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ABSTRACT 

Classical field curvature theory emphasizes the Petzval theorem, which models field 

curvature aberration to the 4
th

 order. However, modern lens designs use aspheric surfaces.  

These surfaces strongly induce higher order field curvature aberration which is not 

accounted for Petzval field curvature. This dissertation focuses on developing higher 

order field curvature theories that are applied to highly aspheric designs. Three new 

theories to control field curvature aberration are discussed. Theory 1: an aspheric surface 

that is close to the image and has two aspheric terms sharply reduces field curvature by 

85%. Theory 2: an aspheric surface that is farther from the image plane induces 

astigmatism to balance Petzval field curvature. Theory 3: oblique spherical aberration can 

be induced to balance Petzval field curvature. All three theories are applied to real design 

examples including the following lenses: cellular phone, wide angle, fast photographic, 

and zoom lenses. All of the analyses results are consistent with the theories. Moreover, 

two types of novel aspheric surfaces are proposed to control field curvature. Neither of 

the surfaces are polynomial-type surfaces.  Examples show that the novel aspheric 

surfaces are equivalent to even aspheric surfaces with two aspheric coefficients in terms 

of field curvature correction. The study on field curvature correction using aspheric 

surfaces provides an alternative method to use when aspheres are accessible. Overall, this 

dissertation advances the theory of field curvature aberration, and it is particularly 

valuable to evaluate highly aspheric designs when Petzval theory is inapplicable. 
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CHAPTER 1 

INTRODUCTION TO FIELD CURVATURE 

 

1.1 Field Curvature 

Field curvature is also known as “Petzval Curvature” which is the inherent problem of an 

optical system imaging a flat object onto a curved surface. When a flat detector is used to 

receive the image, only the center of the image is sharp but blurred more and more when 

looking at the image away from the center. Field curvature effect is more obvious in wide 

angle lenses. 

 

1.2 Effect of Field Curvature on Image Quality 

An image in Figure 1-1 was taken with a F/5 objective lens. The left image is the original; 

the right image is the original with 2 waves of field curvature. The right image only looks 

sharp in the center areas; the image comes out of focus in the off-centered areas. The 

more off-centered the image, the more blurry it looks. 
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Figure 1-1 Original image compared to the image with field curvature 

Since field curvature is an inherent property of lenses, it is not limited to photographic 

cameras; it can be seen in microscopes, telescopes and many other optical instruments as 

well. 

 

1.3 Classical Theory of Field Curvature 

Classical thoery of field curvature is governed by “Petzval Theorem” which was found 

by Joseph Petzval. Petzval theorem states that the field curvature of an optical system is 

nothing but the sum of the lens power weighted by material index of refraction. The 

“Petzval Sum” is given below. 

             
 

  
  ∑

    

    
  ∑

  

  
           (1-1) 

Rp represents the Petzval radius, n the index on the object side of the surface, n’ the index 

on the image side of the surface, and r the radius of the surface. Ф represents the surface 

power, and i the surface number. Basically, the Petzval Theorem claims that the perfect 

image falls onto a curved image plane (Petzval surface) with the radius of curvature Rp 

calculated from the Petzval Sum.  

A single positive lens’s field curvature is plotted in Figure 1-2. In this case, the Petzval 

surface is inward bending with a Petzval radius Rp equal to the lens focal length f 

multiplied by the glass index of refraction n. This is a useful rule of thumb to quickly 

estimate field curvature of a thin lens without complex computation. 
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                (1-2) 

 

Figure 1-2 Schematic of field curvature of a positive single lens 

The wave coefficient W220 describes field curvature. H is the field dependency and ρ is 

the pupil dependency. xp and yp are normalized pupil coordinates. In this way, field 

curvature can be treated as quadratic field dependent defocus. 

 (   )        
          

 (  
    

 )           (1-3) 

Here, the simple example below illustrates pure Petzval field curvature (W220 only). W220 

= 2 waves, FOV (field of view) = ±15°, f/# = 5. 

As Petzval predicted, the image falls onto a spherical surface (Petzval surface). The 

surface sag can be computed as follow: 

    (   )      
          (1-4) 
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Field curvature plot is in Figure 1-3. A perfect quadratic shape appears when only W220 

exists. 

 

Figure 1-3 Field curvature plot of pure Petzval curvature 

The wavefront error is shown in Figure 1-4. There is no aberration along the on-axis plot; 

the off-axis plot displays a quadratic shape represents field curvature. The plot is very 

similar to defocus; but the magnitude changes with the field. 

 

Figure 1-4 OPD (optical path difference) of field curvature 
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The transverse ray aberration plot is shown in Figure 1-5. There is no aberration on-axis; 

the off-axis plot displays a linear error as transverse ray aberration which is the derivative 

of wave aberration.    and    represents transverse ray errors. R is the radius of the 

wavefront at the exit pupil; rP is the exit pupil radius. R/rP   2f/#w 

      
 

  
     

             (1-5) 

      
 

  
     

            (1-6) 

 

Figure 1-5 Transverse ray aberration plot of field curvature 

The spot diagram is shown in Figure 1-6. There is a point focus along the on-axis plot 

and a blurred spot along the off-axis plot. The larger the field, the larger the spot. 
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Figure 1-6 Spot diagram of field curvature 

The Modulation Transfer Function (MTF) is shown in Figure 1-7. Since there is no 

aberration along the on-axis plot, the on-axis MTF curve (blue) is coincident with the 

diffraction limited MTF curve (black). The off-axis curve dramatically falls off when 

spatial frequency increases because of field curvature. Phase reversal occurs in this case. 

 

Figure1-7 MTF (modulation transfer function) of field curvature 

The MTF curve through field of view is displayed in Figure 1-8. The MTF curve falls off 

when the field angle increases. The larger the field, the lower the contrast. 
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Figure 1-8 MTF through field of view plot of field curvature 

After reviewing the basic properties of field curvature, it can be seen that field curvature 

has a significant effect on image quality. The classical field curvature correction methods 

in lens design are addressed in the next chapter. 
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CHAPTER 2 

CLASSICAL METHODS TO CONTROL FIELD CURAVATURE 

As discussed in the previous chapter, field curvature significantly degrades image quality 

so that it is very critical to control it in lens design. Based on the classical Petzval 

theorem, field curvature depends only on the lens power distribution and material index. 

In other words, field curvature should be considered at the first-order design because after 

that field curvature will not change during the lens optimization process. Therefore, field 

curvature is often considered to be one of the most difficult aberrations to correct in 

classical lens design. In this chapter, the classical methods to control field curvature will 

be illustrated. 

 

2.1 Meniscus Lens 

In order to minimize the Petzval sum, it is ideal to have a lens with two surfaces of the 

same radius of curvature in both magnitude and sign so that the net contribution to the 

Petzval sum is zero. The total meniscus lens power is proportional to its thickness. A 

thick meniscus lens contributes to optical power but not field curvature. An example is 

illustrated below to demonstrate how a meniscus lens helps control field curvature. 

Double Gauss lens: F/3, focal length = 100mm, FOV= ±14° 
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Figure 2-1 Double Gauss lens layout and Seidel aberration diagram 

The two cemented thick meniscus lenses are symmetrical to the stop and closer to the 

stop. The two thick meniscus elements (surface 3, 5 and 7, 9) contribute to the total 

amount of negative field curvature. The cemented surfaces (4, 8) have very little effect on 

field curvature. The two outer thin meniscus elements (surface 1, 2 and 10, 11) contribute 

to positive field curvature. Therefore, the negative and positive field curvature will cancel 

each other out. The whole Double Gauss lens has little positive field curvature residue. 

The field curvature plot is shown in Figure 2-2. 

 

Figure 2-2 Field curvature and distortion plot 
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A meniscus lens is a powerful tool to control field curvature in classical photographic 

objective lenses. Due to the fabrication limitation (such as the center too thick for a thick 

meniscus lens and the edge too thin for a thin meniscus), it is difficult to achieve an ideal 

meniscus with two of same curvature surface that cancel out field curvature. The art of 

controlling field curvature is balancing the thin and thick meniscus lenses’ curvature and 

thickness. 

 

2.2 Field Flattener Lens. 

Most optical imaging systems require positive power to focus light. The most important 

aberration is spherical aberration. For a single lens with an index of refraction 1.5, the 

optimal shape to minimize spherical aberration is bi-convex. However, a bi-convex shape 

represents the worst case for field curvature. Therefore, if a design consists of groups of 

positive bi-convex lenses, it will have excessive field curvature aberration. One way to 

control field curvature, this these cases, is locating a negative field flattener lens near the 

image plane. The negative field flattener lens will contribute to a strong negative field 

curvature that balances the excessive positive field curvature. The field flattener lens 

induces very little optical power, spherical aberration, coma, and astigmatism. An 

example is illustrated below to demonstrate how a field flattener lens corrects field 

curvature. 

Petzval Lens: F/2,  f = 100mm, FOV =  ±4° 
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Figure 2-3 Petzval lens layout and Seidel aberration diagram 

For this Petzval lens, two cemented doublet lenses correct spherical aberration and coma 

effectively but leave some positive field curvature. The negative field flattener lens 

(surface 7, 8) contributes negative field curvature that balances the positive field 

curvature. Since the amount of spherical aberration, coma, and astigmatism is a function 

of marginal ray height, there is very little contribution when the field flattener lens is 

close to the image plane. As the design is very fast (F/2), there is some excessive 

spherical aberration. The field curvature plot is shown in Figure 2-4. 

 

Figure 2-4 Field curvature and distortion plot 
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A field flattener lens is very useful for designs with excessive positive field curvature and 

no other degree of freedom to control field curvature. But it is not always feasible to 

locate a lens near the image plane due to a mechanical mounting and detector cover glass 

confliction concerns. 

 

2.3 Separated Thin Lenses 

For an optical system which contains several separated thin lenses, the Petzval sum is 

given by ∑
  

  
 . When the positive and negative thin lenses are alternately used, the 

Petzval sum could be minimized and field curvature could be well controlled. An 

example is illustrated below to demonstrate how field curvature is controlled by using 

separated thin lenses. 

Cooke Triplet Lens: F/5, f = 50mm, FOV = ±20° 

 

Figure 2-5 Cooke triplet lens layout and Seidel aberration diagram 
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The Cooke triplet lens consists of three thin lenses. The negative lens in the middle is the 

system stop. The two positive lenses are symmetric to the stop. The positive power 

contributed by the 1
st
 and 6

th
 surfaces is balanced with the negative power contributed by 

the 3
rd

 and 4
th

 (stop) surfaces. The 2
nd

 and 5
th

 surfaces contribute very little power since 

they are almost flat. The whole system has a little positive field curvature which depends 

on the focal length of the design. The field curvature plot is shown in Figure 2-6. 

 

Figure 2-6 Field curvature and distortion plot 

Separating thin lenses is an effective method to correct field curvature. It is particularly 

useful in the designs that have enough thin lenses with alternating positive and negative 

powers, such as a micro-lithographic lens design with a profile of bulges and 

constrictions. However, it is always a tradeoff  between system focal length and the 

number of thin lenses in terms of field curvature correction. The shorter the focal length, 

the more elements needed to balance field curvature and maintain strong optical power at 

the same time. 
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2.4 New Glass Type 

In order to minimize the Petzval sum, minimizing the net optical power is a effective tool. 

However, the choice of glass also plays a role. It is ideal if the glass used has a high index 

of refraction. The old high index glass usually has high dispersion. But the new type of 

glass makes it possible to have a high index and a low dispersion. The old and new 

achromat doublet designs are illustrated and analyzed below. 

The old achromat doublet lens consists of a crown glass with low index and low 

dispersion followed by a flint glass with high index and high dispersion. The old 

achromat has been used in telescopes and many other system designs. By optimizing the 

three surfaces’ curvature, spherical aberration and longitudinal color aberration could be 

controlled, but the Petzval sum (2-1) is always positive since Ф1˃Ф2, n1<n2. Therefore, 

the old achromat is not effective for correcting field curvature. 

             
  

  
  

  

  
               (2-1) 

The new achromat design takes advantage of a new type of crown glass with high index 

and low dispersion followed by the new flint glass with low index and high dispersion. In 

the new achromat configuration (Ф1˃Ф2, n1>n2), it is possible to cancel out the Petzval 

sum. Many classical photographic objective lenses such as the Protar lens have adopted 

the new achromat such. 

Material selection is critical in lens design in term of color correction. But selecting glass 

type can help reduce field curvature.  
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2.5 Miscellaneous Methods 

2.5.1 Gradient refraction index (GRIN) glass
[1-3]

 

The normal glass used in lens design has a homogeneous index of refraction. Gradient 

index glass has a variation of index of refraction. The variation could be axial, radial, or 

spherical. The advantage of GRIN material is in controlling aberration. The most 

common example of a GRIN optical system is the human eye.  

Since field curvature has a quadratic pupil dependency, the field curvature may be 

compensated by using a glass material with a radial gradient index. For a positive thin 

lens, when pupil size increases field curvature increases so that the beam focuses near. So, 

in the case of a glass with radially decreased index from lens center to edge, the ray path 

length could compensate so that the image falls on a flat image surface rather than a 

curved surface. The radial GRIN glass’s index of refraction is a function of the pupil 

which could be written as, 

 ( )           
      

            (2-2) 

    represents the index on the optical axis.     and     are the corresponding order of 

radial gradient coefficients. 

Equation (2-3) gives the transverse ray aberration of 3
rd

 order field curvature coefficients 

for a single lens. 

    
  

     
  (

     

   
 )   (2-3) 
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   and    
  are the refractive index and the paraxial marginal ray angle after refraction at 

the image plane; H is the Lagrange invariant. t is the lens thickness.  

Integrating equation (2-3) gives the wave aberration coefficients W220P,  

       
   

      
   

            (2-4) 

D represents the aperture size,   the pupil coordinate. Equation indicates that field 

curvature is a linear function of lens thickness t and radial gradient    . 

GRIN materials have been used in some optical systems. The challenging part of using 

GRIN materials involves, for example, the issues of color aberrations, thermal variations 

of the gradient, and the need for fine alignment to the optical axis.   

2.5.2 Curved Film and Curved Detector 

Instead of correcting field curvature, a curved film or detector with the radius matching 

the Petzval radius can solve the field curvature problem. The most common optical 

system with a curved detector plane is the human eye. Field curvature is not a large 

problem for the human eye because the retina could auto-adjust its curvature biologically.  

The Schmidt camera used a curve film or detector to compensate for field curvature. 

Sometimes the film is made curved; in other cases the flat film could be mechanically 

conformed to the shape matching the Petzval curvature
 [4]

.  The film can be sprung to 

quite a sharp curve by means of a ring which presses the film against a convex base. Thin 

film, such as the ordinary roll film, is not suitable, as it will wrinkle at the edges, but the 

heavier cut film can be sprung to the required curve, and when removed from the holder 
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will spring flat again
[5]

. If a flat film is used, a plano-convex field flattener lens is usually 

needed to correct field curvature. 

Optical fibers could be used to make a curved detector 
[6]

. The incident fiber surface 

consists of a rod of fiber which could be polished with a curvature. Each fiber acts like a 

“pixel” which samples the image and transmits it to a flat detector. The curved fiber 

guide is coupled to CCD as an input window.  

Another example using a curved detector is on space telescope detector arrays
[7]

. The 

image-sensor array of the Kepler space observatory is curved to compensate for the 

telescope's Petzval curvature. Several pieces of CCDs have been assembled on a curved 

substrate. The individual flat CCDs are mounted on a curved substrate and fitted with 

individual field flattener optics. 

There are some issues with these kinds of curved detectors. First, it is difficult to make 

the curvature too large. Second, the resolution could not be made too high. Third, the 

curved detector is not interchangeable. Finally, the cost is still too high compared to 

normal detectors. Therefore, it is not widely used in many optical imaging systems. 

2.5.3 Powerless field flattener 

Sasián
[8-9]

 has invented a powerless field flattener which is a single element with a 

stepped profile across the aperture. The step is designed to have a curvature 

approximately opposite to the inherent field curvature. The superiority of this invention is 

that it does not significantly introduce extra optical power and other aberrations. The 

performance and fabrication ease have been studied but no mass produced utilizing this 

type of flattener so far. 
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CHAPTER 3 

WAVE ABERRATION THEORY OF HIGH ORDER FIELD CURVATURE 

 

In previous chapters, the classical field curvature theory up to the 4
th

 wave aberration 

order has been discussed. Petzval theorem can fully explain the behavior of field 

curvature in most classical designs and works well for designs using spherical surfaces. 

However, when the modern aspheric surfaces are widely used, field curvature cannot be 

explained by the Petzval theorem because of the higher field curvature aberration induced 

by aspheres. Indeed, higher order field curvature aberration can balance the 4
th

 order field 

curvature aberration. In this chapter, a discussion of how aspheric surfaces help control 

field curvature will be elaborated. 

 

3.1 High Order Aberrations 

For most classical optical systems, 4
th

 order wave aberration theory is enough to explain 

the aberration correction. But when the design becomes faster and the FOV becomes 

larger, high order aberrations occur and affect aberration correction. Moreover, when 

using aspheric surfaces in optical design, the high order aberration effect is more obvious. 

Therefore, studying high order aberrations is very critical to further understand aberration 

corrections in modern lens design. The most recognized 6
th

 order aberration coefficients 

are listed in the Table 3-1
[10]

. Column A shows the 6
th

 order aberration coefficients with 

an increasing field dependency of H
2
 compared to the corresponding 4

th
 order 
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coefficients. Column B shows the special 6
th

 order aberration coefficients with an 

increasing pupil dependency of ρ
2
 compared to the corresponding 4

th
 order coefficients. 

Even high order aberrations (8
th

, 10
th

, 12
th

 order…) also exist in highly aspheric and fast 

designs. 

Column A Column B 

Oblique spherical W240 6
th

 order spherical W060 

6
th

 order coma W331 unnamed W151 

6
th

 order astigmatism W422 unnamed W242 

6
th

 order field curvature W420 unnamed W333 

6
th

 order distortion W511   

Table 3-1 List of sixth order wave aberration coefficients 

 

3.2 Aspheric Contribution to High Order Field Curvature 

First, the most widely used even asphere surface sag equation is reviewed below. 

   
   

   (  (   )    )   
      

      
        (3-1) 

C represents the base sphere curvature, r the pupil radius,   the conic constant, A4 the 4
th

 

order aspheric term, and A6 the 6
th

 order aspheric term. 

The even asphere equation contains two parts. The first part represents the base sphere 

with a conic constant. The second part represents the high order aspheric part starts 

from     
 . The surface base curvature C and conic   contribute to the surface power. 

But the high order aspheric terms A4 and A6 do not affect surface power at all. However, 

high order aspheric terms A4 and A6 do contribute to high order field curvature, namely 
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W420 and W620. W420 represents the 6
th

 order field curvature and W620 the 8
th

 order field 

curvature. Based on Sasian’s high order aberration theory
 [11]

, the aspheric terms 

contribution to high order field curvature could be derived and is shown below in 

equation (3-2;3-3). 

        
  

       ( ) ̅
         (3-2) 

        
  

       ( ) ̅
         (3-3) 

  represents the Lagrange invariant,   ̅the chief ray height, and ∆(n) the change of 

refraction index. With W420 and W620 calculated, the overall field curvature aberration up 

to 8
th

 order can be computed. 

 

3.3 Aberration Balancing between 4
th

 and Higher Order Field Curvature Aberration 

If an optical system has field curvature up to 8
th

 order, the wave aberration function can 

be written as, 

        
          

           
          (3-4) 

In order to compute the sag of field curvature, defocus W020 is added to the wave 

expansion to make W = 0. Since the pupil dependent ρ
2
 canceled out, the defocus can be 

written as, 

             
        

        
         (3-5) 

Then bringing W020 into the sag equation: 
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    (   )          (   ) (      
        

        
 )        (3-6) 

With the sag equation (3-6) calculated, field curvature can be computed when the three 

coefficients are given. Theoretically, W420 and W620 can balance W220 to minimize the 

sag of the field curvature. The corresponding aspheric coefficients can be calculated by 

equation (3-2) and (3-3). 

An example is given below to demonstrate how the field is flattened using three field 

curvature coefficients. Assuming the system works at f/10 with 4
th

 order field curvature 

W220 = -1λ (λ = 550 nm). Figure 3-1 plots the Petzval field curvature. 

 

Figure 3-1 Field curvature with W220 = -1λ. (Sag = 0.44 mm P-V) 

When W420 is added, the field curve can be flattened substantially. The optimization 

algorithm used minimizes peak to valley (P-V) error. Figure 3-2 shows the optimized 

field curve.  
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Figure 3-2 Field curvature with W220 = -1λ, W420 = 1λ. (Sag = 0.11 mm P-V; sag 

reduction in percentage 75.0%) 

Then, when both W420 and W620 are added, field curvature can be further flattened. Figure 

3-3 shows the further optimized field curve. 

 

Figure 3-3 Field curvature with W220 = -1λ, W420 = 2.2λ, W620 = -1.2λ. (Sag = 0.0625 mm; 

sag reduction in percentage 85.8%) 
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From the optimization results, asphericity can significantly help correct field curvature. 

The mechanism is the 4
th

 and 6
th

 asphericities, namely A4 and A6 induce the 6
th

 and 8
th

 

order field curvature, namely W420 and W620 respectively. Then W420 and W620 can 

balance W220 to minimize field curvature. With only two aspheric coefficients, A4 and A6, 

field curvature can be reduced more than 85%.  

When high order field curvature occurs, the field curve is not quadratic anymore.  Instead, 

the curve starts to “wiggle”. The number of turning points indicates the order of 

asphericity. The location of the turning point depends on the optimization algorithm. This 

theory will be applied to some real designs in Chapter 4 to consolidate its validation. 
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CHAPTER 4 

MODELING FIELD CURVATURE CORRECTION USING AN ASPHERIC 

SURFACE 

 

The field curvature correction using high order wave aberration theory was elaborated in 

the previous chapter. The theory indicates that asphericity can significantly reduce field 

curvature. In this chapter, software simulation will demonstrate field curvature correction 

using aspheric surfaces. The location of the correcting asphere and the number of 

aspheric terms will be studied. The study starts with a design model that has pure 4
th

 

order Petzval field curvature. Then, an aspheric surface with different number of aspheric 

terms at different locations is added. Software optimization is run to minimize the overall 

field curvature. Finally, the field curvature correction results are shown and conclusions 

are drawn. 

 

4.1 Model of Petzval Field Curvature 

A model with a very small pinhole located at the center of curvature of a concave mirror 

is shown in Figure 4-1. On the paraxial image plane, only 4
th

 order Petzval field curvature 

is displayed. The other aberrations are zero (or negligible) in this model. Spherical 

aberration is negligible because of the small pinhole size. Coma, astigmatism, and 

distortion are zero due to the symmetry. There is no color aberration for mirrors. 

Therefore, Petzval field curvature is the only aberration in this model. 
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The model adds a flat mirror behind the concave mirror that folds the image to the right 

just for display purposes. No additional aberration is induced due to the flat mirror. The 

only thing that changes is the sign of the Petzval radius which does not influence to the 

analysis. 

The layout of the model is shown in Figure 4-1. Some design parameters are given in 

Table 4-1. Seidel aberration coefficients distribution in term of surfaces is shown in 

Figure 4-2. 

   

Figure 4-1 Layout of model and plot of field curvature 

Stop size 1 mm 

Radius of the mirror -200 mm 

Back focal distance 100 mm 

FOV ± 33° 

f/# f/100 

Petzval radius 100 mm 

Wavelength 550 nm 

Table 4-1 Specifications of field curvature model 
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Figure 4-2 Seidel diagram of the field curvature model 

In Figure 4-1, a perfect 4
th

 order Petzval field curvature is generated. Next, one aspheric 

surface with different number of aspheric terms will be added in the image space, and 

then the software optimization will be run to minimize field curvature. 

 

4.2 Model of Field Curvature Correction using One Aspheric Surface 

To balance the 4
th

 order Petzval field curvature, one asphere was added in the image 

space. First, the aspheric surface was located exactly at the image plane. The aspheric 

surface’s base radius is infinity. The surface type is a mirror in order to avoid color 

aberration. Similarly, there is a flat mirror directly behind the asphere to fold the image to 

the right. Next, the 4
th

 order aspheric coefficient A4 was set as a variable in order to 

optimize field curvature. In theory, A4 will contribute to W420 and W420 will balance W220. 

The aspheric surface is located at the image plane, so the 4
th

 order spherical aberration, 

coma, and astigmatism are strictly zero because of the zero marginal ray height. The 
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optimized aspheric surface and field curvature plots are shown in Figure 4-3. The image 

plane is overlapping with the aspheric surface vertex. 

 

Figure 4-3 Design layout and field curvature plot with one aspheric term A4. (P-V sag 

reduction is 74.4%) 

Next, both A4 and A6 are set as variables and the optimization was run again. In this case, 

A4 and A6 will introduce W420 and W620 respectively, and W420 and W620 will balance 

W220. The optimization results are shown in Figure 4-4. 
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Figure 4-4 Design layout and Field curvature plot with two aspheric terms A4 and A6. (P-

V sag reduction is 86.1%) 

The software optimization results showed above agrees with the theoretical calculation 

showed in the previous chapter, in terms of the shape of the field curve and the amount of 

sag reduction. The comparison figures and table are shown in Figure 4-5, 4-6 and Table 

4-2. 

 

Figure 4-5 Theoretical calculation results of (a) W220 only, (b) W220 balanced with W420, 

(c) W220 balanced with W420 and W620. 

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sag (mm)

N
o
rm

a
liz

e
d
 f

ie
ld

 h
e
ig

h
t 

H

Field Curvature

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sag (mm)

N
o
rm

a
liz

e
d
 f

ie
ld

 h
e
ig

h
t 

H

Field Curvature

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Sag (mm)

N
o
rm

a
liz

e
d
 f

ie
ld

 h
e
ig

h
t 

H

Field Curvature



45 
 

 

Figure 4-6 Software optimization results for (a) W220 only, (b) W220 balanced with W420, 

(c) W220 balanced with W420 and W620. 

 With A4 only With A4 and A6 

Theoretical Calculation 70.0% 85.8% 

Software Optimization 74.4% 86.1% 

Table 4-2 The amount of field curvature reduction comparison between mathematical 

prediction and software optimization. 

From the comparison above, first, the field curve shape for both theoretical calculation 

and software optimization are similar. The number of turning points of the field curve 

depends on the number of high order aspheric terms used. Second, the amount of P-V 

field curvature reduction is fairly close except there is a little high order astigmatism 

shown in software optimization result. 

Next, the aspheric surface will be moved away from the image plane. This situation is 

more practical because it is not always practical to locate a lens at the image plane. 
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When the aspheric surface moves away from the image plane, more astigmatism will 

occur due to the high order asphericities. In order to evaluate field curvature, the 

“Generalized Petzval Surface” will be introduced. When field curvature is biased with 

astigmatism, the tangential, medial, sagittal, and Petzval surfaces are equally spaced as 

shown in Figure 4-7
[12]

. The sag of the “Generalized Petzval Surface” can be computed 

when having the sag of the tangential and sagittal surfaces. Equation 4-1 computes the 

sag of the “Generalized Petzval Surface”. 

 

Figure 4-7 Four image surfaces (T-tangential, M-medial, S-sagittal, P- Petzval) when 

astigmatism is biased on field curvature. 

            
(         )

 
                            (4-1) 

With equation (4-1) calculated, field curvature can be computed when the aspheric 

surface is away from the image plane. The same optimization procedure is followed. 

Figure 4-8 shows the field curvature plots of the “Generalized Petzval Surface” when the 

asphere is 10mm away from the image plane. The shape of the field curve is similar but 

the amount of field curvature reduction is different. 
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(a)                                                                      (b) 

Figure 4-8 Plots of the Generalized Petzval Surface when asphere is 10 mm away from 

image (a) with one aspheric term A4 (b) with two aspheric terms A4 and A6 

Similarly, by moving the asphere to a different location and adding different number of 

aspheric terms respectively, the optimization results can be obtained and shown in Table 

4-3. The aspheric terms are used up to A16. 

   Distance from image plane 

Aspheric 

Term # 

0 mm 10 mm 20 mm 30 mm 40 mm 50 mm 60mm 70 mm 80mm 90 mm 100 mm 

1  (A4) 73% 45% 23% 16% 12% 9% 7% 5% 4% 3% 2% 

2  (A4 ~ A6) 86% 85% 50% 46% 44% 42% 41% 39% 38% 37% 36% 

3  (A4 ~ A8) 92% 81% 46% 48% 43% 40% 38% 36% 35% 34% 33% 

4  (A4 ~ A10) 95% 88% 37% 50% 46% 43% 41% 39% 38% 37% 36% 

5  (A4 ~ A12) 96% 89% 43% 50% 46% 43% 41% 39% 38% 37% 36% 

6  (A4 ~ A14) 97% 89% 44% 50% 49% 48% 41% 45% 38% 37% 35% 

7  (A4 ~ A16) 98% 90% 41% 50% 49% 48% 46% 46% 45% 45% 43% 

Table 4-3 Field curvature reduction for different aspheric surface location using different 

aspheric terms. 
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The data indicate field curvature can be substantially reduced by only two aspheric terms. 

The amount of field curvature reduction depends on the distant between the asphere and 

the image plane. The further away from the image of the asphere, the less amount the 

reduction of field curvature. Adding more aspheric terms general does not help much. 

 

4.3 Model of Field Curvature Correction using Two Aspheric Surface 

The study just showed one aspheric surface close to image plane with two aspheric terms 

can reduce field curvature more than 85%. When the aspheric surface moves away from 

the image plane, the field curvature correction is not as much no matter how many 

aspheric terms used. Also, more astigmatism occurs when asphere moves away from the 

image. So, more degree of freedom is needed, namely more aspheric surfaces, if the 

aspheric surface is located farther from the image. 

The example below illustrates how the field curvature correction is done when we have 

two aspheric surfaces. The same procedures are repeated but with two aspheric surfaces 

away from the image (say more than 20 mm away from image out of a 100mm back focal 

distance) and see how the correction is. The aspheric terms used on both asphere are 

limited to 5 (up to the 12
th

 order even aspheric coefficient A12) for the fabrication and 

testing consideration. 

Figure 4-9 and Table 4-4 show four optimization results when using two aspheric 

surfaces correct field curvature. 
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(a)                                                                      (b) 

 

(c)                                                                      (d) 

Figure 4-9 Optimization results for two aspheric surfaces model. 

Figure.8 Distance 

between two 

aspheres (mm) 

Distance from 

the second 

asphere to the 

image (mm) 

Aspheric 

terms on 

the first 

asphere 

Aspheric 

terms on the 

second 

asphere 

Field curvature 

reduction in 

percentage % 

(a) 40 20 5 5 90 

(b) 20 30 5 5 84 

(c) 20 40 5 5 78 

(d) 15 50 5 5 70 

Table 4-4 Optimization data of two aspheres 
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From the optimization results, basically, more aspheric surfaces with more aspheric terms 

are needed to achieve similar amount of field curvature reduction. This makes sense 

because extrinsic (induced) aberrations exist when two aspheric surfaces used. Therefore, 

more aspheric terms are needed to correct not only intrinsic aberration but also extrinsic 

aberrations, namely, the total 10 aspheric terms in this example not only used to correct 

intrinsic field curvature, but also control other induced aberrations.  

When one of the asphere is closer to the image, the correction is better. In other words, 

fewer terms are needed to achieve similar amount of reduction when one of the asphere is 

closer to the image. Also, if one of the asphere is closer to the image, the less curved it 

looks. So it is easier for the aspheric surface fits into the system without edge interference 

with other elements. On the other hand, the aspheres that are further from the image need 

bend more to correct field curvature so they appear curved more. 

In conclusion, one aspheric surface with two aspheric terms can sharply reduce field 

curvature by 85% when the asphere is close to image plane. The closer the asphere to the 

image, the better the correction is. If even better correction needed, more aspheric 

surfaces are needed. Meanwhile, more total aspheric terms are needed because of the 

induced aberration. The exact location of the aspheric surfaces and the number of 

aspheric terms can be optimized by design software. 

 

4.4 Induced Aberration 
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Induced aberration is also known as extrinsic aberration. Induced aberration is the 

aberration transferred from a previous surface or system, not exists intrinsically in the 

current surface itself. An example is given below to understand induced aberration. 

Figure 4-10 shows an example of an on-axis point object collimated by a single positive 

lens and followed by a concave mirror to bring the beam to a focus. The spot diagram and 

the wavefront aberration plots are shown in Figure 4-11. 

 

Figure 4-10 Model of induced aberration layout 
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Figure 4-11 Spot diagram and OPD 

Generally, mirror does not generate chromatic aberration. But the longitudinal chromatic 

aberration does shown in Figure 4-11. The reason for that is because the collimating lens 

is dispersive. Chromatic aberration is induced to the mirror and displayed in the image. It 

is true that mirror itself does not generate any chromatic aberration intrinsically. But the 

chromatic aberration generated by the dispersive lens in this case is treated as induced 

aberration to the mirror. 

Back to the two aspheres example discussed in the last section, before the light passes 

through the first asphere, only the 4
th

 order Petzval field curvature exists. When the light 

passes through the first asphere, the high order aspheric terms generates higher order field 

curvature that balanced the 4
th

 order Petzval field curvature. But, at the same time, the 

high order aspheric coefficients also generate some unwanted high order aberration 

namely high order astigmatism intrinsically. These unwanted higher order astigmatism 

are treated as “induced aberration” to the second asphere. The second asphere not only 

need to generate high order field curvature to further balance field curvature, but also 

need to generate the opposite amount of  high order astigmatism. This explains why more 

aspheric terms are needed for both aspheres. 

 

4.5 Aspheric field flattener 

The study shows an aspheric surface near image plane with two high order aspheric terms 

can significantly reduce field curvature, which agrees with the theoretical prediction. In 
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this section, real classical design examples will be demonstrated using aspheric field 

flattener lens to control field curvature. 

EXAMPLE 1 Schmidt Telescope with an Aspheric Field Flattener 

Schmidt telescope (also known as Schmidt camera) uses a spherical mirror with the stop 

at its center of curvature. An aspheric corrector is located at the stop to control spherical 

aberration. Since the corrector plate is located at the stop, only high order spherical 

aberration is induced to balance the 4
th

 order spherical aberration. The limiting aberration 

for the Schmidt telescope is field curvature. For a small field of view, defocus could 

possibly minimize the wavefront aberration. But when the system becomes faster and the 

FOV becomes larger, field curvature will degrade image quality significantly. Figure 4-

12 shows a classical Schmidt telescope design. The telescope works at f/5 with FOV ±2°. 

 

Figure 4-12 Schmidt telescope design layout and its field curvature 
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Figure 4-13 OPD (1 waves scale) and Seidel diagram 

In Figure 4-12, there is about 1 wave of OPD mainly field curvature. Since there is a flat 

window pre-located at the image, the back surface could be set as even asphere and the 

high order aspheric coefficients A4 and A6 could be added to optimize the OPD. Figure 4-

14 shows the optimization results. 

 

Figure 4-14 Aspheric flattener lens zoomed layout and field curvature plot when flattener 

lens applied. 
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Figure 4-15 OPD plot (0.1 waves scale) when aspheric flattener lens applied 

The optimization results show one aspheric surface near image plane (100µm away) with 

two high order aspheric coefficients (A4 and A6) reduces field curvature from 100µm 

scale to 20µm scale, and the OPD reduced from 1 wave to 0.1wave. Moreover, the field 

curve shape exactly agrees with the ideal model demonstrated in the previous chapter. 

Very small high order astigmatism induced because the aspheric flattener is not exactly at 

image plane. 

The classical Schmidt telescope uses a positive lens to give a flat field design solution. 

The comparison is given below to show how the positive lens solution competes to the 

aspheric flattener lens solution. Figure 4-16 shows the positive lens zoomed layout and 

the field curvature plot, and Figure 4-17 shows the OPD. Table 4-5 compares the field 

curvature correction and the OPD for the two different solutions. 
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Figure 4-16 Positive lens zoomed layout and field curvature plot 

 

Figure 4-17 OPD plot (0.4 waves scale) when positive flattener lens applied 

Solution Field curvature OPD 

Aspheric flattener 20 µm 0.1 wave 

Positive flattener 50 µm 0.4 wave 

Table 4-5 Comparison of aspheric flattener solution and positive flattener solution 
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As shown in Table 4-5, the aspheric flattener solution has better results in terms of 

controlling field curvature and the OPD.  

EXAMPLE 2 Petzval lens with an Aspheric Field Flattener 

As shown in Chapter 2, the Petzval lens design uses a negative flattener lens near the 

image control field curvature. Here, an aspheric field flattener solution is discussed. First, 

the pure 4
th

 order Petzval field curvature is generated. The image plane is set with a 

curvature which equals to the Petzval radius Rp = -100mm, and the system focal length 

EFL = 100mm. The design is optimized onto the Petzval surface and is shown in Figure 

4-18. The OPD error is 0.01 wave. Then the image is set back to flat so that a pure 

quadratic Petzval field curvature is displayed and showed in Figure 4-19. The OPD error 

showed in Figure 4-20 is about 1 wave, mainly field curvature.  

EFL 100 mm 

Petzval Radius Rp -100 mm 

F/# f/10 

FOV ±4° 

Table 4-6 Lens specifications 

 

Figure 4-18 Optimized Petzval lens on its Petzval surface layout and its OPD plot (0.01 

waves scale) 
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Figure 4-19 Optimized Petzval lens on a flat image surface and its field curvature plot 

 

Figure 4-20 OPD (1 waves scale) and Seidel diagram 

Next, the back surface of the flat window near the image is set to even asphere and 

optimize the design performance. Figure 4-21 shows the optimized design layout and 

field curvature plot for three cases: (a) original; (b) even asphere with A4; (c) even 

asphere with A4 and A6. 
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Figure 4-21 Layout of (a) original (b) asphere with one term A4 (c) asphere with two 

terms A4 and A6 

 

Figure 4-22 Field curvature plot of (a) original (b) asphere with one term A4 (c) asphere 

with two terms A4 and A6 

There are some astigmatism showed in the field curvature plot because of the aspheric 

flattener is not strictly at the image. In order to clearly show the field curvature correction, 

the “Generalized Petzval Surface” is plotted in Figure 4-23. 

 

Figure 4-23 Generalized Petzval surface plot of (a) original (b) asphere with one term A4 

(c) asphere with two terms A4 and A6 
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The optimization results agree with the simulation results showed in Chapter 3. Field 

curvature is significantly reduced when using one aspheric surface with two high order 

aspheric terms. 

In order to further control the induced astigmatism, both the front and the back surfaces 

are set as even asphere. The optimization results are showed in Figure 4-24 & 4-25 when 

A4 and A6 are used for both surfaces. 

 

Figure 4-24 Petzval lens with a flattener lens use two aspheric surfaces 

 

Figure 4-25 Field curvature & distortion and Generalized Petzval surface 

When the aspheric field flattener is close to image plane, two aspheric surfaces with 4 

high order aspheric terms could control both field curvature and astigmatism. 
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When the aspheric field flattener is farther away from the image, induced aberrations will 

be problematic so that more aspheric terms are needed. The example given below shows 

when the aspheric flattener is located halfway between the second doublet and the image. 

Figure 4-26 shows the optimization results when A4 and A6 are used on both the front and 

back surfaces. 

 

Figure 4-26 Petzval lens with an aspheric flattener lens that are away from image 

 

Figure 4-27 Field curvature & distortion and Generalized Petzval surface 

In Figure 4-27, field curvature is well controlled but astigmatism is too large. In order to 

better control astigmatism, either more coefficients are needed and/or more aspheric 

elements are needed. 
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The analysis above indicates an aspheric flattener close to image plane could 

substantially correct field curvature for the Petzval lens. The classical Petzval lens use 

negative lens flattener control field curvature. The comparison between the negative 

flattener solution and the aspheric flattener solution is illustrated below. Figure 4-28 

shows the negative lens solution zoomed layout the field curvature plot.  

 

Figure 4-28 Negative flattener lens zoomed layout and field curvature & distortion plot 

Compare Figure 4-28 and Figure 4-25, negative flattener solution gives an even flatter 

field compared to the aspheric flattener solution. However, the front two doublet lenses 

have to be slightly changed because of the weak negative power of the negative flattener. 

The superiority of the aspheric flattener lens is that it could be applied to any designs 

with large Petzval field curvature without affecting the first order properties of the 

original design.  

 

4.6 Field curvature evaluation criteria 

From the two examples shown above, when aspheric flattener is used, the actual field 

curve could be relatively flat even though the Petzval sum is relatively large. In other 
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words, the classical Petzval theorem cannot evaluate field curvature when higher order 

field curvature are strong. Because the high order asphericity does not contribute to 

optical power but substantially flattens field curvature. So, next question is how to 

evaluate field curvature when aspheric field flattener lens exists. Here, the thickness 

variation instead of optical power is used to evaluate field curvature. In this section, a 

new criterion will be given to evaluate field curvature and some real aspheric design 

examples will be demonstrated and shown how the criterion applies. 

Our derivation starts from the Petzval sum in Equation (4-2). 

             
 

  
  ∑

    

    
  ∑

  

  
              (4-2) 

If      is multiplied on both side of equation (4-2), equation (4-3) is given as: 

  

   
  ∑

    

    
  

  
              (4-3) 

  represents the marginal ray height. 

Assume the system uses the same glass for all elements, when the elements have constant 

thickness across the pupil for a specific field, the Petzval sum will be zero. In other word, 

the Petzval field curvature increases because of the element thickness variation across the 

pupil. The index of refraction acts as a weighing factor. 

Since the constant thickness variation across pupil is the key to control field curvature, 

the thickness versus FOV needs to be computed in order to evaluate the aspheric 

contribution. Equation (4-4) computes the aspheric contribution to thickness sum. 
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                                        (    )   ∑
    

   
 (             )  (4-4) 

     represents the ray path length across pupil with all aspheric coefficients on,         

the ray path length across pupil with all aspheric terms removed. So, for a spherical lens 

design, the ACTS vs FOV curve should be completely flat. When the aspheric terms are 

added, the ACTS will change when FOV increases. 

To test the criteria of ACTS, two examples of both the aspheric surface is near and far 

from the image is illustrated below. 

EXAMPLE 1 Petzval lens with aspheric field flattener 

Figure 4-29 &4-30 shows the Petzval lens example and plots ACTS with the flattener 

lens near the image. Figure 4-31 &4-32 shows the Petzval lens example and plots ACTS 

with the flattener lens far from the image. 

 

Figure 4-29 Aspheric field flattener lens that is close to image and ACTS plot 
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Figure 4-30 Field curvature and distortion 

 

Figure 4-31 Aspheric field flattener lens that is away from image and ACTS plot 

 

Figure 4-32 Field curvature and distortion 

In the ACTS plots, the blue curve represents the Petzval curve and the red curve 

represents the ACTS curve. When the flattener lens is close to the image, the aspheric 
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terms contribute to the opposite amount of thickness that offsets the Petzval sag, therefore, 

the design has a flat field. When the flattener lens is away from the image, the aspheric 

terms contribute very little thickness so that the field is not flat. 

EXAMPLE 2 Zoom lens 

There are three aspheric surfaces in this zoom lens example. When switching zoom 

configurations, the distance from the aspheric surfaces to the image plane varies. The 

three different zoom configurations are plotted in Figure 4-33to show how field curvature 

changes when the aspheres move. 

 

 

 

Figure 4-33 Three zoom lens configurations with their ACTS and field curvature plots 
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When the aspheres move away from the image, the ACTS curve becomes flatter and the 

field curvature becomes larger. This observation agrees with the conclusion drawn in the 

previous chapter. 
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CHAPTER 5 

BALANCING ASTIGMATISM AND PETZVAL FIELD CURVATURE 

 

5.1 Petzval and Astigmatism 

Field curvature is equivalent to Petzval curvature when there is no astigmatism. When 

astigmatism exists, field curvature will be biased. Classical aberration theory defines field 

curvature as Petzval curvature plus half of the astigmatism as shown in equation (5-1). 

             
 

 
               (5-1) 

W220 represents field curvature, W220P the Petzval curvature, and W222 the astigmatism. 

In order to control field curvature, either the Petzval and astigmatism are both minimized 

or they balance each other. For example, if there is 1 wave of Petzval, 2 waves of 

astigmatism can be generated to make field curvature zero. However, the induced -2 

wave astigmatism will be problematic. In this chapter, the study will be shown how to 

use astigmatism to balance Petzval field curvature. 

 

5.2 High order astigmatism 

As discussed in previous chapter, when the aspheric surface is away from the image, 

higher order astigmatisms will be induced. Higher order astigmatism has the same 

quadratic pupil dependency but higher order in field. The wave aberration coefficient for 
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6
th

 order astigmatism is W420, 8
th

 order W620, 10
th

 order W820 etc. Equation (5-1) could be 

written as Equation (5-2) when high order astigmatisms exist. 

             
 

 
 (                       )          (5-2) 

Similar as field curvature, astigmatism could also be balanced among different orders. So, 

the induced excessive 4
th

 order astigmatism could be used to balance Petzval and high 

order astigmatism will balance 4
th

 order astigmatism. In the end, the field curvature is 

minimized. The art of control field curvature in such cases is balancing among Petzval 

curvature, 4
th

 order astigmatism, and higher order astigmatism. Next, some real design 

examples are given and shown how the theory applies. 

 

5.3 Examples of cellular phone lenses 

In recent years, with the rapid mobile technology revolution, a new type of cellular phone 

camera design came to our vision. The earliest design patent was filed on year 2004
[13]

. 

This type of design is very different from the classical lens because it corrects aberration 

in a different way, namely the high order asphericity plays an important role in 

controlling aberrations particularly field curvature.  

The novel cellular phone design usually consists of 3~5 aspheric elements. The materials 

used are almost always plastics due to the ease of manufacturing and low cost. The total 

track of the design is usually within 7 mm. The design is relatively fast. The full field of 

view is usually over 60° therefore field curvature correction is very critical. 
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Four cellular phone design examples 
[13-15]

 are analyzed. The lens layout and field 

curvature & distortion plots are shown in Figure 5-1. The curved dummy surface before 

the image is the Petzval surface. 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 5-1 Four cellular phone lens examples and their field curvature & distortion plot 

The lens specifications are listed in Table 5-1. 

Design Focal 

length 

F/# FOV Petzval 

radius 

W222 W220P W220 

(a) 4.60 mm 2.78 ± 33° -16.2 mm -16.15 λ 8.08 λ 0.005 λ 

(b) 2.20 mm 2.14 ± 35° -7.4 mm -15.82 λ 7.91 λ 0 

(c) 3.40 mm 2.95 ± 30° -10.9 mm -9.66 λ 4.83 λ 0 

(d) 3.48 mm 3.45 ± 30° -6.3 mm -12.03 λ 6.01 λ -0.005 λ 

Table 5-1 Lens specifications 

From the analysis data, the field curves are relatively flat although the Petzval sags are 

relatively large. By computing the wave aberration coefficients, the induced 4
th

 order 

astigmatism is used to balance the excessive Petzval. By observing the shape of the field 

curve, high order astigmatisms are used to balance the 4
th

 order astigmatism.  

After reviewing these designs example’s prescriptions, it indicates most designs used 

many aspheric terms on the field flattener lens, namely, up to the 16
th

 order A16. Based on 
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the theory, when the aspheric flattener lens is far from the image, two aspheric terms are 

enough in terms of field curvature correction. So, it indicates these designs overused 

aspheric terms and it is possible to simplify them, namely decreases the aspheric terms 

but keeps similar imaging performance. 

An example is given below to show how the asphericity is reduced from the 16
th

 order to 

the 6
th

 order. Figure 5-2 shows the original lens prescription data; Figure 5-3 shows the 

design layout, field curvature & distortion curves, and the OPD error. 

 

Figure 5-2 Lens prescription data 
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Figure 5-3 Original design and its field curvature & distortion and OPD plots (1 waves 

scale) 

The field flattener (surface 6, 7) has aspheric coefficients up to the 16
th

 order. The goal is 

to reduce the aspheric order but keep the similar OPD error and field curvature. All the 

first order properties such as focal length, f/#, FOV, lens base curvature, thickness, and 

spacing are fixed as original during the optimization process. In order words, only high 

order aspheric coefficients are allowed to change. Figure 5-4 and 5-5 show the simplified 

design and its performance. 

 

Figure 5-4 Lens prescription data after optimization 
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Figure 5-5 Re-optimized design and its field curvature & distortion and OPD plots 

Compare the re-optimized design to the original design, the aspheric terms used on the 

field flattener are reduced from the 16
th

 order down to the 6
th

 order without affecting the 

imaging performance namely OPD error, field curvature, and distortion. The success of 

simplifying the aspheric design could tremendously ease the design tolerancing, 

fabrication, and testing of the aspheric elements. At the same time, it validates the 

previous conclusion drawn in the previous chapter.  

 



75 
 

5.4 Examples of wide angle lenses 

Field curvature aberration is a function of FOV. The Petzval theorem indicates field 

curvature increases quadratically with FOV. Therefore, it is critical to control field 

curvature in wide angle lenses. In this section, four wide angle lenses design 
[16-17]

 will be 

analyzed and shown how astigmatisms help control field curvature. 

The lens layout and field curvature & distortion plots are shown in Figure 5-6. The 

curved dummy surface before image plane is the Petzval surface. Table 5-2 gives the lens 

specification data. 

 

(a) 

 

(b) 
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(c) 

 

(d) 

Figure 5-6 Four wide angle lens examples and their field curvature & distortion plot 

Design Focal 

length 

F/# FOV Petzval 

Radius 

W222 W220P W220 

(a) 9.00 mm 4.5 ± 30.5° -49.7 mm -6.34 λ 3.17 λ 0 

(b) 3.01 mm 2.15 ± 37.5° -16.4 mm -15.87 λ 7.89 λ -0.045 λ 

(c) 2.25 mm 2.42 ± 45° -5.33 mm -41.35 λ 20.70 λ 0.025 λ 

(d) 1.06 mm 3.15 ± 80° -13.1 mm -63.71 λ 31.85 λ -0.005 λ 

Table 5-2 Lens specifications 

Aspheric surfaces are commonly used in these 4 wide-angle lenses. High order 

astigmatisms are obvious by observing the field curvature plots. Similarly, the field 
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curvature correction mechanism applied to wide angle lenses as well as cellular phone 

lenses. The aspheric surfaces induced high order astigmatisms and they were used to 

balance the 4
th

 order astigmatism and Petzval. 

 

5.5 Miscellaneous examples 

Examples of modern cellular phone lenses and wide angle lenses are given to 

demonstrate the balancing between astigmatism and Petzval curvature. In this section, 

more examples that use less aspheric terms are given.   

The lens layout and field curvature & distortion plots are shown in Figure 5-7. The 

curved dummy surface before image plane is the Petzval surface. Lens specification data 

are shown in Table 5-3. 

 

(a) 
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(b) 

Figure 5-7 Two barcode scanner lens examples and their field curvature & distortion plot 

Design Focal 

length 

F/# FOV Petzval 

Radius 

W222 W220P W220 

(a) 6.70 mm 6.67 ± 19.8° -30.8 mm -1.16 λ 0.51 λ -0.07λ 

(b) 7.98 mm 8.00 ± 16.8° -25.2 mm -0.88 λ 0.44 λ 0 

Table 5-3 Lens specifications 

For both lenses, the last element before the flat window is the aspheric corrector lens and 

the aspheric terms used are up to the 6
th

 order. As only A4 and A6 terms are used, the 

astigmatisms are more obvious to observe. The aspheric terms A4 and A6 could induce 6
th

 

and 8
th

 order astigmatism, namely W422 and W622. In field curvature plot, the 6
th

 and 8
th

 

order astigmatisms help flatten the tangential curve in order to minimize the 4
th

 order 

astigmatism.  
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CHAPTER 6 

CONTROL PETZVAL FIELD CURVATURE BY OBLIQUE SPHERICAL 

ABERRATION 

 

6.1 Oblique spherical aberration 

Oblique spherical aberration is one of the new 6
th

 order aberrations. It is similar to the 4
th

 

order spherical aberration but with a quadratic dependency on field. The wave aberration 

coefficient for oblique spherical aberration is W240. Oblique spherical aberration is 

common in fast photographic lenses such as double Gauss lens. In this chapter, a study 

will show how to use oblique spherical aberration balance Petzval field curvature. 

 

6.2 Balancing Petzval field curvature with Oblique spherical aberration 

Assume a system with all 4
th

 and 6
th

 order aberrations well controlled except oblique 

spherical aberration and Petzval field curvature, the wave aberration could be written as  

         
          

        (       
         

 )      (6-1) 

As the two aberration coefficients      and      have the same field dependency, the 

balancing is happened between the quadratic dependent pupil and 4
th

 order pupil. The 

plots in Figure 6-1 show the oblique spherical with the opposite amount of Petzval could 

reduce wavefront aberration more than 70%.  
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Figure 6-1 Wavefront aberration of (a) Petzval only (b) Petzval and oblique spherical 

 

6.3 Double Gauss lens example 

Oblique spherical aberration exists in fast Double Gauss type of photographic lenses. An 

Double Gauss lens works at F/3 with field of view ±14° is given below. Figure 6-2 shows 

the lens layout and OPD. Figure 6-3 shows the field curvature plot and Seidel coefficients. 

 

Figure 6-2 Double Gauss lens layout and OPD (5 waves scale) 
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Figure 6-3 Field curvature & distortion plot and Seidel coefficients charts 

In the OPD plot, almost no on-axis aberration appears. Off-axis Petzval curvature and 

oblique spherical balanced each other at different field. To verify the observation, the 

wave aberration coefficients are computed and listed in Table 6-1.  

Aberration Coefficient Amount in waves 

Spherical W040 0.4 wave 

Oblique spherical W240 -6.3 wave 

Petzval W220P 6.5 wave 

Table 6-1 Wave aberration coefficients 

Table 6-1 shows the oblique spherical and Petzval has almost equal amount of aberration 

but different sign. Therefore, the off-axis OPD plot shows the quadratic and 4
th

 order 

balancing as the simulation shown in section 6.2. 

Another example is given below. This lens works at F/2.3 with a FOV ±25°. It is a double 

Gauss type of lens as well but even faster and has a larger FOV compared to the previous 

lens. By separating the front meniscus lens and shifting the stop, the overall aberration is 

better controlled.  
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Figure 6-4 Lens layout and OPD (1 waves scale) 

  

Figure 6-5 Field curvature & distortion plot and Seidel coefficients charts 

Aberration Coefficient Amount in waves 

Spherical W040 0.02 wave 

Oblique spherical W240 -1.01 wave 

Petzval W220P 1.08 wave 

Table 6-2 Wave aberration coefficients 

By inspecting the OPD plot, there are very little defocus and spherical aberration terms 

on axis. The off-axis plot indicates the balancing between oblique spherical aberration 

and Petzval which is verified by computing the wave aberration coefficients which shown 

in Table 6-2. 
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CHAPTER 7 

NOVEL ASPHERIC SURFACES 

 

Asphere, by definition, means any surfaces that depart from a perfect sphere. Aspheric 

surface is not new in lens design. The first high-quality aspheric lens was made and used 

on telescopes back to 1660s
 [18]

. Nowadays, more and more aspheres are used because of 

the boost precision fabrication and testing technology. The examples of the optical 

systems that use aspheres include the aspheric eyeglasses, modern photographic zoom 

lenses, the nano-scaled precision lithographic objective lenses etc.   

The superiority of aspheric surface in optical design is the additional degrees of freedom 

that can control aberrations. Moreover, asphere can reduce the complicity of a design, 

namely using fewer elements, making the total track shorter and smaller, and sometimes 

even cheaper. 

In this chapter, some commonly used aspheric surfaces are reviewed. And two novel 

types of aspheres are proposed.   

 

7.1 Review of the Existing Aspheric Surfaces 

Basically, two types of aspheric surfaces are commonly used in lens design. The first type 

is the conic surface. A conic constant   is added to the base sphere equation (7-1). 

   
   

   (  (   )    )   
       (7-1) 
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Figure 7-1 Conic surfaces with the same base radius of curvature 

When the conic constant   has different values, the surface can have different shape. The 

commonly used conic surfaces are plotted together with the same base radius of curvature 

in Figure 7-1. The conic surface has two conjugate foci. Light from one focus reflects off 

the surface and comes back to the other focus without any aberrations. Therefore, most 

astronomical telescope mirrors use porabolas and hyperbolas because this unique 

property. 

Biconic surface 
[19]

 is the conic surface that allow different base radius and conic constant 

in X and Y directions. One common application of biconic surface is the model of the 

human eye. 

The second type of surface adds polynomials on the conic surface. Rotationally 

symmetric polynomial aspheric surface is a combinition of  a base sphere (or conic) and a 

polynomial expansion. Different types of polynomials were invented. 

Zernike polynomials 
[20]

  are well-known in the field of intereferometic testing. It uses a 

set of orthogonal polynomials that represent diferent aberrations to fit to the wavefront 

error. Zernike polynomials could also be used to define the aspheric departure from a 



85 
 

base sphere. Also, Zernike polynomials could be added on biconic surface to make it the 

biconic Zernike surface. For example, biconic Zernike surface is used in ophthalmology 

describes aberrations of the cornea. 

Even asphere surface is the most commonly used aspheric surface in lens design. It uses 

the even powers of the radial coordinate to describe the asphericity. The even asphere’s 

sag equation is described as: 

   
   

   √(  (   )    )
      

      
     

             (7-2) 

Note the even aspheric coefficients have units and they are not orthgonal. The sign of the 

different coefficents are usually alternating in order to give the aspheric departure from 

the base sphere. 

Q type polynomial is invented by Greg Forbes in recent years
[21-22]

. Q type asphere uses a 

set of orthogonal polynomials represent rotation symmetric asphere. Two specific types 

are defined. (a) strong aspheres departing from a conic, and (b) mild aspheres departing 

from a best-fit sphere. The superiority of the Q type asphere is facilataing the 

manufaturing constraning and design tolerancing. Because each polynomial term has a 

meaning in term of surface error. By now, this new type asphere is already included in 

most conmmerial optical design softwares. Also, it graduately be adopted in optical 

specification, fabrication, and testing in optics industrial.  

 

7.2 Novel Aspheric Surfaces 
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Polynomial type surface is powerful to define aspheres with a wide range of aspheric 

departure. However, when the aspheric orders used are too high, the fabrication and 

testing become very challenging. Therefore, the idea here is to see if a non-polynomial 

type asphere can be invented and applied to lens design. In this chapter, two novel non-

polynomial type surfaces which define by a few first order parameters are introduced. 

Furthermore, the application of these novel aspheric surfaces is studied. 

The idea came from the insight on the cellular phone designs demonstrated in Chapter 5. 

The three design examples are shown in Figure 7-2.   

 

Figure 7-2 Three cellular phone lens examples 

The aspheric flattener lens in front of the flat window is mainly used to reduce field 

curvature. All these aspheric flatteners have very little optical power because the front 

and back surface usually has similar base radius of curvature. But the flatteners have 

wave shape due to the aspheric terms. The exactly shape depends on the order of aspheric 

terms used. Based on the “wavy” shape observed from the cellular phone field flattener 

lens, a novel surface that has two radii of curvature but different signs is invented. The 

slope at the turning point is continuous. In this way, the new surface could have the 

“wavy” shape as the field flattener in cellular phone lens. 
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7.2.1 Type 1 Basic Dual Radii Surface 

The mathematical definition of the basic dual radii surface is described as 

 ( )  { 

           (   )
         (      )
   (         )

       (7-3) 

The equation (7-3) defines the radii of curvature R(r) at different portions of the pupil r.  

The surface drawing is shown in Figure 7-3. On optical axis, the surface slope is infinity. 

When the pupil size increases from 0 to r1, the surface radius of curvature is R1. R1 could 

be positive or negative. When the pupil size increases from r1 to the edge of the surface 

rmax, the surface radius of curvature is R2 which has an opposite sign to R1. At r = r1, there 

is a turning point connects the two parts of the surface. The slope at the turning points is 

continuous. Two center of curvatures C.C1 and C.C2 are alone the surface normal.  

There are 3 variables in this type of surface, namely R1, R2 and r1. The surface is 

rotationally symmetric to the optical axis. The base radius of curvature is R1. The 

difference between this surface and the normal spherical surface is the R2 part when r is 

larger than r1. 
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Figure 7-3 Type 1 surface layout 

Type 1 surface could be written in optical design software. The surface layout in design 

software is shown in Figure 7-4. The surface data are in Table 7-1. 

R1 50 mm 

R2 25 mm 

r1 5 mm 

rmax 12.5 mm 

Table 7-1 Surface specifications 

 

Figure 7-4 Type 1 surface simulation in design software 

To compare Type 1 surface and even asphere, an example is given below to see how the 

two types of surface fit to each other. Figure 7-5 and 7-6 show the fitting results. Two 

even asphere coefficients A4 and A6 are used. The P-V surface sag difference is about 

120 µm over a 1 inch aperture. Using more aspheric terms does not help minimize the sag 

difference. The red color surface is the even asphere. 
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Figure 7-5 Lens prescription data 

 

Figure 7-6 Fitting Type 1 surface to even asphere has coefficients A4 and A6 

For a lens has one inch aperture size, the novel Type 1 surface with three first-order 

parameters can fit to the even asphere with two high order coefficients with very small 

fitting residue. As discussed in Chapter4, an even asphere near image plane with two high 

order terms could significantly reduce field curvature. Therefore, the novel Type 1 

surface could be used as an aspheric field flattener. 

7.2.2 Type 2 Powerless Dual Radii Surface 

The Type 1 dual radii surface has a base radius of curvature R1. This Type 2 powerless 

dual radii surface adds a flat piston part on-axis to make the lens powerless. The 

mathematical definition of this Type 2 surface is described as, 

 ( )  { 

           (      )

         (       )
   (         )

        (7-4) 
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The surface drawing is shown in Figure 7-7. When r is between 0 and r1, the surface is 

flat. When r is larger than r1, the surface shape is exactly the same as Type 1 surface. As 

this Type 2 surface adds a flat piston part, the surface power is zero on-axis.  

There are four variables consist of this type of surface, namely R1, R2, r1 and r2. The 

surface is rotationally symmetric to the optical axis.  

 

Figure 7-7 Type 2 surface layout 

An example of Type 2 surface is demonstrated in design software. Figure 7-8 gives the 

layout of the Type 2 surface. Table 7-2 gives the surface data. 

R1 25 mm 

r1 3 mm 

R2 5 mm 

r2 8 mm 

rmax 12.5 mm 

Table 7-2 Surface specifications 
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Figure 7-8 Type 2 surface simulation in design software 

Next, the even asphere is used to fit to this Type 2 surface example. The fitting figures 

and results are shown in Figure 7-9 and 7-10. The red color surface is the even asphere. 

 

Figure 7-9 Lens prescription data 

 

Figure 7-10 Fitting Type 2 surface to even asphere has coefficients A4 and A6 
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Two even asphere coefficients A4 and A6 are used. The P-V surface sag difference is 

about 180 µm over one inch aperture. Using more aspheric terms does not minimize the 

sag difference.  

With a powerless flat portion added on Type 1, the Type 2 surface could still replace an 

even asphere with two high order aspheric terms. This Type 2 surface could be used as a 

powerless field flattener. 

  

7.3 Application of novel aspheric surfaces 

In Chapter 4, we showed an aspheric field flattener near the image with two aspheric 

terms could significantly reduce field curvature. In this chapter, two novel types of 

asphere are proposed and demonstrate that they could fit to the even asphere with two 

coefficients. Thus, there is a potential to use the Type 1 or Type 2 surface replace the 

traditional even asphere which serves as an aspheric field flattener.  

In Chapter 4, we demonstrated how an aspheric field flattener successfully reduces field 

curvature in the Petzval Lens. Here, an example is given to demonstrate how the novel 

Type 2 powerless dual radii asphere replaces the even asphere field flattener. 

The Petzval Lens design example is recalled in Figure 7-11. A pure 4
th

 order Petzval field 

curvature is generated when the negative spherical field flattener is set to flat. 
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Figure 7-11 Petzval lens example and its field curvature plot 

Then, the back surface of the flat window is set as novel Type 2 asphere and allowed r1, 

R1, r2, and R2 vary. The optimization results are shown in Figure 7-12 and Table 7-3. 
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Figure 7-12 Petzval lens with a novel aspheric (Type 2) flattener lens and its field 

curvature and generalized Petzval curvature plots. 

Type 2 Asphere Specifications 

R1 16.37 mm 

r1 2.02 mm 

R2 2.51 mm 

r2 6.51 mm 

rmax 9.0 mm 

Table 7-3 Surface specifications 

The optimization results of using even asphere with coefficients A4 and A6 are recalled 

and shown in Figure 7-13 and Table 7-4. 
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Figure 7-13 Petzval lens with an aspheric (even asphere) flattener lens and its field 

curvature and generalized Petzval curvature plots 

Even Asphere Specifications 

A4 7.4078e
-4

 

A6 -9.1810e
-6

 

Table 7-4 Surface specifications 

Next, the two types of surface are plotted together and shown in Figure 7-14. The red 

color surface is Type 2 asphere. The P-V difference is 67 µm.  

 

Figure 7-14 Fitting Type 1 asphere to Even Asphere 

By comparison, both surfaces could significantly reduce field curvature. The field curve 

generated by Type 2 asphere is not as smooth as field curvature generated by even 

asphere. But the amount of field curvature reduction and the shape of the curve are 

similar. Also, the sag difference between the two types of asphere is small. 

In summary, the two types of novel aspheric surfaces are proposed. With 3~4 first order 

parameters, these novel aspheres agree with the even asphere with two high order terms. 
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A design example is given to show both even asphere and Type 2 novel asphere can serve 

as a field flattener near the image. 
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CHAPTER 8 

SUMMARY & FUTURE WORK 

 

8.1 Summary 

This dissertation gives an in-depth study of one of the hardest-to-fix aberrations in lens 

design, namely field curvature.  

In Chapter 1, an introduction is given to field curvature aberration and its effect to image 

quality. The classical Petzval theorem is introduced. 

In Chapter 2, the classical methods to control field curvature are discussed. Thick 

meniscus lens, separating positive and negative elements, using field flattener, and using 

new achromat glasses are the four usual ways to reduce field curvature. Also, some 

miscellaneous methods such as gradient index glass and curved detector in some special 

applications are discussed as well. 

 In Chapter 3, high order field curvature theory is developed to elaborate the balancing 

between 4
th

 order Petzval field curvature and higher order field curvature. Higher order 

field curvature coefficients were given when high order aspheric terms are used. 

Examples are given to show the field curvature balancing mechanism between different 

orders. 

In Chapter 4, software simulation is given to demonstrate how aspheric surfaces help 

correct field curvature. The best location for the aspheric field flattener, the number of 

aspheric surfaces, and the number of aspheric terms are studied. The simulation results 
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indicate one aspheric surface close to the image with two aspheric terms could reduce 

field curvature more than 85% which agrees to the theory developed in Chapter 3. 

Examples are given to show how aspheric flattener reduces field curvature in real designs. 

In Chapter 5, astigmatism aberration is discussed. The 4
th

 order and higher order 

astigmatism can be induced to balance Petzval curvature. Design examples are analyzed 

and shown the balancing between astigmatisms and Petzval field curvature. 

In Chapter 6, a new 6
th

 order aberration - oblique spherical aberration is introduced. 

Oblique spherical aberration can be used to balance Petzval field curvature. Simulation 

results indicate the reduction is more than 70% in terms of OPD error. Two Double 

Gauss type of lenses demonstrate how oblique spherical aberration is induced and used to 

balance Petzval field curvature. 

In Chapter 7, classical types of aspheric surface are reviewed and two novel aspheric 

surfaces are proposed. Without using polynomials, only three to four first order 

parameters are used to define the novel aspheric surfaces which can be used to correct 

field curvature, as efficient as an even asphere. 

In conclusion, this dissertation gives three alternate methods to correct field curvature for 

the systems that have large Petzval sum. Instead of minimizing the Petzval sum, the three 

methods use high order aberration to balance the Petzval curvature. The three methods 

are using (1) high order field curvature; (2) 4
th

 order and higher order astigmatism; (3) 

oblique spherical aberration. Method (1) One aspheric surface with two aspheric terms 

near the image can induce high order field curvature which balances the Petzval 

curvature. The reduction of field curvature, in term of sag, is more than 85%.  Method (2) 
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An aspheric surface that is farther from the image could induce high order astigmatism 

which helps control 4
th

 order astigmatism. And then the 4
th

 order astigmatism is used to 

compensate the Petzval curvature. Method (3) Oblique spherical aberration could be used 

to correct the Petzval curvature. When the two aberration coefficients have the same 

quantity but opposite sign, the OPD reduction is more than 70%. Many real design 

examples are analyzed and given to illustrate each method. The design examples include 

modern cellular phone lenses, wide angle lenses, photographic lenses, and zoom lenses, 

etc. All the data agree to the theories and the simulations. Two non-polynomial types of 

novel aspheric surfaces are proposed. They could be used as the aspheric flattener to 

control field curvature. The simulation indicates they are as effective as the even asphere 

flattener with two aspheric terms. 

 

8.2 Future Work 

An aspheric surface is widely used in modern lens design. In this dissertation, we 

demonstrate high order aspheric coefficients can introduce high order aberrations which 

balance the Petzval field curvature. However, we were aware of that the high order 

asphericities also induce other high order aberrations, such as high order astigmatism and 

high order distortion which degrade the image quality. Therefore, it is worthy to explore 

the theories of aspheric contribution to high order aberrations and how to use asphericity 

to control other high order aberration besides field curvature. 
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APPENDIX 

Zeamx Macro used to compute ACTS in Chapter 4 

! This macro computes the aspheric contribution to optical ray path length across pupil weighted by the index factor, 

specifically ACTS (Aspheric Contribution to Thickness  Sum ) 

 

Savelens "current.zmx" 

 

nfield = NFLD() # number of field 

maxfield = MAXF() # maximum field angle 

n = NSUR() # number of surfaces 

 

DECLARE psx, DOUBLE, 1, nfield 

DECLARE psy, DOUBLE, 1, nfield 

DECLARE ppx, DOUBLE, 1, nfield 

DECLARE ppy, DOUBLE, 1, nfield 

DECLARE pox, DOUBLE, 1, nfield 

DECLARE poy, DOUBLE, 1, nfield 

 

FOR i, 1 , nfield, 1 

 

psx(i)=FLDY(i) 

ppx(i)=FLDY(i) 

pox(i)=FLDY(i) 

 

hy = FLDY(i)/maxfield 

 

FORMAT 1.0 

PRINT "Field number ", i 

FORMAT 1.1 

PRINT "  Y-field angle : ", FLDY(i) 

RAYTRACE 0,hy,0,0 
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Q=0 

P=0 

 

 FOR j,1,n-1,1 

 FORMAT 1.0 

!PRINT "   surface number ", j 

 

IF (INDX(j)==1) 

FORMAT 1.5 

!PRINT "Petzval power is ", 0 

 

ELSE 

   PetzvalPower= (INDX(j)-1)*ABSO(RAYT(j+1))/INDX(j) 

 

Q=Q+PetzvalPower 

 

Petzvaloblique= (INDX(j)*COSI(ATAN((RAGY(j+1)-RAGY(j))/(RAGZ(j+1)-RAGZ(j))))-INDX(j-

1)*COSI(ATAN((RAGY(j)-RAGY(j-1))/(RAGZ(j)-RAGZ(j-1)))))*(RAYT(j+1)-THIC(j))/INDX(j)/INDX(j-1) 

P=P+Petzvaloblique 

 

 FORMAT 1.5 

 

ENDIF 

  

 NEXT 

 FORMAT 1.5 

PRINT "      Petzval power is ", Q 

PRINT "      Oblique power is ", P 

 

psy(i)=SAGG(RAYX(n-1),RAYY(n-1),n-1) 

ppy(i)=Q 
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poy(i)=ABSO(P) 

 

!PRINT "field points ", ppx(i) 

!PRINT "Petzval power ", ppy(i) 

 

NEXT 

 

title$ = "Plot Sag vs Field"   # Plot Title 

xtitle$ = " Field Angle (degree) " # X-axis label 

ytitle$ = " Sag (mm) " 

x_min = 0.0    # X-axis minimum value 

!y_min = -2.0    # Y-axis minimum value 

x_max = maxfield    # X-axis maximum value 

!y_max = 0.0 

 

comment1$ = "               Blue curve is the Petzval surface" 

comment2$ = "               Red curve is the Thickness variation sum" 

 

!GRAPHICS 

PLOT NEW 

PLOT TITLE, title$ 

PLOT TITLEX, xtitle$ 

PLOT TITLEY, ytitle$ 

PLOT COMM1, comment1$ 

PLOT COMM2, comment2$ 

PLOT RANGEX, x_min, x_max 

!PLOT RANGEY, miny, maxy 

!PLOT CHECK, x_increment, y_increment 

!PLOT TICK, x_increment, y_increment 

!PLOT FORMATX, format_string 

!PLOT FORMATY, format_string 

!PLOT LINE, x1, y1, x2, y2 
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!PLOT LABEL, x, y, angle, size, string 

!PLOT DATA, psx, psy, nfield, 1 ,1, 1 

!PLOT DATA, ppx, ppy, nfield, 3 ,1, 1 

!PLOT DATA, pox, poy, nfield, 2 ,1, 1 

!PLOT GO 

!PRINT "All Done!" 

 

! Make ALL aspheric coefficients zero 

 

for i= 1, NSUR(), 1 

 

SURP i, 10, 0, 1 

SURP i, 10, 0, 2 

SURP i, 10, 0, 3 

SURP i, 10, 0, 4 

SURP i, 10, 0, 5 

SURP i, 10, 0, 6 

SURP i, 10, 0, 7 

SURP i, 10, 0, 8 

update 

 

Next 

 

! Re-run the same calculation as below for the lens with no aspheric coefficiences 

 

DECLARE ppyn, DOUBLE, 1, nfield 

DECLARE diff, DOUBLE, 1, nfield 

 

FOR i, 1 , nfield, 1 

 

psx(i)=FLDY(i) 

ppx(i)=FLDY(i) 
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pox(i)=FLDY(i) 

 

hy = FLDY(i)/maxfield 

 

FORMAT 1.0 

PRINT "Field number ", i 

FORMAT 1.1 

PRINT "  Y-field angle : ", FLDY(i) 

 

RAYTRACE 0,hy,0,0 

 

AQ=0 

AP=0 

 

 FOR j,1,n-1,1 

 FORMAT 1.0 

!PRINT "   surface number ", j 

 

IF (INDX(j)==1) 

FORMAT 1.5 

!PRINT "Petzval power is ", 0 

 

ELSE 

   PetzvalPower= (INDX(j)-1)*ABSO(RAYT(j+1))/INDX(j) 

AQ=AQ+PetzvalPower 

 

Petzvaloblique= (INDX(j)*COSI(ATAN((RAGY(j+1)-RAGY(j))/(RAGZ(j+1)-RAGZ(j))))-INDX(j-

1)*COSI(ATAN((RAGY(j)-RAGY(j-1))/(RAGZ(j)-RAGZ(j-1)))))*(RAYT(j+1)-THIC(j))/INDX(j)/INDX(j-1) 

AP=AP+Petzvaloblique 

 

 FORMAT 1.5 

 !PRINT "index is ", INDX(j) 
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 !PRINT "ray path length to current surface is ", RAYT(j) 

 !PRINT "ray path length to next surface is ", RAYT(j+1) 

 !PRINT "ray path length difference is ", RAYT(j+1)-RAYT(j) 

 !PRINT "thickness is ", THIC(j) 

!PRINT "Petzval power is ", PetzvalPower 

 

ENDIF 

  

 NEXT 

 FORMAT 1.5 

PRINT "      Petzval power is ", AQ 

PRINT "      Oblique power is ", AP 

 

!psy(i)=ABSO(SAGG(RAYX(n-1),RAYY(n-1),n-1)) 

ppyn(i)=AQ 

!poy(i)=ABSO(AP) 

 

!diff(i)=ABSO(ppy(i)-ppyn(i)) 

diff(i)=ppy(i)-ppyn(i) 

 

!PRINT "field points ", ppx(i) 

!PRINT "Petzval power ", ppy(i) 

 

NEXT 

 

title$ = "Plot Sag vs Field"   # Plot Title 

xtitle$ = " Field Angle (degree) "  # X-axis label 

ytitle$ = " Sag (mm) " 

x_min = 0.0    # X-axis minimum value 

!y_min = -2.0    # Y-axis minimum value 

x_max = maxfield    # X-axis maximum value 

!y_max = 0.0 
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comment1$ = "               Blue curve is the Petzval surface" 

comment2$ = "               Red curve is the difference with and without asphere" 

 

!GRAPHICS 

PLOT NEW 

PLOT TITLE, title$ 

PLOT TITLEX, xtitle$ 

PLOT TITLEY, ytitle$ 

PLOT COMM1, comment1$ 

PLOT COMM2, comment2$ 

PLOT RANGEX, x_min, x_max 

!PLOT RANGEY, miny, maxy 

!PLOT CHECK, x_increment, y_increment 

!PLOT TICK, x_increment, y_increment 

!PLOT FORMATX, format_string 

!PLOT FORMATY, format_string 

!PLOT LINE, x1, y1, x2, y2 

!PLOT LABEL, x, y, angle, size, string 

PLOT DATA, psx, psy, nfield, 1 ,1, 1 

PLOT DATA, ppx, diff, nfield, 3 ,1, 1 

!PLOT DATA, pox, poy, nfield, 2 ,1, 1 

PLOT GO 

PRINT "All Done! 

Loadlens current.zmx  

 

 

 

 



107 
 

User Defined Surface code for TYPE 1 surface in Chapter 7 

#include <windows.h> 

#include <math.h> 

#include <string.h> 

#include <stdio.h> 

#include "usersurf.h" 

 

 

int __declspec(dllexport) APIENTRY UserDefinedSurface(USER_DATA *UD, FIXED_DATA *FD); 

 

/* a generic Snells law refraction routine */ 

int Refract(double thisn, double nextn, double *l, double *m, double *n, double ln, double 

mn, double nn); 

 

BOOL WINAPI DllMain (HANDLE hInst, ULONG ul_reason_for_call, LPVOID lpReserved) 

 { 

   return TRUE; 

   } 

 

/* 

 

This DLL models a novel aspheric surface described in: 

 

"Advanced Theory of Field Curvature" 

By Yuhao Wang 

Ph.D. dissertation Chapter 7: TYPE 1 Basic Dual Radii Surface 

 

This surface is a non-polynomial type asphere. 

 

*/ 

 

int __declspec(dllexport) APIENTRY UserDefinedSurface(USER_DATA *UD, FIXED_DATA *FD) 

 { 

   int i, loop, pmax; 

   double P1,R2, r, rs,R1, tp, alpha, dr, power, rad, t, x, y, z, dz, sag, mm; 

 

   switch(FD->type) 

    { 

      case 0: 

       /* ZEMAX is requesting general information about the surface */ 

         switch(FD->numb) 

          { 

            case 0: 

             /* ZEMAX wants to know the name of the surface */ 

           /* do not exceed 12 characters */ 

           strcpy(UD->string,"Dual_radius"); 

               break; 

            case 1: 

             /* ZEMAX wants to know if this surface is rotationally symmetric */ 
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               /* it is, so return any character in the string; otherwise, return a null 

string */ 

             strcpy(UD->string, "1"); 

               break; 

            case 2: 

             /* ZEMAX wants to know if this surface is a gradient index media */ 

               /* it is not, so return a null string */ 

             UD->string[0] = '\0'; 

             break; 

            } 

         break; 

      case 1: 

       /* ZEMAX is requesting the names of the parameter columns */ 

         /* the value FD->numb will indicate which value ZEMAX wants. */ 

         /* Only "q" in parameter 1 is used for this surface type */ 

         /* returning a null string indicates that the parameter is unused. */ 

         switch(FD->numb) 

          { 

            case 1: 

             strcpy(UD->string, "P1"); 

               break; 

   case 2: 

             strcpy(UD->string, "R2"); 

               break; 

            default: 

             UD->string[0] = '\0'; 

             break; 

            } 

       break; 

      case 2: 

       /* ZEMAX is requesting the names of the extra data columns */ 

         /* the value FD->numb will indicate which value ZEMAX wants. */ 

         /* returning a null string indicates that the extradata value is unused. */ 

         switch(FD->numb) 

          { 

           case 1: 

             strcpy(UD->string, "# Terms"); 

               break; 

            default: 

             if (FD->numb <= FD->xdata[1] + 1) 

                { 

                  sprintf(UD->string, "Term %i", FD->numb - 1); 

                  } 

               else 

                { 

              UD->string[0] = '\0'; 

                  } 

             break; 

            } 

       break; 

      case 3: 

       /* ZEMAX wants to know the sag of the surface */ 
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         UD->sag1 = 0.0; 

         UD->sag2 = 0.0; 

         P1 = FD->param[1]; 

   R2 = FD->param[2]; 

   if (R2 < 0) return(-1); 

 

         rs = UD->x * UD->x + UD->y * UD->y; 

         r = sqrt(rs); 

   R1=1/(FD->cv); 

 

         alpha = 1 - (1+FD->k)*FD->cv*FD->cv*rs; 

         if (alpha < 0) return(-1); 

 if (R1>0) 

 {  if(abs(r)<=P1) 

          { UD->sag1 = (FD->cv*rs)/(1 + sqrt(alpha)); UD->sag2 = UD->sag1;} 

 

   else 

   { if(r>P1) 

    {UD->sag1 = R1 - ((R1+R2)*sqrt(R1*R1-P1*P1))/R1 + sqrt(R2*R2-(r-

(R1+R2)*P1/R1)*(r-(R1+R2)*P1/R1)); UD->sag2 = UD->sag1;} 

   

   else 

    {UD->sag1 = R1 - ((R1+R2)*sqrt(R1*R1-P1*P1))/R1 + sqrt(R2*R2-

(r+(R1+R2)*P1/R1)*(r+(R1+R2)*P1/R1)); UD->sag2 = UD->sag1;} 

   } 

   } 

 

 else 

 {  if(abs(r)<=P1) 

          { UD->sag1 = -(((-FD->cv)*rs)/(1 + sqrt(1 - (1+FD->k)*(-FD->cv)*(-FD->cv)*rs))); 

UD->sag2 = UD->sag1;} 

 

   else 

   { if(r>P1) 

    {UD->sag1 = -((-R1) - (((-R1)+R2)*sqrt((-R1)*(-R1)-P1*P1))/(-R1) + 

sqrt(R2*R2-(r-((-R1)+R2)*P1/(-R1))*(r-((-R1)+R2)*P1/(-R1)))); UD->sag2 = UD->sag1;} 

   

   else 

    {UD->sag1 = -((-R1) - (((-R1)+R2)*sqrt((-R1)*(-R1)-P1*P1))/(-R1) + 

sqrt(R2*R2-(r+((-R1)+R2)*P1/(-R1))*(r+((-R1)+R2)*P1/(-R1)))); UD->sag2 = UD->sag1;} 

   } 

   } 

 

       

   break; 

 

      case 4: 

       /* ZEMAX wants a paraxial ray trace to this surface */ 

         /* x, y, z, and the optical path are unaffected, at least for this surface type 

*/ 

         /* for paraxial ray tracing, the return z coordinate should always be zero. */ 
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         /* paraxial surfaces are always planes with the following normals */ 

         /* we will ignore the aspheric terms, even the quadratic one, since it has a */ 

         /* meaning that is hard to interpret if q != 0.0 */ 

 

         UD->ln =  0.0; 

         UD->mn =  0.0; 

         UD->nn = -1.0; 

         power = (FD->n2 - FD->n1)*FD->cv; 

         if ((UD->n) != 0.0) 

          { 

            (UD->l) = (UD->l)/(UD->n); 

            (UD->m) = (UD->m)/(UD->n); 

 

            (UD->l) = (FD->n1*(UD->l) - (UD->x)*power)/(FD->n2); 

            (UD->m) = (FD->n1*(UD->m) - (UD->y)*power)/(FD->n2); 

 

            /* normalize */ 

            (UD->n) = sqrt(1/(1 + (UD->l)*(UD->l) + (UD->m)*(UD->m) ) ); 

            /* de-paraxialize */ 

            (UD->l) = (UD->l)*(UD->n); 

            (UD->m) = (UD->m)*(UD->n); 

            } 

         break; 

      case 5: 

       /* ZEMAX wants a real ray trace to this surface */ 

         /* okay, not a plane. */ 

         /* do not allow n == 0 */ 

         if (UD->n == 0.0) return -1; 

 

         /* Now, we illustrate an iterative method of finding 

            the intercept for a general surface. */ 

 

   /* make sure we do at least 1 loop */ 

 

   t = 100.0; 

         tp = 0.0; 

         x = UD->x; 

         y = UD->y; 

         z = UD->z; 

         loop = 0; 

         P1 = FD->param[1]; 

   R2 = FD->param[2]; 

       /*  pmax = FD->xdata[1];*/ 

 

         while (fabs(t) > 1e-10) 

          { 

    /* 

            First, compute the sag using whatever the surface sag expression is. 

            This is given the x and y starting points. The following block of code 

            will change depending upon the surface shape, the rest of this iteration 

            is typically common to all surface shapes. 

            */ 



111 
 

 

          rs = x * x + y * y; 

            r = sqrt(rs); 

 

          alpha = 1.0 - (1.0 + FD->k)*FD->cv*FD->cv*rs; 

 

      if (alpha < 0.0) return(-1); 

 

    R1=1/(FD->cv); 

if (R1>0) 

    {     { if(abs(r)<=P1) 

     sag = (FD->cv*rs)/(1 + sqrt(alpha)); 

 

   else 

   { if(r>P1) 

     sag = R1 - ((R1+R2)*sqrt(R1*R1-P1*P1))/R1 + sqrt(R2*R2-(r-

(R1+R2)*P1/R1)*(r-(R1+R2)*P1/R1)); 

   

        else 

     sag = R1 - ((R1+R2)*sqrt(R1*R1-P1*P1))/R1 + sqrt(R2*R2-

(r+(R1+R2)*P1/R1)*(r+(R1+R2)*P1/R1)); 

      } 

   } 

    } 

else 

    {     { if(abs(r)<=P1) 

     sag = -(((-FD->cv)*rs)/(1 + sqrt(1.0 - (1.0 + FD->k)*(-FD->cv)*(-

FD->cv)*rs))); 

 

   else 

   { if(r>P1) 

     sag = -((-R1) - (((-R1)+R2)*sqrt((-R1)*(-R1)-P1*P1))/(-R1) + 

sqrt(R2*R2-(r-((-R1)+R2)*P1/(-R1))*(r-((-R1)+R2)*P1/(-R1)))); 

   

        else 

     sag = -((-R1) - (((-R1)+R2)*sqrt((-R1)*(-R1)-P1*P1))/(-R1) + 

sqrt(R2*R2-(r+((-R1)+R2)*P1/(-R1))*(r+((-R1)+R2)*P1/(-R1)))); 

      } 

   } 

    } 

            /* okay, now with sag in hand, how far are we away in z? */ 

   // modified 11/2012 to support larger angles of incidence 

   dz = (sag - z)*fabs(UD->n); 

 

            /* now compute how far along the z axis this is */ 

            /* note this will crash if n == 0!! */ 

            t = dz / (UD->n); 

 

            /* propagate the additional "t" distance */ 

            x += UD->l*t; 

            y += UD->m*t; 

            z += UD->n*t; 
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            /* add in the optical path */ 

    tp += t; 

 

            /* prevent infinte loop if no convergence */ 

            loop++; 

            if (loop > 1000) return(-1); 

            } 

 

         /* okay, we should be a the intercept coordinates now */ 

         UD->x = x; 

         UD->y = y; 

         UD->z = z; 

 

       /* don't forget the path! */ 

   UD->path = tp; 

 

         rs = x * x + y * y; 

         r = sqrt(rs); 

         P1 = FD->param[1]; 

   R2 = FD->param[2]; 

   R1=1/(FD->cv); 

         alpha = 1.0 - (1.0+FD->k)*FD->cv*FD->cv*rs; 

         if (alpha < 0) return(-1); /* ray misses */ 

         alpha = sqrt(alpha); 

   mm = 0.0; 

 

   /* now do the normals */ 

if (R1>0) 

   {   if (r==0) 

          { 

            UD->ln =  0; 

            UD->mn =  0; 

            UD->nn = -1; 

            } 

         else 

          { if(0<abs(r)<P1) 

      {mm += (FD->cv*r/(1.0+alpha))*(2.0 + (FD->cv*FD->cv*rs*(1.0+FD-

>k))/(alpha*(1.0+alpha))); 

            rad = 1.0 + (mm*mm); 

               rad = mm / sqrt(rad); 

               UD->ln = (x/r)*rad; 

               UD->mn = (y/r)*rad; 

               UD->nn = UD->ln*UD->ln + UD->mn*UD->mn; 

               if (UD->nn >= 1.0) return(-1); 

      else UD->nn = -sqrt(1.0 - UD->nn);} 

       

      else { if(r>P1) 

              { mm += ((R1+R2)*P1/R1-r)/(sqrt(R2*R2-(r-(R1+R2)*P1/R1)*(r-

(R1+R2)*P1/R1))); 

              rad = 1.0 + (mm*mm); 

                      rad = mm / sqrt(rad); 
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                      UD->ln = (x/r)*rad; 

                      UD->mn = (y/r)*rad; 

                      UD->nn = UD->ln*UD->ln + UD->mn*UD->mn; 

                      if (UD->nn >= 1.0) return(-1); 

             else UD->nn = -sqrt(1.0 - UD->nn);} 

 

        else  

            { mm += (-(R1+R2)*P1/R1-r)/(sqrt(R2*R2-

(r+(R1+R2)*P1/R1)*(r+(R1+R2)*P1/R1))); 

           rad = 1.0 + (mm*mm); 

                          rad = mm / sqrt(rad); 

                          UD->ln = (x/r)*rad; 

                          UD->mn = (y/r)*rad; 

                          UD->nn = UD->ln*UD->ln + UD->mn*UD->mn; 

                          if (UD->nn >= 1.0) return(-1); 

                 else UD->nn = -sqrt(1.0 - UD->nn);} 

         } 

            } 

    } 

else 

   {   if (r==0) 

          { 

            UD->ln =  0; 

            UD->mn =  0; 

            UD->nn = -1; 

            } 

         else 

          { if(0<abs(r)<P1) 

      {mm += -(((-FD->cv)*r/(1.0+(1.0 - (1.0+FD->k)*(-FD->cv)*(-FD-

>cv)*rs)))*(2.0 + ((-FD->cv)*(-FD->cv)*rs*(1.0+FD->k))/((1.0 - (1.0+FD->k)*(-FD->cv)*(-FD-

>cv)*rs)*(1.0+(1.0 - (1.0+FD->k)*(-FD->cv)*(-FD->cv)*rs))))); 

            rad = 1.0 + (mm*mm); 

               rad = mm / sqrt(rad); 

               UD->ln = (x/r)*rad; 

               UD->mn = (y/r)*rad; 

               UD->nn = UD->ln*UD->ln + UD->mn*UD->mn; 

               if (UD->nn >= 1.0) return(-1); 

      else UD->nn = -sqrt(1.0 - UD->nn);} 

       

      else { if(r>P1) 

              { mm += -((((-R1)+R2)*P1/(-R1)-r)/(sqrt(R2*R2-(r-((-

R1)+R2)*P1/(-R1))*(r-((-R1)+R2)*P1/(-R1))))); 

              rad = 1.0 + (mm*mm); 

                      rad = mm / sqrt(rad); 

                      UD->ln = (x/r)*rad; 

                      UD->mn = (y/r)*rad; 

                      UD->nn = UD->ln*UD->ln + UD->mn*UD->mn; 

                      if (UD->nn >= 1.0) return(-1); 

             else UD->nn = -sqrt(1.0 - UD->nn);} 

 

        else  
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            { mm += -((-((-R1)+R2)*P1/(-R1)-r)/(sqrt(R2*R2-

(r+((-R1)+R2)*P1/(-R1))*(r+((-R1)+R2)*P1/(-R1))))); 

           rad = 1.0 + (mm*mm); 

                          rad = mm / sqrt(rad); 

                          UD->ln = (x/r)*rad; 

                          UD->mn = (y/r)*rad; 

                          UD->nn = UD->ln*UD->ln + UD->mn*UD->mn; 

                          if (UD->nn >= 1.0) return(-1); 

                 else UD->nn = -sqrt(1.0 - UD->nn);} 

         } 

            } 

    } 

         if (Refract(FD->n1, FD->n2, &UD->l, &UD->m, &UD->n, UD->ln, UD->mn, UD->nn)) 

return(-FD->surf); 

         break; 

 

      case 6: 

       /* ZEMAX wants the index, dn/dx, dn/dy, and dn/dz at the given x, y, z. */ 

 

         /* This is only required for gradient index surfaces, so return dummy values */ 

         UD->index = FD->n2; 

         UD->dndx = 0.0; 

         UD->dndy = 0.0; 

         UD->dndz = 0.0; 

       break; 

      case 7: 

       /* ZEMAX wants the "safe" data. */ 

         /* this is used by ZEMAX to set the initial values for all parameters and extra 

data */ 

         /* when the user first changes to this surface type. */ 

         /* this is the only time the DLL should modify the data in the FIXED_DATA FD 

structure */ 

         /*for (i = 1; i <= 8; i++) FD->param[i] = 0.0;*/ 

    FD->param[1] = (FD->sdia)/2; 

    FD->param[2] = 100000000000; 

         for (i = 1; i <= 200; i++) FD->xdata[i] = 0.0; 

         break; 

      } 

   return 0; 

   } 

 

int Refract(double thisn, double nextn, double *l, double *m, double *n, double ln, double 

mn, double nn) 

{ 

double nr, cosi, cosi2, rad, cosr, gamma; 

if (thisn != nextn) 

 { 

 nr = thisn / nextn; 

 cosi = fabs((*l) * ln + (*m) * mn + (*n) * nn); 

 cosi2 = cosi * cosi; 

 if (cosi2 > 1) cosi2 = 1; 

 rad = 1 - ((1 - cosi2) * (nr * nr)); 
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 if (rad < 0) return(-1); 

 cosr = sqrt(rad); 

 gamma = nr * cosi - cosr; 

 (*l) = (nr * (*l)) + (gamma * ln); 

 (*m) = (nr * (*m)) + (gamma * mn); 

 (*n) = (nr * (*n)) + (gamma * nn); 

 } 

return 0; 

} 
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User Defined Surface code for TYPE 2 surface in Chapter 7 

#include <windows.h> 

#include <math.h> 

#include <string.h> 

#include <stdio.h> 

#include "usersurf.h" 

 

 

int __declspec(dllexport) APIENTRY UserDefinedSurface(USER_DATA *UD, FIXED_DATA *FD); 

 

/* a generic Snells law refraction routine */ 

int Refract(double thisn, double nextn, double *l, double *m, double *n, double ln, double 

mn, double nn); 

 

BOOL WINAPI DllMain (HANDLE hInst, ULONG ul_reason_for_call, LPVOID lpReserved) 

 { 

   return TRUE; 

   } 

 

/* 

 

This DLL models a novel aspheric surface described in: 

 

"Advanced Theory of Field Curvature" 

By Yuhao Wang 

Ph.D. dissertation Chapter 7: TYPE 2 Powerless Dual Radii Surface 

 

This surface is a non-polynomial type asphere. 

 

*/ 

 

int __declspec(dllexport) APIENTRY UserDefinedSurface(USER_DATA *UD, FIXED_DATA *FD) 

 { 

   int i, loop, pmax; 

   double P1,P2,R2, r, rs,R1, tp, alpha, dr, power, rad, t, x, y, z, dz, sag, mm; 

 

   switch(FD->type) 

    { 

      case 0: 

       /* ZEMAX is requesting general information about the surface */ 

         switch(FD->numb) 

          { 

            case 0: 

             /* ZEMAX wants to know the name of the surface */ 

           /* do not exceed 12 characters */ 

           strcpy(UD->string,"flat+Dual_radius"); 

               break; 

            case 1: 

             /* ZEMAX wants to know if this surface is rotationally symmetric */ 
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               /* it is, so return any character in the string; otherwise, return a null 

string */ 

             strcpy(UD->string, "1"); 

               break; 

            case 2: 

             /* ZEMAX wants to know if this surface is a gradient index media */ 

               /* it is not, so return a null string */ 

             UD->string[0] = '\0'; 

             break; 

            } 

         break; 

      case 1: 

       /* ZEMAX is requesting the names of the parameter columns */ 

         /* the value FD->numb will indicate which value ZEMAX wants. */ 

         /* Only "q" in parameter 1 is used for this surface type */ 

         /* returning a null string indicates that the parameter is unused. */ 

         switch(FD->numb) 

          { 

            case 1: 

             strcpy(UD->string, "P1"); 

               break; 

   case 2: 

             strcpy(UD->string, "R1"); 

               break; 

   case 3: 

             strcpy(UD->string, "P2"); 

               break; 

   case 4: 

             strcpy(UD->string, "R2"); 

               break; 

            default: 

             UD->string[0] = '\0'; 

             break; 

            } 

       break; 

      case 2: 

       /* ZEMAX is requesting the names of the extra data columns */ 

         /* the value FD->numb will indicate which value ZEMAX wants. */ 

         /* returning a null string indicates that the extradata value is unused. */ 

         switch(FD->numb) 

          { 

           case 1: 

             strcpy(UD->string, "# Terms"); 

               break; 

            default: 

             if (FD->numb <= FD->xdata[1] + 1) 

                { 

                  sprintf(UD->string, "Term %i", FD->numb - 1); 

                  } 

               else 

                { 

              UD->string[0] = '\0'; 
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                  } 

             break; 

            } 

       break; 

      case 3: 

       /* ZEMAX wants to know the sag of the surface */ 

 

         UD->sag1 = 0.0; 

         UD->sag2 = 0.0; 

         P1 = FD->param[1]; 

   R1 = FD->param[2]; 

         P2 = FD->param[3]; 

   R2 = FD->param[4]; 

   if (R2 < 0) return(-1); 

 

         rs = UD->x * UD->x + UD->y * UD->y; 

         r = sqrt(rs); 

  /* R1=1/(FD->cv);*/ 

 

 

        /* alpha = 1 - (1+FD->k)*FD->cv*FD->cv*rs; 

         if (alpha < 0) return(-1);*/ 

 if (R1>0) 

 {  if(fabs(r)<=P1) 

          { UD->sag1 = 0; UD->sag2 = UD->sag1;} 

 

   else 

      { if(fabs(r)>P1&&fabs(r)<=P2) 

    {UD->sag1 = R1 - sqrt(R1*R1-(fabs(r)-P1)*(fabs(r)-P1)); UD->sag2 = 

UD->sag1;} 

   

        

     else 

               {UD->sag1 = R1-(R1+R2)*sqrt(R1*R1-(P2-P1)*(P2-P1))/R1+sqrt(R2*R2-(fabs(r)-

R2*(P2-P1)/R1-P2)*(fabs(r)-R2*(P2-P1)/R1-P2)); UD->sag2 = UD->sag1;} 

            } 

          

   } 

 

 else 

 {  if(fabs(r)<=P1) 

          { UD->sag1 = 0; UD->sag2 = UD->sag1;} 

 

   else 

       { if(fabs(r)>P1&&fabs(r)<=P2) 

    {UD->sag1 = -(fabs(R1) - sqrt(R1*R1-(fabs(r)-P1)*(fabs(r)-P1))); 

UD->sag2 = UD->sag1;} 

   

        

      else 
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       {UD->sag1 = -(fabs(R1)-(fabs(R1)+R2)*sqrt(R1*R1-(P2-P1)*(P2-

P1))/fabs(R1)+sqrt(R2*R2-(fabs(r)-R2*(P2-P1)/fabs(R1)-P2)*(fabs(r)-R2*(P2-P1)/fabs(R1)-

P2))); UD->sag2 = UD->sag1;} 

             } 

            

   } 

 

       

   break; 

 

      case 4: 

       /* ZEMAX wants a paraxial ray trace to this surface */ 

         /* x, y, z, and the optical path are unaffected, at least for this surface type 

*/ 

         /* for paraxial ray tracing, the return z coordinate should always be zero. */ 

         /* paraxial surfaces are always planes with the following normals */ 

         /* we will ignore the aspheric terms, even the quadratic one, since it has a */ 

         /* meaning that is hard to interpret if q != 0.0 */ 

 

         UD->ln =  0.0; 

         UD->mn =  0.0; 

         UD->nn = -1.0; 

         power = (FD->n2 - FD->n1)*FD->cv; 

         if ((UD->n) != 0.0) 

          { 

            (UD->l) = (UD->l)/(UD->n); 

            (UD->m) = (UD->m)/(UD->n); 

 

            (UD->l) = (FD->n1*(UD->l) - (UD->x)*power)/(FD->n2); 

            (UD->m) = (FD->n1*(UD->m) - (UD->y)*power)/(FD->n2); 

 

            /* normalize */ 

            (UD->n) = sqrt(1/(1 + (UD->l)*(UD->l) + (UD->m)*(UD->m) ) ); 

            /* de-paraxialize */ 

            (UD->l) = (UD->l)*(UD->n); 

            (UD->m) = (UD->m)*(UD->n); 

            } 

         break; 

      case 5: 

       /* ZEMAX wants a real ray trace to this surface */ 

         /* okay, not a plane. */ 

         /* do not allow n == 0 */ 

         if (UD->n == 0.0) return -1; 

 

         /* Now, we illustrate an iterative method of finding 

            the intercept for a general surface. */ 

 

   /* make sure we do at least 1 loop */ 

 

   t = 100.0; 

         tp = 0.0; 

         x = UD->x; 
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         y = UD->y; 

         z = UD->z; 

         loop = 0; 

         P1 = FD->param[1]; 

   R1 = FD->param[2]; 

         P2 = FD->param[3]; 

   R2 = FD->param[4]; 

       /*  pmax = FD->xdata[1];*/ 

 

         while (fabs(t) > 1e-10) 

          { 

    /* 

            First, compute the sag using whatever the surface sag expression is. 

            This is given the x and y starting points. The following block of code 

            will change depending upon the surface shape, the rest of this iteration 

            is typically common to all surface shapes. 

            */ 

 

         rs = x * x + y * y; 

            r = sqrt(rs); 

         P1 = FD->param[1]; 

   R1 = FD->param[2]; 

         P2 = FD->param[3]; 

   R2 = FD->param[4]; 

 

        /*  alpha = 1.0 - (1.0 + FD->k)*FD->cv*FD->cv*rs; 

 

      if (alpha < 0.0) return(-1); 

 

    R1=1/(FD->cv);*/ 

 

if (R1>0) 

 {  if(fabs(r)<=P1) 

           sag = 0; 

 

   else 

   { if(fabs(r)>P1&&fabs(r)<=P2) 

     sag = R1 - sqrt(R1*R1-(fabs(r)-P1)*(fabs(r)-P1)); 

   

   

    else 

         sag = R1-(R1+R2)*sqrt(R1*R1-(P2-P1)*(P2-P1))/R1+sqrt(R2*R2-

(fabs(r)-R2*(P2-P1)/R1-P2)*(fabs(r)-R2*(P2-P1)/R1-P2)); 

           } 

    

   } 

else 

 {  if(fabs(r)<=P1) 

           sag = 0; 

 

   else 

   { if(fabs(r)>P1&&fabs(r)<=P2) 
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     sag = -(fabs(R1) - sqrt(R1*R1-(fabs(r)-P1)*(fabs(r)-P1))); 

        

    else 

        sag = -(fabs(R1)-(fabs(R1)+R2)*sqrt(R1*R1-(P2-P1)*(P2-

P1))/fabs(R1)+sqrt(R2*R2-(fabs(r)-R2*(P2-P1)/fabs(R1)-P2)*(fabs(r)-R2*(P2-P1)/fabs(R1)-

P2))); 

            } 

    

   } 

            /* okay, now with sag in hand, how far are we away in z? */ 

   // modified 11/2012 to support larger angles of incidence 

   dz = (sag - z)*fabs(UD->n); 

 

            /* now compute how far along the z axis this is */ 

            /* note this will crash if n == 0!! */ 

            t = dz / (UD->n); 

 

            /* propagate the additional "t" distance */ 

            x += UD->l*t; 

            y += UD->m*t; 

            z += UD->n*t; 

 

            /* add in the optical path */ 

    tp += t; 

 

            /* prevent infinte loop if no convergence */ 

            loop++; 

            if (loop > 1000) return(-1); 

            } 

 

         /* okay, we should be a the intercept coordinates now */ 

         UD->x = x; 

         UD->y = y; 

         UD->z = z; 

 

       /* don't forget the path! */ 

   UD->path = tp; 

 

         rs = x * x + y * y; 

         r = sqrt(rs); 

         P1 = FD->param[1]; 

   R1 = FD->param[2]; 

         P2 = FD->param[3]; 

   R2 = FD->param[4]; 

 

  /* R1=1/(FD->cv); 

         alpha = 1.0 - (1.0+FD->k)*FD->cv*FD->cv*rs;*/ 

        /* if (alpha < 0) return(-1); /* ray misses */ 

        /* alpha = sqrt(alpha);*/ 

   mm = 0.0; 

 

   /* now do the normals */ 
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if (R1>0) 

   {   if (r==0) 

          { 

            UD->ln =  0; 

            UD->mn =  0; 

            UD->nn = -1; 

            } 

         else 

          { if(fabs(r)>0&&fabs(r)<=P1) 

      {mm += 0; 

            rad = 1.0 + (mm*mm); 

               rad = mm / sqrt(rad); 

               UD->ln = (x/r)*rad; 

               UD->mn = (y/r)*rad; 

               UD->nn = UD->ln*UD->ln + UD->mn*UD->mn; 

               if (UD->nn >= 1.0) return(-1); 

      else UD->nn = -sqrt(1.0 - UD->nn);} 

 

   else 

           {  if(fabs(r)>P1&&fabs(r)<=P2) 

      {mm += (fabs(r)-P1)/sqrt(R1*R1-(fabs(r)-P1)*(fabs(r)-P1)); 

            rad = 1.0 + (mm*mm); 

               rad = mm / sqrt(rad); 

               UD->ln = (x/r)*rad; 

               UD->mn = (y/r)*rad; 

               UD->nn = UD->ln*UD->ln + UD->mn*UD->mn; 

               if (UD->nn >= 1.0) return(-1); 

      else UD->nn = -sqrt(1.0 - UD->nn);} 

       

 

        else  

              { mm += (-fabs(r)+R2*(P2-P1)/R1+P2)/sqrt(R2*R2-(fabs(r)-R2*(P2-

P1)/R1-P2)*(fabs(r)-R2*(P2-P1)/R1-P2)); 

              rad = 1.0 + (mm*mm); 

                      rad = mm / sqrt(rad); 

                      UD->ln = (x/r)*rad; 

                      UD->mn = (y/r)*rad; 

                      UD->nn = UD->ln*UD->ln + UD->mn*UD->mn; 

                      if (UD->nn >= 1.0) return(-1); 

             else UD->nn = -sqrt(1.0 - UD->nn);} 

                        } 

                      

                   } 

             

    } 

else 

   {   if (r==0) 

          { 

            UD->ln =  0; 

            UD->mn =  0; 

            UD->nn = -1; 

            } 
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         else 

          { if(fabs(r)>0&&fabs(r)<=P1) 

      {mm += 0; 

            rad = 1.0 + (mm*mm); 

               rad = mm / sqrt(rad); 

               UD->ln = (x/r)*rad; 

               UD->mn = (y/r)*rad; 

               UD->nn = UD->ln*UD->ln + UD->mn*UD->mn; 

               if (UD->nn >= 1.0) return(-1); 

      else UD->nn = -sqrt(1.0 - UD->nn);} 

 

     else 

           {   if(fabs(r)>P1&&fabs(r)<=P2) 

      {mm += -((fabs(r)-P1)/sqrt(R1*R1-(fabs(r)-P1)*(fabs(r)-P1))); 

            rad = 1.0 + (mm*mm); 

               rad = mm / sqrt(rad); 

               UD->ln = (x/r)*rad; 

               UD->mn = (y/r)*rad; 

               UD->nn = UD->ln*UD->ln + UD->mn*UD->mn; 

               if (UD->nn >= 1.0) return(-1); 

      else UD->nn = -sqrt(1.0 - UD->nn);} 

       

 

        else  

              { mm += -((-fabs(r)+R2*(P2-P1)/fabs(R1)+P2)/sqrt(R2*R2-

(fabs(r)-R2*(P2-P1)/fabs(R1)-P2)*(fabs(r)-R2*(P2-P1)/fabs(R1)-P2))); 

              rad = 1.0 + (mm*mm); 

                      rad = mm / sqrt(rad); 

                      UD->ln = (x/r)*rad; 

                      UD->mn = (y/r)*rad; 

                      UD->nn = UD->ln*UD->ln + UD->mn*UD->mn; 

                      if (UD->nn >= 1.0) return(-1); 

             else UD->nn = -sqrt(1.0 - UD->nn);} 

    } 

    

    } 

    } 

         if (Refract(FD->n1, FD->n2, &UD->l, &UD->m, &UD->n, UD->ln, UD->mn, UD->nn)) 

return(-FD->surf); 

         break; 

 

      case 6: 

       /* ZEMAX wants the index, dn/dx, dn/dy, and dn/dz at the given x, y, z. */ 

 

         /* This is only required for gradient index surfaces, so return dummy values */ 

         UD->index = FD->n2; 

         UD->dndx = 0.0; 

         UD->dndy = 0.0; 

         UD->dndz = 0.0; 

       break; 

      case 7: 

       /* ZEMAX wants the "safe" data. */ 
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         /* this is used by ZEMAX to set the initial values for all parameters and extra 

data */ 

         /* when the user first changes to this surface type. */ 

         /* this is the only time the DLL should modify the data in the FIXED_DATA FD 

structure */ 

         /*for (i = 1; i <= 8; i++) FD->param[i] = 0.0;*/ 

    FD->param[1] = (FD->sdia)/5; 

    FD->param[2] = 100000000000; 

    FD->param[3] = FD->param[1]*2; 

    FD->param[4] = 100000000000; 

         for (i = 1; i <= 200; i++) FD->xdata[i] = 0.0; 

         break; 

      } 

   return 0; 

   } 

 

int Refract(double thisn, double nextn, double *l, double *m, double *n, double ln, double 

mn, double nn) 

{ 

double nr, cosi, cosi2, rad, cosr, gamma; 

if (thisn != nextn) 

 { 

 nr = thisn / nextn; 

 cosi = fabs((*l) * ln + (*m) * mn + (*n) * nn); 

 cosi2 = cosi * cosi; 

 if (cosi2 > 1) cosi2 = 1; 

 rad = 1 - ((1 - cosi2) * (nr * nr)); 

 if (rad < 0) return(-1); 

 cosr = sqrt(rad); 

 gamma = nr * cosi - cosr; 

 (*l) = (nr * (*l)) + (gamma * ln); 

 (*m) = (nr * (*m)) + (gamma * mn); 

 (*n) = (nr * (*n)) + (gamma * nn); 

 } 

return 0; 

} 
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