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ABSTRACT

This study utilizes a Monte Carlo simulation to examine
and compare the performance of two proposed multivariate
cumulative sum control chart schemes for controlling the mean of
a multinormal process. The study compares the performance of the
proposed methods with multiple univariate Shewhart charts, a
multivariate Shewhart chart and multiple univariate cumulative
sum control charts,

The results indicate that one of the proposed multivariate
cumulative sum control charts is superior to the other and that
in many cases the superior method has certain advantages over the
classical univariate and multivariate control chart techniques as

well,

viii



CHAPTER 1

INTRODUCTION

Control charts are statistical devices used primarily for
the study and control of repetitive processes, At the basis of
the theory of control charts is a differentiation of the causes
of variation in quality. Statistical theory recognizes that the
variation in the quality of a product belongs to two general
categories: chance variations and assignable causes, Since
chance variations behave in a random manner, future variations
cannot be predicted from knowledge of past variations., However,
variation produced by chance causes does follow statistical laws
and knowledge of the behavior of chance variations is the
foundation on which control chart analysis exists. If a group of
data from a process is studied and it is found that its variation
conforms to a statistical pattern that might reasonably bde
produced by chance causes, then it is assumed that no assignable
causes are present and the process is said to be im control.
Otherwise, it is concluded that one or more assignable causes are
at work and the process is said to be out of comtrol,

Hotelling is credited with recognizing that the quality of
an item could depend on two or more correlated characteristics.
Early attempts to monitor the quality of p characteristics

1



employed the use of p univariate control charts, The most widely
used of the wunivariate charts is the Shewhart
chart which was developed in 1931, Numerous publications have
dealt with the application of these charts and some modifications
to the method, either in presentation or interpretation, have
been proposed.

The concept of cumulitive sum (cusum) control charts was
introduced by Page [18] in 1954, This control chart method is
based on Wald sequential schemes, Since its inception the cusum
control chart has increased in popularity due to its well
established advantages over Shewhart charts when there is a small
to moderate shift from the process target value [6,12,21],

The shortcomings of the use of a series of univariate
control charts running separately for each of the variables have
been pointed out in publications which outline the appropriate
multivariate procedures [2,3]. The univariate approach is
generally not adequate because it ignores the correlations among
the variables. On the other hand, multivariate techniques tend
to shed more light on the process since they take into
consideration the relationships and interdependence between the
quality characteristics

In this study we use a Monte Carlo simulation to examine
the performance of two proposed multivariate cumulative sum
schemes for monitoring a process where each item it characterized

by two quality characteristics. These schemes combine aspects of



the cumulative sum scheme and various multivariate procedures in
the hopes of improved performance over established control chart
methods, These schemes are referred to as multivariate cusum #1
and multivariate cusum #2, and their simulated average run
lengths will be compared to the theoretical average rumn lengths
of multiple univariate Shewhart control charts, multiple
univariate cusum charts and multivariate Shewhart charts.

The following chapter contains a review of control chart
procedures and the proposed development of the two multivariate
cusum control chart schemes, A discussion of the average run
length as a measure of performance, the analytical procedures
utilized to theoretically compute the average run lengths for the
Shewhart and univariate cusum schemes and the details of the
simulation study are discussed in Chapters 3 and 4. The results
of the Monte Carlo simulation are presented and discussed in
Chapter 5. Conclusions and directives for further study are

presented in Chapter 6.



CHAPTER 2

CONTROL CHART METHODS

In this section we review the univariate and multivariate
Shewhart and univariate cumulative sum (cusum) control charts.
We also describe the proposed development of two multivariate
cusum charts, For successive samples control chart techniques

can be interpreted as repeated tests of signifigance of the form:

H : =
o # llo
vs
H:
a n# uo

where p represents a process parameter whose true value is
unknown and By is the target value for the parameter [3,11], In

the multivariate case, p wounld represent a vector of parameters.

In the study which follows it is assomed that the
population standard deviation is a known constant., It should
also be noted that while other more complex decision rules such
as run tests may be used to determine if the process is in or out

of control they are not considered here,

T U Shewhart Char
The univariate Shewhart control chart consists of
examining samples of a fixed size at regular intervals of time.

4



A statistic (for our purposes, a sample mean) is calculated and
plotted on the control chart, Corrective action is taken if the
point falls outside of the control limits.

WVhen ther; is only one normally distributed quality
characteristic the univariate Shewhart control chart for the mean

is of the form:

UCL: p + Z (o /SQRT(n))
2 o

o a/

CL: uo

LCL: p -2 (o /SQRT(n))
o a/2 o

where “o and ao denote the standard values specified for the
population mean and standard deviation of the distribution of the
quality characteristic and 2 is the upper a/2 point of the

al/2
standard normal distribution, that is, Prob.(Z > Za ) = al/2.

/2
In practice a random sample of size n parts is obtained
and the mean of the quality characteristic measurements on those
parts is computed. If the plotted value of X falls within the
control limits, then the process is deemed in control, otherwise,

one or more assignable causes are sought to explain the unusual

variation,

The Multivariste Showhart Chart
The multivariate analogue of the Shewhart chart is
commonly referred to as the chi-square chart. A column vector X
of p components X ,xz..",xp is said to have a p-variate

1
nonsingular normal distribution if its probability distribution



function (pdf) is of the form:

(2m 7?2 g1 7/2

el ™% expr-1/2 (2 - w g Tx - W

-o { Xi ( @ (i=1, 2, ...,p)
where p and g are the parameters of the distribution, pu is a
column vector of elements "1(1 = 1,2,.e.,p) such that each "y is

finite and the variance—covariance matrix g = [cij} is a positive
definite symmetric matrix of order p., The notation L~Np(g.1)
indicates that the random vector X has a p-variate non—-singular
normal distribution with parameters p and g.

If we consider a process where the quality of p

characteristics are to be monitored, then we essentially wish to

perform a likelihood ratio test of the form:
H: =
o i ub

vs.
H: o
a L ab

The test specifies that the null hypothesis is rejected if

a@-u) ¢ A >Izp

.
where i denotes the p by 1 vector of samples means and fzp a is
the upper a 100%—age point of the chi-square distribution with p
degrees of freedom [4].

In practice the statistic is calculated and plotted on a
control chart with an upper control limit of fzp i If the point

s

plots above the upper contol limit, the process mean is deemed

out of control and the assignable causes of the variation are

sought,



Th nivari Cusum_Char

A shortcoming of the Shewhart-—-type control chart is that
although the results of previous samples are recorded on the
chart, none of the previous results are used by the process
inspection rule directly. The cumulative sum chart was developed
by Page in 1954 [18] in an attempt to make direct use of this
information. Prior to its development quality control engineers
were trying to use the Shewhart-type chart intelligently by
giving some weight to runs of results above or below the mean, A
number of more intricate rules using runs of results outside of
warning limits were also devised, but these rules are inefficient
compared with control schemes based on cusum charts [13].

The cusum chart has several distinct advantages over the
Shewhart chart., These advantages are:

1. It is at least equally effective at less expense,

2, It picks up a sudden and persistent change in the
process average more quickly.

3. It locates the time of the change more sharply.

4. A change in quality can be seen much more easily by
visual inspection.

Cusum schemes can be doevised to detect only upward or
downward shifts in the process mean or devised to detect shifts
in both directions simultaneously, These schemes are referred to
as one-sided and two—sided schemes respectively. Our discussion
will be confined to one—sided schemes since a two-sided scheme is

just a combination of two ome~sided schemes.



In a one-sided univariate cusum scheme for detecting
increases in the proces€ mean, we consider a normally distributed
quality characteristic X whose mean is p and whose variance is

62. For each sample of n observations xl,x “."Xn collected at

2
time t, calculate the sample mean, it and the comulative sum

t

Note that at time t:
2
°, ~ N(O,to /n)
and
Z= [ct/SQRT(VAR(ct))] ~ N(0,1).
Therefore, a variation of Page'’s original scheme may operate by
plotting Z at time t on 2 control chart with an upper control

limit of Z If the point plots above the UCL, themn the

» a/2’
process is deemed out of control,

In order to prevent the accumulation of a large becklog of
results when the process is in control the cusum is zeroed out
periodically. In practice when the cusum is being used to detect
shifts above the mean it is zeroed out and restarted when it
becomes negative., Likewise, if the chart is used to detect
shifts below the mean the control limit can be taken to be -Zu/2

and the cusum ot would be zeroed out whenever the value of ct

becomes positive.



M c c

Cumulative sum charts have many advantages over the
Shewhart chart and because of these advantages it is only natural
to investigate whether the principles governing the univariate
case can be extended to the multivariate case.

In the development of the two maltivariate cusum charts we
consider a vector of p quality characteristics X with probability
distribution function Np(g ,g) where g is known. At a given
time t, a sample of n multivariate observations on X (consisting
of pn measurements) is taken and the vector of sample means is
calculated as

n

Lt = (lln)iglgi.

The two proposed multivariate cumulative sum charts are to be
referred to subsequently as multivariate cusum #1 and
multivariate cusum #2., Multivariate cusum #1 was first proposed
by Pignatiello and Kasunic in 1984 [19]. The development of the

multivariate cusums is outlined in the following sections.

Multivariate Cusum #1
In the case of multivariate cusum #1 we calculate the

multivariate cusum as

t
Q-E(i-u).
t =1 4 o
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Since Ct may be written as
t t t
gt = 2 ii - 2 Eb - 2 ii - tub
i=1 i=1 i=1
(1/¢) Qt is the mean accumulated vector difference between the

sample average at time t and the standard value for the mean, Ve

note that since gt ~ Np(g.tg/n) the statistic

’

2 -1
" = [ngt g Qt]/t

has a chi-square distribution with p degrees of freedém. This
statistic represents the square of the distance of the
accumulated sample average vector from its target. The
multivariate cusum chart #1 operates by plotting the statistic fz
at time t on a control chart with an upper control limit of
Xz « If the point plots above the UCL then the process is

p.a
deemed out of coatrol.

Multivariate Cusum Chart #2
As an alternative to the multivariate cusum above one

could consider

- ' - -

d = X - X -

=2 mw) e & -

which has a chi-square distribution with p degrees of freedon,
th

The value di reproesents the square of the distance of the i

sample mean from the target value of &o' The statistio

t
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which has a chi-square distribution with tp degrees of freedom
could also be nsed as a multivariate cusum statistic on a'control
chart with an upper control 1imit of thp’a. If.the point plots
above the UCL the process is deemed out of control,

It should be noted that as in the univariate case, the
multivariate cusums need to be zeroed out periodically, but as
the best moethod for zeroing out these cusums was not obvious this
was studied as a design consideration.

The next sections contain a discussion of run length as a
measure of control chart performance and & description of the
average run length simulation used to compare the two

multivariate cusum charts with each other and with the other

methods discussed in this section.



CHAPTER 3

THE RUN LENGTH AS A MEASURE OF PERFORMANCE

In 1950, Aroian and Levene [5] considered the type of
measures that one shonld use to assess the statistical properties
of process inspection schemes, If there is an abrupt change in
product quality we need to know the distribution of the amount
produced by the process before the change is noticed by the
inspection scheme we are using. This distribution could be used
to do a detailed study of the costs involved in any particular
case, but for general comparisons of inspection schemes, a more
direct method of comparison is preferable.

If the process is operating at a constant rate and samples
are taken at a constant rate, the average amount produced by the
process before corrective action is demanded by the inspection
scheme is proportional to the average number of samples taken
before action is demanded by the inspection scheme., The average
number of samples taken before asction is demanded by the
inspection scheme is commonly referred to as the average run
length (ARL). The ARL(3) is defined to be the average number of
sanmples taken from the process to detect a shift in the process
aversge from p = "o top = "o + 8., If the mean remains at the
control value, uo. then the average run length should be large so

12
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that the frequency of false alarms is low and if the mean shifts
from the control value the procedure should signal quickly after
the ckange to reduce the amount of poor quality product produced
by the process before corrective action is taken.

The ARL may be calculated analytically for the Shewart and
the univariate cusum schemes, However, the calculation of the
ARL for cusum schemes is complicated by the fact that successive
cusums are correlated.

Let us first consider the ARL for a univariate Shewkart
scheme. The number of samples each of n items which are examined
before action is demanded by the sampling scheme is commonly
referred to as the run length (RL), The rum length is a
geometric variable with probability function:

P(RL = k) = P.k-l(l-P.) k=1, 2, ...
where P‘ is the probability that a given sample falls between the
control limits [11]. Thus,
E(RL) = 1/(1-P').

This analysis can be extended to the multivariate case by
using a central ‘2 approximation to a noncentral fz distribution
with noncentrality parameter A [1]. As in the case of the
univariate Shewhart the expected run length is 1/(1-P.) where P'
is the probability that a given sample falls between the control
limits, When the process ;verage shifts from uo to "o + 8§ the
noncentrality parameter A is equal to 62 and the approximation of

the run length is as follows:
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Prob[{> <= cL | a,v] ~ Ptob[f:. <= CL/(1 + b)}
where v represents the degrees of freedom for the noncentral
distribution fz'. CL represents the control ‘linit , & =V %+ A,
b =A/(M + v) and v. =a/(1 +0b),

The classical method of studying the average run length of
the univariate cusum control chart has been to regard the scheme
as a sequence probability ratio tests . A different approach has
been proposed by Brook and Evans [8] in which the set of all
possible values the cusum can assume are discretized and then
treated as s Markov chain, The transition probability matrix for
this chain is obtained and then the properties of the transition
matrix are used to determine the average run length for the
scheme, This method may be vsed with any discrete distribution
and also as an accurate approximation with any continuous
distribution.

The Markov chain approach was used by the Department of
Mathematical Sciences of the IBM Thomas J. Watson Research Center
in the development of an APL software package, DARCS, for the
design, analysis and implementation of cusum—Shewhart control
schemes [24]. This software package was utilized to approximate
the average run lengths for the univariate cusum schemes. A more
detailed discussion of this method is beyond the scope of this
paper, however, it is discussed at length in the referehces

mentioned above.



CHAPTER 4
DISCUSSION OF THE SIMULATION STUDY

Almost all of the discussions on cusum schemes since
Page’'s original article have dealt primarily with the topic of
how one may best find an approximation of the ARL
[8,12,14,16,22], Both Reynolds [20] and Van Dobben de Bruyn [21]
suggest that computer simulation methods are both easier and
sufficient to estimate the ARL., Consequently, we used a Monte
Carlo simulation approach in this study to compute estimates of
the ARL’s for the multivariate cusum methods and compare these
results with the analytical results from the classical control
chart procedures.

Simulation denotes & computer-based numerical techmique
for the experimental study of a stochastic or deterministic
process over time, The designation Monte Carlo is appropriate
for any numerical procedure utilizing random or pseudo-random
numbers,

The control charts for the simulated process were
designed to maintain control of the process mean at a nominal
level denoted by Ho. A shift in the process mean was purposely
induced away from the nominal]l level to an out of control level H‘
and the run length was estimated to be the number of samples

15
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taken before this shift was detected by the various control chart
techniques. The number of replications performed im the
simulation was determined as a function of precision and the cost
of computer time. There was a tradeoff between practicality and
precision to be considered here so pilot runs were conducted. It
was determined that 61 replications of 100 runs each would be
satisfactory for our purposes. In other words the run length for
the process was simunlated 100 times and an average was calculated
for these 100 runs., This process was repeated 61 times, Then,
a point estimate for the mean of this distribution is just the
average of the 61 averages and a 95% confidence interval for the
mean can be calculated as:
X2 t,, ., S0RT(s"/n)

where t‘.'.',,' is the upper critical point’for the t

distribution with 60 degrees of freedom.
We simulated a process where the sampled manufactured

parts were monitored on the basis of two quality characteristics.
!’

Let X = (X ,X
[ . 9 ( 1n’ zn) denote the 2 by 1 vector of quality

characteristic measurements made on the nth part. Ve assumed

that the successive X are independent identically distributed

bivariate normal random vectors with known covariance matrix g.
Without loss of generality, we took the nominal level Ho for the

process to be the zero vector. The variance—covariance matrix

is of the form:
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2
. I e po,o, 1
g L 2 ]
P91% o

Specifically, the simulation considers the case where 61 = qz = 1
so that:

rT o1

o L p 1 J

Thus, under no the conditions are that X are i.i.d. Nz(g,g).

The out of control conditions that we induced differed
from the nominal conditions only in the mean values. For each of
the process control detection schemes the ARL under Ho was
calibrated to be 200 or as in the case of the simulated average
run lengths so that 200 was covered by a 95% confidence interval
on the mean run length., We then evaluated the performance of the
different control chart methods over the parameter space when the
shift from the process nominal value was a sudden and persistent
shift of moderate to large magnitude.

The theoretical run lengths for the Shewhart and
univariate cusum charts were calculated using the methods
described in the previous section. In the case of the univariate
control charts it was assumed that in a process with two quality
characteristics there would be a control chart monitoring each of
the quality characteristics, Therefore, the average run lengths
for thoese methods were based on the assumption that there were

two control charts running simultaneously., It should also be
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noted that in the univariate charts any correlation between the
quality characteristiocs was ignored.v
The theoretical rum lengths for the two univariate
Shewhart charts running simultaneously were calibrated so that
E(RL) = 1/(1-P.) = 200
or P. = 0,005. The critical value of the Iz distribution was
then calculated such that:

Pr(One is out) + Pr(Second is out) - Pr(Both out) = 0,005,
Thus, the critical value of the Iz distribution with two degrees
of freedom is 3.02 and the average run length was then calculated
to be:

ARL = 1/(9:(Ii >3.02 | p=p)+ Pr(fzz >3.02 | u=p))
represent the values that each of the quality

where p_ and p

1 2
characteristiocs’ means have shifted to umnder the alternate
hypothesis.

The univariate cusum charts were calibrated so that the
average run length of each of the individual charts under the
null hypothesis was 400, Therefore, under the null hypothesis
the average run length of the two charts running simultaneously
was 1/(1/400 + 1/400) or 200 [11]., The univariate cusums were
optimized for three cases involving shifts to alternate
hypotheses of 1, 2 and 3 using the DARCS program described
previously. The DARCS program calibrated the univariate cusums

to aversge run lengths of 400 each by setting the decision

interval, h, to a value that corresponded to the control limit
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which gives a Type I error of 0.0025, They were then optimized
by choosing a reference value, k > 0, such that the average run
lengths for the various alternate hypotheses were optimized, The
ARL of the two univariate cusom charts running simultaneously was
then approximated as:

ARL = 1/(1/ARL1 + 1/ARL2)
where ARL1 and ARL2 represent the average run lengths of the
individuel cusum charts. It should be noted that preliminary
studies indicated that the approximated theoretical cusum results
agreod well with simulated data and these approximations were
therefore used in the comparison of methods,

The method used for zeroing out the multivariate cusums
was chosen based on the results of a2 proliminary study which
indicated that the chosen method performed the best in that the
average run lengths were the smallest for all values of u. The
cusums were zeroed out when the [cusum - T(v + 62/2)] was less
than or equal to zero where cusum represents the appropriate
statistic for each of the multivariate cusums, T represents the
number of fz statistics in the cusum, v represents the degrees of
freedom and 8§ was used as a parameter of the experiment, In the
case of multivariate cusum #1 T is always equal to 1 and in
multivariate cusum #2 T is equal to t, the number of chi-square
statistics in the cusum,

The simulation study considered various alternate

hypotheses and correlation coefficients and the distance between
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the target value and a given alternate hypothesis was considered
to be:
' -1
Distance = SQRT((u_o - uh) g (I.L,o - n‘)).

The relationship between the actual shift in the means of the two
quality characteristics that we studied and the true distance of
the shift is shown in Table 1, It is interesting to note that inmn
the case where the correlation coefficient equals 0.0 shifts of
equal distances are roepresented by concentric circles about the
mean as indicated in Figure 1, Therefore, a shift in the mean to
an alternate hypothesis of (0.5,0.0) is equidistant to shifts
with means of (0.0,0.5), (-0.5,0.0) and (0.0,-0.5). If the
correlation coefficient is not equal to zero thenm shifts of equal
distance are represented by concentric ellipses about the mean as
shown in Figure 2, For example, when the correlation coefficient
is equal to 0.5, a shift in the mean to an alternate hypothesis
of (2,1) is equidistant to shifts with means of (1,2), (-1,1),
(-2,~1), (-1,-2) and (1,-1). Multivariate techniques such as the
moltivariate Shewhart and multivarziate cusums detect shifts of
equal distnnce equally well regardless of the direction of the
shift in the mean, Thus, without loss of generality we can
consider shifts in only one direction in the mean of a single
quality characteristic and effectively consider shifts in every
direction in one or more of the quality characteristics. |

The conditions which were considered in the simulation

study are shown in Table 2. These conditions include an analysis



Table 1. Distsance

of the shift in the

means of the quality
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characteristios for various correlation coefficients.
']

Shift 0.0 0.5 0.9
(0.0,0,0) 0.0000 0.0000 0.0000
(0.5,0.0) 0.5000 0.5774 1.1471
(1.0,0.0) 1.0000 1.1547 2.2942
(1.5,0.0) 1.5000 1,7321 3.4412
(2.0,0.0) 2.0000 2.3094 4.5883
(2.5,0.0) 2.5000 2,8868 5.7354
(3.0,0.0) 3.0000 3.4641 6.8825
(3.5,0.0) 3.5000 4.0415 8.0296
(4.0,0.0) 4.0000 4.6188 9.1766




Figure 1:

Concentric circles representing equal distances zero correlation. .
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Figure 2:
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Concentric ellipses representing equal distances nonzero correlation.
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Table 2. Conditions considered in the Monte Carlo simulation.
Size of Shift Correlation Coefficient Delta

xl xz
0.5 0.0 0.0 0
1.0 0.0 0.5 1
1.5 0.0 0.9 2
2.0 0.0 3
2.5 0.0
3.0 0.0
3.5 0.0
4.0 0.0
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of the effect of various amounts of correlation between the
quality characteristics, several values of § in the zeroimng out
rule and a number of alternate hypotheses representing moderate
to large shifts in the mean values., Various combinations of
these conditions were considered in the simulation.

The program used in the simulation is writtem in
Fortran/77 code and appears in Appendix A, Table 3 1lists the
primary functions of each of the program routines. Appendix A
also contains a short program to convert the results of the
program into a summary file containing the point estimate of the
mean run length, a 95% confidence interval for the mean run
length and its standard deviation,

The results of the simulation study are presented and
discussed in the next section., This discussion includes both
tabular and graphic presentation of the data as well as a

statistical evaluation of the results.



Table 3.
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Description of the program routines,

Routine

Function

ARL

MUSUM1

MUSUM2

TRPNRM

UNIF

DCHISQ

DNML

Input program parameters, generate random
vectors, write results to output file.

Evaluate data using multivariate cumulative
sum #1 technique.

Evaluate data using multivariate cumunlative
sum #2 techmnique.

Generates unit normal deviate by Ahrens and
Dieter composition method. Area under the
normal curve is divided into § different
areas [71.

Generates uniform (0,1) random numbers [7].

Computes the cumulative distribution func-—-
tion for a chi-square random variable in
double precision [9].

Computes the cumunlative distribution func-
tion for a normal random variable in double
precision [9].




Chapter §
RESULTS AND DISCUSSION

The purpose of this chapter is to present and discuss the
results of the Monte Carlo simulation, The results of the Monte
Carlo simulation are given in tabular form (see Tables 4 - 17)
and graphical form (see Figures 3 =~ 15). The statistical
evaluation of the significance of the results is also presented
in this chapter (see Tables 18 - 20).

The actual simulated average run lengths and their
respoective standard deviations are shown in Tables 4 - 17, It
should be noted that the values of a'sho'n in these tables are
not the probability of type I error but rather a calibration
constant used in the simulation to obtain a probability of type I
error equal to 0.005 under the null hypothesis.

Figures 3 - 15 are graphs of the average run length vs,
the actual shift in the means of the two quality characteristics.
Each of the points plotted on the graphs represents the average
number of samples taken to detect a shift in the mean values to
the indicated alternate hypothesis, These graphs illustrate how
each of the different control chart methods perform under the
various conditions considered both on an individual method by
method basis and when they are compared to one another. The

27
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graphical presentation of the data provides a quick indication of
the relative officiency of each of the methods under the
specified conditions.

The theoretical run lengths for two univariate Shewhart
charts running simultaneously are presented in Table 4 and
graphed in Figure 3. The calibration point was purposely left
off the graph in order to improve the resolution of the graph.

The results for the multivariate Shewhart chart are
presented in Table 5 and graphed in Figunre 4., The average run
lengths were calculated for each of the three correlation
coefficients and each of the three lines on the graph represent
one of the coefficients, As the correlation coefficient
increases in absolute value the multivariate Shewhart method
responds more quickly to shifts in the mean,

The theoretical run 1lengths for the two univariate
cumulative sum charts running simultaneously are presented in
Table 6 and graphed in Figure 5. The univariate cusums were
optimized for the three alternate hypotheses of (1,0), (2,0) and
(3,0) using the DARCS program discussed in a previous section,
The values of h and k for the optimized cusums are included in
the table, It is interesting to nmote that the univariate cusunm
optimized for (1,0) has the best run length for a shift in the
mean from (0,0) to (1,0), the cusum optimized for (2,0) has the
best run length for a shift in the mean from (0,0) to (2,0) and

so on. Each line on the graph represents the average run length



Table 4. Theoretical average run lengths for two univariate

Shewhart charts running simultaneously.
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Average

Shift Run Length
(0.0,0.0) 200.000
(0.5,0.0) 140.219
(1.0,0.0) 43.562
(1.5,0.0) 15.263
(2.0,0.0) 6.446
(2.5,0.0) 3.303
(3.0,0.0) 2,027
(3.5,0.0) 1.435
(4.0,0.0) 1.194
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Table 5. Theoretical average run lengths for the multivariate
Shewhart chart with various correlation coefficients.
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')
Shift 0.0 0.5 0.9

(0.0,0.0) 200.000 200.000 200.000
(0.5,0.0) 114.567 98.502 30.652
(1.0,0.0) 41,091 30.198 4,784
(1.5,0.0) 15.940 10.799 1.602
(2,0,0.0) 7.161 4.692 1.065
(2.5,0.0) 3.716 2.471 1.002
(3.0,0.0) 2,230 1.580 1.000
(3.5,0.0) 1,546 1.207 1.000
(4.0,0.0) 1,224 1,061 1.000
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Table 6. Theoretical average run lengths for two univariate
comunlative sum charts running simultaneously optimized
for various alternate hypotheses.

Ha
(1,0) (2,0) (3,0)
h=4.2 h=2.22 h=1,39
k=0.4 k=1.00 k=1.50
Shift
(0.0,0.0) 200,000 200.000 200.000
(0.5,0.0) 26.866 44.207 63.441
(1.0,0.0) 8.611 11.179 17.591
(1.5,0.0) 4.841 4.841 6.396
(2.0,0.0) 3.470 2.978 3.273
(2.5,0.0) 2.682 2.089 2.089
(3.0,0.0) 2.287 1.693 1.594
(3.5,0.0) 1.990 1.395 1.296

(4.0,0.0) 1.792 1.196 1.097
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curve for the cusum optimized for a given alternate hypothesis.

The simulated run lehgths for multivariate cusum #1 with p
= 0.0 and various values of & in the zeroing out rule are
presented in Table 7. The table includes the values of a' which
were used to calibrate the cusum, The standard deviations of the
average run lengths are contained in Table 8. The average run
length curves are presonted in Figure 6 and each line on the
graph represents a different value of §. The best zeroing out
rule appears to be when the value of & is equal to O.

The simulated run lengths for multivariate cusum #2 with p
= 0,0 and various valves of 8 in the zeroing out rule are
presented in Table 9. The table includes the values of a' which
were used to calibrate the cusum, It should be noted that in
the case where 8§ = 0.0 wo were unable to calibrate the cusum to
200. The largest average run length we were able to obtain under
the null hypothesis for 8§ = 0.0 was 87.235. The standard
deviations of the average run lengths are contained in Table 10.
The average run length curves are presented ian Figure 7 and each
line on the graph represents s different value of &§. There
doesn’t appear to be any particular best value of 8 for this
multivariate cusum method. It looks as though smaller values of
5 aro preferable for smaller shifts and larger values of 8§ are
preferable for larger shifts. This behavior is similar to the
behavior of the univariate cusum in that the multivariate cusum

optimized for a specific alternate hypothesis by adjusting the



Table 7. Simulated average run lengths for multivariate cusunm
#1, p = 0.0, various deltss.

5
Shift 0 1 2 3
(0.0,0.0) 203.885 206.871 203.836 202.950
(0.5,0.0) 30.983 35.027 46.970 82.226
(1.0,0.0) 9.671 10.585 12.386 21,002
(1.5,0.0) 4.937 5.296 5.765 7.759
(2.0,0.0) 3.149 3.306 3.487 4.042
(2.5,0.0) 2.248 2.319 2.424 2,578
(3.0,0.0) 1.739 1.832 1.844 1.892
(3.5,0.0) 1.430 1.477 1.504 1.472
(4.0,0.0) 1.223 1.259 1.260 1.247

a .00335 .0026 .00225 .0031




Table 8. Standard deviation of simulated average run lengths
for multivariate cusum #1, p = 0.0, various deltas,

s
Shift 0 1 2 3
(0.0,0.0) 24.1363 25.5702 30.0910 15.8033
(0.5,0.0) 2.3102 2.3909 3.6719 8.6942
(1.0,0.0) 0.6370 0.5558 0.9251 1,9540
(1.5,0.0) 0.2991 0.2929 0.2735 C.5483
(2.0,0.0) 0.1492 0.1361 0.1731 0.2614
(2.5,0.0) 0.0917 0.1217 0.1234 0.1356
(3.0,0.0) 0.0852 0.0825 0.0868 0.0847
(3.5,0.0) 0.0617 0.0618 0.0587 0.0681

(4.0,0.0) 0.0376 0.0462 0.0398 0.0456
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" Table 9., Simulated average run lengths for multivariate cusum
#2, p = 0.0, various deltas.

5
Shift 0 1 2 .3

(0.0,0.0) 87.235 202.247 199,883 202,503
(0.5,0.0) 54,232 90,261 108.495 109.303
(1.0,0.0) 28.419 25.781 29.764  36.395
(1.5,0.0) 12.382 9.742 9.866 12,447
(2.0,0.0) 5.770 4.808 4.633 5.409
(2.5,0.0) 3.440 2,936 2,816 2,938
(3.0,0.0) 2.310 2.028 1.970 1.947
(3.5,0.0) 1.710 1.539 1.513 1.485
(4.0,0.0) 1.386 1.266 1.246 1.242

a .001 .0026 .0031 .0039




Table 10. Standard deviation of simulated average run lengths
for multivariate ousum #2, p = 0.0, various deltas.

5
Shift 0 1 2 3
(0.0,0.0) 5.9003 18.7490 18.0402 16.9295
(0.5,0.0) 2.8760 8.7364 10.5084 10.2974
(1.0,0.0) 1.2949 1.9687 3.2316 4.1079
(1.5,0.0) 0.7576 0.6115 0.7062 1.1114
(2.0,0.0) 0.2789 0.3309 0.3482 0.4646
(2.5,0.0) 0.2084 0.2142 0.1746 0.2060
(3.0,0.0) 0.1095 0.0863 0.0948 0.1287
(3.5,0.0) 0.0875 0.0779 0.0761 0.0817

(4.0,0.0) 0.0573 0.0426 0.0500 0.0478
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value of 6§ will achieve the smallest average run length for that
particulaxr shift in the mean.

The various control chart procedures are compared to each
other in the case where p = 0.0 for ecach of the values of §.
These comparisons are shown in Figures 8 — 11, Each line on these
figures represents the average run length curve for a given
method, It should be noted that the mnnivariate cusum on each of
these charts represents the cusum optimized for an alternate
hypothesis equal to (8,0) except for the case where 8§ = 0.0,
This chart shows the univariate cusum optimized for anm alternate
hypothesis of (1,0), These figures indicate that regardless of
the value of 6 the two best methods appear to be the univariate
cusum and multivariate cusum #1 especially for small to moderate
shifts in the mean., The methods all appear to perform relatively
well for large shifts in the mean, although it is difficult to
distinguish between the lines for the various methods when the
shift is large.

The simulated run lengths for multivariate cusum #1 with p
= 0,5 and various values of § in the zeroing out rule are
presented in Table 11, The table includes the values of a'which
were used to calibrate the cusum, The standard deviations of the
average run lengths are contained in Tayle 12, The average run
length curves are presented in Figure 12 and each line on the
graph represents a different value of 8§, The best zeroing out

rule appears to be when the value of 8 is equal to 0.
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