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ABSTRACT 

Various approaches to modeling phytoplankton- 

zooplankton- nutrient interactions have been investigated. 

A stochastic birth- death model was developed to describe 

changes in phytoplankton and zooplankton population 

levels at a given point. Tuie stochastic birth -death model 

was combined with a deterministic mass balance of limiting 

nutrient concentration to form an over -all system theo- 

retic model that enables one to use Monte Carlo simulation 

to study the problem of eutrophication. A comparison made 

between this modeling approach and the standard differen- 

tial equation approach suggested that further 

investigation was desirable, particularly in the area of 

model calibration. 

vi 
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MOTIVATION 

As man's power to affect his environment increases, 

so does his destructive potential. It thus becomes in- 

creasingly more important for man to be able to evaluate 

the probable results of a given set of actions. One area 

in which this evaluation is now becoming necessary is that 

of eutrophication. 

íutrophication (National Academy of Sciences 1969) 

refers to a natural or artificial addition of nutrients to 

a body of water as well as the effects of increased nutri- 

ents. Although inherently a natural process relating 

directly to the aging of a lake, it can be greatly accel- 

erated by man. Lirinologists are uncertain as to whether 

consequences of natural eutrophication parallel those of 

eutrophication accelerated by man, or whether eutrophi- 

cation is reversible within a reasonable time span. This 

latter uncertainty underscores the urgent need to under- 

stand eutrophication and to be able to predict the effects 

of artificially adding nutrients to lakes, streams and 

rivers. 

A brief look at some of the causes and conse- 

quences of accelerated eutrophication will serve to further 

1 
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emphasize the critical need for a better understanding of 

the eutrophication process. Artificial causes of excess 

nutrients include human sewage, industrial wastes, drain- 

age from farm lands, and runoff from urban areas. With 

increased population and industrial growth, coupled with 

intensified agricultural production and increased usage of 

shore properties, we can see that the number 'of potential 

sources of excess nutrients that cause eutrophication is 

rapidly growing. The consequences of accelerated eutro- 

phication stem largely from excessive algal growth which 

destroys the balance of life in an aquatic ecosystem. 

Algal scums and undesirable odors may be produced, thereby 

greatly affecting the recreational use of the lake (h asler 

1947). Some species of algae may modify the taste of the 

water so as to affect its use as a water supply, such as 

in the case of a population of Synedra in Lake Skaneateles 

near Syracuse, New York (Jackson and Meier 1966). The 

excess algae may attract annoying insects such as the 

Clear Lake gnat that inhabits Lake County, California, as 

reported by Lindquist and Deonier (1942). An algal mass 

may die, sink to the bottom, and deplete a significant 

portion of the dissolved oxygen at lower levels, thus 

tending to adversely affect fish populations (Richards 

1967). This combination of severe consequences and poten- 

tially larger sources of excess nutrients provide 
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sufficient motivation for a large -scale attack on the 

problem of eutrophication. 

Having established a firm motivation for studying 

eutrophication, we will continue by briefly summarizing 

some of the literature relevant to modeling of eutrophi- 

cation (Chapter 2). We will then examine a generalized 

aquatic ecosystem and the simplifications'and approxi- 

mations required for modeling purposes (Chapter 3); and, 

finally, after giving an introduction to stochastic proc- 

esses (Chapter 4), we will develop a system theoretic 

model of eutrophication (Chapter 5) . Conclusions and 

suggestions for further work are contained in Chapter 6. 



CHAPTER 2 

LITERATURE REVIEW 

Our literature review will be divided into two 

sections. First, we will concern ourselves with past 

attempts at modeling eutronhication., and then we will ex- 

amine the past uses of Monte Carlo simulation as applied 

to biological situations. 

Previous modeling attempts have usually been based 

upon the conservation of mass expressed in terms of a set 

of simultaneous differential equations. The earliest ex- 

tensive investigation of phytoplankton population 

dynamics using this approach is that of Riley, Stommel, 

and Bumpus (1949). They obtain the expression: 

22 .884+logv-loglo-65T¡'8 o 

where 

Gp is the growth rate of phytonlankton (/day), 

k' is 7.6, 

Io is the average daily incident solar radiation 

(langleys /minute), 

T' is the water temperature in degrees Kelvin, and 

vp is the nutrient reduction factor defined in terms 

of the phosphate concentration N as follows: 

4 
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if Np<.55mg.-at./m3 

5 

Their work involved the assumption of a steady state envi- 

ronment, thus severely limiting the applicability of the 

model. 

Considerable work has been reported since then. 

Davidson and Clymer (1966) developed from mass balance 

considerations a set of differential equations of the form: 

17,=K114 LIr1IT-l<2Z-K3-K4T 

=K5P-K6 

:I=K7-r:8P , iI>0 

T=Kg-K10cos(7t/6) 

I=K11- 

where 

K12cos(Trt/6) 

P is the phytoplankton population density, 

Z is the zooplankton population weight density, 

N is the limiting nutrient concentration, 

T is the water temperature in degrees Centigrade, 

I is the incident solar radiation, 

iILIM is the nutrient limited from above, 

t is the time in months, zero at Jan. 1, and 

Ki are constants. 
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Chen and Orlob (1968, 1972) developed a set of dif- 

ferential equations based on the conservation of mass. 

Their model explicitly includes such factors as bacterial 

decomposition of detritus, a division of algae into two 

groups by size, and the toxicity of the water. A divi- 

sion of the lake into horizontal slices permits modeling 

such factors as vertical migration and thermal gradients. 

DiToro, O'Connor, and Thomann (1970) also use a 

set of differential equations based on the conservation of 

mass. Their model is based largely on the previous models 

of Riley et al. (1949) and Steele (1965) and is used to de- 

scribe a shallow reach of the Sacramento River and a down- 

stream estuary. Park and Wilkinson (1971) adopt the same 

approach and apply the model to Lake George in New York. 

In their application, more than one nutrient was con- 

sidered, and zooplankton were divided into two categories, 

herbivorous and carnivorous. 

Everett (1972) uses multiple linear regression to 

study the chemical and biological properties of Lake Mead 

in Arizona. 

None of these models incorporate stochastic fluc- 

tuations, and most of them are based on a differential 

equation approach. Since we will be applying, a stochastic 

model and running a Monte Carlo simulation, it seems 

appropriate to discuss briefly some of the biological ap- 

plications of stochastic models and Monte Carlo techniques. 
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Stochastic models are frequently useful because 

ordinarily it is impossible to observe all of the details 

of the phenomena of interest, yet enough external manifes- 

tations of the phenomena can be observed so as to create a 

stochastic model. Neyman and Scott (1959) developed a 

stochastic model of the competition between two species of 

flour beetles. If the species shared the' sane habitat, 

inevitably one species or the other would become extinct, 

but not always the same species. Obviously, a determinis- 

tic model was insufficient for this case. Bartlett (1957) 

used Monte Carlo techniques to generate artificial reali- 

zations of this competitive case as well as the classical 

predator-prey interaction and other related processes. The 

classical predator -prey interaction is of particular inter- 

est because in the deterministic case there exists an 

equilibrium cycle, while in the stochastic case extinction 

occurs with probability one. 

Engstrom -Heg (1970) uses Monte Carlo techniques to 

examine the effect of treating the coefficients of a time 

difference equation model of population interactions as 

varying randomly because of climatic fluctuations. Beyer, 

Harris, and Ryan (1972) use Monte Carlo simulation to 

examine the extinction probability of the wolf population 

in the Isle Royale biome. The success with which these 

stochastic models have been applied is encouraging. The 
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results of Beyer et al. (1972), for instance, showed that 

their model had good predictive value for up to ten years. 

This brief review of the literature seems to indi- 

cate a twofold advantage of a stochastic model over the 

deterministic differential equation model that is so prev- 

alent. The first advantage is exemplified by cases where 

there is either insufficient information about the phenom- 

enon of interest or some inherent randomness in the 

process that makes it impossible to create a deterministic 

model. The second advantage arises from the simplicity of 

the Monte Carlo technique as compared to solving a system 

of nonlinear differential equations. The second advantage 

is the prime motivating factor for our model. We can now 

proceed to the discussion of our model of eutrophication. 



CHAPTER 3 

CONCEPTUAL MODEL 

We will begin by discussing the simplified concep- 

tual aquatic model given in Figure 1. It is easy to devise 

much more complicated conceptual models (Everett 1972, and 

Park and Wilkinson 1971), but it is necessary to take a 

simplified approach because of the lack of a concrete 

understanding of all of the aquatic ecosystem interactions. 

We lump together all species of phvtoplankton into one 

group, and all species of zooplankton into another group 

because efforts at modeling specific species of either are 

still in their infancy. Such factors as phytoplankton 

affinity for certain types of nutrients and zooplankton 

affinity for certain types of phvtoplankton are largely 

responsible for these modeling difficulties. 

Frequently in other models the zooplankton group 

is divided into two categories: the herbivorous zooplankton 

which rely on phytoplankton for their sustenance, and the 

carnivorous zooplankton which prey upon the herbivorous 

zooplankton. The uncertainty involved in the feeding 

mechanisms at this and higher trophic levels (DiToro et al. 

1970) encourages the modeler to break the food chain at 

the herbivorous zooplankton level and assume that the 

9 
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herbivorous zooplankton death rate is a constant. The 

model can be modified very easily to include higher 

species for cases where this assumption is not valid. 

The arrow leading from nhytonlankton to nutrients 

in Figure 1 also represents a simplification. Actually, 

the nhytonlankton contribute to the amount of dead and 

decaying organic matter known as detritus. The detritus 

is acted upon by bacteria to form basic nutrients. The 

detritus also acts as a food supply for the herbivorous 

zooplankton. Since the interactions between bacteria and 

detritus are not well understood, and the detritus usually 

represents only a small part of the zooplankton food 

supply, it is convenient to assume immediate conversion of 

dead nhytonlankton into nutrients. Here again the model 

can be easily modified to include detritus and bacteria as 

part of the state vector. 

Our conceptual model also includes only one 

limiting nutrient. Hutchinson (1967) gives a list of ele- 

ments renuired by nhytonlankton that includes C, ä1, 0, P, 

S, K, Mg, Ca, Si, Na, Fe, Mn, Zn, Cu, I3, Mo, Co, and V, in 

addition to chemical compounds containing these elements. 

Our assumption is that all of the nutrients, except for the 

one limiting nutrient, are always in sufficient sunnly for 

maximum phytoplankton growth. Depending upon the 
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particular aquatic ecosystem under consideration, the 

limiting nutrient could vary. In some cases, however, the 

model would have to be modified to include additional nu- 

trients. For instance, Park and Wilkinson (1971) found by 

using regression analysis at Lake neorge, New York, that am- 

monia, as well as phosphates,tended to limit phytoplankton 

growth. 

The actual model that we will develop in Chapter 5 

can be generalized very easily to include more than one 

nutrient and to include a division of the phytoplankton 

and zooplankton into a number of distinct groups. For sim- 

plicity, the case will be considered with one limiting 

nutrient, and all phytoplankton and zoonlankton are lumped 

together into separate respective groups as the diagram in 

Figure 1 indicates. 

Finally, we are imagining that all of these inter- 

actions occur within a volume of water at a specified 

depth in a lake or oceanic region in which the phytoplank- 

ton, zooplankton, and limiting nutrients are distributed 

homogeneously. The phytoplankton and zooplankton popu- 

lations are characterized by the total number of 

organisms, whereas the nutrients are characterized by the 

total mass. It would he necessary to link together a num- 

ber of these "point" models together to model a large body 

of water. In such a linkage, it is necessary to consider 
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the self- shading effect wherein Phytoplankton growth at 

higher levels inhibits the light from traveling to the 

lower levels, thereby lowering the growth rate of the phy- 

tonlankton Population at the lower levels. 

Having discussed the simplifications inherent in 

the formulation of the conceptual model, we can now pro- 

ceed to explain in detail the interaction's between the 

limiting nutrient supply, the phytoplankton population, 

and the zooplankton population. Each of these groups will 

be discussed separately. 

Phytoplankton Population 

The changes in the size of a population of nhyto- 

plankton result from a complicated combination of a number 

of factors. The primarY environmental variables which we 

will consider are water temperature, available light, and 

the balance between nutrient availability and nhvtonlank- 

ton requirements. most species of nhvtonlankton react 

differently with respect to each of these environmental 

variables; so, by lumping all species together, we are 

only approximating the effect that these variables have on 

the actual phytoplankton. We will first examine the 

effect of these environmental variables on the nhvtonlank- 

ton birth rate and then on the nhytoplankton death rate. 

Since a complete investigation of environmental 

effects on phytoplankton birth rate has not yet been made, 



14 

we must choose from among a number of possible forms of 

the functional dependence of the rate on each of the en- 

vironmental variables. In the case of water temperature, 

a number of different forms have been suggested. Both 

Davidson and Clymer. (1966) and DiToro et al. (1970) sug- 

gest a linear dependence. On the other hand, Riley et al. 

(1949) suggest a complicated dependence on temperature 

resulting in a less pronounced dependence on temperature 

than the linear case, and Parker (1968) suggests a tem- 

perature factor that is normally distributed with a mean 

of 18° Centigrade and a variance of 64, resulting in a 

much more pronounced dependence than the linear case. We 

will adopt the Davidson and Clymer and DiToro et al. 

approach wherein the rate of increase of phvtoplankton 

population is proportional to water temperature. The 

major limitation of this approach would seem to be at 

higher temperatures. Beyond a certain point, the effect 

of raising the temperature is to inhibit phytoplankton 

growth rather than to enhance it. In a situation where 

high water temperatures are likely to occur, some modified 

temperature dependent term would be desirable. 

We will now examine the effect of solar radiation 

on phytoplankton growth. We first need to evaluate the 

light intensity (Li) in langleys /hour at a specified depth 

as a function of the surface solar radiation (solrad). 



15 

The light is attenuated in the following way: 

Li= solradexp(- kextinctdepth) 

where kextinct is the extinction coefficient of light. 

This extinction coefficient is not a constant because of 

the previously mentioned self - shading effect. Riley (1956) 

has investigated the self -shading effect ánd found that 

kextinct can be approximated in the following way: 

kextinct = kextincto +.0088c +.054c2/3 

where kextincto is the extinction coefficient with no 

algae present and c is the chlorophyll concentration in 

micrograms per liter. Chen and Orlob (1968) have proposed 

a simpler form for the extinction coefficient that agrees 

reasonably well with Riley's: 

kextinct = kextincto +.17nhv mass /volume 

where phy is the phytoplankton population size in numbers 

of organisms, Amass is the average nhvtoplankton mass in 

milligrams of dry weight ner organism, and volume is the 

volume of water to be modeled. For the Point model we will 

assume that the phytoplankton concentration is uniform at 

all depths in order to calculate the extinction coeffi- 

cient. However, by creating a point model for each depth 

and appropriately linking them together, we would be able 

to evaluate the extinction coefficient at each depth, 

thereby representing the self - shading effect more 

precisely. 
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The effect of light intensity itself on phytoplank- 

ton growth is not completely understood. Davidson and 

Clymer (1966) suggested a linear dependence of growth rate 

on light intensity below a certain limiting value. Chen 

and Orlob (1972) treat growth rate as being proportional to 

Li /(Li +kl) where Li is light intensity and kl is a con- 

stant. Steele (1965) suggests a dependence Proportional to 

Li(exp(1- Li /Is)) /Is where Is is a constant equal to 2000 

foot candles. Since high light intensities tend to inhibit 

phytoplankton growth, Steele's form seems to he more desir- 

able. We have plotted it in Figure 2, along with some 

laboratory data from Ryther (1956) to illustrate the effect 

of high light intensities. The data from Ryther seems to 

indicate some differences between the various types of 

phytoplankton with respect to the dependence of their 

growth rate on incident light. Since we are lumping to- 

gether all species of phytoplankton, this is another area 

in which improvement can be made by a more definitive 

breakdown of phytoplankton. 

Thus far we have examined the dependence of the 

phytoplankton growth rate on incident light and water tem- 

perature. We still need to consider the effect of the 

limiting nutrient supply. 

As DiToro et al. (1970) point out, there is a 

reasonably large body of laboratory data that supports the 
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Theoretical Form (Steele 1965) 

10 

Chlorophyta (Ryther 1956) 
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Diatoms (Ryther 1956) 
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LIGHT INTENSITY (FOOT CANDLESx103) 

Figure 2. Normalized Rate of Photosynthesis 
versus Light Intensity 
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theory that growth rate is proportional to cnut /(cnut+ 

knut) when the limiting nutrient assumption is justifiable 

where cnut is the limiting nutrient concentration and knut 

is the Michaelis or half saturation constant which is the 

nutrient concentration at which the growth rate is half the 

saturated growth rate for fixed environmental conditions. 

The work of Dugdale (1967) verifies this for the case of 

phosphorus as the limiting nutrient, whereas the work of 

Eppley, Rogers, and McCarthy (1969) verifies it for the 

cases where either nitrate or ammonia is the limiting 

nutrient. 

We therefore have the following functional form for 

the phytoplankton nonulation growth rate (pbirthrate) as a 

function of water temperature (t), concentration of lim- 

iting nutrient (nut /volume), incident solar radiation 

(solrad), depth below surface (depth), phvtoplankton popu- 

lation size (nhv), average mass of phvtoplankton organism 

(pmass), volume of water to he modeled (volume), and the 

extinction coefficient without anv phytoplankton 

(kextincto): 

pbirthrate= [ktempt] nut /volume Liexn(1_Li 
nut /volume +knut Is" 

where 

Li= solradexn(- kextinctdenth), and 

kextinct= kextincto +.17.phvnmass /volume. 
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In order to complete our discussion of the phvto- 

plankton population, we need to consider the possible ways 

in which the population can decrease. A number of Possible 

mechanisms have been suggested that contribute to the death 

rate of phytoplankton. Endogenous respiration, by which 

organic carbon is converted into carbon dioxide, is used 

most frequently in other models. Since we are dealing in 

terms of actual numbers of phytoplankton cells rather than 

biomass, we need not consider endogenous respiration. The 

remaining mechanisms usually included in other models are 

grazing by herbivorous zoonlankton and sinking of phyto- 

plankton. 

Crazing of phytoplankton by zoonlankton is a very 

complex interaction which we will attempt to view in a 

very simplistic way, thus obtaining only a first order 

approximation. Many species of zoonlankton feed bY fil- 

tering a volume of water, thereby trapping any phvtonlank- 

ton or detritus in that volume. DiToro et al. (1970) have 

reviewed the literature on zoonlankton grazing and noted 

that the filtering rate varies among species of zoonlankton 

as well as with water temperature, phytoplankton concen- 

tration, species and size of individual phytoplankton, and 

amount of particulate matter present. We will assume, 

along with DiToro et al. (1970), Chen and Orlob (1972), and 

many others,that the filtering rate per zoonlankton 
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organism in terms of volume of water filtered per unit 

time is a constant, namely, kgraze. Therefore, the death 

rate of the phytoplankton population is 

kgrazezoo.phy /volume 

where 

zoo is the total number of zooplankton organisms, 

phhy is the total number of phytoplankton organisms, 

volume is the volume of water in the region to be 

modeled. 

Sinking of phytoplankton cells is a negligible fac- 

tor in estuaries of rivers that are well mixed, but is a 

necessary factor in lake or coastal oceanic situations. 

We will assume a sinking rate proportional to water temper- 

ature (t) for simplicity, whereas in reality the sinking 

coefficient (ksink) should depend upon currents, thermal 

gradients, and the size of the individual phvtoplankton. 

We thus will use an average phytoplankton sinking rate of 

ksinktph». This completes our discussion of the factors 

controlling the size of the phvtoplankton population. 

Zooplankton Population 

We need to include the zooplankton population in 

our model because of its interaction with the phvtoplank- 

ton population. In some cases it has been suggested 

(DiToro et al. 1970) that zooplankton grazing of 
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phytonlankton is the primary factor leading to the re- 

duction of phytonlankton population following a bloom. 

As in the case of phytonlankton, there are many 

different species that make up the population with widely 

differing life cycles. Hutchinson (1967) gives an excel- 

lent summary of the complexities involved in zoonlankton 

biology. We will treat the population very generally by 

developing a birth rate and a death rate that represents 

an average over the species of zoonlankton that are 

present. 

We will assume that zooplankton birth rate is a 

function of water temperature and food supply. It ma be 
that other factors such as photoperiod and nutrient concen- 

tration are also significant factors, as suggested by 

Parker (1968), but the evidence is not conclusive. Based 

upon the work of Richman (1958) and others, a linear de- 

pendence of reproductive rate upon phytonlankton concen- 

tration seems reasonable. Results reported by Edmondson 

(1946) and Parker (1968) seem to indicate that for many 

species there is an optimal temperature for reproduction. 

We adopt Parker's assumption that the birth rate is pro- 

portional to a term akin to a normal distribution that 

accounts for temperature variability. We therefore obtain 

the following exnression for the zooplankton birth rate: 

(_1( t- 
Q 
opt 2t1l zbirthrate= zconexp`` 

2 t .ph" 
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where 

zcon is a constant, 

topt is the optimal temperature for reproduction, and 

to describes the "variance" of the temperature depen- 

dence term. 

The death rate of herbivorous zooplankton is caused 

primarily by predation by higher level animals such as car- 

nivorous zoonlankton and fish, and by poisoning. Since we 

are not including fish in our model as part of the state 

vector, it is most convenient to treat the death rate as a 

constant (zdeathrate) which is to be determined empiri- 

cally. 

Our view of the zooplankton life cycle is necessar- 

ily oversimplified. We are ignoring aging and the 

associated dependence of birth and death rates on age as 

well as carnivorous zooplankton. Nonetheless, these 

assumptions are reasonably standard in that they also 

appear in the models developed by DiToro et al. (1970), 

Davidson and Clymer (1966), and Chen and Orlob (1972), 

among others. 

Limiting Nutrient Supply 

Having dealt with the factors that lead to changes 

in phvtoplankton and zooplankton population sizes, we can 

now proceed to consider the factors leading to a change in 

the amount of the limiting nutrient. ror this Parser, we 
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will assume a limiting nutrient other than carbon. The 

model can be modified slightly by including nutrient 

sources based on zooplankton and phytoplankton respiration 

if an application is desired with carbon as the limiting 

nutrient, since respiration increases the supply of carbon. 

The most obvious addition to the nutrient supply 

comes from external sources. The largest contributor in 

most cases is probably domestic sewage in either its raw 

or treated form. Industrial and agricultural effluent and 

natural sources also provide nutrients. The external 

source of nutrients is especially imnortant because it 

represents the major source of control for the entire sys- 

tem with respect to level of eutrophication. Other 

possible alternative control measures based upon modifying 

the lake environment to make it less desirable for phyto- 

plankton growth usually have the drawback of making the 

lake unsuitable for recreation. Examples of this type of 

control are increasing the acidity of the lake (Brock 

1973), or decreasing the light transmitted to the eunhotic 

zones where the algae predominate (Hergenrader and Hammer 

1973). Controlling the incoming nutrients thus seems to 

be the simplest form of. control. 

Nutrients are, however, also generated within the 

system in a few different ways. The most important of 

these results from the residue of grazing of phytoplankton 
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by zooplankton (nzooexcr). This occurs because the zoo - 

plankton cannot metabolize all of the phytoplankton that 

they graze and must excrete some. Excrement from higher 

trophic levels such as fish (nother) is also included in 

our model. 

Since we are not keeping track of fish populations 

explicitly in our model, we will treat the excrement from 

higher trophic levels as a constant source of input of 

limiting nutrient. We cannot, however, deal with the con- 

tribution from zooplankton excretion as simply. The mass 

of phytoplankton grazed is the product of the average mass 

of a phytoplankton cell (pmass) and the number of phyto- 

plankton cells ingested (pgrazed). Dividing this product 

by the nutrient to biomass ratio (npratio) of phytoplank- 

ton yields the amount of nutrient that would be generated 

if none of the phytoplankton mass were to be utilized by 

the zooplankton. The fraction of phytoplankton mass uti- 

lized can be approximated (DiToro et al. 1970) by 

zooconveffkmp 
kmp+ ( phy/ volume ) 

where 

zooconveff is the conversion efficiency of the zoo - 

plankton at low phytoplankton concentrations, and 

kmp is the Michaelis -Menton constant for phytoplankton 

which is the phytoplankton biomass concentration at which 

the zooplankton growth rate is half the maximum possible 
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growth rate. Therefore, mass balance considerations allow 

us to express the nutrient addition due to zooplankton 

excretion as follows: 

pgrazed.nmassfl-zooconveff.kmp I 

nzooexcr= npratio `` kmp+(nhvfvolume)( 

Previously we noted that changes in phytoplankton 

and zooplankton population sizes are dependent upon envi- 

ronmental variables. In the case of nutrient addition from 

zooplankton excretion, we noted that the dependence is upon 

the amount of grazing that occurred. This difference is 

significant because it implies that changes in the amount 

of the limiting nutrient are not independent of changes in 

phytoplankton and zooplankton population sizes. Thus, in 

our model, we will use Monte Carlo simulation to generate 

changes in phytoplankton and zooplankton population size 

but will calculate changes in the amount of limiting nutri- 

ent in a deterministic fashion based upon the results of 

the Monte Carlo simulation. 

In addition to sources of nutrients, there are also 

nutrient sinks. The dominant factor resulting in a 

decrease of nutrient level is the nutrient usage for 

growth of the phytoplankton population. Another term that 

is significant in some cases is the loss of nutrients to 

the underlying sediment or in water flowing out of the 

lake. 



26 

The amount of limiting nutrient utilized for phv- 

toplankton growth (nphytoassim) is simply the additional 

mass of created phytoplankton multiplied by the nutrient 

to biomass ratio of phvtoplankton. The amount of nutrient 

lost to the sediment (nsedloss) is assumed to be a constant 

fraction of the total nutrients per time unit. Therefore, 

nsedloss = nutlossrate.nut 

This completes our discussion of the conceptual 

model and the interaction between the zooplankton popu- 

lation, phytoplankton population, and limiting nutrient 

supply. Before converting our conceptual model into a sys- 

tem theoretic model (Chanter 5), we will give an 

introduction to the stochastic aspects of the model (Chap- 

ter 4). 



CHAPTER 4 

STOCHASTIC MODEL 

We will consider a stochastic model of a two - 

species population where x and y represent the respective 

sizes of the two populations. The state of the system at 

any time can be represented by the ordered pair (x,y). 

The system can change state as a result of either births 

or deaths of either species. Migrations will not be con- 

sidered, although they do not pose any additional 

difficulties. We will assume that these births and deaths 

are independent events that individually satisfy the fol- 

lowing four assumptions of the Poisson process: 

(1) The probability of exactly one event occurring 

in the time interval (t,t +St) is r.St- o(St); 

(2) The probability of more than one event occurring 

in the time interval (t,t+6t) is o(St); 

(3) The probability of zero events occurring in the 

time interval is l- rSt +o(St); and 

(4) The above probabilities are independent of the 

state changes of the system during an interval of time 

(T,T +AT) where AT »St. 

The usual form (Bharucha -Reid 1960) for the last 

assumption is that the probabilities in the first three 
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assumptions are totally independent of the state of the 

system. Since our birth and death rates are somewhat 

state dependent, we need the modified form given above 

where AT is chosen such that the probability that there is 

a significant percentage change in a state within the time 

interval is arbitrarily close to zero. In practice, it is 

convenient to attempt a simulation with a prescribed value 

of AT and examine the results to check the validity of the 

fourth assumption rather than trying to derive an analyt- 

ical expression for AT. With a proper choice of AT, if 

the state changes within the time interval do not appre- 

ciably change the birth and death rates, then we can treat 

these rates as constants that depend only upon the state 

at the beginning of the time interval. 

A consequence of these four assumptions is that 

the probability of exactly k events of a given type occur- 

ring within the interval (T,T +AT) follows a Poisson 

distribution: 

p(k,r)=(rA- kr 
1) exp(-rAT) . 

Let rx+ and r the respective birth rates of the two 

species, and rx- and r V- the respective death rates. 
If 

the system is in the state (x,y) at time T, the probabil- 

ity Pr((x,y),(x +a,y +b),AT) of a transition to a state 

(x +a,y +b) at time T +AT can be evaluated as follows: 



Pr((x,v),(x+a,v+b),AT)= 

x y 
E p(i,rx+)n(i-a,rx_) E p(j,rv+)p(j-b,rv 

j =b 
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It is not, however, practical to evaluate these 

probabilities in order to obtain a transition matrix, since 

the transition probabilities are not stationary in time, 

and the transition matrix is infinite dimensional. In- 

stead, we will develop a Monte Carlo simulation of the 

system. Since we know the distributions of the number of 

births and deaths of each species within a time interval 

(T,T +AT) as a function of the state at time T, we can gen- 

erate values from these distributions to simulate the 

number of births and deaths occurring in the time inter- 

val, and then very simply calculate the state at time 

T +AT. We can then recalculate the birth and death rates 

for the next time interval in terms of the state at time 

T +AT, and proceed with our simulation. The accuracy of 

our simulation relative to assumption number four can be 

improved by reducing the size of AT. The limit of re- 

ducing the size of AT would involve recalculation of the 

birth and death rates after eo.ch birth or death, Tahich is 

the standard 'lonte Carlo simulation procedure. Since we 

will be dealing with nhtoplankton and zooplankton Popu- 

lations whose sizes will normally be extremely large, 
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this standard procedure is infeasible for a practical 

simulation. 

We will modify the above two -species stochastic 

population model for application to the description of 

phytoplankton-zooplankton interactions by introducing the 

limiting nutrient supply into the state vector. This is 

necessary because the phytoplankton birth rate depends 

very strongly upon the limiting nutrient supply as dis- 

cussed in Chanter 3. Since changes in limiting nutrient 

supply depend to a large extent upon births and deaths of 

phytoplankton, we cannot treat the nutrient "births" and 

"deaths" as events independent of phytoplankton births and 

deaths. We will, therefore, treat the limiting nutrient 

supply in a deterministic fashion as described below. 

After our simulation generates the number of 

births and deaths of each species in a given time interval 

(T,T +AT), we will calculate the changes in nutrient supply 

based upon these events as well as other contributing fac- 

tors such as external nutrient inputs. This enables us to 

calculate the limiting nutrient supply at time T +AT in 

terms of the state and input at time T. 

We are now prepared to describe our model in 

rigorous system theoretic terms. The terminology used in 

the model in the following chanter is from Wvmore (1972). 
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Appendix A contains a brief summary of the systems def- 

initions and concepts relevant to an understanding of the 

model for the convenience of the reader. 



CHAPTER 5 

SYSTEM THEORETIC MODEL 

From the previous description of nhytoplankton- 

zooplankton- nutrient interactions, it becomes apparent 

that any model we develop lacks analytical tractability 

primarily because of the nonstationary character of the 

transition rates. We therefore must develop a model which 

lends itself readily to computer simulation in order to 

have a useful model. The following system theoretic form 

of the model was chosen because it illustrates both the 

biological interactions and the logic of the Monte Carlo 

simulation in a reasonably concise, clear, and rigorous 

fashion. A finite state machine model is insufficient be- 

cause there are an infinite number of possible states of 

the system. References will be made to some constants and 

functions which are explained below and which were Pre- 

viously discussed in Chapter 3. 

The function POISSON(x) is defined uniquely by the 

following relationships: 

(1) POISSON( x) CFUNCTIOIJS ([0,1],1'JONNE(ATIVEIJTECERS); 

(2) For every reREALS[0,1], 

(POISSON(x))(r) -1 k (POISSON(x))(r) k 

E exp( -x)X <r< E exp( -x)x 
- k =0 k, _ 

k =0 
k-. 
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If r is a random observation from a uniform distribution 

on [0,1], then POISSON(x) is a random observation from a 

Poisson distribution with parameter x by the inverse 

transformation method of generating values from a proba- 

bility distribution (Hillier and Lieberman 1970). In 

Appendix B we discuss an alternative scheme for generating 

observations from a Poisson distribution when the mean is 

large,based on the normal approximation to the Poisson. 

The following constants and functions are also 

used: 

zbirthrate = growth rate function for zooplankton 

(organisms /hr.- organism) 

zdeathrate = assumed constant value of the fraction 

of zooplankton lost to predation by 

higher species, poisoning, etc. 

(organisms /hr.- organism) 

pbirthrate = growth rate function for nhvtonlankton 

population (organisms /hr.- organism) 

ksink = nhytoplankton sinking coefficient ( /hr. -°C) 

kgraze = zooplankton grazing rate (liters /organism -hr.) 

pmass = average mass of nhvtorlankton organism (grams) 

npratio = nutrient to biomass ratio of phytoplankton 

volume = volume of water in section to be modeled 

(liters) 
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kphytoresn = nhytoplankton respiration coefficient 

(Ihr. -°C) 

nutlossrate = fraction of total nutrients lost to 

sediment ner hour 

depth = distance below surface of section to be 

modeled 

zooconveff = conversion efficiency of zooplankton at 

low phytoplankton concentrations 

kmp = Michaelis -Menton constant for phytoplankton 

We will define a system LAKE= (S,P,F,M,T,a) as a 

discrete system as follows: 

(1) S= ZOOPLANKTONXPHYTOPLANKTONXNUTRIENTS 

where 

ZOOPLANKTON= PHYTOPLANKTON= NONNEGATIVEINTEGERS, and 

NUTRIENTS= dONNEGATIVEREALS. 

The units of the zooplankton components of the state are 

number of organisms, whereas the nutrient component is 

specified by weight. 

(2) P= TEMPERATUREXLIGHT INTENSITYXNUTRIENT IN 

XRANDOi1XRANDOM2X...XRANDOM5 

where TEMPERATURE= INTEGERS,LI(IIT INTENSITY =NUTRIENT IN 

NOUNEGATIVEREALS, and 

RANDOMi= REALS[0,l] for. icINTEGERS[1,51. 

The units of temperature and light intensity are respec- 

tively degrees Centigrade and langleys ner hour, while the 
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nutrient input is measured in grams, and the RANDOrii are 

random numbers generated from a uniform [0,1] distri- 

bution and for (zoo,phy,nut)ES, 

p= (t,Li,n,rl,r2,r3,r4,r5)cP, 

(3) (a(cn,1))(zoo,phv,nut)= 

(zoo + zbirth- zdeath,phv +nbirth -psink- pgrazed, 

nut +n +nzooexcr +pother -nnhvassim- nsedloss) 

where 

zbirth = (POISSON(zbirthrate.zoo))(rl), 

zdeath = Min(( POISSON (zdeathrate.zoo))(r2),zoo), 

pbirth = POISSON(pbirthrate.phv)(r3), 

psink = (POISSON(t.ksink.phy))(r4), 

pgrazed = ( POISSON (kgraze.zoo.nhy /volume))(r5), 

nzooexcr- `grazed _zooconvef.f.kmp 
npratio kmn +(nhv /volume) ' 

nother = nutrient release rate per hour by death and 

excretion of higher food chain elements, 

nphvassim = nbirth.pmass.=atio 

nsedloss = nutlossrate.nut . 

The above model is, of course, only a Point model. For 

Practical use, a number of point models should be used and 

linked together apnropriately. In order to accomplish the 

linkage, migrations of nhytonlankton, zooplankton, and nu- 

trients from the vicinity of one point to another must be 

considered. These migratory terms must then be encompassed 
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into the state transition function a either in a determin- 

istic or stochastic fashion. Chen and Orlob (1972) 

consider vertical migration in their differential equa- 

tions, and DiToro et al. (1970) consider horizontal 

migration in their model, both using a deterministic 

approach. Either of these approaches can be used in our 

system theoretic framework by defining systems for each 

point and coupling them. This completes our discussion of 

the system theoretic model. 



CHAPTER 6 

CONCLUSIONS 

Model evaluation is an extremely 'important and 

extremely difficult part of the modeling process. The 

previously discussed model has not yet been applied to a 

real world situation, so our model evaluation will be re- 

stricted to comparisons between our model and other models 

that have been evaluated. 

Basically, our model is a stochastic version of 

the differential equation model developed by DiToro et al. 

(1970). Differences occur because DiToro et al. (1970) 

concern themselves with biomass, whereas we keen track of 

number of organisms. Therefore, changes in state in our 

model occur as a result of births and deaths, while growth 

causes changes in state in the DiToro model. Since 

neither model distinguishes between growth and repro- 

duction, this difference is not very significant. 

Our approach to determining changes in nutrient 

level is also slightly different. We treat these changes 

as being a function of the changes in phytoplankton and 

zooplankton population levels rather than the population 

levels themselves. This difference is necessary for main- 

taining the mass balance viewpoint adopted by DiToro 
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et al. (19701). In the deterministic case, there is a one- 

to-one correspondence between changes in population levels 

and the actual levels, whereas in the stochastic case the 

one -to -one correspondence is between the mean rate of 

change of population and the actual nonulation size. 

The DiToro model has been applied to the tidal 

portion of the San Joaquin River. in California. Several 

simplifying assumptions were made. In order to simplify 

computations, the entire area modeled was treated as one 

homogeneous volume, and ammonia and nitrates were both 

lumped into the category of inorganic nitrogen which was 

then considered to be the limiting nutrient. The inorgan- 

ic nitrogen external input was treated as an empirically 

determined constant for lack of a better assumption. 

The resulting model calibration over the years 

1966 and 1967 was suite successful. The model results 

indicated a large spring phvtoplankton bloom and second- 

ary bloom in autumn during 1966 of about the proper 

magnitude, and only a single autumnal bloom in 1967 be- 

cause of an earlier advective flow, also in proper 

agreement temporally as well as magnitude- wise. We can 

thus conclude that our basis for determining rates of 

change of population levels and nutrient levels seems 

reasonable. 
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The birth -death approach used in our stochastic 

model has never previously been used to describe 

phytoplankton- zooplankton interactions, but it has success- 

fully been used in biological modeling. The same is true 

concerning Monte Carlo simulation. Bever et al.(1972) set 

up a birth -death model describing wolf- moose -plant inter- 

actions and ran a Monte Carlo simulation, and Bartlett 

(1957) used a birth -death approach combined with Monte 

Carlo simulation to describe the competition between two 

species of flour beetles. 

The above arguments suggest that our modeling 

approach may be valid. A conclusive demonstration of its 

validity must await application. 

Several problems occur in attempting to apply such 

a model. Several of the constants such as ktemp, and to 

have no physical basis and must be estimated empirically. 

Other constants such as zooplankton grazing rates are 

species dependent, and we are forced to use some sort of 

average grazing rate. The model also reauir.es as input 

the water temperature, incident light intensity, and 

external nutrient supnly at all times. These data are fre- 

quently unavailable, as the standard sampling technir,ue is 

to measure all the variables of interest at most once 

every two to three weeks at diverse locations. 

Since these problems are shared with the standard 

differential equation annroach used by DiToro et al. (1970), 
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Chen and Orlob (1968, 1972), and many others, they do not 

represent a severe limitation upon our modeling approach. 

Several conclusions can be drawn from our litera- 

ture search and model development. We have found that 

system theory provides a clear and precise language for 

describing a complicated model. In addition, a computer 

simulation can easily be constructed from this form of the 

model. 

We have formulated a stochastic model of 

phytoplankton -zooplankton interactions that seems to be an 

alternative approach to the standard simultaneous differ- 

ential equation approach. A final comparison of the two 

approaches must await a real world application. 

As indicated earlier, the simplest way of control- 

ling excess algal growths seems to be limiting the 

external nutrient input. Monte Carlo simulation can be 

used to evaluate the effects of different amounts of nu- 

trient inputs. 

Finally, our model has indicated a deficiency in 

the type of data generally available. In order to cal- 

ibrate our model or a differential equation model, it is 

necessary to have data taken much more frequently than 

once every two or three weeks. 

Water temperature, solar radiation, and nutrients 

from external sources are inputs to the model. These 
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should be measured as frequently as deemed necessary to 

obtain an acceptable approximation to the actual input 

stream. The constants -- Amass, ktemp, kextincto, kgraze, 

topt, ta, icon, nother, zooconveff, kmp, npratio, 

nsedlossrate, and ksink -- should either be estimated from 

the available literature or estimated empirically. Fre- 

quent measurements of the state are necessary in order to 

perform the empirical estimation and laboratory data might 

provide a satisfactory basis for this estimation in many 

cases. 

Further work is, of course, necessary. As inter- 

actions between different species of phvtonlankton and 

zooplankton as well as phytoplankton affinities for spe- 

cific nutrients are understood, the state description can 

be modified to include each species separately. ^ ?ore work 

is also needed in the area of model calibration. Finally, 

a careful comparison should he made between the differ- 

ential equation approach and the use of monte Carlo 

simulation as a tool for studying the complicated problem 

of eutrophication. 



APPENDIX A 

INTRODUCTION TO SYSTEM THEORY 

We will first describe the system theoretic nota- 

tion and then delve into some of the important concepts 

relevant to our model. All of the material is condensed 

from Wvmore (1972). 

The symbol {} will always enclose the definition 

of a set. The symbol A will denote the idea of subset. 

The symbol X will denote a vector product. The sYmbols i] 

and () denote closed and open intervals, respectively. 

If B is a set and b is an element of B, we indi- 

cate this by beB. The set of all integers is denoted 

INTEGERS, and the set of all real numbers is denoted REALS. 

Descriptive prefixes are added to denote subsets of these 

sets (e.g., NEGATIVEREALS= {x :xeREALS,x <O }). Other sub- 

sets can be indicated by using the interval symbols (e.g., 

REALS(á,$)= {r :q <r <s }). 

A function f defined on a set A with values in a 

set B is a set of ordered pairs such that: 

(1) fA {(a,b) :acA,bcB }; 

(2) if acA, then there exists b= f(a)cB such that 

(a,b)cf; and 
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(3) if (a',b')ef., and (a*,b*)cf, and a' =a*, then 

b' =b* 

The set of all functions defined on A with values 

in B is denoted FUNCTIONS(A,B). 

Let B be a finite set not empty of sets not empty. 

It can then be expressed as {A1,A2,...An} for some 

nePOSITIVEINTE(ERS. The vector product of the sets in B 

is denoted A1XA2X...XAn and is defined as follows: 

A1XA2X...XAn= 

{(al,a2,...an):aicAi for all icINTE(ERS[l,n]} 

Let A and B be sets not empty and beB. The func- 

tion which is constant on A and equal to h is denoted cb 

and defined as follows: cb= {(a,b) :acA }. The identity 

function defined on A is denoted IDENTITY(A) and defined 

as follows: IDENTITY(A)= {(a,a):acA }. If fcrUNCTIONS(A,B) 

and A'AA, then the restriction of f to A' is denoted 

RESTRICTIOU(f,A') and is defined as follows: 

RESTRICTION (f,A')= {(a,b) :aeA',(a,b)Ef }. The function f is 

"onto" if for every bcB there exists aEA such that 

(a,b)cf. This is denoted by feFUNCTIOÌIS(A,onto,B). 

Let P be a set not empty, f,gCFUNCTIONS(REALS,P), 

rEREALS. We then define the translation and segmentation 

operations as follows: 

TRAN SLATION (f,r.)= {(t,f(r +t):tEREALS} 
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SEGMENTATION(f,g)={(t,z):z=f(t) if t<0, 

z=g(t) if t>0} 

A set F is an admissible set of input functions 

with values in P if and only if: f is not empty, 

FAFUNCTIONS(REALS,P), and if f,gcF,rcREALS, then 

TRANSLATION(f,r)cF, and SEGMEIJTATION(f,g)cF. The set of 

all admissible input functions with values in P is denoted 

ADMISSIBLES(P). 

We will use all of these ideas in a definition of 

a system. A system is a six -tuple (S,P,F,M,T,a) where: 

(1) S is a set not empty; 

(2) P is a set not emr>ty; 

(3) FeADMISSIBLES(P); 

(4) MAFUNCTIONS(S,S), IDENTITY(S)cM; 

(5) TAREALS,OcT; 

(6) acFUNCTIONS(FXT,onto,M), and for every 

f, geF,s,tcT such that s +tcT: 

(7) a(f,0) =IDEi1TITY(S); 

(8) a( TRA dSLATION(f,$),t)(f,$) =a(f,s +t); 

(9) a(f,t) =a(g,t) if RESTRICTION(f,T[O,t))= 

RESTRICTION(g,T[O,t)) when t >0; 

(10) a(f,t)= a(g,t) if RESTRICTION(f,T[t,0))= 

RESTRICTIOi(g,T[t,0)) when t <0. 

The elements of the six -tuple are interpreted as 

follows: 
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S is the set of states, P the set of inputs, F the 

set of input functions, M the net of state transitions, 

T the time scale, and a the state transition function. 

The model utilized in Chapter 5 is that of a dis- 

crete system; so, we will formally define a discrete 

system since it represents a considerable simplification 

over the above definition. A discrete system is a system 

that additionally satisfies the following requirements: 

{cn:neP }AF; 

T= ONNEGATIVEINTEGERS, and for every fer, teT,xeS 

a(f,t) (x) 

= x if t =0 

= (a(cf(t- l),l))(a(f(t- 1))(x) if t40. 

Discrete systems have the nice nrorert7 that they are com- 

pletely determined by specifying S,P, and cr(cpl) for 

every peP. F, M, and T follow from the definition of dis- 

crete system so they need not be specified in our model in 

Chapter. 5. 



APPENDIX B 

NORMAL APPROXIMATION TO THE POISSON 

Some cases will arise in our simulation where x, 

the parameter of the Poisson, is extremely large and it 

becomes computationally inefficient to compute POISSON(x) 

by the definition given in Chapter 5. In those cases, a 

normal approximation to a Poisson distribution will be 

used because there are extremely efficient algorithms 

available for generating observations from a normal dis- 

tribution (Marsaglia, MacLaren, and Bray 1964). 

When x is large, 

k 
exn(-x) 

k<x+bi7 

can be approximated by the cumulative distribution func- 

tion of the normal distribution (Feller 1968). riven a 

value of b as an observation from the standard normal 

distribution, the corresponding value from the Poisson is 

x +b/ again by the inverse transformation method used in 

Chapter 5. 
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