tn(hn) = (xn, en), hneHn }ne . 

Solution Procedure 

In order to construct the set of optimal feasible solutions, the 

DP algorithm starting at n = K = N may be used. Notice that the close 

form relation between en and en 
+1 

make it possible to view en as a con- 

tinuous variable, so to speak, when solving the dynamic programming equa- 

tions. In other words, from the computational viewpoint, the elements of 

En are not required to be specified although this can be done. As indi- 

cated above, the objective in this section is not to construct solution 

algorithms but rather to formulate the problem under consideration using 

the model developed in Chapter 2. 

Often the safety factor is used in the context of a sensitivity 

analysis. Its value may be changed so as to investigate its effect on 

the total reward. Then, the safety factor that together with the corre- 

sponding optimal total reward constitute the most desirable combination 

may be chosen as the optimal solution. For details, see Askew (1974). 

5.5. The "Range" Problem in 
Reservoir Control 

Consider the reservoir described in the previous example. It is 

desired to construct a release strategy such that the expected value of 

the range of fluctuation around the critical level x° is minimized over 
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the N year period, given that the initial storage level in the reservoir 

is xi = x °. 

A multistage decision model for the above process will be formu- 

lated and it will be shown that the DP algorithm may be used as a solu- 

tion procedure. The elements of the model may be constructed as follows: 

Decision Stages 

The decision set is denoted by to indicate that the process is 

truncated at N. Each nailN corresponds to a certain year, or more pre- 

cisely, each n < N corresponds to a certain year in the period [1, N]. 

State Spaces 

Since the magnitude of the shortage /overflow are of no interest 

and since no constraints relating to the state spaces are to be con- 

sidered, define the state spaces as follows: 

Q = {Stn: Stn = (0, 1, 2, . . . , MC) } , ncl 

Decision Sets 

The only constraints related to the feasible release is expressed 

by: Dn(hn) = {d: dc(0, 1, 2, . . ., MRn) }, n < N, hncHtl. For n > N 

set: Dn(hn) = {0 }, n > N. 

The Law of Motion 

The law of motion of the process is determined by 
{Pn }n =1.' 

More specifically, 

fn(hn'dn'xn+l) 

E 
pn(gn) xn+1 - 

MC 

q >MC-x +d 
n- n n 

pn(gn = xn+l--xn+dn) 0 < xn+1 < MC 

E n(4 ) 

`in - n n xn+l = 0 
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for n < N. For n > N the conditional mass functions on S2 

n 
are: - 

pn(0) = 1, n > N. 

Initial Condition 

Since the process starts with the initial storage level x °, it 

follows that Po(x °) = 1. 

Reward Function 

The objective is to minimize the expected value of the function: 

L1(xl, dl, x2, . . ., xN, . . .) = max {x.} - x° + x° - min {x.) 
N >i >1 1 1 

= max {x.} - min {x.} 
N>i >1 1 

Notice that since x 
1 

x °, it is guaranteed that max {x. }> x° and 
1 - 

N >i >1 
1 

mi.n {xi k x° so that L1 as defined above indeed represents the actual 
N >i >1 

objective function. The reward function L = 
{Ln 

}rie. may be defined 
i 

n 
then as: 

Ln(x1, d 
1, 

. .) = Ln(xl, dl, . . .), ne*N. 

Sufficient Statistic 

Since the value of the original objective function depends on 

the values xi, i < N take, the information contained by hi may be con- 

densed so that at the ith decision stage it will not be required to con- 

sider the entire history hi. Consider then the sufficient statistic: 

T = {t : t (h ) _ ( max {x.}, min {x.} , x )} 
n n n 

n>i>1 1 n>i>1 
1 n ne1qi 

In other words, 

tn: Hn -} A = Un AX 
3 =Q x 52i x2 ielN. 

with t1(x°) = (x°, x°, x°). 



Notice that u (u (1) , u (2) , u (3)) , contains the element u (3) = x 

which is required in order to determine the law of motion at the nth 

stage. Thus, 

u(1) = max (x.), u (2) = min (x.) , u 
n 
(3) = x 

n 
n>i >l 1 n n>i >1 

i n 

The reduced reward function is then: 

{Ln: Ln(un,dn,xn 
+1' 

. . .) = max {un(1), max (xi)} - 

n >í >n. --i 
min {un(2), min (x1) }ne 

n >i >n n 

It can be easily verified that: 

Lñ(un, dn, . . .) = Lñ+1(un+l' 
d 

. . .) 

so that 

Rn(un' G, xn+l) 
= 

Rn+1 (un+i' G) 

where 
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un +1 
= (max {un(1), xn +1 }' 

min {un(2), xn +1 }' xn +1). 

It follows then that the model under consideration is a truncated Moshe 

type model and thus the DP algorithm (starting at n = N = K) may be used 

and will provide optimal feasible strategies. 

Solution Procedure 

Notice that the complete model may be used when complementing the 

DP algorithm. However, the reduced model is much more efficient as far 

as computation is concerned since it involves less modified problems. 

Computation Example 

Consider the following values for the elements introduced in the 

above problem: 
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MC = maximum storage capacity of the reservoir = 10 units, 

M n = maximum release capacity at the nth year = 3 units, vn < N, 

N = number of years of operation = 15 

x° = critical storage level = 7 units 

the probability mass function of the inflow, P Y qn, n =1, 2, .N. 

pn(0) = 0.20, pn(1) = 0.30, pn(2) = 0.30, pn(3) = 0.20, n =1,2,...N. 

The multistage decision problem associated with the above values was 

solved by the DP algorithm (starting at K = N) using the computer program 

presented in Appendix A. The optimal value of the reward function was 

found to be R* = 2.92. Portion of the optimal feasible strategy is 

presented in Table 1. 

5.6. Discussion 

When discussing the modeling aspects involved in the implementa- 

tion of the DP algorithm, Bellman (1957, p. 82) indicates: 

We have purposely left the description a little vague, since it 

is the spirit of the approach to these processes that is signifi- 

cant rather than the letter of some rigid formulation. It is 

extremely important to realize that one can neither axiomatize 
mathematical formulation or legislate away ingenuity. In some 
problems, the state variables and the transformations are forced 

upon us; in others, there is a choice in these matters and the 
analytic solution stands or falls upon this choice. In still 
others, the state variables and sometimes the transformations 
must be artificially constructed. Experience alone, combined 
with often laborious trial and error will yield suitable formu- 
lations of involved processes . . . ( Bellman, 1957, p. 82). 

Instead of trying to develop a modeling procedure for a DP problem such 

as the one proposed by Aris (1964, p. 29) it was suggested that an im- 

provement in the modeling phase of the problem may be best achieved by 

understanding the role of each of the elements of the multistage decision 

model. Thus, instead of developing a modeling procedure consisting of 
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"steps" to be followed, it was chosen to investigate the structure of 

the elements of the model and the relations between them as far as 

modeling is concerned. 

There is evidence (Askew, 1974) that while the DP is often used 

in water resources management, and in most cases correctly, certain basic 

modeling problems still prevent a full usage of DP. 

The reliability problem presented in this chapter was treated by 

Askew (1974, p. 1100), "these constraints limit the magnitude of param- 

eters that are functions of system variables computed over the entire 

life of the system; therefore, they cannot be introduced as normal 

constraints . . ." As indicated above, the validity of Askew's comment 

depends on the choice of the system variables. In other words, the 

ability to take care of certain constraints depends on the state spaces 

used in the model. It should be emphasized that the state spaces may 

include "artificial" variables that sometimes have "nothing" to do with 

the physical process under consideration. Gellman and Dreyfus (1962) 

for example, indicate the possibility of handling probabilistic con- 

straints by the use of DP. However, the modeling aspects involved in 

such processes have not been treated in detail. 

The range problem introduced in this chapter demonstrates the 

flexibility of the DP algorithm as a solution procedure. Most of the 

stochastic decision processes treated by the DP in the literature are 

characterized by additive reward functions. It was demonstrated that 

more complex reward functions may also be treated by the DP algorithm. 

The two non -routine problems were introduced in the discussion 

mainly for the purpose of demonstrating some of the modeling aspects 
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involved in transforming a multistage decision process to a model having 

the format of the one developed in Chapter 2. 



APPENDIX A 

LIST OF SYMBOLS 

All the symbols used in the discussion are defined when they 

first appear in the text. The list presented below includes most of 

the symbols used in Chapter 2 and Chapter 3. The symbols not included 

in the list are those used in specific examples and are defined in the 

context of the discussion. 

SYMBOL 

PAGE OF FIRST 
APPEARANCE IN 

THE TEXT 

Cn(hn) The solution of the optimality equation 
associated with (hn,n) 43 

d A decision, an element of * 2 

d 
n 

A decision associated with the nth decision 
stage 2 

D The set of admissible decision maps asso- 

ciated with a complete model 6 

D The admissible decision map associated with 
n 

the complete model and the nth decision stage 6 

Dn(hn) The set of admissible decisions associated 
with the history h 

n 
at the nth decision stage 6 

D' The sequence of reduced admissible decision 
maps associated with the reduced model 14 

D' 
n 

Dñ(un) 

11) 

The reduced admissible decision map asso- 
ciated with the nth stage 13 

The set of admissible decisions associated 
with (U 

n 
,n) 13 

A decision set 2 
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SYMBOL 

E[ ] 

f 
n 

f' 
n 

The expected value of [] 

The conditional mass function associated with 
the nth decision stage 

The conditional mass function associated with 
the reduced model at the nth decision stage 

The conditional mass function on 52n 
+1 

given fn(hn,dn, 

.) hn,dn. 

f'(un,dn, The conditional mass function defined on 
n 
) n +1 given un,dn. 

F The law of motion associated with the com- 
plete model 

F' 

G 

G* 

G 
n 

GG 

GG* 

GG° 

GGn 

A reduced law of motion 

A strategy associated with the reduced model 

An optimal feasible strategy associated with 
the reduced model 

The decision map associated with the strategy 
G at the nth decision stage 

The set of feasible strategies associated 
with the reduced model 

The set of optimal feasible strategies asso- 
ciated with the reduced model 

The set of strategies produced by the DP 
algorithm 

The set of strategies associated with the DP 
algorithm at the nth decision stage 

hn A history associated with the nth decision 
stage, an element of H 

n 

hn s( }:n) The history determined by the strategy s at 
' the nth decision stage given x 

n 

H 
n 

The set of admissible histories associated 
with the nth decision stage 

98 

PAGE OF FIRST 
APPEARANCE IN 

THE TEXT 

10 

6 

13 

6 

13 

6 

14 

14 

15 

14 

14 

15 

28 

27 

6 

10 

6 
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PAGE OF FIRST 

SYMBOL APPEARANCE IN 

THE TEXT 

H (G) The set of histories in H observed with 
n positive probability under G 6 

Hn A history space associated with the nth 

decision stage 5 

i A positive integer, an element of Ì 5 

Ic The map from GG to SS as determined by T 16 

Ic(G) The complete image of G 16 

Ir A map from SS to GG 18 

Ir(S) The reduced image of S 18 

Iñ A map from SS to SS associated with the nth 
decision stage 18 

j A positive integer, an element of i 12 

k A positive integer, an element of * 27 

K The decision stage where the DP algorithm 
starts 27 

£ The random variable defined on S2 as deter- 
mined by G 16 

RS The random variable defined on S2 as deter- 
mined by S 10 

L The reward function associated with the 
complete model 7 

L' The reduced reward function 14 

L The reward function associated with the nth 
n 

decision stage 7 

L' The reward function associated with the 
n 

reduced model at the nth decision stage 13 

n A decision stage, an element of $ 4 

The set of positive integers, also the set 
of decision stages 4 
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PAGE OF FIRST 
SYMBOL APPEARANCE IN 

THE TEXT 

N A positive integer, an element of * 21 

PG The probability measure induced by G 15 

Po The initial condition of the process, a 

mass function on 01 7 

Ps The probability measure induced by S 10 

Pr(*) 
The probability of the event () 59 

r A real valued function associated with 
n 

the nth decision stage 22 

The set of real numbers 7 

R(S) The total reward associated with the 
strategy S 10 

R'(G) The total reward associated with the 
strategy G 15 

R* The total optimal feasible total reward 11 

R'* The optimal feasible total reward asso- 
ciated with the reduced model 15 

R1(hn,S) The reward associated with the strategy 
S at (h 

n 
,n) 11 

R'(un,G) The reward associated with the strategy 
n 

G at the nth decision stage given u 
n 

15 

R*(hn) The optimal feasible reward associated 
with (h 

n 
,n) 11 

R' *(un) The optimal feasible reward associated 
n 

with (u 
n 
,n) 16 

S A strategy associated with the complete 
model 8 

S 
n 

Sn(hn) 

The map associated with the strategy S at 
the nth decision stage 8 

The decision determined by S at (h 
n 
,n) 8 



SYMBOL 

S* An optimal feasible strategy 

SS The set of feasible strategies associated 

with the complete model 

SS* The set of optimal feasible strategies 

associated with the complete model 

The sequence of strategies generated by 

S at n 
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PAGE OF FIRST 
APPEARANCE IN 

THE TEXT 

11 

8 

11 

17 

to The nth element of T; the sufficient 
statistic associated with the nth decision 

stage 12 

T A sufficient statistic 12 

un An element of Un 12 

Un The range of to 12 

Un(G) The set of statistic observed with positive 

probability at n under G 34 

vn An element of Un +1 
as determined by V 

The transition function associated with the 

sufficient statistic 13 

The transition function associated with the 
n 

sufficient statistic at the nth decision stage 13 

The value of to +1 
as defined by un,dn, and Vn(un,dn, 

xn 
+1) 

xn +l 
13 

x A state associated with the nth decision 
n 

stage, an element of S2 

n 
5 

xn A trajectory, an element of Xn 5 

xn(i) The ith coordinate of xn 5 

Xn The set of all the trajectories associated 

with the nth decision stage 5 

E A sequence of random variables on 52 9 



SYMBOL 

n 

nn 

0 

ñ 

On(G) 

The present state function, the nth element 
of F 

A sequence of random variables on S2 

The past state function, the nth 
element of n 

The state observing function 

The state observing function associated with 

the nth decision stage 
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PAGE OF FIRST 
APPEARANCE IN 

THE TEXT 

9 

9 

9 

34 

34 

The set of trajectories in X observed with 
positive probability under tfe strategy G 34 

A sequence of random variables on 2 9 

The future state function, the nth element 
of C 9 

p A real valued function associated with the 
n 

complete model at the nth decision stage 30 

p' A real valued function associated with the 
n 

reduced model at the nth decision stage 30 

Y' A o- algebra on 2 9 

w An element of 2 9 

S2 The sample space associated with the multi- 
stage decision model 9 

52 

n 
The state space associated with the nth 
decision stage 5 

St The universe: the union of all the 'state 

spaces 5 

The set of all the state spaces 5 

(R, D, F, A complete multistage decision model 
Po, L) 7 

(R, D', F', A reduced multistage decision model 

Po, L') 14 



SYMBOL 

1 
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Abbreviations 

CMDM Complete Multistage Decision Model 

DP Dynamic Programming 

OE Optimality Equation 

RMDM Reduced Multistage Decision Model 
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APPENDIX B 

COMPUTER PROGRAM 

On the following pages, the program DYNO is listed. The program 

is designed for the range problem presented in Chapter 5. 
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PROGRAM DYNO (INPUT,OUTPUT,TAPE5 =INPUT.TAPE6 =OUTPUT) 
**************************** * * * * * * * * * * * * * * * * * * * * * * * * * * * * * ** 

* THE PROGRAM DYNO,BY MEANS OF THE DYNAMIC PROGRAMING * 

* ALGORITHM,C1INSTRJCTS THE OPTIMAL FEASIBLE RELEASE AND * 

* COMPUTES THE OPTIMAL FEASIBLE REWARDS ASSOCIATED WITH * 

* IT FOR THE RESERVOIR CONTROL PROBLEM PRESENTED IN THE * 

* DISCUSSION IN SECTION 5.2.2 ---FOR USE WITH CDC 6400 * 

* COMPUTER. * 

* * 
* PROGRAMMER-- -MOSHE SNIEDOVICH..DEPARTMENT OF HYDROLOGY * 

* AND WATER RESOURCES,THE UNIVERSITY OF * 

* ARIZONA,OCTOBER,1975. 

* * 
* DATA CARDS FOLLO.1 THE FOLLOWING FORMATS 
* CARD 1 

* COL 1 -5 NM NUMBER OF YEARS,FORMAT I5 * 

* 6 -10 IXM MAXIMUM STORAGE OF THE RESERVOIR * 

* FORMAT I5 * 

11 -15 MR MAXIMUM RELEASE,FORMAT I5 

* 16 -20 1X0 CRITICAL STORAGE LEVEL,FORmAT I5 * 

* 21 -25 IQM MAXIMUM INFLO'W,FORMAT 15 

* CARD 2 * 

* COL 1 -80 AP THE PROBABILITY MASS FUNCTION OF * 

* THE INFLOW IQ.IQ =1,2,...IQM. * 

* FORMAT IQM(F5.2). 
* * 
* NOTE---- IXM,MP,IX0 AND IQtr ARE TAKEN TO BE GREATER 
* THAN THE ACTUAL QUANTITIES BY ONE UNIT. 
******* ** * * ** **** * * * * *** * ** * * *** * *** ** **** * **,5 *** ***5555#* 

COMMON NN,IXM,i1R,IXO,I0M,AP(4), 
1ANGE(4,8,11),RANGE(4,8,11) 

C READING DATA 
READ(5,1)NN,.IXM,MR,Ix0,IQM 
READ(5,2)(AP(I)0=1,IQM) 

C PRINTING THE DATA 
WRITF(6,11)Nr-, IXM, MR,IXO,I0P1 
WRITE(6,2)(AP(I),I =1, IOM 

C LAST DECISIN STAGE N =NN 
D0101MAX =IxO,IXM 
D0201NIN =1,IX0 

C COMPUTING THE REWARD FOR THE LAST STAGE 
D0301X =IMTN,IMAX 

30 RANGE( I1AX.Ir ̂IN,IX) =FLOAT(IMAX. -1MIN) 
20 CONTINUE 
10 CCNTINUE 

C DECISIN STAGES NH -1 'TO 2 

NM =Nt1 --2 
DO100M =1,NM 
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N =NN -M +1 
C HEADING THE OUTPUT TABLE 

WRITE(6,3)N 
DO110IMAX =IXC'.IXM 
IA =IMAX 
00120IMIN =1,IX0 
IB =IMIN 
D0130IX =IMIN,IMAX 
IR =MR 
IF(IX.LT.MR)IR =IX 
AMIN= 99999.9 
IRO =0 

C ITERATING OVER ALL FEASIBLE DECISIONS 
D0140I0 =1,IP 
CALL EXPECT( IMAX, IMIN, IX,ID,EXP) 
SUM =EXP 
IF(AMIN.LE.SUH)GO T0 140 
AMIN =SUM 
IRO =ID 

140 CONTINUE 
C STORING THE OPTIMAL DECISION 

ANGE(IMAx,IMTV,Ix) =AMIN 
IAA = IMAX -1 
IBB =IMIN -1 
ICC =IX -1 
IDD =IRO -1 

C PRINTING THE OPTIMAL DECISION AND THE OPTIMAL REWARD 
WRITE(6,4)IAA,IBB,ICC,IDD,AMIN 

130 CONTINUE 
120 CONTINUE 
110 CONTINUE 

WRITE(6,5) 
C RESTORING THE OPTIMAL REWARD 

0099I =IX0,IXM 
D09PJ21,Ix0 
DO97K =J,I 

97 RANGE(I,J,K)= ANGE(I,J,K) 
98 CONTINUE 
99 CONTINUE 
100 CONTINUE 

C DECISION STAGE N =2 
N =2 

C HEADING THE OUTPUT TABLE 
WRITE(5,3)N 

C DETERMINING THE FEASIBLE SITUATIONS 
IO=IXO -MR 
00200IX =IO,IXM 
IR =MR 
IA =IXO 
IB =IXO 
IF(IX.LT.IX0)IB =IX 
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IMIN =IB 
IF(IX.GT.IXO)IA =IX 
IMAX =IA 
IF(IX.LT.MR)IR =IX 
AMIN =999999.9 
IRO =0 

C ITERATING OVER ALL FEASIBLE DECISIONS 
D0220ID =1,IR 
CALL EXPECT(IMAX,IMIN,IX,ID,EXP) 
SUM =EXP 
IF(AMIN.LE.SUM)GO TO 220 
AP IN =SUt1 

IRO =ID 
220 CONTINUE 

C STORING THE OPTIMAL DECISION 
ANGE(IMAX,IMIN,IX) =AMIN 
IAA =IMAX -1 
IBB= IMIN -1 
ICC =IX -1 
IDD =IRO -1 

C PRINTING THE OPTIMAL DECISION AND THE O °TIMAL REWARD 
WRITE(6,4)IAA,IBB,ICC,IDD,AMIN 

200 CONTINUE 
WRITE(6,5) 

C RESTORING THE OPTIMAL REWARD 
D0999I =1X0,IXM 
D0988J =1,IX0 
D0977K =J,1 

977 RANGE(I,J,K) =ANGE(I,J,K) 
988 CONTINUE 
999 CONTINUE 

C DECISION STAGE N =1 

C DETERMINING THE FEASIBLE SITUATIONS 
IMIN =IXO 
IMAX =1X0 
IX =IXD 
AMIN=999999.9 
IRO50 

C ITERATING OVER ALL FEASIBLE DECISIONS 
D0310ID =1,IR 
CALL EXPECT(IMAX,IMIN,IX,ID,EXP) 
SUM =EXP 
IF(AMIN.LE.SUM)G0 TO 310 
AMIN =SUM 
IRO =ID 

310 CONTINUE 
TOTAL =AMIN 
IXX =IX0 -1 
IDD =1 R0 -1 

C PRINTING THE OPTIMAL DECISION AND THE OPTIMAL REWARD 
WRITE(6,6)IXX,IDC,TOTAL 
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C FORMAT STATMENTS 
C INPUTS FORMAT 
1 FORMAT(5I5) 
2 FORMAT(4F5.1) 

C HEADING OF THE OUTPUT TABLE 
3 FURMAT(1H1,47X, *OPTIMAL RELEASE G AND REWARD R FOR N* 

1, * = *,I2,//35X,60( * -*), 
2 /35X, *I *,753, #Ú4F,770, *I *.TQh, *I *, 
3 /35X, *I #,1-70, *I*,T77, *G(U) *,T87, *R(U,G) *,T96, *I *, 
4/ 35x,* I*, T42,* U( 1)*, T52 , *U(2) *,TE2, *U(3) *,T70, *I *,T96 
4, *I *,/T36,60( * -*)) 

C THE ROWS OF THE OUTPUT TABLE 
4 FORMAT( T36,* I *,T43,12,T53,I2,763,I2,T7G, *I *, 

1178, I2, TAB,F5.2_, 196, *I *) 
C THE OUTPUT FOR N =1 

6 FORMAT(IH1,30X, *THE OPTIMAL RELEASE FOR *,12, 
1* IS *,I2, 
2* AND THE OPTIMAL TOTAL REWARD IS *,F5.2, 
3/25X,80( * -*)) 

C THE LAST LINE OF THE OUTPUT TABLE 
-5 FORMAT(1.36,60( * -*)) 

C THE DATA PRINTOUT 
11 FORMAT(IH1,10X)*INPUT DATA *, //515) 

STOP 
END 
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SUBROUTINE EXPECT(IMAX,IMIN,IX,ID,EXP) 
C SUBROUTINE EXPECT COMPUTES THE EXPECTED VALIIF.EXP,OF 
C THE REWARD ASSLCIATED WITH THE MODIFIED PROBLEM 
C (IMAX,IMIN,IX) AT TIME N AND THE DECISION ID,ASSUMING 
C THAT AN OPTIMAL FEASIBLE STRATEGY IS USED FOR TIMES 
C GREATER THAN N. 

COMMON NN,IXM,MR,IXO,TOM,AP(4), 
1ANGE(4,8,11),RANGE(4,8,11) 
IW =IX -ID 
EXP =0. 
00101Q =1IQM 
IA=IMAX 
IB=IMIN 
IY =IW+IQ 
IZ=IY 
IF(IY.GT.IXM)IZ =IXM 
IF(IZ.LT.IMIN)IB =IZ 
IF(IZ.GT.IMAX)IA=IZ 

10 EXP = EXP +AP(IQ) #RANGE( IA,IB,IZ) 
RETURN 
END 
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