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ABSTRACT 

This study utilizes a Monte Carlo simulation to ezaaine 

and compare the performance of two proposed multivariate 

cumulative sum control chart schemes for controlling the mean of 

a multinormal process. The study compares the performance of the 

proposed methods with multiple univariate Shewhart charts, a 

multivariate Shewhart chart and multiple univariate cumulative 

sum control charts. 

The results indicate that one of the proposed multivariate 

cumulative sum control charts is superior to the other and that 

in many cases the superior method has certain advantages over the 

classical univariate and multivariate control chart techniques as 

well. 
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CHAPTER 1 

INTRODUCTION 

Control charts are statistical devices nsed primarily for 

the study and control of repetitive processes. At the basis of 

the theory of control charts is a differentiation of the causes 

of variation in quality. Statistical theory recognizes that the 

variation in the quality of a product belongs to two general 

categories: chance variations and assignable causes. Since 

chance variations behave in a random manner, future variations 

cannot be predicted from knowledge of past variations. However, 

variation produced by chance causes does follow statistical laws 

and knowledge of the behavior of chance variations is the 

foundation on which control chart analysis exists. If a group of 

data from a process is studied and it is found that its variation 

conforms to a statistical pattern that might reasonably be 

produced by chance causes, then it is assumed that no assignable 

causes are present and the process is said to be in control. 

Otherwise, it is concluded that one or more assignable causes are 

at work and the process is said to be out of control. 

Hotel ling is credited with recognizing that the quality of 

an item could depend on two or more correlated characteristics. 

Early attempts to monitor the quality of p characteristics 

1 
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employed the use of p univariate control charts. The most widely 

used of the univariate charts is the Shewhart 

chart which was developed in 1931. Numerous publications have 

dealt with the application of these charts and some modifications 

to the method, either in presentation or interpretation, have 

been proposed. 

The concept of cumulative sum (cusum) control charts was 

introduced by Page [18] in 1954. This control chart method is 

based on Wald sequential schemes. Since its inception the cusum 

control chart has increased in popularity due to its well 

established advantages over Shewhart charts when there is a small 

to moderate shift from the process target value [6,12,21]. 

The shortcomings of the use of a series of univariate 

control charts running separately for each of the variables have 

been pointed out in publications which outline the appropriate 

multivariate procedures [2,3]. The univariate approach is 

generally not adequate because it ignores the correlations among 

the variables. On the other hand, multivariate techniques tend 

to shed more light on the process since they take into 

consideration the relationships and interdependence between the 

quality characteristics 

In this study we use a Monte Carlo simulation to examine 

the performance of two proposed multivariate cumulative sum 

schemes for monitoring a process where each item it characterized 

by two quality characteristics. These schemes combine aspects of 
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the cumulative sum scheme and various multivariate procedures in 

the hopes of improved performance over established control chart 

methods. These schemes are referred to as multivariate cusum #1 

and multivariate cusum #2, and their simulated average run 

lengths will be compared to the theoretical average run lengths 

of multiple univariate Shevhart control charts, multiple 

univariate cusum charts and multivariate Shewhart charts. 

The following chapter contains a review of control chart 

procedures and the proposed development of the two multivariate 

cusum control chart schemes. A discussion of the average run 

length as a measure of performance, the analytical procedures 

utilized to theoretically compute the average run lengths for the 

Shewhart and univariate cusum schemes and the details of the 

simulation study are discussed in Chapters 3 and 4. The results 

of the Monte Carlo simulation are presented and discussed in 

Chapter 5. Conclusions and directives for further study are 

presented in Chapter 6. 



CHAPTER 2 

CONTROL CHART METHODS 

In this section we review the univariate and multivariate 

Shewhart and univariate cumulative sum (cusum) control charts. 

Ve also describe the proposed development of two multivariate 

cusum charts. For successive samples control chart techniques 

can be interpreted as repeated tests of signifigance of the form: 

H : |i = |i 
o o 

vs 

H : |i * |i 
ft o 

where |i represents a process parameter whose true value is 

unknown and |i 0 is the target value for the parameter [3,11]. In 

the multivariate case, n would represent a vector of parameters. 

In the study which follows it is assumed that the 

population standard deviation is a known constant. It should 

also be noted that while other more complex decision rules such 

as run tests may be used to determine if the process is in or out 

of control they are not considered here. 

The Univariate Shewhart Chart 

The univariate Shewhart control chart consists of 

examining samples of a fixed size at regular intervals of time. 

4 
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A statistic (for our purposes, a sample mean) is calculated and 

plotted on the control chart. Corrective aotion is taken if the 

point falls outside of the control limits. 

Vhen there is only one normally distributed quality 

characteristic the univariate Shevhart control chart for the mean 

is of the form: 

DCL: |i + Z ,„(<t /SQRT(n)) 
o a/2 o 

CL: |i 
o 

LCL: (i - Z ,Aa /SQRT(n)) 
o a/2 o 

where fi and a denote the standard values specified for the 
o o 

population mean and standard deviation of the distribution of the 

quality characteristic and Z , is the upper a/2 point of the 
a/2 

standard normal distribution, that is, Prob.(Z > Z ) = a/2. 
a/2 

In practice a random sample of size n parts is obtained 

and the mean of the quality characteristic measurements on those 

parts is computed. If the plotted value of X falls within the 

control limits, then the process is deemed in control, otherwise, 

one or more assignable causes are sought to explain the unusual 

variation. 

The Multivariate Shewhart Chart 

The multivariate analogue of the Shewhart chart is 

commonly referred to as the chi-square chart. A column vector X 

of p components X ,X ,...,X is said to have a p-variate 
12 p 

nonsingular normal distribution if its probability distribution 
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function (pdf) is of the form: 

(2n) P'2 |jj| exp[-l/2 (X - u.) SL 1(1 ~ 4J.) 1 

-« < X^ < ® (i = 1, 2, ...,p) 

where tL an^ SL are the parameters of the distribution, |i it a 

column vector of elements ~ l»2,...,p) such that each is 

finite and the variance-covariance matrix 2. = to.,) is a positive 
* J 

definite symmetric matrix of order p. The notation X~N (y,» 2.) 
P 

indicates that the random vector X has a p-variate non-singular 

normal distribution with parameters |i. and £• 

If we consider a process where the quality of p 

characteristics are to be monitored, then we essentially wish to 

perform a likelihood ratio test of the form: 

H ! 1L " lLn o o 

v« • 

H : IL J4 JJL . 
a o 

The test specifies that the null hypothesis is rejected if 

n(X - |t) a 1 (X - t ) > f2 
o o o p.o 

.2 
where X denotes the p by 1 vector of samples means and X is 

p , a  

the upper a 100%-age point of the chi-square distribution with p 

degrees of freedom [4]. 

In practice the statistic is calculated and plotted on a 

.2 
control chart with an upper control limit of X .If the point 

p.a 

plots above the upper contol limit, the process mean is deemed 

out of control and the assignable causes of the variation are 

sought. 
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The Univariate Cn«iim Chart 

A shortcoming of the Shewhart-type control chart is that 

although the resnlts of previous samples are recorded on the 

chart, none of the previous results are used by the process 

inspection rule directly. The cumulative sum chart vas developed 

by Page in 1954 [18] in an attempt to make direct use of this 

information. Prior to its development quality control engineers 

were trying to use the Shewhart-type chart intelligently by 

giving some weight to runs of results above or below the mean. A 

number of more intricate rules using runs of results outside of 

warning limits were also devised, but these rules are inefficient 

compared with control schemes based on cusum charts [13]. 

The cusum chart has several distinct advantages over the 

Shewhart chart. These advantages are: 

1. It is at least equally effective at less expense. 

2. It picks up a sudden and persistent change in the 
process average more quickly. 

3. It locates the time of the change more sharply. 

4. A change in quality can be seen much more easily by 
visual inspection. 

Cusum schemes can be devised to detect only upward or 

downward shifts in the process mean or devised to detect shifts 

in both directions simultaneously. These schemes are referred to 

as one-sided and two-sided schemes respectively. Our discussion 

will be confined to one-sided schemes since a two-sided scheme is 

just a combination of two one-sided schemes. 
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In a one-sided univariate cusua scheme for detecting 

increases in the proce»l mean, ve consider a normally distributed 

quality characteristic X whose mean is |i and whose variance is 

2 
a . For each sample of n observations X .X .....X collected at 

1 2 n 

time t, calculate the sample mean, X^ and the cumulative sum 

5 (X - n ). 

Note that at time t: 

c *= L. li - n . 
* i=l 1 ° 

2 
~ N(0,to /n) 

and 

Z - [c /SQRT(VAR(c ))] ~N(0,1). 
t t 

Therefore, a variation of Page's original scheme may operate by 

plotting Z at time t on a control chart with an upper control 

limit of Z . If the point plots above the UCL, then the 
o/ 2 

process is deemed out of control. 

In order to prevent the accumulation of a large backlog of 

results when the process is in control the cusum is zeroed out 

periodically. In practice when the cusum is being used to detect 

shifts above the mean it is zeroed out and restarted when it 

becomes negative. Likewise, if the chart is used to detect 

shifts below the mean the control limit can be taken to be -Z 
a / 2  

and the cusum o would be zeroed out whenever the value of c 
t t 

becomes positive. 
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Multivariate Cusnm Charts 

Cumulative sum charts have many advantages over the 

Shewhart chart and because of these advantages it is only natural 

to investigate whether the principles governing the univariate 

case can be extended to the multivariate case. 

In the development of the two multivariate cusum charts we 

consider a vector of p quality characteristics X with probability 

distribution function N (ji ,g_) where 2. i* known. At a given 

time t, a sample of n multivariate observations on X (consisting 

of pn measurements) is taken and the vector of sample means is 

calculated as 

The two proposed multivariate cumulative sum charts are to be 

referred to subsequently as multivariate cusum #1 and 

multivariate cusum #2. Multivariate cusum #1 was first proposed 

by Pignatiello and Kasunic in 1984 [19]. The development of the 

multivariate cusums is outlined in the following sections. 

Multivariate Cusum #1 

In the case of multivariate cusua #1 we calculate the 

multivariate cusum as 

P 

n 

I « (l/n) 

t 
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Since may be written as 

t t t 

(1/t) is the mean accumulated vector difference between the 

sample average at time t and the standard value for the mean. We 

note that since C ~ N (0,tg./n) the statistic 
t p 

,2 ' -1 i » [nC a C 1/t 
V t 

has a chi-square distribution with p degrees of freedom. This 

statistic represents the square of the distance of the 

accumulated sample average vector from its target. The 

.2 
multivariate cusum chart #1 operates by plotting the statistic X 

at time t on a control chart with an upper control limit of 

• 2 
A  . I f  t h e  p o i n t  p l o t s  a b o v e  t h e  U C L  t h e n  t h e  p r o c e s s  i s  

p »o 

deemed out of control. 

Multivariate Cusum Chart #2 

As an alternative to the multivariate cusum above one 

could consider 

d « n(X - u. ) a 1 (X - IL ) 
l io i o 

which has a chi-square distribution with p degrees of freedom. 

th 
The value d^ represents the square of the distance of the i 

sample mean from the target value of il . The statistic 

t 
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which has a chi-square distribution with tp degrees of freedom 

could also be used as a multivariate cusum statistic on a control 

chart with an upper control limit of jf .If the point plots 
tp,a 

above the VCL the process is deemed out of control. 

It should be noted that as in the univariate case, the 

multivariate cusums need to be zeroed out periodically, but as 

the best method for zeroing out these cusums was not obvious this 

was studied as a design consideration. 

The next sections contain a discussion of run length as a 

measure of control chart performance and a description of the 

average run length simulation used to compare the two 

multivariate cusum charts with each other and with the other 

methods discussed in this section. 



CHAPTER 3 

THE RUN LENGTH AS A MEASURE OF PERFORMANCE 

In 1950, Aroian and Levene [5] considered the type of 

measures that one should use to assess the statistical properties 

of process inspection schemes. If there is an abrnpt change in 

product quality we need to know the distribution of the amount 

produced by the process before the change is noticed by the 

inspection scheme we are using. This distribution could be used 

to do a detailed study of the costs involved in any particular 

case, but for general comparisons of inspection schemes, a more 

direct method of comparison is preferable. 

If the process is operating at a constant rate and samples 

are taken at a constant rate, the average amount produced by the 

process before corrective action is demanded by the inspection 

scheme is proportional to the average number of samples taken 

before action is demanded by the inspection scheme. The average 

number of samples taken before action is demanded by the 

inspection scheme is commonly referred to as the average run 

length (ARL). The ARL(6) is defined to be the average number of 

samples taken from the process to detect a shift in the process 

average from |i s |i to |i = ji + 6. If the mean remains at the 
o o 

control value, |i , then the average run length should be large so 
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that the frequency of false alarms is lov and if the mean shifts 

from the control value the procedare should signal quickly after 

the change to reduce the amount of poor quality product produced 

by the process before corrective action is taken. 

The ARL may be calculated analytically for the Shewart and 

the univariate cusum schemes. However, the calculation of the 

ARL for cusum schemes is complicated by the fact that successive 

cusums are correlated. 

Let us first consider the ARL for a univariate Shewhart 

scheme. The number of samples each of n items which are examined 

before action is demanded by the sampling scheme is commonly 

referred to as the run length (RL). The run length is a 

geometric variable with probability function: 

P(RL = k) - P k-1(l-P ) k - 1, 2, ... 
a a 

where P is the probability that a given sample falls between the 

control limits [11] . Thus. 

E(RL) - 1/(1-P ). 
a 

This analysis can be extended to the multivariate case by 

A A using a central X approximation to a noncentral X distribution 

with noncentra1ity parameter X [1]. As in the case of the 

univariate Shewhart the expected run length is 1/(1-P ) where P 
a a 

is the probability that a given sample falls between the control 

limits. When the process average shifts from p to n +6 the 
o o 

2 
noncentrality parameter X is equal to 6 and the approximation of 

the run length is as follows: 



Prob[jf2' <- CL I X,v] ~ ProblX* <» CL/(1 + b)] 
v* 

where • represents the degrees of freedom for the noncentral 

2» 
distribution X » CL represents the control limit , a = v + X, 

b = X/(X + v) and • = a/(l + b). 

The classical method of studying the average run length of 

the univariate cusum control chart has been to regard the scheme 

as a sequence probability ratio tests . A different approach has 

been proposed by Brook and Evans [8] in which the set of all 

possible values the cusum can assume are discretized and then 

treated as a Markov chain. The transition probability matrix for 

this chain is obtained and then the properties of the transition 

matrix are used to determine the average run length for the 

scheme. This method may be used with any discrete distribution 

and also as an accurate approximation with any continuous 

distribution. 

The Harkov chain approach was used by the Department of 

Mathematical Sciences of the IBM Thomas J. Vatson Research Center 

in the development of an APL software package* DARCS, for the 

design, analysis and implementation of cusum-Shewhart control 

schemes [24]. This software package was utilized to approximate 

the average run lengths for the univariate cusum schemes. A more 

detailed discussion of this method is beyond the scope of this 

paper, however, it is discussed at length in the references 

mentioned above. 



CHAPTER 4 

DISCUSSION OF THE SIMULATION STUDY 

Almost all of the discussions on cusnm schemes since 

Page's original artiole have dealt primarily with the topic of 

how one may best find an approximation of the ARL 

[8,12,14,16,22]. Both Reynolds [20] and Van Dobben de Bruyn [21] 

suggest that computer simulation methods are both easier and 

sufficient to estimate the ARL. Consequently, we used a Monte 

Carlo simulation approach in this study to compute estimates of 

the ARL's for the multivariate cusum methods and compare these 

results with the analytical results from the classical control 

chart procedures. 

Simulation denotes a computer-based numerical technique 

for the experimental study of a stochastic or deterministic 

process over time. The designation Monte Carlo is appropriate 

for any numerical procedure utilizing random or pseudo-random 

numbers. 

The control charts for the simulated process were 

designed to maintain control of the process mean at a nominal 

level denoted by H . A shift in the process mean was purposely 
o 

induced away from the nominal level to an out of control level H 

and the run length was estimated to be the number of samples 
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taken before this shift was detected by the various control chart 

techniques. The number of replications performed in the 

simulation was determined as a function of precision and the cost 

of computer time. There was a tradeoff between practicality and 

precision to be considered here so pilot runs were conducted. It 

was determined that 61 replications of 100 runs each would be 

satisfactory for our purposes. In other words the run length for 

the process was simulated 100 times and an average was calculated 

for these 100 runs. This process was repeated 61 times. Then, 

a point estimate for the mean of this distribution is just the 

average of the 61 averages and a 95% confidence interval for the 

mean can be calculated as: 

where t<# # is the upper critical point for the t 

distribution with 60 degrees of freedom. 

Ve simulated a process where the sampled manufactured 

parts were monitored on the basis of two quality characteristics. 
I 

Let X •= (X^ ,X_ ) denote the 2 by 1 vector of quality 
n In 2n 

th 
characteristic measurements made on the n part. Ve assumed 

that the successive X are independent identically distributed 
n 

bivariate normal random vectors with known covarianoe matrix &. 

Vithout loss of generality, we took the nominal level H for the 
o 

prooess to be the zero vector. The variance-covariance matrix 

is of the form: 
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„. '  °i "i ' i  i 
I 2 

Specifically, the simulation considers the case where a 
1 

= 1 

so that: 

2. » 
r 1 P 1 

L p 1 J 

Thus, under conditions are that X are i.i.d. NJ(£,£). 

The out of control conditions that ire induced differed 

from the nominal conditions only in the mean values. For each of 

the process control detection schemes the ARL under H was o 

calibrated to be 200 or as in the case of the simulated average 

run lengths so that 200 was covered by a 95% confidence interval 

on the mean run length. Ve then evaluated the performance of the 

different control chart methods over the parameter spaoe when the 

shift from the process nominal value was a sudden and persistent 

shift of moderate to large magnitude. 

The theoretical run lengths for the Shewhart and 

univariate cusum charts were calculated using the methods 

described in the previous section. In the case of the univariate 

control charts it was assumed that in a process with two quality 

characteristics there would be a control chart monitoring each of 

the quality characteristics. Therefore, the average run lengths 

for these methods were based on the assumption that there were 

two control charts running simultaneously. It should also be 
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noted that in the univariate charts any correlation between the 

quality characteristics was ignored. 

The theoretical run lengths for the two univariate 

Shewhart charts running simultaneously were calibrated so that 

E(RL) - 1/(1-P ) - 200 
a 

- 2  
or P » 0.005. The critical value of the X distribution was 

a 

then calculated such that: 

Pr(0ne is out) + Pr(Second is out) - Pr(Both out) = 0.005. 

.2 
Thus* the critical value of the X distribution with two degrees 

of freedom is 3.02 and the average run length was then calculated 

to be: 

ARL = l/(Pr(X* > 3.02 I (i - u> + Pr(X* > 3.02 I n = |t )) 
JL 1 « 2 

where u and |t represent the values that eaoh of the quality 

characteristics' means have shifted to under the alternate 

hypothesis. 

The univariate cusum charts were calibrated so that the 

average run length of each of the individual charts under the 

null hypothesis was 400. Therefore, under the null hypothesis 

the average run length of the two charts running simultaneously 

was 1/(1/400 + 1/400) or 200 [11]. The univariate cusums were 

optimized for three oases involving shifts to alternate 

hypotheses of 1, 2 and 3 using the DARCS program described 

previously. The DARCS program calibrated the univariate cusums 

to average run lengths of 400 each by setting the decision 

interval* h, to a value that corresponded to the control limit 
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which gives a Type I error of 0.0025. They were then optimized 

by choosing a reference value, k > 0, such that the average run 

lengths for the various alternate hypotheses were optimized. The 

ARL of the two univariate cnsum charts rnnning simnltaneoasly was 

then approximated as: 

ARL = 1/(1/ARL + 1/ARL ) 
1 2 

where ARL and ARL represent the average ran lengths of the 
X St 

individual cusum charts. It should be noted that preliminary 

studies indicated that the approximated theoretical cusum results 

agreed well with simulated data and these approximations were 

therefore used in the comparison of methods. 

The method used for zeroing out the multivariate cusums 

was chosen based on the results of a preliminary study which 

indicated that the chosen method performed the best in that the 

average run lengths were the smallest for all values of |i. The 

2 
cusums were zeroed out when the [cusum - T(v + 6 /2)] was less 

than or equal to zero where cusum represents the appropriate 

statistic for each of the multivariate cusums, T represents the 

A number of I statistics in the cusum, v represents the degrees of 

freedom and 6 was used as a parameter of the experiment. In the 

case of multivariate cusum #1 T is always equal to 1 and in 

multivariate cusum #2 T is equal to t, the number of chi-square 

statistics in the cusum. 

The simulation study considered various alternate 

hypotheses and correlation coefficients and the distance between 
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the target value and a given alternate hypotheais was considered 

to be: 

' -1 
Distanoe • SQRT((u. - ji.) a. (lL - 1L ))• 

o a o a 

The relationship between the actual shift in the means of the two 

quality characteristics that we studied and the true distance of 

the shift is shown in Table 1. It is interesting to note that in 

the case where the correlation coefficient equals 0.0 shifts of 

equal distances are represented by concentric circles about the 

mean as indicated in Figure 1. Therefore, a shift in the mean to 

an alternate hypothesis of (0.5,0.0) is equidistant to shifts 

with means of (0.0,0.5), (-0.5,0.0) and (0.0,-0.5). If the 

correlation coefficient is not equal to zero then shifts of equal 

distance are represented by concentric ellipses about the mean as 

shown in Figure 2. For example, when the correlation coefficient 

is equal to 0.5, a shift in the mean to an alternate hypothesis 

of (2,1) is equidistant to shifts with means of (1,2), (-1,1), 

(-2,-1), (-1,-2) and (1,-1). Multivariate techniques such as the 

multivariate Shewhart and multivariate cusums detect shifts of 

equal distance equally well regardless of the direction of the 

shift in the mean. Thus, without loss of generality we can 

consider shifts in only one direction in the mean of a single 

quality characteristic and effectively consider shifts in every 

direction in one or more of the quality characteristics. 

The conditions which were considered in the simulation 

study are shown in Table 2. These conditions include an analysis 



21 

Table 1. Distance of the shift in the means of the quality 
characteristics for various correlation coefficients. 

& 

Shift 0.0 0.5 0.9 

(0.0,0.0) 0.0000 0.0000 0.0000 

(0.5,0.0) 0.5000 0.5774 1.1471 

(1.0,0.0) 1.0000 1.1547 2.2942 

(1.5,0.0) 1.5000 1.7321 3.4412 

(2.0,0.0) 2.0000 2.3094 4.5883 

(2.5,0.0) 2.5000 2.8868 5.7354 

(3.0,0.0) 3.0000 3.4(41 6.8825 

(3.5,0.0) 3.5000 4.0415 8.0296 

(4.0,0.0) 4.0000 4.6188 9.1766 



Figure 1: Concentric circles representing equal distances zero correlation. to 
K> 



Figure 2: Concentric ellipses representing equal distances nonzero correlation. to 
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Table 2. Conditions considered in the Monte Carlo simulation. 

Size of Shift Correlation Coefficient Delta 

*1 *2 

O.S 0.0 0.0 0 

1.0 0.0 0.5 1 

1.5 0.0 0.9 2 

2.0 0.0 3 

2.5 0.0 

3.0 0.0 

3.5 0.0 

4.0 0.0 
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of the effect of various amounts of correlation between the 

quality characteristics* several values of 6 in the zeroing out 

rule and a number of alternate hypotheses representing moderate 

to large shifts in the mean values. Various combinations of 

these conditions were considered in the simulation. 

The program used in the simulation is written in 

Fortran/77 code and appears in Appendix A. Table 3 lists the 

primary functions of each of the program routines. Appendix A 

also contains a short program to convert the results of the 

program into a summary file containing the point estimate of the 

mean run length, a 95% confidence interval for the mean run 

length and its standard deviation. 

The results of the simulation study are presented and 

discussed in the next section. This discussion includes both 

tabular and graphic presentation of the data as well as a 

statistical evaluation of the results. 
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Table 3. Description of the program routines. 

Routine Function 

ARL 

HUSUN1 

HDSUN2 

TRPNRM 

UNIF 

DCHISQ 

DNML 

Input program parameters, generate random 
vectors, write results to output file. 

Evaluate data using multivariate cumulative 
sum #1 technique. 

Evaluate data using multivariate cumulative 
sum #2 technique. 

Generates unit normal deviate by Ahrens and 
Dieter composition method. Area under the 
normal curve is divided into 5 different 
areas [7] . 

Generates uniform (0,1) random numbers [7]. 

Computes the cumulative distribution func­
tion for a chi-square random variable in 
double precision [9]. 

Computes the cumulative distribution func­
tion for a normal random variable in double 
precision [9]. 



Chapter 5 

RESULTS AND DISCUSSION 

The purpose of this chapter is to present and discuss the 

results of the Monte Carlo simulation. The results of the Monte 

Carlo simulation are given in tabular form (see Tables 4 - 17) 

and graphical form (see Figures 3 - IS). The statistical 

evaluation of the significance of the results is also presented 

in this chapter (see Tables 18 - 20). 

The actual simulated average run lengths and their 

respective standard deviations are shown in Tables 4 - 17. It 

9 
should be noted that the values of a shown in these tables are 

not the probability of type I error but rather a calibration 

constant used in the simulation to obtain a probability of type I 

error equal to 0.00S under the null hypothesis. 

Figures 3-15 are graphs of the average run length vs. 

the actual shift in the means of the two quality characteristics. 

Each of the points plotted on the graphs represents the average 

number of samples taken to detect a shift in the mean values to 

the indicated alternate hypothesis. These graphs illustrate how 

eaoh of the different control chart methods perform under the 

various oonditions considered both on an individual method by 

method basis and when they are compared to one another. The 

27 
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graphical presentation of the data provides a quick indication of 

the relative efficiency of each of the methods under the 

specified conditions. 

The theoretical run lengths for tvo univariate Shevhart 

charts running simultaneously are presented in Table 4 and 

graphed in Figure 3. The calibration point vas purposely left 

off the graph in order to improve the resolution of the graph. 

The results for the multivariate Shevhart chart are 

presented in Table 5 and graphed in Figure 4. The average run 

lengths were calculated for each of the three correlation 

coefficients and each of the three lines on the graph represent 

one of the coefficients. As the correlation coefficient 

increases in absolute value the multivariate Shevhart method 

responds more quickly to shifts in the mean. 

The theoretical run lengths for the tvo univariate 

cumulative sum charts running simultaneously are presented in 

Table 6 and graphed in Figure 5. The univariate cusums vere 

optimized for the three alternate hypotheses of (1*0)* (2.0) and 

(3,0) using the DARCS program discussed in a previous section. 

The values of h and k for the optimized ousums are included in 

the table. It is interesting to note that the univariate cusum 

optimized for (1,0) has the best run length for a shift in the 

mean from (0,0) to (1,0), the cusum optimized for (2,0) has the 

best run length for a shift in the mean from (0,0) to (2,0) and 

so on. Eaoh line on the graph represents the average run length 
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Table 4. Theoretical average ran lengths for two univariate 
Shewhart charts rnnning simultaneously. 

Average 
Shift Rnn Length 

(0.0,0.0) 200.000 

(0.5,0.0) 140.219 

(1.0,0.0) 43.562 

(1.5,0.0) 15.263 

(2.0,0.0) 6.446 

(2.5,0.0) 3.303 

(3.0,0.0) 2.027 

(3.5,0.0) 1.435 

(4.0,0.0) 1.194 
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Table 5. Theoretical average run lengths for the multivariate 
Shevhart chart vith various correlation coefficients. 

Sl 

Shift 0.0 0.5 0.9 

(0.0.0.0) 200.000 200.000 200.000 

(0.5.0.0) 114.567 98.502 30.652 

(1.0,0.0) 41.091 30.198 4.784 

(1.5.0.0) 15.940 10.799 1.602 

(2.0.0.0) 7.161 4.692 1.065 

(2.5.0.0) 3.716 2.471 1.002 

(3.0.0.0) 2.230 1.580 1.000 

(3.5.0.0) 1.546 1.207 1.000 

(4.0,0.0) 1.224 1.061 1.000 



20 

oa 

96 

84 

72 

60 

48 

36 

24 

12 

O 

MULTIVARIATE SHEWHART 

• 

(0.0) (1.0) (3.0) (4.0) (2.0) 

SHIFT 

!•: Theoretical ARLs multivariate Shewhart various correlation coefficients 

RHO 

O.O 

. _ 0.5 

... 0.9 

w 



33 

Table 6. Theoretical average ran lengtha for two univariate 
cnmnlative ana eharta rnnning simnltaneonxly optinized 
for varioaa alternate hypotheses. 

(1.0) (2,0) (3,0) 
h=4.2 h=2.22 hs1.39 
k=0.4 k=l.00 k-1.50 

Shift 

(0.0,0.0) 200.000 200.000 200.000 

(0.5,0.0) 2 6 . 8 6 6  44.207 63.441 

(1.0,0.0) 8.611 11.179 17.591 

(1.5,0.0) 4.841 4.841 6.396 

(2.0,0.0) 3.470 2.978 3.273 

(2.5,0.0) 2.682 2.089 2.089 

(3.0,0.0) 2.287 1.693 1.594 

(3.5,0.0) 1.990 1.395 1.296 

(4.0,0.0) 1.792 1.196 1.097 
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Figure 5: Theoretical ARLs for combination of two univariate cusums. 
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carve for the cusum optimized for a given alternate hypothesis. 

The simulated rnn lengths for multivariate ousum #1 with p 

= 0.0 and various values of 6 in the zeroing out rule are 
$ 

presented in Table 7. The table includes the values of a which 

were used to calibrate the cusum. The standard deviations of the 

average run lengths are contained in Table 8. The average run 

length curves are presented in Figure 6 and each line on the 

graph represents a different value of 6. The best zeroing out 

rule appears to be when the value of 6 is equal to 0. 

The simulated run lengths for multivariate cusum #2 with p 

• 0.0 and various values of 6 in the zeroing out rule are 
i 

presented in Table 9. The table includes the values of o which 

were used to calibrate the cusum. It should be noted that in 

the case where 8 = 0.0 we were unable to calibrate the cusum to 

200. The largest average run length we were able to obtain under 

the null hypothesis for 6 « 0.0 was 87.233. The standard 

deviations of the average run lengths are contained in Table 10. 

The average run length curves are presented in Figure 7 and each 

line on the graph represents a different value of 6. There 

doesn't appear to be any particular best value of 6 for this 

multivariate cusum method. It looks as though smaller values of 

6 are preferable for smaller shifts and larger values of 6 are 

preferable for larger shifts. This behavior is similar to the 

behavior of the univariate cusum in that the multivariate cusum 

optimized for a specific alternate hypothesis by adjusting the 
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Table 7. Simulated average run lengtha for multivariate cusum 
# 1, p » 0.0, various deltas. 

A 

Shift 0 1 2 3 

(0.0,0.0) 203.885 206.871 203.836 202.950 

(0.5,0.0) 30.983 35.027 46.970 82.226 

(1.0,0.0) 9.671 10.585 12.386 21.002 

(1.5,0.0) 4.937 5.296 5.765 7.759 

(2.0,0.0) 3.149 3.306 3.487 4.042 

(2.5,0.0) 2.248 2.319 2.424 2.578 

(3.0,0.0) 1.739 1.832 1.844 1.892 

(3.5,0.0) 1.430 1.477 1.504 1.472 

(4.0,0.0) 1.223 1.259 1.260 1.247 

» 
a .0035 .0026 .00225 .0031 
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Table 8. Standard deviation of siaalated average rnn lengths 
for aoltivariate cnsuo #1, p « 0.0, various deltas. 

L 

Shift 0 1 2 3 

(0.0,0.0) 24.1363 25.5702 30.0910 15.8033 

(0.5,0.0) 2.3102 2.3909 3.6719 8.6942 

(1.0,0.0) 0.6370 0.5558 0.9251 1.9540 

(1.5,0.0) 0.2991 0.2929 0.2735 0.5483 

(2.0,0.0) 0.1492 0.1361 0.1731 0.2614 

(2.5,0.0) 0.0917 0.1217 0.1234 0.1356 

(3.0,0.0) 0.0852 0.0825 0.0868 0.0847 

(3.5,0.0) 0.0617 0.0618 0.0587 0.0681 

(4.0,0.0) 0.0376 0.0462 0.0398 0.0456 
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Figure 6: Average run length curve multivariate cusum #1 Rho = O.O, various deltas 
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Table 9. Simulated average run lengths for aultivariate en sum 
02, p = 0.0, various deltas. 

L 

Shift 0 1 2 3 

(0.0,0.0) 87.235 202.247 199.883 202.503 

(0.5,0.0) 54.232 90.261 108.495 109.303 

(1.0,0.0) 28.419 25.781 29.764 36.395 

(1.5,0.0) 12.382 9.742 9.866 12.447 

(2.0,0.0) 5.770 4.808 4.633 5.409 

(2.5,0.0) 3.440 2.936 2.816 2.938 

(3.0,0.0) 2.310 2.028 1.970 1.947 

(3.5,0.0) 1.710 1.539 1.513 1.485 

(4.0,0.0) 1.386 1.266 1.246 1.242 

» 
a .001 .0026 .0031 .0039 
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Table 10. Standard deviation of simulated average run lengths 
for multivariate eusum #2, p *= 0.0. various deltas. 

L 

Shift 0 1 2 3 

(0.0,0.0) 5.9003 18.7490 18.0402 16.9295 

(0.5,0.0) 2.8760 8.7364 10.5084 10.2974 

(1.0,0.0) 1.2949 1.9687 3.2316 4.1079 

(1.5,0.0) 0.7576 0.6115 0.7062 1.1114 

(2.0,0.0) 0.2789 0.3309 0.3482 0.4646 

(2.5,0.0) 0.2084 0.2142 0.1746 0.2060 

(3.0,0.0) 0.1095 0.0863 0.0948 0.1287 

(3.5,0.0) 0.0875 0.0779 0.0761 0.0817 

(4.0,0.0) 0.0573 0.0426 0.0500 0.0478 
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value of 6 will achieve the smallest average run length for that 

particular shift in the mean. 

The various control chart procedures are compared to each 

other in the ease where p - 0.0 for each of the values of 6. 

These comparisons are shown in Figures 8 - 11. Each line on these 

figures represents the average run length curve for a given 

method. It should be noted that the univariate cusum on each of 

these charts represents the cusum optimized for an alternate 

hypothesis equal to (6,0) except for the case where 6 = 0.0. 

This chart shows the univariate cusum optimized for an alternate 

hypothesis of (1,0). These figures indicate that regardless of 

the value of 6 the two best methods appear to be the univariate 

cusum and multivariate cusum #1 especially for small to moderate 

shifts in the mean. The methods all appear to perform relatively 

well for large shifts in the mean, although it is difficult to 

distinguish between the lines for the various methods when the 

shift is large. 

The simulated run lengths for multivariate cusum #1 with p 

«= 0.5 and various values of 6 in the zeroing out rule are 
9 

presented in Table 11. The table includes the values of a which 

were used to calibrate the cusum. The standard deviations of the 

average run lengths are contained in Table 12. The average run 

length curves are presented in Figure 12 and each line on the 

graph represents a different value of 6. The best zeroing out 

rule appears to be when the value of 6 is equal to 0. 
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