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PREFACE 

This report constitutes the doctoral dissertation of the same title 

completed by the author in May, 1972 and accepted by the College of 

Business and Public Administration. 

The report is unusual. Neither major nor minor area were officially 

in the resource field but in the above College whose support is grate- 

fully acknowledged, especially, for computer time. The report is one 

result of a continuing and informal community of interest between faculty 

and students on this campus in an area that we choose to call Natural 

Resources Systems. Competence in aspects of this subject may be found in 

many Colleges on campus. 

The methodology seems to be ideally suited to water and other natural 

resource problems. It is truly multiobjective and allows no explicit 

weighting. It is quite compatible and complementary to other methods 

developed here such as Bayesian decision theory (Technical Report #2), 

collective utility (Technical Report #5), and cost -effectiveness (by 

example in a series of papers developed under the leadership of L. Duckstein) . 

The case study is synthetic but realistically illustrates the metho- 

dology. It was chosen from reports, published in the Congressional Record, 

on the Planning, Programming and Budgeting System (PPBS). 

This report series constitutes an effort to communicate to practi- 

tioners and researchers the complete research results, including economic 

foundations and detailed theoretical development that cannot be repro- 

duced in professional journals. These reports are not intended to serve as 



a substitute for the review and referee process exerted by the scientific 

and professional community in these journals. The author, of course, 

is solely responsible for the validity of the statements contained herein. 

A complete list of currently- available reports may be found in the back 

of this report. 
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ABSTRACT 

This research develops an algorithm for solving a class 

of multiple objective decision problems. These problems are charac- 

terized by continuous policy variables, nonlinear constraints, and 

nonlinear criterion functions. 

Our underlying philosophy is that of the Gestalt psycholo- 

gists--we cannot separate the problem and its solution from the 

environment in which the problem is placed. The decision maker is 

necessarily a part of this environment, thus implying that he, as an 

individual, must be part of the solution of the problem. Another 

central assumption in this research is that there is not an "optimal" 

answer to the problem, only "satisfactory" solutions. The reasons 

for this are based partly on the insensitivities of the body to 

minute changes and to the insensitivity of our preferences within 

certain ranges of acceptance. In addition, we assure that the 

individual is capable of solving decision situations involving a 

maximum of about 10 goals and that he operates upon them in some sort 

of serial manner as he searches for a satisfactory alternative. The 

serial manner is a reflection of his current ranking of the goals. 

Based on these assumptions we have developed a cyclical 

interactive algorithm in which the decision maker guides a search 

mechanism in attempting to find a satisfactory alternative. Each 

cycle in the search consists of an optimization phase and an evaluation 

xi 
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phase, after which the decision maker can define a new direction of 

search or terminate the algorithm. 

The optimization phase is based on a linearization technique 

which has been quite effective in terms of the problems we have 

attempted to solve. It is capable of solving general nonlinear pro- 

gramming problems with a large number of nonlinear constraints. 

Although the constraint set must be convex in order to guarantee 

the location of a global optimum, we can use the method on concave 

sets recognizing that we may find only a local optimum. 

An extensive synthetic case study of a water pollution deci- 

sion problem with 6 conflicting goals is provided to demonstrate 

the feasibility of the algorithm. 

Finally, the limitations of the research are discussed. We 

tentatively conclude that we have developed a method applicable to 

our research problem and that the method can be applied to "real 

world" decision situations. 



CHAPTER 1 

INTRODUCTION 

Decision making is basically choosing among alternatives. It 

differs from instinct in that it takes place on the conscious level and 

so is a characteristically human trait. Decision making also differs 

from habit, which can be viewed as a pattern of behavior based on past 

decisions. Habit is a choice that has moved from the conscious to the 

unconscious level of behavior ( Katona 1953; }3ayton 1953). 

The decision process involves a model or logic structure which, 

by simplifying reality, enables the decision maker (DM) to impose some 

sort of order upon the variables under consideration. The DM requires 

information concerning the alternative courses of action available and 

evaluates their respective results. The termination of the process- - 

a decision - --is the selection of a particular alternative. 

If comparison of alternatives generates a subjective measure 

of the worth of each, then choice is simply the selection of the 

alternative with the greatest value. Thus comparison reflects the 

value structure of the individual. This value structure, or prefer- 

ence system, is a result of the total environmental information 

input during his past and so the structure varies from individual to 

individual. 

1 
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Most decision situations involve the same sequence of steps: 

recognition, development, comparison, and choice. The recognition 

of a decision situation and the development of a set of available 

alternative actions evolve from perceptual orientations which are 

a function of the amount of information available from past experiences 

and /or new data. Comparison requires the development of (at least) 

a partial ordering of the alternatives. Comparison can lead to a 

reduction of the number of alternatives to be considered in the fu- 

ture. Choice necessarily partitions the alternatives into two sets: 

the one chosen and the rest. In this sense, even previously incompar- 

able alternatives will be compared. As a brief example of this last 

point, consider the woman who insists that she cannot decide which of 

two dresses to wear to a party. Each has individual advantages and 

the two cannot be compared. However, when it is time to leave -- 

±2 hours --she will have made a decision. The "incomparable" have 

been compared, unless she chooses a third dress, and a choice for that 

situation has been established. The situation may or may not be 

repeated in the future depending upon which elements of the situation 

the individual considers important. There are some situations, such 

as the choice of a grocery store, in which the decision becomes 

automatic --a habit. There are other situations, such as choosing a 

name far a baby, which are unique far each occurrence. Note however, 

that information may shorten the decision process, even for unique 

events. Far example, we might consider a large number of names for 
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the first child and then use part of this stared information in 

choosing a name far a second child. 

Perhaps we can clarify our point by observing that, in one 

interpretation, the statement "you can't step into the same river 

twice" is true; but in an alternate interpretation, it's false. The 

answer depends upon your point of view, your choice of the important 

elements in the situation. 

Optimization theory has entered into the decision making pro- 

cess with regard to the development and selection of alternatives. 

Certain implicit assumptions are always in effect whenever an "objec- 

tive" technique such as linear programming is employed. First, it is 

assumed in classical optimization theory that the criterion of desira- 

bility is adequately expressed by some objective measure, such as cost 

or profits, corresponding to a dimension of worth. This implies that 

a movement from the optimum as measured objectively results in a 

change in the desirability of the choice. Second, the development of 

an optimum according to some objective measure assumes that the total 

information content of the environment relative to this decision 

situation is contained in that measure. Consequently, when a decision 

situation is optimized and the result taken as the best available 

alternative, the context in which "best" is applied should meet these 

assumptions. 

However, preferences may not be sensitive to minute changes 

in the alternatives; and the information used in making choices may 

be greater than that coded into an objective algorithm. So there is 
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a need for research which will develop techniques able to include the 

preferences of the individual and the information flora from the envi- 

ronment to him. 

This research assumes that a decision problem or situation 

exists and has been recognized as such. It focuses upon the develop- 

ment of alternatives, their comparison, and the choice among them. 

We will define an algorithm as a sequential procedure for achieving an 

objective. Although this definition is not mathematically precise 

it does agree in content with that given by Markov (1954). Markov 

goes on to define "algorithm" with great precision and rigor but 

we feel there is little to be gained by introducing such formalisms 

here. The interested reader should refer to Markov (1954, Chapter 

II) far a detailed presentation. The purpose of this research is to 

develop an algorithm which is applicable to a multiple goal decision 

problem in which the individual goals are related to nonlinear criter- 

ion functions subject to nonlinear constraints. In order to accomplish 

this, we will employ the DM himself in a dynamic manner to define the 

search for a "best possible alternative." Strictly speaking, we will 

not be developing a method of solving the decision problem; the algo- 

rithm will generate information during a restricted search for the 

available alternatives so that the DM can select the "best" one. 

To complete the introduction, we will briefly summarize the 

following chapters. Chapter 2 develops certain psychological concepts 

and ideas which are fundamental to our interpretation of choice. In 

particular, the inherent ly subjective nature of preferences is explored. 
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This leads to a definition of a solution to the decision problem 

which is based on finding a satisfactory alternative (satisfactum) 

rather than the best alternative (optimum). 

Chapter 3 provides a formal statement of the research. With 

that statement as a guide Chapter 4 develops the overall scheme upon 

which our algorithm is constructed. In this chapter we review the 

literature in the area of nultiobjective decision making. From this 

we select a particnlar orientation and examine it with respect to the 

concepts discussed in Chapter 2 and such psychological research find- 

ings as are appropriate to the subject. The notation for our algorithm 

is stated and then the algorithm itself is developed. 

The problem we are considering involves repeated nonlinear 

optimizations, so it is important to this research to select a proper 

optimization technique. In Chapter 5 we briefly review and evaluate 

alternative methods. Then the method actually used as part of the 

algorithm is examined and its implementation upon the computer is 

discussed. 

Chapter 6 contains 2 examples. The first is simple and allows 

us to thoroughly examine the algorithm at work. The second is more 

complex but also more realistic. It is presented to demonstrate the 

practicability of the algorithm in a real world situation. 

The final chapter contains a discussion of the research lim- 

itations. Certain conclusions are drawn and possible avenues of 

future study suggested. 



CHAPTER 2 

CONCLYlS 

This chapter reviews certain concepts central to this re- 

search. We begin by discussing Gestalt psychology in general because 

it has influenced the entire development of our work. Following this, 

goals and aspiration levels are discussed; criterion functions are 

defined and differentiated from preference functions; and optimal 

versus satisfactory choice -making is examined. Finally, the key points 

of the chapter are summarized. 

Gestalt Psychology 

The Gestalt school of psychology is based on the premise that 

the context of a situation is an essential part of that situation (see, 

for example, Scheerer 1967 or Kahler 1947). More concisely, the 

whole is different from the sum of the parts. Their philosophy is 

especially relevant to the question of perception: the perception of 

a situation. Evaluation (i.e., of alternatives) is dependent upon 

perception and so it too is situation dependent. 

We can contrast the contextual dependency of perception with 

the (relative) contextual independency of physical measurements. For 

example, water may feel "hot" at one time and "cold" at another even 

though its measured temperature is the same in both instances. 

6 
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Considering some further examples, a musical composition 

is somehow more than a simple enumeration of the notes to be 

played; it is the relationship of those notes to each other and 

also our interpretation of those relationships. We speak of words 

used inappropriately in writing because they do not fit with their 

surroundings. A quotation taken out of context may take on new 

meanings unintended by the author. Preference for a high powered 

automobile may depend on whether it is a station wagon or a sports 

car; and our preferences between these cars are influenced by 

our life style, marital status, etc. 

So perception in the Gestalt framework is based on the 

overall interaction of the elements in the situation together with 

the larger context (the environment) in which the situation is 

placed. The context of the situation thus consists of the space - 

time framework which defines the situation. As we noted earlier, 

the specific elements of that context which the individual considers 

important can vary from situation to situation and individual to 

individual. In our research we assume that the DM's perception of 

a set of numbers indicative of his attainment of a corresponding set 

of goals is related both to that set of numbers as a whole and to 

the context in which the decision problem itself is located. In com- 

parison, the stimulus- response school of psychology (see for example, 

Thorndike 1898) states that for a given stimulus or signal from 

the environment, there is a fixed response which is independent of 

the total context of the situation. The actual "fixedness" of the 
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response is dependent upon the nunber of times the subject has been 

conditioned or exposed to that stimulus. 

Goals 

Berelson and Steiner (1964, pp. 239 -240) define motivation 

as ". . . all those inner striving conditions variously described as 

wishes, desires, needs, drives and the like . . ." and a goal as the 

H 
. . . objective, condition, or activity toward which the motive is 

directed; in short, that which will satisfy or reduce the striving." 

In this research, we restrict our attention to decisions made 

to achieve explicit goals or objectives. Individuals with a goal they 

desire to attain are in a state of psychological imbalance or uncer- 

tainty which they attempt to correct through the manipulation of 

external variables called "decision variables." The manipulation is 

typically in the form of allocations of scarce resources, although the 

manipulation could also be of a. system or organization. Our work is 

restricted to those decision situations which call for an allocation 

of resources. A specific allocation for all variables is called a 

policy vector. The individual attempts to choose some vector which 

will result in the attainment of his objectives. 

Multiple Objectives 

Do we, then, attempt to satisfy one goal and afterwards 

proceed to the next? Or are our actions influenced by several goals 

at the same time? Berelson and Steiner (1964, pp. 266 -267) regard 
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multiple goal behavior as the more usual: 

. . . Behavior is not normally under the control of one iso- 

lated motive at a time; several, often inconsistent, motives 
are normally in play. Beyond that, internal and external 
barriers stand between people and their goals even when the 
goals are perfectly clear and consistent. Thus, some of the 

most important implications and consequences of motives lie 
not in their direct satisfaction but rather in the adjust- 
ments and resolutions required when direct satisfaction is 

impossible." 

Many other authors indicate that most decision problems involve mult- 

ple objectives. For example, see Pckoff and Sasieni (1968, p. 430), 

Barnard (1958), Dalkey (1969, p. 74), Hillier and Liberman (1967, 

pp. 13 -14), Kimble and Garmezy (1963, p. 199 and p. 485) and March 

and Simon (1958, p. 118). Appendix A contains a list of additional 

authors who hold this opinion. 

The preceding quotation is also of interest because of the 

adjusting process mentioned as a means of solving such conflicting 

situations. We will examine this further in the next section. 

Although we have postulated the existence of multiple goals, 

we have not, as yet, put a specific number on this concept. Can we 

supply a number, i.e., "5," and say that an individual cannot assimi- 

late more than 5 goals per decision situation? Unfortunately, no. 

The exhaustive literature review by Johnsen (1968) indicates that 

there certainly is a limit (which seems to be about 7 in a business 

environment) but the limit is largely determined by the individual and 

the situation. The amount of information that the individual must 

process relative to each goal also seems to affect this limit. 

Johnsen (1968, pp. 36 -37 and pp. 364 -365) states that an individual 
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in an "average situation" can coordinate about 5 goals, with 10 goals 

an apparent maximum, and can integrate about 7 units of information 

for each goal. It is difficult to define a "unit of information" in 

a perceptual sense because it can vary with the goal, the situation, 

and the individual. We can loosely think of it as an attribute of the 

goal which the individual considers important in judging whether or 

not he has attained the goal. Additionally, there seems to be a limit 

of about 50 on the product of the number of units and the number of 

goals (i.e., 7 goals with 7 units of information each). Multiple goal 

situations can consist of goals which are themselves multiple or 

vector -valued. In this research, we will focus upon multiple goal 

problems in which the attainment of a goal is determined by a single 

attribute. For example, the attainment of a production goal can be 

determined by counting the quantity produced, a single attribute. 

In the next section, we will discuss the possibility of 

conflict among the various goals. 

Conflict 

Multiple goal behavior immediately raises the possibility of 

conflict. Certainly situations do exist in which all the goals can be 

satisfied simultaneously. For example, we might desire to go to both 

Rome and Paris on a vacation. If we have the time and the money to 

do so , then there is no conflict. But such situations are of little 

interest to us because the problem could then be decomposed into deter- 

mining a means of achieving each goal independently. We will assume 
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that, due to resource limitations, or just mutually conflicting natures, 

multiple goal situations result in conflict. As an example, consider the 

problem of choosing a rode of travel between two cities so as to 

minimize both time and cost while maximizing both comfort and the 

scenic beauty of the route. A conflict in the basic nature of the 

goals results because minimum time may involve levels of acceleration 

which are uncomfortable. A resource limitation which precludes 

air travel may be imposed by our bank account. So in this instance 

the DM searches for some overall level of satisfaction, a "Gestalt 

optimum." 

A distinction is made by psychologists between frustration and 

conflict (see, for example, Cofer and Appley 1964, p. 429 and p. 464). - 

We define "conflict" as a property of a situation in which the simul- 

taneous attainment of all goals at the present aspiration levels is 

impossible. Frustration is an emotional response to such a situation 

and reflects an inability to reconcile desires and abilities, aspira- 

tions and alternatives. All of us experience occasional moments of 

frustration, but continued frustration reflects an inability to adapt. 

In the example of the dress and the party, conflict existed because 

both dresses were desirable but only one could be worn. 

Conflict can be resolved in two ways: innovation and adapta- 

tion. Innovation refers to the development of previously unknown 

alternatives so that the original goals can be attained. Information 

plays an important role here because it can suggest new avenues of 

research. Adaptation refers to changes in the current value structure 
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of the individual so that he is content with one of the available 

alternatives. Information is also important during adaptation be- 

cause an awareness that there is no better alternative can facilitate 

the acceptance of an initially unpalatable choice. In reality, 

conflict is resolved by both methods simultaneously. We learn to 

accept that which we can attain while still striving to broaden the 

range of the attainable. 

Aspiration Levels 

An aspiration level is a degree of goal achievement which the 

individual consciously strives to attain. For Morris (1964, p. 96) 

it is a level of satisfaction which separates satisfactory and un- 

satisfactory alternatives. Katona (1951, p. 91) states: 

There is first, an ideal level -- the perfect score -- 
which is known to be the best possible performance. Then 
there is the level of achievement, represented by the last 
actual score or by the average of recent scores. Finally, 
there is the level of aspiration -- the level which the 
person desires ary expects to achieve in his next perfor- 
mance or next performances. 

Johnsen (1968, p. 331) reformulates the comments of Lewin et al . , 

(1944, p. 334): 

Level of aspiration is simply a state of affairs measurable 
in space and time, and setting level of aspiration (i.e., 
goal setting) can typically be illustrated by the sequence: 
(1) given some knowledge of past performance, (2) setting 
level of aspiration = decision on how high the goal should 
be set, (3) execution of action and (4) the reaction to the 
level of attainment, such as feeling of success or failure 
('disappointment'), leaving the activity altogether, or 
continuing the new level of aspiration. 

And Radner (1964, p. 212) states that if {Z} represents a series of 
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values obtained by some search procedure, then an aspiration level 

can be defined as some number, z, such that the search terminates 

at the first Z. ? z. 

In general, the aspiration level does not remain fixed but 

changes as a result of the sequence of successes and failures from 

attempts at goal attainment. The relationship is quite complex be- 

cause the aspiration level is a function of the entire value system 

of the individual which is also dynamically changing. The attainment 

or nonattainment of a goal has emotional overtones which affect the 

evaluation of the degree of goal attainment. 

Carnes and Cooper (1959) indicate that if an aspiration level 

is violated, then the individual will adjust it. Lewin et al. 

(1944, pp. 373 -374), discuss this change as a function of the strength 

(or degree) and relative frequency of the successes and failures. 

(We define a success as the attainment of at least the aspiration level 

for that goal.) The strength of the result affects the amount of 

change while the historical pattern produces cumulative effects. So 

general success breeds higher aspiration levels than general failure, 

and a failure has less effect if it occurs in a pattern of successes 

than if it is one of a string of failures. 

This change of aspiration level affects the search pattern 

as the individual "learns from experience" because it alters his 

definition of what constitutes an acceptable alternative. We will 

provide a means for such changes in the algorithm we will develop. 
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criterion Flnctions 

The se', f alternatives and their corresponding effects oan 
be defined respect.vely as the domain and the range of a set of cri- 

terion functions. A criterion function is a mapping (rule of 

correspondence) from a set of resource allocations (the domain) onto 

a set of numbers (the range) which determines goal attainment. If 

production of 10 widgets /day is the goal, then simple enumeration 

at the end of the production line will indicate goal attainment or 

nonattaimment. But a criterion function would relate the inputs in 

the production process (man -hours, material, etc.) to the output 

through an analytical expression which is accurate for some range of 

inputs. Thus 

Production = (Man -Hours) x (Tons of Rana Material) x 

(Number of Units /(Man -Hours - Tons of 

Raw Material)) 

is a criterion function whose range (amount produced) enables us to 

determine if the goal will be meet for a variety of input conditions 

(resource allocations). There will be one criterion function asso- 

ciated with each goal and it will be used to predict goal attainment 

or nonattainment. Vector -valued problems would have multiple 

criterion functions for each goal. 

So the term "criterion function" as used in this context is 

the familiar objective function of mathematical programming problems. 
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In the class of problems this research is dealing with, however, the 

values it takes on serve as an input to the decision making process. 

It is the worth of the decision, not the magnitude of the criterion 

functions, that we are intent upon optimizing. The "best" decision 

will result from choosing the 'best" alternative with respect to the 

individual's current definition of "best." We must inquire into the 

nature of the value structure of the individual to determine if an 

analytical expression relating worth to the alternatives oan be 

developed. This would supply a suitable mechanism for finding the 

"best" alternative. 

Preference Functions 

Choices among alternatives express preferences which represent 

the relative worth of each alternative. The ordering or ranking cre- 

ated by these choices can be either complete, with no incomparable 

alternatives, or incomplete, in which case some alternatives cannot 

be compared. 

The nature of this choice mechanism is still much in debate 

(Kotler 1967, pp. 82 -94), but in principle, a preference function 

which provides an analytical expression for the calculation of the 

worth of a choice to an individual can be formulated for all 

situations at all times. The existence of an objective preference 

function was postulated by utility theorists who assumed that a 

cardinal dimension measured in "utiles" could be developed as the 

range of a preference function. The cardinality requirement has 
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been replaced by one involving ordinal relationships so that rankings 

can be established. An individual calculates how many utiles a 

good or situation is worth to him and, if he is "rational," chooses 

the one with the highest value. Dupnick (1971, Chapter 3) has an 

excellent review of the development of utility theory. 

Realistic multiple goal situations are quite complex be- 

cause (1) they usually involve some attributes which have no scale 

of measurement (i.e., comfort); (2) the desirability of the levels 

of attainment for a particular goal is interrelated with the level 

of attainment far each of the other goals; (3) comments (1) and 

(2) mean that the weighting of the attributes of the goals depends 

upon the subjective weights of the goals themselves; (4) the rela- 

tionships in (2) and (3) imply that ranking rules must be formulated 

in a Gestalt framework which reflects both the environment of the 

individual and his state of mind; (5) the dynamic nature of the 

environment together with the points (1) through (4) implies that 

the ranking rules will change over time. 

This increases the difficulties in developing an analytic 

preference function to be optimized. Shepard (1964, p. 273) observes 

that this dynamic situation: 

. . . nukes the particular form taken by the psychological 
rules for combining or "trading off" rather difficult to 
pin darn. This may partly explain the fact that although 
economists concerned with the prediction of human behavior 
have placed great theoretical emphasis on what they variously 
call equal- preference contours, constant -utility curves, or 
indifference maps, actual empirical determination of the 
curves is notably lacking (see Edwards 1954, pp. 384 -387). 
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If an analytical preference function is to be developed, 

some experimental means of measuring preference is necessary. How- 

ever, the "value of something" has been an elusive quantity to 

measure because of definitional problems . "Value" changes. It is 

different from individual to individual and from moment to moment. 

The changes in the value structure of the individual result from an 

interactive Gestalt learning process between himself and his environ- 

ment and also changes in the environment. The information he receives 

in this process together with his past experiences alter his view of 

the world. His perception of the information itself changes and 

intertwines with his system of values. 

The dynamic situation mentioned above has prevented researchers 

from developing a cardinal scale of utility. In fact, research in 

this area has had only limited success in developing ordinal scales 

(indifference curves) for individuals in restricted situations. Re- 

sults reported by MacCrimmon and Toda (1969) illustrate the type of 

limitations that have to be imposed upon the experiments. Their 

method of determining indifference curves required immediacy of the 

consequences of decision making. Aril, in addition, the preferences 

between bundles of goods had to be portrayed graphically, which is 

difficult when hore than 3 goods are considered or when the goods are 

abstract qualities, such as beauty, with measurement problems of their 

There is another aspect of preference functions which has 

frustrated experimental efforts. The diversity of information 
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integrated by the individual in determining preferences is much greater 

than is explicitly recognized in the typical research situation. 

Yntema and Klem (1965, p. 4) describe part of their experiment: "In 

fact, a rather long list of attendant circumstances had to be speci- 

fied in order to make the problem (in the experiment) a definite and 

meaningful one . The attendant circumstances represent the information 

that the man must take into account in specifying the worth function." 

So preference is related to the individual's total environment as he 

perceives it. 

There is another aspect of information which is difficult to 

control experimentally. It arises from the fact that some objective 

information is only "quasi-objective." Individual perception of the 

concept of "2" varies little, but perception of the color green is 

more subjective and varies from person to person. And yet it is this 

"objective information" that the individual includes as input to his 

preference function. Rather than providing an objective measure of 

preference, the function transforms objective and /or subjective infor- 

mation into a subjective evaluation which may not even be defined. 

It is possible to say "I like this better than that" without being 

able to explain why. 

The choice of a car provides an example of the utilization 

of both objective and subjective information to arrive at a decision. 

The weight, size, price, and horsepower are all objective measurements. 

The reaction to the color and styling are subjective interpretations. 
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In this research, the objective component is provided by the 

numerical values of the criterion functions for various combinations 

of resource inputs. The subjective component is the combining of 

these values as a group by the individual with respect to his aspira- 

tion levels, his environment and his perception of "good" vs. "bad" 

alternatives. 

The difficulties associated with specifying a preference 

function make it unlikely that we can express the decision maker's 

interpretation and ranking of a set of values from the criterion 

function in an objective manner. Indeed, he himself may be unable 

to state a ranking relationship although he develops one subjectively. 

Because of this situation, approaches for working with implicit pref- 

erence functions nest be examined in developing an algorithm to solve 

the decision problem. Although there is no evidence that a dynamic 

analytical preference function can be constructed, we will continue 

to use the word "function" because of the connotation of "transform" 

or "rapping" associated with it. 

The definition of a "solution to the decision problem" is 

dictated by this inability to specify the preference function. In 

the usual optimization problem, the search is directed toward an op- 

timum which possesses well -defined mathematical properties (see, for 

example, Korn and Korn 1968, pp. 332 -334). This is the result of 

having an analytic objective function (a criterion function in this 

context). But in our research we are dealing with a subjective eval- 

uation, a value judgment expressed by an undefined preference function. 
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So the concept of a solution must be reexamined. We will explore the 

nature of both an optimal choice and a satisfactory choice. The lat- 

ter, termed a " satisfatoun," will be seen to be the definition of 

"solution" that we wish to employ. 

Optimal Choices 

Radner (1964, p. 80) defines an action as optimal if every 

alternative action in the set of available alternatives is not pre- 

ferred to it. Optimizing then is " . . . the principle of choice 

according to which the decision -maker chooses an optimal action." 

However, choices are based on the set of perceived alternatives, a 

subset of the collection of all available alternatives. Limitations in 

information account in part for the differences between the 2 sets, 

but in addition there are bounds on our imagination which prevent us 

from asking the correct questions to get additional information. 

Shelly and Bryan (1964, D. 9) comment: "The best may simply be 'the 

best we can think of,' with no conviction existing that there is not 

something better. . . . Consequently, an optimal decision may be con- 

sidered to be the selection of an action which produces a result that 

is in some sense 'best. "' 

If the context of the problem requires the optimization of some 

subjective feeling such as comfort, then the meaning of optimality 

becomes obscured. In these oases " . . . there are no objective mea- 

sures in terms of which an optimum can be determined" (Gulliksen 1964, 

p. 73). And so " . . . the optimum choice (out of a given set of 
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alternatives) is the one that leads to the highest subjective evalua- 

tion of its ensuing consequences" (Shepard 1964, p. 259). 

Decision problems typically involve multiple conflicting goals 

so that choices must be made amongst multiattributed alternatives. But 

Shepard (1964) indicates that such judgments are rarely optimal even by 

the subjective standards of the DM himself. Or as Tucker (1964, p. 87) 

points out, " . . . a situation may be optimal with respect to one 

area of goals and not optimal with respect to others." In this case, 

the Simon (1957) hypothesis of satisfying behavior takes on more rele- 

vance. He defines an optimal alternative as one which is prefetped to 

all others on a complete ordering by a set of criteria and a satisfac- 

tory alternative as one which meets or exceeds a set of criteria 

describing minimally satisfactory alternatives. Simon (1953, p. 141) 

also states: "Most human decision -making, whether individual or organ- 

izational, is concerned with the discovery and selection of 

satisfactory alternatives; only in exceptional cases is it concerned 

with the discovery and selection of optimal alternatives." And so the 

individual searches for an "acceptable" rather than "best" solution to 

the problem (see also Reitman 1964). 

Acceptable Choices 

Acceptability is a value judgment derived from the individual's 

preference function using values from the criterion functions as in- 

puts. So the partitioning into "acceptable" and "not acceptable" is 

based on both objective and subjective factors. Objectively, there is 

the past factual knowledge that the individual possesses. Subjectively, 
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there are previous emotional experiences (successes and failures) 

and the value structure of the individual. 

A satisfactum is any value within an interval of acceptability 

on the range of a criterion function. It is a satisfactory choice. A 

multiple goal satisfactum implies acceptable values of all criterion 

functions. 

For example, if room temperature is denoted by T, then a 

possible preference function in relating comfort to T is shown in 

Figure 2.1. Denoting "comfort" by C; then in some manner C = P(T) 

where P is the preference function or value structure which "interprets" 

a temperature T in terms of some level of comfort. The domain of P 

is the set of values for T, an objective measure; but the range of P is 

a completely subjective interpretation which we have labelled comfort. 

The "a" represents the lower bound of acceptability to the individual. 

If we define a satisfactum as C° 
> a, then it is clear that there are 

many satisfactums because there is a whole range of temperatures with- 

in which the individual is comfortable. 

If, starting from a room temperature which is "too hot," T is 

lowered until the individual is comfortable, the value which produces 

this satisfactum is likely to be different from the corresponding T 

value when the process has an initial condition of "too cold." So 

the value of T which produces a satisfactum and the corresponding 

degree of comfort are dependent upon the method of search and the 

starting point together with the psychological state of the individ- 

ual. 
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This dependency upon the search process is due to the 

in lez'relationship of the region of acceptability and information. 

Obviously, we will be content with less if we do not know the full 

range of possibilities because our choice is limited to the known set 

of alternatives. So the generation of a maximum amount of information 

concerning alternatives is a prerequisite of any search process which 

is developed. (Notice the contrast between this situation and the 

usual optimization problem in which the final solution is an objective 

maximum or minimum. In searching for a satisfactum, the criterion 

for a solution, satisfaction, can alter as the search proceeds.) 

In this example, the question can also be raised as to the 

existence of an optimal room temperature which maximizes comfort for 

the individual. If he is comfortable at T = 70 °F, is he less so at 

T = 70.1 °F? The insensitivity of the body and /or the preference func- 

tion produces the flat segment in Figure 2.1 identified as "best." 

Now to complicate matters, we will introduce humidity, H, as a 

variable and continue the example with 2 inputs to the preference 

function. Assume that the individual's preference function with re- 

spect to temperature for a constant humidity is as shown before, and 

that a similarly shaped curve relates comfort and humidity for a 

constant temperature. This preference function is shown in Figure 2.2. 

Many combinations of T and H produce the feeling "comfortable" in the 

individual. And, as before, there is no unique optimum. 

Now add constraints to the range of T and H so that the pre- 

vious range of acceptability is completely unattainable. The situation 
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C 

T - Temperature a - Minimal Acceptable 
H - Relative Humidity Comfort Level for 
C - Comfort the Individual 

Figure 2.2 Hypothetical preference function for two cri er'i 
functions. 
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is depicted in Figure 2.3. Does this mean that a satisfactum is 

unattainable? No, because the individual's value structure will change 

as he explores these limitations. He generates what might be called a 

"conditional" value structure so that he can attain a "conditional" 

satisfactum. That is, the preference function of the individual, 

rather than being fixed, continually evolves as a result of the expe- 

rience of the individual. In this example, we can conjecture the 

formation of a new level of acceptability, located below "a" on the 

comfort scale. 

If after exploring the feasible region, the individual refuses 

to modify his aspirations in relation to what is attainable, then he 

will be in a state of frustration. His knowledge of what is available 

conflicts with his desires. The reasonably stable person will adapt to 

the present even though he may still be trying to change the future. 

Sometimes there is such a level of conflict between seemingly 

equally desirable alternatives that even the rational, stable person 

makes a decision, any decision, just to discharge the problem. 

Shelly, and Bryan (1964, p. 5) observe that in such a situation, 

the DM " . . . may be only minimally interested in the 'goodness' of 

this solution." Is this a satisfactum? Yes; the weighting on the 

original goals has been reduced (or alternatively, their aspiration 

levels lowered) so that the only important consideration is reaching 

a decision. 

In our example, the individual finds an "acceptable" combina- 

tion of T and H within the constraints. This does not mean that he 
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C 

T - Temperature a - Minimal Acceptabl^ 
H - Humidity Comfort Level for 
C - Comfort the Individual 

Figure 2.3 Constrained hypothetical preference function for two 
criterion functions. 
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is as comfortable as he could be, only that he can live with the 

situation - -he adapts. As a further note of clarification, "adapta- 

tion" is not "surrender." An individual can adjust to constraints 

while still striving to change them. 

Summary 

This chapter has provided us with a framework in which to 

define the research problem. We will assure for the purposes of this 

research that the following statements are true. We recognize that 

there are conflicting opinions concerning sane of the points we 

have discussed in this chapter, but we feel that the following assump- 

tions are at least reasonable for this paper. 

1) Perception is influenced by the total set of elements in 

a situation and the environment in which the situation is 

imbedded. 

2) Individual preference functions cannot be expressed 

analytically. 

3) Value structures change over time. 

4) Aspirations change as a result of learning. 

5) The number of goals in a decision situation is usually 

less than 7. 

6) The DM normally satisfices rather than optimizes. 

7) A solution to a decision problem is any acceptable 

course of action. 

8) "Acceptability" is a learned perception. 

In the next chapter, we will formally state the research problem. 



CHAPTER 3 

STATEMENT OF THE PROBLEM 

In this chapter, we will explicitly formulate the research 

problem. Our objective is to develop an algorithm which will enable 

the DM to solve a decision situation. A decision situation (D6) is 

a need for the DM to make a choice among alternatives. A solution is 

defined as either the selection of a feasible acceptable alternative 

or the replacement of the original problem by the need to make any 

choice and consequently the selection of any feasible alternative. 

Alternatives are composed of 2 parts: (1) an allocation of 

resources and (2) the results of that allocation as defined by a 

set of criterion functions. The DM must have a set of results to 

evaluate and also know how to attain those results, so information 

concerning the alternatives in the D6 is a necessary ingredient 

in the decision- making process. Feasible alternatives are those 

whose allocation of resources satisfy any objective constraint im- 

posed by the DS. 

The individual makes a decision based on his evaluation of the 

alternatives. Our assumption is that he will choose an "acceptable" 

one and that the "acceptability" of an alternative is a result of 

(1) his value structure and (2) his set of aspirations. These are 

in turn affected by information both in the form of results from 

past decisions and from the environment as a whole. The aspiration 

29 
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levels relate to "benchmarks" on the criterion functions and indicate 

the desired level of output for each one. The value structure is 

dynamic and subjective by nature. It determines the strength of the 

desires above. 

We assume that the value structure and its relationship to 

the alternatives and the final choice can be conceptualized by the 

term "preference function." A preference function denotes the manner 

in which the various alternatives are weighted and ranked. This re- 

searcn assumes that the preference function provides a complete 

ordering of all alternatives that are known to the DM; there aye no 

comparisons which cannot be made. This assumption is necessarj be- 

cause the algorithm we are going to develop will contain an iterative 

search mechanism to allow for a progressive definition of the DM's 

preferences. This requires the DM to define a new direction of 

search at each iteration on the basis of his evaluation of all the 

previously generated alternatives. If a comparison of alternatives 

is not possible, then the algorithm would break down because a new 

direction of search would not be defined. So the algorithm must allow 

for a changing, undefined value structure and shifting aspiration 

levels while generating information relevant to the solution of the DS. 

We will assume that each of the goals in the DS is operation- 

ally defined. That is, its attainment or nonattainment is objectively 

measurable upon some suitable response surface or criterion function. 

So associated with each goal is a single criterion function. This 

response surface may be nonlinear but we will require that it be 
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differentiable. It is not the goal itself but rather the criterion 

function against whose value the goal is compared which is nonlinear. 

Goals are a statement of desires rather than a relationship or func- 

tion. 

A short example may clarify this point. A production goal of 

at least 1000 widgets /day is objectively determinable because it satis- 

fies the above condition of measurability. The criterion function is 

the relationship, usually nonlinear, between production and such 

resources as capital equipment, hours worked, employee capabilities, 

etc. The value of the criterion function for a set of resource inputs 

is compared to 1000 to determine if the goal has been met. 

The previous example also illustrates that the criterion 

function is defined on a set of resources. The designation of 

values for all input variables (decision variables) is a policy 

(allocation policy, policy vector). We will assume that the values 

taken on by these variables are all positive and continuous. The 

constraints upon these variables may be expressed as nonlinear equa- 

tions subject to the condition that they be differentiable. 

Also for each goal, we will define a goal level as that value 

of the criterion function which has been imposed as an objective by 

conditions and /or policies external to the decision situation. The 

imposition of goals by upper management levels upon lower management is 

a familiar example of this. 

Aspiration levels, on the other hand, are a function of the 

individual's past as discussed in a previous chapter. They are subject 
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to modification over time as the result of a learning process. Return- 

ing to the production example, the goal level was 1000 widget /day. But 

the DM may have an aspiration level greater than or less than the goal 

level. We will assume that, in the absence of other information, the 

DM initially equates his aspiration levels with the goal levels. 

Stating the problem formally, we assume the existence of a 

DS in which there are N resources measured as continuous variables to 

be allocated so that T goals may be attained. A policy vector consist- 

ing of those allocations is denoted 

= (xi, ... , xn) 

The values which x can take on are restricted by a constraint set 

consisting of 

L equality constraints h = H(x) = 0 H differentiable 

(i.e., all L functions 

HL(x) are 

differentiable) 

M inequality constraints E= G(x) 0 G differentiable 

and N bounds 0 b S x< b< 00 
Associated with each goal is a criterion function 

zt = Zt(x) t = 1,... T 

which defines the results of alternate allocation policies. So we 

have 

z = Z(x) Z differentiable 

Goal attainment or nonattainment can be determined by the value of zt. 
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The objective of this research is to develop an algorithm which 

will generate information leading to the location of a satisfactum for 

the DM in this DS. A satisfactum, p °, is defined by 

P° 
a 

where "a" is the lower bound of a region of acceptability on the range 

of the individual's preference function, P(z). We assume that there is 

no upper bound on the region of acceptability. The preference function 

operates on z to determine the value of p from 

p =P(z) 

More precisely, p is the value of the results from an allocation 

policy x 

p = P[Z(x) ] 

The preference function is itself a function of the total 

perceived stimulus input to the individual from his environment and 

his past history in the form of memory. That is 

P = f[E(t) , 
M(t) ] 

where E(t) is the current environmental input, M(t) is the individ- 

ual's current memory of his past successes and failures. 

Because of its subjective nature, we assume that the preference 

function cannot be defined nor p measured, but we do assume that P 

provides a complete ordering of the results for all allocation vectors 

which satisfy the constraints. That is, no incomparable vectors of 

results are allowed. For two such vectors, z and z; the possible 

choices are z preferred to z; z" preferred to z, or indifference be- 

tween them. 



CAFTER 4 

DEVELOPMENT OF THE ALßORITHM 

After reviewing the literature concerned with multiobjective 

decision making, we will select those aspects relevant to our re- 

search and develop an algorithm capable of solving the problem posed 

in Chapter 3. 

Literature Review 

In general, models used in decision raking have been concerned 

with the optimization of a single objective. Even in this case 

" . . . it has been only in those situations in which the criterion 

function to be optimized is sufficiently simple (e.g., profits) that 

conspicuous progress has been made in the development of optimization 

techniques" (Shelly and Bryan 1964, p. 8). 

In his comprehensive survey of the area of multiple decision 

making, Johnsen (1968, pp. 342 -393) observes that: 

The aim of most normative models in management science is 
to optimize one single goal, for example to maximize profit per 
unit of time or minimize costs per unit of time. 

Optimization according to a goal in terms of (perhaps 
transformed into) one single dimension of measurement is per - 
formed by all classical microeconomic models of the firm. The 
same is true of the great majority of operational microecono- 
mics and operations research where partial optimization has 
been dominating, cf. , for instance, linear programming models, 
inventory models, queueing models, risk models and uncertainty 
models, to use an often applied classification of OR models. 

34 
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Also the great majority of normative behavioral science 

models, apart from those dominated by economic -science, aim 
at an optimum. In small group theory we found attempts to 
optimize group behavior, in organization theory attempts to 
optimize organization behavior, and in psychology attempts 
to optimize individual behavior. Such research aims are 
clearly inconsistent when one acknowledges that the decision - 
making units, with whom these disciplines are concerned, aim 
at several goals at the same time. To some extent the con- 
clusion is drawn that multi -goals have to be taken into 
account; therefore non -optimization models are developed. It 
is vainly from these few attempts that we find some useful 
material for multigoal models, far example systems models and 
value models. 

System models are many- headed monsters. Systems models 
aim partly at optimizing the whole system and partly at sub - 
optimizing subsets of the system. In some cases there exists 
a multigoal formulation for a system model. The same may be 
said of simulation models. 

Value models in the sense of utility models deal explic- 
itly with more than one goal. However, they usually convert 
these into one yardstick, and furthermore, no activities are 
related to the value expressions. 

Geoffrion (1970) notes that for only 2 or 3 criteria it is 

possible to compute and graph the trade -off curves for the criterion 

functions and simply allow the decision maker to choose the point of 

highest "value" to him. The individual's preference function has 

remained unspecified. The chief difficulties here are the calculation 

of the constrained criterion functions and the usual problems of accu- 

racy with a graphical solution. 

Multiple Objective Models 

Although multigoal models are less numerous than their single 

objective counterparts, there is a growing literature on the subject. 
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Roy (1970) suggests the following classification: 

1) Models which aggregate multiple objective functions into 

a unique function defining preference. 

2) Models which provide for a progressive definition of pre- 

ferences together with exploration of the feasible set. 

3) Models which aim at formulating a partial ordering stronger 

than the partial order formed by the product of n complete 

orders associated with the n objective functions. 

4) Models whose goal is the reduction of uncertainty and 

incomparability. 

Aggregation Models. These models convert several objectives 

into a single utility function, generally a profit or cost measure, 

which specifies the preference order. The objectives must all be 

measurable on some common dimension. The additivity requirement for 

the conversion necessitates a complete ordering of all the outcomes. 

A study reported by Ackoff (1962, Chap. 3) showed two objec- 

tives expressed as one objective function after careful formulation of 

the costs. Balderston (1960) pointed out that this approach can be 

viewed in terms of individuals' aspiration levels. 

Cost -benefit analysis (Prest and Turvey 1965) is an aggrega- 

tion scheme which assumes that all benefits can be expressed in 

monetary terms. However, the method is limited to situations in which 

a set of alternatives already exists. Collective utility is also an 

aggregation framework which assumes that a set of alternatives is 
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available. But the mathematical framework available to the analysist 

is quite explicit and powerful as compared to cost -benefit analysis. 

The development of goal programming has been based on this 

technique. Pioneer work in this area was done by Channes and Cooper 

(1961, v. 1, pp. 215 -249) who developed an algorithm which leads toward 

a satisfactum (a satisfying rather than optimizing condition). Charnes 

and Stedry (1964) have developed a class of models in which the pro- 

bability of goal attainment is an explicit function of search activity. 

A similar idea was also discussed by Brooks (1958) in an article on 

stratified random sampling methods for seeking maxima. Ijiri (1965) 

develops the concept of operational subgoals as the means to attaining 

actual planning goals, although the dLLainment of a subgoal is not 

necessarily indicative of attainment of the original goal. Other 

authors associated with the development of these models are Boldur 

(1970), Terry (1963), and Raiffa (1969). 

Sequential Models. In this class of methods, the concept of 

an optimal solution is replaced by that of a satisfactum or "accepta- 

ble" solution. Sequential search approaches are developed to formulate 

a better knowledge of the preference structure of the FF1. This is 

integrated into a systematic exploration of the set of alternate 

activities. Since the solution does not have to be optimal, the 

search procedure can be terminated after arbitrarily many solutions 

have been explored. The sequential nature of the method, however, 

does require that at any iteration a complete ordering exists among 
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all alternatives examined up through that iteration. This ensures 

that a new direction of search can be defined. 

Cost- effectiveness is a technique applicable to multiple 

criteria decision problems. The method employs an array which lists 

the values of the criteria for various alternatives. The use of the 

word "value" here is somewhat misleading since this technique allows 

for descriptive statements as the range of a criterion. For example, 

the range of a criterion might be "bad,'' "neutral," and "good." The 

DM is expected to select the most satisfactory alternative among 

those listed in the array. We can conjecture that the DM may use a 

sequential approach in evaluating the various possibilities. As in 

the cost - benefit technique mentioned earlier, this method assumes that 

a set of known feasible alternatives exists prior to the analysis. 

Benayoun et al. (1970) use an interactive approach in which 

the algorithm (STEp Method --STEM) permits the decision maker to 

develop the search area at each stage by examining a table containing 

the value of each criterion function under alternate input conditions 

(policy vectors). Although the authors considered only linear cri- 

terion functions subject to linear constraints, they demonstrated that 

the power of the technique arises from its consideration of cases when 

the preference function is only implicitly known to the DM himself. 

Geoffrion (1970) has also used this technique of man /machine 

interaction for multiple objective problems. He utilizes a question - 

answer format interspersed with optimizations based on the Frank -Wolfe 

(1956) algorithm to locate the Dl1's preferred solutions. 
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Partial Order Models. The essence of this group of models is 

an attempt to build a ranking relationship which delineates the part 

of the DM's preferences that can be accounted for by means of the 

available data. This is in contrast to a complete ordering of all his 

desires. The formulation of a ranking relationship among some alterna- 

tive actions is an attempt to explicitly develop a partial ordering on 

the DII's preferences. 

Uncertainty Reduction Models. Methods to reduce uncertainty 

and incomparability assume that the preference order is not suffi- 

ciently explicit to allow a decision as to the best choice. They 

consider the preference order a reflection of implicit quantities 

(i.e., marginal substitution rues) which are not well }clown. A 

reduction in the variation in some of those incomparable quantities 

allows the selection of a "best" choice in light of the remaining 

uncertainty and incomparability. 

Maier-Rothe and Stankard (1970) have developed an ap- 

proach to build a complete order on the set of alternative actions. 

Denote a particular n -tuple of scores on all criterions as 

Si = (s1, ... , sn) 

They then hypothesize that the set of n- tuples 

T = {51,..., Sm} 

is convex. By postulating the existence of an unknown utility func- 

tion, they develop a set of bounds for the objective functions. This 

is accomplished by asking the DM a sequence of questions dealing with 
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his preferences. Preference relations are then constructed which 

reduce the area of uncertainty. 

An alternate approach assumes that a complete ordering of 

the set of vector scores is defined by the mean of a classification 

rank assigned to each element in every vector. The method then 

examines the effect on the ranking caused by "unit" changes in the 

appropriate elements of the vector for some pairs of allributes. 

Evaluation 

With respect to the definition of the research problem in the 

last chapter, approaches 1, 3, and 4 of the previous classification 

seem inappropriate for various reasons. The aggregation models require 

a common denominator of measurement and we are dealing with preferences 

which can be based on unquantifiable or even undefinable attributes, 

such as beauty. 

Partial arder models develop comparisons between some pairs 

of alternatives and seem most appropriate for those situations in 

which the alternatives can be listed or grouped into sets. The 

method seems inappropriate when the decision variables and results 

can vary continuously, and there are nonlinear constraints present. 

There is also an implicit requirement that the set of feasible alter- 

natives is known. 

The uncertainty reduction models recognize that some aspects 

of the comparison process are not quantifiable, but they seem unable 

to handle constrained problems of the type we are considering. 
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The philosophy of the sequential models of group 2, however, 

seems to lend itself to our problem and we will explore this concept 

further to examine its appropriateness. 

Discussion and Development 

In striving for a "general" method of solution, we ask if 

individuals exhibit an overall similarity of preferences so that 

an "average" preference function can be constructed. In a gross 

sense, yes. Comfort is usually preferred to discomfort, love to 

hate, and so on. But the aspiration levels and the ordering of 

the goals are unique to each individual because of his stared 

experiences - --the sum total of what he is. Tucker (1964, pp. 86 -86) 

also observes that: 

. . . the perception of situations and possibly the con- 
ception of the nature of laws of relations are also subject 
to individual differences. . . . Differences between indi- 
viduals which exist in the perception and understanding 
of such systems (sets of relations) influence the percep- 
tion and interpretation of information available to the 
person about the present state of the system, . and 
the relations between a system and its surroundings. Such 
judgments (perceptions) undoubtedly affect the optimality 
of subsequent situations. 

The individual uniquely determines both the problem and 

its solution so the algorithm Rust in some manner reflect this 

uniqueness. The discussion in Chapter 2 indicated that it would 

be impossible to construct individual analytic preference functions, 

but the search models of group 2 have circumvented the difficulty 

beoause they actively include the D'1 in the search. 
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Although the man /machine interactive search has been used 

by Benayoun et al. (1970) and also by Geoffrion (1970) who described 

it as an "interactive method," the phrase "interactive programming" 

does not seem to have been proposed as a classification of this 

technique. We will define interactive programming as the inclusion 

of the LAM himself in an algorithm so that he can direct a sequential 

search procedure. In this research the results from each cycle will 

be evaluated by the decision maker with possible aspiration level 

changes as a result. As he determines the trade -offs demanded by 

satisfying various goals he tends to bring what he wants more in 

line with that he can get. 

But is the sequential approach reasonable? Can decision 

making take place when alternatives are explored in a serial 

manner? Koopmans (1964, p. 245) states very definitely that 

. . . almost all choices in real life are sequential, 'piecemeal,' 

choices between alternative ways of narrowing down the presently 

existing opportunity rather than 'once- and -for -all' choices between 

specific prograns visualized in full detail." The psychological 

reason for such serial processing is that men is finite. Simon's 

(1957) "bounded rationale" explains the limitations of memory and 

evaluative capacity under which decisions are trade. Multiattributed 

alternatives are not considered "in toto." 

Research indicates that individuals make decisions on only 

a few aspects of a multiattributed alternative although their impres- 

sion may be that they have considered all of the variables affecting 
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it. Shepard (1964, p. 258) feels " . . . that the relative weights 

to be assigned to the component attributes are not always determinate 

and may, in fact, depend on the adoption of one of several incompati- 

ble but equally tenable systems of subjective goals." He continues 

to state (p. 264) that: 

. . . results presented by DeSoto (1961) and by Osgood, 
Suci, and Tannenbaum (1957, pp. 119 -116), for example, 
reveal a striking inability of subjects to take account 
of the independent way in which the objects vary along 
the different dimensions. Instead, there seems to be an 
overweening tendency to collapse all dimensions into a 
single "good versus bad" dimension with an attendant 
loss in detailed information about the configuration or 
pattern of attributes unique to any one object. 

He also reports (p. 266) that experiments conducted by 

Hoffman (1960, pp. 126 -127) and Pollack (1962) suggest that: 

. although the weights actually controlling the 
subjects' responses are usually concentrated on only 
one or two attributes, the subjective weights reported 
by the subjects tended to be hi'e evenly distributed 
over the whole set of attributes. Indeed, there is some 
indication in Pollack's findings that the announced sub- 
jective weights tended to err in the opposite direction 
of ascribing too much importance to the less important 
variables. Possibly our feeling that we can take account 
of a host of different factors canes about because, 
although we remember that at sometime or other we have 
attended to each of the different factors, we fail to 
notice that it is seldom more than one or two that we 
consider at any one time. In any case, the confidence 
that we have tended to invest in our rational ability 
to weight and combine many subjective factors appears 
to have been somewhat misplaced. 

So a serial approach, rather than conflicting with established pat- 

ters of decision making, will tend to support them because of the 

information that is generated. Radner (1964, p. 211) comments that 

lt 
. . . if information is not forgotten then the information on 
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which decisions are based is, in a certain sense, 'expanding through 

time.' And so later choices can be guided by "new" preference 

functions which have changed due to the experiences of the individual 

up to the time of choice. 

To summarize the discussion up to this point, then, an 

interactive algorithm in which serial choices are made does not seem 

to conflict with the "natural" decision- making procedure. If a 

suitable form of information presentation can be found, this method 

could greatly enhance sequential choice processes by helping delimit 

areas of search in a rrre objective manner. The key to multiobjec- 

tive decision making seems to be both the amount of information and 

its timing. Too much causes confusion, too little results in in- 

decision. We need information about our more important goals first. 

As the solution becomes more definite, we can assimilate additional 

information about the less important aspects of our alternatives. 

Since we are not actually optimizing the DM's preference function, 

it may be appropriate to view the algorithm we are attempting to 

develop as an information generating device which permits him to 

find a satisfactum, if not an optimum. With this in mind, we will 

proceed to formulate the algorithm. 
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Notation 

The notation used in explaining the development of the algo- 

rithm is collected here as an aid to the reader. 

Number of Decision Variables N 

Number of Equality Constraints L 

Number of Inequality Constraints rq 

Number of Goals or Objectives T 

Number of Criterion Functions T 

Policy Vector x = (xl, , x11) 

Constraint Set h = H(x) = 0 

g =G(x) 0 
0 <b <x <bU <00 

Criterion Functions z = Z(x) Z(x) differentiable 

transformed y = Y(x) y e (0,1] 

Goal Levels GL = (GLl, ... , GLT) GL e I'[Z(x) ] 

(F = range) 

Aspiration Levels AL = (AL1, ..., ALT) AL e r[Z(x)] 

transformed A = (A1, ..., AT) A e (0,1] 

x continuous 

H(x) differentiable 

G(x) differentiable 

Goal Formulation the manner in which z and AL are to be related 

th 
for the t goal when achievement of that goal is 

added to the problem as a constraint. For exam- 

ple, if the goal is zt ? ALt, then the goal 

formulation expressed as a constraint is 
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zt - ALt ? O. We notate this concept as 

GFt(zt:ALt)?0. 

Dimensionless Indicator of Attainment 

for the T goals 

Surrogate Objective Function 

d = DA(x) 

T 
s = E d 

t=1 t 
Preference Function p = P(z) 

P undefined, p a subjective measure of worth 

At the with goals j, k, ... entered as constraints which 

must be satisfied at the current aspiration levels, the following 

definitions apply: (i = 0 prior to any search) 

Policy Vector 

Constraint Set 

Xi.jk... _ {x1.jk... ..., 
.jk...} 

h=H(x) =0 

E=G(x)?0 
0 5bL<xbU< 

plus GF.(z. : ALS) ? 0 

GFk(zk:ALk)?0 

etc. 

Aspiration Levels Prior to the Cycle ALi _ {ALI, ..., A4} 

transformed AL A, i i 
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i.jk... i.jk...} 
Values on All Criterion Functions 

zi.jk... 
= {z 

1 
zT 

transformed z yi.jk... 
_ {yi'jk " ', yT'jk " '} 

Dimensionless Indicator of Attainment 

Surrogate Objective Function 

Preference Function 

di = {di, .. dr} 

T 

si. k... = 
E di 

t 
t j, k, ... 

t=1 

pi.jk... = 
Pi[zi.jk...] 

Our philosophy with regard to the use of this notation will be 

to employ the minimum amount of subscripting that the context will per- 

mit. The explicit listing of the argument of a function will be 

omitted for clarity if possible. So we write Zt instead of Zt(x). 

Similarly, if the text is concerned with the general characteristics 

of a function then the goal subscript will be omitted; i.e., criter- 

ion functions in general are referred to as Z. 
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The Algorithm 

Transforms 

Our development begins by transforming the original response 

surfaces z to y where y is defined on the interval (0,1]. In princi- 

ple, then, for any goal: 

Z(x) - z 
0 if Z(x) > z 

y = Y(x) = 
ma.n 

+ e(x) where e(x) _ 

zm3x 
- z - - 

e' if Z(x) = z. 

with c' defined as a constant equal to 10 -300. We may wish to divide 

by y and this procedure will prevent numerical difficulties on the 

computer. The value chosen for e' reflects the range allowed for 

numeric values on a CDC 6400 computer. 

However, z may be unbounded above and /or below. Even if the 

maximum and minumwm values, zmax and z . , exist , finding them may 

prove to be a formidable nonlinear programming problem in itself. 

And, in a physical problem, portions of the range of Z may be known to 

be unattainable. For these reasons, we choose to define a "relevant 

range" of Z for each goal as: 

F[Z(x)] = [Zlower' 
Zupper] 

Then en that range 

Z(x) - z 
O if Z(x) > zl, 

y = Y(x) = 
-lower e(x) where c(x) _ 

upper lower 
e' if Z(x) = 

z1ower 



49 

so that y is in the interval (0,1]. (In examining the results of each 

iteration, it will be necessary to confirm that z has indeed remained 

in the specified interval.) 

The AL may be transformed into A by substituting AL for Z in 

the previous transformation equation. Then A is in (0,1]. 

Goal Formulations 

Most practical goal formulations can be represented by one 

of the five types listed in Table 4.1. The concept of goal attain- 

ment refers to achievement of a particular aspiration level (AL) for 

that goal formulation rather than attainment of a goal level (GL). 

The GL will provide only an initial starting point for the algorithm. 

References made to a particular goal will be made to that goal for- 

mulation rather than the numeric value of the GL. 

The dimensionless indicator of achievement, d, is defined for 

each type of goal by the corresnonding DA equation in Table 4.1. The 

shape of d for each of the 5 types is shown in Figures 4.1 -4.5. 

In each instance values of d greater than 1 imply that the goal is 

unsatisfied, and conversely. The critical fact in this construction 

is that the sign of any change in d can he interpreted the same 

for all goals. In our formulations, an increase in d always indi- 

cates that the corresponding goal is becoming less satisfied or ntre 

unsatisfied. 
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Observe that if all original goal formulations are of types 

I, II, or IV and if 
zlower = 

0, then the criterion functions and 

aspiration levels do not have to be transformed; the values of d 

are independent of the range of Z. 

Generation of Information 

As indicated previously, the algorithm will generate infor- 

mation under the guidance of the DM so he can make a decision, but 

the algorithm will not explicitly solve the decision problem itself. 

Inability of the Ill to arrive at a decision is assumed to be due to 

his lack of information concerning the set of alternative feasible 

policies and the values of the resultant criterion functions. Infor- 

mation is also necessary concerning the intrelationships between 

attainment of one of the goals and the consequent levels of attainment 

of the others. The mechanism whereby information is generated for 

the DM to evaluate is the cyclical optimization of a surrogate objec- 

tive function, s. It is important to note that this optimization only 

provides information to the DM; it does not solve the decision prob- 

lem. This is the difference between the present research and the 

usual mathematical programming problem. The true objective function, 

P, is still unknown. 

Examining the formulations of DA, we observe that by ninimiz- 

ing: 

s=Edt 
t 

the value of each term in the solution will reflect whether or not 
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that goal has been satisfied with unsatisfied goals having values 

greater than 1. Of course, the nonlinearity of the nA prevents 

direct comparison among the values of d. 

Before leaving the subject of the construction of DA and s 

we repeat that the minimization of s will Provide information to 

the DM to help define the next cycle in the search for a satis- 

factum. Our problem is to find a satisfactum p°. The function s 

is not a substitute for P nor does optimization of s imply optimi- 

zation of P in any sense. We have introduced this function as a 

tool to help the DM explore his preferences. If optimization of s 

would optimize P, either directly or indirectly, then this problem 

would be a "standard" nonlinear programming problem. The construc- 

tion of DA and s has been completely arbitrary subject only to the 

directional property of d already discussed. It would be equally 

valid, for the purposes of this research, to attempt some alternate 

formulations of s and the DA, such as 

T 
s= II di, 

i =l 

but we feel that the additional complexity would not add to our work. 

We will return to this point in Chapter 7. 
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Iteration Scheme 

Optimization Phase. Assume that the initial aspiration 

levels, AFL are equal to the goal levels, GL. Then the search for 

a satisfactum begins by solving T +1 optimization problems. The first 

is minimize: 
T 

sl E d 

1 t=1 t 

subject to the original constraint set h = 0 and g O. T other 

problems are added by removing dk from the surrogate objective 

function and adding the corresponding goal formulation as a constraint 

(a type IV or V formulation would involve 2 constraints). So mini- 

mize: 

T 

sl.k = 
E dt k = 1, ..., T 

t=1 
t#k 

subject to the original constraints and GFk ? O. The resultant 

optimal policy vectors are 
xl' x1.1' ..'' xl.T' 

Correspondingly, 

we calculate 
zl' z1.1' " '' zi.T. There will naja be up to T +1 feasi- 

ble alternatives for the I1 to evaluate. If some of the original 

goals cannot be attained even at the expense of the others, then 

there will be less than T +1 alternatives. 

For example, let 

Alt = GL = (300, 200, 400) 

for 3 type II goals. We minimize s1 and obtain 

z 
1 

= (200, 100, 300) 

and so none of the goals have been attained at the current aspiration 



level. Next add a constraint z 
1 

300 and delete dl from the 

objective function. Then minimize: 

s1.1 d2 + d3 

and obtain: 

z1.1 = (300, 50, 200) 

In a similar manner, obtain: 

z1.2 = (200, 200, 50) 

and 

= (25, 75, 400) 
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The DM can now examine these 4 feasible alternatives and if any are 

satisfactory the process terminates. 

It may appear that none of the results in this example could 

be satisfactory because the aspiration levels, ALO, were not attained 

for all goals at once. We, must recall, however, that the aspiration 

levels have themselves changed as a consequence of this information. 

Knowing that he cannot attain ALO, the DM nay be content with one 

of the alternatives. 

Evaluation Phase. The optimization phase provides information 

to estimate the effects of changing the aspiration level for any of 

the goals. 

We can compare z1 and z1.1 visually in Figure 4.6. The 

shaded portion of each axis indicates goal attainment relative to 



Assuming the zi are linearly related, dz2 /dz1 and dz3 /dz1 

are constants. The DM uses this information to predict the approxi- 

mate levels of z2 and z3 for a given aspiration level with z1 

entered as a constraint. Denote a desired level of attainment on 

goal 1 by ALI. Then we can calculate the effect of this estimate 

entered as a constraint. We have: 

and 

A z2 = (4.1 z) . (Pal - zi) / (zl.l - zi) 

A z3 _ 
(z3.1 z3) (AL. - zl) (zi.1 zl) 

Rather than ask the DM to solve these equations for trial values 

of Ail, we observe that lines passing through ml and m2 solve the 

equations graphic &ly. (The points ml and m2 are the points of 

intersection of zl and 
zl.l 

Figure Fige 4.6.) So the DM can use a 

ruler to "try out" different ALl to see how they affect the other 

goals. This has been done for: 

giving 

and 

AL1 = 250 

z2 _ 75 

z3 = 250 
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This part of the example has implied that the first goal is the most 

important to the DM. We assume that he will examine the graphs for 

those goals which are the most vital to him, entering in trial aspira- 

tion levels as constraints in the manner indicated. 
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We can also construct comparisons between z1 and z1.2, and 

also zl and 
z1.3, 

as shown in Figures 4.7 and 4.8. As before, the 

goal entered as a constraint is the one in the center. In Figure 4.7, 

observe that the aspiration level of the second goal can be attained 

without affecting the value of z1 from zl. 

These graphs provide the DM with rough estimates of the 

interaction among the goals that takes place through the constraint 

set as his aspiration levels change. 

Assume that the DM adjusts his aspiration levels so that: 

AL1 = (200, 150, 300) 

and that, rather than enter any one goal as a constraint, he 

prefers to attempt to satisfy all of them. In this case the informa- 

tion contained in the graphs is of little predictive value because 

the problem has essentially been moved back to the beginning with 

a different set of aspiration levels. But the effort has not been 

wasted because the DM has learned that his original goals cannot be 

attained simultaneously. Furthermore, the amount of adjustment in AL 

reflects the change in his value structure which that failure effected. 

Alternatively, assume that the DM decides that he would be 

satisfied with values of 250, 70, and 250 for the 3 z's respectively. 

He has arrived at this set of numbers by deciding first of all that 

he would be satisfied with z1 = 250 if the other values would not de- 

crease too badly. Using Figure 4.6 he estimates that imposing 

z1 250 as a constraint would result in a z2 level of 70 and a z3 
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level of 250 as linear approximations. This he can accept and so 

the new aspiration level vector is: 

AL, = (250, 200, 400) 4.1 

and the objective function is: 

s = d2 
+ d3 

with goal 1 entered as a constraint. 

The reader may ask, why was the above aspiration vector used 

for AL, instead of: 

ALI. = (250, 70, 250) 4.2 
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An argument can certainly be made that the DM, by his action of esti- 

mation, has in effect altered his aspiration levels for all of the 

goals rather than for only the first. There are several reasons for 

our choosing the former values for ALI.. First, we are supposing a 

serial process in which the aspiration levels are changed for only 

one goal at a time. Second, if the latter expression is used, the DM 

will not be able to determine from the next optimization phase if 

goals 2 and 3 could still be independently satisfied at the original 

levels. The goal formulations are entered as constraints with the 

current aspiration levels. Thus, on the auxiliary problem of the 

next cycle, the use of equation 4.1, -iould lead to the constraint for 

the second goal 

g1 = Z2 - 200 0 

being added to the constraint set, while equation 4.2 leads to 

g1= Z2 -70?0 
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Satisfying the second constraint does not necessarily satisfy the 

first. We will give an example of this in Chapter 6 as part of the 

Bow River case study. 

However, it is true that if the IYm raises (in the sense of 

"making more difficult to achieve ") his original goals at some cycle 

in the algorithm or raises (as above) a goal which has been lowered 

and entered as a constraint, then the algorithm will go through a 

cycle in which it is not known if the new levels can be achieved. 

The procedure is analogous to turning from one path to another - -a 

new direction of travel is formed. 

There is an additional psychological rationale for changing 

only 1 element of AL on each cycle . When the DM enters the new 

aspiration level as a constraint because the criterion function 

values are acceptable, he does so not on the basis of their individual 

values, but rather on the basis of their grouped impact as compared 

to the cane goal he is examining (the Gestalt philosophy again). The 

values of the zi which the DM "accepts" can be thought of as the 

current lower bounds upon his region of acceptability. He would, if 

necessary, accept values of z2 = 75 and z3 = 250 for z1 = 250. How- 

ever, he may wish to do some trading off between the second and third 

goals. Consequently, he now wishes to know if those goals can be 

individually satisfied for z1 = 250. He still is serially processing 

the problem and will, in effect, form a new problem on the next cycle 

which consists of all the unsatisfied goals. The DM is "whittling 
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away" at the original problem a goal at a time. At the end of the 

process he has, hopefully, solved the original decision problem. 

At this point the algorithm returns to the optimization 

phase and calculates 
z2.1' 2.12, 

and z2.13. These results are 

again evaluated in the same manner as previously. Observe that 

z2.1 is not equal to zl_1 because AL, is not equal to ALl. 

So the ith cycle consists of the calculation of z. 

=i.jk...m where m ranges through all goals not entered as con- 

straints on the principle problem of the 
.th 

cycle. The number of 

secondary subscripts (j, k, etc.) is one less than the value of i. 

Recall that on the first cycle we find zl and then zl.l through 

zl.T. 
So we envision a process in which an additional goal is 

added to the constraint set on each cycle; this sequence corresponds 

to the importance of the goals. 

However, the relative importance of each goal may shift as 

the flow of information progresses. In this case, the DM may start 

over at any point in the sequence. This could occur if a goal which 

initially was felt to be important was found to be relatively insen- 

sitive to changes in the aspiration levels and the other goals in the 

constraint set. In effect it maintains a stable z value. So its 

importance as part of the decision problem may be devalued by the DM. 

At this time, the process returns to the optimization phase 

unless the DM desires to terminate the algorithm. 

Termination. The search continues until a satisfactum is 

found. It is possible, of course, that no satisfactum can be found 
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due to the physical nature of the problem and a disinclination of the 

DM to modify his aspiration levels. Normally, however, the learning 

process that takes place as the search develops will provide the DM 

with alternatives consisting of feasible policy vectors, x, and 

their corresponding results, z, from which he can choose a policy 

which will be satisfactory. 

Figure 4.9 summarizes the sequence of operations in this 

algorithm and the interactive nature of the technique. 

Psychological Convergence 

The termination of the algorithm implies convergence in 

two respects. First, the method of nonlinear optimization used 

within each iteration crust converge to a solution for that particular 

cycle. Second, the DM rust experience a "psychological convergence" 

such that he actually finds an acceptable alternative from the series 

of results generated by the search process. The next chapter is 

devoted to the development of the optimization program used in this 

research and questions of numerical convergence will be discussed 

there. In this section, we will discuss psychological aspects of 

termination. 

Clearly, if the DM elects to continue restarting the search 

process there are an infinite number of locations possible because 

the variables are continuous. We argue that he will not do this for 

one of two reasons: (1) he finds a satisfactum in the manner that has 

been described; or (2) he insists that he cannot find a satisfactory 

alternative and terminates the procedure from sheer frustration. 
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In the first instance, the algorithm has converged as 

intended. Johnsen (1968, p. 339) notes that the existence of satis- 

factory solutions to decision problems is practically guaranteed 

because changes in the aspiration levels represent a learning 

process for the DM; he draws on Simon (1957, p. 253) in making 

his observations. So this is the normal termination of the algo- 

rithm. 

If the process is terminated although the DM says he has not 

found an acceptable policy, then his next actions must be observed. 

If, in spite of his protestations, the 111 does make a choice, then 

the process has necessarily converged. Recall that the act of 

choice must, by definition, partition the alternatives. The one 

chosen is an acceptable choice in the present situation. This is 

a recognition of the often unnoticed fact that after we have chosen 

an alternative, we may view it as undesirable with reference to a 

different situation than that in which it was chosen. Nevertheless, 

the alternative was acceptable, at least for the moment, because we 

chose it. Consequently, the choice of any of the alternatives 

presented by the search indicates a satisfactum. 

But what if the DM just "throws in the towel ?" He refuses 

to make a choice, insisting that none of the alternatives is accepta- 

ble. In this instance, then, the algorithm has failed to converge; 

no satisfactory solution to the decision problem has been located. 

Of course, in a broader sense, we can view the action of the DM as 

the substitution of a new problem for the old one, the new one being 



71 

"Hcw can I stop all this ?" Termination is actually a satisfactory 

alternative to that problem. And, even in this instance, we can 

conjecture that the information the DM has received may be of future 

positive value either in reformulating the problem, in working to 

modify the problem, or in leading to a gradual change in his value 

structure so that one of the alternatives will be acceptable. 

In the next chapter, we will proceed with the development 

of an optimization technique which will be included in our overall 

algorithm. 



CHAPTER 5 

THE NONLINEAR OPTIMIZATION PROGRAM 

Each cycle of the algorithm developed in the last chapter 

involves a number of nonlinear mathematical programming problems. 

These results are used by the DM in defining the problem for the 

next iteration. Consequently, we wish to choose a method which is 

both efficient, in terms of computer and set up time, and also accu- 

rate in that it actually converges to the true optimum in a finite 

amount of time. In particular, the technique chosen should be capa- 

ble of detecting an inconsistent constraint set because mutually 

exclusive aspirations can be entered by the DM as constraints. The 

ease with which additional constraints can be inserted and deleted 

in the programming code will also affect our choice. 

We will restate the optimization problem and then briefly re- 

view and evaluate some nonlinear optimization techniques to see which, 

if any, are applicable to the current research. The method actually 

used is then developed and the computer code for its implementation 

discussed. 

72 
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Problem, Notation, Definitions 

We have assumed that z, h, and E are all differentiable 

(written z is D) over the range of x for the problem. However, the 

objective function which is actually optimized at each cycle is 

derived from the criterion functions, z, and so we must examine the 

behavior of s. 

The values of z are first normalized to y by a linear 

transformation, L(z), so that if z is D, L(z) is also. The values 

of y are then transformed to d so that d < 1 implies that the corres- 

ponding goal is satisfied. A general form of this transform is: 

d - 
1 
+l + (a2y + ß2l 

&recall the five types of goals discussed in the last chapter). 

Again L(y) is D. The range of v is (0,1] so that the fraction, 

is always defined. We restrict al > 0, ßl 0 so that for these condi- 

tions, the ratio is D. 



Differentiation is a linear operation and so the sum of two differ- 

entiable functions is also differentiable; thus d is D, and s is D. 

Then the problem to be solved in each iteration of the search 

process is of the form: 

subject to: 

with 

min v = f(x) 5.1 

a set of L equality constraints 

h =l i(x) 

a set of N inequality constraints 

g = G(x) 

a set of N bounds 

0 f124,<x<h_<°3 

5.2 
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y, h, and g all differentiable 

The function f(x) is referred to as the objective function and 

the constraints collectively as the constraint set, C. Different 

x vectors are distinguished by a superscript, xi. A point x° which 

satisfies the constraint set is a feasible point, and the set of 

such points, 

F= {x: x satisfies C } 

is the feasible region. If no feasible points exist (F empty), 

the constraint set is inconsistent. 
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The gradient of y is the vector of partial derivatives: 

Vy = Vf(x) _ 

When it is evaluated at a particular point x1, we write Vylxi. 

The gradient points in a direction which maximizes the increase in 

y for a change in x (see Beveridge and Schechter 1970, p. 410 -412). 

So -Vy is the direction of greatest decrease. 

A stationary point, x°, is one for which o_yl = O. If x° is 

in F and f(x° + Ax) - f(x°) for a small region of Ax around x, then 

x° is a local minimum, x *. A local minimum is also a global minimum, 

x * *, if f(x) - f(x *) for all x # x *. The corresponding values of 

the function are y°, y *, and y * *. 

If there are no equality constraints and if x* satisfies 

the inequalities so that 
. 

> 0 and bL < x* < bu, then the constraints 

are "loose" and the solution is at an interior point of F. If any 

of the inequalities are satisfied as equalities, those constraints 

are "tight" and the solution is on the boundary of F. An interior 

solution indicates that the minimum value of the constrained function 

is equal to the minimum value of the unconstrained function. 

If there are equality constraints present, then the feasible 

region becomes a hynersurface in En (Euclidean n -space where "n" 

is the dimensionality of x, the number of variables in the problem) 

and all feasible points are necessarily on the boundary. 
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"Convergence" of an algorithm implies that a sequence of 

points x1, x2, .... resulting from applying an algorithm to a 

problem tends toward a solution (see Wolfe, 1970). 

Review of Nonlinear Optimization Techniques 

There are many nonlinear optimization techniques available, 

both analytical and numerical. These two groups are distinguishable 

in that analytical methods are essentially algebraic while numerical 

methods are geometric. 

Analytical methods attempt to solve problems by deriving 

equations which define the solution. That is, given a problem 

consisting of a set of equations involving unknowns and parameters, 

these techniques develop expressions relating the unknown variables 

to the known parameters. However, the complexity of the analytic 

approach to nonlinear optimization limits its applicability to 

problems having few or no constraints and few (less than 5) 

variables. These considerations prompt us to rule out an analytic 

solution to the problem at hand. 

For example, the method of Lagrange multipliers converts 

a problem in N unknowns and K constraints into one involving 

N + K variables. But it requires the solution of N + K simultane- 

ous, potentially nonlinear equations. 

Numerical methods use iterative processes which attempt to 

move from a point xi to a new point xi 
+1 

such that (for minimization) 

f(x1 +1) : f(xl). Many writers have discussed numerical nonlinear 

optimization in general. Wolfe (1963) and Box, Davies, and Swann 
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(1970) have written summaries of the numerical methods available. 

Dorn (1963) has also surveyed the field, while Beveridge and 

Schechter (1970) are more exhaustive in their treatment. Zoutendijk 

(1970a) provides some numerical examples for different techniques. 

Davies (1970) discusses some practical aspects of implementing differ- 

ent techniques. A very concise classification scheme with references 

is contained in Zoutendijk (1970b, pp. 546 -54). 

For our purposes, we can simply classify the methods as 

direct search (derivatives not required) and gradient (derivatives 

required) . 

Direct Search Methods 

All of the direct search methods require evaluation of the 

objective functions at particular locations. The many variations 

differ in two ways: (1) the selection of the points at which the 

function is to be evaluated, and (2) the determination of the direc- 

tion of search on the basis of those evaluations. 

At one extreme, there is the univariate search method which 

changes one variable at a time, searching sequentially along an 

axis. The Sequential Simplex and the Complex Method (Constrained 

Simplex) of Box (1965) are more involved and use geometric polyhedrons 

to define the points at which the surface is to be evaluated. Powell 

(1964) and Rosenbrock (1960) have also developed sophisticated 

methods. 
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Gradient Methods 

These methods move from x to (x + av) such that (for minimi- 

zation) f(x + av) < f(x). The vector v is parallel to the gradient 

of the function, Vf(x), and "a" is a parameter controlling the 

amount of movement (referred to as "step size "). The mechanism by 

which "a" varies during the optimization and the means by which 

constraints are handled account for the differences between the 

methods. 

Davidon (1959) has developed a very sophisticated method for 

determining unconstrained optima. However, it requires the calcula- 

tion of second derivatives and developing the analytical expressions 

for them can be quite complex. For example, if the objective function 

is highly nonlinear and involves, say, 20 variables, the determina- 

tion of all second derivatives would be formidable. 

When constraints are added, the problem can be converted to 

an unconstrained objective function through the use of a penalty 

term which differs from zero when the constraints are not satisfied. 

Alternatively, a search for a feasible point can be made by minimiz- 

ing a function of the unsatisfied constraints; then an unconstrained 

method can be employed. However, each point in the series of itera- 

tions must be checked for feasibility. 
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Reported Research 

The many types of nonlinear optimization problems encountered 

make it difficult to compare different techniques. We will critically 

review some recent studies and then attempt to interpret them in view 

of our particular problem. 

Wolfe (1963) made an examination of ten techniques but felt 

that insufficient evidence had been accumulated with regard to their 

usage to reach any conclusions. 

In 1965, M. J. Box reported a study of direct search tech- 

niques with constrained problems. He studied the Complex algorithm 

(Box 1965), a modification of Rosenbrock's method (1960), and the 

original Rosenbrock method. In 1966 he compared those methods with 

that of Powell ( 1964) used in conjunction with transformations of 

the original variables to eliminate the constraints. He concludes 

that the use of transformations is a superior means of dealing with 

constrained problems. For example, if x is bounded by the interval 

[a, b). that constraint can be removed by substituting 

x = (b- a)isin(y)I + a 

where y is unbounded. In 1970 he examined constrained optimization 

at some length and concluded that Carrol's (1961) method is quite 

effective when used with an algorithm for unconstrained optimization. 

(In all of this research Box considered problems involving up to 

20 variables.) 
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Colville (1967) compared the results of applying 34 different 

algorithms to eight different problems. He finds that first, the 

coding of the algorithm for the computer greatly affects its perform- 

ance; second, methods employing analytical derivatives are superior to 

those which use numerical evaluation of derivatives or no derivatives 

at all; third, the performance of many of the methods examined is 

problem dependent. 

Research by Stocker (1969) compared five methods on 15 

problems. Two of the methods are direct search, two are small step 

gradient techniques, and the fifth involves second derivatives. 

Four of the five methods had been previously evaluated by Colville 

(1967) while the last is based on research begun by DiBella (1963) 

and continued by Barnes (1967). Stocker finds that the direct search 

programs are undesirable because the computation time becomes 

excessive as the number of variables increases. He notes that one 

of the two direct search codes is most efficient with equality 

constraints while the other seems limited to inequality constraints. 

The gradient method involving numerical derivatives was inferior to 

all other methods. The two gradient techniques using analytical 

expressions were superior to direct search. The use of second deri- 

vatives is fraught with the possibility of human error so that 

methods employing that technique were not recommended. The code 

judged best overall was the one developed by DiBella and Barnes. 

It combines a gradient technique to locate feasible points with a 

linear programming approximation for moves within the feasible 

region. 



81 

Evaluation 

Direct search methods for small problems can be made very 

efficient with regard to computer time. Box, Davies, and Swann (1970) 

regard them as preferable to gradient techniques that employ numeri- 

cal derivatives regardless of the size of the problem. However, as 

the number of variables and constraints increases (i.e., more than 20 

variables and constraints) the time required to find a solution becomes 

excessive. Since we anticipate the potential application of this 

method to large -scale problems, we do not view direct search as a 

practical method. 

Gradient techniques are much more powerful (with regard to 

convergence time) but require more preparation for computer coding 

because derivatives roust be taken. In general, gradient techniques 

for constrained problems employ either a penalty function or else 

attempt to locate a feasible point by minimizing a function (usually 

the sum or sum of squares) of the unsatisfied constraints. (See, for 

example, Wolfe 1963, pp. 69 -70, Beveridge and Schechter 1970, pp. 

443 -449, or Davies 1970, pp. 98 -99.) An unconstrained method is 

then used to find the optimum. 

There are other gradient -based methods, however, which do not 

use this approach for constrained optimization. In these techniques, 

the gradient of the objective function defines the direction of search 

subject to constraints that have been linearized about a point. Some 
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examples are the cutting plane technique of Kelley (1960), the method 

of feasible directions due to Zoutendijk (1960), the gradient projection 

method of Rosen (1961), and the approaches of Hartley (1960) and Glass 

and Cooper (1965). The approach of Kelley (1960) as developed by 

Griffith and Stewart (1961) is attractive from a computational view- 

point and relatively easy to code for a computer. We have adopted 

their method and will present it in the next section. 

A Linearization Technique 

History of the Cutting -Plane T°Iethod 

The term "cutting plane" was introduced by Gomory (19E8) with 

regard to integer programming and adopted by Kelley (1960) to describe 

his method of nonlinear program izg. Several variations of it have 

since been developed (Zangwill 1969, Ch. 14). Wolfe (1963, p. 82) 

describes this technique as: 

. . . based on the idea that it (the constraint set) can be 
represented as the intersection of a sufficiently numerous set 
of half -spaces which contain it. . . . The main tool of the 
procedure is the representation of the constraints by first - 
order Taylor's series expansions. 

Lest the reader be concerned that such approximations are 

"taboo," we hasten to note another, more recent statement by Wolfe 

(1970, p. 4): 

The foundation of all our work in nonlinear prong is, 
our ability to handle linear relationships, and linear approxi- 
mations to nonlinear phenomena will be found at the bottom of 
every algorithm and every theorem in the field. It is thus 
not grossly overstating the case to say that the results we 
can get depend almost entirely on what we can determine about 
the relationships between a function f and the approximation 
to it given by the linearization 

f(y) + u (x -y) 
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as a function of x, where y is some fixed point (and T denotes 
the transpose of u). 

Collatz (1970, p. 286) echoes this comment: 

For the general nonlinear problem no general theory exists 
and one is using for numerical purposes in most cases Newton's 
method and related methods. 

Development of the Cutting -Plane Algorithm 
of Griffith and Stewart 

In the optimization algorithm formulated by Griffith and 

Stewart (1961), a linear programming (LP) algorithm is iteratively 

applied to a nonlinear problem so that the solution of a linear prob- 

lem converses to the solution of the nonlinear problem. Each LP 

iteration is the result of treating the gradient at a point as an ob- 

jective function subject to linearized constraints (See Wolfe 1970, 

p. 26). The formulation which follows is that of Griffith and Stewart 

(1961) except as noted. 

Returning to the problem defined by equations 5.1, 5.2, 5.3, 

and 5.4, we can linearize the functions by expanding them in a Taylor 

series and retaining only the first order terms. A prime denotes the 

transpose, vectors are normally column vectors, and Jx,y is a Jacobian 

matrix 

J = 
x,y 

ax1/ aym' 

axn/ ay1 axn/ aym 



We have 

so 

f(x + Ax) = f(x) + Of(x)"Ax 

H(x + Ax) = H(x) + JH Ax 

G(x + Ax) = G(x) 
+ JG x Ax 

-'- 

Af(x) = Of(x)"Ax 

AH(x) = JH,x Ax 

AG(x) = JG Ax 
_A- 

5 . 5 

5.6 

5.7 

84 

If hi $ 0, then that constraint is violated by an amount (hi(. 

Similarly, if gi < 0, that constraint is violated by an amount (9(. 

From the linear approximation of the constraints evaluated at x, we 

estimate that F can be entered if x is changed an amount Ax such that 

AH1(x) _ (h1( and AGi(x) _ (9( for 9 < O. There will, in general, 

be an infinite number of change vectors, Ax, that will satisfy the 

above conditions. However, the move should be made in such a manner 

as to also decrease f(x). Or, if f(x) is already at a minimum, then 

movement from that point to satisfy the constraints should be accom- 

plished with a minimal increase in f(x). In either instance, we wish 

to minimize Vf(x). 

The partial derivatives evaluated at a point are all scalars 

so that the system expressed by equations 5.6 and 5.7 is a set of 

linear equations.. Similarly, Of(x)Ax is a linear function. So we 
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have a problem which can be solved by linear programming except that 

Ax can be negative. This difficulty can be circumvented by writing 

where 

Ax. = Axi 
+ 

- Oxi 

Ox.+ _ 
Axi Ax. 0 

1 0 otherwise 

-Axi Ax. 5 0 

Axi 
0 otherwise 

The range of xi is bounded so that 

(bL - xi) xi (bU - xi) 

Then the change in xi may be restricted by 

where 

aiA xi 
+ 

+ i 
Ax. a. 

ai = max 
(ci' b 

Ui 

i 

ßi - 
max 

a. 

c2' xi - bL 
/ 

5.8 

ai is the step size for variable i, and 

c 
1 
and c2 are a damping modification added by Barnes (1967) to reduce 

oscillations about ridges. If Axi >0 on the previous move, cl = 1 and 

c2 = 2. If Axi = 0 on the previous move (the starting condition), 
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cl = c2 = 1. And if Axi < 0, cl = 2 and c2 = 1. Griffith and Stewart 

use cl = c2 = 1 for all circumstances. We added the condition for 

Axi = 0 to accelerate the progress from the initial point. 

Equations 5.5, 5.6, and 5.7 can now be written: 

Af(x) = Of(x) ' Ax+ - of(x)' Ax 

AH(x) = J Ax - J Ax 
H,x - H,x 

AG(x) = JHx Ax+ - JH,x Ax 

So the LP problems which are repetitively solved are of the farm: 

minimize 

subject to 

y = Of(x)'Ax+ - Vf(x)' Ax 

+ = tii J Ar - JH,x Ax h 

J Ax 
+ 

- J 
- 

12J Ax 
,x 

aAx++ßAx- 5a 

for hi # 0, g. < 0, and a and ß defined in equation 5.8. In the next 

section, we will discuss the simplex algorithm as implemented in the 

computer prognam. 

The LP Algorithm 

The basic theory of the Simplex solution of the LP is dis- 

cussed by Hadley (1962, Chapters 3 and 4). We will assume the reader 

is familiar with the general algorithm and concentrate on some aspects 

which apply to our problem. 
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Hadley (1962, Section 4 -5) discusses the use of an identity 

matrix composed of artificial and slack variables to obtain a starting 

basis. This idea is computationally convenient but, as he also states 

(1962, Chapter 5), the selection of the magnitude of the "cost" of 

the artificial variables can cause difficulties on a digital computer. 

These problems can be avoided, however, by recomputing for each tab- 

leau the criterion by which entering variables are chosen. This is 

the method we have chosen using a value of 1020 as the "cost" of the 

artificial variables. 

Examples and Further Considerations 

Examining the system in equation 5.9, we see that some of the 

constraints may be inconsistent because the linear approximation 

requires changes in the decision variables greater than the limits 

imposed by equation 5.8. Consequently, we expect that some of the 

artificial variables will remain in the solution. However, as we make 

successive mores the constraints will become satisfied. 

We can exemplify this point and consider some additional issues 

through the use of a small example. For simplicity, we set cl = c2 = 1 

in equation 5.8. Our problem is: 

minimize 

subject to 

y = x1x2 + xl + x2 

g1 = x1x2 -50 0 

20?xl?0 

202x220 

The feasible region, F, is shown in Figure 5.1. 
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x2 

Figure 5.1 LP moves when stepsize is not limited 
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Initially, let the step size for each variable, ai, be equal 

to the maximum of (bU - xi, xi - bL ) so that the change in xi 

is limited by the bounds on xi. At a starting point x° _ (5,3), the 

value of gl is -35. The gradient of the constraint is: 

Vg1 = (x2, xl) _ (3,5) 

so that the linearized constraint is: 

gl = 3Axi > 5 Ax2 ?. 35 

where the bar indicates the linearized version of the original con- 

straint. The Ax1 and Ax2 axes have their origin at x° so that we can 

graph the linearized constraint on the xl and x2 axes. This is the 

line labelled "A" in Figure 5.1. Although Axi and Ax2 can be nega- 

tive, they are constrained by equation 5.8 to keep xl and x2 within 

their bounds. Graphically this is shown by the intersection of A with 

the xl and x2 axes. 

The gradient of y is: 

Vy = (x2 + 1, xl + 1) _ (4,5) 

so that the LP problem becomes: 

minimize 4Ax1+ -4Axi + 6Ax2+ -6Ax2- 

subject to 3Axi -3Axi + 5Ax2+ -5Ax2 _ 35 

lAxi 3Axi- 

Axt+ + 
17 

Axt 17 

15 
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The solution to this problem is xl = (0,13). 

Repeating the process, we have a new LP problem: 

minimize 14 - 14Ax, + -L1x2- 

subject to ? 50 

< 20 

< 13 

where a » >0 because of the division procedure in equation 5.8. The 

line B represents the linearized constraint for this problem. The 

solution to the LP occurs at x2 = (50/13, 0). 

It is apparent that wide oscillations can take place when there 

is no limitation on the step size for each rove. We will now repeat 

the procedure setting al = a2 = 1. For convenience, the actual fea- 

sible region, F, is repeated in Figure 5.2. Beginning again at 

x0 = (5,3), we construct A representing the same constraint as before. 

But now additional constraints are imposed limiting Axi to 1. These are 

Shown in Figure 5.2 by lines a, b, c, and d. It is apparent that the 

linearized constraint and the bounds on &xi are inconsistent. The 

LP problem is 

minimize 4L1x1+ -40x1 + 6Ax2+ - 6Ax2 

subject to 30x1+ -3Ax1 + 5Ax2+ -Ax2 > 35 

lpx1+ + lpxl 

1Ax2+ + 1Ax2 1 
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and although the problem is unsolvable, movement does take place with- 

in the region enclosed by lines a, b, c, and d. The final tableau 

fran this problem shows Ax1+ = Ax2+ = 1 and the artificial variable 

fran the "greater than" constraint is equal to 27. 

Referring to Figure 5.2, we have moved to xl = (6,4). The 

value of gl is 26 and Vgl is (4.6). The new linearized constraint is: 

g1 = 4Ax1 + 6Ax2 ? 26 

and is labelled "B" on the graph. We again have an inconsistent con- 

straint set because of the limitations on Ax1 and Ax2 but movement does 

take place in an attempt to satisfy B. The result of this problem 

is Axl+ = Ax2+ = 1 so that x2 = (7,5). Thus we are progressing toward 

the feasible region without the oscillations experienced before. 

Hopefully, this demonstration has indicated the importance of 

choosing a step size parameter which will reduce oscillations in the 

problem. In the computer program for this algorithm, there are two 

mechanisms for controlling such movements. The first, already dis- 

cussed, is the selection of cl and c2 in equation 5.8. They limit the 

movement for xi when the direction of movement changes from that of 

the previous LP. The second is an acceleration -deceleration scheme 

for varying the value of the step -size parameter. If four successive 

moves are made in the same direction, the step size is doubled; if a 

move is made in a direction opposite relative to the previous move, 

the step -size is halved. This procedure is taken from Barnes (1967). 

This allows us to locate "small" feasible regions and to converge to 

any desired degree of accuracy at a stationary point. 



To continue the discussion, we will add the constraint 

g2 = x2 + 2 (xl -10)2 -10 0 

to our problem. Starting again at x0 = (5,3), we have gl = -35 

and g2 = -2. Initially, let al = a2 = 1. Then our first LP problem 

is: 

minimize 

subject to 

#tx1+ -4Ax1. + 6Ax2+ -6Ax2- 

3Ax1+ -3ox1 + 5Ax2+ -5Ax2 ?. 35 

-2Ax1+ + 20x1 Ax2+ -Ax2 > 
2 

pxl+ + Axl- - 1 

Ax2+ + Ax2 1 
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In Figure 5.3, we have shown the feasible region for the 

nonlinear problem and the constraints formulated for this LP problem. 

The bounds on Oxl and Ax2 will permit us to satisfy E2, but the final 

tableau reveals that = 1 and 0x2+ = 1. Both artificial variables 

are still in the basis with values of 27 (down from 35) and 1 (down 

from 2) . 

Although g2 could have been satisfied, movement has been 

determined by the relative magnitudes of the partial derivatives. How- 

ever, both 
?1 

and 
g2 

are closer to being satisfied. For comparison, 

movement of Axl = -1 and Ax2 = 1 would have satisfied g2 but then 

the artificial variable for would be equal to 38. 
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g2 NZAx1 + 50x2 = 35 
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Figure 5.3 LP moves for two constraints. 
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This leads to an interesting question: Under what circum- 

stances will there be no movement (Ox = 0) even though x is outside 

the feasible region? Clearly, if the gradients of the objective 

function and all violated constraints are 0, no movement will take 

place because the LP tableau will appear as shown in Figure 5.4. 

The step -size parameters are all assumed to be 1. There are m 

unsatisfied > constraints and no equality constraints in the original 

nonlinear problem. (Our remarks will be applicable also if equality 

constraints are present.) From this, we can make the more general 

observation that if Vy = 0 and 

I1 

E agi/axj = 0 for j = 1, ..., n 
1:1 

then Ax = 0. So it is possible for the method to "stall" if it passes 

through such a point. In such a situation, the computer program 

terminates after printing an error message. 

Now we pose another question: Can the algorithm cycle? That 

is, can a series of points xk, ..., xn +k be generated such that 

x = x +k for n > 1? If n equals 1, then Ax equals 0; and we have 

previously discussed this case. Unfortunately, we cannot make a defin- 

itive statement in this case. The acceleration- deceleration mechanisms 

in the computer program appear to make such an occurrence unlikely but 

we are unable to construct a proof for such a statement. Ps a safe- 

guard, we recommend the use of multiple starting points for questionable 

situations. 
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Although we cannot guarantee that the method will locate the 

feasible region for all problems, we have not in practice found any 

cases in which this region was not found. The computer program trys 

to anticipate these difficulties in the following ways: 

1. Two starting points are used for each problem. The first 

is supplied by the user or is the final solution to the previous problem 

if multiple problems are being run. The second is based on the bounds 

for each variable and is formulated as 

x° = bL + 1/2 (bü -bL) 

2. The termination criterion for each problem is based on 

three conditions: (a) Ax < EPIS where EPIS is a convergence criterion 

supplied by the user; (b) Ay EPIS; and (c) the sum of the squares 

of the violated constraints are satisfied to within a tolerance level 

COIIVRG , a user supplied constant. 

3. If conditions (a) and (b) from 2 are satisfied but (c) is 

violated, the program assumes that no feasible region exists and prints 

a message to that effect along with other pertinent information. If 

conditions (a) and (c) are satisfied but (b) is violated, the program 

again terminates with an appropriate message. This latter situation 

can occur when the objective function is very "peaked" in the neighbor- 

hood of a stationary point. 

To demonstrate these checking procedures , we will modify our 

example so that the two constraints are inconsistent. The problem we 



are going to work with is 

minimize 

subject to 

y - xlx2 + xl + x2 

gl = xlx2 - 50 

g2 = -x2 -.2(x1-10)2 + 4 0 

10200 
> x 

> 

- 
-10200 

1 

10200 
> 
x2 

> 10200 
? _ 
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and, as Figure 5.5 reveals, the constraints gl and g2 are inconsistent. 

The bounds on xl and x2 have been increased so that equation 5.8 is 

effectively 

c1Axi+ + c 
2 
Ax.- 

- 
ai 

As before, the step size is initially set at 1. 

point x0 = (5,5), we solve the following LP problem: At the 

minimize 

subject to 

60x1+ -6Ax. 

5Ax1+ -5Axi 

2Ax1+ -2Ax1 

Axl+ + Ax l 

+ 6Ax2+ -6Ax2_ 

+ 5Ax2+ -5Ax2 

-Ax2+ + 
Ax2- 

Ax2+ + Ax2- 

The final tableau (which is not a solution) shows 

Moving to xl = (6,6), we have 

minimize 7Ax1+ -7Ax1- + 7Ax2+ -7Ax2- 

? 25 

> 6 

1 

1 

Axl+ = Ax2+ = 1. 



99 

x2 

0 5 10 15 20 

Figure 5.5 LP moves for an inconsistent constraint set. 



subject to 6Ax1+ -6Ax1 + 6Ax2+ -6Ax2 > 14 

1.6Ax1+ -1.6Axi -Ax2+ + Ax2 ? 5.2 

dxl+ + 2Ax1 < 1 

Ax2+ + 2Ax2- < i 

100 

Observe that c2 is now equal to 2 because the change was positive on 

the last move. !Again Lxi+ _ = 1. 

Continuing the process, we have the series of points shown in 

Table 5.1 and graphed as a dashed line in Figure 5.5. We have shown 

only the first 26 roves of the algorithm, but it is obvious tl-at the 

deceleration mechanism is forcing the change vector, Ax, toward zero. 

Consequently, we could expect a message to the effect that no feasible 

region exists as soon as we have reduced Ax to less than EPIS. 

Discussion 

The question which immediately arises is "Does it work ?" To 

answer this we will discuss the convergence properties of this method. 

In order to prove convergence for this method, we must assume that 

the nonlinear constraints are convex. Wolfe (1970) has found bounds 

for the rate of convergence when the constraints are linear but this 

hypothesis is too narrow for our use. We have not assumed that the 

constraint set is convex; that effect will this have on convergence? 

Wolfe (1970, p. 25 -26) states that the algorithm's effectiveness: 

. . depends quite severely on the convexity assumption; 
in the absence of convexity it can cut away necessary portions 
of the problem. 
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"'ABLE 5.1 

Sequence of Points for. an Inconsistent 
Constraint Set 

Pt. # x1 x2 
'2 

0 5.00000 5.00000 35.00000 -25.00000 -6.0000 

1 6.00000 6.00000 48.00000 -14.00000 -5.20000 

2 7.00000 7.00000 63.00000 - 1.00000 -4.80000 

3 8.00000 6.50000 66.50000 2.00000 -3.30000 

4 9.00000 6.00000 69.00000 4.00000 -2.20000 

5 11.00000 5.50000 77.00000 10.50000 -1.70000 

6 10.09091 5.00000 65.545454 .45454 -1.00165 

7 10.59091 4.70721 65.15172 - .14640 - .77704 

8 11.09091 4.49880 65.48551 - .10420 - .73682 

9 10.84091 4.60960 65.42281 - .02770 - .75103 

10 10.96591 4.55901 65.51859 - .00632 - .74560 

11 11.09091 4.50762 65.59210 - .00642 - .74563 

12 11.02841 4.53360 65.56038 - .00162 - .74512 

13 10.96591 4.55944 65.52373 - .00161 - .74603 

14 10.99716 4.54659 65.54335 - .00040 - .74546 

15 11.03841 4.53371 65.56172 - .00040 - .74523 

16 11.02378 4.54017 65.55285 - .00010 - .74532 

17 11.02060 4.53696 65.55753 - .00002 - .74528 

18 11.02841 4.53374 65.56213 - .00003 - .74527 

19 11.02450 4.53535 65.55985 - 6.28E -6 - .74527 

20 11.02647 4.53455 65.56100 - 1.57E -6 - .74527 

21 11.02841 4.53375 65.56215 - 1.57E -6 - .74527 

22 11.02.743 4.53415 65.56158 - 3.92E -7 - .74527 

23 11.02792 4.53395 65.56187 - 9.80E -8 - .74527 

24 11.02768 4.53405 65.56172 - 2.45E -8 - .74527 

25 11.027921 4.53395 65.56187 - 6.13E -9 - .74527 
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However, Griffith and Stewart (1961, p. 379) are more optimistic: 

In order to prove convergence to a unique solution, the 
problem to be solved via MAP (the authors' name for their 
cutting -plane algorithm) would have to meet the usual mathema- 
tical requirements of convex constraint space, concave 
objective function and continuous first partial derivatives. 
However, in actual practice, problems have been solved with 
MAP which do not fully satisfy all of these requirements; the 
type of problem which MAP can handle depends to a great extent 
on the ingenuity of the problem formulator. It has been our 
experience that the most important aspect of solving nonlinear 
programming problems is the degree of curvature in constraint 
space. In general, the objective function can always be 
linearized. 

Furthermore, although this method requires convexity to 

guarantee convergence, alternatives applicable to the general problem 

we have posed (nonlinear objective function, nonlinear constraints) 

also require convexity of C to ensure convergence (Wolfe 1963, p. 69), 

so little can be gained in this regard by choosing an alternate method. 

We feel that the linearization algorithm seems to meet our needs. It 

has several advantages over the other methods which we have con- 

sidered: 

1. The function to be optimized is not a composite of the 

constraints as in the penalty functions approach. 

2. LP programs exist which can easily handle large numbers 

of variables and constraints, and additional constraints can readily 

be entered into the LP tableau. 

Although we cannot guarantee that the feasible region will be 

located if it exists, the use of multiple starting points will hope- 

fully keep the algorithm from stalling or cycling. It is apparent 
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that, in the absence of those difficulties, the method will even- 

tually late the feasible region even if it consists of a single 

point (unless the coordinates of that point are irrational numbers; 

then we can only approximate it). 

And even though this method may "cut -off" the global optimum, 

there is no assurance that other techniques could locate it for the 

type of problem we are considering. So in this regard there is lit- 

tle basis for choice. 

There are also some disadvantages associated with this 

rrethod : 

1. The linear approximations may be quite slow in locating 

the feasible region and an optimum. The acceleration -deceleration 

scheme is an attempt to compensate for this but its success will 

depend upon the problem at hand. 

2. The many LP programs that must be solved can dramatically 

increase the computation time required to find a solution. This will 

depend upon the location of x0 with respect to F and whether we have 

an interior or a boundary optimum. In the latter case the method is 

not at a particular disadvantage because most methods have trouble 

locating a boundary optimum. 

The optimization process can be summarized by the simplified 

flow chart shown in Figure 5.6, The computer program is listed in 

Appendix B and various comments within it contain directions fc ̂ the 

user. The subroutine USER is supplied for the problem under 

consideration. It contains the expressions for the objective funct ,'n, 
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Nonlinear 
Optimization 
Problem (NOP) 

Replace x 

byx +Ax 

STOP 
Print 

appropriate 
messages 

NO 

NO 

Linearize about 

point x 

Solve LP for 

change vector Ax 

Ax < EPIS 

YES 

Is Ay < EPIS 
and is the sum of 
squares of the 

unsatisfied constraints 
less than CONVRE 

YES 

STOP 
x is the solution 

to the NOP 

Figure 5.6 Flowchart for the nonlinear optimization algorithm. 
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the original constraint set, and the goal formulations for all objec- 

tives which are entered as constraints by the LAM. Then the analytical 

expressions for the partial derivatives must be given. The subroutine 

shown in Appendix B is for the Bow River case study discussed in 

Chapter 6. 



CHAPTER 6 

A POLITICAL DECISION PROBLEM OF WATER POLLUTION CONTROL 

This chapter illustrates an application of the algorithm 

which has been developed. We will begin with a small, completely 

artificial example to demonstrate the procedures involved in utiliz- 

ing this method. Then a synthetic case study of a pollution control 

problem will be presented to show (hopefully) the usefulness of this 

technique. 

Example Problem 

Components 

The example involves three goals, two bounded decision varia- 

bles, and one nonlinear constraint. Their various formulations are 

expressed below. 

Goals: 

zl -- z:? AL,L z3 3 
Criterion Functions: 

z1 = 10 /xl z2 = xl /x2 z3 = 20/x2 

r(z1) _ [.1, 10] r(z2) _ [.1, 100] r(z3) _ [2, 20] 

Constraints: 

g1=100-x1-x22> 

106 
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1 x 
1 

1000 

1 5 x2 5 1000 

Goal Levels (initial aspiration levels): 

GL1 = 5 GL2 = 20 GL3 = 5 

Setup Procedure 

We begin by transforming the criterion functions: 

z 
1 
-.1 z-.1 z 

3 
-2 

Y1 10-.1 + 
e1(x) y2 100-.1 + 

e2(x) Y3 20-2 + 
e3(x) 

where, as we have explained ei(x) = e' when zi = 
zloaer. 

The initial 

aspiration levels are assumed equal to the goal levels, 

and so the values of A--0 are 

0 5-.1 
A1 

- 10-.1 

A0 = GL 

AO 20-.1 
2 100-.1 

0 5-2 
A 

20-2 

(Note that e is not needed in these transformations.) 

goals: 

The elements of d are formulated Evan the structure of the 

dl = Al/yl d2 = A2/y2 d3 = Y3/A3 
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First Cycle 

The principal problem to be solved on the first cycle is 

minimize sl = dl + d2 + d3 

subject to g 
1 

= 101 - xi - x22 0 

1 x1 1000 

1 <x2 100 

Expressing di in terms of ALi and zi, we have 

z -.1 z -.1 

672- 

-2 
((4.9 1 19.9 2 l 3 

l s -\) ( l + El) (99.3) (100-.1 + 52 + + e3/ k 18/ 

= 4.9 / (z1 - .1 + 9.9e1) + 19.1 / (z2 - .1 + 99.9e1) + (z3 - 2 + 1853)/3 

This can be rewritten as: 

4.9 19.9 z3 2+53 
s 

z 
1 
-. 

+51 
+ z2 . 3 

Then in terms of the decision variables 

with 

4.9x 19.9 
s 

10- x1(.1 -el) + xl x2(.1 -52) + 1/3 ( - 2 + 
3 
) 

An interior minimum was located at: 

xl = (7.488, 1.550) 

s = 11.811 
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The values of the criterion functions are: 

zl = (1.34, 4.83, 12.90) 

and the corresponding transformed values are: 

171 = (.125, .047, .606) 

None of the goals has been attained as indicated by: 

d1 = (3.96, 4.21, 3.63) > 1 

The nonlinear nature of DA makes it generally impossible to compare the 

extent of nonattainment from these numbers, so it is not necessarily 

true that the smallest d signifies the "most satisfied" goal. Values 

of d for a specific goal may, however, be compared from one optimi- 

zation to another (provided the aspiration level remains constant). 

Also as part of the first cycle, we construct three auxiliary 

problems which attempt to satisfy each of the goals in turn. If 

z1 > 5 is entered as a constraint, d1 is deleted from the surrogate 

objective function giving: 

minimize `'i.1 = d2 + d3 

subject to g 
1 

= 101 - x 
1 x2 

2 ? 0 

g2 = 10/xi - 5 0 

1 f xi f 1000 

1 f x2 f 1000 



Similarly the second and third auxiliary problems are: 

and 

minimize s1.2 = d1 + d3 

subject to g1 = 101 - x1 - x22 - 0 

g2=x1./x2-20 0 

1 x1f.1000 

1 x2 1000 

minimize s1.3 = dl + d2 

subject to gl = 101 - xi - x2 

g2=5-20/x2 0 

1fx1f1000 

1 f x2 f 1000 

2 
0 
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The results from all four problems are tabulated in Table 6.1. 

The information from these four problems is presented to the 

DM in the graphical form discussed in Chapter 4. Figures 6.1, 6.2, 

and 6.3 show the effects of imposing goal attainment at the current 

aspiration levels compared to solution of the principle problem. The 

DM can examine this display for gross interactions among the various 

goals caused by the constraint set. 

To continue the development of this example, we will assume 

that the DM has modified his aspiration on goal three so that he 
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will be content if z3 5 10. He arrived at this decision by applying 

a ruler to Figure 6.3 (see Chapter 4) to predict the approximate 

levels of z1 and z2 for a given level of attainment on the third goal. 

The projected values of z1 and z2 for z3 = 10 are z1 = 1.2 and 

z2 = 4.1. 

Second Cycle 

The aspiration levels are now AL, = (5,20,10) and achievement 

of goal three has been entered as a constraint. The principal problem 

to be solved on this cycle is: 

minimize 

subject to 

s2.3 - 
dl 

+ d2 

g1=100-x1-x220 

g2 = 10 - 20/x2 2 0 

1 f. xl 1000 

15x2 :1000 

and the two auxiliary problems are: 

minimize s1.31 
d2 

subject to gl = 100 - xl - x22 ? 0 

g2 = 10 - 20/x2 ? 0 

g3 = 10 /xl - 5 ? 0 

1 xl 5 1000 

1 .x2 1000 
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minimize 
s1.32 = 

dl 

subject to gl = 100 - xl - x22 0 

g2 = 10 - 20/x2 0 

g3 = xl /x2 = 20 0 

1 f x 
1 

1000 

1 x2 .1 1000 

The results of these optimizations are collected in Table 6.2 

and their effects on goals 1 and 2 displayed in Figures 6.4 and 6.5. 

Inspection of Table 6.2 reveals that the minimum of the primary prob- 

lem is now an the boundary of F because xl did not satisfy goal 3 at 

an aspiration level of 10. In comparing dl and d2.3 we notice that both 

dl and d2 have increased, indicating that goal 3 has been satisfied 

only at the expense of the other goals. 

The results are again presented to the DM for his considera- 

tion. Assume that he will settle for z3 10 and zl 3. A ruler 

applied to Figure 6.4 gives an estimate of the result, which is 

z2 = 2.5. 

Third Cycle 

The aspiration levels for this cycle are AL,2 = (3,20,10) and 

both goals 1 and 3 are entered as constraints. The primary problem 

is: 

minimize 
s3.31 - d2 
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subject to gl = 100 - xi - x22 a 0 

g2 = 10 - 20/x2 ! 0 

g3 = 10/xi - 3 ! 0 

1 1 xi f 1000 

i x2 f 100 

and there are no auxiliary problems. The results are tabulated in 

Table 6.3. 

Termination 

We assume that the DM is content with this alternative and 

so the process terminates; the multiobjective decision problem has 

been solved. In the next section, a realistic application of the 

method is developed. 

A Water Pollution Decision Problem 

The following case study is derived from a hypothetical exam- 

ple developed by Dorfman and Jacoby (1969). The framework in both 

studies is similar but our goal structure is different as is our 

conception of the decision maker. There is also a difference of 

technique in that Dorfman and Jacoby employed a cost- benefit approach. 

The example centers around the pollution problems of an arti- 

ficial river basin, the Bow River Valley, whose main features are shown 

in Figure 6.6. Industrial pollution is represented by the Pierce -Hall 

Cannery, located near the head of the valley. There are two sources 

of municipal waste, Bowville and Plympton. A state park is located 
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Bowville 
(250,000) 

Plympton 
(200,000) 

Bow River 
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Pierce -Hall 
Cannery 

Robin 
State Park 

STATE LINE 

Figure 6.6 Main features of the Bow River Valley. 

Numeric values indicate river miles. 
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between the cities. The lower end of the valley adjoins the state 

boundary line. 

The Bow River Water Pollution Control Commission must set 

pollution standards for the entire valley. But it must act with an 

awareness of the effect of any additional effluent treatment costs on 

the economic health of the valley. Rather than model the interactive 

process of group decision - making in this political body, we will 

view it as "Big Brother," a term borrowed from Dupnick (1971) to 

denote a governmental decision - making body in the abstract. As 

Dupnick mentions, the term is actually borrowed from Orwell's 

Nineteen Eighty -Four (1949). Big Brother then is our decision maker. 

The Bow River Valley Basin 

The Bow River. The Bow River has a flow mate of 800 cubic feet 

per second (cfs) and a velocity of 0.5 feet per second (fps) during 

the summer drought months. No tributaries flow into the valley and 

we will assume no water losses due to evaporation, transpiration from 

trees, etc. The specification of water quality has been reduced to a 

single dimension, dissolved ozygen concentration (DO). We are ignoring 

floating solids, color, turbity, coliform bacteria, taste and odor, 

temperature, pH, radioactivity, etc. Similarly, the waste content of 

the municipal and industrial effluents is assumed to be described by 

the number of pounds of biochemical oxygen demanding material (BOD) 

they carry. BOD is separated into carbonaceous and nitrogenous mate- 

rial. Again, we are ignoring many factors here. 
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Pollutants fram upstream cities have diminished the DO concen- 

tration fr an a saturation level of 8.5 milligrams per liter (mg/1) to 

only 6.75 mg /1 at the Pierce -Hall Cannery. The current summer DO 

levels at other points of interest are Bowville, 4.75 mg /1; Robin State 

Park, 2.0 mg /1; Plymptcn, 5.1 mg /1; and 1.0 mg /1 at the state line. 

Pierce -Hall Cannery. The Pierce -Hall Cannery produces slightly 

over seven million (M) equivalent cases (eqc) each year. One eqc repre- 

sents 24 #303 cans. Primary waste treatment facilities in the form of 

screening and sedimentation equipment have already been installed but 

the waste stream still carries about one pound ultimate BOD for each 

case produced. The cannery discharges approximately 30 million gallons 

per day (mgd) with an ultimate carbonaceous demand (BODc) of 28,000 

pounds per day ( # /d) and an ultimate nitrogenous demand (BOD) of 

19,000 # /d. (The gross or before treatment BOD loads are 40,000 #/d 

and 28,000 #/d respectively.) 

In order to reduce the wastes further, additional treatment 

facilities would have to be installed. A consulting firm has developed 

the figures shown in Table 6.4 for various specific alternatives. 

We assume that there is a continuous range of alternatives 

available so that the following relationship can be developed: 

AAC= 59 
59 

1.09 -x 

where AAC is the gross additional annual cost in thousands, and x is 

the proportionate reduction in gross BOD at the cannery. The influ- 

ence of any additional cost is mitigated by the federal corporation 

tax so that the net additional cost is 60% of the annual cost. 
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Type of 

Treatment 

TABLE 6.4 

Cost of Additional Waste Treatment 

Percent Gross 

BODc Removed 
Gross Additional Annual Cost2 

Pierce -Hall Bowville Plvmpton 

Primary 30 $ 0 $ 0 $ 0 

Primary + A 80 72,000 650,000 550,000 

Primary +'B 90 151,000 1,368,000 1,157,000 

Primary +B +C 95 256,000 2,305,000 1,950.000 

1. "A" is low efficiency secondari treatment. 

"B" is high efficiency secondary treatment. 

"C" is tertiary treatment. 

2. Primary treatment facilities are now in place so there is no 

additional cost. 
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The selling price of the product is $3.50 per eqc yielding 

annual gross sales of $25M. The firm's net operating revenues, after 

income taxes, are 1.5% of gross sales when only primary treatment is 

employed. This net profit of $375,000 a year is a return of 7.5% on 

the stockholders' equity of $5M. The firm is not a price leader and 

will not be able to raise its price appreciably even if a large in- 

crease in treatment costs is imposed. Nor is it aware of any changes 

in its methods of processing that would enable it to reduce its waste 

load at the current scale of operations. Therefore any increase in 

treatment costs would have to come out of net profits. For example, 

primary plus law efficiency secondary treatment would cost $72,000. 

The net cost is $43,200 (.6 x $72,000) so the new profit level is 

$331,800 ($375,000 -$43,200). The return on equity would then decrease 

to 6.6%. The relationship between costs (AAC) and percent return on 

investment (r) is: 

r 5,000Ó000 (375,000 - .6AAC) 6.1 

The cannery will require additional financing within the next 

few years to replace worn out equipment and facilities; the likeli- 

hood of acquiring those funds is directly related to the level of 

net profits. On the other hand, the cannery's 800 employees come 

mainly from Bawville and make use of Robin State Park, so that 

improvement of the river will enhance the amenities available to them. 

Baaville. Bowville is the major urban area of the basin with 

a population of 250,000. It discharges 51 mgd of effluent. Even 

after primary treatment removes 30% of both BODc and BO ñ, the 
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effluent contains 89,600 #/d of BOD (128,000 #/d gross) and 33,600 #/d 

of BOD (48,000 #/d gross). This load, together with the waste from 

the cannery, makes the river unsuitable for recreational use at Robin 

State Park. 

The public works department of Bowville has prepared cost 

estimates for installation of additional treatment facilities similar 

to those considered by the cannery. These figures are shown in 

Table 6.4. The relationship between waste reduction and cost can be 

expressed as: 

AAC= 
532 

532 

1.09-x 

where AAC is the gross additional annual cost in thousands, and x is 

the proportionate reduction in gross BOD at Bowville. However, the 

cost to Bowville of the additional treatment is reduced because the 

Federal Water Pollution Control Act provides a grant which covers 50ó 

of the construction costs, which are about one -half of the total costs. 

So the city would pay only about 75% of the total cost. 

Additional costs will affect the city's tax rate according to 

the relation: 

At = 2.4 x 10-3 AAC 6.2 

where At is the increase in the tax rate per thousand dollars assessed 

valuation. For example, additional costs of $650,000 reduce to 

$490,000 net costs so the tax rate increases by $1.17 (i.e., 

2.4 x 10-3 x .75 x $650). 

The current tax rate is already $63.50 per thousand dollars 

assessed valuation, and the city comptroller believes that recent 
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increases in teachers' and firemen ' salaries will raise the rate still 

higher. This fact is of considerable importance because Bowville's tax 

rates are already higher than Plympton's, which competes with Bowville 

for new industries. 

Although Bowville's direct gain fran improving the quality of 

the Bow River is small, cleaning up the river would dllvact more 

tourists and vacationers to the valley and permit the development of 

water based recreation at Robin State Park. The city's own park is so 

overcrowded that plans for expanding it have been considered. These 

changes would not be necessary if Robin State Park were usable. 

Plympton. With a population of 200,000, Plympton is smaller 

than Bowville and somewhat less affluent. It has a primary treatment 

plant and after treatment the 43 ngd effluent of the city contains 

67,000 #/d of ultimate BOD and 25,000 #/d of ultimate BODE. (The 

gross BOD loads are 95,700 #/d and 35,700 #/d respectively.) The costs 

of various levels of treatment at Plympton comparable to those for the 

cannery and Bowville are shown in Table 6.4. We can express the rela- 

tionship between cost and amount of waste removal by: 

AAC = 
4 

- 450 

1.09 -x 

where AAC is the gross additional annual cost in thousands, and x is 

the proportionate reduction in gross BODc at Plympton. The cost of 

treatment at Plympton is less than for Bowville because Plympton is 

smaller. But the effect on the tax rate is reversed because Plympton 

is a poorer city with a lower value of taxable property per capita. 



The relationship between cost and the tax rate is given by: 

At = 3.33 x 10 -3 AAC 6.3 
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where At is the increase in the tax rate per thousand dollars assessed 

valuation, and AAC is the net additional annual cost to the city in 

thousands. An additional cost of $550,000 reduces to a net cost of 

$410,000 with an increase in the tax rate of $1.37 (i.e., 3.33 x 10 -3 

x .75 x $550). 

Plympton has no recreational facilities of its own and is 

completely dependent upon the facilities of Robin State Park. Conse- 

quently, Plympton must bear its share of the cost of cleaning up the 

river. In addition, the city is more dependent upon tourism for 

revenues and for this reason would like to have Robin State Park im- 

proved. Finally, maintenance of an adequate DO level at the State Line 

is principally Plympton's responsibility. 

Bow Valley Water Pollution Control Commission. The commis- 

sion is made up of representatives from all three waste sources 

together with members of the state and federal government. Rather than 

explore the interactions of the group, we assume the existence of a 

composite individ>>al referred to as "big brother," (BB). BB is a 

political figment who represents all of his constituents. The 

problem BB faces is to determine, first, a policy vector, x, which 

satisfies the constraint that the DO level of the Bow River at the 

state line is greater than 3.5 mg /l. The components of x, (x1, x2, 

x3), are the proportionate reduction in carbonaceous waste load to be 

imposed upon Pierce -Hall, Bowville, and Plympton. We have assumed 
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that the proportionate reduction in BODE is a function of that for 

BOD so that only one set of values need be specified. The relation- 

ship used in this research is discussed in the next section. The 

values of all these variables are currently at 0.3. Having found a 

policy which satisfies the above constraint, BB must then locate 

any "better" policies. At this point, we define "better" as "produc- 

ing a higher subjective value to BB." But BB has been assumed to 

reflect the social group he represents; consequently, we may suppose 

that higher valuation by BB implies higher valuation by the group. 

If we wish to view "valuation" as "utility," then BB seeks to increase 

the collective utility of the group. The framework in which our analy- 

sis takes place allows BB to alter his value structure, corresponding 

to changes in social values (i.e., the relatively recent ecological 

movement). 

We are not trying to define and discuss collective utility 

formally; this would require far more space than we have here. 

Rather, we are seeking to relate the assumptions made in this case 

to others which have been accepted elsewhere and hence make ours 

more palatable. The interested reader is referred to Dupnick (1971) 

and Dupnick and Duckstein (1971). Lesourne (1964) is one of the 

principal contributors in this area. 

BB is looking at six indicators of the worth of any decision 

(6 goals): the DO levels at Bowville, Robin State Park, and Plympton; 

the percent return an investment at the Pierce -Hall cannery, and the 

addition to the tax rate for Bowville and Plympton. Initially, BB 
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would like to raise the DO level at all the above locations to at 

least 6.0 mg /l. But BB also wants the percent return on investment 

at Pierce Hall to remain above 6.5% and the addition to the tax rate 

at both Bowville and Plympton to remain below $1.50 per thousand 

assessed valuation. 

So BB must impose regulations upon his constituents. But 

they are political and economic bodies whose individual interests do 

not coincide and whose interests are not entirely separate from 

those of BB. We would be very hesitant about attempting to model 

such a complex situation if we were required to express BB's prefer 

ences analytically. Fortunately, the algorithm which we have developed 

allows BB to evaluate the results of each alternative policy subjec- 

tively and decide which is "best." 

Streeter -Phelps Model of DO Concentration in Streams 

The decomposition of organic waste in a stream reduces the DO 

level at a rate proportionate to the concentration of waste in 

the stream. Streeter and Phelps (1925) have proposed a model of 

this process. They assume that 1 gram of BOD absorbs 1 gram of DO. 

If the DO level is already zero, anaerobic decomposition takes place. 

We will assume that the current raw waste treatment reauirements will 

ensure that the DO level is above zero so that this aspect can be 

omitted from the model. As the DO level falls below the saturation 

level, gs, additional oxygen is absorbed into the water from the atmos- 

phere. The magnitude of gs is influenced by temperature and flow 
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characteristics of the river; the average value for the Bow River 

during the summer months is 8.5 mg /1. These two opposing processes, 

deoxygenation and reoxygenation, determine the final DO level. 

The proportion of carbonaceous versus nitrogenous substances 

affects the decomposition process because the oxidation of the 

nitrogenous material begins some time after that of the carbonaceous. 

The effects of the two wastes are additive so that the impact of 

the nitrogenous component can be approximated as a dummy waste 

source located downstream. The distance used in this example is 

20 miles downstream. 

The effects of the three different waste sources are also 

additive so that changes in the DO level for the river are the 

sum of changes caused by variations in waste reduction at each source. 

The proportionate reductions in gross BODE and BOD after 

treatment are related by the expression: 

w = ' 6.4 

1.39-x 

where w is the proportionate amount of gross BODE removed, and x is 

the proportionate amount of gross BODc removed. For example, if a 

method of treatment is selected which removes 90% of the BODc, then 

according to the above equation, 67% of the BOD is removed. We 

will assume that the equation is valid for all of the different 

types of treatment considered and, for simplification, that it applies 

to the cannery, Bowville, and Plympton. 

In the Streeter -Phelps model, the impact of a change in waste 

load at point i as measured at point j downstream is given by: 
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k 
-k1m -k2m 

/ 
dij a F(k lk 10 v- 10 v 

2 1 
) 

where dij is the transfer coefficient in units of (nig /1) /( # /d) 

a is a dimensionality constant equal to 106 mg/1 

F is the flow rate of the stream in #/d 

m is the distance in miles between points i and j 

v is the velocity of the stream in miles /d 

k1 and k2 are constants characteristic of the stream 

measured in units of l/d 

kl = .2 /day for BODc, kl = .3 /day for BOD , k2 = .4 /day (for both) 

For a derivation, the reader is referred to Chapter 4 of Fair, Geyer 

and Okun (1968). The transfer coefficients for the points of interest 

are displayed in Table 6.5. 

On the basis of our additivity assumptions, then, the water 

quality at point j, gj, is calculated from the equation: 

gj = - E (dic Li (xi --.3) + 
d1J 

Li 
(w1 

-.3) ) + gj 6.5 
i 

where 

d.. 
is the carbonaceous transfer coefficient between points i and j 13 

d.r 
is the corresponding nitrogenous transfer coefficient di 

Li is the gross BODc load for source i 

Li is the corresponding gross BODn load 

xi is the proportionate reduction in L1 



T
A
B
U
'
 
6
.
5
 

C
a
r
b
o
n
a
c
e
o
u
s
 
a
n
d
 
N
i
t
r
o
g
e
n
o
u
s
 
T
r
a
n
s
f
e
r
 
C
o
e
f
f
i
c
i
e
n
t
s
 

C
e
l
l
 
v
a
l
u
e
s
 
a
b
o
v
e
 
t
h
e
 
d
i
a
g
o
n
a
l
 

C
e
l
l
 
v
a
l
u
e
s
 
b
e
l
o
w
 
t
h
e
 
d
i
a
g
o
n
a
l
 

A
l
l
 
v
a
l
u
e
s
 
a
r
e
 
t
i
m
e
s
 
1
0
 -
5
;
 
i
.
e
 

P
i
e
r
c
e
 -
H
a
l
l
 
t
o
 
B
o
w
v
i
l
l
e
 
i
s
 

a
r
e
 
c
a
r
b
o
n
a
c
e
o
u
s
 
c
o
e
f
f
i
c
i
e
n
t
s
.
 

a
r
e
 
n
i
t
r
o
g
e
n
o
u
s
 
c
o
e
f
f
i
c
i
e
n
t
s
.
 

.
,
 
c
a
r
b
o
n
a
c
e
o
u
s
 
c
o
e
f
f
i
c
i
e
n
t
 
f
o
r
 

5
.
6
8
 
X
 
1
0
 -
5
 
(
m
g
 /
l
)
 

/
 

(
 
#
 /
d
)
 

T
O
 

B
o
w
v
i
l
l
e
 

R
o
b
i
n
 

S
t
a
t
e
 
P
a
r
k
 

P
l
y
m
p
t
o
n
 

S
t
a
t
e
 
L
i
n
e
 

-
5
.
6
8
 

-
1
.
3
1
 

-
.
4
4
2
 

-
.
0
8
3
 

P
i
e
r
c
e
 -
H
a
l
l
 

-
3
.
1
5
 

-
.
7
7
1
 

-
.
0
7
3
 

0
 

-
2
.
1
8
 

-
.
7
6
4
 

-
.
1
4
5
 

B
o
w
v
i
l
l
e
 

0
 

-
5
.
5
3
 

-
1
.
6
0
 

-
.
1
6
2
 

0
 

-
3
.
4
9
 

P
l
y
m
p
t
o
n
 

0
 

-
7
.
3
3
 



135 

wi is the proportionate reduction in Li ; as explained previously, 

w. = f(xi) 

gj iR the current DO level at point j 

1 Pierce -Hall Cannery 

i= 2 Bowville 

3 Plympton 

i Bowville 

j= 2 Robin State Park 

3 Plympton 

4 State Line 

Formulation 

BB must set values on three decision variables: x1, x2, and 

x3. They are the proportion of BOD that the cannery, Bowville, and 

Plympton must remove from their waste streams before discharging them 

in the Bow River. From a knowledge of x, we can calculate the corres- 

ponding reduction in BODE that will take place. Then the DO levels at 

Bowville, Robin State Park, and Plympton can be calculated. The 

costs of such treatment can be determined and along with their subse- 

quent effects on profits and taxes. 

The criterion functions for goals 1, 2, and 3 and the con- 

straint regarding DO level at the state line are based on equations 

6.4 and 6.5. The last three goals are based on equations 6.1, 6.2, 

and 6.3 respectively. 
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The decision variables are initially set at .3 and the 

starting goal levels are: 

GL = (6, 6, 6, 6.5, 1.5, 1.5) 

As the reader recalls, we will set 
AL0 

= GL. 

Goals and Criterion Functions. 

Goal 1: DO level at Bowville = zl 2 ALl 

z1 = 6.5 + 5.68 10-5 4.0 104 (x 
1 
-.8) 

r(z1) _ (0, 8.5] 

Goal 2: DO level at Robin State Park = z2 ? AL 

z2 = 3.7 + (1.31x10 5.4.0x1O4(x -.3) + 3.15 1052.810(w1-.3)) 

+ (2.18.10- 5x1.28x105(x2 -.3) + 5.53.10- 54.8.104(w2 -.3)) 

r(z2) _ (0, 8.5] 

Goal 3: DO level at Plympton = z3 AL3 

z3 = 5.2 + (4.42010-64.0104(x1 -.3) + 7.7110-62.8104(wí.3)) 

+ (7.64.106.1.28.105(x2-.3) + 1.60.10-5.4.8.1O4(w2-.3)) 

r(z3) - (0, 8.5] 

Goal 4: Percent return on equity at Pierce -Hall Cannery = 

z4 
AL 

4 

2 

z4 = 10 (3.75.105 - .6( 5 59) ) 

5.10 1.09-x1 

r(z4) = (0, 7.5] 
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Goal 5: Addition to the tax rate at Bowville = z5 ? 
AL 

5 

z5 = 2.4 x 10-3 ( 
532 

532) 

1.09-x2 

r(z5) _ (0, 10] 

Goal 6: Addition to the tax rate at Plympton = z6 AL6 

z6 = 3.33.10 -3 ( 

450 
450) 

1.09 -x 

r(z6) _ (0,12] 

Constraints and Bounds. 

Constraints: DO level at the State Line = gí ? 0 

gl = 1.0 +(8.3 10-7.4.0.104(xl -.3) + 7.3.10 -7.2.8.104(wí -.3) ) 

+(1.45.10- 6.1.28.105(x2 -.3) + 1.62.10 -6 4.8.104(w2 -.3) ) 

+(3.49.10- 5.9.57.104(x3 -.3) + 7.33.10- 3.3.57.104(w3 -.3)) 

-3.5 

Bounds: Proportionate reduction in gross BOD 
c 

.3 x 1.0 

Transformed Equations. 

z.-0 

Y. 8.5-0 + 
E i= 1, 2, 3 

z4-0 z5-0 

Y - 4 7 . 5 -0 Y - 
+ 

E 

z6-0 

y6 15-0 



The A. are determined similarly. 

Then 

and 

So 

di =` 
PL. i= 1, .. , 4 

di = }'i/Ai k = 5, 6 

6 

s = E d. 

i=1 1 
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Solution 

In the following discussion, only the principal problem will 

be expressed far each cycle. The auxiliary problems are constructed 

in the same manner as in the example earlier in the chapter. For ease 

of notation, we will write the constraint for the DO level at the 

state line as g1 0, recognizing that it is formulated in the pre- 

vious sections. Graphical information will be presented at each 

cycle for only the goal that we assume BB adjusts and enters as a 

constraint. Haw ever, the complete numerical results from each cycle 

are tabulated. 

The pattern of adjustments that BB makes are of course, 

merely an example. An alternate view of BB's preference would imply 

an alternative ranking of the goals and would lead to a different 

satisfactum. 

First Cycle. The principal problem to be solved initially is 

6 

minimize = E d. 
1 

i =1 



subject to 

.3 x 1.0 
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The solutions to this problem and the auxiliary problems 

are shown in Table 6.6. Examining these results, it is apparent that 

the change in the tax rate at Plympton (goal 6) is relatively indepen- 

dent of attainment or nonattainment of the other goals because the 

reduction in BOD at Plympton is heavily influenced by the DO con- 

straint at the state line. It seems reasonable to choose an aspiration 

level for that goal and enter it as a constraint. From Figure 6.7, 

BB assesses the impact of such an action and sets a new aspiration 

level of 1.55 for goal 6. BB argues that such an increase is not 

really different from the original goal of 1.50. 

Second Cycle. The principal problem for this cycle is 

5 

minimize 
s2.6 = I d. 

i =1 

subject to g10 
g2 = 1.55-z6 0 

.3fx 1.0 

Table 6.7 contains the results of this cycle. 

BB notes that goal 2 is closely related to goals 1 and 3, and 

enters it as a constraint on this cycle. Figure 6.8 shows the effects 

of satisfying this goal. It is apparent that the addition to the tax 

rate at Bowville is going to be drastically affected if a DO level of 
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6 mg /1 at Robin State Park is to be achieved. At this point BB discov- 

ers that the goal of 6 mg /1 was set rather arbiL/arily without regard 

to accepted water quality use standards. The state standards indicate 

that 5 mg/1 is suitable for bathing and recreational purposes (includ- 

ing water contact sports), provides excellent fish and wildlife 

habitat, and is esthetically pleasing. This is taken from Dorfman 

and Jacoby (1969) and is a slight modification of the Massachusetts 

standards. Figure 6.8 enables BB to project the effect of satisfying 

goal 2 at a level of 5 mg /l. This is the change we will make to enter 

the third cycle. 

In Chapter 4 we discussed the nationale behind our method 

of altering AL. As a comparison of the two procedures, we will re- 

peat cycle 2 using the alternate aspiration level vector: 

Ail = (6.05, 4.65, 5.95, 6.00, 1.50, 1.55) 

which is based on Figure 6.7 setting z6 equal to 1.55. The results of 

that cycle, termed "alternate second cycle," are collected in 

Table 6.8. From this we see that we do not knòw if the original 

objectives for goals 2 through 5 are still attainable and so we 

would have to now escalate the values back up and run an additional 

cycle. This exemplifies the drawbacks of the approach. 

Third Cycle. The principal problem far this cycle is 

minimize s3.62 
- dl + d3 + d4 + d5 
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subject to gl 0 

g2 = 1.55-z6 0 

g3 = z2-5.0 ?. 0 

.3 x f 1.0 

with AL2 = (6.0, 5.0, 6.0, 6.5, 1.5, 1.55) 

Table 6.9 contains the results of this cycle. 

The continued economic existence of the Pierce -Hall cannery 

is important to the welfare of the whole valley, but particularly 

to Bowville. Almost the entire work force of 800 people live at 

Bawville; and if the cannery goes out of business, they will create 

a burden on the city because there are no other immediate sources of 

employment for them. Consequently, it is to Bowville's advantage to 

keep the cannery operating if such an action does not penalize the 

city too much. BB recognizes this situation and decides that a firm 

bound on the return on investment for the cannery must be entered as 

a constraint. This is goal 4 and examination of Figure 6.9 enables 

BB to adopt 6.0% as an acceptable level of return. This constraint is 

entered into the problem as input into the next cycle. 

Fourth Cycle. The principal problem to be solved in this 

cycle is 

minimize 
s4.624 dl + d3 + d5 

subject to g1 _> 0 

g2 = 1.55-z6 ? 0 
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g3 = z2 -5.0 0 

g4 = z4 -6.0 0 

.3 x 1.0 

The results are tabulated in Table 6.10. 

In attempting to impose attainment of goal 5 as an additional 

constraint, BB is informed by the computer program that he has appar- 

ently formed an inconsistent constraint set (see Chapter 5). After 

several attempts with alternate starting points to find a feasible 

point, he concludes that AL5 will indeed have to be modified or 

else he will have to reevaluate the previous aspirations he has 

developed and satisfied. Fortunately, rising AL5 is not logically 

at odds with the development up to this point. BB rationalizes such 

an action by noting that Bawville is already at an advantage with 

respect to Plympton in the realm of tax rates. Consequently, in 

BB's desire to provide equitable treatment to all his constituents 

and to alleviate that above mentioned disparity, he modifies his 

aspirations regarding goal 5. 

BB observes in Table 6.10 that the value z5 is hovering 

around 1.87 as the various other goals are satisfied, so he has 

to decide if such an aspiration level is compatible with his other 

desires. In particular, it is not overly burdensome to Bowville. We 

will assume that BB does allow AL5 to be raised to 1.90 and enter 

into the next cycle. 
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Fifth Cycle and Termination. The principal problem to be 

solved on this cycle is 

minimize s5.6245 
= d1 + d3 

subject to gl 0 

g2 = 1.55 -z6 ?. 0 

g3 = z2 -5.0 0 

g4 = z4-6.0 0 

.3 x 1.0 

The results of this cycle are shown in Table 6.11. From this infor- 

nation BB decides that he has reached a satisfactum. BB's policy 

decision is to impose waste reduction requirements of 88% on the 

cannery, 87% on Bowville, and 82% on Plympton. The results have 

been rounded off because it is difficult to maintain fine control 

on waste treatment processes,. 

Discussion 

This example has attempted to demonstrate the applicability 

of this algorithm to realistic problems. It shows that the solution 

or satisfactum which is finally reached is a result of the individual 

value structure of the DM -- BB in this case. We can imagine that 

a change in BB's constituency would alter the choice of an acceptable 

policy. In addition, if some members of the commission are able to 

exert extraordinary influence, this too would be reflected in BB's 
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choices. Of course, in the example, the pattern of choices reflected 

our own biases. 

The results obtained by Dorfman and Jacoby are not comparable 

to ours because we have changed most of the numerical values in their 

original formulation. However, we can comment that their methodology 

seems less satisfactory than ours far two reasons: 

1) They use an explicit goal weighting scheme which assumes 

that the weights are constants. This does not seem to provide the DM 

an opportunity to change his mind as he receives information concern- 

ing the set of available alternatives. 

2) The weighting scheme also requires that the DM be able to 

develop a complete ordering on the goals before receiving any infor- 

mation concerning available alternatives. In our method, we ask only 

that the LYE be able to select the most important unsatisfied goal at 

each cycle of the algorithm. This allows him to build, or perhaps 

discover, a complete ordering as the information is generated. 



CHAPTER 7 

DISCUSSION, CONCLUSIONS 

Hopefully, the preceding examples have clarified the 

mechanics of the algorithm we hava developed so that we can examine 

its limitations and progress to some conclusions regarding the tech- 

nique. Our work has been principally exploratory, so we will be 

limited in the number of definite conclusions we can propose. In 

discussing the limitations of the research, we will make suggestions 

for future areas of exploration. 

We can look back to determine whether the objectives of this 

research have been accomplished, in particular, whether we solved 

the problem stated in Chapter 3. Our answer to this is a cautious 

"yes." It is a cautious reply because the algorithm has not been 

tested with an actual decision -making individual or group in a real 

decision situation. 

Discussion 

The many limitations of this research can be divided into 

those associated with the definition and scope of the research problem 

and those associated with the algorithm developed during the project. 
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Scope and Definition of the Research Problem 

1. The objectivity requirements regarding goal attainment 

limit the class of decision situations to those whose criterion func- 

tions can be expressed analytically. However, it is entirely possible 

that many decision problems exist in which the criterion function is 

an implicit evaluation in itself. As an example, the level of employee 

morale may, in the final analysis, best be measured by an intuitive 

feeling on the part of a skilled manager rather than an objective 

response surface. To some extent, this is a reflection of our under- 

standing of the forces at work, and the future may reveal objective 

measurements which will make such problems amenable to solution. 

2. As indicated previously, it is unlikely that the DM can 

comprehend more than 7 goals at one time. There are 7! possible 

rankings of this set of goals, so it is an implicit requirement that 

the DM be able to partition them into subsets that can be ranked. 

This assures that at each iteration he will be able to decide for 

which goal(s) to fix the aspiration levels. We have assumed that the 

pattern in which the aspirations are assigned reflects the DM's 

implicit ranking of the goals. It is not necessary that this be 

true, but the process could continually cycle if the DM is in an 

oscillatory frame of mind. Note that a "re- ranking" of these goals, 

a realignment of the value structure does not cause any difficulties 

unless the DM oscillates between alternate value structures and 

the corresponding aspiration levels remain unchanged. At this 



156 

point we are again in the area of psychological convergence to a satis- 

factum and our earlier comments in Chapter 4 still apply. 

Future work with this type of algorithm (Interactive Program- 

ming) might be directed toward an investigation of the behavior of 

a DM for different types of decision situations. In particular, two 

questions might be investigated. First, do DM's in general tend to 

develop a single unmodified ranking of the goals when solving such 

problems interactively? Or do they "change their minds" frequently 

and restart the solution procedure with different rankings and goals 

based on their previous results? Second, is there a relationship 

between the number of goals and the number of times that alternate 

rankings are developed? 

3. The assumption that the preference function, although 

implicit, possesses completeness has been questioned by Aumann (1964, 

p. 222). He argues that the decision maker may not have 'nell- defined 

preferences" between two alternatives. However, the alternatives 

the decision maker is faced with in the search procedure are, we 

believe, comparable because they differ only within the framework of 

the overall problem. That is, the elements in the vector of values 

from the set of criterion functions vary in magnitude, but not in 

nature. The decision maker may be called upon to compare the vectors 

(pollution of lOppm, 10% return on investment) vs. (pollution of 

20ppm, 15% return on investment). This is, we maintain, not the 

same problem as deciding between (pollution of lOppm, 10% return 

on investment) vs. (wearing gray suit to office, dinner afterwards). 
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4. The subject of group decision -making has been purposely 

avoided in this research because it is so complex. However, the 

pervasiveness of this form of polblemr- solving (the ever -present comr 

mittee) requires us to address ourselves to the subject and comment 

upon the applicability of this algorithm to such decision- making 

problems. We have sidestepped the issue of the Boa River Valley 

Water Commission by inserting a synthetic individual, BB, into the 

situation as a DM. Now we wish to ask: Can this method be used by 

a group of people who must interact and arrive at a decision? 

We note that this process (decision -making) is more complex 

for groups because it involves synthesizing the individual prefer- 

ences of the members. Mare exactly, it requires a subtle flow of 

influence and persuasions so the individuals' aspirations are altered 

sufficiently to allow some measure of accord with respect to the 

various alternatives presented. 

As the decision -making process begins, ". . . we have 

the possibility that each judge has his own unique bias for judging 

an optimum. When this happens, any average would be inappropriate; 

a different optimum would have to be determined for this judge." 

(Gulliksen 1964, p. 73) Obviously, if each member of the group 

refused to modify his aspirations, then each would be pursuing his 

own optimum and no decisions could be made. However, since deci- 

sions are actually made in the real world, people must be willing 

to make concessions to the group. 
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One possible explanation for this willingness to shift is 

that, although the individual's preference structure is well- defined 

on important (to him) issues, it is far less rigid on matters which 

are the normal subject of debate. As an illustration, a committee 

discussion concerning whether or not to legalize euthanasia would 

generate much heated debate because the subject touches directly upon 

fundamental values which guide the individual's life. 

Thus the usefulness of our algorithm in such a situation is 

based on its ability to enable the various DM's to explore not only 

their awn alternatives but those of the other members of the group. 

We envision an application in which each DM uses the algorithm inde- 

pendently to find his satisfattum. After this is accomplished, 

pooling of results will hopefully put the individuals in a position 

to make additional cycles while modifying their aspiration levels 

until at least a majority are satisfied with an alternative. An 

added benefit of this approach is that, subject to our previous 

assumptions, it will show inconsistencies in the aspirations of the 

various members and allow them to work out a satisfactory solution. 

Characteristics of the Algorithm 

1. The transformations on the goal formulations, Table 4.1, 

are not linear and vary among the different types of goals. Some 

are more sensitive than others to changes in the transformed 

criterion functions and (indirectly) to changes in the policy vector. 

So the goals are not treated identically in the surrogate objective 
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function and this prevents direct comparison of the values for the 

dimensionless indicator of attainment. 

We have been content to find a set of transformations that 

have the property of giving a value greater than "one" if the goal is 

not satisfied with respect to the current aspiration level for 

that goal. But in accomplishing this, we have acquired the diffi- 

culties listed above. We are unable to find a set of transformations 

which are an improvement, in that regard, over the current set but 

research in this area would perhaps produce them. This would be 

highly desirable because this situation is likely the most severe 

mathematical limitation on this research. 

2. The development of the surrogate objective function has 

been predicated on the requirement that the criterion functions 

be continuous so that the indicator of attainment, d, varies contin- 

uously. In an alternate problem formulation involving integer 

solutions, a different optimization mechanism would have to be 

imbedded in the algorithm along with a means of adding and deleting 

constraints. The formulation of d can remain the same, but it 

will not be continuous. In a more general vein, a mixed integer 

nonlinear programming problem would require a different mechanism. 

The expansion of this technique into such areas represents a poten- 

tial subject for further research. 

3. We have indicated that the selection of values denoting 

the relevant range for each criterion function is arbitrary provided 

the actual variation is contained in the specified interval. This 
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ensures that the transformed criterion function, y, is in the interval 

(0,1]. It is tempting to automatically set the range for all 

functions at 

r=[a,b] 

where a . - co and b + + 00. However, if this is done, then 

Y 
zapper zlower 

z-zlower 

for all values of z. Consequently, the variation in y is very small 

and the surrogate objective function, s, is essentially a constant 

rather than a function of the policy vector, x. 

But trying to tightly bracket the variation in z also contains 

a pitfall. If z should, during the course of the optimization phase, 

pass outside the specified range, r, then the requirements of the 

algorithm are not satisfied and invalid (from our point of view) 

results can occur. This is particularly true in the instance where 

z becomes less that 
z1ower 

because then y is negative, the corres- 

ponding d term is negative, and so s, the function we are minimizing, 

will contain a negative term. 

Consequently, the range specified for each function should 

be the minimum and maximum values of the function evaluated at the 

bounds of the decision variables. This is based on the fact that, 

if the optimization phase starts at a point within those bounds, 

then it is impossible for those bounds to be exceeded due to the 

construction of the algorithm. 
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4. The programming requirements for the optimization phase 

present a more pragmatic limitation. The complexity and cost of 

nonlinear programming will probably restrict application of this 

method to "significant" decision problems. The setting up of the 

problem may require a substantial time delay implying that the 

decision situation does not require immediate resolution. We have 

tried to make the program as general as possible, but the formulation 

of the surrogate objective function and the derivation of the expres- 

sions for the partial derivatives may be quite tedious. 

5. The response surfaces have been assumed deterministic. 

A stochastic criterion function could be used by setting the response 

surface equal to the mean values of the function at each point. This 

may, however, prove quite unsatisfactory if the distribution is skewed 

or possesses a large variance. Our inquiries into the literature have 

revealed that there is not, apparently, a satisfactory algorithm for 

stochastic nonlinear programming; consequently, this topic may be 

difficult to explore. Parenthetically, we note that the difficulties 

attendant in developing a universally accepted deterministic non- 

linear programming algorithm foretell a long delay in the development 

of a similar stochastic technique. 
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Comparison with Alternate Approaches 

Any assessment of the algorithm should include a comparison 

with other methods for solving the same or similar problems. The 

literature in the area is still somewhat sparse but there are a few 

alternative techniques which we might consider. 

Initially, we can return to the classification of Roy (1970) 

for a source of alternatives. We have already discussed his various 

categories in deciding upon the philosophy of solution that we felt 

best suited to our needs. Looking back, we can compare our work 

with that of others he cited. The method of Benayoun et al. (1970) is 

limited to linear frameworks and so is more restrictive than our 

method; the work by Geoffrion (1970) is more closely related to ours. 

That method has been applied (Geoffrion, Dyer, and Feinberg [1971]) 

to the operation of an academic department. Geoffrion supposes, as 

do we, the existence of an ordinal preference function (structure) 

but he also requires that it be concave, increasing and differentia- 

ble. We note that Geoffrion et al. (1971) also regard 6 -8 goals as 

a reasonable number for the DM to consider at one time. The DM 

supplies explicit information regarding substitution rates between 

commodities at any point in the constraint space. This effectively 

specifies a direction of movement. The DM must also select the 

amount of movement to be allowed. Our opinion is that this procedure 
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represents a fairly formidable task to set before a DM, requiring him 

to verbalize trade -off rates that he may be unwilling to specify. 

The second part of each iteration in that method, selection of 

amount of movement, is done in a graphical manner analogous to that 

employed in this paper. As a final note, it is unclear how dif- 

ferent types of goals, such as an interval type goal, can be 

represented in this system. 

Johnsen (1968, Chapter 9) discusses many multiple goal models, 

most of which require a weighting scheme in one guise or another. 

However, he also examines the concept of satisfying, rather than 

optimizing models. In particular he notes that classical optimiza- 

tion methods do not even apply in many problem situations. Extending 

the psychological implications of this thought, he considers learning 

and adaptation models as valid tools for the solution of multiple 

objective problems. So in his regard for the role of information in 

decision making and in his interpretation of the psychological aspects 

of it, we would appear to be echoing similar thoughts. But his 

solution to the problem is via simulation of a system designed to 

have certain specific properties. It seems that such an approach 

would be highly desirable for problems involving, say organizational 

design, where the decision problem involves the choice of a system or 

model. Our algorithm would not apply in such a case unless all of 

the criterion functions could be specified. However, simulation 

seems inappropriate in determining answers for a situation in which 

the operating system is fixed for the duration of the decision 
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situation. That is, in the Bow River example, the simulation approach 

would be useful in attempting to formulate a "better" system with re- 

gard to location of the cities, allowed levels of population, etc. 

(Although "better" would have to be defined.) However, it would be 

more cumbersome in trying to locate a satisfactum for the specific 

problem we examined. 

Conclusions 

In reflecting upon these alternative methods, we conclude that 

our research is particularly useful because the restrictions it places 

upon the constraint set, response surfaces, and preference function 

are minimal when compared to other methods. It seems capable of 

attacking realistic mathematical formulations without any modifica- 

tion. Specifically we have found the following: 

(1) The method of converting the various types of goals into 

a surrogate objective function explicitly recognizes that there are 

different types of goal formulations. In particular, it removes from 

consideration the concept of maximize (or minimize) as a goal in itself. 

(2) The method of presenting the results graphically increases 

the feasibility of actually implementing this algorithm because the 

method does not require unusual analytical skills on the part of the 

(3) Although the computer program requires that a subroutine 

be written for it for each problem, the size of the problem that can 

be solved is approximated by the storage required for the LP phase 

(L +M+l)N + (L +M+N +l)(L +2M +3N) : core size of computer 
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where L is the number of equality constraints including goals expressed 

as equalities, M is the number of inequality constraints including 

goals expressed as inequalities, and N is the number of decision 

variables. For example, in the Bow River problem, M was 7 and N was 3, 

so the program required approximately 24 plus 253 storage locations 

for the LP phase. Thus the program can be implemented on almost any 

size computer. 

The time required to solve the problem is, of course, a func- 

tion of the problem itself. We cannot give any formulas to compute 

that time. But we can note that the total central processor time 

required to solve the Boa River example was 18 seconds on a CDC 6400 

This included using 2 starting points for each problem. 

(4) The psychological framework upon which the algorithm 

has been built seems to be a reasonable description of real -world 

decision making. Consequently the algorithm is expected to produce 

results more reflective of the perceptions and biases of the DM who 

uses it. This is, we argue, a necessary ingredient for a useful 

decision- making tool in areas where personal judgment plays an all 

important part in the evaluation of the results. 

(5) The interactive feature allows the DM to develop a rank- 

ing of the goals and to acquire a feel for their interrelationships with 

the constraint set. This learning process is, itself, an important 

aspect of the algorithm. 
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(6) The investigation of the realistic synthetic example of 

the Bow River has shown how a DM can locate at an acceptable alterna- 

tive. 

To summarize, although there are limitations upon the algorithm 

developed and the class of decision situations to which it can be 

applied, the method is nevertheless a viable framework within which 

to formulate decision problems and to generate feasible acceptable 

alternatives. 



APPENDIX A 

MULTIPLE GOAL FORMULATION REFERENCES 

The following list provides a sample of authors who have 

indicated that a multiple goal formulation is normally a part 

of every decision- making problem. 

1. Ackoff, R.L. and P. Rivett. 1965. A Manager's Guide to 

Operation Research, John Wiley and Sons, Inc., New York. 

2. Alderson, W. and P.E. Green. 1964. Planning and Problem Solving 

in Marketing, Richard D. Irwin, Inc., Homewood, Ill. (p. 143). 

3. Allport, G.W. 1937. Personality, A Psychological Interpretation, 

Holt, Rinehart and Winston, Inc., New York (pp. 191 -207). 

4. Arjris, C. 1954. Organization of a Bank, Yale University Labor 

and Management Center (Ch. 5). 

5. Baumol, W.J. 1965. Economic Theory and Operations Analysis, 

Prentice -Hall, Inc., Englewood Cliffs, N.J. (p. 295 -296). 

6. Boyd, H.W., Jr. and S.J. Levy. 1966. "What Kind of Corporate 

Objectives ?" Journal of Marketing, v 30, n 4 (p.53 -58). 

7. Cleland, D.I. and W.R. King. 1968. Systems Analysis and Project 

Management, McGraw -Hill Book Co., New York (p. 21). 

8. Deal, J. 1966. "Does Advertising Belong in the Capital Budget," 

Journal of Marketing, v 30, n 9 (pp. 15 -21, p. 19). 
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9. Dubin, R. et al. 1965. Leadership and Productivity, Chandler 

Publishing Co., San Francisco (p. 71). 

10. Gerth, H.H. and C.W. Mills (translators and editors). 1946. 

From Max Weber: Essays in Sociology, Oxford University Press, 

Inc., New York (Ch. VIII) . 

11. Koontz, H. and C. O'Donnell. 1968. Principles of Management, and 

ed., McGraw -Hill Book Co., Inc., New York (p. 94, 96, 100). 

12. Kotler, P. 1964. Marketing Management, Prentice -Hall, Inc., 

Englewood Cliffs, N.J. (p. 143). 

13. Krupp, S. 1961. Pattern in Organization Analysis, Holt, Rinehart 

and Winston, Inc. (p. 80, 82, 94). 

14. Maier, N.R.F. 1949. Frustration: The Study of Behavior Without a 

Goal, McGraw Hill Book Co., Inc. (p. 94). 

15. Massie, J.L. 1964. Essentials of Management, Prentice -Hall, Inc., 

Englewood Cliffs, N.J. (pp.. 29 -31) . 

16. Marris, W.T. 1969. The Analysis of Management Decisions, Richard 

D. Irwin, Inc., Homewood, Ill (Ch. 7). 

17. Nimrno, D. and T.D. Ungs. 1967. American Political Patterns, 

Little, Brown, and Co., Boston (p. 392). 

18. Pfiffner, J.M. and F.P. Sherwood. 1960. Administrative Organiza- 

tion, Prentice -Hall, Inc., Englewood Cliffs, N.J. (p. 11, 407). 

19. Rigby, P.H. 1965. Conceptual Foundations of Business Research, 

John Wiley and Sons, Inc., New York (p. 48). 



APPENDIX B 

MULTIPLE OBJECTIVE PROBLEM SOLVING PROGRAM (MOPS) 

PROGRAM MOPS( INPUT,OUTPUT,TAPE5= INPUT,TAPE6= OUTPUT) 
C SUBROUTINE USER IS WRITTEN FOR EACH PROBLEM 
C CONSTRAINTS ARE ENTERED, EQUALITY CONSTRAINTS FIRST 
C INCLUDE ALL POSSIBLE GOAL FORMULATIONS. THEN THE 
C CORRESPON9ING FORMULAS FOR THE FIRST PARTIAL 
C DERIVATIVES ARE ENTERED. 
C 
C INPUT DATA 
C NX .NO. OF INDEPENDENT VARIABLES 
C NE NO. OF EQUALITY CONSTRAINTS 
C NN NO. OF INEQUALITY CONSTRAINTS 
C CONVRG TERMINATION CRITERION 
C EPIS TERMINATION CRITERION 
C NGOALS 40. OF GOALS 
C DX INITIAL STEP SIZE VECTOR 
C X INITIAL VARIABLE VECTOR 
C XMIN ANO XMAX VECTORS OF BOUNDS ON X 

C 

C FOR EACH CYCLE, INPUT DATA 
C ITITLE 81 ALPHANUMERIC CHARACTERS 
C IEX VECTOR OF GOALS IN SURROGATE OBJECTIVE FUNCTION 
C (1 =GOAL IN, ,) =GOAL OUT) 
C ALEVEL ASPIRATION LEVEL VECTOR 
C THE USER IS ADVISED TO EXAMINE SUBROUTINE USER TO 
C DETERMINE THE METHOD FOR EXPRESSING THE VARIOUS 
C GOALS AND CONSTRAINTS. 
C 

COMMON /1/ X( 1 C),DEL(10),NX,NN,NC,INQ,VALQ,KK 
COMMON /2/ OBJFN,CONSTR(13) 
COMMON /3/ P(15,25) 
COMMON /6/ IEXIT(10),ALEVEL(10) 
DIMENSION 8(25), 06J(25), MOVE(10), DX(10) 
DIMENSION IEX(1 ), XMAX(10), XMIN(1O), XMOVE(10) 

1, RJ(15), IIEXIT(10), ITITLE(8), XORIG(10), OXORIG(10) 
EQUIVALENCE (NX,N) 
READ 650, NX,NE,NN,CONVRG,EPIS,NGOALS 
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XLRG=1. E 20 
NC=Nt+NN 
NM 1=NE 
NM 2= NE+1 
NM3-NC 
NM4=NC+ 1 
NM5=NX+NC 
NM6=NM5+1 
NM7=NM5+NX 
NM8=N_ M'i+NX 

READ 660, (DX( I) , I=1, N) 
READ 6:60, (X(I),I=1,N) 
READ 660, (XMIN(I) , I=1, NX) 
READ 660, (XMAX(I),I=1,NX) 
"DO 110 I=1,N 
DXORSGiI)=DX(I,) 

110 XORIG(I)=XMIN(I)+.5+(XMAX(I)-XMIN(I)) 
i25 PRINT 670 

READ 680, ITITLE 
IF (ITITLE(1).EQ.it7HSTOP ) GO TO 64í; 

READ 690, (IEX(I),I=1,NGOALS) 
READ 700, (ALEVEL.(I) , I=1,NGOALS) 
ILAST=3HN0 
IFIRST=3HYES 

130 CONTINUE 
IDAVIO=L 
IF (ILAST.E0.3HYES) GO TO 12û 
CALL PERMUTE (IFIRST,ILAST,IEX,NGOALS) 
PRINT 710, NX,NE,NN,CONVRG,EPIS,NGOALS 
PRINT 720, ( (DX(I),XMIN(I) ,X(I),XMAX(I) ) ,I=1,N) 

140 CONTINUE 
YOLD=0 
YNtN=1.E10 
ITRIGER= O 
IPOITT=O 
DO 150 I=1,N 
OX(I)=OXORIG(I) 

150 CONTINUE 
DO 160 I=1,N 
XMOV£(I)=fl 

160 MOVE(I)=1 
PRINT 730, ITITLE 
II =ß 
DO 180 I=1,NGOALS 
IF (IEXIT(I)) 170,180,170 

170 II=II+1 
IIEXIT(II)=I 

180 CONTINUE 
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IF (II.GT.0) GO TO 190 
PRINT 740 
GO TO 2t0 

190 PRINT 750, (IIEXIT(J),J =i,II) 
200 PRINT 760, (ALEVEL(I),I= 1,NGOALS) 

CALL WRITEX (1, -1) 
CALL SECOND (TIME) 
PRINT 770, TIME 

21' INDEX =0 
SUMSQ =0.O 
IF (IPOITT.LT.15G00) GO TO 220 
CALL WRITEX (3,IPOITT) 
GO TO 136 

22 CONTINUE 
IF (NE) 250,250,230 

231? DO 24u I =1,NE 
KK =1 
INQ =I +1 
CALL USER 
RJ(I) =VAL!) 
SUMSQ= SUMSQ +RJ(I) *RJ(I) 

253 IF (NC -NM2) 290,260,26C 
264 DO 283 I= NM2,NC 

KK =1 
INQ = I+ 1 
CALL USER 
RJ(I) =VALQ 
IF (RJ(I)) 270,290,280 

27G SUMSQ= SUMSQ +RJ(I) }RJ(I) 
28.. CONTINUE 
29_ INDEX= INDEX +1 
C COMPUTE MATRIX NM5XNM5 

DO s1!..1 I =1,NM5 
DO 3u'3 J =1,NM5 

3+ R(J, I) =0. 
31 R(I,I) =1. 

YDELTA =ABS (YNEW -POLO) 
POLO =Y NEW 

C CHECK TO SEE IF TERMINTAION ALLOWED 
IF (ITRIGER.NE.2) GO TO 330 
ICK =3 
IF (SUMSQ.GT.CONVRG) ICK =4 
IF (YOELTA.GT.EPIS) ICK =5 +ICK -3 
ICK =3 NORMAL TERMINAION 

C ICK =4 OELX LT EPIS DELY LT EPIS SUMS() GT CONVRG 
C INCONSISTENT CONSTRAINT SET 
C ICK =5 DELX LT EPIS DELY GT EPIS SUMSQ LT CONVRG 
C KEEP GOING 
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C ICK =6 DELX LT EFIS DELY BT EPIS SUMSO GT CCNVFtG 

IF (ICK.E0.5) GO TO 330 
IPOITT=IPOITT-1 
CALL WRITEX (ICK,IPOITT) 
IF (IOAVIO.EO.1) GO TO 130 
IDAVID=1 
DO 320 I=1,N 

325 X(I)=XORIG(I) 
GO TO 14i; 

331 CONTINUE 
KK=2 
INQ=1 
CALL USER 

C COMPUTE MATRIX NM5 X NM8 
DO 420 I=1 ,NX 
DO 340 J=NM4,NM5 
R(J, I+NM5) _(.. 

34, R(J,I+NM7)=0. 
RKWI=RKW 2=1 
IF (XMOVt(I)) 353.37.,36U 

35 RKW1=2. 
RKW2=1. 
GO TO 37D 

365 RKW1=1. 
RKW2=2. 

C COMPUTE VALUES FOR FIRST ROW OF MATRIX AFTER 
C UNIT MATRIX 
37;, IF ((XMAX(I)-X(I)).EQ.û.) GO TO 39:: 

R(I+NM3,I+NM5)=AMAX1(RKW1,(OX(I)/(XMAX(I)-X(I)))l 
GO TO 39,5 

38; R(I+NM3,I+NM5)=AMAX1(RKW1,(0X(I)/1.E-1)) 
39F; IF ((X(I)-XMIN(I)).EQ.J.) GO TO 400 

R(I+NM3,I+NM7)=AMAX1(PKW2, (DX(I)/ (X(I)-XMIN(I)) ) ) 

GO TO 410 
400 R(I+NM3,I+NM7)=AMAX1(RKW2,(OX(I)/1.E-1,:í;)) 
410 B( I+NM3) =0X( I) 

OBJ(NM5+I)=OEL(I) 
OBJ(NM7+I)=-DEL(I) 

420 CONTINUE 
00 430 J=1,NC 
KK=2 
INQ=J+1 
CALL USER 
DO 430 I=1,N 
R(J,I+NM7) =çEL (I) 
R(J,I+NM5)=-DEL(I) 

430 CONTINUE 
DO 440 I=1,NM3 
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448 OBJ(I)=XL12G 
D0 450 I=NM4,NM5 

450 OEiJ(I)=C. 
IF (NE) 49.3.,4904460 

460 DO 490 I=1,NE 
B(I)=ABS(RJ(I))' 
IF (RJ(I) ) 470,490,494 

470 DO 480 J= NM6,NM8 
480 R(I,J)=R(I;J) 
493 CONTINUE 

KSZE=NM8 
IF (NN) 560,560,500 

C CHOOSE ABSOLUTE VALUE OF INEQUALITY CONSTRAINTS 
539 DO 550 I=NM2,NM3 " 

ß(I)=ABS(RJ(I)-) 
IF (RJ(I)) 520,520,510 

513 08J(I)=6. 
GO TO 550 

52C KSZE=KSZE+1 
D0 530 J=1,NM5 

530 R(J,KSZE_)=7. 
R( I, KS ZE ) =-1. 
08J(KSZE)=0. 
DO 540 J=NM6,NM8 

54C R(I,J) =-R(I,J) 
750 CONTINUE 
560 CONTINUE 

CALL LP1 (NM5,KSZE,OBJ,B) 
KONVRG=1 
DO 630 I=1,NX 
DXMOVE=AMAX1(0.,OBJ(I+NM5))-AMAX1(3.,08J(I+NM7)) 
IF (OXMOVE+XMOVE(I)) 573,610,580 

570 OX(I)=.S+OX(I) 
MOVE(I)=1 
GO TO 610 

580 MKTI=MOVE(I) 
GO TO (590,595,595,600) , MKTI 

592 MOVE(I)=MOVE(I)+1 
GO TO 610 

6;" OX(I)=2.#OX(I) 
MOVE(I)=2 

610 XMO'VE(I)=DXMOVE 
X(I)=X(I)+OXMOVE 
IF (ABS(DXMOVE)EPIS) 630,630,620 

620 KONVR,G=2 
630 CONTINUE 

ITRIGER=ITRIGER+1 
IF (KONVRG.E().2) ITRIGEfi=0 
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CALL WRITEX (2,IPOITT) 
YNEW =OBJFN 
GO TO 21+ 

64 CONTINUE 
65J FORMAT (3I5,E12.û,17XE12.O,12XI5) 
660 FORMAT (6E12.d) 
670 FORMAT (1H1) 
683 FORMAT (8A10) 
691 FORMAT (7I1) 
733 FORMAT (7F10.0) 
710 FORMAT ( 1H1* NX *I3,5X *NE *I3,5X *NN *I3,5X *CONVRG *£12.4, 

15X *ÉPIS *E12.5,5X *NGOALS *I4) 
72. FORMAT ( 1H01úX* 0- X* 8X* XMIN *9X *X *9X *XMAX * (/1Hu5X4E12.5)) 
738 FORMAT (1H1/1H 83(1H *) /1HO8A10) 
740 "FORMAT (1HO *THERE ARE NO GOALS IN THE OBJECTIVE* 

1* FUNCTION. PROGRAM IS LOOKING FOR A FEASIBLE POINT* 
2 TO THE CONSTRAINT SET *) 

75L FORMAT (1H0, *GOALS IN THE OBJECTIVE FUNCTION* 
1 /1H ,10(I2,2X)) 

760 FORMAT (111O, *ASPIRATION LEVELS * /1H 910E12,4) w) 

770 FORMAT (35HCTHE COMPUTATION TINE IN SECONDS IS/ 
1(5X,F10.5)) 
ENO 

SUBROUTINE LP1 (M,N,OBJ,B) 
COMMON /3/ A(15,25) 
DIMENSION OBJ(25), SAVE(25), COST(25), ICOST(25), 

1X(25), NOX(25), R(25) 
ITNO=J 
DO 10 I=1,N 

10 SAVE<I)=ORJ(I) 
00 20 I=i,M 
COST(I)=SAVE(I) 
ICOST(I)=I 
NDX ( I) =I 

20 CONTINUE 
30 ITNO=ITN0+1 

IF (ITNO.GT.1000) GO TO 18:; 

Z- 
DO 6f4 J=1,N 
S=-OßJ (J ) 
DO 40 I=1,M 

40 S=S+A(I,J) *COST(I) 
IF (S-Z) 60,60,5C 

50 K=J 
Z=S 

60 CONTINUE 
C K IS THE ENTERING VARIABLE 
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IF (Z) 140,140,7: 
70 DO 8J I =1,M 
80 X(I)= A(I,K) 

L =ù 
Q= 1.E20C 
DO 150 I =1,M 
IF (X(I)) 100,1CC,90 

9C1 01= 8(I) /X(I) 
IF (Q1. GE. Q) GO TO 1.. 

0 =Q1 
L =I 

100 CONTINUE. 
C L IS THE EXITING VARIARLE, 

IF (L.LE.3) GO TO 17:x' 

K1= NDX(L) 
NDX(L)=K 
E =X (L) 
X(L) =0 
DO 110 J =1,N 

110 A(L,J)= A(L,J) /E 
B(L)= B(L) /E 
DO 130 I =1,M 
DO 120 J =1,N 

120 A(I,J)= A(I,J)- A(L,J)*X(I) 
130 B(I)= B(I)- ß(L) *X(I) 

ICOST(L) =K1 
COST(L) = SAVE(K) 
GO TO 30 

140 DO 150 I =1,N 
150 OBJ(I) = -1 

DO 160 I =1,M 
J= NOX(I) 

160 OBJ(J) =6(I) 
RETURN 

170 PRINT 190 
STOP 77 

180 PRINT 200 
STOP 76 

190 FORMAT (1H0} UNBOUNDED SOLUTION 4) 
200 FORMAT (1H0* MORE THEN 1u00 ITERATIONS IN LP *) 

END 

SUBROUTINE PERMUTE (IFIRST,ILAST,IEX,NGOALS) 
COMMON /6/ IEXIT(10),ALEVEL(10) 
INTEGER REPEAT (li3) 
DIMENSION IEX(10), ISAVE(1L.) 
IF (IFIRST..NE.3HYES) GO TO 40 
NUM =O 
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DO 1. I=1,N,Gí)ALS 
IEXIT(I)=IEX (I) 
IF (IEX(I).E(3.0) GO TO 10 

NUM=NUM+1 
ISAVE(NUM)=I 

10 CONTINUE 
IFIRST=3HNO 
IF (NUM.E0.1) ILAST=3HYES 
ICYCLE=C 
DO 20 I=1,NUM 

20 REPEAT(I)=ISAVE(NUM+1-I) 
DO 30 I=1,NUM 

39 ISAVE(I).=REPEAT(I) 
RETURN 

40 CONTINUE 
ICYCLE=ICYCLE+1 
00 50 I=1,NGOALS 

5J IEXIT(I)=IEX(I) 
II=ISAVE(ICYCLE) 
IEXIT(II)=0 
IF (ICYCLE.EQ.NUM) ILAST=3HYES 
RETURN 
ENO 

SUBROUTINE WRITEX (K,IPOITT) 
COMMON /1/ X( 13 ),OFL(1C),NX,NN,NC,INQ,VALQ,KK 
COMMON /2/ OBJFN,CONSTR(10) 
COMMON /5/ Y(6),0(6),Z(6),A(6),AA(6) 
IPOITT= IPOITT +1 
GO TO (10,123,60,70,80,9C), K 

10 IF (IPOITT -250) 40,40;20 
20 00 30 I =1,60 

IF (IPOITT- 256 }I) 12G,e),3G 
30 CONTINUE 
40 GO TO (100,50,60,70,8C,90), K 

50 PRINT 180, IPOITT 
GO TO 1C0 

b: PRINT 190, IPOITT 
PRINT 140 
PRINT 130, Z,Y,A,O 
GO TO 10C 

7J PRINT 190, IPOITT 
PRINT 200 
PRINT 130, Z,Y,A,D 
GO TO /CC 

80 PRINT 190, IPOITT 
PRINT 210 
PRINT 130, Z,Y,A,O 
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GO TO 1L C 

97 PRI'IT 19, IPOITT 
PRINT 22' 
PRINT 130, Z,Y,A,0 

1)7; PRINT 16C, (X(I),I =1,NX) 
KK =1 
I_NQ =1 
CALL USES? 
F =VALQ 
09 JFN =F 
PRINT 15F, F 

DO 110 I =1,NC 
INQ= I+1 
KK =1 
CALL USER 
CONSTR(I) =VALO. 

11' CONTINUE 
PRINT 17a, (CONSTR(I),I =1,NC) 

121 RETURN 
11r FORMAT (2H.'76E12.5 /2Hí Y6F12.5/2H+:A6F12.F/2*10 

16E12.5/1W ) 
141 FORMAT ( /,2E*H THC5»: a^2c FINAL AdSWLRS., /) 
15? FORMAT (1H *OPJFCTIVE FUNCTION *E13.6, /1H ) 

1611 FORMAT (1H *Ir:n;_PENDENT V4RIA3LES /1H 3E12.5,/1H ) 

170 FORMAT (1H *COr1STPAINTS * /1H 7E11.4,/1H ) 

183 FORMAT ( / /,11H * * * * * * * * * *. /,9H POINT = I4) 
190 FORMAT ( / / /,21H * * * * * * * * * * * * * * * * * ** *, /9H POINT = I4) 

2::t, FORMAT (1H. " *APPAPENT INCONSISTENT CONSTRAINT SET4) 
21J FORMAT (1H:1*PPOGRAM MAKING SLOW PPOGRESS...PLEASE4 

1* EXAMINE SERIES OF POINTS PRINTEO *) 
22_ FORMAT (1HO*°OSSIBLE INCONSISTENT CONSTRAINT SET *) 

END 

SUBROUTINE USER 
COMMON /1/ X(10),DEL(1ú),N,M,NM,IN,VAL,KK 
COMMON /5/ Y(6),D(6),Z(6),A(6),AA(6) 
COMMON /6/ IEXIT(IG),AL(1U) 
DIMENSION RANGE(6,2) 
DATA AL /3 *6.,6.5,2 *1.5 /,E /1.E -100/ 
DATA ( RANGE( I), I = 1,12)/6 *).,3 *8.5,7.5,10.,12. / 
DATA DC12, 0C45 ,OC23,OC13,DC24,OC14,DC25,0C15/ 
15.69E -5,3.49E -5,2 .18E -5,1.31E- 5,7.64E- 6,4.42E -6, 
21.45E -6,8.30E -7/ 
DATA ON45, 0N23, 0N13 ,0N24,0N14,ON25,DN15/7.33E -5, 
15.53E -5,3.15E- 5,1.60E- 5,7.71E -6,1.62E -6,7.25E -7/ 
ANITRO(CAR)= .39/(1.39- CAR * *2) 
PANtTRO(CAR) =.78 *CAR /t(1.39- CAR * *2) * *2) 
Z4 (CAR) =59/ (1. G 9- CAR * *2) -59 
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Z5 (CAR) =532/ (1.j9- CAR * *2) -532 
Z6(CAR)= 450/(1.99- CAR * *2) -450 
PZ4( CAR) = 118 *CAR /((1.89- CAR * *2)* *2) 
PZ5 ( CAR ) = 1064 *CAR /((1.(a9- CAR * *2) * *2) 
PZ6( CAR) =900 *CAR /((1.89 -CAR * *2) * *2) 
00 10 I =1,6 
AA(I)= AL(I)- RANGE(I,1) 

10 A( I )= AA(I) /(RANGE(I,2)- RANGE(I,1)) 
Z(1)= 4.75 +OC12 +4C000. *(X(1) -.3) 
Z(2) =DC13* 40000.+( X (1)- .3) +DC23 *1283i2Û. *(X(2) -.3) 

1 +DN13* 28000. *(ANITRO(X(1))- .3) +ON23*48080.* 
2(ANITRO(X(2)) -.3) +2 
Z( 3)= 5. 1+ OC14* 40.080 . *(X(1)- .3) +0C24*128ïìOL. *(X(2) 

1-. 3)+ DN14 *28000.*(ANITRO(X(1))- .3) +0N24* 
248 00. *(ANITRO(X(2)) -.3) 
Z(4)= (1Û0. /5.E6) *(375000.-.6 *1;.00 *(Z4(X(1)))) 
Z(5)= 1.8E -6 *10)0. *(Z5(X(2))) 
Z( 6) = 2.5E:- 641x00.* (Z6 (X (3)) ) 

DO 2G 1=1,6 
20 Y(I)= (Z(I)- RANGE (I,1)) /(RANGE(I,2)- RANGE(I,1)) 

D(1)= A(1) /(Y(1) +E) 
0(2)= A(2) /(Y(2) +E) 
0(3)= A(3) /(Y(3) +E) 
D(4)= A(4) /(Y(4) +E) 
0(5)=Y(5)/A(5) 
0(6)= Y(6) /A(6) 
IF (KK -1) 131,30,13 :i 

3 GO TO (40,6û,70,8;,93,130,110,120), IN 
4Q VAL =J 

D0 5 I =1,6 
50 VAL= VAL+IEXIT(I) *D(I) 

RETURN 
63 VAL= 0015*40C90. *(x(1)- .3) +DC25 *128 5. *(X(?) -.3)+ 

10C45* 95711.*( X( 3)-. 3) +DN15428a0.*(ANITRO(X(1)) -.3) 
2 +0N25 *48300. *(ANITRO(X(2))- .3) +DN45 *35714* 
3(ANITRO(X(3))- .3)- 3.5 +1. 
RETURN 

73 VAL= (i- IEXIT(i)) *(Z(1)- AL(1)) 
RETURN 

83 VAL= (1- IEXIT(2)) *(7(2)- AL(2)) 
RETURN 

91 VAL= (1- IEXIT(3)) *(Z(3)- AL(3)) 
RETURN 

11C VAL= (1- IEXIT(4))*(Z(4)- AL(4)) 
RETURN 

11G VAL= (1- IEXIT(5))*(AL(!7) -Z(5)) 
RETURN 

120 VAL= (1- IEXIT(6)) *(AL(6) -Z(6)) 
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RETURN 
13.' 00 140 I =1,N 
1 +L DEL(I) =0. 

GO TO ( 15íJ ,160,170,180,190,200,210,220), IN 
153 DEL( 1) = IEXIT( 1 ) *A(1) *(RANGE(1,2)- RANGE(i,1))* 

1(- DC12 *4C000.) /((Z(i)- RANGE(1, 1)) * *2 +E)+ 
2IEXIT(2) *A(2)4( RANGE (2,2)RANGE(2,1)) *(- OC13 *40 
3W30 . -ON13 *28000. *PANITRO(X(1))) /(íZ(2)-RANGE 
4( 2, 1))* *2+E) +IEXIT(3) *A(3) *(RANGE(3,2) -RANGE 
5(3,1))*( 0014 40000.- DN14 28%JP. *PANITRO(X(1 
6)))/(( Z( 3)- RANGE(3,1)) * *2 +E) +IEXIT(4) *A(4) *(RANGE 
7( 4, 2)- RANGE( 4, 1 ))4(100./5.E6) *(.6410G0.) *(PZ4 
8 (X (.1))) * ( -1) /((Z (4) -RANGE (4,1)) * *2 +E) 
OEL(2)= IEXIT( 2 ) *A(2) *(RANGE(2,2)RANGE(2,1))* 

1( -0023* 128000 . -DN23 *48080.*PANITRO(X(2))) / 
2(( Z( 2)- RANGE(2,1)) *42 +E) +IEXIT(3) *A(3) *(RANGE 
3(3,2)- RANGE( 3, 1)) *( 0024 *128000. -DN24 *413000.* 
4PANITRO( X( 2)))/(( Z(3)RANGE(3,1)) *2 +E) +IEXIT(5)* 
5(1.8E -6 *1700. *(PZ5(X(2))) /(RANGE(5,2) -RANGE 
6(5,1)))/A(5) 
DEL( 3)= IEXIT(6)4( 2.5E 6 *1000. *(PZ6(X(3))) /(RANGE 

1(6,2)- RANGE(6,1))) /A(6) 
RETURN 

153 OEL(1) =DC15* 44700. +DN15 *28000. *PANITRO(X(1)) 
DEL( 2) =DC25 *128000. +0025 *480CJ. *PANITRO(X(2)) 
OEL(3) =DC4595711. +ON45 *35714 *PANITRO(X(3)) 
RETURN 

17; DEL (1) =(1- IEXIT(1)) *DC12 40001. 
RETURN 

1. OZL(1)= (1- IEXIT(2))4(0C13 40000. +0N13 *28JCU.* 
1PANITRO(X(1))) 
OEL(2)= (1- IEXIT(2)) *(0023 *128000. +DN23 *48ú00.* 
1PANITRO(X2))) 
RETURN 

192 DEL(1)= (1- IEXIT(3))4(0014 40000. +DN14 *280Ú0.* 
1PANITRO(X(1))) 
DEL(2)= (1- IE_XIT(3)) *(0024 *128000.+0N24 *48000.* 
1PANITRO(X(2))) 
RETURN 

200 OEL( 1 )= (1- IEXIT(4)) *(102./5.E6)4( -.6 *1ú0u.)* 
1(PZ4(X(1))) 
RETURN 

21;1 DEL(2) =(1IEXIT( 5))* (- 1) *(1.8E 6 *1002.) *(PZ5(X(2))) 
RETURN 

220 DEL(3) =(1 IEXIT( 6))*( 1) *(2.5E- 641)00.) *(P7_6(X(3))) 
RETURN 
ENO 
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