
REVEALING THE PHYSICS OF GALACTIC WINDS THROUGH
MASSIVELY-PARALLEL HYDRODYNAMICS SIMULATIONS

by

Evan Elizabeth Schneider

Copyright c© Evan Elizabeth Schneider 2017

A Dissertation Submitted to the Faculty of the

DEPARTMENT OF ASTRONOMY

In Partial Fulfillment of the Requirements
For the Degree of

DOCTOR OF PHILOSOPHY
WITH A MAJOR IN ASTRONOMY AND ASTROPHYSICS

In the Graduate College

THE UNIVERSITY OF ARIZONA

2017

2

THE UNIVERSITY OF ARIZONA
GRADUATE COLLEGE

As members of the Dissertation Committee, we certify that we have read the dis-
sertation prepared by Evan Elizabeth Schneider, titled Revealing the Physics of
Galactic Winds through Massively-Parallel Hydrodynamics Simulations and recom-
mend that it be accepted as fulfilling the dissertation requirement for the Degree of
Doctor of Philosophy.

Date: 20 April 2017
Brant Robertson

Date: 20 April 2017
Gurtina Besla

Date: 20 April 2017
Daniel Marrone

Date: 20 April 2017
Philip Pinto

Date: 20 April 2017
Benjamin Weiner

Final approval and acceptance of this dissertation is contingent upon the candidate’s
submission of the final copies of the dissertation to the Graduate College.

I hereby certify that I have read this dissertation prepared under my direction and
recommend that it be accepted as fulfilling the dissertation requirement.

Date: 20 April 2017
Dissertation Director: Brant Robertson

Date: 20 April 2017
Dissertation Director: Gurtina Besla

3

STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for an
advanced degree at the University of Arizona and is deposited in the University
Library to be made available to borrowers under rules of the Library.

Brief quotations from this dissertation are allowable without special permission,
provided that accurate acknowledgment of source is made. Requests for permission
for extended quotation from or reproduction of this manuscript in whole or in part
may be granted by the head of the major department or the Dean of the Graduate
College when in his or her judgment the proposed use of the material is in the
interests of scholarship. In all other instances, however, permission must be obtained
from the author.

SIGNED: Evan Elizabeth Schneider

4

ACKNOWLEDGEMENTS

This thesis would not have been possible without the help and support of many
people, who I am delighted to have the opportunity to thank formally here. First
and foremost, I thank my advisor, Brant Robertson, for your incredible investment
in me and for being my constant champion for the last five years. When I first
walked into your office five years ago, I had never thought I could be a theoretical
astrophysicist or a computational scientist, and now I find I am both. I would also
like to thank those people who have been members of my thesis committee over
the years, including Gurtina Besla, Rachel Bezanson, Dan Marrone, Phil Pinto, and
Ben Weiner, for guiding me through several mentoring meetings that all seemed
to end with the primary takeaway, “Don’t worry so much.” I owe a special thank
you to Gurtina, for giving me countless hours of excellent advice and for being
my “advisor-in-residence” for the past two years. Next, I want to thank the many
friends and colleagues who have made Steward such a wonderful place to work for
the past six years. In particular, thank you to Cameron Hummels, who helped teach
me how to code in the very beginning; to Steph Sallum, who is a great roommate
and a great listener; to Justin Spilker, who is the only reason I come to work some
days; and to Jordan Stone, who deserves thanks for so many things that I couldn’t
possibly list them all here, and I will content myself with simply his creation of the
acronym, Cholla. Another special thank you goes to Rachel Bezanson, for being
not only the best mentor I’ve ever had, but also a fantastic friend, and for teaching
me all that I know about the whiskey with which I will celebrate this achievement.
To my parents, William and Nancy, thank you for always believing in me, teaching
me to value excellence, and challenging me not to settle for “good enough,” but
rather always try to do my best. To my sister, Michael, thank you for reminding me
not to take life too seriously and always making me smile. And last, but certainly
not least, to my wife, Kiera: for being with me this entire time, for supporting me
when I said was going to quit and when I vowed to keep going, and for constantly
reminding me what matters most, I thank you, from the bottom of my heart.

5

DEDICATION

For my wife, Kiera.

6

TABLE OF CONTENTS

LIST OF FIGURES . 9

LIST OF TABLES . 11

ABSTRACT . 12

CHAPTER 1 INTRODUCTION . 13
1.1 Numerical Hydrodynamics in Astrophysics 13

1.1.1 The Importance of Supercomputing 14
1.1.2 Eulerian Versus Lagrangian Methods 16
1.1.3 Finite-Volume Codes: Theoretical Framework 18

1.2 Galactic Winds . 20
1.2.1 The Starburst-Driven Wind Model: Theoretical Perspective . 21
1.2.2 Multiphase Galactic Winds: Observational Perspective 24

CHAPTER 2 CHOLLA: A NEW MASSIVELY-PARALLEL HYDRODY-
NAMICS CODE FOR ASTROPHYSICAL SIMULATION 26
2.1 Introduction . 27
2.2 Hydrodynamics . 30

2.2.1 The CTU Algorithm . 32
2.2.2 Interface Reconstruction . 37
2.2.3 Riemann Solvers . 40

2.3 Code Architecture . 45
2.3.1 Simulation Overview . 45
2.3.2 Memory Structure . 48
2.3.3 The GPU Grid . 50
2.3.4 The GPU Kernels . 52
2.3.5 Time Step Calculation . 54
2.3.6 Subgrid Splitting . 55
2.3.7 MPI Implementation and Scaling 59

2.4 Tests . 65
2.4.1 1D Hydrodynamics . 67
2.4.2 2D Hydrodynamics . 75
2.4.3 3D Hydrodynamics . 81

2.5 New Results for Astrophysical Phenomena: Shockwave-ISM Interac-
tions . 83

TABLE OF CONTENTS – Continued

7

2.5.1 The Simulations . 86
2.5.2 Results . 87

2.6 Conclusions . 92

CHAPTER 3 Hydrodynamical Coupling of Mass and Momentum in Multi-
phase Galactic Winds . 96
3.1 Introduction . 96
3.2 A Multi-Component Wind Model . 101

3.2.1 Hot Wind Component . 102
3.2.2 Cool Cloud Component . 105

3.3 Simulations . 109
3.4 Cool Cloud Evolution . 112

3.4.1 Turbulent Clouds vs Spheres 113
3.4.2 Median Density and Cloud Lifetimes 116

3.5 Phase Structure of the Wind . 118
3.5.1 Density and Temperature Structure 119

3.6 Momentum Coupling . 121
3.6.1 Cool Cloud Entrainment . 121
3.6.2 Integrated Mass and Momentum 125

3.7 Resolution Effects . 130
3.8 Discussion . 135

3.8.1 Cloud structure . 136
3.8.2 Entrainment and Mass Loading 137
3.8.3 Additional Physics . 138
3.8.4 Ram Pressure vs Gravity . 141

3.9 Summary and Conclusions . 142

CHAPTER 4 SUMMARY AND FUTURE PROSPECTS 144
4.0.1 Global Disk Simulations of Galactic Winds 144
4.0.2 Additional Physics in Cholla 145

APPENDIX A RECONSTRUCTION METHODS IN CHOLLA 148
A.0.1 PLMP . 148
A.0.2 PLMC . 150
A.0.3 PPMC . 153
A.0.4 PPMP . 156

APPENDIX B RIEMANN SOLVERS IN CHOLLA 163
B.0.1 The Exact Solver . 163
B.0.2 The Roe Solver . 167

TABLE OF CONTENTS – Continued

8

B.0.3 The HLLC Solver . 171

APPENDIX C THE H CORRECTION . 172

APPENDIX D A SIMPLE INTEGRATION METHOD 174

APPENDIX E DUAL ENERGY IN CHOLLA 176

APPENDIX F OPTICALLY-THIN RADIATIVE COOLING IN CHOLLA . 179
F.0.1 Coupling of Source Terms . 179
F.0.2 Calculating Cooling and Heating Rates 180

REFERENCES . 182

9

LIST OF FIGURES

1.1 Supercomputer and simulation size with time. 15
1.2 Processor speed with time. 16
1.3 Finite-volume cell. 19
1.4 Solution to the Chevalier & Clegg wind model. 22
1.5 Composite image of M82. 24

2.1 Piecewise linear reconstruction. 35
2.2 An example Riemann problem. 41
2.3 Algorithmic procedure of a Cholla simulation. 46
2.4 Cholla memory structure. 51
2.5 Subgrid splitting. 58
2.6 MPI boundaries. 62
2.7 Strong scaling with Cholla . 64
2.8 Weak scaling with Cholla . 66
2.9 The Sod shock tube using PPMP. 68
2.10 The Sod shock tube using PPMC. 69
2.11 The strong shock test. 70
2.12 The Einfeldt strong rarefaction test. 73
2.13 The Shu & Osher shock tube test. 74
2.14 The interacting blast wave test. 75
2.15 The implosion test. 76
2.16 The explosion test. 78
2.17 The Kelvin-Helmholtz instability. 80
2.18 The Noh strong shock test. 82
2.19 Evolution and destruction of an adiabatic cloud. 88
2.20 Mixing time for an adiabatic cloud. 89

3.1 The adiabatic wind model. 103
3.2 The initial conditions for a cloud-wind simulation. 105
3.3 Initial density distribution of a turbulent cloud. 107
3.4 Time series evolution of a turbulent cloud. 114
3.5 Time series evolution of a spherical cloud. 115
3.6 Mass evolution of clouds. 117
3.7 Surface density projections of low-density clouds. 118
3.8 Phase diagrams for a turbulent cloud. 119
3.9 Phase diagrams for low-density clouds. 121

LIST OF FIGURES – Continued

10

3.10 Density-velocity diagrams for a turbulent cloud. 122
3.11 Density-velocity diagrams for clouds vs. spheres. 123
3.12 Density evolution of a turbulent cloud. 126
3.13 Momentum evolution of a turbulent cloud. 128
3.14 Momentum column density of a turbulent cloud. 129
3.15 Resolution comparison for a turbulent cloud. 132
3.16 Mass loss convergence. 133
3.17 Resolution effects on density evolution. 134

B.1 HLLC versus exact Riemann solver. 171

D.1 Simple integrator versus CTU. 175

F.1 Examples of cooling curves. 181

11

LIST OF TABLES

2.1 Notation used in Chapter 2. 33
2.2 Adiabatic cloud simulation parameters. 91

3.1 Radiative cloud simulation parameters. 110

12

ABSTRACT

This thesis documents the hydrodynamics code Cholla and a numerical study of

multiphase galactic winds. Cholla is a massively-parallel, GPU-based code designed

for astrophysical simulations that is freely available to the astrophysics community.

A static-mesh Eulerian code, Cholla is ideally suited to carrying out massive sim-

ulations (> 20483 cells) that require very high resolution. The code incorporates

state-of-the-art hydrodynamics algorithms including third-order spatial reconstruc-

tion, exact and linearized Riemann solvers, and unsplit integration algorithms that

account for transverse fluxes on multidimensional grids. Operator-split radiative

cooling and a dual-energy formalism for high mach number flows are also included.

An extensive test suite demonstrates Cholla’s superior ability to model shocks and

discontinuities, while the GPU-native design makes the code extremely computa-

tionally efficient - speeds of 5-10 million cell updates per GPU-second are typical

on current hardware for 3D simulations with all of the aforementioned physics. The

latter half of this work comprises a comprehensive study of the mixing between a

hot, supernova-driven wind and cooler clouds representative of those observed in

multiphase galactic winds. Both adiabatic and radiatively-cooling clouds are in-

vestigated. The analytic theory of cloud-crushing is applied to the problem, and

adiabatic turbulent clouds are found to be mixed with the hot wind on similar

timescales as the classic spherical case (4-5 tcc) with an appropriate rescaling of the

cloud-crushing time. Radiatively cooling clouds survive considerably longer, and the

differences in evolution between turbulent and spherical clouds cannot be reconciled

with a simple rescaling. The rapid incorporation of low-density material into the

hot wind implies efficient mass-loading of hot phases of galactic winds. At the same

time, the extreme compression of high-density cloud material leads to long-lived but

slow-moving clumps that are unlikely to escape the galaxy.

13

CHAPTER 1

INTRODUCTION

This thesis consists of two parts: the development of the massively-parallel hydro-

dynamics code Cholla, and the use of that code to address a specific problem in the

field of galaxy evolution, namely, the complicated dynamics of multiphase galactic

winds. The motivation behind Cholla’s creation was not to build a code that would

answer a particular question, but rather to make a code that could answer a host of

questions in multiple fields. Similarly, galactic winds are an interesting subject in

their own right, independent of the method used to study them. Therefore, rather

than couch one topic in the context of the other, this introduction will cover the

two topics separately. Section 1.1, numerical hydrodynamics in astrophysics, pro-

vides the background necessary to understand why I created Cholla, as well as the

theoretical framework on which the code was developed. Section 1.2 motivates the

study of multiphase galactic winds I have conducted using Cholla.

1.1 Numerical Hydrodynamics in Astrophysics

Numerical simulations have become a critical tool for modern theoretical astro-

physics research. Simulations can model systems too complex to investigate ana-

lytically, and provide an avenue for experimentation in a field where much of the

physics behind observed phenomena proves impossible to recreate in a laboratory.

In subjects ranging from the evolution of protoplanetary disks to cosmological struc-

ture formation, hydrodynamics codes - those that evolve the fluid equations in one

form or another - have been used to study problems that are analytically intractable.

Owing to their broad applicability, a wide variety of astrophysical hydrodynam-

ics codes have been developed. The smoothed particle hydrodynamics (SPH) (Lucy,

1977; Gingold and Monaghan, 1977) and adaptive mesh refinement (AMR) (Berger

14

and Oliger, 1984; Berger and Colella, 1989) techniques led to the creation of codes

that can simulate astrophysical systems over many orders of magnitude in dynamic

range. As the first generation of codes matured, physics beyond hydrodynamics

was added, including the effects of conduction, radiation, and magnetic fields. Cur-

rent state-of-the-art codes used to model galaxy evolution now typically include a

particle-based gravity solver, a hydrodynamics (or magnetohydrodynamics) integra-

tion algorithm, a method to calculate self-gravity of the gas, a treatment of radiative

cooling, and prescriptions for star formation and stellar feedback (e.g. Kravtsov,

1999; Fryxell et al., 2000; Springel, 2005, 2010a; Bryan et al., 2014; Hopkins, 2015).

1.1.1 The Importance of Supercomputing

The codes described above are necessarily complex, and the hydrodynamics inte-

gration is particularly computationally demanding. Therefore, achieving sufficient

resolution to follow galaxy evolution over cosmic timescales relies heavily on the

increasingly powerful computers available to researchers today. As the number and

power of central processing units (CPUs) in high performance computing clusters

has increased, so too has the size of the astrophysical simulations being run (see Fig-

ure 1.1). Modern hydrodynamics simulations often run on thousands to hundreds

of thousands of CPU cores, meaning even those codes originally designed for serial

CPU architectures must be updated to appropriately utilize parallel systems.

For many years, increasing the power of supercomputers meant increasing the

number of CPU cores available, and increasing the clock speed of those cores. In

the last decade, however, supercomputing has undergone a revolution. The fastest

modern supercomputers gain the bulk of their speed from specialized hardware, or

accelerators, such as the Intel Xeon Phi coprocessor or NVIDIA graphics processing

units (GPUs)1. For example, Titan, the largest open science supercomputer in the

United States, contains over 18,000 NVIDIA GPUs. With careful construction,

codes that take advantage of these accelerators can speed up simulations by orders

of magnitude (see Figure 1.2).

1http://www.top500.org

15

1996 2000 2004 2008 2012 2016
year

10-1

100

101

102

103

104

105

pe
ak

 sp
ee

d
(T

er
aF

LO
PS

)

Figure 1.1: As computational resources have grown and algorithms have improved,
the size of astrophysical simulations has increased. The plot on the left shows
the peak speed of the fastest supercomputer in the world as a function of time,
while the plot on the right shows the size of various astrohpysical hydrodynamics
simulations. Both figures have Moore’s Law plotted as a solid black line; on the left
the doubling time is 14 months, on the right 20 months. As clusters have begun to
incorporate more complex architectures, computational power has been outpacing
simulation size. Right figure from www.illustris-project.org; supercomputing data
from www.top500.org.

16

2008
2009

2010
2011

2012
2013

2014
2015

2016
2017

Release Date

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Th
eo

re
tic

al
Pe

ak
 P

er
fo

rm
an

ce
 (G

FL
OP

S)

Harpertown Westmere

Ivy Bridge
Haswell

Broadwell

C1060

C2075

K20X

K80

P100

Figure 1.2: Theoretical peak performance (double precision) of representative Intel
CPUs (blue) and NVIDIA general-purpose GPUs (green). Data from Intel and
NVIDIA processor specifications.

In order to successfully harness this massive increase in computational power, a

hydrodynamics code must be written with parallelism in mind at every step - simply

porting an existing code designed for CPUs does not typically produce impressive

results. At the time that this thesis work began, no GPU-based code for astrophysics

was publicly available. This lack provided the motivation for the development of

Cholla, an astrophysics code designed to run natively on GPUs. As detailed in

Chapter 2, Cholla was built from the start with the ultimate goal of running on

systems like Titan. Therefore, every design choice took into consideration the chal-

lenge of scaling well to thousands of GPUs - without sacrificing accuracy in the

hydrodynamics algorithms. Given these requirements, a static-mesh, finite-volume

code was a natural choice of architecture, as described in the following section.

1.1.2 Eulerian Versus Lagrangian Methods

Many techniques exist for numerically modeling the compressible fluid equations,

and a full review of computational fluid dynamics is beyond the scope of this work.

However, a brief accounting of popular methods employed in astrophysics is war-

17

ranted. At present, the two most common choices are SPH, a Lagrangian method in

which fluid variables like mass and energy are assigned to particles and evolved in

their own rest-frame, and Eulerian grid codes, which track the flux of fluid quantities

across cell interfaces. Each method has pros and cons. SPH is less susceptible to

round-off errors in high-mach-number flows, naturally yields maximum resolution in

the highest density regions, and more easily preserves hydrostatic equilibrium (see

review by Springel, 2010b). Grid codes model shocks with higher accuracy, conserve

fluxes of fluid variables across the simulation volume, and can be designed to yield

high resolution in any desired region (see review by Teyssier, 2015). Because of

their superior ability in modeling shocks and other discontinuities, Eulerian codes

are often the better choice for resolving hydrodynamic instabilities and simulating

turbulent processes. In addition, their gridded structure makes them a natural fit

for the many-core architecture of GPUs.

In the last several years, a few groups have begun using codes that combine

a Lagrangian and Eulerian approach. These techniques, including moving-mesh

(Springel, 2010a) and meshless-finite-volume (Hopkins, 2015), employ the Riemann

solvers of a grid code (which allows them to correctly model shocks), while also let-

ting the reference frame move with the fluid in Lagrangian fashion. While promising,

these methods involve a high degree of complexity and sructural overhead, making

them more time-consuming to build and their numerical errors more difficult to

quantify. In addition, these codes have been applied to computational problems

that are already being studied by existing SPH or AMR codes. Cholla is designed

to fill an entirely separate niche - the simulation of problems that require very high

resolution at all locations across the volume - making a highly efficient static-mesh

grid code an appropriate choice.

18

1.1.3 Finite-Volume Codes: Theoretical Framework2

Numerical modeling of the fluid equations in a grid code requires a discretization

based on local volume elements, or cells. Within each cell, the conserved fluid

variables of density ρ, momentum density, ρv, and energy density, E, are tracked

over time. The energy density is a combination of the kinetic and internal energies,

E = ρ(1
2
v2 + e), where v is the three-component velocity vector. The compressible

fluid equations can be written in terms of the conserved variables:

δρ

δt
+ ∇ · (ρv) = 0, (1.1)

δ(ρv)

δt
+ ∇ · (ρv ⊗ v + pI) = 0, (1.2)

δE

δt
+ ∇ · (v(E + p)) = 0, (1.3)

with the addition of the pressure, p. (Here I is the identity matrix and ⊗ denotes

the tensor product.) Adding an equation of state creates a closed system that can be

modeled using standard numerical techniques for hyperbolic problems. In Cholla,

we use the ideal gas equation of state, p = ρ(γ− 1)e, where γ is the adiabatic index

of the gas. The adiabatic sound speed, cs, can then be determined from the pressure

and the density, c2
s = γp/ρ.

If the conserved variables are written as a vector, u = [ρ, ρu, ρv, ρw,E]T, and

three flux vectors are defined

F =



ρu

ρu2 + p

ρuv

ρuw

(E + p)u


, G =



ρv

ρuv

ρv2 + p

ρvw

(E + p)v


, and H =



ρw

ρuw

ρvw

ρw2 + p

(E + p)w


, (1.4)

then Equations 1.1 - 1.3 can be combined in a single expression,

δu

δt
+
δF

δx
+
δG

δy
+
δH

δz
= 0. (1.5)

2Material in this section draws from Laney (1998), LeVeque (2002), Stone et al. (2008), and

Toro (2009).

19

Figure 1.3: A single cell in a finite-volume simulation. Average values of the con-
served variables, u are cell-centered, while fluxes are face-centered. This figure is
based on Figure 1 of Stone et al. (2008).

Written in this form, the fluid equations are clearly seen to be conservation laws for

mass, momentum, and energy. The change in any conserved quantity over time is

exactly balanced by the flux of that variable in space (with pressure supplying an

additional force term in the momentum equation and an additional work term in

the energy equation). Thus, a finite-volume method can preserve the total values of

the conserved quantities over time, provided that the flux of a conserved quantity

exiting a cell matches the flux of that conserved quantity entering the next cell. If

this requirement is satisfied, mass, momentum, and energy are conserved over the

entire simulation volume.

Consider a cell centered at a location (i, j, k), as shown in Figure 1.3. The x-

edges of the cell are located at (i− 1
2
, j, k) and (i+ 1

2
, j, k), the y-edges at (i, j− 1

2
, k)

and (i, j + 1
2
, k), and the z-edges at (i, j, k − 1

2
) and (i, j, k + 1

2
). The conserved

variables at a given time t are defined as the volume integral over this cell:

ut(i,j,k) =
1

δxδyδz
×
∫ z+ 1

2

z− 1
2

∫ y+ 1
2

y− 1
2

∫ x+ 1
2

x− 1
2

u(x, y, z, t)dxdydz, (1.6)

where δx, δy, and δz denote the length, width, and height of the cell. Similarly, the

fluxes of the conserved variables can be defined as the integral over a time interval

20

δt and across a given cell face, e.g.

F ∗
i+ 1

2
,j,k

=
1

δyδzδt
×
∫ t+δt

t

∫ z+ 1
2

z− 1
2

∫ y+ 1
2

y− 1
2

F (xi+ 1
2
, y, z, t′)dydzdt′, (1.7)

for the flux at the (i + 1
2
, j, k) interface (see Figure 1.3). Here, the ∗ superscript

denotes an average over the time t+ δt, not the value of the flux at a specific time.

A conservative variable update for the cell from time t to time t + δt can then be

expressed,

ut+δt(i,j,k) = ut(i,j,k) −
δt

δx
(F ∗

i− 1
2
,j,k
− F ∗

i+ 1
2
,j,k

)

− δt

δy
(G∗

i,j− 1
2
,k
−G∗

i,j+ 1
2
,k

)

− δt

δz
(H∗

i,j,k− 1
2
−H∗

i,j,k+ 1
2
),

(1.8)

by applying the divergence theorem to Equation 1.5. The average values of the

conserved variables at the start time, t, are known. (At t = 0 they are the initial

conditions of the simulation.) The key to a highly accurate finite-volume method,

then, is a suitable approximation to the flux integrals over the cell faces. A thorough

description of the methods used in Cholla to calculate these time-averaged fluxes is

presented in Chapter 2, with additional material in Appendices A and B.

1.2 Galactic Winds

If a galaxy undergoes a period of rapid star formation (a starburst), energy input

from stellar processes including stellar winds, radiation, and supernovae can result in

the ejection of large quantities of gas from the galaxy. Similarly, an active galactic

nucleus can inject a large quantity of energy that may also drive gas out of the

galaxy. These outflows are collectively called galactic winds. In this thesis I will

focus solely on the physics of winds driven by stellar feedback, and in particular,

those driven by the injection of energy and momentum from supernovae during a

starburst.

21

1.2.1 The Starburst-Driven Wind Model: Theoretical Perspective

When large numbers of supernovae occur within the interstellar medium (ISM) of a

galaxy on a short timescale, their combined mass and energy deposition can create

a hot region with significantly higher pressure than the surrounding ISM. If enough

energy is deposited, the over-pressurized region will expand into a “superbubble”

until its radius is comparable to the disk scale-height, at which point it will break out

and flow freely into the surrounding halo (see Veilleux et al., 2005, and references

therein). Alternatively, if the ISM is significantly porous, the hot fluid may leak

out into the halo relatively quickly through under-dense regions, without needing

to undergo a breakout (Cooper et al., 2008). Once the hot fluid created by the

supernova ejecta has begun to stream into the halo, it becomes a wind.

Under the assumption that this mass and energy injection is approximately con-

stant for the duration of the starburst, and the resulting wind expansion is approx-

imately spherical, Chevalier and Clegg (1985) found an analytic solution for the

properties of the wind as a function of radius. This solution is based on the fluid

equations expressed with spherical symmetry:

1

r2

d(r2ρvr)

dr
=
Ṁ

V
, (1.9)

ρvr
d(vr)

dr
= −dp

dr
− Ṁ

V
vr, (1.10)

1

r2

d

dr

[
r2ρvr

(
1

2
v2
r +

γ

γ − 1

p

ρ

)]
=
Ė

V
, (1.11)

where r is the radial coordinate, vr is the radial velocity, V is the volume within

the injection region r < Rstarburst, and all other symbols have the same meaning as

in Section 1.1.3. The mass and energy injection rates, Ṁ and Ė, appear as source

terms in the equations. In this model, radiative cooling and gravity are neglected.

Expressed as a function of the Mach number M = vr/cs, the solution is(
3γ + 1/M2

1 + 3γ

)− 3γ+1
5γ+1

(
γ − 1 + 2/M2

1 + γ

) γ+1
2(5γ+1)

=
r

Rstarburst

, (r < Rstarburst) (1.12)

22

0 500 1000 1500 2000
r [pc]

4

2

0

2

4

6

8

log
10

y
log10 M

log10 (u) [km/s]

log10 (P/k) [K/cm3]

log10 (n) [cm-3]

log10 (T) [K]

Figure 1.4: Solutions for the number density (n), radial velocity (u), pressure (P/k),
temperature (T), and mach number (M) are given as a function of radius. These
solutions assume Ṁ = 1 M�/yr and Ė = 1043 erg/s, the values given in the original
Chevalier & Clegg paper solution as a model for the starburst galaxy M82. The
radius of the starburst is R = 300 pc.

within the starburst region where mass and energy are injected, and

M
2

γ−1

(
γ − 1 + 2/M2

1 + γ

) γ+1
2(γ−1)

=

(
r

Rstarburst

)2

, (r > Rstarburst) (1.13)

outside. Figure 1.4 shows an example of this solution for the dimensionless Mach

number as well as a number of physical variables as a function of radius. An impor-

tant feature of the solution is the wind’s transition to supersonic flow at r = Rstarburst,

the edge of the mass and energy injection zone. Such supersonic outflows could po-

tentially transport metal-rich material large distances from the galaxy.

Using stellar population synthesis models like Starburst99, the mass and energy

injection rates due to supernovae (and stellar winds) can be estimated within the

starburst region based on the star formation rate (SFR). For example, for a solar

metallicity starburst, Leitherer et al. (1999) estimate that

Ṁ∗ = 0.26

(
SFR

M� yr−1

)
M� yr−1 (1.14)

23

and

Ė∗ = 7.0× 1041

(
SFR

M� yr−1

)
erg s−1. (1.15)

Here, Ṁ∗ and Ė∗ refer to the mass and energy injection from supernovae and stellar

winds. Additional uncertainty in the wind model arises from the fact that there may

be mass-loading of the hot wind as it heats and incorporates cooler ISM gas, such

that Ṁ = βṀ∗, where β represents the mass-loading factor3. Additionally, some

fraction of the energy deposited by the supernovae may be radiated away by dense

ISM gas, rather than being thermalized. With α representing the fraction of the

injected energy that is thermalized, Ė = αĖ∗. Given these caveats, the estimates

above allow the Chevalier and Clegg (1985) model to be extrapolated to any galaxy

for which there is an estimate of star formation rate and metallicity. Much work

in recent years has gone into observationally constraining the values of α and β

for winds in different galaxies, and determining whether there is a threshold SFR

required to drive a wind (e.g. Heckman et al., 2015).

Within the driving region, the assumption of negligible radiative losses from the

hot wind is reasonable. However, as pointed out by several authors including Wang

(1995), the wind may be susceptible to significant radiative cooling at larger radii,

especially if the values of β and α lead to a strongly mass-loaded wind. This can be

understood as a result of the shape of the radiative cooling curve. At high temper-

atures, cooling of the wind is dominated by brehmsstrahlung, and gets less efficient

as T decreases, such that the ratio of the cooling time tcool to the advection time

tadv ∼ r/vr increases slowly with radius, tcool/tadv ∝ r1/3 (Thompson et al., 2016).

As the wind expands, however, the gas cools adiabatically, and once the temperature

drops below T ≤ 107 K, cooling starts to become more efficient with decreasing T .

As a result, the ratio tcool/tadv begins to decrease with radius, tcool/tadv ∝ r−19/15

(Thompson et al., 2016). Thus, with the right initial conditions within the star-

burst region, winds will cool radiatively at large radii. This effect has recently been

3Note that the mass-loading factor β is also used within the galaxy evolution community to

refer to the ratio of the total mass of the outflow to the star formation rate. That is not how β is

used in this thesis.

24

Figure 1.5: Composite image of starburst galaxy M82 in optical light from the
Hubble Space Telescope (orange/green), infrared light from Spitzer (red), and x-
ray light from the Chandra X-ray Observatory (blue). Image credits: X-ray:
NASA/CXC/JHU/D.Strickland; Optical:NASA/ESA/STScI/AURA/The Hubble
Heritage Team; IR: NASA/JPL-Caltech/UniversityofArizona/C.Engelbracht.

demonstrated in idealized numerical simulations by Scannapieco (2017).

1.2.2 Multiphase Galactic Winds: Observational Perspective

The possibility of efficient radiative cooling as the hot fluid escapes galaxies pro-

vides motivation for a study of winds that contain multiphase material. From a

data-driven perspective, however, a model of starburst-driven winds that includes

multiphase gas has been a necessity quite literally since their discovery. In 1963, the

first observational evidence of a galactic wind in the nearby starburst galaxy M82

was demonstrated through spectacular Hα filaments (Lynds and Sandage, 1963).

In the intervening years, that galaxy has been observed to have outflowing gas in

every phase imaginable, from cold molecular gas (e.g. Leroy et al., 2015) to hot

X-ray plasma (e.g. Strickland and Heckman, 2009). Figure 1.5 shows a composite

image of this iconic starburst galaxy that highlights in red the Hα emission coming

from warm ionized gas, which appears to be closely associated with the soft X-ray

emission, and forms a biconical shell around the volume-filling hot X-ray gas.

25

In addition to observations of nearby galaxies, outflowing material has also been

detected via absorption lines in high-redshift systems, both via stacking (e.g. Weiner

et al., 2009), and in individually detected lensed systems (e.g. Pettini et al., 2000).

The apparent ubiquity of outflows in rapidly star-forming galaxies has led some

authors to posit a threshold star formation rate surface density beyond which outflow

is inevitable (e.g. Heckman et al., 2015). The clear observational evidence for cool,

warm, and hot gas in outflows, combined with the ubiquity of such winds in nature

means that our theory of galaxy formation must somehow incorporate multiphase,

starburst-driven winds. My investigation into the nature of such winds, including

the interactions between different gas phases, comprises Chapter 3 of this thesis.

26

CHAPTER 2

CHOLLA: A NEW MASSIVELY-PARALLEL HYDRODYNAMICS CODE FOR

ASTROPHYSICAL SIMULATION†

We present Cholla (Computational Hydrodynamics On ParaLLel Architectures),

a new three-dimensional hydrodynamics code that harnesses the power of graphics

processing units (GPUs) to accelerate astrophysical simulations. Cholla models the

Euler equations on a static mesh using state-of-the-art techniques, including the

unsplit Corner Transport Upwind (CTU) algorithm, a variety of exact and approxi-

mate Riemann solvers, and multiple spatial reconstruction techniques including the

piecewise parabolic method (PPM). Using GPUs, Cholla evolves the fluid proper-

ties of thousands of cells simultaneously and can update over ten million cells per

GPU-second while using an exact Riemann solver and PPM reconstruction. Owing

to the massively-parallel architecture of GPUs and the design of the Cholla code,

astrophysical simulations with physically interesting grid resolutions (& 2563) can

easily be computed on a single device. We use the Message Passing Interface library

to extend calculations onto multiple devices and demonstrate nearly ideal scaling

beyond 64 GPUs. A suite of test problems highlights the physical accuracy of our

modeling and provides a useful comparison to other codes. We then use Cholla to

simulate the interaction of a shock wave with a gas cloud in the interstellar medium,

showing that the evolution of the cloud is highly dependent on its density structure.

We reconcile the computed mixing time of a turbulent cloud with a realistic den-

sity distribution destroyed by a strong shock with the existing analytic theory for

spherical cloud destruction by describing the system in terms of its median gas

density.

†This chapter has been published previously as Schneider & Robertson, 2015.

27

2.1 Introduction

Over the past fifty years, the field of computational hydrodynamics has grown to

incorporate a wide array of numerical schemes that attempt to model a large range

of astrophysical phenomena. From the pioneering work of Godunov (1959) and

Courant et al. (1967), the sophistication of hydrodynamics solvers has steadily im-

proved. Many astrophysical simulation codes now use high order reconstruction

methods, implement very accurate or exact Riemann solvers, and model additional

physics including gravity, cooling, magnetohydrodynamics, radiative transfer, and

more (e.g. Kravtsov, 1999; Knebe et al., 2001; Fryxell et al., 2000; Teyssier, 2002;

Hayes et al., 2006; Stone et al., 2008; Bryan et al., 2014). While these advanced

techniques result in simulations of unprecedented physical accuracy, they can also

be extremely computationally expensive. Given the detailed and expensive physical

processes currently being modeled, new numerical approaches to modeling Eulerian

hydrodynamics should be considered. This work presents a new, massively-parallel

hydrodynamics code Cholla (Computational Hydrodynamics On ParaLLel Architec-

tures) that leverages Graphics Processing Units (GPUs) to accelerate astrophysical

simulations.

Historically, our ability to numerically model larger and more complex systems

has benefitted from improvements in technology, especially increased storage and

faster clock speeds for central processing units (CPUs). Algorithmic improvements

such as adaptive mesh refinement (e.g., Berger and Oliger, 1984; Berger and Colella,

1989) have had a major impact on the ability of codes to achieve higher resolution,

but much of the basic structure of static mesh grid codes has remained. In the last

decade, computer speed has improved significantly as a result of increased paral-

lelization, and the fastest supercomputers1 now rely on hardware accelerators like

GPUs or Intel Xeon Phi coprocessors to provide the bulk of their computational

power. To leverage the full capabilities of these systems, multi-core CPU chips and

accelerators must be used simultaneously in the context of a single hydrodynamics

1http://www.top500.org

28

code. While similar parallelization and vectorization techniques apply to a variety of

hardware accelerators, Cholla utilizes GPUs to perform all its hydrodynamical cal-

culations. Engineering Cholla to run natively on GPUs allows us to take advantage

of the inherently parallel structure of grid-based Eulerian hydrodynamics schemes,

and enables the substantial computational performance gain demonstrated in this

paper.

Accelerators and other special purpose hardware have been used in astrophysi-

cal simulations for many years (e.g., Sugimoto et al., 1990; Aarseth, 1999; Spurzem,

1999; Portegies Zwart et al., 2004; Harfst et al., 2007; Portegies Zwart and Bédorf,

2014). Early work adapting Eulerian hydrodynamics solvers to the GPU indicated

a promising avenue to accelerate simulations, with developers reporting speedups of

50× or more as compared to CPU-only implementations (e.g., Brandvik and Pul-

lan, 2007; Pang et al., 2010; Bard and Dorelli, 2010; Kestener et al., 2010). These

preliminary efforts clearly illustrated the substantial performance gains that could

be achieved using a single GPU. More recently, a number of multi-device GPU-

based hydrodynamical simulation methods have been presented, including AMR

techniques (Schive et al., 2010; Wang et al., 2010), two dimensional Galerkin ap-

proaches (Chan et al., 2012), Smoothed Particle Hydrodynamics (SPH) codes (San-

dalski, 2012; Domı́nguez et al., 2013), and hybrid schemes (Kulikov, 2014).

While these codes represent substantial advancement, the field of massively-

parallel astrophysical hydrodynamics is still relatively new. All of the aforemen-

tioned methods have been restricted to second-order spatial reconstruction, and

many would require considerable modification to run on a cluster. In contrast, the

hydrodynamics solver implemented in Cholla is among the most complex and phys-

ically accurate of those that have been adapted to GPU hardware. Successfully

implementing such a complex solver in a hybrid environment on cluster scales dis-

plays our ability to merge the state-of-the-art in CPU hydrodynamics with a new

generation of computer hardware.

As is evidenced by the number of CPU codes presented in the literature, room

exists for many different approaches optimized for different purposes. With Cholla,

29

we have built a fast, GPU-accelerated static mesh hydrodynamics module that can

be used efficiently on its own or in conjunction with a variety of additional physics.

Beyond accelerating the hydrodynamics calculation, offloading the work onto the

GPU frees the CPU to perform other tasks. This excess computational capacity

makes Cholla an excellent bedrock for developing complex physical models that

require hydrodynamics.

The large dynamic range of spatial scales in many astrophysical problems requires

simulations with both high resolution and a high level of physical accuracy. The

interaction of a high mach number shock with a gas cloud falls into this category

(Klein et al., 1994a). Using the power of Cholla, we can efficiently run high resolution

simulations of the cloud-shock problem to investigate how cloud density structure

affects the destruction of high-density gas. Given the inhomogeneous nature of gas in

galaxies, our results have wide-ranging implications, from the impact of supernovae

on the gas in their immediate environment to the evolution of dense gas in galactic

outflows.

In the following sections, we fully describe Cholla. The code models solutions to

the equations of hydrodynamics using the Corner Transport Upwind (CTU) algo-

rithm (Colella, 1990; Gardiner and Stone, 2008a), and includes multiple choices for

both interface reconstruction and Riemann solvers. The CTU algorithm is presented

in Section 2.2 along with brief descriptions of the reconstruction methods and Rie-

mann solvers, which are fully documented in the Appendices. The code structure,

including the simulation setup, CUDA functions, optimization strategies necessary

to take advantage of the GPU architecture, and Message Passing Interface (MPI;

Forum, 1994) implementation and scalability, is described in Section 2.3. We then

demonstrate the excellent performance of Cholla on a suite of canonical hydrody-

namics tests in Section 2.4. In Section 2.5, we derive new results describing the

interaction of a high mach number shock with a turbulent gas cloud. We conclude

in Section 2.6.

30

2.2 Hydrodynamics

Hydrodynamics is relevant to many astrophysical processes and represents one of the

most computationally demanding parts of numerical simulations. Creating a fast

hydrodynamics solver is therefore an important step in increasing the resolution and

speed with which astrophysical calculations can be performed. In this section, we

present the equations modeled by Cholla, and then describe the numerical algorithms

used to model them. Cholla includes a variety of reconstruction techniques and

Riemann solvers, each of which is described below.

In differential conservation law form (see, e.g., Toro, 2009), the multi-dimensional

Euler equations can be written:

δρ

δt
+
δ(ρu)

δx
+
δ(ρv)

δy
+
δ(ρw)

δz
= 0, (2.1)

δ(ρu)

δt
+
δ(ρu2 + p)

δx
+
δ(ρuv)

δy
+
δ(ρuw)

δz
= 0, (2.2)

δ(ρv)

δt
+
δ(ρuv)

δx
+
δ(ρv2 + p)

δy
+
δ(ρvw)

δz
= 0, (2.3)

δ(ρw)

δt
+
δ(ρuw)

δx
+
δ(ρvw)

δy
+
δ(ρw2 + p)

δz
= 0, (2.4)

δE

δt
+
δ[u(E + p)]

δx
+
δ[v(E + p)]

δy
+
δ[w(E + p)]

δz
= 0. (2.5)

Here ρ is the mass density, u, v, and w are the x-, y-, and z-components of velocity,

p is the pressure, and E is the total energy per unit volume,

E = ρ

(
1

2
V2 + e

)
, (2.6)

where V = [u, v, w]T is the three-component velocity vector. The total energy

includes the specific internal energy, e, and the specific kinetic energy,

1

2
V2 =

1

2
V ·V =

1

2

(
u2 + v2 + w2

)
. (2.7)

Equation 2.1 describes the conservation of mass, Equations 2.2-2.4 the conservation

of momentum, and Equation 2.5 the conservation of energy. To model solutions to

31

this system of conservation laws, an equation of state is also necessary. We use the

equation of state for an ideal gas,

p = (γ − 1)ρe, (2.8)

where γ is the ratio of specific heats. Incorporating a real gas equation-of-state

model (Colella and Glaz, 1985) would not be incompatible with the structure of

Cholla, though it is beyond the scope of our current work.

The Euler equations can also be written in vector notation. We define the vector

of conserved quantities with components in three Cartesian dimensions,

u = [ρ, ρu, ρv, ρw,E]T (2.9)

including density, the three components of momentum, and total energy. We will

also refer to the vector of primitive variables,

w = [ρ, u, v, w, p]T (2.10)

that includes density, the three components of velocity, and pressure. We define

three flux vectors

f =



ρu

ρu2 + p

ρuv

ρuw

(E + p)u


, g =



ρv

ρuv

ρv2 + p

ρvw

(E + p)v


, and h =



ρw

ρuw

ρvw

ρw2 + p

(E + p)w


. (2.11)

Using these definitions, we can compactly write the three dimensional Euler equa-

tions in the conservative form:

δu

δt
+
δf

δx
+
δg

δy
+
δh

δz
= 0. (2.12)

The Euler equations can also be written using the primitive variables. In one

dimension, the equations can be written as a set of linear hyperbolic equations of

the form
δw

δt
+ A(w)

δw

δx
= 0. (2.13)

32

The matrix A(w) is diagonalizable and can be written

A = RΛL, (2.14)

where R is a matrix of right eigenvectors, Λ is a diagonal matrix of eigenvalues,

and L = R−1 is a matrix of left eigenvectors. The eigenvalues of A are real and

correspond to the speeds at which information propagates for the fluid equations.

If we further define the characteristic variables, ξ, according to

dξ = Ldw, (2.15)

we can write the system a third way:

δξ

δt
+ Λ

δξ

δx
= 0. (2.16)

This description is called the characteristic form of the Euler equations. The char-

acteristic variables are sometimes called wave strengths, because they describe the

magnitude of the jump in the primitive variables across an associated wave. For

an extensive treatment of the Euler equations and related subjects see, e.g., Laney

(1998), LeVeque (2002), and Toro (2009).

2.2.1 The CTU Algorithm

Cholla models the Euler equations using a three-dimensional implementation of the

Corner Transport Upwind (CTU) algorithm optimized for magnetohydrodynamics

(MHD; Colella, 1990; Saltzman, 1994; Gardiner and Stone, 2008a). The six-solve

version of CTU used in Cholla is fully adapted for MHD and documented in both

Gardiner and Stone (2008a) and Stone et al. (2008). We will describe here an

abbreviated version including only the steps relevant for hydrodynamics calculations.

The CTU algorithm is a Godunov-based method. A Godunov scheme uses a

finite-volume approximation to model the Euler equations, evolving average values

of the conserved quantities u in each cell using fluxes calculated at cell interfaces

(Godunov, 1959). In three dimensions, the calculation to update the conserved

33

Table 2.1. Notation used in Chapter 2.

Symbol Definition

un Conserved variable averages at time n

UL, UR Reconstructed boundary values at the left and right of an interface

U∗L, U∗R Initial time-evolved boundary values

F ∗, G∗, H∗ Initial one-dimensional fluxes

U
n+1/2
L , U

n+1/2
R Transverse-flux-evolved boundary values

F n+1/2, Gn+1/2, Hn+1/2 CTU fluxes

un+1 Updated conserved variable averages at time n+ 1

quantities un at timestep n can be written as

un+1
(i,j,k) = un(i,j,k) +

∆t

∆x
[F

n+ 1
2

(i− 1
2
,j,k)
− F n+ 1

2

(i+ 1
2
,j,k)

]

+
∆t

∆y
[G

n+ 1
2

(i,j− 1
2
,k)
−Gn+ 1

2

(i,j+ 1
2
,k)

]

+
∆t

∆z
[H

n+ 1
2

(i,j,k− 1
2

)
−Hn+ 1

2

(i,j,k+ 1
2

)
].

(2.17)

Here the superscript n+1 refers to the next time step, and un+1
i,j,k are the updated val-

ues of the conserved variables. The subscript (i, j, k) refers to the three-dimensional

Cartesian index of the cell. Indices that are displaced by half an integer refer to

interfaces. For example, (i − 1
2
, j, k) is the interface between cell (i − 1, j, k) and

cell (i, j, k). The simulation time step is ∆t, and ∆x, ∆y, and ∆z refer to the cell

widths in each dimension. We use lowercase versions of u and w when referring to a

cell-averaged quantity, and uppercase versions when referring to an estimated value

at a cell edge (e.g., U and W). The fluxes in Equation 2.17 are averages in both

space and time. Table 2.1 summarizes our notation.

When applied to every cell in the grid, Equation 2.17 conserves each of the quan-

tities in u. However, the physical accuracy of a method based on Equation 2.17

depends strongly on how the flux averages are calculated. Many hydrodynamics

codes calculate the fluxes using only one-dimensional information as outlined in

34

the method known as Strang (1968) splitting. While an elegant technique, Strang

splitting may lead to asymmetries in hydrodynamics calculations and is not advan-

tageous for some formulations of MHD (see, e.g., the discussion in Balsara, 2004).

Therefore, we employ instead the unsplit CTU algorithm to improve on the one-

dimensional calculation of fluxes by taking into account transverse fluxes that can

cross cell interfaces in multi-dimensional simulations.

Before beginning a simulation the computational domain and boundaries must

be initialized, as described in Section 2.3. Once the fluid properties on the grid have

been initialized, the first simulation time step, ∆t, is calculated using the equation

∆t = C0
∆x

|u|+ a
, (2.18)

where C0 is the Courant-Friedrichs-Lewy (CFL) number and a is the average sound

speed in the cell. In adiabatic hydrodynamics, the sound speed is a function of

pressure and density

a =
√
γp/ρ, (2.19)

and can be calculated for each cell using the average values of the primitive variables.

Thus, |u|+ a is the maximum wave speed in a cell with respect to the grid.

The minimum value of ∆t across the entire grid is determined and used in the

CTU calculation, constraining the time step for every cell to be equal. In two or three

dimensions, Equation 2.18 is modified such that the minimum required timestep is

computed for each direction in the cell. In three dimensions, this minimization is

computed as

∆t = C0min

(
∆x

|u|+ a
,

∆y

|v|+ a
,

∆z

|w|+ a

)
. (2.20)

With a suitable choice of C0, Equation 2.20 ensures that the Courant condition is

satisfied in all three dimensions. Note that for the six-solve CTU algorithm the CFL

number must be below 0.5 for the solution to remain stable (Gardiner and Stone,

2008a).

Once we have calculated the timestep ∆t we carry out the following procedure:

1. Reconstruct values of the conserved variables on both sides of every interface

using the average value of the conserved quantities in adjacent cells. These re-

35

x = 0

WL

WR

x = 0

WL WR

t

 RW CD SW

W m
L W m

R

ui ui+1

UL,i+ 1
2

UR,i+ 1
2

UR,i� 1
2

UL,i� 1
2

ui�1

Figure 2.1: Average values of the conserved variables, u, are used to reconstruct
boundary values on either side of each interface, UL and UR, shown with circles.
Shown is an example of piecewise linear reconstruction. The reconstructed boundary
values are evolved in time to produce the initial time-evolved boundary values U ∗L
and U ∗R (not shown). These U ∗L and U ∗R values are used as inputs to a Riemann
problem whose solution is used to compute fluxes across cell interfaces.

constructed boundary values, denoted UL and UR, represent an approximation to

the true value of each conserved variable at the interface. For a multi-dimensional

simulation, the reconstruction must be carried out in each dimension separately.

We use additional subscripts to indicate which interface values we are calculating.

For example, the left-hand reconstructed boundary value between cell (i, j, k) and

cell (i+1, j, k) is denoted UL,(i+ 1
2
,j,k), while the right-hand value at that interface

is UR,(i+ 1
2
,j,k). Cholla includes several different options for the interface recon-

struction, which we describe in Section 2.2.2. In order for the CTU algorithm

to be second-order accurate in time, the reconstructed boundary values must

be evolved half a time step before using them to calculate fluxes. The initial

time evolution is considered part of the reconstruction, and is also inherently

one-dimensional. We label the initial time-evolved boundary values U ∗L and U ∗R.

An example of a piecewise-linear reconstruction in the x-direction is shown in

Figure 2.1.

2. Using the initial time-evolved boundary values as inputs, solve a Riemann prob-

lem at each cell interface in each direction. The solution to the Riemann problems

yields a set of one-dimensional fluxes, F ∗, G∗, and H∗, corresponding to the x-,

36

y-, and z-interfaces, respectively. Like the boundary value arrays, the flux arrays

contain five conserved value fluxes for each direction and interface. The Riemann

solvers implemented in Cholla are described in Section 2.2.3.

3. Evolve the initial one-dimensional time-evolved boundary values half a time step

using the transverse fluxes. For example, at the interface between cell (i, j, k)

and cell (i+ 1, j, k) the transverse-flux-evolved boundary values are

U
n+ 1

2

L,(i+ 1
2
,j,k)

= U ∗
L,(i+ 1

2
,j,k)

+
1

2

∆t

∆y
[G∗

(i,j− 1
2
,k)
−G∗

(i,j+ 1
2
,k)

]

+
1

2

∆t

∆z
[H∗

(i,j,k− 1
2

)
−H∗

(i,j,k+ 1
2

)
],

U
n+ 1

2

R,(i+ 1
2
,j,k)

= U ∗
R,(i+ 1

2
,j,k)

+
1

2

∆t

∆y
[G∗

(i+1,j− 1
2
,k)
−G∗

(i+1,j+ 1
2
,k)

]

+
1

2

∆t

∆z
[H∗

(i+1,j,k− 1
2

)
−H∗

(i+1,j,k+ 1
2

)
].

(2.21)

For y and z interfaces, a cyclic permutation is applied. Thus, the x interface states

are evolved using the y and z fluxes, the y interface states are evolved using the

x and z fluxes, and the z interface states are evolved using the x and y fluxes.

This step is only relevant for multidimensional problems. In one dimension, the

CTU algorithm reduces to just the initial reconstruction step, a flux calculation,

and a final conserved quantity update.

4. Use the transverse-flux-evolved boundary values, U
n+ 1

2
L and U

n+ 1
2

R , as inputs

for a new set of Riemann problems. The solution to these Riemann problems

yields the CTU fluxes F n+ 1
2 , Gn+ 1

2 , and Hn+ 1
2 . Each flux is calculated using

a one-dimensional Riemann problem at a single interface, but includes contri-

butions from adjacent perpendicular interfaces as a result of the evolution in

Equation 2.21. The CTU fluxes are second-order accurate in time (Colella, 1990).

5. Use the CTU fluxes to update the conserved quantities in each cell as in Equa-

37

tion 2.17,

un+1
(i,j,k) = un(i,j,k)

+
∆t

∆x
[F

n+ 1
2

(i− 1
2
,j,k)
− F n+ 1

2

(i+ 1
2
,j,k)

]

+
∆t

∆y
[G

n+ 1
2

(i,j− 1
2
,k)
−Gn+ 1

2

(i,j+ 1
2
,k)

]

+
∆t

∆z
[H

n+ 1
2

(i,j,k− 1
2

)
−Hn+ 1

2

(i,j,k+ 1
2

)
].

(2.22)

The updated conserved quantities are used to calculate the next time step ∆tn+1.

6. Repeat the algorithm until the final simulation time is reached.

2.2.2 Interface Reconstruction

Cholla currently implements five methods for cell interface reconstruction. These

include the piecewise constant method (PCM), two versions of the piecewise lin-

ear method (PLM), and two versions of the piecewise parabolic method (PPM).

Differences between the versions of piecewise linear and piecewise parabolic recon-

struction are demonstrated in the tests presented in Section 2.4. Access to multiple

reconstruction options often proves useful, since lower-order methods are faster but

higher-order methods are typically more accurate. Employing different versions of

cell reconstruction also enables the impact of reconstruction on the evolution of a

simulation to be quantified. Here, we give a brief overview of each of the recon-

struction techniques implemented in Cholla . Detailed descriptions of the piecewise

linear and piecewise parabolic options can be found in Appendix A.

Piecewise Constant Reconstruction

The simplest reconstruction technique is the piecewise constant method (Godunov,

1959; Courant et al., 1967). In PCM, the initial time-evolved boundary values U ∗L

and U ∗R are set equal to the cell average quantities on either side of the interface,

i.e.

U ∗
R,(i− 1

2
,j,k)

= un(i,j,k), (2.23)

38

and

U ∗
L,(i+ 1

2
,j,k)

= un(i,j,k). (2.24)

Note that in this notation, the boundary value at the right of the interface is at the

left side of the cell, and vice versa. While the piecewise constant method is generally

too diffusive for practical applications, it has merit for code testing, and is useful as

a comparison to higher order reconstruction techniques.

Piecewise Linear Reconstruction

The second and third reconstruction techniques implemented in Cholla are both

forms of the piecewise linear method, a scheme that is second-order accurate in

space and time (e.g. Toro, 2009). The PLMP reconstruction method detailed below

primarily involves the primitive variables, while the PLMC method subsequently

explicated involves projecting the primitive variables onto wave characteristics.

PLMP follows the method outlined in Chapter 13.4 of Toro (2009). First, the

cell-average values of the primitive variables are used to calculate slopes of each

variable across the left and right interface of each cell. We use the van Leer (1979)

limiter to monotonize the slopes, thereby reducing the likelihood of spurious oscilla-

tions in a numerical solution. The limited slopes are used to calculate reconstructed

values of the primitive variables at the cell interfaces, WL andWR. To convert these

reconstructed boundary values into input states for the Riemann problem, we need

to evolve them by half a time step. For PLMP, we do this by converting primitive

quantities back into conserved variables and calculating the associated fluxes using

Equation 2.11. We use these fluxes to evolve the reconstructed boundary values half

a time step, generating the initial time-evolved boundary states for the first set of

Riemann problems, U ∗L and U ∗R.

The second linear reconstruction technique, PLMC, is based on the method out-

lined in Stone et al. (2008). This reconstruction also uses a linear approximation to

model the distribution of the conserved quantities in each cell, but limits the slopes of

the characteristic variables (rather than the primitive quantities) and evolves the re-

39

constructed boundary values differently. Rather than simply evolving the boundary

values using the associated fluxes as in PLMP, we employ the more sophisticated ap-

proach first described and termed “characteristic tracing” in Colella and Woodward

(1984). We calculate a first approximation to the time-evolved boundary values by

integrating under the linear interpolation function used to calculate WL and WR.

The domain of dependence of the reconstructed boundary value integral is defined

by the minimum (for the left-hand interface) or maximum (for the right-hand inter-

face) wave speed. This integration is then corrected by including the contribution

from each of the other characteristics approaching the interface. Once the correc-

tions have been made, the calculation provides the initial time-evolved boundary

values U ∗L and U ∗R that act as input states for the first set of Riemann problems.

This process is more fully described in Appendix A.

Piecewise Parabolic Reconstruction

The remaining two reconstruction techniques implemented in Cholla are both ver-

sions of the piecewise parabolic method (PPM) originally described in Colella and

Woodward (1984). We call the first method PPMP as it performs the reconstruction

using primitive variables. Our PPMP implementation closely follows the FLASH

code documentation (Fryxell et al., 2000). The second method, abbreviated PPMC,

uses an eigenvalue decomposition to project onto the characteristic variables and is

based on the Athena code documentation (Stone et al., 2008). Each PPM recon-

struction method is described in detail in Appendix A.

The approach to slope limiting differs slightly between the two parabolic re-

construction techniques. PPMP calculates slopes at each interface the same way as

PLMP, using van Leer (1979) limiting in the primitive variables. The slopes are lim-

ited in the characteristic variables for PPMC. In the parabolic methods, slopes are

calculated using a stencil of five cells (two on either side of the cell for which we are

calculating boundary values), which allows us to create a parabolic reconstruction

of the primitive variables. This parabolic reconstruction makes PPM third-order

accurate in space, though it remains only second-order accurate in time (Colella

40

and Woodward, 1984).

Several differences between the two parabolic reconstruction methods warrant

further discussion. PPMP identifies and steepens the slopes near contact disconti-

nuities, which results in a method that is less diffusive for contact waves. Downsides

to contact steepening include the necessity of empirically determined criteria for se-

lecting contact discontinuities and increased oscillatory behavior in the solution near

shocks. In Cholla the ability to turn off contact steepening is retained, allowing an

explicit comparison of results obtained with and without the technique. PPMP also

flattens shocks that have become too narrow to be treated accurately, which reduces

the potential for severe post-shock oscillations. The more diffusive nature of PPMC

renders a comparable correction unnecessary. Because the criteria for detecting a

shock requires information from three cells on either side of an interface, the stencil

for PPMP is larger than for PPMC. Both methods employ the characteristic tracing

method of Colella and Woodward (1984) to translate from boundary extrapolated

values based on the parabolic interpolation to input states for the Riemann problem,

though the methods differ in detail (see Appendix A).

2.2.3 Riemann Solvers

Much effort has been devoted to finding efficient numerical algorithms to solve the

Riemann problem (e.g., Toro, 2009), an initial value problem consisting of two con-

stant states separated by a jump discontinuity. As displayed in Figure 2.2, the

Riemann problem has an analytic solution that enables a numerical model for Eu-

lerian hydrodynamics, as it allows for the calculation of the flux across an interface

separating two initially discontinuous states. While Riemann solvers that calculate

a numerical solution to the exact Riemann problem can be incorporated in hydro-

dynamics codes, the implicit nature of the Riemann solution requires an iterative

step in the exact numerical solver. A large number of Riemann problems must be

solved for every time step in a simulation, and the corresponding computational

cost is substantial. As a result, a variety of approximate Riemann solvers have been

engineered to quickly solve an approximation to the Euler equations at the expense

41

WL

WR

WL WR

t W m
L W m

R

ui ui+1

UL,i+ 1
2

UR,i+ 1
2

UR,i� 1
2

UL,i� 1
2

ui�1

RW

x

D
en
sit
y

x = 0

CD SW

SW
CD

RW

Figure 2.2: An example Riemann problem. Top: Two initial states, WL and WR

are separated by a discontinuity at x = 0. Middle: The solution to this Riemann
problem displays three important features, consisting of a rarefaction wave (RW)
expanding to the left, a contact discontinuity (CD) moving right, and a shock wave
(SW) moving right. Bottom: All three features can be seen in the solution for the
density distribution.

42

of some physical accuracy.

Cholla computes numerical solutions to the Riemann problems on GPUs. Float-

ing point operations are performed very efficiently on a GPU; additional factors like

memory latency and data transfer contribute a larger share of the computational

expense of the method. Thus, adding the extra operations needed for the iterative

procedure in an exact solver versus an approximate one does not impact the perfor-

mance speed of Cholla in the same way as for a CPU-based code. However, there are

certain problems where the extra diffusion in an approximate solver is helpful, for

example to deal with the well known carbuncle instability (Quirk, 1994) that affects

grid-aligned shocks. For this reason, Cholla includes both an exact solver and the

linearized solver first described by Roe (1981) that gives an exact solution to a linear

approximation of the Euler equations. Detailed descriptions of our implementation

of both solvers can be found in Appendix B.

The Exact Solver

Cholla implements the exact Riemann solver presented in Toro (2009). The solver

uses a Newton-Raphson iteration to calculate the pressure of the gas in the inter-

mediate state Wm of the Riemann solution that lies between the initial states on

the left and right of the interface, as shown in Figure 2.2. Once the pressure in

the intermediate state has been found, the exact solution for the primitive variables

between the left and right initial states can be calculated explicitly at any later

point in time. The pressure and velocity are used to determine the solution at the

cell interface, and the values of the primitive variables at that point are used to cal-

culate the fluxes of conserved variables at the interface according to Equation 2.11.

Transverse velocities are passively advected as scalar quantities.

The Toro Riemann solver gives a numerically exact solution to the Riemann

problem in one dimension, and will never return negative densities or pressures if the

input states are physically self-consistent. However, the input states on either side of

the cell interface are estimated quantities, and because of the extrapolation involved

in the reconstruction techniques they could be physically invalid. In these situations,

43

the solver may be presented with an initial value problem without a physically valid

solution. To prevent artificial vacuum or negative pressure solutions owing to such

a circumstance, a pressure floor of 10−20 in the adopted unit scheme is enforced in

Cholla . In practice, when using an exact Riemann solver the pressure floor has

proved necessary only when performing the Noh test described in Section 2.4.

The Roe Solver

One common alternative to calculating an exact solution to the Riemann problem

is to linearize the non-linear conservations laws and solve the resulting approximate

problem exactly. In one dimension, the non-linear Euler equations can be replaced

with the following linearized equation

δu

δt
+ A(ũ)

δu

δx
= 0, (2.25)

where A is a constant Jacobian evaluated at some average state ũ that is a function

of the initial states on either side of the cell interface. This method was employed

by Roe (1981), and Cholla includes a linearized solver very similar to the original

Roe solver.

The first step in the Roe solver is to calculate the average state ũ. This average

state, along with the eigenvalues, λα, and left and right eigenvectors of the Jacobian

A, Lα and Rα, can be used to calculate the Roe fluxes at the interface:

FRoe =
1

2

(
FL + FR +

m∑
α=1

ξα|λα|Rα

)
. (2.26)

Here, α = 1,m are the m characteristics of the solution, and

ξα = Lα · δU (2.27)

are the characteristic variables, determined by projecting the differences in the initial

left and right states, δU = UR−UL, onto the left eigenvectors. FL and FR are fluxes

calculated with the left and right input states using Equation 2.11. Expressions for

the average state, ũ, as well as the eigenvalues and eigenvectors are given in Roe

(1981) and Appendix B. The matrix A is not actually needed in the calculation.

44

As pointed out by Einfeldt et al. (1991), there are certain Riemann problems that

will cause any linearized solver to fail. In these cases, the linearized solution to the

Riemann problem results in negative densities or pressures in the intermediate state

calculated between the left and right input states. Because this intermediate state

is used to calculate the fluxes returned by the solver, these unphysical solutions may

lead to numerical pathologies. A failsafe is needed to deal with the case where the

Roe solver produces negative pressures or densities. Following the method of Stone

et al. (2008), we check the intermediate densities and pressures before returning the

fluxes calculated with the Roe solver. Should any of them be negative, we revert to

using the simpler HLLE Riemann solver, described below.

The HLLE Solver

The HLLE solver is a modification of the HLL solver first described by Harten et al.

(1983) and later modified by Einfeldt (1988). Although the method is extremely

diffusive for contact discontinuities, as demonstrated by Einfeldt et al. (1991) the

HLLE solver is guaranteed to be positively conservative (that is, the density and

internal energy remain positive). The HLLE solver calculates the interface flux

using an average of the left and right state fluxes, together with bounding speeds

comprising the largest and smallest physical signal velocities in the solution to the

exact Riemann problem. If the Roe solver produces negative densities or pressures,

we replace the Roe fluxes with a new numerical flux

FHLLE =
bpFL − bmFR
bp − bm

+
bpbm

bp − bm
δU . (2.28)

The fluxes FL and FR, and the slopes δU are calculated as in the Roe solver. The

signal velocities bp and bm are calculated using the largest and smallest eigenvalues

of the Roe matrix as described in Appendix B. Because the HLLE solver quickly

allows contact discontinuities to diffuse, we do not use it as a standalone Riemann

solver in Cholla.

45

2.3 Code Architecture

Cholla is a grid-based hydrodynamics code that takes advantage of the massively

parallel computing power of GPUs. In order to harness this power, Cholla was

designed with the operation of the GPU in mind. In this section, we describe the

overall structure of Cholla, including optimization strategies necessary to benefit

from the parallel architecture of GPUs. As is standard in GPU programming, we

will use the term “host” to refer to the CPU, and “device” to refer to the GPU.

Cholla consists of a set of C/C++ routines that run on the host plus functions

called kernels that execute on a device. The device kernels and the host functions

that call them are written in CUDA C, an extension to the C language introduced

by NVIDIA2. All of the CUDA functions are contained in a separate hydro module

so that they can be compiled independently with the NVIDIA nvcc compiler. In

addition, we have written a C/C++ version of the hydro module that performs the

same calculations as all of the GPU kernels, so it is possible to run Cholla without

using graphics cards. We use this mode for testing, but it is not recommended for

performance since the structure of the code is optimized for use with GPUs.

2.3.1 Simulation Overview

Before detailing each piece of the code, we give a general overview of the steps

followed by Cholla when a simulation is run. Given the power of a single GPU,

small problems can easily be run on a single host/device pair. For large problems,

Cholla can be run using the MPI library, and we describe our MPI implementation in

Section 2.3.7. If MPI is enabled, the simulation volume will be split into subvolumes

according to the number of processes. Each subvolume will then be treated as a

self-contained simulation volume for the duration of each simulation time step. The

main difference between an MPI and non-MPI simulation is the method for applying

boundary conditions at the end of each time step; we describe that method in

Section 2.3.7.

2http://developer.nvidia.com

46

Initialization

Reconstruct Interfaces

Riemann Solution

CPU

GPU
Transverse flux update

Riemann Solution

Conserved variable update

Set initial values of real cells

Calculate first time step

Calculate next time step

Output

CTU Hydro Module

t = tout

Boundary Conditions
Set values of ghost cells

MPI communications

Figure 2.3: Algorithmic procedure of a Cholla simulation. The initialization and
application of boundary conditions are done on the CPU. The conserved variable
array is passed to the GPU, where the hydro calculation is done. The updated
conserved variables must then be passed back to the CPU after each time step so
that boundary cell information can be exchanged and the data output written (if
necessary).

47

Portions of our algorithm that require information from potentially distant cells

in the global simulation volume must be carried out on the host. The main host

functions set initial conditions, apply boundary conditions, and perform any inter-

process communications. Parts of the calculation that only require information from

nearby cells can be carried out on the device. Because the bulk of the computa-

tional work resides in the CTU calculation that requires a stencil containing only

local cells, essentially all of the hydrodynamical computations are performed on the

GPU.

The steps in the Cholla algorithm are listed below and illustrated in Figure 2.3.

1. Initialize the simulation by setting the values of the conserved fluid quantities for

all cells in the simulation volume, and calculate the first time step.

2. Transfer the array u of conserved variables to the GPU. The conserved vari-

able array contains the values of each conserved quantity for every cell in the

simulation volume.

3. Perform the CTU calculation on the GPU, including updating the conserved

variable array and computing the next time step.

4. Transfer the updated conserved variable array back to the CPU.

5. Apply the boundary conditions. When running an MPI simulation, this step

may require interprocess communication to exchange information for cells at the

edges of subvolumes.

6. Output simulation data if desired.

The initialization of the simulation is carried out on the host. The initialization

includes setting the values of the conserved variables for both the real and the ghost

cells according to the conditions specified in a text input file. Ghost cells are a buffer

of cells added to the boundaries of a simulation volume to calculate fluxes for real

cells near the edges. The number of ghost cells reflects the size of the local stencil

48

used to perform fluid reconstruction. Because updating the ghost cells at each time

step may require information from cells that are not local in memory, the values of

the ghost cells are set on the host before transferring data to the GPU.

Once the simulation volume has been initialized on the CPU, the hydrodynamical

calculation begins. The host copies the conserved variable array onto the device.

Because the GPU has less memory than the CPU, the conserved variable array

associated with a single CPU may be too large to fit into the GPU memory at once.

If so, Cholla uses a series of splitting routines described in Section 2.3.6 to copy

smaller pieces of the simulation onto the GPU and carries out the hydrodynamics

calculations on each subvolume. At the end of the hydro calculation the next time

step is calculated on the device using a GPU-accelerated parallel reduction. The

updated conserved variables and new time step are then transferred back to the

host. The host updates the values of the ghost cells using the newly calculated

values of the real cells, and Steps 2 - 5 repeat until the desired final simulation time

is reached.

After each time step the values of the ghost cells are reset using the newly up-

dated values of the conserved variables. Cholla includes three standard boundary

conditions: periodic, reflective, and transmissive. These can be set in any combina-

tion on any of the borders of the simulation volume. For periodic and transmissive

boundaries, the conserved variable values of each ghost cell are copied from the ap-

propriate real cell. For reflective boundaries we follow the same process but reverse

the sign of the perpendicular component of momentum. Cholla also includes the

capability to define custom boundary conditions, such as the analytic boundaries

specified in the Noh Strong Shock test (see Section 2.4.3). In a simulation performed

using MPI communication, any necessary boundary regions are exchanged between

relevant processes as described in Section 2.3.7.

2.3.2 Memory Structure

The data for a simulation in Cholla are contained in two structures. A header stores

information about the size and shape of the domain, as well as global variables in-

49

cluding the simulation time. A second structure contains the values of the conserved

variables for each cell in the simulation. In an object oriented programming model,

these values would often be stored in memory as an array of structures,

Cell[0].{ρ ρu ρv ρw E},
...

Cell[N − 1].{ρ ρu ρv ρw E},

where N is the total number of cells in the grid. In a CPU-based simulation code,

this configuration can improve the performance of memory accesses.

The object oriented model is intuitive, but the memory structure is not efficient

when implemented on the GPU. On NVIDIA GPUs, calculations are performed si-

multaneously by thousands of individual computational elements called cores, anal-

ogous to but individually much less powerful than a typical CPU core. The set

of instructions carried out on a single GPU core is called a thread. The efficiency

of the GPU comes in part from its ability to efficiently schedule the execution of

millions of threads requested in a single kernel call. The scheduling is organized

by streaming multiprocessors on the device that schedule threads for execution in

groups called warps. Each thread warp performs a given set of operations simulta-

neously in the execution model often referred to as Single Instruction Multiple Data

(SIMD). Given that data operations across cores on the GPU are rapidly executed

in a massively parallel manner via the SIMD approach, hardware timescales such

as the GPU global memory access time can represent a considerable fraction of the

total computational expense of a calculation. Techniques to reduce the expense

of global memory accesses include the organization of data needed by each thread

warp into adjacent regions in physical memory. To facilitate this advantageous data

50

locality, Cholla organizes conserved variables into a structure of arrays:

{ρ0 ... ρN−1},

{ρu0 ... ρuN−1},

{ρv0 ... ρvN−1},

{ρw0 ... ρwN−1},

{E0 ... EN−1}.

The thread warps can retrieve the conserved quantities within this structure of

arrays in global memory with unit stride in memory accesses, reducing collisions in

the access pattern.

The process of initiating a data transfer from the host to the device involves

an associated computational overhead. Limiting the number of transfers required

by the algorithm mitigates this overhead, as hardware latency may cause many

small transfers to take longer than one large transfer. The allocation of a single

structure containing the conserved variable arrays ensures a contiguous data layout

in memory, and limits the required data transfers to two (single transfers to and

from the device).

2.3.3 The GPU Grid

Once the simulation volume has been initialized on the host and the values of the

ghost cells have been set, the array of conserved variables is transferred to global

memory on the GPU. When kernels are then executed on the device, the GPU

launches a grid of thread blocks. The GPU grid and thread block dimensions are

set by the programmer and are application dependent. Cholla typically uses one or

two dimensional grids of one dimensional thread blocks; the latter arrangement is

illustrated in Figure 2.4. We emphasize that the dimensions of the GPU grid are

not constrained to match the dimensions of the simulation, as the location of a cell

in the simulation volume can always be mapped to a unique index within the GPU

grid of thread blocks.

51

GPU Global Memory

each thread processes data for one cell

grid of
thread
blocks

CPU

Block
0,0

Block
1,0

Block
2,0

Block
3,0

Block
0,1

Block
1,1

Block
2,1

Block
3,1

Shared Memory
threads
{0…n}

Figure 2.4: Cholla memory structure. After the conserved variable array is copied
from the CPU into global memory on the GPU, the GPU initializes a grid of one
dimensional thread blocks with set numbers of GPU threads. Each thread then
calculates the information for a single grid cell. All threads can access global mem-
ory, but only threads in the same block have access to the much smaller amount of
per-block shared memory.

52

The dimensions of the GPU grid can affect the efficiency with which the device

performs calculations and dictate the mapping from a real-space cell index to a

thread index. To define the thread index, the CUDA programming model includes

built-in data elements that return specific values for each thread, as shown in the

following pseudo-code:

tid = threadIdx.x + blockIdx.x * blockDim.x.

Here, threadId returns the ID of the thread within the block, blockIdx returns

the ID of the thread block within the grid, and blockDim returns the dimensions of

the block. By combining these pre-defined quantities, a unique global index can be

calculated for each thread. This pseudo-code assumes a one dimensional grid of one

dimensional blocks, but could easily be adjusted to create an equivalent mapping

for two or three dimensional blocks or grids. We use the thread index to assign each

thread the work of computing the conserved variable update for a single cell in the

simulation. For Cholla, we choose a one dimensional block of threads because most

of the kernels are one dimensional in nature. The PPM reconstruction, for example,

requires only a one dimensional stencil and is carried out separately for the x, y, and

z interfaces. Because a new GPU grid with different dimensions can be initiated

every time a device function is called, the thread index calculation and subsequent

mapping to a real cell index must be performed within each GPU kernel. No data

needs to be transferred back to the CPU between kernels, as all information needed

between kernels is stored in the GPU global memory.

2.3.4 The GPU Kernels

Cholla leverages a modular design that enables an easy selection of the reconstruc-

tion method or Riemann solver, and facilitates the incorporation of new features.

Each reconstruction method and Riemann solver is performed through an associ-

ated kernel executed by the GPU. A routine implementing the CTU algorithm calls

these kernels through a wrapper function that segregates CUDA calls from the rest

of the code. This organization allows for a flexible compilation structure in which

53

non-CUDA code (including MPI calls) can be compiled with standard C compilers.

Within the CUDA wrapper for the CTU algorithm, the following steps are followed:

1. Allocate arrays within GPU global memory to hold the conserved variables u, the

initial time-evolved boundary values U ∗, the initial one-dimensional fluxes F ∗,

the transverse-flux-evolved boundary values Un+ 1
2 , and the CTU fluxes F n+ 1

2 .

2. Transfer the conserved variable data from the host to the device and store in the

newly allocated arrays in GPU global memory.

3. Call the reconstruction kernel for each dimension.

4. Call the Riemann solver kernel for each dimension.

5. Call the kernel to perform the transverse flux update (Equation 2.21).

6. Call the Riemann solver kernel for each dimension again.

7. Call the kernel to update the conserved variables and calculate the next time

step (Equation 2.22).

8. Transfer the conserved variable arrays back to the CPU.

Step 1 involves the allocation of memory on the GPU, and it should be noted that the

global GPU memory available is typically small compared with the CPU memory.

Depending on the device, the simulation size, the number of MPI processes, and

the domain decomposition, each process’s conserved variable data may exceed the

available GPU memory. An excess may occur even if the local grid governed by each

process is small (e.g., 1283). When necessary, Cholla uses a set of splitting routines

to divide the simulation volume into more manageable subvolumes that are then

treated according to the steps listed above. Section 2.3.6 describes these splitting

routines in more detail.

The GPU kernel calls in Steps 3-7 resemble traditional C function calls, but

kernels are implemented with additional variables that establish the dimensions of

54

the grid of thread blocks launched by the GPU. For example, the syntax for calling

Cholla’s PPM reconstruction function is:

PPM reconstruction<<<BlocksPerGrid,

ThreadsPerBlock>>>(<function parameters>),

where the triple chevron syntax, <<<,>>>, informs the CUDA-enabled compiler that

this function should be executed on the GPU device. Since the amount of data pro-

cessed at once by the GPU is limited by its available global memory, BlocksPerGrid

can always be set large enough to assign a thread to each cell.

Separate kernels carry out different parts of the CTU algorithm, but each kernel

shares common elements. Every kernel must begin with a calculation of the index

of each thread, as described in Section 2.3.3. Using the appropriate mapping, the

index of each thread of the kernel can be translated to a unique real-space cell index

in the simulation volume. The threads within the kernel then retrieve necessary

cell data from the GPU global memory. For the reconstruction function, these data

would include the values of the conserved variables for the cell assigned to that

thread, as well as those of the nearby cells within the reconstruction stencil. Once

the data have been retrieved, the threads carry out any relevant calculations, and

load the result into the relevant GPU global memory array. Once all of the threads

have finished their calculations the kernel returns, and the process continues through

each of the steps listed above.

2.3.5 Time Step Calculation

The implementation of most kernels described in the previous section (reconstruc-

tion, Riemann solver, and transverse flux update) follows closely the descriptions of

the CTU calculation given in Section 2.2. However, the final conserved variable up-

date kernel in each iteration of the algorithm is extended to include the calculation

of the next simulation time step ∆tn+1 via a parallel reduction operation performed

on the GPU. Reductions on the GPU are a commonly used process, and examples

55

of this operation can be found in e.g., the CUDA toolkit3. We include a brief expla-

nation of our implementation of the parallel reduction operation here as a concrete

example of the advantage of moving a given function from the CPU to the GPU.

Thread blocks on the GPU have a limited amount of “shared memory” that each

thread in the block can access rapidly, as illustrated in Figure 2.4. At the end of

the conserved variable computation, the updated conserved variable data for each

cell are stored in the private register memory assigned to each thread. The updated

values of the conserved variables are used by each thread to calculate the minimum

time step associated with its cell, according to Equation 2.20. The individually

calculated time steps are then loaded into an array the size of the thread block in

shared memory - note that each thread block has its own array. The threads in the

block then perform a tree-based parallel reduction on the time step array, finding

the minimum time step for the entire block. This minimum value is uploaded into

an array in the GPU global memory, and is then passed back to the CPU, where

the final reduction is performed.

Calculating the time step on the GPU achieves a performance gain relative to a

CPU since executing a large number of floating point operations is extremely efficient

on the GPU. The shared memory reduction on the GPU reduces the number of loops

needed on the CPU by a factor of ThreadsPerBlock (typically set to 128 for an

NVIDIA Kepler K20X GPU). For reference, we find the parallel GPU reduction time

step calculation for a 1920× 1080 simulation can achieve a 100× performance gain

relative to a single CPU core depending on the architecture (∼ 1ms vs. ∼ 100ms).

2.3.6 Subgrid Splitting

As mentioned in previous sections, the total amount of memory on a single device

may be quite limited when compared to the memory available on the host. The

memory footprint on the GPU for each cell in the simulation volume is of order 0.5

kilobytes, including conserved variables, interface values, and fluxes. At present, a

typical GPU has only a few gigabytes of global memory, though this number has

3https://developer.nvidia.com/cuda-toolkit

56

been increasing with each new generation of devices. Therefore, current devices

can typically only hold the information for a 3D hydrodynamical simulation of size

∼ 2283. In Cholla, slightly more cells can fit for 1D and 2D simulations owing to

the reduced number of transverse interface states and fluxes that must be stored.

The limited memory resources often require that the simulation volume associated

with a local process may need to be successively subdivided to fit on a GPU. We

term this subdivision process “subgrid splitting”. Similar methods have been used

in CPU-based codes such as HERACLES (González et al., 2007).

In practice, subgrid splitting is typically only needed for multidimensional sim-

ulations or 1D simulations with millions of cells. A description of the 1D subgrid

splitting is provided below as a straightforward example. First, the size of the sim-

ulation volume that will fit on the GPU at once given the global memory available

is calculated and stored in a variable, e.g. MaxVol. The local volume governed

by each local process is further split into subvolumes of size less than or equal to

MaxVol. We refer to these subvolumes as “subgrid blocks”. The CTU calculations

for each subgrid block are performed on the GPU sequentially, including any neces-

sary ghost cells from nearby subvolumes. Memory buffers on the CPU are used to

avoid overwriting grid cells that act as ghost cells for neighboring subgrid blocks.

The procedure of copying data to the GPU, calculating, and transferring data back

to the CPU is repeated until the hydro step for the entire simulation volume has

completed. Because the conserved variables for the simulation are contiguous in

memory on the host, copying them into buffers via memcpy contributes a negligible

amount to the total simulation run time.

To illustrate the subgrid blocking method, Figure 2.5 displays a two-dimensional

grid with an example subgrid blocking by a factor of four. Each of the four subgrid

blocks (red, green, blue, purple) require real cells from adjacent subgrid blocks

to act as subgrid ghost cells to form the full computational stencil for the fluid

reconstruction and CTU calculations (indicated by colored dashed lines). Since these

subgrid blocks also abut either local simulation boundaries between local processes

or global boundaries at the edges of the illustrated region, they also require standard

57

ghost cells (gray regions) to complete their computational stencils. The subgrid

block regions outlined by the dashed lines are transferred sequentially to the GPU

for the CTU calculation, taking care to preserve in memory the subgrid ghost cell

boundary regions between subgrid blocks until the entire local volume has been

processed. The standard ghost cells are updated after the CTU calculation, since

they depend either on communication between MPI processes or the global boundary

conditions of the simulation. Note that Figure 2.5 illustrates a very small grid for

convenience, and the actual subgrid regions of a 2D simulation would be orders of

magnitude larger.

We performed a variety of tests using subgrid blocks of different shapes in order

to determine a method of division that helps minimize GPU communication over-

head. For 2D simulations, splitting the volume into approximately square regions

works well. For 3D simulations, we find that maintaining an aspect ratio that is

approximately even in the y and z directions with a longer aspect ratio in the x-

direction works well. In practice, we keep the aspect ratio even in y and z while

maintaining an aspect ratio in x that is roughly 5 times the geometric mean of the

y- and z-aspect ratios. Memory access overheads can be reduced by first copying

multiple subgrid blocks into buffers on the CPU, and then transferring subarrays

containing individual subgrid blocks to the GPU for computation. Even in simula-

tions where local volumes must be subdivided into subgrid blocks dozens of times

the overhead associated with copying the conserved variables into buffers on the

CPU is insignificant, typically limited to 5% of the total time taken for the CTU

calculation.

Transferring data to and from the GPU at each time step is time consuming, often

taking ∼ 30% of the entire GPU computation time for the hydro module. Therefore,

strategies that reduce the fraction of the simulation volume transferred at each time

step are desirable. For example, simulations that do not require subgrid splitting

might achieve a performance boost by only transferring ghost cells that need to be

updated via MPI. Such a strategy is beyond the scope of the current work, but is

certainly worth exploring in future versions of Cholla.

58

Figure 2.5: The well-known “ghost cell pattern” as applied to the subgrid blocking
algorithm in Cholla . When the total area of a 2D simulation is too large to fit in
global memory on the GPU, the simulation volume must be split into smaller subgrid
blocks for GPU computation of the hydrodynamical calculation. When copying a
subgrid block of the simulation onto the GPU, memory buffers are utilized such that
each subgrid block can be copied to the device and the conserved variables updated
without overwriting real cell data that will be needed as ghost cells for neighboring
subgrid blocks. For this illustration, ghost cells on the global outer boundary of the
simulation are shown in gray. The dashed lines outline the cells needed to perform
the CTU calculation for each colored subgrid block. See e.g., Figure 9 of Kjolstad
and Snir (2010).

59

2.3.7 MPI Implementation and Scaling

The massively parallel algorithm implemented by Cholla can be adapted to execute

on multiple GPUs simultaneously. Cholla can thereby gain a multiplex advantage

beyond the significant computation power afforded by a single GPU. The paralleliza-

tion is implemented using the MPI library. The global simulation volume is decom-

posed into subvolumes, and the subvolumes are each assigned a single MPI process.

In Cholla, each MPI process runs on a single CPU that has a single associated GPU,

such that the number of MPI processes, CPUs, and GPUs are always equal. When

the simulation volume is initialized, each process is assigned its simulation subvol-

ume and surrounding ghost cells. Since the hydrodynamical calculation for every

cell is localized to a finite stencil, only the ghost cells on the boundary of the volume

may require updating from other processes via MPI communication every time step.

Compared with a simulation done on a single CPU/GPU pair, additional overheads

for a multi-process simulation can therefore include MPI communications needed to

exchange information at boundaries and potential inefficiencies in the GPU com-

putation introduced by the domain decomposition. While domain decomposition

influences communications overheads in all MPI-parallelized codes by changing the

surface area-to-volume ratio of computational subvolumes, domain decomposition

additionally affects the performance of a GPU-accelerated code by changing the

ratio of ghost to real cells in memory that must be transferred to the GPU. Since

memory transfers from the CPU to the GPU involve considerable overhead, domain

decompositions that limit the fraction of ghost cells on a local process are favorable.

Cholla therefore allows for two different domain decompositions, described below.

Slab Decomposition

Following the domain decomposition utilized by the Fastest Fourier Transform in

the West discrete Fourier transform library (FFTW; Frigo and Johnson, 2005),

Cholla can use a slab-based decomposition in which the simulation volume is sliced

only in one dimension. In the slab decomposition a maximum of two boundaries

60

may be shared between processes, and because there are limited communications

the slab decomposition proves efficient for simulations run with a small number of

processes. With the addition of more processes the slabs grow narrower, the ratio of

boundary ghost cells to real cells for each subvolume increases rapidly, and the time

required to exchange boundary cells between processes remains nearly constant. Al-

though these features cause a computational inefficiency that continues to degrade

with increasing numbers of processes, Cholla nonetheless includes an optional slab

decomposition for use with limited processes and in conjunction with FFTW.

The division of the simulation volume for Cholla’s slab decomposition is straight-

forward. When the FFTW library slab decomposition is used, the slab width on

each process is optimized for accelerating discrete Fourier transform computations.

Otherwise, the number of cells in the x-dimension spanning the total simulation

volume is divided evenly across the number of processes, and any remaining cells

are split as evenly among the processes as possible. Once the domains have been

assigned, each process initializes the real cells associated with its volume and ex-

changes boundary cells. First, each process posts a receive request for each MPI

boundary. If the process has a global simulation boundary along the x-direction,

it posts either one receive request in the case of reflective, transmissive, or analytic

global boundary conditions, or two in the case of global periodic boundary condi-

tions. Processes that are surrounded by other processes will always have two MPI

boundaries. The processes then send the initialized values of the real cells from

their subvolume that are needed by other processes. While waiting for the cell ex-

change communications to complete, each process computes the cell values on its

non-MPI boundaries (typically the y- and z boundaries). This asynchronous order-

ing of communication and boundary computation minimizes the amount of time the

CPU must sit idle while waiting to receive boundary cell information. Once all the

receives have completed, each process proceeds through the CTU step as though it

were an independent simulation volume. At the end of each time step, boundary

cells must again be exchanged along with the information from each local subvolume

required to determine the global simulation time step.

61

Block Decomposition

In addition to being computationally inefficient, a slab decomposition limits the

total number of processes that can be run as a result of the finite dimensions of the

simulation volume. To improve upon both these factors, Cholla includes a block

decomposition that seeks to minimize the aspect ratios of the simulation subvolume

evolved by each process. For a block decomposition, up to six MPI communications

for cell exchanges may be required per time step. Despite this increased number

of communications, the reduction of the surface area-to-volume ratio of the block

decomposition improves its efficiency beyond that achieved by a slab decomposition

for large numbers of processes.

In the case of a block decomposition the x-, y-, and z-dimensions for each sub-

volume are kept as even as possible. Once a simulation volume is appropriately

divided and local real cells initialized by each process, boundary cells between sub-

volumes must be exchanged. To keep the number of MPI communications to a

maximum of six, the processes exchange boundary cells in a specific order. First,

each process posts a receive request for any MPI boundaries on an x-face. While

waiting for those data to arrive, the processes set x-ghost cells on any non-MPI x

faces. Once the x-boundaries arrive, the processes post receive requests for MPI

boundaries on y-faces, including the corner regions just transferred in the exchange

along the x-direction. While waiting for the y-boundaries to arrive, each process

computes the ghost cell values along non-MPI y-boundaries. By first sending the x-

boundaries, processes can receive information needed for the y-boundary exchange

from diagonally-adjacent processes without directly exchanging information with

those processes. The same procedure is followed for the z-boundaries.

Figure 2.6 illustrates this process for a 2D simulation with periodic boundaries

and a four-process decomposition. Each process first initializes its real cells, rep-

resented by the large colored squares. To perform the hydrodynamical simulation

timestep in parallel across separate processes, each process must receive boundary

ghost cells from the real cells hosted by surrounding processes. The boundary re-

62

1

1

2

2

1

2

1

2

2

2 2

2

1

11

1 Process A Process B

Process C Process D

Figure 2.6: Ghost cell information is exchanged by MPI processes for the case of a
2D simulation with periodic boundaries. The real-cell domain of each of the four
processes is represented by a colored square (A, B, C, and D). Each process needs
information from the other three processes in order to set all of its ghost cells. By
first exchanging x boundaries (represented by the outlined rectangles labeled step
1), then exchanging y boundaries (step 2), the processes are able to access the
needed information without explicitly communicating with every other process. For
example, on step 2, process D receives the red boundary cells from Process A that
it needs to update its corner ghost cells, without ever communicating directly with
process A.

63

gions for each process are outlined in Figure 2.6 and labelled 1 and 2. The processes

first exchange x-boundary information (region 1) via two MPI communications.

Once the x-boundary exchange is complete, y-boundary information (region 2) is

exchanged, including the corner regions received from other processes. The same

procedure is repeated for z-boundaries in a 3D simulation. Following this pattern

keeps the required number of MPI communications to a maximum of six, instead

of the potential twenty-six communications that would be required to separately

exchange each face, edge, and corner boundary region for an interior subvolume

in a 3D simulation. When using the block decomposition with a large number of

GPUs, the MPI communications typically comprise only a few percent of the total

computation time.

We note briefly that the block decomposition implemented in Cholla may also

be adapted to enable the use of Fast Fourier Transform libraries that use a block

decomposition, such as the Parallel FFT package written by Steve Plimpton4.

Scaling

The scalability of the Cholla MPI implementation to more than one GPU warrants

a discussion. To study the scaling of the code, the GPU-accelerated International

Business Machines iDataplex cluster El Gato at the University of Arizona was used.

Using El Gato, we have tested both the strong and weak scaling of Cholla using

up to 64 GPUs. The results are shown in Figures 2.7 and 2.8. For both scaling

tests, a three-dimensional sound wave perturbation problem with periodic bound-

ary conditions and a block decomposition is used to maximize the number of MPI

communications required per timestep. In both the strong and weak scaling tests,

Cholla updates an average of 6.7 × 106 cells per second using the NVIDIA Kepler

K20X GPUs available on El Gato. The 3D sound wave perturbation requires work

to be done by every cell and uses third-order spatial reconstruction and an exact Rie-

mann solver. The test is therefore relatively inefficient. By contrast, on a 2D sound

wave test using second-order spatial reconstruction and a Roe solver, Cholla updates

4http://www.sandia.gov/ sjplimp/docs/fft/README.html

64

Figure 2.7: Strong scaling on a 5123 double precision sound wave perturbation test
with periodic boundaries measured relative to the calculation done on a single GPU
(no MPI). Ideal strong scaling is shown by the dashed one-to-one line. The total
runtime for the simulation remains close to ideal up to 64 processes, with non-ideal
scaling coming primarily from the MPI communications needed to set boundary
conditions. The portion of the code executing on the GPU is incorporated entirely
within the CTU function, shown by the red points. We exclude the time taken to
initialize the grid because the test was short and the initialization was a significant
fraction of the total runtime, and therefore would heavily bias the total runtime
results.

an average of 1.8× 107 cells per second. All tests have been performed using double

precision.

For the strong scaling test, a 5123 grid is evolved for 10 time steps. The timing

results for the total test runtime, the CTU algorithm (performed on the GPU),

and the boundary computation including ghost cell exchange communication are

tracked separately. We exclude the simulation initialization from the runtime, as

it comprises a significant fraction of the runtime for these short tests and obscures

the results. As Figure 2.7 shows, the overall scaling of Cholla is close to ideal, with

65

the CTU step scaling slightly better than ideal beyond 8 processes. The increased

efficiency at 16 processes or more owes to the decomposition decreasing the cells per

process below the number that necessitates subgrid splitting, thereby reducing the

CPU-GPU communications overhead. All of the GPU calculations contained within

the CTU step scale better than ideal at 64 processes. That the boundary condition

computation does not scale as well primarily owes to the reduced number of MPI

communications needed in runs with small numbers of processes compared with

tests utilizing large numbers of processes where every subvolume boundary requires

an MPI communication per timestep. The scaling between an 8 process run and

a 64 process run, both of which require MPI communications for all boundaries, is

close to ideal. We achieve an effective bandwidth for the MPI ghost cell exchange

of 2.4 gigabits per second in all runs.

The weak scaling performance of Cholla is shown in Figure 2.8. A double preci-

sion sound wave perturbation with periodic boundaries is again used, but in this test

the size of the total computational volume is rescaled with the number of processes

to keep the number of cells per process approximately constant at ≈ 3223 (note that

each process uses its own distinct GPU during the simulation). The test is run for

10 time steps. The total runtime efficiency as a function of the number of processes

remains roughly constant beyond a single process. The CTU algorithm comprises

the majority of the computational cost of each timestep, and exhibits nearly perfect

weak scaling. The boundary condition calculation for the serial case does not in-

volve MPI communications and is correspondingly inexpensive when using a single

process. With two or more processes, MPI communications induce an additional

overhead beyond the single process case. However, the weak scaling of the boundary

conditions is reasonably maintained to 64 processes.

2.4 Tests

A large variety of hydrodynamics tests exist in the literature, some of which have

been used for several decades (e.g. Sod, 1978). Their ubiquity makes these canoni-

66

Figure 2.8: Weak scaling performance of Cholla . A double precision sound wave
perturbation test is used, with the total number of cells calculated by each process
is scaled to maintain ≈ 3223 cells for a single process. The test is run for 10 time
steps. The total runtime (blue points) remains roughly constant up to 64 processes,
as does the time taken for the GPU portion of the code (red points). The time taken
for the boundary conditions (purple points) increases at low numbers of processes
as the maximum number of MPI communications increases, but then remains flat
as more processes are added.

67

cal tests an excellent way to compare the performance of Cholla with other codes.

In addition, many tests have been designed to explicitly show the failings of hy-

drodynamics solvers in various environments or highlight the circumstances where

they perform exceptionally well. In choosing the tests shown below, we attempt

to demonstrate the breadth of problems Cholla can simulate. We also demonstrate

the effects of changing reconstruction methods or Riemann solvers, and show differ-

ences in the outcomes of tests where they are relevant. If not otherwise specified,

the following tests were performed using piecewise parabolic reconstruction with

the characteristic variables (PPMC) and an exact Riemann solver. All tests were

performed in double precision on GPUs.

Before delving into the specifics of each test, we make a note about the conver-

gence rate of Cholla. Many shock-capturing methods revert to first order at shocks

(see, e.g., Laney, 1998), so to test the convergence rate of Cholla the smooth per-

turbation test described in Stone et al. (2008) is employed. Both the PPMP and

PPMC implementations in Cholla demonstrate second-order convergence in the L1

error norm out to grid resolutions of 1024 cells.

2.4.1 1D Hydrodynamics

Sod Shock Tube

The Sod problem (Sod, 1978) is often the first test performed by hydrodynamics

codes, and we do not diverge from precedent here. Though the Sod problem is not

a difficult test to run, the solution contains several important fluid features. We

present the test here as an example of the ability of Cholla to resolve both shocks

and contact discontinuities within a narrow region of just a few zones. The initial

conditions are simply a Riemann problem, with density and pressure ρL = PL = 1.0

on the left, ρR = PR = 0.1 on the right, and an initial velocity uL = uR = 0.0.

The initial discontinuity is at position x = 0.5. For this and all of the following one

dimensional tests, orthogonal velocities are set to zero. We use an ideal gas equation

of state with γ = 1.4 for all tests, unless otherwise noted.

68

Figure 2.9: The solution to the Sod shock tube test using PPMP with a resolution
of 100 cells. The exact solution is shown as a line with points from the Cholla sim-
ulation over plotted. Features seen in the density plot include a rarefaction wave
expanding from the initial discontinuity at x = 0.5, a rightward moving contact
discontinuity at x ≈ 0.7, and a rightward moving shock at x ≈ 0.85.

69

Figure 2.10: The solution to the Sod shock tube test using PPMC with a resolution
of 100 cells. The exact solution is shown as a line with points from the Cholla sim-
ulation over plotted. The same fluid features are seen as in Figure 2.9, with the
contact discontinuity slightly less narrowly resolved.

70

Figure 2.11: Numerical solution to the strong shock test at time t = 0.2 using PPMP
(left) and PPMC (right) with a resolution of 100 cells, as compared to the exact
solution shown by the solid line. The detailed initial conditions are described in
the text. The contact discontinuity is better resolved with PPMP, but there fewer
oscillations in the solution calculated with PPMC.

The test is computed on a grid of 100 cells until a final time of t = 0.2. By that

time a shock, a contact discontinuity, and a rarefaction fan have formed and spread

enough to be clearly visible as seen in Figures 2.9 and 2.10. As described in Section

2.2.2, Cholla has two versions of piecewise parabolic interface reconstruction. PPMP

follows the FLASH code documentation (Fryxell et al., 2000) and includes contact

discontinuity steepening and shock flattening, while PPMC is based on the Athena

code documentation (Stone et al., 2008) and reconstructs the interface values using

characteristics without explicit steeping or flattening. As can be seen in the density

plot, the contact discontinuity is resolved over just two zones using PPMP, and over

three to four zones using PPMC. Because of its explicit treatment of contacts, the

PPMP method is slightly better at resolving contact discontinuities, but is also more

susceptible to nonphysical oscillations as demonstrated in later tests.

71

Strong Shock Test

The strong shock test (Fryxell et al., 2000) resembles the Sod shock tube, but is

more discriminating owing to the much more severe differences between the left and

right initial states. This test starts with an initial discontinuity at x = 0.5, with

left and right densities ρL = 10.0 and ρR = 1.0. Initial pressures are PL = 100 and

PR = 1.0. The initial velocities are set to zero, as in the Sod test. The problem is

calculated on a grid of 100 cells, and the resulting density in the numerical solution

using both PPMP and PPMC is shown at time t = 0.07 in Figure 2.11.

As can be seen in Figure 2.11, both PPMP and PPMC do a decent job reproduc-

ing the exact solution on this difficult problem. However, the differences between the

two reconstruction methods have more discernible effects in this test. The contact

discontinuity at x = 0.75 is better resolved with PPMP, but the solution is more

oscillatory in the region between the contact discontinuity and the tail of the rarefac-

tion fan. In constructing the linear slopes across interfaces, both PPMP and PPMC

use limiters that are designed to be total variation diminishing (TVD). However,

the third-order reconstruction leads to added complications (Colella and Woodward,

1984). Despite attempts to preserve monotonicity (see Appendix A), problems with

strong shocks are observed to cause oscillations in both methods. Due to its more

diffusive nature, we find that PPMC is less susceptible to oscillations in regions with

strong density and pressure contrasts. The inclusion of contact discontinuity steep-

ening in PPMP keeps contacts sharp but tends to exacerbate the oscillations. The

discontinuity detection relies on a number of heuristically determined constants, and

the resulting slopes are not always TVD. The oscillations present in the upper panel

of Figure 2.11 can be significantly reduced by lowering the value of the constant that

determines whether a zone contains a density discontinuity or a shock (see Equa-

tion A.36). This constant is labeled “K0” in Colella and Woodward 1984, not to be

confused with “K”, the coefficient used in their artificial dissipation scheme. When

the discontinuity detection in PPMP is turned off entirely (equivalent to setting

K0 = 0) the two methods produce very similar results on the strong shock test.

72

Strong Rarefaction Test

The strong rarefaction test, or 123 problem, was originally used by Einfeldt et al.

(1991) to illustrate a scenario that causes a subset of approximate Riemann solvers

to fail. Because the solution contains a region where the energy is largely kinetic

and the pressure is close to vacuum, the Roe solver (or any other linearized solver)

will produce negative densities or pressures in the numerical solution (Einfeldt et al.,

1991). The initial conditions consist of a fluid with constant density and pressure

but opposite receding velocity at the center. Specifically, we set ρL = ρR = 1.0,

PL = PR = 0.4, uL = −2.0, and uR = 2.0. In Figure 2.12, we show the results

of this test on a grid of 128 cells at time t = 0.15 using PPMP reconstruction and

the exact solver. This test is not a challenge using the exact solver, but without

modification the Roe solver would fail on this problem. For this reason, we test the

density and pressure produced in the solution by the Roe solver and revert to the

HLLE solver if necessary. With that fix we can run the problem with either solver,

and in fact the HLLE fluxes are only needed on the first step of the simulation.

Shu and Osher Shocktube

The Shu-Osher shocktube test shows the tendency of PPM to cut off maxima in

smoothly varying problems as a result of the slope limiters imposed in the recon-

struction method (Shu and Osher, 1989). The test consists of a strong shockwave

propagating into a region with a sinusoidally varying density. The initial conditions

are ρL = 3.857143, uL = 2.629369, and pL = 10.3333; ρR = 1 + 0.2sin(5πx), uR = 0,

and pR = 1.0. We run the problem on the domain x = [−1, 1] with the initial

discontinuity at x = −0.8. The results of the test using both 200 cells and 800 cells

are shown in Figure 2.13. As can be seen, the low resolution solution does lose some

of the amplitude of the peaks. Using newer versions of the limiting functions can

help alleviate this problem (Colella and Sekora, 2008; Stone et al., 2008), although

we have not yet implemented these limiters in Cholla.

73

Figure 2.12: Numerical solution to the Einfeldt strong rarefaction test at t = 0.07
using PPMP and the exact Riemann solver with a resolution of 128 cells. The exact
solution is shown as a line, with the solution from Cholla over plotted. This test
will cause linearized solvers to fail without modification.

74

Figure 2.13: Numerical solution to the Shu & Osher shock tube problem. A low
resolution solution with 200 cells (points) is plotted over a high resolution solution
with 800 cells (line). This test shows the result when PPM limiters cut off maxima
in low resolution models of smoothly varying solutions.

Interacting Blast Waves

Originally described in Colella and Woodward (1984), the interacting blast wave test

helps quantify the behavior of a code near strong shocks and contact discontinuities.

The test consists of a medium with initially constant density ρ = 1.0, with γ = 1.4

on the domain x = [0, 1]. Reflecting boundary conditions are used. Two shocks

are initialized on either side of the domain, with p = 1000 for x < 0.1, p = 100

for x > 0.9, and p = 0.01 in between. The problem is run until time t = 0.038,

at which point the shocks and rarefactions in the initial solution have interacted

multiple times.

We show plots of the density computed with both PPMP and PPMC in Fig-

ure 2.14. We plot a low resolution solution with 400 grid cells over a high resolution

reference solution computed with 9600 cells. As can be seen in the figure, PPMP

does an excellent job keeping the contact discontinuities at x = 0.6 and x = 0.8

contained within just two zones, as compared to the solution computed with PPMC

in which the contacts are smeared over many cells. In addition, PPMC tends to

more severely cut off the maximum at x = 0.75, while PPMP does a decent job

75

Figure 2.14: Numerical solution for the interacting blast wave test using PPMP
(top) and PPMC (bottom) with a resolution of 400 cells, plotted over a reference
solution with 9600 cells. This solution is shown at t = 0.038, when the original
shocks and rarefactions have interacted several times. The test was designed to
capture a code’s ability to maintain narrow features.

of keeping the full height although the peak is slightly offset. Both reconstruction

techniques do a good job reproducing the shocks and the rarefaction fan between

x = 0.65 and x = 0.7.

2.4.2 2D Hydrodynamics

Implosion Test

The implosion test is a converging shock problem first presented in Hui et al. (1999).

The version presented here is described in Liska and Wendroff (2003a), and begins

with a square region of high density and pressure containing a diamond-shaped

region of low density and pressure. These initial conditions evoke the traditional

Sod shock tube problem extended to two dimensions, but inclined to the grid by

45 degrees rather than aligned as in the one dimensional case. As the test begins

material moves inward rapidly toward the center, leading to an implosion. When

run for a short amount of time, this test demonstrates the ability of a code to resolve

contact discontinuities and other fluid features for a non-grid aligned shock tube.

76

Figure 2.15: Numerical solutions for an implosion test. Top Left: The 400 × 400
implosion test at t = 0.045; 31 density contours from 0.35 to 1.1 are overlaid on a
color-scale pressure map, with only the inner region of the computational domain
shown, x = [0, 0.22] and y = [0, 0.22]. Top Right: The same test at t = 2.5; 36
density contours from 0.125 to 1 are overlaid on a color-scale pressure map. Bottom:
A 4096× 4096 version of the implosion test at t = 2.5. The same contour levels are
drawn.

77

When run for enough time to evolve well past the initial shock tube solution, the

test illustrates the symmetry (or lack thereof) of a code.

Figure 2.15 shows the results of the implosion test run with PPMC and an

exact solver at an early time t = 0.045 and a later time t = 2.5. The problem

was run on a 400 × 400 grid with a domain x = [0, 0.3], y = [0, 0.3] and reflecting

boundary conditions at every boundary, comprising the upper right quadrant of

the axisymmetric test described above. The initial density and pressure within the

diamond-shaped region are ρ = 0.125 and p = 0.14, while outside the density and

pressure are ρ = 1.0 and p = 1.0. Initial velocities are zero, as in the Sod test.

A discontinuous interface is located along the diagonal running from (0.15, 0) to

(0, 0.15). In the upper panel of Figure 2.15 a rarefaction fan can be seen expanding

outward from this interface. As the upper panel shows, Cholla does an excellent job

resolving the contact at early times, as can be seen along the diagonal from (0, 0.1)

to (0.1, 0).

At the later time a jet has appeared in the solution. The production of the jet

is a direct result of ability to preserve symmetry in the Cholla solution to numerical

accuracy. Liska and Wendroff (2003a) demonstrated that codes that employ non-

symmetry preserving methods like Strang splitting may fail to produce the jet-like

feature. The fact that this test is so sensitive to the symmetry of the problem makes

it useful for diagnosing potential coding errors, but the test also demonstrates the

extent to which a non-symmetric algorithm can impact the physical accuracy of

the result. As this test shows, relatively large-scale features in the solution can be

completely lost if a code fails to maintain a sufficient level of symmetric accuracy.

The bottom panel of Figure 2.15 shows the results of this test recomputed at a

much higher resolution of 4096× 4096. The same large-scale features are apparent

in the solution, but as expected the small-scale density perturbations and shape

of the jet have clearly not converged. However, this high resolution test serves as

further evidence of the ability of Cholla to preserve axisymmetry even in a very

difficult problem. At this extreme resolution, the code must perform over 200, 000

time steps and more than 3×1012 cell updates to reach time t = 2.5. At that point,

78

Figure 2.16: Numerical solution to the 2D explosion test at t = 3.2 using PLMP
(left) and PPMP (right), both at a resolution of 400× 400. We show a color map of
the pressure overlaid by 27 density contours, from 0.08 to 0.21 with step 0.005. The
lower order reconstruction method is more diffusive for the contact discontinuity, but
is less susceptible to the instability that causes the contact interface to be unstable.

the results are still exactly symmetric (to floating-point precision), demonstrating

that symmetry preservation in Cholla is a robust feature of the code.

Explosion Test

The explosion test, also from Liska and Wendroff (2003a), is designed to test the

evolution of an unstable contact discontinuity and is highly sensitive to numerical

noise in the initial conditions. This noise seeds an instability that grows as the

solution evolves. The test starts with a domain x = [0, 1.5], y = [0, 1.5] that contains

a circularly symmetric region of high density and pressure, with ρ = 1 and p = 1

inside a circle with radius r = 0.4. Reflecting inner boundaries and transmissive

outer boundaries are used. Outside the circle the density and pressure are set to

ρ = 0.125 and p = 0.1. The initial velocities are zero. Because the problem is

sensitive to initial perturbations at the interface, the density and pressure for cells

are area-weighted at the boundary. For each cell on the boundary of the circle the

percentage of the area inside the radial boundary is computed, and the initial cell

data weighted appropriately.

The test problem is performed on a grid of 400×400 cells, and Figure 2.16 shows

79

the result of the calculation using PLMP and PPMP at t = 3.2. As expected, the

higher order reconstruction method does a better job preserving the narrow structure

of the contact, but is also more susceptible to structure along the interface as the

instability develops. Thus, as the problem progresses, the lower order more diffusive

method may result in a cleaner solution. We note that both methods preserve the

exact symmetry of the problem, provided the initial conditions are symmetric.

Kelvin-Helmholtz Instability

A Kelvin-Helmholtz instability test demonstrates the extent to which a hydrodynam-

ics code resolves mixing caused by shear flows. In this test, two fluids at different

densities flow past each other and characteristic eddies appear and grow at the in-

terface between the fluids. The growth of the eddies in the linear regime can be

analytically described (Chandrasekhar, 1961) and depends on properties of the fluid

and the interface itself. At a discontinuous interface, small eddies will develop first

at the grid scale of the simulation, and these will gradually grow and combine into

larger eddies as shown in Figure 2.17.

The exact nature of the instability depends sensitively on the resolution and

initial conditions of the test (e.g., Robertson et al., 2010). The test shown in Figure

2.17 was run on a 1920 × 1080 grid, with a domain x = [0, 1], y = [0, 0.5625] in

order to maintain square cells. The simulation initial conditions include a dense

fluid with density ρ = 2.0 in the middle third of the box, surrounded by a less

dense fluid with density ρ = 1.0 in the outer thirds. The denser fluid has a velocity

u = −0.5, and the less dense fluid has a velocity u = 0.5; the y-velocities are

initially v = 0. The entire simulation volume is initialized in pressure equilibrium

with p = 2.5. A small-amplitude perturbation is added to the x- and y-velocities of

every cell in the grid, in proportion to the x-position following u = u+ 0.01sin(2πx)

and v = v + 0.01sin(2πx). The simulation is evolved to t = 1.0, by which time the

growth of the eddies has entered the non-linear regime.

As the eddies grow, more mixing between the high density and low density

material occurs. Resolving this mixing is an important task for a hydrodynamics

80

Figure 2.17: Snapshots from a 2D Kelvin-Helmholtz instability test on a 1920 x
1080 grid at t = 0.4, 0.7, and 1.0. The eddies at the discontinuous interface start
out at the resolution scale of the simulation and grow in a predictable manner until
they enter a non-linear regime.

81

code, as the amount of mixing can have a significant impact on broad features in

the simulation outcome. The level of mixing tends to increase with resolution as

well as with higher order reconstruction techniques. Therefore, Kelvin-Helmholtz

instabilities highlight the importance of having an efficient high order reconstruction

method and a fast code. As expected for a high resolution grid code with a high

order reconstruction method, Cholla does an excellent job of resolving the shear

mixing.

2.4.3 3D Hydrodynamics

Noh’s Strong Shock

The Noh strong shock test, originally described in one dimension by Noh (1987),

demonstrates how well a code can track a strong, high mach number shock. This

test is considered difficult to perform in either two or three dimensions, as many

hydrodynamics codes cannot run the test accurately and some fail completely (Liska

and Wendroff, 2003a). The test starts with a constant density of ρ0 = 1.0 throughout

the grid, with zero pressure and constant velocity |V| = 1.0 toward the origin. For

this test, the adiabatic index is set to γ = 5
3
. These initial conditions result in a

formally infinite strength shock reflecting outward from the origin with spherical

symmetry. Cholla cannot be run with zero pressure, so we set the initial pressure

to a low number, p0 = 10−6, but we note that the results are relatively insensitive

to the initial pressures below p0 ∼ 10−3.

The Noh test is initialized in an octant on the domain [0, 1] with reflecting inner

boundaries. The outer boundaries are set according to the analytic solution for the

density and energy, which in two or three dimensions is

ρ(t) = ρ0

(
1 +

t

r

)n−1

,

where r is the radius in polar or spherical coordinates, and n is the dimensionality

of the problem. The momentum follows from the velocity and the solution for the

82

Figure 2.18: Numerical solution of the Noh strong shock test at t = 2.0 on a 2003

grid. These figures show an xy slice through the z = 0 plane. 31 density contours
from 4 to 64 are overlaid on a color-scale density map. Left: With h correction.
Right: Without h correction.

density, and the total energy is set to

E(t) =
p0

γ − 1
+ 0.5ρ(t).

We evolve the solution to t = 2.0, by which time the shock has propagated through

more than half of the computational domain. The density immediately in front

of the shock as well as the density of the post shock gas can also be calculated

analytically. In the 3D case, the gas immediately before the shock has a density of

ρ = 16, and the post-shock gas has a corresponding density of ρ = 64.

Running the Noh test on a Cartesian grid creates strong, grid-aligned shocks

that provoke a behavior in the numerical solution known as the carbuncle instability.

The carbuncle instability arises as a result of oscillatory crossflow solutions to the

Riemann problem near such shocks (Quirk, 1994). This problem is addressed by

implementing a form of the H correction, as described in Sanders et al. (1998) and

detailed in Appendix C. By incorporating information about the fastest transverse

wave speeds, the H correction adds dissipation to the 1D fluxes calculated by the

Roe Riemann solver that reduces the carbuncle strength.

The result of the Noh test using PPMC with and without the H correction can

be seen in Figure 2.18. Without the H correction, the solution suffers from strong

83

oscillatory behavior, particularly along the edges where the shock is aligned with

the grid. In the version with the H correction applied, the unstable behavior along

the axes is effectively absent. The region near the origin where the density dips

down is a density error known as “wall heating” and is not related to the carbuncle

instability. Wall heating is the feature that the 1D Noh test was originally designed

to demonstrate. The slight noise along the shock front is a result of the strength of

the shock, and is similar to the minor oscillations seen in the 1D strong shock test.

We note that implementing the H correction increases the stencil required for CTU.

Because the current version of Cholla is designed to accommodate a maximum of

four ghost cells, we currently implement the H correction only with PPMC or lower-

order reconstruction methods.

2.5 New Results for Astrophysical Phenomena: Shockwave-ISM Inter-

actions

We now showcase the power of Cholla in an astrophysical context by simulating the

interaction of supernova blast waves with clouds in the interstellar medium (ISM).

Advancing theoretical understanding of the conditions in the ISM and the effects of

supernova feedback is an active area of research (e.g. Agertz et al., 2013; Kim and

Ostriker, 2014; Martizzi et al., 2014). Stellar feedback is thought to affect the evolu-

tion of galaxies on large scales by generating outflows and regulating star formation

rates, but the scales on which this feedback couples to the ISM are unresolved in

large cosmological simulations (Martin, 1999; Mac Low and Klessen, 2004). Using

high resolution methods to constrain the physics of the ISM on sub-parsec scales is

thus critical to improving the subgrid prescriptions applied in simulations of galaxy

formation. In addition, simulating the ISM on smaller scales provides high-resolution

numerical results that can be compared to observations of gas within our galaxy.

The superior shock-capturing abilities of grid-based hydrodynamic codes enables

them to serve as an important tool for simulating the types of high-mach number

shocks observed in star-forming regions of the ISM. In addition, simulating the inter-

84

action of these shocks with gas clouds benefits from high-order spatial reconstruction

techniques that accurately trace the hydrodynamic instabilities that develop in ISM

gas. Fast, physically accurate codes like Cholla are therefore well-suited for simu-

lating problems like shockwave-ISM interactions.

Theoretical work describing the interaction between shocks and gas clouds has

a long history extending back at least to the calculations of McKee and Cowie

(1975). In order to treat the problem analytically, these authors presented early

computations of a high mach number, planar shock hitting a spherical cloud. Using

this simple setup, the speed of the shock within the cloud, vcs, can be calculated using

only the density contrast between the cloud and the ambient medium, χ = ncl/nism,

and the speed of the shock in the ambient medium, vs, as follows,

vcs = χ−
1
2vs. (2.29)

Klein et al. (1994a) carried out a formative numerical study of the cloud-shock

problem, in which they defined a characteristic timescale for the evolution of the

cloud. This “cloud crushing time”, tcc, corresponds roughly to the internal shock

crossing time, i.e. tcc = rcl/vcs. Using Equation 2.29, the cloud crushing time can

be related to the radius of the cloud, rcl, the density contrast χ, and vs, via

tcc = rclχ
1
2/vs. (2.30)

Using this characteristic timescale, various stages of the cloud’s evolution can

be described. The mixing time of dense cloud gas and the ambient medium holds

interest for both quantifying the impact of supernovae on their immediate environ-

ments and for the survival time of dense gas in galactic outflows. The shocked cloud

experiences various hydrodynamic instabilities that cause its destruction, most im-

portantly the Kelvin-Helmholtz instability (KHI). The long wavelength modes of

the KHI tend to break the cloud apart, while the shorter wavelength modes mix

cloud material with the surrounding medium. Using 2D adiabatic simulations with

density contrasts in the range 10 < χ < 100, Klein et al. (1994a) demonstrated a

spherical cloud is destroyed by large-scale instabilities in tdest ' 3.5tcc, where the

85

destruction time, tdest, is defined as the time it takes for the mass in the core of

the cloud to be reduced to a fraction 1/e of the initial cloud mass. Meanwhile,

small-scale instabilities efficiently mix cloud material with the ambient medium in

a time of order 4 − 5tcc. These results were corroborated in 3D simulations by Xu

and Stone (1995a).

Subsequent work on the cloud-shock problem has examined how additional

physics such as magnetic fields, radiative cooling, self-gravity, and thermal conduc-

tion affect the cloud’s evolution (e.g. Mac Low et al., 1994a; Fragile et al., 2005a;

Orlando et al., 2005a; Melioli et al., 2006; Shin et al., 2008a). These studies have

produced many useful results, ranging from the stabilizing effects of magnetic fields

in certain configurations to the structural properties of the cloud necessary for gravi-

tational collapse. However, still missing from the literature is an attempt to connect

the evolution of clouds with realistic density structures to the analytic theory derived

for spheres. Almost all studies of the cloud-shock problem have investigated only

spherical or elliptical over-densities, despite the approximately log-normal density

distributions of ISM clouds (Padoan and Nordlund, 2002a). One exception is the

work of Nakamura et al. (2006a), which showed that clouds with a steeply tapering

density profiles were destroyed and mixed more quickly than those with a shallow

density gradient. Another is the study by Cooper et al. (2009a), which included a

simulation of a cloud with a fractal density distribution. However, that work fo-

cused primarily on the long-term survival of radiatively cooling cloud fragments in

a galaxy-scale hot wind and did not attempt to produce an analytic timescale for

cloud destruction or mixing for the fractal cloud case. A numerical study evaluating

the evolution of a cloud with a realistic density distribution in the context of the

analytic timescales defined by Klein et al. (1994a) remains to be performed.

In this section, we apply Cholla to a preliminary study of this problem. Our

goal is to determine whether a realistic cloud with a given mean density is mixed

with the ISM on a timescale comparable to a spherical cloud with the same mass

and mean density. If not, we wish to adapt the analytical framework of Klein et al.

(1994a) to more realistic clouds to characterize their destruction process. To address

86

these issues we carry out a series of high-resolution, 3D hydrodynamic simulations

comparing clouds with spherical density distributions to clouds with more realis-

tic density distributions created using a Mach ∼ 5 turbulence simulation, and we

devise a simple alteration to the Klein et al. (1994a) formalism that enables an

analytical description of the cloud evolution for both spherical and realistic density

distributions.

2.5.1 The Simulations

We run three sets of simulations with low, medium, and high mean density contrasts,

as listed in Table 2.2. Each simulation is run in a 512 × 512 × 1024 box with side

lengths l = 10 pc × 10 pc × 20 pc, corresponding to a resolution of 0.02 pc. In each

simulation, a cloud is placed with its center at (0, 0, 2.5). In all simulations the

cloud is initially at rest, and the temperature of the gas is set such that the cloud is

in pressure equilibrium with the ambient medium. In the low density simulations,

both the spherical cloud and the realistic cloud have a mean density that is 10

times the initial ambient density, χ = n̂cl/nism = 10. In the intermediate-density

simulations, χ = 20, and in the high-density simulations, χ = 40. The realistic

cloud consists of a spherical region excised from a Mach ∼ 5 turbulence simulation

(Robertson and Goldreich, 2012) and has a log-normal density distribution that is

truncated at densities below that of the ambient medium. Higher density regions

are scaled such that the mean density of the realistic cloud matches that of the

spherical cloud. The highest density regions in the realistic clouds are three orders

of magnitude above the ambient density, and the lowest temperatures are of order

10 K. The radius of the spherical cloud in all simulations is Rcl = 1.07 pc, and

is set such that the total mass in the spherical cloud matches that of the realistic

cloud. The low-density clouds (both spherical and realistic) have an initial mass

mcl,0 ≈ 0.13M�, the clouds in the intermediate simulation have an initial mass

mcl,0 ≈ 0.25M� while the high-density clouds have an initial mass mcl,0 ≈ 0.51M�.

The initial cloud masses and mean densities include all material above the ambient

density. Figure 2.19 shows x − z projections of the initial conditions and several

87

later snapshots for the intermediate-density simulations.

We consider the interaction of small clouds with an old supernova blast wave,

such that the radius of shock wave can be assumed to be infinite with respect to

the cloud radius, and the shock can therefore be treated as planar. The simulation

starts with a planar shock wave propagating upward through the box in the +z

direction through an ambient medium with an initial number density of hydrogen

atoms nh = 0.1 cm−3, and initial temperature of T = 104 K. Using the shock jump

conditions in the strong shock limit (Zeldovich and Raizer, 1966), the post-shock

density, velocity, and pressure are given by

npsh =
γ + 1

γ − 1
nism,

vpsh =
2

γ + 1
vs,

ppsh ≈
2γ

γ + 1
M2pism,

(2.31)

where vs =Mcism is the shock speed,M is the Mach number of the shock, and cism

is the sound speed in the interstellar medium. For the given initial ISM conditions

and an adiabatic index γ = 5
3
, a Mach 50 shock travels at vs ≈ 585 km s−1. The post-

shock density is nh = 0.4 cm−3, vpsh ≈ 440 km s−1, and the post-shock temperature

is T = 7.8×106 K. We set an inflowing −z boundary with the post-shock quantities.

All other boundaries are outflowing.

2.5.2 Results

Using Equation 3.2 we can calculate cloud-crushing times for the spherical clouds.

For the the intermediate-density simulation, tcc = 8.00 kyr, while for the low- and

high-density simulations tcc = 5.65 kyr and tcc = 11.33 kyr, respectively. In order to

analyze the mixing of the clouds in the following analysis, we define the cloud mass

as the sum of material with a density n > 2npsh, where npsh is the post-shock density

of the ambient medium, which is nh = 0.8 cm−3 for these simulations. As mentioned

previously, Klein et al. (1994a) defined a destruction time corresponding to the

cloud breaking into large fragments. While this timescale is useful for the case of a

88

Figure 2.19: Snapshots at t = 0, t = 5 kyr = 0.375 tcc, t = 10 kyr = 1.0 tcc, t =
30 kyr = 3.5 tcc, and t = 40 kyr = 4.75 tcc from the intermediate-density cloud-shock
simulations. Each snapshot displays an x − z density projection of the part of the
domain containing the cloud. Yellow and green regions indicate high temperature
shocked gas, while high intensity indicates higher density material. The density scale
represents the average of the projected density, n̂. At t = 0 the spherical cloud is at
rest in a 10 pc× 10 pc× 20 pc simulation box. The cloud is in pressure equilibrium
with the ambient medium, which has a temperature of 104 K. At t = 0.375 tcc a Mach
50 shock wave has propagated upward from the bottom of box and is sweeping over
the cloud. The shock position of the shock wave is indicated by the white dotted
line. At t = 1.0 tcc the internal shock wave has just crossed the spherical cloud,
compressing it and increasing the mean density by a factor of 4. The realistic
cloud has already begun to re-expand. At t = 3.5 tcc the cloud is being accelerated
by the post-shock wind, and large-scale instabilities have disrupted the cloud. At
t = 4.75 tcc, 50% of the cloud material has been ablated and mixed with the ISM.

89

Figure 2.20: The fraction of each cloud’s mass as compared to its initial mass,
plotted as a function of time. Low-density (blue), intermediate density (green), and
high-density (red) cases are shown. The dotted horizontal line indicates the mixing
time, tmix, when 50% of the cloud material has fallen below the density threshold,
n = 2npsh. The shock wave hits at ∼ 2 kyr.

spherical cloud, the realistic cloud contains many separate regions of high density,

with no single well-defined core. Therefore, we investigate instead the mixing time

tmix, defined as the time at which the cloud mass (material with n > 2npsh) is

reduced to 50% of the initial cloud mass. This definition leads to mixing times for

the spherical clouds that agree to within a few percent of those quoted in Klein et al.

(1994a), and an easy comparison between timescales in the spherical and realistic

cloud simulations.

The mass fractions of the spherical and realistic clouds as a function of time for

all cases are shown in Figure 2.20. Here we briefly discuss the overall evolution of

the intermediate density cases. The shock wave hits at ∼ 2 kyr, at which point the

clouds start to compress. Owing to the definition of cloud mass, the compression of

low-density cloud material causes the realistic cloud to initially gain mass. In con-

trast, the spherical cloud lacks internal low density material that can be compressed

above the n > 2npush threshold to add to the cloud mass, and the effective cloud mass

begins to slowly decrease. At 10 kyr the shock wave has passed through the spher-

90

ical cloud, which begins to re-expand (see Figure 2.19, middle panels). The shock

wave finishes its passage through the realistic cloud about 1 kyr earlier. In both

simulations, the cloud is accelerated by the post-shock wind, and hydrodynamic in-

stabilities begin to mix cloud material into the ambient medium. Figure 2.19 shows

the continued evolution of each cloud in snapshots at t = 3.5 tcc, the typical cloud

destruction time as defined by Klein et al. (1994a), and at t = 4.75tcc, the measured

mixing time for the intermediate density spherical cloud in our simulations.

As can be seen in Figure 2.20, the realistic cloud is mixed significantly earlier

than the spherical cloud. In the intermediate-density case, the spherical cloud is

mixed in 38 kyrs, or t = 4.75tcc, comparable to the results from previous studies

(e.g. Klein et al., 1994a; Nakamura et al., 2006a). Table 2.2 shows that the mixing

time as a function of tcc does not vary substantially as a function of density for the

spherical clouds. In contrast, the realistic cloud is mixed in only 27 kyrs. Using a

cloud-crushing time estimated from the mean density, this mixing time corresponds

to tmix = 3.125tcc, a much shorter timescale than in the spherical cloud simulation.

Evolution of the low- and high-density simulations is qualitatively similar (see

Table 2.2). In each case, the realistic cloud is mixed much more quickly than the

spherical cloud, despite having approximately the same initial mass and mean den-

sity. Over the density range explored in this work, the mixing time for the realistic

clouds is 68 − 75% that of a spherical cloud with the same mean density. Clearly,

the definition of the cloud crushing time using the mean density does not fit the

evolution of the realistic cloud very well. In our simulations, a realistic cloud is

mixed on a timescale comparable to a spherical cloud with half its mass.

We can explain this new result in terms of the structural properties of the spher-

ical and realistic clouds. While the mean density and mass of the realistic cloud

matches that of the spherical cloud, 73% of the volume in the realistic cloud is filled

with gas below the mean density. As a result, the internal shock propagates more

quickly through the cloud, expediting the introduction of velocity shear between

high density cloud material and the post-shock wind. Rather than a single reflected

bow shock, the realistic clouds experience many reflected shocks from each high-

91

Table 2.2. Adiabatic cloud simulation parameters.

Parameter χ = 10 χ = 20 χ = 40

Spherical Cloud n̂cl 9.98 19.97 39.93

tcc (kyr) 5.65 8.00 11.33

tmix (kyr) 28 38 53

tmix/tcc 4.96 4.75 4.68

Realistic Cloud n̂cl 11.45 20.73 38.22

ncl,med 6.11 10.68 18.95

tcc,med (kyr) 4.42 5.84 7.79

tmix (kyr) 21 27 36

tmix/tcc,med 4.75 4.62 4.62

Note. — Average parameters for both the spherical and realistic clouds for the

low-density, intermediate-density, and high-density simulations are listed. Parame-

ters include average cloud density, n̂cl, median cloud density, ncl,med, cloud crushing

times using either the average (spherical cloud) or median (realistic cloud) density,

tcc or tcc,med, mixing times in kyr, and mixing times as a function of cloud-crushing

time.

92

density region, as can be seen in the middle panel of Figure 2.19. The individual

high-density regions fill a much smaller volume than the spherical cloud, effectively

decreasing the cloud radius term that appears in Equation 3.2. The increased sur-

face area for velocity shear for each high density region in the realistic cloud leads to

material being more quickly ablated and mixed with the ambient medium. In con-

trast, the high-density core of the spherical cloud is protected by the outer material

and survives beyond the mixing time.

The evolution of the realistic cloud can still be described within the analytic

framework of Klein et al. (1994a) if a more appropriate density is used in the defini-

tion of the cloud crushing time. Rather than using the average density, we analyze

the mixing time for the realistic cloud using the median density, as the median bet-

ter represents the density of the volume-fillling gas within the cloud. Median cloud

densities and the corresponding cloud-crushing times are given in the bottom half of

Table 2.2. Using these cloud-crushing times, the mixing time for the realistic cloud

matches much better the results for the spherical case.

Further examinations of this problem are left for future work, but potentially

interesting investigations include a more detailed parameter study incorporating

clouds that are not initially at rest (i.e. have a realistic momentum distribution),

and shocks with a finite radius of curvature (i.e. a nearby supernova). Nonetheless,

our results clearly show that significant quantitative and qualitative differences exist

between the destruction and mixing of an idealized, spherical cloud and a cloud

with a log-normal density distribution, even when each has a similar mean density.

Further, we newly show that these differences can be understood by applying the

Klein et al. (1994a) formalism adapted to use the median cloud density.

2.6 Conclusions

In this work we have presented Cholla, a new, massively-parallel, three-dimensional

hydrodynamics code optimized for Graphics Processor Units (GPUs). Cholla uses

the unsplit Corner Transport Upwind algorithm (Colella, 1990; Gardiner and Stone,

93

2008a), multiple Riemann solvers, and a variety of reconstruction methods to model

numerical solutions to the Euler equations on a static mesh.

In writing the code, we have maintained a modular structure that allows for the

implementation of different hydrodynamical schemes. Cholla features five methods

for interface reconstruction, including the first-order piecewise constant method, two

second-order linear reconstruction methods, and two third-order methods based on

the original piecewise parabolic method developed by Colella and Woodward (1984).

There are multiple Riemann solvers, including the exact solver from Toro (2009)

and a linear solver based on the method of Roe (1981). Incorporating multiple

reconstruction and Riemann solver methods provides the ability to test results for

a dependence on the particular numerical techniques used, and the strengths and

weaknesses of the different methods are discussed. Cholla also implements an op-

tional diffusive correction called the H correction (Sanders et al., 1998) to suppress

instabilities along grid-aligned shocks. The H correction adds additional diffusion

to the Roe fluxes based on the fastest transverse velocities. The Appendices of this

paper detail all of the equations used in the code, and supplement the discussion of

each method presented in the main text.

The strategies employed in designing Cholla to run natively on GPUs are exten-

sively detailed. The necessity of transferring data to and from the GPU with every

time step requires a specific memory layout to improve efficiency. Once information

has been transferred to the GPU, the CTU integration algorithm can be effectively

divided into kernel functions that execute on the device, similar to functions in a

traditional CPU code. Each of these kernels is self-contained and contributes to the

modularity of the code. Because the GPU has limited global memory storage, the

simulation volume must often be subdivided to optimize performance and compen-

sate for GPU memory constraints. The strategy we employ to execute this “subgrid

splitting” efficiently is also presented.

The architectural differences between CPUs and massively-parallel GPUs require

the illucidation of several key concepts in GPU programming. When a device ker-

nel is called, the GPU launches a large set of individual computational elements

94

called threads. A single kernel call can launch millions of threads. In Cholla, each

thread is assigned the work of computing the updated hydrodynamic conserved vari-

ables for a single real cell in the simulation volume. The streaming multiprocessors

on the GPUs handle the work of assigning threads to GPU cores, which means

that Cholla will be easily transportable to newer generations of GPU hardware or

other coprocessors. Thousands of cores operating simultaneously on each device

results in thousands of simultaneous cell updates, making the hydrodynamics solver

in Cholla very fast. GPUs are designed to optimize for throughput as opposed to

latency. As demonstrated in the GPU-based time step calculation presented in Sec-

tion 2.3.5, adding additional floating point calculations to GPU kernels is relatively

inexpensive. This feature can be exploited to incorporate more physics on the GPU,

such as cooling, at relatively little computational cost.

The scalability of Cholla and its performance on a range of hydrodynamics prob-

lems was also documented. Using the Message Passing Interface (MPI) library

(Forum, 1994), Cholla can be run across many GPUs in parallel. The code incor-

porates both slab-based and block-based domain decompositions and exhibits ex-

cellent strong and weak scaling in block-decomposed tests using at least 64 GPUs.

We present the results of a suite of canonical hydrodynamics tests in one, two, and

three dimensions. The state-of-the art hydrodynamics algorithms employed enables

Cholla to perform accurately on a wide variety of tests, and the GPU architecture

makes the computations fast without sacrificing physical accuracy. Since a sin-

gle GPU can compute a simulation with nontrivial resolution, using Cholla with a

cluster presents the option of running many problems to explore large parameter

spaces rapidly. Further, the excellent weak scaling of Cholla suggests that very large

problem sizes can be tackled on large GPU-enabled supercomputers.

We demonstrate the power of Cholla for astrophysics by addressing the classic

numerical problem of a shock hitting a small gas cloud in the interstellar medium.

Calculations of the evolution of such clouds require high numerical resolution and

excellent shock-capturing abilities (Klein et al., 1994a), and Cholla was designed

to address such astrophysical problems. Comparing the well-studied ideal case of

95

spherical overdensities to realistic clouds with log-normal density distributions cre-

ated by supersonic turbulence, we present new results showing that realistic clouds

are destroyed more quickly than spherical clouds of the same mass and mean den-

sity. In our simulations, realistic clouds are mixed with the ambient medium on

timescales comparable to spherical clouds with half their mean density. We posit

that the faster destruction time is a result of the lower median density of the gas

in the realistic cloud. The shock propagates more quickly through the realistic

clouds, allowing the hydrodynamic instabilities responsible for disrupting the cloud

and mixing the gas to develop sooner than in the spherical case. We further show

that the Klein et al. (1994a) formalism can be used to describe the destruction of

our realistic cloud simulations provided that the median density is used in place

of the average cloud density. These results demonstrate the successful application

of Cholla in the performance of high-resolution, physically-accurate astrophysical

simulations. We plan to use similar calculations in the future to connect small-scale

stellar feedback to galaxy evolution on larger scales.

Lastly, we note that in contrast to many MPI-enabled codes, we have designed

Cholla to perform almost all hydrodynamics calculations on the GPU without trans-

ferring information to the CPU during the course of a single timestep, leaving the

computational power of the CPU to address other tasks (see e.g. Figure 2.3). By per-

forming calculations on the CPU and GPU simultaneously, additional physics could

be modeled on the CPU during the hydrodynamical computation on the GPU.

Logical extensions to Cholla include using Fourier transforms to solve gravity or

drive turbulence. The addition of a magnetohydrodynamics module on the GPU is

also an attractive possibility, as Cholla uses an unsplit integration algorithm that is

optimized for MHD (Gardiner and Stone, 2008a).

96

CHAPTER 3

Hydrodynamical Coupling of Mass and Momentum in Multiphase Galactic Winds†

Using a set of high resolution hydrodynamical simulations run with the

Cholla code, we investigate how mass and momentum couple to the multiphase

components of galactic winds. The simulations model the interaction between a hot

wind driven by supernova explosions and a cooler, denser cloud of interstellar or

circumgalactic media. By resolving scales of ∆x < 0.1 pc over > 100 pc distances

our calculations capture how the cloud disruption leads to a distribution of densi-

ties and temperatures in the resulting multiphase outflow, and quantify the mass

and momentum associated with each phase. We find the multiphase wind contains

comparable mass and momenta in phases over a wide range of densities and temper-

atures extending from the hot wind (n ≈ 10−2.5 cm−3, T ≈ 106.5 K) to the coldest

components (n ≈ 102 cm−3, T ≈ 102 K). We further find that the momentum dis-

tributes roughly in proportion to the mass in each phase, and the mass-loading of

the hot phase by the destruction of cold, dense material is an efficient process. These

results provide new insight into the physical origin of observed multiphase galactic

outflows, and inform galaxy formation models that include coarser treatments of

galactic winds. Our results confirm that cool gas observed in outflows at large dis-

tances from the galaxy (& 1kpc) likely does not originate through the entrainment

of cold material near the central starburst.

3.1 Introduction

Star-forming galaxies commonly feature a multiphase galactic wind, observed at a

wide variety of densities, temperatures, and velocities (e.g. Lehnert and Heckman,

†This chapter has been published previously as Schneider & Robertson, 2017.

97

1996; Martin, 2005; Rupke et al., 2005; Strickland and Heckman, 2007; Tripp et al.,

2011; Rubin et al., 2014), and over a large range of redshifts (e.g. Weiner et al., 2009;

Coil et al., 2011; Nestor et al., 2011; Bouché et al., 2012; Kornei et al., 2012; Bor-

doloi et al., 2016). Despite their ubiquity, fully characterizing these winds can prove

difficult. Spatially-resolved observations of the wind’s many phases remain challeng-

ing, even for the nearest star-forming systems (Shopbell and Bland-Hawthorn, 1998;

Westmoquette et al., 2009; Rich et al., 2010; Leroy et al., 2015). Different obser-

vational techniques and instruments are required for different phases, so amassing

a complete picture for even a single galaxy represents a large coordinated effort.

At higher redshifts, absorption line studies that trace outflowing gas in and around

star-forming galaxies can be challenging to interpret as they require making as-

sumptions about the wind’s geometry (e.g. Rubin et al., 2011; Bouché et al., 2012).

While much progress has been made in recent years thanks to the installation of

the Cosmic Origins Spectrograph on the Hubble Space Telescope, large uncertainties

still exist regarding the contributions of different phases of winds to the net mass,

momentum, and energy content of outflows (Heckman et al., 2015).

Winds also play an important role in theoretical studies of galaxy evolution.

Supernova-driven winds provide an attractive method of feedback in cosmological

simulations, allowing galaxies to regulate their star formation rates and gas supply

over cosmic time (e.g., Oppenheimer and Davé, 2008; Davé et al., 2011; Faucher-

Giguère et al., 2011; Dalla Vecchia and Schaye, 2012; Muratov et al., 2015). Recent

simulations have successfully reproduced the galaxy stellar mass function across

a wide range of redshifts by including phenomenologically-motivated wind models

(Vogelsberger et al., 2014; Schaye et al., 2015; Davé et al., 2016). However, the

processes that launch winds and govern their evolution as they escape galaxies re-

main unresolved on the scale of cosmological simulations. We currently must turn to

smaller-scale, higher-resolution simulations to learn more about the physical nature

of the winds themselves.

On these smaller physical scales, idealized simulations of galactic winds have also

presented a theoretical challenge. Both analytic studies and hydrodynamic simu-

98

lations of winds have had difficulty accelerating cool gas to the velocities observed

in winds, because the dense phases get destroyed by hydrodynamic instabilities too

quickly (e.g., Zhang et al., 2015; Scannapieco and Brüggen, 2015; Brüggen and Scan-

napieco, 2016). Magnetic fields may play an important role in stabilizing the cool

gas (McCourt et al., 2015), but without realistic comparisons to observations the

most important physical processes at play in multiphase winds are difficult to as-

certain. A detailed analysis of the momentum and energy budget of gas in different

phases in these hydrodynamic simulations has not yet been conducted. This data

would be valuable both for improving sub-grid prescriptions of winds in cosmologi-

cal simulations, and for comparing with observations to better determine where our

theoretical understanding of winds fails. However, such a study requires high reso-

lution across a large simulation volume in order to track the gas in different phases

for significant periods of time.

In this work, we aim to improve our theoretical understanding of multiphase

galactic winds via high resolution, idealized simulations. Using the recently released

Graphics Processor Unit (GPU)-based code Cholla 1 (Schneider and Robertson,

2015), we can perform hydrodynamic simulations of the interaction between cool

and hot phases of a starburst-driven wind at high resolution (< 0.1pc) over a large

volume (> 100pc). The code performs well enough to compute such simulations

on a static mesh, and thus capture the interaction between the different phases of

gas across a much larger region than any previous study (e.g. Cooper et al., 2009b;

Scannapieco and Brüggen, 2015; Banda-Barragán et al., 2016). The ability to track

gas in each phase over long periods of time allows a direct probe of the momentum

coupling between the hot and cool phases of the wind. In addition, the calculations

add an element of physical realism to the cool gas by changing the initial density

structure of the multiphase clouds to better match the features seen in spatially-

resolved outflows of dense gas.

Our simulations model a multiphase galactic wind as cold, dense interstellar

or circumgalactic medium clouds embedded within a hot, rarified background flow

1A public version of the Cholla code is available at: http://github.com/cholla-hydro/cholla

99

driven by supernovae. Because the cool material starts at rest with respect to the

background wind, the initial interaction between the two phases drives a shock into

the dense cloud. While the current work focuses on the cloud densities, shock mach

numbers, and physical scales relevant to galactic winds, the adopted numerical setup

allows for comparisons with previous investigations of cloud-shock interactions.

Because of its ubiquity in the ISM, the shock-cloud interaction problem has been

studied by many authors. Early numerical work by Klein et al. (1994b) investigated

the case of a planar shock interacting with a spherical cloud using two-dimensional,

adiabatic simulations. Their work indicated that clouds encountering a shock typi-

cally survive for a few “cloud crushing times,” roughly the timescale for the initial

shock to propagate through the cloud. For strong shocks, the cloud crushing time

depends on the density contrast between the cloud and the ambient medium, the

size of the cloud, and the speed of the shock. Earlier under-resolved numerical

work came to similar conclusions (Bedogni and Woodward, 1990; Nittmann et al.,

1982). These studies found that shocked clouds travel ∼ 8 cloud radii before mix-

ing with the ambient medium as a result of hydrodynamic instabilities. Adiabatic

three-dimensional simulations (Stone and Norman, 1992; Xu and Stone, 1995b) cor-

roborated the two-dimensional results, and additionally attempted to account for

different cloud geometries. Cloud geometry and orientation in those simulations did

not affect the timescale for cloud fragmentation, but did substantially affect the

late-time morphology of the clouds before they were destroyed.

These early studies could reasonably ignore radiative cooling effects by limiting

their studies to small clouds. In larger scale problems where the cooling timescale

is smaller than the dynamical timescale, thermal energy losses must be included.

Many authors have investigated this regime (e.g., Mellema et al., 2002; Fragile et al.,

2004; Melioli et al., 2005; Cooper et al., 2009b), and demonstrated that radiative

cooling inhibits destruction of the dense material and extends the lifetime of the

cloud relative to the adiabatic case. Rather than efficiently mixing with the hot

post-shock wind, radiatively-cooling clouds tend to get strung out into filaments

containing individual “cloudlets” of dense gas that can survive much longer. Other

100

authors have investigated the effects of conduction (e.g., Marcolini et al., 2005;

Orlando et al., 2005b; Brüggen and Scannapieco, 2016; Armillotta et al., 2016) and

magnetic fields (e.g., Mac Low et al., 1994b; Fragile et al., 2005b; Shin et al., 2008b;

McCourt et al., 2015; Banda-Barragán et al., 2016) on the cloud-shock interaction,

with varying results for the stabilization of the cloud.

While multiple previous works studied a range of potentially-important physics,

few explored the impact of the initial structure of the cloud on the results of cloud-

shock interactions. Early work focused on modeling supernova remnants in the

ISM, and a simple spherical cloud provided a sufficient approximation for the initial

conditions. In radiatively-cooling galactic winds, however, the initial morphology of

the cloud may have a profound effect on its evolution. Only Cooper et al. (2009b)

previously studied how the internal structure might influence the cloud destruction,

using a fractal cloud as a proxy for a realistic cloud in a galactic wind. They

found that fractal clouds survived for less time than initially spherical clouds. More

recently, Schneider and Robertson (2015) examined how a turbulent interior cloud

structure can alter the cloud crushing timescale in adiabatic simulations.

Our current study aims to better quantify the differences in the physical picture

for inhomogeneous clouds, and more broadly describe the way the gas phases in

the outflow evolve. Specifically, we attempt to capture the region of parameter

space relevant for the cool (∼ 104 K) clouds observed in galactic winds near the

disks of star-forming galaxies. In this regime, the wind can be adequately modeled

as a hot (∼ 106 K), supersonic fluid containing a population of embedded clouds

of denser, cooler, initially stationary material. Depending on the exact density

contrast between the cool and hot phases, the cooling timescale may fall below

the local dynamic timescale and the simulations therefore should include radiative

cooling. Other potentially relevant effects, such as conduction and magnetic fields,

we leave for future study.

An outline of our paper follows. We describe in Section 3.2 the model used

to study the interaction between the multiple phases of the wind. In Section 3.3

we explain the setup of our wind simulations. Section 3.4 presents the qualitative

101

evolution of the wind-cloud interaction, including the impact of the initial surface

density of the cool gas on the cloud evolution. In Section 3.5, we describe in detail the

density and temperature structure of the multiphase outflow. In Section 3.6 we study

the velocities of the gas and describe how momentum distributes between different

phases of the wind. Section 3.7 presents a resolution study focused on increasingly

small-scale features in turbulent clouds. Section 3.8 contains our interpretation of

these results, including a discussion of our findings in relation to previous work,

possible effects of incorporating additional physical processes, and an analysis of

the fate of dense gas within a gravitational potential. We summarize in Section 3.9.

3.2 A Multi-Component Wind Model

Theories of starburst galaxies have long suggested that the combination of stellar

winds and supernovae should drive a hot (∼ 108 K) wind out of the starburst region

(e.g. Chevalier and Clegg, 1985). This hot wind fluid remains difficult to observe

directly, requiring high spatial resolution X-ray spectra. In the nearby starburst

galaxy M82 where such observations are possible, the detection of a diffuse ∼ 4×107

K plasma in the central region indicates the presence of a hot wind (e.g. Griffiths

et al., 2000; Strickland and Heckman, 2007). Our current study assumes that stellar

feedback can drive such a wind, and that the coupling of energy and momentum

from the hot wind fluid with cooler gas leads to the multiphase winds seen in many

starburst systems (see the review by Veilleux et al., 2005). In this work, we seek

to better quantify the coupling between the hot, rarified phase of galactic winds,

and the cooler, denser outflowing gas that is nearly ubiquitously observed in rapidly

star-forming systems.

We attempt to account for the origin of a multiphase wind by modeling the in-

teraction between a hot fast outflow and the cold, dense “clouds” it may entrain.

Adequately capturing the hydrodynamic processes occurring in such a scenario re-

quires resolutions of ≈ 2 orders of magnitude smaller than the size of the cool clouds

in question. Even with a tool like Cholla, modeling clouds with sizes of ∼ 10 pc

102

requires an idealized set of simulations to probe sufficiently the interactions between

the hot and cool gas phases in a wind. Correspondingly our simulations examine

dense clouds in a box with a background wind (see Figure 3.2), representing cool

material exposed to the hot phase of a wind. In the following two subsections, we

detail our models for both the hot background and cool cloud components of these

multiphase winds.

3.2.1 Hot Wind Component

We seek to model the impact of a hot, supernovae driven outflow on cooler material.

Given a small set of assumptions including spherical symmetry and negligible ra-

diative cooling, the hot phase of the wind can be modeled analytically at distances

close to the plane of a galaxy. All of our simulations use an analytic model of the hot

wind as a constant background state with properties set using the adiabatic wind

model of Chevalier and Clegg (1985, hereafter, CC85). The CC85 model envisions

a hot wind driven by central energy and mass input from stellar feedback processes.

Three input parameters determine the solutions to the model: the energy input as

a function of time, Ė, the mass input as a function of time, Ṁ , and the size of the

driving region within which energy and mass are injected, R∗. By Ṁ we mean the

total mass injection rate to the wind due to supernovae and mass-loading, not the

star formation rate. With these parameters, a solution to the set of spherical hydro-

dynamic equations can be found that smoothly transitions from subsonic within the

driving region, to supersonic at further radii. The solutions cross the sonic point at

r = R∗.

We choose the input parameters for our version of the CC85 model according

to the fits derived by Strickland and Heckman (2009) using Chandra X-ray obser-

vations of the nearby starburst galaxy M82. In particular, we set Ė = 1042 erg

s−1, Ṁ = 2 M� yr−1, and R∗ = 300 pc. In interpreting their results, we have

made additional assumptions about the wind mass-loading factor, β and the su-

pernova thermalization fraction α for which they give a range of correlated values.

Here we are using the Strickland and Heckman (2009) interpretation of β meaning

103

2.5

2.0

1.5

1.0

0.5

log
10

(n
) [

cm
-3

]

0.5
1.0
1.5
2.0
2.5
3.0

log
10

(v
) [

km
 s

-1
]

6.2

6.6

7.0

7.4

7.8

log
10

(T
) [

K]

0.0 0.5 1.0 1.5 2.0
r [kpc]

0

2

4

6

8

M
ac

h
Nu

m
be

r

Figure 3.1: The adiabatic wind model used in all simulations. The top three panels
display physical values of number density, radial velocity, and temperature as a
function of radius. The fourth panel shows the dimensionless mach number of the
wind, which crosses the sonic point at r = R∗ = 300 pc in our model. The wind-
cloud simulations use values at r = 1 kpc for the background wind, shown with the
dashed vertical line in each panel.

104

the fraction of total mass injected into the wind as compared to the mass injected

by supernovae and stellar winds, β = Ṁ/ṀSN+SW. Likewise, our definition of α

corresponds to their ε, and refers to the fraction of the supernova energy that is

deposited in low-density gas and does not suffer large radiative losses before being

incorporated into the wind. We take β = 1.42 and α = 0.33, values near the middle

of the acceptable range of fits reported by Strickland and Heckman (2009). These

choices give a central temperature of Tc & 107.5 K in the driving region, consistent

with estimates made from the X-ray emission (see Strickland and Heckman, 2009,

Table 2). The resulting values for number density, velocity, temperature, and mach

number as a function of radius for this model are displayed in Figure 3.1.

For the background flow in our multiphase wind simulations, we use the physical

parameters of the CC85 wind model shown in Figure 3.1 at r = 1 kpc. These values

are

nwind = 5.2626× 10−3 cm−3,

vwind = 1.1962× 103 km s−1 = 1.2225 pc kyr−1,

Pwind/k = 1.9881× 104 cm−3 K,

where k is the Boltzmann constant. At r = 1 kpc, the wind pressure corresponds to

a temperature of Twind = 3.7778 × 106 K, as displayed in Figure 3.1. We choose a

radius of 1 kpc to set the background wind properties in our simulations for several

reasons. First, we wish to capture the mass-loading of the wind outside the driving

region, which restricts us to hot wind properties at radii r > 300 pc. Second, we will

model the interactions between cool and hot material in a simulation volume with a

physical length of 160 pc. Given that the wind properties in our simulations remain

approximately constant across this volume and the hot wind density, temperature,

and mach number changes most rapidly just outside the driving region (see Fig-

ure 3.1), we favored an initial radius of r ∼ 1 kpc over smaller radii. Further, the

best observations of a multiphase wind come from M82, where cool material clearly

resides at r > 1 kpc above the disk (Leroy et al., 2015). The fits derived by Strick-

land and Heckman (2009) suggest that the hot wind should not yet have suffered

105

10 pc 160 × 40 × 40 pc

vwind 2048 × 512 × 512 cells

Figure 3.2: The initial conditions for one of our cloud-wind simulations. Each
simulation box is much larger than the initial size of the cloud, so we can track the
long-term evolution of cloud material, even after it has been stripped from the main
body of the cloud. This density projection shows the ñ = 1 cm−3 turbulent cloud.
The initial density distribution for the cloud material in this simulation is displayed
in Figure 3.3.

serious radiative losses at r ∼ 1kpc, which would invalidate the CC85 model (Zhang

et al., 2015; Thompson et al., 2016).

3.2.2 Cool Cloud Component

To capture the multiphase nature of galactic winds, our simulations also include a

cool component representing interstellar or circumgalactic material. As with pre-

vious studies of galactic winds, we model this second component as dense clouds

initially at rest with respect to the hot wind (e.g. Scannapieco and Brüggen, 2015;

Brüggen and Scannapieco, 2016). Our aim is to extend previous studies by exam-

ining the detailed momentum and energy coupling between different wind phases,

so we consider both idealized spherical clouds and more realistic turbulent clouds

with a distribution of interior densities set by turbulent processes. Observations

have revealed cool gas in outflows at a variety of densities and temperatures (see

references in Section 3.1). By varying the median density of the cold gas, ñ, and its

interior density structure, we are able to model a range of properties for the dense

component of the wind. Both the median number density and the cloud morphology

affect the integrated surface density of the cold gas, Σcl = Mcl/πR
2
cl, where Mcl is the

total mass of the cloud and Rcl is the cloud radius. The surface density influences

how momentum transfers from the hot wind to the cold component, as discussed

106

below.

As the hot wind destroys the clouds, cool material will both heat and rarify. This

material will accelerate as momentum transfers from the hot wind, and enter the

outflowing wind with a range of velocities. To adequately track all of this material,

we perform simulations using boxes with long aspect ratios. The simulation boxes

feature transverse dimensions equal to 8 Rcl, and a long dimension along the wind

direction of 32 Rcl. Figure 3.2 displays an example of an entire box, showing a

density projection of the ñ = 1 cm−3 turbulent cloud at time t = 0. The clouds are

initially centered 2 Rcl from the left boundary of the box to capture the resulting

bow shock. The long dimension of the box enables the simulations to follow the

bulk of the cloud as it accelerates and track material stripped from the main cloud

body.

Cloud and Sphere Models

Each cloud initially sits at rest and in thermal pressure equilibrium with the sur-

rounding hot wind. The clouds in our study are not dense enough to be gravitation-

ally confined, allowing us to neglect self-gravity. The density of the cloud material

therefore determines its initial temperature. We initialize the spherical clouds with

constant interior temperature, and initialize the interior temperatures of regions

within the turbulent clouds along an appropriate isobar. We list the temperatures

and median and mean densities of the cloud initial conditions in Table 3.1. We list

the full range of temperatures for the turbulent clouds - their median temperature

matches the spheres. For both the spheres and turbulent clouds we taper the densi-

ties at the edge, starting at a radius of 4.5 pc, such that the cloud density smoothly

transitions from the median to the wind density. The density taper has the form

n(r)cl = ñ exp[(ln(nwind/ñ)/(Rcl − 4.5)]|r − 4.5|, (3.1)

where r is the distance from the center of the cloud, and ñ is the median cloud

density. Rcl = 5 pc for all of our clouds. To create the turbulent clouds, we excise a

region from a Mach 5 isothermal turbulence simulation (Robertson and Goldreich,

107

2.0 1.5 1.0 0.5 0.0 0.5 1.0 1.5 2.0
log10(n) [cm-3]

10-4

10-3

10-2

10-1

100

(1
/V

) d
V

/ d
log

10
(n

)

Figure 3.3: A normalized histogram of the initial density distribution for the ñ =
1 turbulent cloud is shown in blue, fit with a gaussian in log-space. Note: this
distribution does not include the density taper at the edges of the cloud, as its
purpose is to illustrate the lognormal distribution of the bulk of the cloud’s mass.

2012), and scale the density linearly to match the desired median. Figure 3.3 shows a

histogram of the initial gas densities for the ñ = 1 cm−3 turbulent cloud simulation.

Cloud Crushing Time

To interpret our results in relation to previous studies of cloud-shock interactions,

we make use of the “cloud-crushing time” tcc initially devised by Klein et al. (1994b).

When the hot wind first interacts with the cool cloud, a shock drives into the over-

dense gas (and a reverse shock reflects into the oncoming wind). The cloud-crushing

time estimates how long the initial shock takes to pass through and compress the

cloud. This timescale can be calculated in terms of known quantities by relating the

initial density contrast of the cloud to the wind χ = ncl/nwind along with the radius

of the cloud Rcl and the wind velocity vwind as

tcc = Rclχ
1
2/vwind. (3.2)

108

We use the cloud-crushing time as an evolutionary timescale for the clouds in our

simulations, and report tcc for each of our simulations in Table 3.1. The derivation

leading to Equation 3.2 assumes that the pre-shocked gas in the cloud evolves adi-

abatically, allowing for an estimate of the shock speed within the cloud from the

density contrast and wind speed. In a radiatively-cooling cloud the pre-shock condi-

tions change as the cloud cools, decreasing the sound speed and slowing the shock.

The cloud crushing times listed in Table 3.1 therefore represent imperfect estimates

of the cloud compression timescale, and our simulations show they underestimate

the duration of this phase. In our simulations, maximum compression is typically

reached at ∼ 2 tcc.

Cloud Cooling Time

The cooling time provides another important evolutionary timescale for the clouds

we simulate. If the cloud cooling time greatly exceeds the cloud crushing time, we

expect the clouds to evolve similarly to the well-studied adiabatic case (Klein et al.,

1994b; Xu and Stone, 1995b; Poludnenko et al., 2002; Nakamura et al., 2006b). If

the cloud crushing time grows much longer than the cooling time, the radiative loss

of energy may affect the cloud properties substantially before the initial shock can

disrupt it. We can estimate the cooling time of the clouds in our simulation as their

thermal energy divided by the rate at which energy is lost owing to radiative cooling

as

tcool =
3nclkTcl

2Λ(Tcl)
, (3.3)

where k is the Boltzmann constant and Λ(T) is the cooling rate in erg s−1 cm−3,

evaluated at the cloud temperature (see Appendix F for information on our calcu-

lation of cooling rates). In theory, we might like to use Tcl and ncl post-shock to

calculate the cooling time. Given the complex nature of the cooling function, these

quantities often prove impossible to calculate analytically (Creasey et al., 2011).

Additionally, the lognormal gas distribution in our turbulent clouds means that n

and T vary for different parts of the cloud. Instead, we calculate the cloud cooling

109

times using the median pre-shock density and temperature to compare most di-

rectly with the cloud-crushing time. These cooling times appear in Table 3.1. Our

simulations sample the transition from clouds dominated by adiabatic evolution to

those in the radiatively cooling regime. As discussed in Section 3.4, our simulations

reproduce this transition and thereby justify our assumptions used to compute the

cooling time.

3.3 Simulations

We ran a total of six “production” simulations with initial parameters displayed in

Table 3.1. The first parameter we varied in these simulations was the cloud density

distribution. Half the simulations modeled constant density spherical clouds to

compare with previous studies. The other half modeled clouds with a lognormal

density distribution appropriate for a turbulent gas (e.g. Padoan and Nordlund,

2002b; Kritsuk et al., 2007). We also varied the median density of the clouds from

ñ = 0.1 cm−3 to ñ = 1.0 cm−3 to sample a range of density and temperature phase

space. At the low end, this density range samples the transition from adiabatic to

radiative evolution of the cool gas. At the higher densities, the evolution of the

clouds is very similar when scaled by the cloud-crushing time (See Section 3.4), but

higher density clouds have increasingly lengthy lifetimes. As a result, our upper

limit on cloud density is set by computational expense.

Throughout this paper, we refer to the production simulations by the names

given in Table 3.1. Simulations with spherical clouds begin with an ‘S’, and those

with turbulent clouds are denoted ‘T’. The remainder of the name references the

median density of the cloud. E.g. the simulation featuring a turbulent cloud with

a median number density of ñ = 1 cm−3 is ‘T1’; the spherical cloud with a median

number density of ñ = 0.1 cm−3 is ‘S01’, etc. We will sometimes refer to the

spherical clouds as “spheres”; “cloud” alone will always refer to a turbulent cloud.

Each of the simulations listed in Table 3.1 was run in a volume with N =

2048×512×512 cells, and physical dimensions of 160×40×40 pc, yielding a physical

110

Table 3.1. Radiative cloud simulation parameters.

Model ñcl
a n̄cl

b Σcl
c NH

d Tcl
e Mcl

f χg tcch tcool
i

Name [cm−3] [cm−3] [M� pc−2] [cm−2] [K] [M�] [kyr] [kyr]

S01 0.1 0.086 0.013 2.87× 1018 1.988× 105 1.05 1.9× 101 17.8 26.0

S05 0.5 0.45 0.064 1.43× 1019 3.976× 104 5.04 9.5× 101 39.8 3.96

S1 1.0 0.88 0.13 2.85× 1019 1.988× 104 10.0 1.9× 102 56.4 1.30

T01 0.1 0.16 0.022 2.05× 1019 2.2× 103 1.73 1.9× 101 17.8 26.0

T05 0.5 0.83 0.11 1.02× 1020 4.4× 102 8.61 9.5× 101 39.8 3.96

T1 1.0 1.7 0.24 2.23× 1020 2.0× 102 18.8 1.9× 102 56.4 1.30

aMedian density of the cloud, calculated including all material with a density greater than 1/10 ñ.

bMean density of the cloud, calculated including all material with a density greater than 1/10 ñ.

cSurface density of the cloud, calculated as Mcl/(πR
2
cl).

dMaximum initial column density sight-line through the cloud (excluding the hot wind).

eInitial temperature of the cloud material, in pressure equilibrium with the wind. The median temperature is

provided for the spherical clouds, and the temperature of the highest density regions is provided for the turbulent

clouds.

f Initial mass of the cloud, calculated including all material with a density greater than 1/10 ñ.

gInitial density contrast of the cloud with the background wind, calculated using χ = ñcl/nwind.

hCloud crushing time, calculated using Equation 3.2 with the median density and a cloud radius of 5.0 pc.

iCloud cooling time, calculated using Equation 3.3 with the median cloud density and temperature.

Note. — Simulations with a spherical cloud begin with an ‘S’; those with a turbulent cloud begin with a ‘T’. All

simulations listed in Table 3.1 are run in a volume with a numerical resolution of 2048×512×512 cells, corresponding

to a physical box size of 160× 40× 40 pc.

111

resolution for these simulations of ∆x = 0.07825 pc/cell. We also carried out a

resolution study (see Section 3.7), with higher and lower resolution simulations for

the ñ = 0.5 turbulent cloud. Previous work on this problem has relied on techniques

such as adaptive mesh refinement and cloud-tracking (moving the reference frame of

the simulation to follow the main body of the cloud) to reduce computational costs.

In contrast, we have constant resolution across our entire volume, and as a result

we capture the evolution of both low and high density material. Our long boxes

also allow us to track material at distances further from the cloud than in previous

studies.

We ran our simulations with the Cholla hydrodynamics code (Schneider and

Robertson, 2015), using piecewise parabolic reconstruction, an HLLC Riemann

solver, a simple unsplit integrator, and a dual energy scheme. Optically-thin radia-

tive cooling with a photoionizing UV background was assumed, and implemented

using pre-computed Cloudy tables (Ferland et al., 2013). Details of the integration

scheme, Riemann solver, dual energy, and radiative cooling appear in the Appen-

dices. We used outflow boundaries for all sides of the box except the left x-face,

where the inflow was set according to the wind properties described in Section 3.2.1.

All of the production simulations were run for a minimum of 25 tcc. The ultra high

resolution simulation used in our resolution study was only run for 12 tcc, as it is

extremely expensive.

The six simulations listed in Table 3.1 have high enough resolution to adequately

capture the hydrodynamic instabilities that disrupt the spherical clouds, 64 cells/Rcl.

These simulations were used to produce the majority of the results in this paper. In

addition, we have run low resolution versions of each of the simulations in Table 3.1

in a volume with half as many cells (N = 1024×256×256). The primary purpose of

these low resolution runs was to verify initial conditions, estimate runtimes, and test

for convergence. We have also run a low resolution simulation with a different mean

molecular weight (see Appendix F) to test the effect of the cooling implementation

on our results.

In total, we have run 14 simulations for this paper. The 7 low resolution simu-

112

lations were carried out on the El Gato cluster at the University of Arizona. The

high resolution production simulations and ultra high resolution comparison simu-

lation were carried out on the Titan supercomputer at the Oak Ridge Leadership

Computing Facility via a director’s discretionary time allocation. In sum, these

high resolution simulations took ≈ 1.5 million Titan core-hours, which corresponds

to 50,000 GPU-hours. The time each simulation required varied greatly based on

the total length of cloud survival, from the lowest density ñ = 0.1 spherical cloud

simulation that required ≈ 1,500 GPU-hours, to the ñ = 1.0 spherical cloud simula-

tion that required ≈ 9,400 GPU-hours. The ñ = 0.5 ultra high resolution turbulent

cloud simulation required ≈ 14,000 GPU-hours despite only running to 12 tcc.

3.4 Cool Cloud Evolution

We begin our results with a general description of the evolution of the cool gas in

the clouds, focusing on the ñ = 1 turbulent cloud simulation (T1), our fiducial case.

The evolution of cool material when exposed to a hot wind is of interest, given the

uncertainty in the theoretical community about whether it is possible to accelerate

cool material to the hot wind speed without destroying it (e.g. Scannapieco and

Brüggen, 2015; Zhang et al., 2015). If cool gas can be efficiently entrained, the

process could provide an explanation for the presence of cool material observed at

large distances from galaxies (e.g. McCourt et al., 2015). The efficiency with which

cool material is destroyed will also affect the mass-loading factor of the hot wind,

which may in turn affect the chances of thermal instability and rapid cooling of

the hot wind (Wang, 1995; Thompson et al., 2016). In this section, we describe

the overall evolution of the cool gas in our simulations as a function of both cloud

morphology and initial surface density. In particular, we focus on the destruction

time of the cool material.

The early stages of adiabatic shock-cloud interactions have been thoroughly de-

scribed in the literature, particularly beginning with the comprehensive study of

Klein et al. (1994b). Cloud evolution is often described in terms of the cloud-

113

crushing time, tcc = χRcl/vwind (see Section 3.2.2). In an adiabatic simulation, the

initial compression of the cloud is followed by a downstream expansion, after which

the cloud quickly fragments and dense material is destroyed. The entire cloud de-

struction process typically takes 4 - 5 tcc for spheres. If the cloud-crushing time is

calculated using the median gas density, adiabatic turbulent clouds are destroyed in

a similar number of crushing times (Schneider and Robertson, 2015).

When dense clouds are able to cool radiatively, their evolution follows a different

path. The early cloud crushing phase is much more effective as the heat generated

by compression is radiated away. In a radiative cloud, gas densities can reach over

an order of magnitude above their pre-shock levels. Though radiative clouds still

get disrupted within 10 tcc, the individual dense “cloudlets” that result can take as

long as 40 tcc to mix into the hot wind (Scannapieco and Brüggen, 2015).

3.4.1 Turbulent Clouds vs Spheres

In Figures 3.4 and 3.5 we illustrate the general evolution of the ñ = 1 cm−3 turbulent

and spherical cloud simulations (models T1 and S1, Table 3.1). These figures show

the column density of gas in the box (including the hot wind), in both a y-axis

projection with the hot wind entering the box from the left, and an x-axis projection

in the direction of the wind. The figures show snapshots of the simulations at 5

representative times - the initial conditions, and after 2, 5, 10, and 20 tcc.

In both simulations, the maximum average cloud density is reached at t = 2 tcc.

The maximum average density is n̄ = 5.2 cm−3 for T1, and n̄ = 6.8 cm−3 for S1.

(We calculate the mean density using material with density greater than 1/10th the

initial median density, as in Table 3.1.) Despite the similarity of this compression

timescale, Figures 3.4 and 3.5 show a drastic difference in cloud morphology at t = 2

tcc. While the initial shock has propagated at different speeds through regions of

different density for the turbulent cloud, the shock has very effectively compressed

the sphere into a single flat pancake. As a result, the evolution of the two types of

clouds diverges strongly at later times. Low density material is quickly accelerated

between t = 5−20 tcc in the turbulent cloud, leaving only a few high density cloudlets

114

10 pc

n = 1. 0 cloud 0 tcc

18.0
18.5
19.0
19.5
20.0
20.5

log
10

(N
H)

 [c
m

-2
]

10 pc

2 tcc

18.0
18.5
19.0
19.5
20.0
20.5

log
10

(N
H)

 [c
m

-2
]

10 pc

5 tcc

18.0
18.5
19.0
19.5
20.0
20.5

log
10

(N
H)

 [c
m

-2
]

10 pc

10 tcc

18.0
18.5
19.0
19.5
20.0
20.5

log
10

(N
H)

 [c
m

-2
]

10 pc

20 tcc

18.0
18.5
19.0
19.5
20.0
20.5

log
10

(N
H)

 [c
m

-2
]

Figure 3.4: Time series evolution of our fiducial simulation, the ñ = 1 cm−3 turbulent
cloud (model T1). Plots on the left show surface density projected along the y-axis,
with the wind entering the box from the left, while the right column shows the
surface density projected in the direction of the wind velocity. The scale of the axes
ticks is 10 pc. Snapshots are shown at t = 0, 2, 5, 10, and 20 tcc. The dashed circle
in the right column shows the original extent of the cloud. Note: the y-projection
at t = 20 tcc has been shifted by 30 pc to re-center the cloud material.

115

10 pc

n = 1. 0 sphere 0 tcc

18.0
18.5
19.0
19.5
20.0
20.5

log
10

(N
H)

 [c
m

-2
]

10 pc

2 tcc

18.0
18.5
19.0
19.5
20.0
20.5

log
10

(N
H)

 [c
m

-2
]

10 pc

5 tcc

18.0
18.5
19.0
19.5
20.0
20.5

log
10

(N
H)

 [c
m

-2
]

10 pc

10 tcc

18.0
18.5
19.0
19.5
20.0
20.5

log
10

(N
H)

 [c
m

-2
]

10 pc

20 tcc

18.0
18.5
19.0
19.5
20.0
20.5

log
10

(N
H)

 [c
m

-2
]

Figure 3.5: Time series evolution of the ñ = 1 cm−3 sphere simulation (model
S1). As in Figure 3.4, the left column shows surface density projected along the
y-axis, and the right column shows the surface density projected along the wind
axis. Snapshots are shown at t = 0, 2, 5, 10, and 20 tcc. Note: the reference frame
of the y-projection at t = 20 tcc has been shifted by 40 pc to re-center the cloud.

116

at late times. We quantify this rapid mass loss in Figure 3.6, which shows the

normalized cloud mass as a function of cloud crushing time. The mass is calculated

using material at or above 1/3 the initial median density. By t = 20 tcc, nearly 80%

of the original mass of the turbulent cloud has been mixed into the hot wind and

fallen below the density threshold of n = 0.33 cm−3.

The loss of material proceeds more rapidly for turbulent clouds than for spheres,

even with the cloud-crushing time calculated as a function of the median density. As

can be seen in Figure 3.5, panel 3, after the initial pancake stage, the spherical cloud

compresses into a single core, with a small surface area and high column density in

the wind direction. This morphology is a result of the original shock moving in the

wind direction combined with the compression from shocks on the sides of the cloud,

which push material toward the center. This high density core presents a smaller

surface area for ablation of material than the many small high density regions in

the turbulent cloud (compare the third panels of Figures 3.4 and 3.5). The single

bow shock at the front of the spherical cloud protects the core, while also resulting

in a pressure gradient through the cloud. Cloud elongation in the direction of the

wind gradually breaks up the original core into smaller fragments, which each have

individual bow shocks and lose material. However, as demonstrated in Figure 3.6,

the overall process is much slower for spheres than for turbulent clouds. Only ∼40%

of the original spherical cloud material has been lost by t = 20 tcc.

3.4.2 Median Density and Cloud Lifetimes

Figures 3.4 and 3.5 show the evolution of clouds with a median density of ñ = 1

cm−3. We have also run four high resolution simulations with lower median densities.

Models T05 and S05, the turbulent and spherical clouds with a median density of

ñ = 0.5, show a mass and morphology evolution similar to their higher density

counterparts. Figure 3.6 shows that the mass loss as a function of cloud crushing

time is nearly identical for the ñ = 0.5 cm−3 and ñ = 1 cm−3 clouds out to 25 tcc.

However, as the original median density continues to decrease, the evolution begins

to follow a qualitatively different path. The original shock that passes through

117

0 5 10 15 20 25
time / tcc

0.0

0.2

0.4

0.6

0.8

1.0

M
clo

ud
 /

M
clo

ud
,i

T
S

n = 1. 0
n = 0. 5
n = 0. 1

Figure 3.6: The mass evolution (cloud mass divided by initial cloud mass as a
function of time) of each of our high resolution simulations. Cloud mass is calculated
as the sum of all gas in the simulation with a density greater than 1/3 the initial
median density. Tracks for turbulent clouds are shown as solid lines, while spherical
clouds are shown with dashed lines. The mass-loss track for an adiabatic cloud
simulation is also plotted (dotted line) for comparison.

the cloud does not compress the gas enough for it to reach densities where it can

cool efficiently. The warm cloud gas quickly gets rarified and accelerated with the

hot wind, causing the mass-loss of the clouds to proceed much more rapidly at

lower original median densities. This difference is clearly visible in the ñ = 0.1

evolutionary tracks in Figure 3.6.

In model S01, almost none of the gas reaches the requisite density to cool. In

fact, only a small ring of gas within the cloud reaches the threshold density. This

ring is visible in Figure 3.7, which shows surface density projections of the ñ = 0.1

sphere simulation at 2 tcc. The ring structure is caused by the shock moving in

the wind direction colliding with the oblique shocks coming in from the sides of

the cloud. While the densities in this collision do not get large enough to result in

a single compact core as seen in the higher density models, this small amount of

dense gas is enough to cause the extended tail seen in the mass evolution track of

Figure 3.6. However, most of the cloud is destroyed in less than 5 tcc, consistent

with adiabatic simulations of cloud-shock interactions (Schneider and Robertson,

2015).

118

10 pc

n = 0. 1 sphere 2 tcc

18.0
18.5
19.0
19.5
20.0
20.5

log
10

(N
H)

 [c
m

-2
]

Figure 3.7: Surface density projections of the ñ = 0.1 sphere simulation at t = 2
tcc. The left panel shows a y-projection and the right panel shows an x-projection,
as in Figures 3.4 and 3.5. A small ring of high surface density material is formed by
the collision of shocks within the cloud, but most of the cloud remains at densities
too low to cool effectively. The dashed circle in the right panel shows the original
extent of the cloud.

The evolution of the ñ = 0.1 cm−3 turbulent cloud (model T01) is less dramati-

cally different as compared to its higher density counterparts. Although the median

cloud density is below that required for effective cooling, the lognormal density dis-

tribution of initial cloud material spans a range up to n ≈ 10 cm−3. As a result,

parts of the cloud that were initially above the median density are still able to cool

effectively after being shocked. As Figure 3.6 shows, the post-shock mass loss for

the ñ = 0.1 turbulent cloud proceeds faster than the ñ = 1 or ñ = 0.5 clouds, but

more slowly than the ñ = 0.1 sphere. We expect that the speed of mass loss for

turbulent clouds would continue to increase as the initial median density is lowered,

until eventually the evolution proceeded on an adiabatic track (shown by the dotted

black line in Figure 3.6.

3.5 Phase Structure of the Wind

In this section, we investigate the physical state of the gas in our simulations. The

typical temperature of gas of a given density is useful in interpreting the cloud

evolution. The density threshold for rapid cooling is also an important feature that

determines whether any dense gas will survive for many cloud-crushing times. The

high resolution of our simulations across the entire volume enables this study of the

119

4 3 2 1 0 1 2 3 4
log10(n) [cm-3]

1
2
3
4
5
6
7
8

log
10

(T
) [

K]
0 tcc

10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101

M

4 3 2 1 0 1 2 3 4
log10(n) [cm-3]

1
2
3
4
5
6
7
8

log
10

(T
) [

K]

5 tcc

10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101

M

4 3 2 1 0 1 2 3 4
log10(n) [cm-3]

1
2
3
4
5
6
7
8

log
10

(T
) [

K]

10 tcc

10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101

M

4 3 2 1 0 1 2 3 4
log10(n) [cm-3]

1
2
3
4
5
6
7
8

log
10

(T
) [

K]

20 tcc

10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101

M

Figure 3.8: Mass-weighted density-temperature phase diagrams at t = 0, 5, 10, and
20 tcc for the ñ = 1 cloud simulation (model T1). The initial equilibrium pressure
is plotted as a solid line, and the temperature at which heating equals cooling as a
function of density is plotted as a dotted line.

detailed phase structure of the gas as it evolves.

3.5.1 Density and Temperature Structure

Figure 3.8 shows density-temperature phase diagrams for the ñ = 1 turbulent cloud

at 4 different times in its evolution - the initial conditions, and t = 5, 10, and 20 tcc.

Each bin is colored according to the total mass it contains, to better focus attention

on the locations with the majority of the cloud material. Throughout the simulation,

most of the mass is in the hot wind, visible as the red region at the upper left of the

distribution in each panel (and as a single bin in the initial conditions). At t = 0 tcc,

the cloud’s mass is distributed across a range of densities and temperatures, with

120

most of the mass in regions at or above the median density of ñ = 1 cm−3. Each

panel also contains an isobar showing the original pressure of the gas (recall that

the cloud’s pressure is matched to the wind in the initial conditions), as well as a

dashed line that shows the equilibrium location between heating and cooling in our

simulations.

After the cloud has been shocked, the density-temperature phase diagram takes

on a characteristic shape. At early times, most of the gas is at higher pressure

than the initial conditions. As the simulation proceeds, the cloud gas slowly evolves

back toward thermal pressure equilibrium with the incoming wind. Cloud material

quickly fills out the entire range of densities between the original cloud density

and the wind. A large amount of mass has been compressed to high densities,

much of it over an order of magnitude higher than the initial densities. The high

density material cools effectively, with much of the cloud mass located just above

the equilibrium cooling temperature, at the lower right in each panel. There also

exists a mass concentration around log(n) = 0.5 and ∼ 2 × 104 K. This buildup

reflects the shape of the cooling curve, with maximally efficient cooling around 105

K and a steep falloff around 104 K. These features remain throughout the subsequent

evolution, as the mass in high density bins is gradually reduced.

The phase diagrams for simulations T01 and S01 yield an estimate of the density

threshold required for efficient cloud cooling in our simulations. Figure 3.9 shows the

mass-weighted density-temperature phase diagrams for both simulations at t = 2

tcc. The turbulent cloud, displayed in the left panel, has a large amount of mass

in the cooling sweet spot just above log10(n) = 0. In contrast, most of the shocked

sphere material never crosses this density threshold, and as a result, the gas remains

at high temperatures and low densities where it quickly mixes with the hot wind.

Animations of the phase diagrams show clearly the path that the cool gas takes in the

turbulent cloud simulation. Cloud gas originally above the median density shocks to

densities just above log10(n) = 0, after which the gas begins to cool rapidly down to

104 K. Only a small fraction of the sphere material reaches densities of log10(n) = 0,

and as a result, most of the mass of the cloud is lost at early times.

121

4 3 2 1 0 1 2 3 4
log10(n) [cm-3]

1
2
3
4
5
6
7
8

log
10

(T
) [

K]
2 tcc

10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101

M

4 3 2 1 0 1 2 3 4
log10(n) [cm-3]

1
2
3
4
5
6
7
8

log
10

(T
) [

K]

2 tcc

10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101

M

Figure 3.9: Mass-weighted density-temperature phase diagrams for the ñ = 0.1
turbulent (left) and spherical (right) cloud simulations at 2 tcc. While much of the
mass in the turbulent cloud has crossed the log(n) = 0 threshold and is able to cool
efficiently, much of the mass of the spherical cloud remains below this density. The
low-density gas is unable to cool and is quickly mixed into the hot wind.

3.6 Momentum Coupling

While the phase diagrams of the cloud gas are enlightening, in this section we seek

to quantify several less obvious aspects of the cloud-wind interaction. The first

area we address is cool cloud entrainment - the acceleration of cool material by the

wind. We investigate entrainment in our simulations by studying 2D density-velocity

histograms, to determine the typical velocities attained by gas of a given density. We

follow our discussion of entrainment with an investigation of the detailed coupling of

momentum between the hot wind and the cool cloud material. We assess how cloud

mass transitions from one phase to another, and how the momentum in different

phases changes over time. As in previous sections, we will focus on the fiducial ñ = 1

cm−3 turbulent cloud simulation.

3.6.1 Cool Cloud Entrainment

While cool clouds have been observed in galactic outflows at a variety of distances

and velocities, the primary physical mechanism responsible for fast-moving cool gas

continues to be debated. In this section, we investigate the velocity of the cool gas

122

4 3 2 1 0 1 2 3 4
log10(n) [cm-3]

0
200
400
600
800

1000
1200
1400

v [
km

 s
-1

]

5 tcc

10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101

M

4 3 2 1 0 1 2 3 4
log10(n) [cm-3]

0
200
400
600
800

1000
1200
1400

v [
km

 s
-1

]

15 tcc

10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101

M

Figure 3.10: Mass-weighted density-velocity phase diagrams at 5 and 15 tcc for the
ñ = 1 cm−3 turbulent cloud simulation. High density material is not effectively
accelerated in turbulent clouds.

in our simulations, and show that in the purely hydrodynamic case, hot winds are

unlikely to accelerate cool gas to the high velocities seen in many outflows.

Figure 3.10 shows mass-weighted density-velocity histograms for model T1. The

figure shows two representative snapshots, at t = 5 and t = 15 tcc, with the velocity

in the wind direction plotted on the y-axis. As in the density-temperature diagrams,

the hot wind appears as a mass concentration at the upper left in each panel, with

a small spread around the initial wind density and velocity. While cloud material

has clearly acquired a range of densities, only low density material travels at high

speeds. Only 3% of the cloud mass above the original median density of ñ = 1

cm−3 is moving faster than 200 km s−1 by 15 tcc. The average velocity of the dense

material (n > 1 cm−3) is only vx ≈ 120 km s−1.

One of the goals of this work was to investigate how different cloud density struc-

tures change the effectiveness of the hot wind in accelerating high density material.

This question is addressed in Figure 3.11, which compares the density-velocity his-

tograms for the ñ = 1 cm−3 turbulent cloud at t = 10 tcc to the sphere. This figure

indicates accelerating high density material proves more difficult in the turbulent

cloud case. This difference results from the different initial column densities of the

cloud material, as we describe below.

123

4 3 2 1 0 1 2 3 4
log10(n) [cm-3]

0
200
400
600
800

1000
1200
1400

v [
km

 s
-1

]

2 tcc

10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101

M

4 3 2 1 0 1 2 3 4
log10(n) [cm-3]

0
200
400
600
800

1000
1200
1400

v [
km

 s
-1

]

2 tcc

10-8
10-7
10-6
10-5
10-4
10-3
10-2
10-1
100
101

M

Figure 3.11: Mass-weighted density-velocity phase diagrams for the ñ = 1 cloud
(left) and sphere (right) at 2 tcc. Acceleration of dense gas is much more effective
for spherical clouds, which has lower initial column density than the dense regions
of turbulent clouds with the same initial median density.

In a simple model, the ram pressure of the hot wind will accelerate cold cloud

material (we neglect other forces in the following analysis). The ram pressure of the

hot wind scales as

Pram = nwindv
2
wind, (3.4)

which gives a constant ram pressure per unit mass of Pram/mH = 7.2×1013 cm−1 s−2

for our background wind conditions. The associated acceleration of the cloud, gcl,

will then be

gcl =
Pram

mH

mH

Σcl

=
Pram

mH

1

NH

, (3.5)

where Σcl is the average surface density of the cloud, and NH = nclL is the column

density of a particular region of the cloud. If the cloud is a constant density sphere,

then L can be approximated as twice the cloud radius. For the ñ = 1 cm−3 spherical

cloud with a radius of r ≈ 5 pc, the column density is approximately NH ≈ 3 ×
1019 cm−2 across the whole cloud, and the resulting acceleration is

gcl ∼ 2.3× 10−6 cm s−2

[(ncl

1cm−3

)(L

10 pc

)]−1

, (3.6)

or

gcl ∼ 0.75 km s−1 kyr−1

[(ncl

1 cm−3

)(L

10 pc

)]−1

. (3.7)

124

The cloud crushing time for the ñ = 1 clouds is tcc ≈ 56.4 kyr. The acceleration

in Equation 3.7 gives a cloud velocity of vcl ∼ 85 km s−1 after 2 tcc (113 kyr),

which is roughly consistent with our results for the velocities of the densest gas

after 2 tcc, shown in the right panel of Figure 3.11. In fact, the average velocity

of gas denser than n = 500 cm−3 at 2 tcc for the ñ = 1 sphere is 77 km s−1. After

the cloud has been crushed Equation 3.7 is no longer an adequate estimate of the

cloud acceleration, because the column densities have increased by over an order of

magnitude (compare the first and second panels in Figure 3.5).

In contrast, at t = 0 the densest sight lines through the ñ = 1 cm−3 turbulent

cloud have column densities as high as NH = 2 × 1020 cm−2, almost an order of

magnitude larger than the sphere (see the first panel in Figure 3.4). At these column

densities, the cloud acceleration is only gcl ≈ 0.11 km s−2 kyr−1, yielding a dense gas

velocity of vcl ∼ 12 km s−1 at t = 2 tcc. As a result, the regions of high column

density are accelerated less in the turbulent cloud, and the high density gas at t = 2

tcc is traveling considerably slower than in the spherical cloud case. The average

velocity of gas with n > 500 cm−3 is only v ≈ 16 km s−1 at t = 2 tcc.

In both the turbulent cloud and sphere simulations, much less acceleration occurs

at late times than predicted by Equation 3.7 (see right panel, Figure 3.10). As

mentioned previously, this minimal acceleration can be explained by the increased

column densities that result from the cloud crushing. In both the turbulent and

spherical clouds, compression towards the center caused by the initial shock results

in column densities at t = 2 tcc that are an order of magnitude higher than the

original values (compare the first and second panels in both Figure 3.4 and 3.5).

Thus, we conclude that entrainment of cool material to high velocities in a hot wind

remains very inefficient under these circumstances, and the problem only compounds

for clouds with more realistic shapes and density distributions.

These simulations also show that the average surface density of the cloud, Σcl =

Mcl/πR
2
cl, as given in Table 3.1 fails to adequately predict how much dense gas

will be accelerated. This fact can be demonstrated by comparing the dense gas

acceleration for the ñ = 0.5 cm−3 turbulent cloud (not shown) and the ñ = 1 cm−3

125

sphere. The ñ = 0.5 cm−3 turbulent cloud originally has a lower average surface

density than the ñ = 1 sphere - Σcl = 0.11 and Σcl = 0.13 M� pc−2, respectively.

However, the spatial coherence of the densest regions within the turbulent cloud

leads to individual column densities several times higher than the average column

density of the sphere, around NH ≈ 1020 cm−2 as compared to NH = 3× 1019 cm−2.

As a result, the average velocity of densest material in the ñ = 0.5 cm−3 turbulent

cloud simulation is vx ≈ 30 km s−1, less than half the speed of the dense gas in the

ñ = 1 cm−3 spherical cloud simulation.

3.6.2 Integrated Mass and Momentum

Having established that in our simulations momentum does not transfer efficiently

enough to accelerate the dense phase to the wind velocity, we would like to better

quantify the momentum gained by other phases of the outflow. Figure 3.6 showed the

evolution of cloud mass for each of our high resolution simulations as an integrated

quantity, the total sum of material above a given density threshold. To better

understand the way that gas evolves within the cloud, we now divide this evolution

into multiple density bins. Figure 3.12 shows this binned mass evolution plot for

the ñ = 1 cloud. The black line matches the one displayed in Figure 3.6, comprising

all the material above a density threshold of 1/3 ñ but no longer normalized by

the initial cloud mass. Colored lines in Figure 3.12 show the evolution of total

cloud mass in four density bins: low, from 0.02 < n < 0.2 cm−3; medium, from

0.2 < n < 2.0 cm−3; high, from 2.0 < n < 20 cm−3, and very high, n > 20 cm−3.

The other three panels show 1D histograms of the mass as a function of density.

Integrating any of the colored regions in the histogram yields the value represented

as a circle on the line of the same color in the top left panel.

Much of the evolution in Figure 3.12 takes place early on, with the most drastic

shift occurring before 2 tcc as the cloud is crushed. Initially, much of the cloud mass

(12 M�) is in the high density bin, 2.0 < n < 20 cm−3, with a significant amount

(5.9 M�) also in the medium density bin that surrounds the initial median density

of n = 1 cm−3. Only 0.64 M� is at n > 20.0 cm−3 initially. As the cloud is crushed,

126

0 5 10 15 20 25
time / tcc

0

5

10

15

20

M
 [M

]

1/3 n < n
 20.0 < n
 2.0 < n < 20.0
 0.2 < n < 2.0
 0.02 < n < 0.2

2 1 0 1 2 3
log10(n) [cm-3]

10-1

100

101

102

dM
 /

dlo
g 1

0(n
) [

M
] 2 tcc

2 1 0 1 2 3
log10(n) [cm-3]

10-1

100

101

102

dM
 /

dlo
g 1

0(n
) [

M
] 5 tcc

2 1 0 1 2 3
log10(n) [cm-3]

10-1

100

101

102

dM
 /

dlo
g 1

0(n
) [

M
] 10 tcc

Figure 3.12: Evolution of cloud mass in different density bins for the ñ = 1 cm−3

turbulent cloud. In the upper left panel we show the total mass in different density
bins; colors of the lines in the upper left panel correspond to density bins in the 1D
histograms shown in the other three panels. Circles in the first panel correspond to
the times displayed in the other three panels. The 1D histograms are normalized
such that the integral over each density bin yields the total mass indicated by the
circles.

127

almost all of the material increases by about an order of magnitude in density, such

that at 2 tcc the medium density bin has only 0.85 M�, the high density bin has 6.0

M�, and 11.6 M� is in the very high density bin. These values are highlighted by

circles at 2 tcc in the first panel of Figure 3.12. Very little mass is in the low density

bin at this time, and no cloud mass has been lost.

After 2 tcc, the evolution proceeds more gradually, with material slowly mov-

ing from higher density bins to lower ones. At 5 tcc mass is concentrated in the

same locations evident in the density-temperature phase diagram - there is a signif-

icant amount of mass (10.0 M�) at very high densities, as well as a bump around

log10(n) = 0.5 as a result of the shape of the cooling curve. These features are still

present at 10 tcc, though the mass in the highest density bin has been substantially

reduced. At all times in our simulation after 2 tcc, the majority of the cloud mass is

in the highest density bin. Eventually we expect this mass to shift to lower density

bins as the last of the high density gas is destroyed.

In the same way that we have integrated the total cloud mass, we can integrate

total cloud momentum in the simulations. Figure 3.13 shows how the total momen-

tum is divided amongst the same four density bins. The top left panel shows the

evolution of the total momentum in the wind direction, computed as

ptot =

n=nhigh∑
n=nlow

Mivx,i (3.8)

for each cell, i, in the simulation, where Mi is the integrated mass in that cell and vx

is the direction of the wind. The sum is taken over the same density ranges shown

in Figure 3.12. In the other three panels, we show histograms of the momentum as

a function of density at t = 2, 5, and 10 tcc. Integrals of the histograms are again

shown as circles on the colored lines in the top left panel. At t = 2 tcc the momentum

is distributed in a similar way to the mass, with most of the momentum in the two

highest density bins. At t = 5 tcc, however, the distribution of total momentum has

shifted. The three lower density bins have continued to gain momentum, but the

highest density bin actually loses some, despite the fact that the highest density bin

still contains the majority of the cloud mass. At this point, the total momentum in

128

0 5 10 15 20 25
time / tcc

0

200

400

600

800

1000

p t
ot

 [M
 km

 s
-1

]

2 1 0 1 2 3
log10(n) [cm-3]

101

102

103

dp
 /

dlo
g 1

0(n
) [

M
 km

 s
-1

]

2 tcc

2 1 0 1 2 3
log10(n) [cm-3]

101

102

103

dp
 /

dlo
g 1

0(n
) [

M
 km

 s
-1

]

5 tcc

2 1 0 1 2 3
log10(n) [cm-3]

101

102

103

dp
 /

dlo
g 1

0(n
) [

M
 km

 s
-1

]

10 tcc

Figure 3.13: Evolution of total momentum in the wind direction in different density
bins for the ñ = 1 turbulent cloud. The first panel shows the total momentum as
a function of cloud crushing time, calculated by summing Mvx over all cells with
a density in the given range (see Eqn 3.8). Colors represent the same density bins
shown in Figure 3.12. Other panels show 1D histograms of momentum as a function
of density at 2, 5, and 10 tcc . Integrating under the histograms gives the values
shown as circles in the first panel.

129

5 tccn = 1 cloud

21.00

21.25

21.50

21.75

22.00

22.25

22.50

log
10

(
p)

[km
 s

-1
 cm

-2
]

5 tccn = 1 sphere

21.00

21.25

21.50

21.75

22.00

22.25

22.50

log
10

(
p)

[km
 s

-1
 cm

-2
]

Figure 3.14: Comparison of the momentum column density (Σp = nvx integrated
in the wind direction) for the ñ = 1 turbulent and spherical cloud simulations at 5
tcc. The scale of the axes ticks is 10 pc. White dashed circles indicate the original
extent of the cloud. Much higher momentum column densities are visible for the
spherical cloud, which has been crushed to a single high density core.

the medium and high density bins (0.2 cm−3 < n < 20 cm−3) is ptot = 495 M� km

s−1, 50% more than is in the highest density bin (n > 20 cm−3), ptot = 315 M� km

s−1.

This shift indicates that momentum is transferred efficiently from the hot wind

to lower density gas. Gas with densities between 1 cm−3 < n < 10 cm−3 is in a

relatively long-lived phase, giving it more time to gain momentum from the hot

wind. The total momentum in the warm phase likely also increases as gas from

higher density bins moves to lower density. Gas in the highest density bin with

the most momentum may be the most likely to decrease in density. Without tracer

particles, this shift is difficult to quantify in our simulations, but the highest den-

sity bin clearly loses mass at every time t > 2 tcc and at least some high density

material with significant momentum shifts to the lower density bins. Overall, the

distribution of total momentum across the different gas phases in the cloud is re-

markably equal. The density-velocity histograms shown in Figure 3.10 also indicate

this equality, showing that lower density material moves more quickly than higher

density material. At very late times, t > 17 tcc the highest density bin again has

the most total momentum - this reflects the lack of mass in the lower bins by this

130

time.

We can also compare the distribution of momentum between the turbulent and

spherical clouds by looking at the integrated momentum in the wind direction, a

“momentum surface density”:

Σp =
i=Nx∑
i=0

nivx,i, (3.9)

where Nx is the total number of cells in the wind direction, ni is the number density

of the gas in cell i, and vx,i is the velocity in the wind direction in cell i. We show

projections of this quantity for the ñ = 1 turbulent cloud and sphere at t = 2 tcc in

Figure 3.14. As one would expect given the differences in the density-velocity phase

diagrams, the momentum surface density is much higher for the sphere, reaching

a maximum of 2.4 × 1023 km s−1 cm−2 in the highest column. The momentum

surface density of the background wind is 3.1 × 1021 km s−1 cm−2. In contrast,

the momentum has a larger spatial extent and is spread over a wider range of gas

column densities in the turbulent cloud, with the maximum column of 4.3 × 1022

km s−1 cm−2. Thus, even though the average momentum surface density at this

time is similar between the two simulations, the momentum is clearly much more

concentrated in the high density gas in the spherical cloud simulation. This result

is consistent with the total momentum being shared across every density bin in

Figure 3.13.

3.7 Resolution Effects

At our fiducial resolution of 64 cells/Rcl, we expect the global properties of cloud evo-

lution to be qualitatively correct (Gregori et al., 2000; Poludnenko et al., 2002; Meli-

oli et al., 2005). These properties include the morphologies seen in the cloud destruc-

tion in Section 3.4, the general features seen in the phase diagrams in Section 3.5,

and the multiphase distribution of momentum demonstrated in Section 3.6.2. How-

ever, many authors have suggested that a higher resolution of at least 128 cells/Rcl

is required for convergence of quantitative measurements of properties like the mass

131

loss rate and destruction time (Klein et al., 1994b; Nakamura et al., 2006b; Scanna-

pieco and Brüggen, 2015). The effects of resolution may be especially important for

turbulent cloud simulations, where increasingly dense structures are captured as the

resolution of the simulation is increased. Therefore, we have carried out a numerical

study to test the dependence of our results on the resolution of our simulations. We

emphasize that this is not a convergence study in the classical sense, because the

initial conditions of the cloud change with resolution (as described below).

The study compares three versions of the ñ = 0.5 turbulent cloud simulation: an

ultra high resolution simulation run with 128 cells/Rcl (hereafter R128), the produc-

tion version with 64 cells/Rcl (R64), and a low resolution version with 32 cells/Rcl

(R32). Because of the large computational expense of the R128 simulation, we use

a physical box of size 80 × 30 × 30 pc, as compared to the production simulations

which ran in boxes of size 160 × 40 × 40 pc. The R128 simulation volume contains

2048 × 784 × 784 cells, which yields a resolution of ∆x = 0.039 pc. The reduced

time step required by the Courant condition and the computational expense of the

additional cells mean that we can only afford to run the simulation for ∼ 12 tcc.

In practice, using the shorter box length results in the material leaving the compu-

tational domain at later times. The R32 simulation is run in a box with the same

physical size as the production simulation.

Each of the three simulations uses a cloud drawn from the same region of a Mach

5 isothermal turbulence simulation (Robertson and Goldreich, 2012). To create the

lower resolution clouds, the highest resolution simulation was resampled using a

cubic spline interpolation. The bulk physical properties of the initial conditions are

identical, including the median number density and total mass. As the resolution

increases, we allow the cloud initial conditions to include progressively more small-

scale structures and higher density regions. The initial conditions of the higher

resolution simulations therefore do not simply reflect a better resolved version of

low-resolution run initial conditions. The comparison presented below does not

aim to act as convergence study, but instead attempts to capture how increasingly

smaller scale features of the cloud initial conditions might influence the evolution of

132

5 pc

n = 0. 5 cloud 10 tcc

5 pc

n = 0. 5 cloud 10 tcc

5 pc

n = 0. 5 cloud 10 tcc

Figure 3.15: A comparison at 10 tcc between ñ = 0.5 turbulent cloud simulations
with three different resolutions: 32 cells/Rcl, 64 cells/Rcl, and 128 cells/Rcl. The
intensity in each panel corresponds to the projected number density, and color re-
flects the temperature of the gas (purple is cold, green is warm, and red is hot). As
the resolution of the simulations is increased, the high-density features are resolved
into smaller structures. As a result, the densest gas in the cloud is accelerated less
efficiently with increasing resolution.

133

0 2 4 6 8 10 12
time / tcc

0.0

0.2

0.4

0.6

0.8

1.0

M
clo

ud
 /

M
clo

ud
,i

 32 cells / Rcl
 64 cells / Rcl
128 cells / Rcl

Figure 3.16: Cloud mass is displayed as a function of time for the three ñ = 0.5
turbulent clouds in the resolution study. The resolution of each simulation in terms
of cells / cloud radius is displayed in the lower left. Mass loss initially proceeds more
quickly for the higher resolution simulations.

the wind-cloud system.

Figure 3.15 shows snapshots of the three simulations at 10 tcc, with the simulation

time limited by the expense of the R128 run. The intensity of the image in each panel

scales logarithmically with the projected number density, and the color reflects the

gas temperature. The R32 and R64 simulations have been cropped to display the

same region as the R128 simulation, for which the full box is shown. As expected,

with each increase in resolution, finer-scale structure emerges. While in the R32

simulation only ∼ 10 cloudlets form, the increased resolution and the more detailed

initial conditions of the R128 simulation result in far more. At low resolutions the

wind has successfully pushed the dense gas further, as evidenced by the bulk of

the cloud material shifting further to the right in the upper panels. In the R128

simulation, some of the dense gas has travelled less than 2Rcl in 10 tcc.

For a more quantitative measure of the difference between these simulations, we

plot in Figure 3.16 the mass evolution of each cloud. Even at our highest resolution,

the results have not yet converged. Figure 3.16 shows a general trend toward more

efficient mass loss as the resolution is increased. To better understand this trend, we

examine the mass evolution in the separate density bins used in Section 3.6.2. The

resulting mass-loss curves for the R128 and R64 simulations are shown in Figure 3.17.

134

0 2 4 6 8 10 12
time / tcc

0

1

2

3

4

5

6

M
clo

ud
 [M

]

 20 < n
 2.0 < n < 20
 0.2 < n < 2.0
 0.02 < n < 0.2

Figure 3.17: The evolution of cloud mass in four density bins for the R128 (dashed)
and R64 (solid) simulations. The decreased mass in the 2 cm−3 < n < 20 cm−3 den-
sity bin results in faster mass loss at early times for the higher resolution simulation,
as the lower density cloud gas is quickly accelerated by the wind.

At early times, the primary difference between the two simulations appears in the

two highest mass bins. The R128 gains slightly more mass in the highest density bin

(n > 20 cm−3), but contains significantly less mass in the bin with 2 cm−3 < n <

20 cm−3 than the R64 simulation.

At early times (t < 2 tcc) the R128 simulation generates less high density gas (n >

1 cm−3) - the density threshold required for efficient cooling. A higher fraction of the

cloud gas in the R128 simulation resides at densities and temperatures susceptible to

quick destruction by the hot wind. This process of incorporation into the hot wind

happens quickly, as evidenced by the lack of mass in the low density, slow (v < 200

km s−1) region in the density-velocity diagrams (see Figure 3.10). Because cloud

gas does not spend much time in this region of phase-space, the low density curves

in Figure 3.17 look similar. At later times, mass-loss proceeds similarly for the high

resolution simulations (compare the slope of the blue and green curves after ∼ 5

tcc in Figure 3.16).

135

3.8 Discussion

The results presented in the previous sections have important implications for the

current theoretical understanding of galactic winds. First, we have showed that

the structure of the dense clouds plays a significant role in their evolution when

exposed to a hot wind. Clouds that start with lognormal density distributions set

by turbulent processes are mixed more quickly into the hot wind than spherical

clouds with similar masses or median densities. This result implies that the mass-

loading of galactic winds in the regions near the base of a hot outflow is an efficient

process that likely results in significant mass-loading factors when hot gas interacts

with denser clouds.

While our simulations indicate that mass-loading likely proves more efficient

when the dense clouds have a turbulent structure, we have also demonstrated that

this same structure in clouds tends to inhibit dense gas entrainment. The total

acceleration of cloud material by the hot wind closely relates to the initial column

density of the cool gas. In a turbulent cloud, the spatial coherence of high density

regions leads to large column densities along individual sight lines, which makes

dense gas difficult to accelerate. While individual dense clumps can remain long-

lived as a result of efficient cooling, dense gas (n > 1 cm−3) in our simulations rarely

achieves velocities higher than ≈ 200 km s−1. Cloudlets tend to get ablated and

mixed into the hot wind before traveling more than ∼ 30 Rcl.

These findings support a picture of galactic winds where mass-loading into the

hot phase operates efficiently near the base of an outflow, and any surviving dense

gas accelerates very little. However, this efficient mass-loading will result in hot

winds that are more susceptible to thermal instability as they expand and cool. As

calculated in Thompson et al. (2016), high mass loading factors will decrease the

radius at which gas can cool out of the hot wind. If the gas that cools out of the

hot phase retains significant velocity, it could explain the high velocity neutral gas

seen at distances 1− 100 kpc from starbursting galaxies without a need to resort to

entrainment of cool gas directly associated with the ISM.

136

Furthermore, we have calculated in detail the distribution of mass and momen-

tum associated with the clouds in our simulations. Far from being a simple two-

phase medium, these winds are characterized by gas that spans a large range of

densities and temperatures. Momentum from the hot wind couples to these phases

with different efficiencies, such that the total momentum in each phase tends to be

similar even if the mass is not. In cosmological simulations, where resolution limits

the ability to capture these features of the multiphase galactic outflows, our calcula-

tions could be leveraged to improve treatments of the temperature and momentum

distribution of the wind phases.

We now compare our findings to similar work in the literature. While many

authors have studied the cloud-shock problem, relatively few have investigated the

parameter space relevant to galactic winds and we will focus our attention on these

results. We also discuss the potential effects that additional physics could have

on our results, including different cooling rates, conduction, and magnetic fields.

Finally, we include an analysis of the fate of the dense gas in our simulations in the

presence of a gravitational potential.

3.8.1 Cloud structure

Cooper et al. (2009b) presented the only previous study that has investigated the

destruction of clouds with a density distribution that is not symmetric along multiple

axes. In that work, the authors compared the destruction of a radiatively-cooling

fractal cloud to that of a radiatively cooling spherical cloud. The background hot

wind properties in Cooper et al. (2009b) resembled ours. Our results agree well

with theirs, in that they found that fractal clouds were more susceptible to fast

destruction than spheres. However, their computational volume was too small to

follow the evolution of the gas for many cloud-crushing times, and their resolution

was relatively poor, and thus the fate of the small dense clumps that result from

the destruction of an inhomogeneous cloud remained unclear. In our work, we find

that while these small cores can survive for tens of cloud-crushing times as a result

of efficient cooling, they are very difficult to accelerate due to their high column

137

density. Additionally, higher resolution tends to amplify these effects. As a result,

the cloudlets in our simulations are gradually destroyed over the course of t ∼ 20

tcc as the dense gas gets eaten away by the hot wind.

3.8.2 Entrainment and Mass Loading

In the past several years, several studies have investigated the ability of hot winds to

entrain cool gas and carry it large distances from a galaxy. Scannapieco and Brüggen

(2015) studied cloud-wind interactions using adaptive mesh refinement simulations

with a maximum resolution equivalent to the fixed resolution of our simulations. The

primary purpose of their work was to explore the effects that different background

wind parameters had on cool cloud lifetimes and acceleration. Using spherical clouds

of T ≈ 104 K the authors derived a scaling for cloud destruction time that only

depended on the mach number of the hot wind, with different density contrasts

accounted for in the cloud-crushing time. Here, we compare our results to that

scaling at t50, defined as the time when 50% of the cloud material is at or above 1/3

the initial cloud density. Scannapieco and Brüggen (2015) find

t50 = 4tcc

√
1 +Mwind, (3.10)

which for our background wind would correspond to t50 = 10 tcc. Looking at

Figure 3.6, we see that this actually fits the turbulent clouds quite well, but our

spherical clouds have a much longer lifetime.

At first glance, this result may seem contradictory. However, the longer spher-

ical cloud lifetimes may be explained by the different treatment of cooling in our

simulations. As explained in Appendix F, we allow gas in our simulations to cool to

temperatures as low as T = 10 K using cooling rates calculated for solar metallicity

gas. We also include the effects of a photoionizing background. The resulting heat-

ing keeps low density gas (n < 1 cm−3) warm, but is much less effective at higher

densities. In contrast, Scannapieco and Brüggen (2015) simulated larger-scale clouds

with the assumption of complete ionization, and therefore only allowed cooling above

T = 104 K. The ability of gas to cool to temperatures well below T = 104 K in our

138

simulations results in greater cloud compression. The resulting smaller surface area

decreases the efficiency with which material ablates and correspondingly increases

the cloud lifetime.

We find further evidence for this explanation by performing simulations with a

different mean molecular weight µ. All the simulations presented in this paper used

µ = 1 when converting from mass density to number density,

n = ρ/µmp, (3.11)

where mp is the mass of a proton. However, we also performed a low resolution

turbulent cloud simulation with µ = 0.6, the value appropriate for fully ionized

solar metallicity gas. In comparing the lifetime of the cloud in this simulation with

the same cloud in the standard simulation we find that the µ = 0.6 cloud is destroyed

more slowly, though the effect is small. This slight difference can be explained by

the higher number densities for a given mass density in the µ = 0.6 simulation.

These higher number densities lead to more efficient cooling, which in turn leads to

higher average densities at early times. The resulting high density clumps of gas

prove more difficult for the hot wind to destroy than in the equivalent µ = 1 model.

Hence, the µ = 0.6 cloud lives longer.

Scannapieco and Brüggen (2015) also find higher final velocities for their clouds

than we do, even when comparing only spherical clouds. For clouds with similar

background wind conditions they find velocities v ∼ 200 − 300 km s−1 at t = 15

tcc (see their Figure 7), while we never see velocities above 200 km s−1. Again, this

difference is likely a result of lower temperature gas in our simulations. Because our

clouds can compress to higher densities in the initial stages of the wind interaction,

their column densities increase more and acceleration is more difficult. This effect

is compounded in the turbulent cloud case with higher initial column densities.

3.8.3 Additional Physics

Other studies of cool gas in the context of galactic winds have investigated the

effects of additional physics in cloud-wind interaction simulations. Brüggen and

139

Scannapieco (2016) perform a similar study to Scannapieco and Brüggen (2015)

but incorporate the effects of conduction. They find that conduction can result in

complete evaporation of the cloud at early times in cases where the column density

of cloud material is below N ' 1.5 × 1018 cm−2. The clouds we simulate do not

start with column densities this low, and we therefore do not expect conduction to

result in their rapid, complete destruction. We note the initial conditions of our hot

wind most resembles their Mach 6.4 run that shows the least amount of difference

in cloud evolution between the conduction and non-conduction models.

Brüggen and Scannapieco (2016) demonstrate that when clouds in their sim-

ulations do survive, conduction tends to decrease the cross-section of the cloud

presented to the hot wind. The decreased cross-section provides less surface area

for ram pressure to act on the dense gas, which in turn decreases the efficiency of

cloud acceleration. This effect is qualitatively similar to the impact of inhomoge-

neous column densities for turbulent clouds described in Section 3.6.1, though the

origin is completely different. We suggest that the inhomogeneous cloud structure

may work in concert with conduction to further increase the early destruction of

low column density material, and decrease the efficiency with which high column

material accelerates.

Magnetic fields may also play a role in cool cloud evolution. A number of cloud-

shock studies investigated the effects of planar magnetic fields in spherical clouds,

with inconclusive results regarding whether the presence of field lines increased or

decreased the time until cloud destruction (Gregori et al., 2000; Fragile et al., 2005b;

Shin et al., 2008b). More recently, McCourt et al. (2015) performed wind-cloud sim-

ulations testing the effects of tangled magnetic fields incorporated within a spherical

cloud. They showed that the presence of the magnetic field drastically increased the

lifetime of the resulting cloudlets and increased their acceleration, allowing them to

reach the hot wind speed without destruction.

The McCourt et al. (2015) simulations help motivate a future extension of our

high-resolution wind-cloud simulations with realistic initial conditions to include

MHD. The simulations by McCourt et al. (2015) use a resolution of 32 cells/Rcl.

140

Scannapieco and Brüggen (2015) demonstrated that spherical cloud simulations with

resolution less than 64 cells per cloud radius tend to prolong cloud lifetimes. Our

simulations of turbulent clouds show a trend toward faster mass loss with increasing

resolution that has not yet converged at 128 cells/Rcl. In addition, we have shown

that spherical clouds have longer lifetimes than those with more realistic internal

structure. While the results of McCourt et al. (2015) suggest that including a

tangled magnetic field would likely prolong the lifetime of the dense components

of the turbulent clouds we simulate, the combined effects of resolution and density

structure make a quantitative prediction difficult. Incorporating magnetic fields in

wind simulations with turbulent clouds is an avenue that we aim to pursue in future

work.

In addition to potentially important additional physics, parameters such as the

metallicity of the cloud gas and nature of the background wind in our simulations

will affect the quantitative results we have presented. In this work we have focused

exclusively on the effects of cloud structure and surface density. The primary effect

of changing the metallicity of the gas would be to change the cooling rates. As

noted in Section 3.8.2, tests with a different value of µ indicate that more rapid

cooling leads to longer cloud survival, and our comparison with the simulations of

Scannapieco and Brüggen (2015) indicates that less efficient cooling reduces cloud

survival time. However, this is not an order-of-magnitude effect, and we therefore

do not expect a change in metallicity to drastically alter our results.

On the other hand, as Figure 3.1 shows, the state of the background wind in the

Chevalier and Clegg (1985) model changes rapidly with radius as the wind escapes

the galaxy. Given our choice of a single background wind state, we do not regard

our simulations as completely generic with respect to galactic winds, though we

do expect the general result of more rapid destruction of turbulent clouds to hold.

Scannapieco and Brüggen (2015) demonstrated a scaling with background wind

mach number that indicates clouds survive longer with increasing mach number

(see their Equation 22). In the future, we would like to investigate the relationship

between turbulent cloud lifetime and the background wind parameters, sampling

141

a variety of distances from the galaxy that would inform the initial conditions for

clouds at each distance.

3.8.4 Ram Pressure vs Gravity

As a final note, we consider the final fate of the dense gas in our simulations. Our

simulations do not include gravity, and if the simulations continued running indef-

initely eventually all of the cool material would mix into the outflowing hot wind.

However, we can estimate the effect of the host galaxy’s gravitational potential.

Using an analysis similar to that in Section 3.6.1, we can compare the expected

acceleration of dense cloud regions owing to the wind’s ram pressure, Pram, to their

expected deceleration owing to gravity.

We can estimate the ram pressure acceleration as a function of column density,

NH = nclL, via

gram ∼ 2.3 km s−1 kyr−1

(
NH

1019 cm−2

)−1

.

(This expression is equivalent to Equation 3.7.) Similarly, we can estimate the

gravitational acceleration as a function of column density. At 1 kpc, the gravitational

acceleration of M82 is

ggrav ∼ 1.4× 10−7 cm s−2

(
MM82

1010M�

)(
R

1 kpc

)−2

,

ggrav ∼ 0.044 km s−1 kyr−1. (3.12)

Given these estimates, we would expect cloud regions with column densities greater

than NH ≈ 5×1020 cm−2 to begin to fall back toward the galaxy. None of the clouds

in our simulations initially have column densities quite this high - the densest sight

lines in the ñ = 1 cm−3 turbulent cloud reach NH ≈ 3×1020 cm−2. Nonetheless, the

acceleration due to ram pressure and deceleration due to gravity for these column

densities are very similar, so in the presence of gravity the densest gas in our tur-

bulent cloud simulations would likely be accelerated very little or possibly fall back

toward the central galaxy.

142

3.9 Summary and Conclusions

In this work, we have modeled the hydrodynamic evolution of radiatively cooling

clouds in the context of galactic winds with very high numerical resolution. Our

study investigated two main parameters relevant to cold cloud survival - the initial

structure of the cool gas and the median density of the cloud. We varied the cloud

structure in our simulations between a lognormal density distribution with large-

scale structure as set by turbulent processes and an idealized spherical distribution

of gas. The median densities of our clouds ranged from ñ = 0.1 − 1.0 cm−3. The

median density affects the overall destruction time of the cool gas via the cloud

crushing time, as well as the efficiency of cooling within the cloud.

We find that clouds with a turbulent density structure are destroyed more quickly

than clouds with a homogeneous spherical density distribution. This efficient de-

struction results in faster mass-loading of the hot wind, as intermediate- and low-

density regions of turbulent clouds are quickly heated, rarified, and accelerated to

the hot wind velocity. The entrainment of dense gas within cool turbulent clouds

proves extremely inefficient, and much less efficient than for idealized spherical ini-

tial conditions. The varying column densities present in turbulent clouds result in

very little acceleration of the densest regions, which are the only regions that survive

for many cloud-crushing times. These effects are amplified as the resolution of the

simulations is increased and the clouds are allowed to become increasingly realistic.

We therefore conclude that entrainment of turbulent ISM clouds in hot supernova

winds does not explain the neutral gas observed at large distances from starburst

galaxies, unless other physical processes (such as magnetic fields) substantially alter

the results from the hydrodynamic case.

We have also provided an extensive description of the phase structure of the

gas in the wind. Shortly after being shocked the gas associated with the turbulent

clouds spreads over a large range of densities and temperatures, with the densest

regions cooling down to temperatures of T ∼ 100 K. Each phase of gas remains close

to thermal pressure equilibrium with the hot (� 106 K) wind. Interestingly, though

143

the majority of the mass remains in the densest phases (n > 20 cm−3) for much of

the cloud evolution, the total momentum distributes fairly evenly across densities.

Roughly the same amount of momentum transfers to cold neutral (100’s of K), cool

ionized (∼ 104K), and warm ionized (∼ 105 K) gas.

144

CHAPTER 4

SUMMARY AND FUTURE PROSPECTS

In the previous two chapters, I have described the massively-parallel hydrodynamics

code, Cholla, and presented a high resolution but small physical scale study of

the interactions between different phases of gas within a multiphase galactic wind.

However, as discussed in Chapter 1, Cholla was designed to be able to tackle many

problems. Additionally, the simulations discussed in Chapters 2 and 3 raised many

questions. As a result, there exist many future prospects for further investigation

into the nature of multiphase galactic winds using Cholla, some of which I briefly

describe in this section.

4.0.1 Global Disk Simulations of Galactic Winds

Idealized simulations of the type presented in Chapter 3 are useful for probing phys-

ical scales in winds that cannot be resolved when the entire galaxy is simulated. On

this sub-parsec scale, I have demonstrated that the structure of dense clouds affects

the timescale for their disruption and incorporation into the hot wind. However,

such simulations require a variety of assumptions, particularly the fixed nature of

the background flow. While the background could be varied from simulation to

simulation in order to probe different regions of parameter space, no one simulation

can self-consistently reproduce the physical conditions of the changing background

as hot gas is escaping a galaxy, and therefore, the inferences about acceleration of

dense gas made from such simulations must be limited (particularly near the galaxy

where the hot wind state changes most rapidly). These limitations can be overcome

by simulating the full galaxy and allowing the wind to expand over many kiloparsecs.

As mentioned in Section 1, galactic winds that are sufficiently mass-loaded are ex-

pected to cool radiatively as they expand to large radii. In order to capture this cool-

145

ing, a simulation must cover a large enough volume that the wind reaches the cooling

radius, which Thompson et al. (2016) estimate to be 1 - 10 kpc, depending on the

star formation rate surface density and the hot wind mass-loading. In addition, the

simulation must have sufficient resolution to capture the characteristic scale of the

clouds formed, which McCourt et al. (2016) estimate is roughly equal to the sound

speed of the dense gas times the cooling time, rcloud ∼ cstcool ∼ (0.1 pc)
(

n
cm−3

)−1
. In

addition, the initial density perturbations in the hot flow caused by the destruction

of cool clouds in or near the starburst region (r < Rstarburst) will affect the way that

the hot gas cools. Therefore, a simulation that can capture the multiphase nature

of radiatively-cooling starburst-driven winds must include cool disk gas, a starburst

region where energy and mass are input according to a star formation rate, extend

out to ≈ 10 kpc, and have a resolution of a few parsecs. With Cholla, such simula-

tions are possible for the first time. Over the next several years, I will be carrying

out a suite of these global-disk simulations that will test the effects of different star

formation rates and ISM structures on the large scale properties of galactic winds..

4.0.2 Additional Physics in Cholla

As with any major code, the development period for Cholla will never be over.

Tackling problems in a range of fields requires a range of physics, and continuing to

add further physics modules to Cholla will make it a more flexible and useful code.

In the sections below, I describe two extensions to the current publicly-available

version of Cholla described in Chapter 2 and the appendices. The first of these

modifications, the incorporation of static gravity, is already complete.

Static Gravity

In order to carry out the simulations described above, some additional physics must

be added to Cholla. Because the simulations will extend well outside the mass and

energy injection region of the starburst, gravity is expected to play an important role

in the kinematics of the wind, particularly for the denser gas (Wang, 1995). Addi-

146

tionally, the initial conditions will consist of a stable gas disk in vertical hydrostatic

equilibrium. Therefore, Cholla needs to include the effects of a static gravitational

potential.

Gravity appears as source terms in the momentum and energy fluid equations,

Sρv = ρ∇φ and SE = ρv · ∇φ, where ∇φ = g is the gradient of the gravitational

potential φ (i.e. the gravitational acceleration). In Cholla, these source terms are

included via an the operator-split update at the end of the hydro step. This takes

the form (in 1D):

(ρv)n+1 = (ρv)∗ +
∆t

2
g(ρn + ρ∗) (4.1)

and

En+1 = E∗ +
∆t

4
g(ρn + ρ∗)(vn + v∗), (4.2)

where n refers to the values of the density and velocity at the beginning of the

timestep (before the hydro update), ∗ refers to the values after the hydro update

but before the gravitational source terms are added, and n + 1 are the values after

the complete hydro plus gravity update. Because the acceleration is applied to an

average of the variables before and after the hydro update (and the potential is

static), this update is second-order in time.

Magnetic Fields

Another natural extension to the work presented in this thesis is testing the ef-

fects of magnetic fields on the structure and dynamics of galactic winds. McCourt

et al. (2015) have suggested that magnetic fields may slow the destruction of dense

gas clouds in galactic winds, making them potentially quite important for a com-

plete theory of multiphase winds. In order to carry out such a study, the purely

hydrodynamic integration algorithms in Cholla will need to be extended to MHD.

Fortunately, Cholla was designed so that this extension would be straightforward.

While the details are beyond the scope of this work, the CTU algorithm presented

in Chapter 2 was developed for MHD, so no new algorithm development will be

required. The primary concern in extending Cholla to MHD has been the memory

147

constraints of the GPUs that the code uses. However, the most recent generation

of NVIDIA GPUs, namely the Pascal architecture, have addressed this concern, as

they roughly doubled the amount of global memory available per core compared to

the Kepler GPUs available when Cholla was designed. Thus, despite the additional

B-fields that must be tracked in an MHD integration, the extension to MHD should

not cause a problem for Cholla, and may in fact lead it to perform even better in

comparison to CPU-based codes.

148

APPENDIX A

RECONSTRUCTION METHODS IN CHOLLA

To calculate the input states for the Riemann solvers used in Cholla, appropriate

values of the conserved variables at each interface must be reconstructed using the

cell-averaged quantities. Each Riemann problem requires input states at either side

of a cell interface, referred to as U ∗L and U ∗R in the context of the CTU algorithm

presented in Section 2.2.1. While previously L and R indicated the left and right

of the interface, in this Appendix a cell-centered labeling is used to document the

procedure for computing the input states at the left and right boundaries of a single

cell.

The input states calculated at the left and right sides of the cell will be labeled

U ∗L and U ∗R in the conserved variables, or W ∗
L and W ∗

R in the primitive variables.

As described in Table 2.1, the asterisk indicates the time-evolved input state. The

boundary values reconstructed before time evolution will be labeled WL and WR.

For each method described below, only the steps involved in the reconstruction

for the x-interfaces are shown. The y- and z-reconstructions proceed in the same

manner but with an appropriate change of stencil. The notation will drop the i, j,

and k subscripts unless they are needed for clarification.

A.0.1 PLMP

The simplest practical reconstruction method implemented in Cholla is PLMP, a

piecewise linear reconstruction with slope limiting applied in the primitive variables.

The stencil to calculate the boundary values for cell i contains cells i− 1 to the left

and i+1 to the right. The first step in the method converts the cell-averaged values

of the conserved variables into the primitive variables, w = [ρ, u, v, w, p]T . The

cell-averaged primitive values are then used to reconstruct boundary values in the

149

primitive variables, WL and WR at the left and right sides of cell i using a local,

piece-wise linear reconstruction (Toro, 2009):

WL = wi −
1

2
δwi,

WR = wi +
1

2
δwi,

(A.1)

where δwi is a vector containing the slope of each primitive variable across cell i.

To compute δwi, we first calculate the left, right, and centered differences in the

primitive variables across each of the cell interfaces:

δwL = wi −wi−1, δwR = wi+1 −wi, δwC = 0.5(wi+1 −wi−1). (A.2)

A monotonized central-difference limiter (van Leer, 1977) is then used to compute

δwi:

δwi =

sgn(δwC)min(|δwC |, 2|δwL|, 2|δwR|), δwLδwR > 0

0, otherwise,
(A.3)

where sgn is defined as

sgn(x) =

−1, x < 0

1, otherwise.
(A.4)

Each of the primitive variables is treated independently in the limiting process, so

the vector of primitive variable slopes (for extrapolations to the left cell face) can

be simply written as

δwL = {δρL, δuL, δvL, δwL, δpL}T. (A.5)

The primitive variable slopes for extrapolating to the right cell face can be similarly

defined.

The last step in computing input states for the Riemann problem is to evolve

the reconstructed boundary values by half a time step ∆t/2. The time evolution

is modeled using the conserved form of the Euler equations, and WL and WR are

therefore converted back into conserved variables, UL and UR and used to calcu-

late the associated fluxes via Equation 2.11. These fluxes are used to evolve the

150

reconstructed boundary values and obtain input states appropriate for the Riemann

problem:

U ∗L = UL + 0.5
∆t

∆x
[F (UL)− F (UR)] (A.6)

U ∗R = UR + 0.5
∆t

∆x
[F (UL)− F (UR)]. (A.7)

A.0.2 PLMC

The second reconstruction method, PLMC, is also based on a piecewise linear re-

construction but with the slope limiting computed using the characteristic variables.

The stencil again contains one cell to the left and right of cell i. After converting

the cell-averaged quantities from conserved to primitive variables, an eigenvector

decomposition of the Euler equations is performed using the characteristic variables

as described in Section 2.2. First, the eigenvalues of the linear system of equations

for cell i are calculated. For adiabatic hydrodynamics, the eigenvalues correspond

to the three wave speeds,

λm = ui − ai, λ0 = ui, λp = ui + ai, (A.8)

where ai is the average sound speed in cell i. The quantities λm and λp are speeds

of the acoustic waves and λ0 is the speed of the contact wave. The corresponding

eigenvalue for any advected scalar quantity (such as the transverse velocities in

multidimensional problems) is simply the speed of the fluid in the normal direction

ui.

The left (δwL), right (δwR), and centered (δwC) differences in the primitive vari-

ables shown in Equation A.2 are then calculated. These differences are projected

onto the characteristic variables, δξ, using the left eigenvectors given in Appendix

A of Stone et al. (2008). Rather than reproduce the the expressions for each eigen-

vector, equations describing the final projections are shown since they are actually

151

used in the GPU kernel. The projection of the left difference is

δξL =



−0.5(ρiδuL/ai + δpL/a
2
i)

δρL − δpL/a2
i

δvL

δwL

0.5(ρiδuL/ai + δpL/a
2
i)


, (A.9)

where δρL, δuL, δvL, δwL, and δpL are the components of the primitive variable

difference vector δwL. The projections for the right and central differences are

calculated in the same manner, yielding δξR and δξC .

The characteristic differences are then monotonized using the van Leer (1977)

limiter, computed as

δξ =

sgn(δξC)min(|δξC |, 2|δξL|, 2|δξR|), δξLδξR > 0

0, otherwise.
(A.10)

We project the monotonized differences in the characteristic variables back onto

the primitive variables, providing slopes in each variable that are analogous to the

limited slopes described in PLMP:

δwi =



δξ0 + δξ1 + δξ4

(ai/ρi)(−δξ0 + δξ4)

δξ2

δξ3

a2
i (δξ0 + δξ4)


. (A.11)

Here, the numeric subscripts to refer to the components of the vector ξ.

As in PLMP, these slopes are subsequently used to create a linear interpolation

for reconstructing boundary values of the primitive variables:

WL,A = wi −
1

2
δwi,

WR,A = wi +
1

2
δwi.

(A.12)

152

The primitive variable boundary values are further monotonized to ensure that they

are numerically bounded by the neighboring cell values:

WL,B = max[min(wi,wi−1),WL,A]

WL = min[max(wi,wi−1),WL,B]

WR,B = max[min(wi,wi+1),WR,A]

WR = min[max(wi,wi+1),WR,B],

(A.13)

enabling a slope vector to be computed from these adjusted boundary values as

δwi = WR −WL. (A.14)

The reconstructed boundary values must be evolved in time to calculate ap-

propriate input states for the Riemann problem. Instead of simply evolving the

reconstructed values using associated fluxes as in Equations A.6 and A.7, the char-

acteristic tracing method of Colella and Woodward (1984) is employed. To obtain

a first approximation for the input states, an integration under the linear interpola-

tion function is performed using the minimum wave speed to define the domain of

dependence for the left side of the cell, λm, and the maximum wave speed for the

right side of the cell, λp:

W̃ ∗
L = WL − 0.5

∆t

∆x
min(λm, 0)δwi

W̃ ∗
R = WR − 0.5

∆t

∆x
max(λp, 0)δwi

(A.15)

The input states are then corrected by accounting for the portion of each wave

that does not reach the interface over a time ∆t/2 as a result of the presence of

the other waves. Correction terms are only needed for characteristics propagating

toward each interface. The eigenvector projection and correction for each element

of W ∗ is shown below, tracking the correction terms in the vectors sL and sR. For

the left side of cell i,

W ∗
L = W̃ ∗

L + 0.5
∆t

∆x
sL (A.16)

153

with

sL =



(λm − λ0)(δρi − δpi/a2
i)

0

(λm − λ0)δvi

(λm − λ0)δwi

0


+



0.5(λm − λp)(ρiδui/ai + δpi/a
2
i)

0.5(λm − λp)[δui + δpi/(aiρi)]

0

0

0.5(λm − λp)(ρiδuiai + δpi)


. (A.17)

The first term is associated with the contact wave and is added only if λ0 < 0. The

second term is associated with the right acoustic wave and is added only if λp < 0.

If both λ0 and λp are greater than 0, there is no need for a correction because those

waves cannot affect the left interface of the cell. For the right side of cell i,

W ∗
R = W̃ ∗

R + 0.5
∆t

∆x
sR (A.18)

with

sR =



0.5(λp − λm)(−ρiδui/ai + δpi/a
2
i)

0.5(λp − λm)[δui − δpi/(aiρi)]
0

0

0.5(λp − λm)(−ρiδuiai + δpi)


+



(λp − λ0)(δρi − δpi/a2
i)

0

(λp − λ0)δvi

(λp − λ0)δwi

0


. (A.19)

Here the first term is associated with the left acoustic wave and is added only if

λm > 0, while the second term is associated with the contact wave and is added

only if λ0 > 0. As with the left interface, the corrections only apply if the waves are

moving toward the interface. Once the corrections have been made, W ∗
L and W ∗

R

can be used as inputs to the Riemann problem.

A.0.3 PPMC

Cholla also includes implementations of third-order spatial reconstruction tech-

niques, including two varieties of the piecewise parabolic method developed by

Colella and Woodward (1984). The piecewise parabolic method with slope lim-

iting applied in the characteristic variables (PPMC) is presented first as it shares

154

several steps with PLMC. Our implementation of this method closely follows that

outlined in Stone et al. (2008).

The first step in PPMC is to calculate monotonized slopes for cells i − 1, i,

and i + 1. These slopes are labeled δwi−1, δwi, and δwi+1. The limited slopes for

each cell are calculated in a manner identical to that described in PLMC, following

Equations A.8 - A.11. Since slopes must be calculated for all three cells, the stencil

for PPMC contains two cells to the left and right of cell i. Once the limited slope

vectors for all three cells have been calculated, the algorithm proceeds as follows.

Using the monotonized linear slopes, a parabolic interpolation is computed and

used to calculate the reconstructed boundary values:

WL,A =
1

2
(wi +wi−1)− 1

6
(δwi − δwi−1),

WR,A =
1

2
(wi+1 +wi)−

1

6
(δwi+1 − δwi).

(A.20)

Monotonicity constraints are applied to the reconstructed boundary values to ensure

that they lie between the average values in neighboring cells. If the cell contains a

local minimum or maximum, both interface values are set equal to the cell average:

WL,A = WR,A = wi, if (WR,A −wi)(wi −WL,A) ≤ 0 (A.21)

If the parabolic interpolation violates monotonicity as a result of a steep gradient,

the interface values are modified as

WL,A = 3wi − 2WR,A, if (WR,A −WL,A)[WL,A − (3wi − 2WR,A)] < 0

WR,A = 3wi − 2WL,A, if (WR,A −WL,A)[(3wi − 2WL,A)−WR,A] < 0
(A.22)

These reconstructed boundary values are further adjusted using the minmod limiter

operation:

WL,B = max[min(wi,wi−1),WL,A]

WL = min[max(wi,wi−1),WL,B]

WR,B = max[min(wi,wi+1),WR,A]

WR = min[max(wi,wi+1),WR,B]

(A.23)

155

At this point, a monotonized parabolic interpolation can be reconstructed. New

slopes are computed that account for the adjusted boundary values:

δwi = WR −WL. (A.24)

These slopes are used to compute the time-evolved left and right boundary values

by integrating under a parabolic interpolation function:

W̃ ∗
L = WL −

1

2
αm
[
δwi +w6(1 +

2

3
αm)

]
,

W̃ ∗
R = WR −

1

2
βp
[
δwi −w6(1− 2

3
βp)

]
,

(A.25)

where

w6 = 6wi − 3(WL −WR). (A.26)

Here we have borrowed from the notation of Colella and Woodward (1984) to define

αm and βp, unit-free variables associated with the characteristic speeds

αm =
∆t

∆x
min(λm, 0), βm =

∆t

∆x
max(λm, 0),

α0 =
∆t

∆x
min(λ0, 0), β0 =

∆t

∆x
max(λ0, 0),

αp =
∆t

∆x
min(λp, 0), βp =

∆t

∆x
max(λp, 0).

(A.27)

As in PLMC, the minimum characteristic speed, λm, is used to define the domain

of dependence for the left interface, and the maximum characteristic speed, λp, is

used for the right interface. The primitive variable time-evolved boundary values

W̃ ∗
L and W̃ ∗

R are first approximations to the input states for the Riemann problem.

The input states must now be corrected by accounting for the other character-

istics propagating toward the interface. At the left side of the cell, we compute

sL =



E0 −E4/a
2
i

0

E2

E3

0


+



0.5(ρiB1/ai +B4/a
2
i)

0.5 [B1 +B4/(aiρi)]

0

0

0.5(ρiB1ai +B4)


, (A.28)

156

where the first term is added only if λ0 < 0, and the second only if λp < 0 - otherwise

there is no correction. In the above,

E =
1

2
αm
[
δwi +w6(1 +

2

3
αm)

]
− 1

2
α0

[
δwi +w6(1 +

2

3
α0)

]
, (A.29)

is associated with the contact wave, and

B =
1

2
αm
[
δwi +w6(1 +

2

3
αp)

]
− 1

2
αp
[
δwi +w6(1 +

2

3
αp)

]
. (A.30)

is associated with the right-most acoustic wave. Subscripts denote the elements of

E and B. Similarly, for the right side of the cell,

sR =



0.5(−ρiC1/ai +C4/a
2
i)

0.5 [C1 −C4/(aiρi)]

0

0

0.5(−ρiC1ai +C4)


+



(D0 −D4/a
2
i)

0

D2

D3

0


. (A.31)

The first term accounts for the correction owing to the left-most acoustic wave and

is added only if λm > 0, and the second term accounts for the correction from the

contact wave and is added only if λ0 > 0. In this case,

C =
1

2
βp
[
δwi −w6(1− 2

3
βp)

]
− 1

2
βm
[
δwi −w6(1− 2

3
βm)

]
,

D =
1

2
βp
[
δwi −w6(1− 2

3
βp)

]
− 1

2
β0

[
δwi +w6(1 +

2

3
β0)

]
.

(A.32)

With these correction terms input states for the Riemann problem can be calculated

as

W ∗
L = W̃ ∗

L + sL and W ∗
R = W̃ ∗

R + sR. (A.33)

A.0.4 PPMP

The Cholla implementation of the piecewise parabolic method computed in the

primitive variables closely follows the original description in Colella and Woodward

(1984), with some additional notation adapted from Fryxell et al. (2000). For con-

venience, the following description assumes a uniform cell size. PPMP is the most

157

complicated of the reconstruction methods implemented in Cholla, and the algo-

rithm follows this brief outline:

1. Reconstruct boundary values using parabolic interpolation.

2. Steepen contact discontinuities, if necessary.

3. Flatten shocks, if necessary.

4. Ensure that the parabolic distribution is monotonic.

5. Integrate under the parabolic interpolation to determine input states for the

Riemann problem.

6. Use characteristic tracing to correct the input states.

Parabolic Interpolation

The first step in PPMP is to reconstruct the boundary values using a parabolic

interpolation with limited slopes. The interpolation is identical to that shown in

Equation A.20:

WL =
1

2
(wi +wi−1)− 1

6
(δwi − δwi−1),

WR =
1

2
(wi+1 +wi)−

1

6
(δwi+1 − δwi).

(A.34)

However, in PPMP the slopes are limited in the primitive variables using the van

Leer (1977) limiter. The slopes δwi−1, δwi, and δwi+1 are all calculated following

Equations A.2 and A.3.

Contact Discontinuity Steepening

Once the interface values have been reconstructed, contact discontinuity steepening

is applied to the interface values for the density, WL[0] = ρL and WR[0] = ρR.

Whether steepening is applied depends on a number of necessary criteria. First, to

avoid steepening density jumps owing to numerical noise, steepening is only applied

158

if the density difference between cells exceeds a minimum relative size:

|ρi+1 − ρi−1|
min(ρi+1, ρi−1)

> 0.01. (A.35)

If the density jump is large enough, we further require that the pressure jump across

the cell be sufficiently small:

|pi+1 − pi−1|
min(pi+1, pi−1)

< 0.1γ
|ρi+1 − ρi−1|

min(ρi+1, ρi−1)
. (A.36)

Next, the second derivative of the density distribution across cells i− 1 and i+ 1 is

estimated as

δ2ρi =
ρi+1 − 2ρi + ρi−1

6∆x2
. (A.37)

The product of the second derivatives then determines whether the local density

profile on either side of the cell i has the same concavity by requiring

δ2ρi−1δ
2ρi+1 > 0. (A.38)

Assuming the three conditions listed in Equations A.35, A.36, and A.38 are satis-

fied, a dimensionless quantity involving the first and third derivatives of density is

calculated as

η̃i = −(δ2ρi+1 − δ2ρi−1)∆x2

ρi+1 − ρi−1

. (A.39)

This quantity is used to compute the steepening coefficient ηi from the parameters

determined heuristically in Colella and Woodward (1984):

ηi = max [0,min(20η̃i − 1, 1)] . (A.40)

The steepening coefficient ηi and the monotonized slopes δwi−1[0] = δρi−1 and

δwi+1[0] = δρi+1 are then used to steepen the left and right interface density values,

providing

ρL = ρL(1− ηi) + (ρi−1 + 0.5δρi−1)ηi

ρR = ρR(1− ηi) + (ρi−1 − 0.5δρi+1)ηi
(A.41)

159

Shock Flattening

Because of their self-steepening property, shocks in PPMP can become under-

resolved, i.e. narrow enough to be contained within a single cell. Tests have demon-

strated that shocks contained within a single cell tend to lead to severe oscillations

near the shock front, while those spread over two or more cells do not pose a prob-

lem (Colella and Woodward, 1984; Fryxell et al., 2000). A solution is to flatten

numerically the interpolation near problematic shocks, reverting to a first-order re-

construction in circumstances where the shock is empirically deemed too narrow.

To determine whether a shock needs flattening, a shock steepness parameter S is

calculated to compare the pressure gradient across two and four cells:

Si =
pi+1 − pi−1

pi+2 − pi−2

(A.42)

The steepness parameter is used to construct a dimensionless coefficient

F̃i = max(0,min[1, 10(Si − 0.75)]) (A.43)

that may cover the range F̃i = [0, 1]. This formulation is designed to ensure that

only shocks contained within fewer than two cells are steepened. Further, we set

F̃i = 0 if the relative pressure jump is not large and the shock is not steep, when

|pi+1 − pi−1|
min(pi+1, pi−1)

<
1

3
(A.44)

or if the velocity gradient is positive (indicating that the fluid is not being compressed

in the direction along which we are reconstructing boundary values), when

ui+1 − ui−1 > 0. (A.45)

The same rules are applied to the dimensionless parameters F̃i−1 and F̃i+1. This

procedure means that PPMP requires a stencil with three cells on both sides of cell

i. Here we are calculating shocks in the x-direction; in the y- and z-directions, the

components v and w are used to test the velocity gradient. The final flattening

coefficient for cell i is set as

Fi =

max(F̃i, F̃i+1), if pi+1 − pi−1 < 0,

max(F̃i, F̃i−1), otherwise.
(A.46)

160

We use this value of Fi to modify the interface values. Unlike in discontinuity

steeping, for shock flattening every primitive variable is modified:

WL = Fiwi + (1− Fi)WL

WR = Fiwi + (1− Fi)WR

(A.47)

If Fi = 0, the expression has no effect on the interface values. If Fi = 1 the zone

average values are used for the interface values, effectively replacing the original

limited slope for cell i with a flatter slope.

Monotonicity

The next step in the reconstruction is to ensure that the parabolic distribution of

each of the variables is monotonic by checking for local maxima and minima and

modifying steep gradients, as in Equations A.21 and A.22:

WL = WR = wi, if (WR −wi)(wi −WL) <= 0

WL = 3wi − 2WR, if (WR −WL)[WL − (3wi − 2WR)] < 0

WL = 3wi − 2WL, if (WR −WL)[(3wi − 2WL)−WR] < 0.

(A.48)

Calculation of the Input States

By this stage, reconstruction of the boundary values has been completed and the

input states for the Riemann problem can be calculated. Once again, the charac-

teristic tracing method of Colella and Woodward (1984) is used. First, the speeds

of the three characteristics are defined as in PLMC and PPMC:

λm = ui − ai, λ0 = ui, λp = ui + ai. (A.49)

Again, ai is the sound speed in cell i calculated using average values of the density

and pressure. Because we have adjusted the boundary values from the original

parabolic interpolation, we must adjust the values of the slopes across the cell so

that the parabolic interpolation retains the correct average value:

δwi = WR −WL, w6 = 6 [wi − 0.5(WL +WR)] . (A.50)

161

We now define α and β, two variables that are associated with the characteristic

wave speeds approaching the left and right interfaces,

αm =
∆t

∆x
min(λm, 0), βm =

∆t

∆x
max(λm, 0),

α0 =
∆t

∆x
min(λ0, 0), β0 =

∆t

∆x
max(λ0, 0),

αp =
∆t

∆x
min(λp, 0), βp =

∆t

∆x
max(λp, 0).

(A.51)

We use these variables to calculate a time-evolved boundary value associated with

each characteristic:

Wm
L = WL −

1

2
αm
[
δwi +w6(1 +

2

3
αm)

]
W 0

L = WL −
1

2
α0

[
δwi +w6(1 +

2

3
α0)

]
W p

L = WL −
1

2
αp
[
δwi +w6(1 +

2

3
αp)

]
Wm

R = WR −
1

2
βm
[
δwi −w6(1− 2

3
βm)

]
W 0

R = WR −
1

2
β0

[
δwi −w6(1− 2

3
β0)

]
W p

R = WR −
1

2
βp
[
δwi −w6(1− 2

3
βp)

]

(A.52)

For example, Wm
L is the time-evolved boundary value at the left interface of the cell

obtained by integrating under the characteristic associated with the left acoustic

wave. If the fluid flow is supersonic toward the right, the left acoustic wave is not

approaching the interface, and Wm
L is simply equal to the reconstructed boundary

value. The same integration appeared in Equation A.25, though in this case we

explicitly integrate under every characteristic and not just the characteristic ap-

proaching the interface with the greatest speed. For the density, normal velocity,

and pressure, we refer to the value calculated using the characteristic approaching

the interface at the greatest speed as the “reference state”, e.g. Wm
L for the left

interface and W p
R for the right. As with PPMC, this reference state is our first guess

at the input state for the Riemann problem. For the transverse velocities, we use

the states associated with the advection speed, W 0
L and W 0

R.

162

These reference states are only first-order accurate approximations and the input

states can be further corrected to account for the presence of other characteristics

approaching the interface. Following the notation in Colella and Woodward (1984),

the description of the algorithm continues in terms of the primitive variables. The

sound speeds for the reference states on the left and right of the cell are computed

aL =

√
γpmL
ρmL

and aR =

√
γppR
ρpR

, (A.53)

along with correction terms that are added to the reference state,

χpL = − 1

2ρmL aL

(
umL − u

p
L −

pmL + ppL
ρmL aL

)
,

χmR =
1

2ρpsaR

(
upR − u

m
R −

ppR − pmR
ρpRaR

)
,

χ0
L =

pmL − p0
L

(ρmL aL)2
+

1

ρmL
− 1

ρ0
L

,

χ0
R =

ppR − p0
R

(ρpRaR)2
+

1

ρpR
− 1

ρ0
R

.

(A.54)

In the event that the characteristic is not traveling toward the interface these cor-

rection terms are set to zero,

χ0
L = 0 ifλ0 > 0,

χpL = 0 ifλp > 0,

χmR = 0 ifλm < 0,

χ0
R = 0 ifλ0 < 0.

(A.55)

The correction terms are then used with the reference state integration to calculate

the final input states for the Riemann problem on each side of the cell:

ρL =

(
1

ρmL
− χ0

L − χ
p
L

)−1

, ρR,i =

(
1

ρpR
− χmR − χ0

R

)−1

,

uL = umL + ρmL aLχ
p
L, uR = upR − ρ

p
RaRχ

m
R ,

pL = pmL + (ρmL aL)2χpL, pR = ppR + (ρpRaR)2χmR ,

vL = v0
L, vR = v0

R

wL = w0
L, wR = w0

R.

(A.56)

163

APPENDIX B

RIEMANN SOLVERS IN CHOLLA

B.0.1 The Exact Solver

The exact solver used in Cholla follows the solver presented in Chapter 4 of Toro

(2009), adapted for implementation in CUDA C. The algorithm to solve the Riemann

problem is presented below, using an x-interface as an example. In the following

section the CTU notation from Section 2.2.1 is used, where states are labeled at the

left and right of the interface.

First, the input states at the left and right of the interface are converted to the

primitive variables, W ∗
L and W ∗

R. (Between GPU kernels like the interface recon-

struction and the Riemann problem, calculated values are stored in the conserved

form.) These vectors are used to compute the corresponding sound speed on either

side of the interface

aL =

√
γpL
ρL

and aR =

√
γpR
ρR

. (B.1)

To determine the Riemann solution, the exact pressure pm and velocity um in the

intermediate state must be computed (see Figure 2.2). We use the Toro (2009) prim-

itive variable Riemann solver to provide an initial approximation to the intermediate

state pressure, given by

p̃ = 0.5(pL + pR) + 0.125(uL − uR)(ρL + ρR)(aL + aR). (B.2)

Because p̃ is an approximation and the solution for p cannot be negative, we set

p̃ = 0 if the calculated pressure is below zero. A two-shock Riemann solver is then

used to calculate a more accurate estimate,

p0 =
gLpL + gRpR − (uR − uL)

gL + gR
, (B.3)

164

with

gk =

√
Ak

p̃+Bk

, Ak =
2

(γ + 1)ρk
, Bk =

γ − 1

γ + 1
pk, where k = L, R. (B.4)

To maintain positivity, a pressure floor of p0 ≥ 10−6 is enforced in this estimate.

The pressure p0 is then used as a starting point in a Newton-Raphson iteration to

compute the exact solution for the pressure in the intermediate region. We define

the pressure functions fL and fR,

fk =


2ak
γ−1

[(
p0
pk

) γ−1
2γ − 1

]
if p0 ≤ pk (rarefaction),

(p0 − pk)
(

Ak
p0+Bk

) 1
2

if p0 > pk (shock),

(B.5)

and their first derivatives f ′L and f ′R,

f ′k =


1

ρkak

(
p0
pk

)− γ+1
2γ

if p0 ≤ pk (rarefaction),(
Ak

Bk+p0

) 1
2
[
1− p0−pk

2(Bk+p0)

]
if p0 > pk (shock).

(B.6)

Again, k = L or R, and Ak and Bk are as defined above. These quantities are used

to calculate the pressure in the intermediate state, pm,

pm = p0 −
fL + fR + uR − uL

f ′L + f ′R
. (B.7)

We then compare the newly computed pressure, pm, to the previously computed

pressure,

∆ = 2
|pm − p0|
|pm + p0|

. (B.8)

If ∆ is greater than a relative tolerance (e.g., 10−6), the values of fk, f
′
k, and pm

are recomputed using the updated value of pm in place of p0 in Equations B.5 - B.8.

When ∆ is less than the tolerance, the procedure halts. Having calculated a suitably

accurate pressure pm, the pressure can then be used to compute the velocity in the

intermediate state as

um = 0.5(uL + uR + fR − fL). (B.9)

Once the values of pm and um in the intermediate state have been computed,

the values for each of the primitive variables can be calculated at the cell interface.

165

To do this, a number of conditions are tested to determine where in the Riemann

solution the interface lies. For pure hydrodynamics there are ten possible outcomes.

If um ≥ 0, the contact discontinuity is to the right of the cell interface. We then

check to see if there is a rarefaction wave on the left, i.e. if pm ≤ pL. If so, there are

three possible solutions.

• If uL− aL ≥ 0 the interface is in the left data state, and the solution is simply

the input data on the left:

ρ = ρL, u = uL, p = pL. (B.10)

• If um − aL
(
pm

pL

) γ−1
2γ

< 0 the interface is in the intermediate data state to the

right of the fan, but left of the contact:

ρ = ρL

(
pm

pL

) 1
γ

, u = um, p = pm. (B.11)

• Otherwise, the interface is within the rarefaction fan:

ρ = ρL

(
a

aL

) 2
γ−1

, u = a, p = pL

(
a

aL

) 2γ
γ−1

,

where a =
2

γ + 1

(
aL +

γ − 1

2
uL

)
.

(B.12)

If there is a shock to the left, rather than a rarefaction, i.e. if pm > pL, the shock

speed is calculated as

sL = uL − aL

√
(γ + 1)

2γ

pm

pL
+
γ − 1

2γ
. (B.13)

• If sL ≥ 0 the interface samples the left data state:

ρ = ρL, u = uL, p = pL. (B.14)

• Otherwise, the interface samples the intermediate data state to the left of the

contact:

ρ = ρL

(
pm

pL
+
γ − 1

γ + 1

)
/

(
pm

pL

γ − 1

γ + 1
+ 1

)
, u = um, p = pm. (B.15)

166

If instead um < 0, the contact discontinuity is to the left of the cell interface and

there is a similar set of five possible outcomes. If there is a rarefaction wave on the

right of the Riemann solution, i.e. if pm ≤ pR there are three possibilities:

• If uR + aR ≤ 0 the interface samples the right data state:

ρ = ρR, u = uR, p = pR. (B.16)

• If um + aR

(
pm

pR

) γ−1
2γ ≥ 0 the interface samples the intermediate state to the

left of the fan, but right of the contact:

ρ = ρR

(
pm

pR

) 1
γ

, u = um, p = pm. (B.17)

• Otherwise, the interface samples the rarefaction fan:

ρ = ρR

(
a

aR

) 2
γ−1

, u = −a, p = pR

(
a

aR

) 2γ
γ−1

,

where a =
2

γ + 1

(
aR +

γ − 1

2
uR

)
.

(B.18)

If pm > pR there is a shock to the right rather than a rarefaction, the shock speed

is calculated as

sLR = uR + aR

√
(γ + 1)

2γ

pm

pR
+
γ − 1

2γ
. (B.19)

• If sR ≤ 0 the interface samples the right data state:

ρ = ρR, u = uR, p = pR. (B.20)

• Otherwise, the interface samples the intermediate data state to the right of

the contact:

ρ = ρR

(
pm

pR
+
γ − 1

γ + 1

)
/

(
pm

pR

γ − 1

γ + 1
+ 1

)
, u = um, p = pm. (B.21)

167

After determining where in the Riemann solution the interface samples, the

evolved primitive variables ρ, u, and p at the cell interface are determined. The

fluxes of the conserved variables can then be calculated following Equation 2.11:

F =



ρu

ρu2 + p

ρuvk

ρuwk

(E + p)u


, (B.22)

where k = L or R; L if u ≥ 0, and R if u < 0. These conditions reflect the fact that

transverse velocities are simply advected with the flow.

B.0.2 The Roe Solver

Rather than using an expensive iterative procedure to calculate the exact solution to

the Riemann problem, the Roe (1981) Riemann solver calculates an exact solution

to a linearized version of the Euler equations. Below the procedure for calculating

the Roe fluxes at an x-interface is detailed. The y- and z-interface calculations are

identical modulo an appropriate change of variables. Should the approximate Roe

solver fail, we include a failsafe based on the method of Stone et al. (2008) where

HLLE fluxes (Harten et al., 1983; Einfeldt, 1988) are substituted. The Roe and

HLLE solvers are described below.

The Roe solver starts with the calculated input vectors of primitive variables at

the left and right of an interface, W ∗
L and W ∗

R. Fluxes corresponding to the left and

right state, FL and FR, are calculated following Equation 2.11. The Roe average

state, ũ = (ρ̃, ũ, ṽ, w̃, H̃)T , is then computed:

ρ̃ =
√
ρL
√
ρR

ũ = (
√
ρLuL +

√
ρRuR)/(

√
ρL +

√
ρR)

ṽ = (
√
ρLvL +

√
ρRvR)/(

√
ρL +

√
ρR)

w̃ = (
√
ρLwL +

√
ρRwR)/(

√
ρL +

√
ρR)

H̃ = (
√
ρLHL +

√
ρRHR)/(

√
ρL +

√
ρR),

(B.23)

168

with the enthalpy, H = (E + p)/ρ, used instead of the pressure. The average sound

speed

ã =

√
(γ − 1)(H̃ − 0.5Ṽ

2
), where Ṽ

2
= ũũ+ ṽṽ + w̃w̃ (B.24)

is also needed. These Roe average states are used to calculate the eigenvalues of the

Roe Jacobian,

λm = ũ− ã, λ0 = ũ, and λp = ũ+ ã. (B.25)

If the flow is supersonic (λm ≥ 0 to the right, or λp ≤ 0 to the left), the solver

returns the appropriate left or right state fluxes FL or FR. If flow is subsonic, the

calculation of the Roe fluxes proceeds.

Differences in the conserved variables between the left and right states are com-

puted:

δρ = ρR − ρL

δmx = mx,R −mx,L

δmy = my,R −my,L

δmz = mz,R −mz,L

δE = ER − EL.

(B.26)

These differences are projected onto the characteristics by multiplying by the left

eigenvector associated with each eigenvalue. The resulting characteristics are the

wave strengths, ξ, from Equation 2.27:

ξ0 = δρNa(0.5γ
′Ṽ

2
+ ũã)− δmxNa(γ

′ũ+ ã)− δmyNaγ
′ṽ − δmzNaγ

′w̃ + δENaγ
′

ξ1 = −δρṽ + δmy

ξ2 = −δρw̃ + δmz

ξ3 = δρ(1−Naγ
′Ṽ

2
) + δmxγ

′ũ/ã2 + δmyγ
′ṽ/ã2 + δmzγ

′w̃/ã2 − δEγ′/ã2

ξ4 = δρNa(0.5γ
′Ṽ

2 − ũã)− δmxNa(γ
′ũ− ã)− δmyNaγ

′ṽ − δmzNaγ
′w̃ + δENaγ

′

(B.27)

where Na = 1/(2ã2) and γ′ = γ − 1. Numeric subscripts denote the elements of

ξ. Each characteristic variable is multiplied by its associated eigenvalue, yielding a

169

vector of coefficients, C:

C0 = ξ0|λm|, C1 = ξ1|λ0|, C2 = ξ2|λ0|, C3 = ξ3|λ0|, C4 = ξ4|λp| (B.28)

The product of these coefficients with the right eigenvectors are then summed, keep-

ing track of the summation in the vector s:

s0 = C0 + C3 + C4

s1 = C0(ũ− ã) + C3ũ+ C4(ũ+ ã)

s2 = C0ṽ + C1 + C3ṽ + C4ṽ

s3 = C0w̃ + C2 + C32̃ + C4w̃

s4 = C0(H̃ − ũã) + C1ṽ + C2w̃ + 0.5C3Ṽ
2

+ C4(H̃ + ũã)

(B.29)

By this stage, all information needed to compute the Roe fluxes has been obtained.

The Roe fluxes are then computed as

FRoe =
1

2
(FL + FR − s) (B.30)

Before returning these fluxes, however, the intermediate states are examined for

possible negative densities or pressures. The intermediate states, labeled Um
L and

Um
R in analogy with the exact Riemann solver, are calculated by projecting the

characteristic variables onto the conserved variables. Each characteristic variable is

multiplied by its associated right eigenvector and the results summed, in turn, to

the left state. The left intermediate state, Um
L , is calculated as

ρmL = ρL + ξ0

ρumL = ρuL + ξ0(ũ− ã)

ρvmL = ρvL + ξ0ṽ

ρwmL = ρwL + ξ0w̃

Em
L = EL + ξ0(H̃ − ũã).

(B.31)

If λ0 > λm, we check for negative density and pressure. We then move on to the

170

right intermediate state, Um
R :

ρmR = ρmL + ξ3

ρumR = ρumL + ξ3ũ

ρvmR = ρvmL + ξ1 + ξ3ṽ

ρwmR = ρwmL + ξ2 + ξ3w̃

Em
R = Em

L + ξ1ṽ + ξ2w̃ + 0.5ξ3Ṽ
2
.

(B.32)

If λp > λ0 then negative densities and pressures are possible and, if present, the

Roe fluxes are replaced with HLLE fluxes. Otherwise the Roe fluxes calculated in

Equation B.30 are returned.

Little additional work must be done to calculate the HLLE fluxes since many of

the required quantities are computed for the Roe fluxes. The HLLE solver constructs

a single average state between the right and left input states, neglecting the contact

wave. Ignoring the contact wave means that density discontinuities diffuse quickly,

but the HLLE solver has the advantage of always producing positive intermediate

densities and pressures, as shown in Einfeldt et al. (1991). The HLLE flux algorithm

starts with the computation of the sound speed for the left and right input states,

aL and aR. Bounding speeds are then calculated, defined by the minimum and

maximum Roe eigenvalues and the left and right acoustic waves:

bm = min[min(λm, uL − aL), 0], bp = max[max(λp, uR + aR), 0] (B.33)

These speeds are used to compute left and right fluxes:

FL = F (WL)− bmUL and FR = F (WR)− bpUR, (B.34)

where F (W) is calculated using Equation 2.11, and U refers to the conserved vari-

ables on either side of the interface, i.e. the input states for the Riemann problem.

These intermediate fluxes are then employed to compute the HLLE fluxes, given by

FHLLE =
1

2

[
(FL + FR) + (FL − FR)

(
bp + bm

bp − bm

)]
. (B.35)

If the Roe solver fails during the transverse flux or conserved variable update steps

of the CTU algorithm, these HLLE fluxes may be used.

171

HLLC exact

Figure B.1: We compare the results of a 2D Kelvin-Helmholtz simulation, start-
ing with a discontinuous interface, on the left evolved using an HLLC Riemann
solver, and on the right using an exact solver. Although the HLLC solver is an
approximation, the contact discontinuity is well resolved with both methods.

B.0.3 The HLLC Solver

We also employ an HLLC Riemann solver for this work (see Harten et al., 1983; Toro

et al., 1994). The Cholla implementation of the HLLC solver follows the description

in Batten et al. (1997), which revises the original HLLC solver presented in Toro

et al. (1994) with updated maximum and minimum wave speeds that account for the

possibility of colliding shocks within a cell. The HLLC solver has several advantages

over the exact and Roe Riemann solvers presented in the previous sections. Unlike

the exact solver, the HLLC solver does not require an iterative procedure to calculate

the intermediate-state pressure. This feature makes it a more natural fit to the

GPU thread model, which works best on algorithms without thread divergence

(i.e. fewer “if” statements). Also, like all Riemann solvers in the HLL family,

the HLLC is positive-definite (Batten et al., 1997), meaning that it never produces

negative pressures or densities in the intermediate state solution (Einfeldt et al.,

1991). These unphysical solutions can arise using linearized solvers like the Roe,

which require “fallback” techniques in failure scenarios (see, e.g., Lemaster and

Stone, 2009). Standard hydrodynamic tests show that the HLLC solver provides a

comparable level of accuracy to the Roe and exact solvers, including problems that

involve contact discontinuities (Batten et al., 1997). We qualitatively illustrate this

in Figure B.1, which compares well-resolved contact interfaces in Kelvin-Helmholtz

simulations using the HLLC solver vs an exact solver.

172

APPENDIX C

THE H CORRECTION

As mentioned in the main text, strictly upwind multidimensional integration algo-

rithms like CTU are susceptible to a particular type of numerical pathology, referred

to as the carbuncle instability owing to its appearance (Quirk, 1994). The carbun-

cle instability arises in problems containing strong, grid-aligned shocks as a result

of insufficient dissipation when inserting a one dimensional Riemann flux into a

multidimensional problem. In the scenario when a planar shock is present perpen-

dicular to the direction of the fluid flow, crossflow oscillations arise that grow and

lead to severe inaccuracies in the numerical model. To correct this phenomenon,

Cholla implements a solution devised by Sanders et al. (1998) that accounts for the

perpendicular velocities when calculating the Riemann flux normal to an interface.

The correction thereby adds sufficient dissipation to mitigate the carbuncle insta-

bility. This method for suppressing the carbuncle instability is called H correction

in reference to the shape of the required stencil.

In Cholla, H Correction is implemented in conjunction with the Roe Riemann

solver. The correction is only applied to the fluxes calculated during the second set

of Riemann problems, between the transverse flux update and the final conserved

variable update of the CTU algorithm. To apply the H correction, at every interface

a quantity η is computed that depends on the velocity normal to the interface and

the sound speed. For the x-interface at (i + 1
2
, j) in a two dimensional simulation,

this quantity can be computed as

η(i+ 1
2
,j) =

1

2
|(uR + aR)− (uL + aL)|, (C.1)

where uR and uL are the normal velocity at the interface calculated using the right

and left input states, and aL and aR are the corresponding sound speeds. For y-

and z-interfaces, the velocity components v and w would be used. Once a value of

173

η has been calculated for each interface, a further quantity ηH is computed for each

interface by finding the maximum value of η for each of the surrounding interfaces:

ηH
(i+ 1

2
,j)

= max[η(i−1,j+ 1
2

), η(i−1,j− 1
2
, η(i+ 1

2
,j), η(i+1,j+ 1

2
), η(i+1,j− 1

2
)]. (C.2)

For x-interfaces, information about the maximum wavespeeds at the adjacent y-

interfaces that could affect the Riemann solution are thereby incorporated. In three

dimensions, the calculation of ηH uses an appropriate nine-point stencil. The ηH

quantity is used in conjunction with the Roe Riemann solver when calculating the

CTU fluxes for an interface (F n+ 1
2 , Gn+ 1

2 , and Hn+ 1
2) by replacing the eigenvalues

λα in Equation B.28 with

|λ̃α| = max(|λα|, ηH) (C.3)

This substitution serves to add crossflow dissipation to the one-dimensional Roe

fluxes and mitigates the carbuncle instability, as seen in Figure 2.18. Using the H

correction comes at an additional cost, as its stencil requires adding an extra ghost

cell on each side of the simulation in every dimension.

174

APPENDIX D

A SIMPLE INTEGRATION METHOD

In Chapter 2, we presented the Cholla implementation of the 6-step corner trans-

port upwind (CTU) integration scheme originally described in Gardiner and Stone

(2008b). The unsplit CTU integrator preserves symmetry and minimizes numeri-

cal diffusion, making the scheme a good choice for many magnetohydrodynamics

problems (see Stone et al. 2008). Despite performing well in the standard Liska

and Wendroff (2003b) tests, we found that the transverse flux correction step of

CTU led to estimates for the 1D density and energy fluxes that produced nega-

tive densities and pressures after the final update, particularly when used to model

multidimensional strong radiative shocks. In fact, our implementation of the CTU

integration method always fails for the simulations in Chapter 3, regardless of the

choice of interface reconstruction method or Riemann solver. Therefore, we instead

employed a very simple, robust integration scheme for the simulations presented in

Chapter 3, described below.

The integrator we use follows the initial steps of CTU, including piecewise

parabolic reconstruction of the interface values in the primitive variables, char-

acteristic time evolution of those interface values, and one-dimensional Riemann

solutions at each interface to calculate fluxes. We implemented each of these ini-

tial steps as described in Chapter 2. However, rather than updating the interface

values using the transverse fluxes, we simply skip to the final update and use only

the one-dimensional fluxes to evolve the conserved quantities. Because the fluxes

do not contain corrections for transverse directions, we found this method requires

a very low CFL number to be stable - we use cfl = 0.1 for all the simulations in

Chapter 3. The low CFL number makes the integrator expensive despite its simplic-

ity, but when combined with a dual energy formalism the method is quite robust.

Figure D.1 shows the results of this new integration scheme as compared to the

175

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15

Pr
es

su
re

0.00 0.05 0.10 0.15 0.20 0.25 0.30
0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.75
0.80
0.85
0.90
0.95
1.00
1.05
1.10
1.15

Pr
es

su
re

Figure D.1: A 2D implosion test, as presented in Chapter 2. A colored pressure
map is overlaid with 36 density contours ranging from 0.125 to 1.0. On the left
are the results at t = 2.5 for the integration scheme used for the simulations in the
paper, on the right are the results at the same time using the CTU integrator. Both
simulations used a CFL number of 0.1, piecewise parabolic reconstruction, and an
HLLC Riemann solver. The additional diffusion in the integration scheme presented
on the left prevents as clear a jet from forming, but also allows the turbulent cloud
simulations presented in this work to run without failing (which proved impossible
with CTU).

CTU method on the implosion test described in Liska and Wendroff (2003b). As

the implosion test shows, this integrator is slightly more diffusive than CTU. The

additional diffusion allows this simple integrator to succeed in circumstances where

CTU fails.

176

APPENDIX E

DUAL ENERGY IN CHOLLA

The conservative nature of Godunov methods enables shock capturing and allows

them to correctly model shock heating, both highly desirable qualities in a hydrody-

namics modeling scheme. However, in scenarios where the kinetic energy of the gas

is large relative to the internal energy, the total energy formulation can lead to neg-

ative values of the internal energy. These scenarios may arise in the physical models

we investigate in Chapter 3, where high mach number turbulent flows interact with

rapidly cooling gas. A negative value of the internal energy does not necessarily

affect the dynamic behavior of the gas in such scenarios, which is dominated by the

much larger kinetic energy. However, an accurate estimate of the internal energy is

required to correctly calculate the gas temperature, which is needed to determine the

correct radiative cooling source terms. Therefore, in such scenarios, a modification

of the total energy update may improve the physical realism of the model. So-called

“dual-energy” schemes that evolve both the internal energy and total energy simul-

taneously have proven to be a robust approach to fixing this problem (Ryu et al.,

1993; Bryan et al., 1995). We employ a dual-energy formulation in Cholla that

roughly follows the descriptions in Bryan et al. (2014) and Teyssier (2015). Below,

we briefly outline the 1D version of the dual-energy update.

Without the dual-energy model, Cholla stores and evolves the conserved hy-

drodynamic variables: density ρ, the three components of the momentum vector,

ρv = (ρvx, ρvy, ρvz)
T, and the total energy, Etot = 1

2
ρv2 + e, where e is the inter-

nal energy. With the dual-energy model, Cholla also explicitly tracks an estimated

internal energy. For the majority of steps in the hydrodynamic update, including

interface reconstruction and Riemann solutions, the internal energy is treated as

a passively advected scalar in the same manner as the transverse velocities. How-

ever, during the final update of the conserved variables Cholla evolves the separately

177

tracked internal energy in cell i according to the following non-conservative equation:

en+1
i = eni +

δt

δx

[
(F (e)i− 1

2
− F (e)i+ 1

2
) +

1

2
Pi(vi−1 − vi+1)

]
. (E.1)

The second term on the right hand side of this update captures the flux of internal

energy at the cell interfaces. The third term on the right hand side encompasses

the change in internal energy due to pressure forces. We use 1/2(vi−1 − vi+1)/δx

as a one-dimensional estimate of the velocity derivative. Both the pressure P and

velocities vi−1 and vi+1 used in Equation E.1 are calculated at time n, making the

update only first-order accurate in time. However, in cases where the conservative

total energy update results in a negative estimate of the internal energy this first

order estimate is more accurate.

Once the new total energy and internal energy have been calculated at time

n + 1, we must determine which of the two internal energy calculations to use,

the conservative estimate obtained by subtracting the kinetic energy from the total

energy or the non-conservative estimate obtained with Equation E.1. In addition,

the internal energy must be synchronized with the total energy after the update.

Here we follow the decision tree outlined in Bryan et al. (2014). At the end of

the hydrodynamic update, the conservative estimate of the internal energy in cell

i, econs = Etot − 1
2
ρv2, is compared to the total energy in that cell. If the con-

servatively calculated internal energy is large enough (i.e., econs > 0.001Etot), we

use the conservative estimate for the updated internal energy: en+1 = econs. In

addition, to prevent the use of the nonconservative update in shocks, we compare

the conservatively calculated internal energy to the maximum nearby total energy,

Emax = max(Ei−1, Ei, Ei+1). If econs > 0.1Emax, we again use the conservative es-

timate for the internal energy update, en+1 = econs. However, if neither condition

is met, we keep the non-conservative estimate for the separately tracked internal

energy following Equation B1.

The last step in the dual-energy formulation is to synchronize the updated total

energy with the updated internal energy. If the non-conservative estimate for en+1

is used, the value of the total energy must be corrected by subtracting off the old

178

conservatively calculated energy, and adding the new non-conservative estimate, i.e.

En+1
tot = En+1

tot − econs + en+1.

179

APPENDIX F

OPTICALLY-THIN RADIATIVE COOLING IN CHOLLA

The addition of radiative cooling requires the introduction of source terms to the

right-hand side of the energy equation

δE

δt
+∇ · [v(E + P)] = Γ− Λ. (F.1)

Here, E = 1
2
ρv2 +e is again the total fluid energy per unit volume of the gas, ρ is the

density, v the velocity vector, and P the gas pressure related to the internal energy e

via an ideal gas equation of state, P = (γ−1)e with adiabatic index γ. The quantity

Γ is a source term that accounts for heating of the gas, and Λ represents radiative

losses (see, e.g., Katz et al., 1996). In the following subsections, we describe how

Cholla couples the source terms to the adiabatic equations and how we calculate Γ

and Λ.

F.0.1 Coupling of Source Terms

We implement radiative cooling in Cholla using an operator-split approach. After

the hydrodynamic quantities have been updated for a given time step according to

the ideal hydrodynamic equations, we add a source term to the internal energy to

account for losses (or gains) as a result of radiative cooling (or heating) of the gas,

such that

en+1 = ẽn + ė∆tad, (F.2)

where ė is the rate of change of the internal energy, and ∆tad is the hydrodynamic

time step. Here, ẽn represents the updated internal energy after the hydrodynamic

time step. The internal energy is calculated either from the gas pressure assuming

an ideal gas equation of state, or tracked directly via the dual energy formalism.

Because the adiabatic time step can be large compared to the radiative cooling

180

time e/ė, the rate of change in internal energy is often a nonlinear function of

the temperature over the course of a single ∆tad. Thus, we employ the common

approach of subcycling the radiative cooling steps (e.g. Smith et al., 2008; Gray

and Scannapieco, 2010), calculating a new ė many times over the course of a single

adiabatic time step so as to limit the change in internal energy for a radiative sub

step, ∆trad, to less than five percent of the current internal energy:

∆e

e
< 0.05. (F.3)

In practice, this update means that at the end of each hydrodynamic time step,

we calculate the temperature for a given cell’s number density and internal energy

according to the ideal gas law

T =
P

nk
, (F.4)

where n is the number density of the gas in cm−3 calculated assuming n = ρ/(µmp),

mp is the mass of a proton, and k is Boltzmann’s constant. We have assumed a

mean molecular weight of µ = 1 for all calculations, and have verified this does not

influence our results compared with values of µ = 0.6, as described in Section 3.8.

We next look up the tabulated net cooling rate associated with this density

and temperature using a bilinear interpolation (described below), and calculate the

resulting change in temperature over the full adiabatic time step given the cooling

rate, ∆T = Ṫ ∆tad. If the change in temperature is greater than five percent, we

shrink the radiative sub step such that ∆trad results in a temperature change of five

percent. We then update the temperature with this smaller time step, and repeat

the process until we have synchronized with the full adiabatic time step.

F.0.2 Calculating Cooling and Heating Rates

We tabulate the cooling and heating rates per unit volume, Λ and Γ (measured in erg

s−1 cm−3), using the Cloudy code, version 13.03 (Ferland et al., 2013). For the calcu-

lations presented in this work, we assume that the gas is in photoionization equilib-

rium, subject to the z = 0 cosmic microwave background and the HM05 UV/X-ray

background, as described in Hazy, the Cloudy documentation. The gas metallicity

181

1 2 3 4 5 6 7 8 9
log10(T) [K]

10-25

10-24

10-23

10-22

10-21
|

-
| /

 n
2 h [

er
g

s-1
 cm

3]

nh = - 3

1 2 3 4 5 6 7 8 9
log10(T) [K]

10-25

10-24

10-23

10-22

10-21

nh = 0

1 2 3 4 5 6 7 8 9
log10(T) [K]

10-25

10-24

10-23

10-22

10-21

nh = 3

Figure F.1: Examples of cooling and heating rates as a function of temperature
for solar metallicity gas calculated using Cloudy. The cooling function (dashed
line), heating function (dotted line), and net energy gain or loss (solid) are shown
for gas of three different densities. The gas is assumed to be in photoionization
equilibrium while being exposed to the z = 0 CMB and a Haardt & Madauu UV/X-
ray background. At low densities, photoionization heating leads to an equilibrium
temperature ∼ 104 K, while at higher densities heating is less effective.

is assumed to be solar, using the GASS10 abundances in Cloudy (Grevesse et al.,

2010). Examples of the absolute cooling rates for gas of several different densities

are shown in Figure F.1.

Our cooling and heating rates are tabulated on a grid, with points calculated

at equally spaced logarithmic intervals of 0.1 between 10 K < T < 109 K, and

10−6 cm−3 < n < 106 cm−3. To perform the interpolation necessary to calculate

Λ and Γ at an arbitrary n and T , we take advantage of a novel feature of GPUs -

texture memory. This special memory space allows a user to copy a 1, 2, or 3 dimen-

sional array, or “texture”, onto the GPU, and then use built-in GPU functions to

quickly retrieve arbitrary values from that texture using bilinear interpolation. We

have tested this method against a similar CPU-based method using GSL bilinear

interpolation functions, and find that the GPU texture memory approach typically

speeds up the radiative cooling calculation by orders of magnitude as compared to

a CPU function. In fact, when implemented using the operator-splitting approach

described above for simulations run with ∼ 1283 cells/GPU, the time spent cal-

culating radiative cooling is completely negligible compared to the hydrodynamic

calculations.

182

REFERENCES

Aarseth, S. J. (1999). From NBODY1 to NBODY6: The Growth of an Industry.
PASP, 111, pp. 1333–1346. doi:10.1086/316455.

Agertz, O., A. V. Kravtsov, S. N. Leitner, and N. Y. Gnedin (2013). Toward a
Complete Accounting of Energy and Momentum from Stellar Feedback in Galaxy
Formation Simulations. ApJ, 770(1), p. 25.

Armillotta, L., F. Fraternali, and F. Marinacci (2016). Efficiency of gas cooling and
accretion at the disc-corona interface. MNRAS. doi:10.1093/mnras/stw1930.

Balsara, D. S. (2004). Second-Order-accurate Schemes for Magnetohydrody-
namics with Divergence-free Reconstruction. ApJS, 151, pp. 149–184. doi:
10.1086/381377.

Banda-Barragán, W. E., E. R. Parkin, C. Federrath, R. M. Crocker, and G. V.
Bicknell (2016). Filament formation in wind-cloud interactions - I. Spherical
clouds in uniform magnetic fields. MNRAS, 455, pp. 1309–1333. doi:10.1093/
mnras/stv2405.

Bard, C. and J. Dorelli (2010). GPU Accelerated Hall Magnetohydrodynamics.
AGU Fall Meeting Abstracts, p. A1349.

Batten, P., N. Clarke, C. Lambert, and D. M. Causon (1997). On the choice of
wavespeeds for the HLLC Riemann Solver. SIAM Journal on Scientific Comput-
ing, 18, pp. 1553–1570.

Bedogni, R. and P. R. Woodward (1990). Shock wave interactions with interstellar
clouds. A&A, 231, pp. 481–498.

Berger, M. J. and P. Colella (1989). Local adaptive mesh refinement for shock
hydrodynamics. Journal of Computational Physics, 82, pp. 64–84. doi:10.1016/
0021-9991(89)90035-1.

Berger, M. J. and J. Oliger (1984). Adaptive Mesh Refinement for Hyperbolic Partial
Differential Equations. Journal of Computational Physics, 53, pp. 484–512. doi:
10.1016/0021-9991(84)90073-1.

Bordoloi, R., J. R. Rigby, J. Tumlinson, M. B. Bayliss, K. Sharon, M. G. Gladders,
and E. Wuyts (2016). Spatially resolved galactic wind in lensed galaxy RCSGA
032727-132609. MNRAS, 458, pp. 1891–1908. doi:10.1093/mnras/stw449.

183

Bouché, N., W. Hohensee, R. Vargas, G. G. Kacprzak, C. L. Martin, J. Cooke, and
C. W. Churchill (2012). Physical properties of galactic winds using background
quasars. MNRAS, 426, pp. 801–815. doi:10.1111/j.1365-2966.2012.21114.x.

Brandvik, T. and G. Pullan (2007). Acceleration of a two-dimensional Euler flow
solver using commodity graphics hardware. Proceedings of the Institution of Me-
chanical Engineers, Part C: Journal of Mechanical Engineering Science, 221(12),
pp. 1745–1748. doi:10.1243/09544062JMES813FT.

Brüggen, M. and E. Scannapieco (2016). The Launching of Cold Clouds by Galaxy
Outflows. II. The Role of Thermal Conduction. ApJ, 822, 31. doi:10.3847/
0004-637X/822/1/31.

Bryan, G. L., M. L. Norman, B. W. O’Shea, T. Abel, J. H. Wise, M. J. Turk, D. R.
Reynolds, D. C. Collins, P. Wang, S. W. Skillman, B. Smith, R. P. Harkness,
J. Bordner, J.-h. Kim, M. Kuhlen, H. Xu, N. Goldbaum, C. Hummels, A. G.
Kritsuk, E. Tasker, S. Skory, C. M. Simpson, O. Hahn, J. S. Oishi, G. C. So,
F. Zhao, R. Cen, Y. Li, and The Enzo Collaboration (2014). ENZO: An Adaptive
Mesh Refinement Code for Astrophysics. ApJS, 211, 19. doi:10.1088/0067-0049/
211/2/19.

Bryan, G. L., M. L. Norman, J. M. Stone, R. Cen, and J. P. Ostriker (1995). A
piecewise parabolic method for cosmological hydrodynamics. Computer Physics
Communications, 89, pp. 149–168. doi:10.1016/0010-4655(94)00191-4.

Chan, C.-k., D. Mitra, and A. Brandenburg (2012). Dynamics of saturated energy
condensation in two-dimensional turbulence. Phys. Rev. E, 85(3), 036315. doi:
10.1103/PhysRevE.85.036315.

Chandrasekhar, S. (1961). Hydrodynamic and Hydromagnetic Stability. Oxford
University Press.

Chevalier, R. A. and A. W. Clegg (1985). Wind from a starburst galaxy nucleus.
Nature, 317, p. 44. doi:10.1038/317044a0.

Coil, A. L., B. J. Weiner, D. E. Holz, M. C. Cooper, R. Yan, and J. Aird (2011).
Outflowing Galactic Winds in Post-starburst and Active Galactic Nucleus Host
Galaxies at 0.2 ¡ z ¡ 0.8. ApJ, 743, 46. doi:10.1088/0004-637X/743/1/46.

Colella, P. (1990). Multidimensional upwind methods for hyperbolic conserva-
tion laws. Journal of Computational Physics, 87, pp. 171–200. doi:10.1016/
0021-9991(90)90233-Q.

Colella, P. and H. M. Glaz (1985). Efficient solution algorithms for the Riemann
problem for real gases. Journal of Computational Physics, 59, pp. 264–289. doi:
10.1016/0021-9991(85)90146-9.

184

Colella, P. and M. D. Sekora (2008). A limiter for PPM that preserves accuracy
at smooth extrema. Journal of Computational Physics, 227, pp. 7069–7076. doi:
10.1016/j.jcp.2008.03.034.

Colella, P. and P. R. Woodward (1984). The Piecewise Parabolic Method (PPM) for
Gas-Dynamical Simulations. Journal of Computational Physics, 54, pp. 174–201.
doi:10.1016/0021-9991(84)90143-8.

Cooper, J. L., G. V. Bicknell, R. S. Sutherland, and J. Bland-Hawthorn (2008).
Three-Dimensional Simulations of a Starburst-driven Galactic Wind. ApJ, 674,
157-171. doi:10.1086/524918.

Cooper, J. L., G. V. Bicknell, R. S. Sutherland, and J. Bland-Hawthorn (2009a).
Starburst-Driven Galactic Winds: Filament Formation and Emission Processes.
ApJ, 703, pp. 330–347. doi:10.1088/0004-637X/703/1/330.

Cooper, J. L., G. V. Bicknell, R. S. Sutherland, and J. Bland-Hawthorn (2009b).
Starburst-Driven Galactic Winds: Filament Formation and Emission Processes.
ApJ, 703, pp. 330–347. doi:10.1088/0004-637X/703/1/330.

Courant, R., K. Friedrichs, and H. Lewy (1967). On the Partial Difference Equations
of Mathematical Physics. IBM Journal of Research and Development, 11, pp.
215–234. doi:10.1147/rd.112.0215.

Creasey, P., T. Theuns, R. G. Bower, and C. G. Lacey (2011). Numerical overcooling
in shocks. MNRAS, 415, pp. 3706–3720. doi:10.1111/j.1365-2966.2011.19001.x.

Dalla Vecchia, C. and J. Schaye (2012). Simulating galactic outflows with thermal
supernova feedback. MNRAS, 426, pp. 140–158. doi:10.1111/j.1365-2966.2012.
21704.x.

Davé, R., B. D. Oppenheimer, and K. Finlator (2011). Galaxy evolution in cos-
mological simulations with outflows - I. Stellar masses and star formation rates.
MNRAS, 415, pp. 11–31. doi:10.1111/j.1365-2966.2011.18680.x.

Davé, R., R. J. Thompson, and P. F. Hopkins (2016). MUFASA: Galaxy Formation
Simulations With Meshless Hydrodynamics. ArXiv e-prints.

Domı́nguez, J. M., A. J. C. Crespo, D. Valdez-Balderas, B. D. Rogers, and
M. Gómez-Gesteira (2013). New multi-GPU implementation for smoothed particle
hydrodynamics on heterogeneous clusters. Computer Physics Communications,
184, pp. 1848–1860. doi:10.1016/j.cpc.2013.03.008.

Einfeldt, B. (1988). On Godunov-Type Methods for Gas Dynamics. SIAM Journal
of Numerical Analysis, 25, pp. 294–318.

185

Einfeldt, B., P. L. Roe, C. D. Munz, and B. Sjogreen (1991). On Godunov-type
methods near low densities. Journal of Computational Physics, 92, pp. 273–295.
doi:10.1016/0021-9991(91)90211-3.

Faucher-Giguère, C.-A., D. Kereš, and C.-P. Ma (2011). The baryonic assembly of
dark matter haloes. MNRAS, 417, pp. 2982–2999. doi:10.1111/j.1365-2966.2011.
19457.x.

Ferland, G. J., R. L. Porter, P. A. M. van Hoof, R. J. R. Williams, N. P. Abel, M. L.
Lykins, G. Shaw, W. J. Henney, and P. C. Stancil (2013). The 2013 Release of
Cloudy. RMXAA, 49, pp. 137–163.

Forum, M. P. (1994). MPI: A Message-Passing Interface Standard. Technical report,
Knoxville, TN, USA.

Fragile, P. C., P. Anninos, K. Gustafson, and S. D. Murray (2005a). Magnetohy-
drodynamic Simulations of Shock Interactions with Radiative Clouds. ApJ, 619,
pp. 327–339. doi:10.1086/426313.

Fragile, P. C., P. Anninos, K. Gustafson, and S. D. Murray (2005b). Magnetohy-
drodynamic Simulations of Shock Interactions with Radiative Clouds. ApJ, 619,
pp. 327–339. doi:10.1086/426313.

Fragile, P. C., S. D. Murray, P. Anninos, and W. van Breugel (2004). Radiative
Shock-induced Collapse of Intergalactic Clouds. ApJ, 604, pp. 74–87. doi:10.
1086/381726.

Frigo, M. and S. G. Johnson (2005). The Design and Implementation of FFTW3.
Proceedings of the IEEE, 93(2), pp. 216–231. Special issue on “Program Genera-
tion, Optimization, and Platform Adaptation”.

Fryxell, B., K. Olson, P. Ricker, F. X. Timmes, M. Zingale, D. Q. Lamb, P. Mac-
Neice, R. Rosner, J. W. Truran, and H. Tufo (2000). FLASH: An Adaptive Mesh
Hydrodynamics Code for Modeling Astrophysical Thermonuclear Flashes. ApJS,
131, pp. 273–334. doi:10.1086/317361.

Gardiner, T. A. and J. M. Stone (2008a). An unsplit Godunov method for ideal
MHD via constrained transport in three dimensions. Journal of Computational
Physics, 227, pp. 4123–4141. doi:10.1016/j.jcp.2007.12.017.

Gardiner, T. A. and J. M. Stone (2008b). An unsplit Godunov method for ideal
MHD via constrained transport in three dimensions. Journal of Computational
Physics, 227, pp. 4123–4141. doi:10.1016/j.jcp.2007.12.017.

186

Gingold, R. A. and J. J. Monaghan (1977). Smoothed particle hydrodynamics -
Theory and application to non-spherical stars. MNRAS, 181, pp. 375–389. doi:
10.1093/mnras/181.3.375.

Godunov, S. K. (1959). A Difference Scheme for Numerical Solution of Discontinuous
Solution of Hydrodynamic Equations. Math. Sbornik, 47, pp. 271–306.

González, M., E. Audit, and P. Huynh (2007). HERACLES: a three-dimensional
radiation hydrodynamics code. A&A, 464, pp. 429–435. doi:10.1051/0004-6361:
20065486.

Gray, W. J. and E. Scannapieco (2010). Formation of Compact Stellar Clusters
by High-Redshift Galaxy Outflows. I. Non-Equilibrium Coolant Formation. ApJ,
718, pp. 417–432. doi:10.1088/0004-637X/718/1/417.

Gregori, G., F. Miniati, D. Ryu, and T. W. Jones (2000). Three-dimensional Mag-
netohydrodynamic Numerical Simulations of Cloud-Wind Interactions. ApJ, 543,
pp. 775–786. doi:10.1086/317130.

Grevesse, N., M. Asplund, A. J. Sauval, and P. Scott (2010). The chemical compo-
sition of the Sun. Ap&SS, 328, pp. 179–183. doi:10.1007/s10509-010-0288-z.

Griffiths, R. E., A. Ptak, E. D. Feigelson, G. Garmire, L. Townsley, W. N. Brandt,
R. Sambruna, and J. N. Bregman (2000). Hot Plasma and Black Hole Binaries
in Starburst Galaxy M82. Science, 290, pp. 1325–1328. doi:10.1126/science.290.
5495.1325.

Harfst, S., A. Gualandris, D. Merritt, R. Spurzem, S. Portegies Zwart, and P. Berczik
(2007). Performance analysis of direct N-body algorithms on special-purpose
supercomputers. New Astron., 12, pp. 357–377. doi:10.1016/j.newast.2006.11.003.

Harten, A., P. D. Lax, and B. Van Leer (1983). On Upstream Differencing and
Godunov-Type Schemes for Hyperbolic Conservation Laws. SIAM Review, 25,
pp. 35–61.

Hayes, J. C., M. L. Norman, R. A. Fiedler, J. O. Bordner, P. S. Li, S. E. Clark,
A. ud-Doula, and M.-M. Mac Low (2006). Simulating Radiating and Magnetized
Flows in Multiple Dimensions with ZEUS-MP. ApJS, 165, pp. 188–228. doi:
10.1086/504594.

Heckman, T. M., R. M. Alexandroff, S. Borthakur, R. Overzier, and C. Leitherer
(2015). The Systematic Properties of the Warm Phase of Starburst-Driven Galac-
tic Winds. ApJ, 809, 147. doi:10.1088/0004-637X/809/2/147.

Hopkins, P. F. (2015). A new class of accurate, mesh-free hydrodynamic simulation
methods. MNRAS, 450, pp. 53–110. doi:10.1093/mnras/stv195.

187

Hui, W. H., P. Y. Li, and Z. W. Li (1999). A Unified Coordinate System for Solving
the Two-Dimensional Euler Equations. Journal of Computational Physics, 153,
pp. 596–637. doi:10.1006/jcph.1999.6295.

Katz, N., D. H. Weinberg, and L. Hernquist (1996). Cosmological Simulations with
TreeSPH. ApJS, 105, p. 19. doi:10.1086/192305.

Kestener, P., F. Château, and R. Teyssier (2010). Accelerating Euler Equations
Numerical Solver on Graphics Processing Units, pp. 281–288. Springer Berlin
Heidelberg, Berlin, Heidelberg. ISBN 978-3-642-13136-3.

Kim, C.-G. and E. C. Ostriker (2014). Momentum Injection by Supernovae in the
Interstellar Medium. ArXiv e-prints.

Kjolstad, F. B. and M. Snir (2010). Ghost Cell Pattern. In Proceedings of the 2010
Workshop on Parallel Programming Patterns, ParaPLoP ’10, pp. 4:1–4:9. ACM,
New York, NY, USA. ISBN 978-1-4503-0127-5. doi:10.1145/1953611.1953615.

Klein, R. I., C. F. McKee, and P. Colella (1994a). On the hydrodynamic interaction
of shock waves with interstellar clouds. 1: Nonradiative shocks in small clouds.
ApJ, 420, pp. 213–236. doi:10.1086/173554.

Klein, R. I., C. F. McKee, and P. Colella (1994b). On the hydrodynamic interaction
of shock waves with interstellar clouds. 1: Nonradiative shocks in small clouds.
ApJ, 420, pp. 213–236. doi:10.1086/173554.

Knebe, A., A. Green, and J. Binney (2001). Multi-level adaptive particle mesh
(MLAPM): a c code for cosmological simulations. MNRAS, 325, pp. 845–864.
doi:10.1046/j.1365-8711.2001.04532.x.

Kornei, K. A., A. E. Shapley, C. L. Martin, A. L. Coil, J. M. Lotz, D. Schiminovich,
K. Bundy, and K. G. Noeske (2012). The Properties and Prevalence of Galactic
Outflows at z ˜ 1 in the Extended Groth Strip. ApJ, 758, 135. doi:10.1088/
0004-637X/758/2/135.

Kravtsov, A. V. (1999). High-resolution simulations of structure formation in the
universe. Ph.D. thesis, NEW MEXICO STATE UNIVERSITY.

Kritsuk, A. G., M. L. Norman, P. Padoan, and R. Wagner (2007). The Statistics of
Supersonic Isothermal Turbulence. ApJ, 665, pp. 416–431. doi:10.1086/519443.

Kulikov, I. (2014). GPUPEGAS: A New GPU-accelerated Hydrodynamic Code
for Numerical Simulations of Interacting Galaxies. ApJS, 214, 12. doi:10.1088/
0067-0049/214/1/12.

Laney, C. B. (1998). Computational Gasdynamics. Cambridge University Press.

188

Lehnert, M. D. and T. M. Heckman (1996). Ionized Gas in the Halos of Edge-on
Starburst Galaxies: Evidence for Supernova-driven Superwinds. ApJ, 462, p. 651.
doi:10.1086/177180.

Leitherer, C., D. Schaerer, J. D. Goldader, R. M. G. Delgado, C. Robert, D. F.
Kune, D. F. de Mello, D. Devost, and T. M. Heckman (1999). Starburst99:
Synthesis Models for Galaxies with Active Star Formation. ApJS, 123, pp. 3–40.
doi:10.1086/313233.

Lemaster, M. N. and J. M. Stone (2009). Dissipation and Heating in Supersonic
Hydrodynamic and MHD Turbulence. ApJ, 691, pp. 1092–1108. doi:10.1088/
0004-637X/691/2/1092.

Leroy, A. K., F. Walter, P. Martini, H. Roussel, K. Sandstrom, J. Ott, A. Weiss,
A. D. Bolatto, K. Schuster, and M. Dessauges-Zavadsky (2015). The Multi-phase
Cold Fountain in M82 Revealed by a Wide, Sensitive Map of the Molecular In-
terstellar Medium. ApJ, 814, 83. doi:10.1088/0004-637X/814/2/83.

LeVeque, R. J. (2002). Finite Volume Methods for Hyperbolic Problems. Cambridge
University Press.

Liska, R. and B. Wendroff (2003a). Comparison of several difference schemes on
1D and 2D test problems for the Euler equations. SIAM Journal of Scientific
Computing, 25, pp. 995–1017. doi:10.1137/S1064827502402120.

Liska, R. and B. Wendroff (2003b). Comparison of several difference schemes on
1D and 2D test problems for the Euler equations. SIAM Journal of Scientific
Computing, 25, pp. 995–1017. doi:10.1137/S1064827502402120.

Lucy, L. B. (1977). A numerical approach to the testing of the fission hypothesis.
AJ, 82, pp. 1013–1024. doi:10.1086/112164.

Lynds, C. R. and A. R. Sandage (1963). Evidence for an Explosion in the Center
of the Galaxy M82. AJ, 68, p. 284. doi:10.1086/109098.

Mac Low, M.-M. and R. S. Klessen (2004). Control of star formation by super-
sonic turbulence. Reviews of Modern Physics, 76, pp. 125–194. doi:10.1103/
RevModPhys.76.125.

Mac Low, M.-M., C. F. McKee, R. I. Klein, J. M. Stone, and M. L. Norman (1994a).
Shock interactions with magnetized interstellar clouds. 1: Steady shocks hitting
nonradiative clouds. ApJ, 433, pp. 757–777. doi:10.1086/174685.

Mac Low, M.-M., C. F. McKee, R. I. Klein, J. M. Stone, and M. L. Norman (1994b).
Shock interactions with magnetized interstellar clouds. 1: Steady shocks hitting
nonradiative clouds. ApJ, 433, pp. 757–777. doi:10.1086/174685.

189

Marcolini, A., A. D’Ercole, D. Strickland, and T. Heckman (2005). Evolution of
thermally conducting clouds embedded in a galactic wind. In de Grijs, R. and
R. M. González Delgado (eds.) Starbursts: From 30 Doradus to Lyman Break
Galaxies, volume 329 of Astrophysics and Space Science Library, p. P46.

Martin, C. L. (1999). Properties of Galactic Outflows: Measurements of the Feed-
back from Star Formation. ApJ, 513, pp. 156–160. doi:10.1086/306863.

Martin, C. L. (2005). Mapping Large-Scale Gaseous Outflows in Ultraluminous
Galaxies with Keck II ESI Spectra: Variations in Outflow Velocity with Galactic
Mass. ApJ, 621, pp. 227–245. doi:10.1086/427277.

Martizzi, D., C.-A. Faucher-Giguère, and E. Quataert (2014). Supernova Feedback
in an Inhomogeneous Interstellar Medium. ArXiv e-prints.

McCourt, M., S. P. Oh, R. M. O’Leary, and A.-M. Madigan (2016). A Characteristic
Scale for Cold Gas. ArXiv e-prints.

McCourt, M., R. M. O’Leary, A.-M. Madigan, and E. Quataert (2015). Magnetized
gas clouds can survive acceleration by a hot wind. MNRAS, 449, pp. 2–7. doi:
10.1093/mnras/stv355.

McKee, C. F. and L. L. Cowie (1975). The interaction between the blast wave
of a supernova remnant and interstellar clouds. ApJ, 195, pp. 715–725. doi:
10.1086/153373.

Melioli, C., E. M. de Gouveia Dal Pino, R. de La Reza, and A. Raga (2006). Star
formation triggered by SN explosions: an application to the stellar association of
β Pictoris. MNRAS, 373, pp. 811–818. doi:10.1111/j.1365-2966.2006.11076.x.

Melioli, C., E. M. de Gouveia dal Pino, and A. Raga (2005). Multidimensional
hydrodynamical simulations of radiative cooling SNRs-clouds interactions: an
application to starburst environments. A&A, 443, pp. 495–508. doi:10.1051/
0004-6361:20052679.

Mellema, G., J. D. Kurk, and H. J. A. Röttgering (2002). Evolution of clouds in
radio galaxy cocoons. A&A, 395, pp. L13–L16. doi:10.1051/0004-6361:20021408.

Muratov, A. L., D. Kereš, C.-A. Faucher-Giguère, P. F. Hopkins, E. Quataert, and
N. Murray (2015). Gusty, gaseous flows of FIRE: galactic winds in cosmological
simulations with explicit stellar feedback. MNRAS, 454, pp. 2691–2713. doi:
10.1093/mnras/stv2126.

Nakamura, F., C. F. McKee, R. I. Klein, and R. T. Fisher (2006a). On the Hydro-
dynamic Interaction of Shock Waves with Interstellar Clouds. II. The Effect of

190

Smooth Cloud Boundaries on Cloud Destruction and Cloud Turbulence. ApJS,
164, pp. 477–505. doi:10.1086/501530.

Nakamura, F., C. F. McKee, R. I. Klein, and R. T. Fisher (2006b). On the Hydro-
dynamic Interaction of Shock Waves with Interstellar Clouds. II. The Effect of
Smooth Cloud Boundaries on Cloud Destruction and Cloud Turbulence. ApJS,
164, pp. 477–505. doi:10.1086/501530.

Nestor, D. B., B. D. Johnson, V. Wild, B. Ménard, D. A. Turnshek, S. Rao, and
M. Pettini (2011). Large-scale outflows from z 0.7 starburst galaxies identified
via ultrastrong Mg II quasar absorption lines. MNRAS, 412, pp. 1559–1572.
doi:10.1111/j.1365-2966.2010.17865.x.

Nittmann, J., S. A. E. G. Falle, and P. H. Gaskell (1982). The dynamical destruction
of shocked gas clouds. MNRAS, 201, pp. 833–847.

Noh, W. F. (1987). Errors for calculations of strong shocks using an artificial viscos-
ity and an artificial heat flux. Journal of Computational Physics, 72, pp. 78–120.
doi:10.1016/0021-9991(87)90074-X.

Oppenheimer, B. D. and R. Davé (2008). Mass, metal, and energy feedback in
cosmological simulations. MNRAS, 387, pp. 577–600. doi:10.1111/j.1365-2966.
2008.13280.x.

Orlando, S., G. Peres, F. Reale, F. Bocchino, R. Rosner, T. Plewa, and A. Siegel
(2005a). Crushing of interstellar gas clouds in supernova remnants. I. The role of
thermal conduction and radiative losses. A&A, 444, pp. 505–519. doi:10.1051/
0004-6361:20052896.

Orlando, S., G. Peres, F. Reale, F. Bocchino, R. Rosner, T. Plewa, and A. Siegel
(2005b). Crushing of interstellar gas clouds in supernova remnants. I. The role of
thermal conduction and radiative losses. A&A, 444, pp. 505–519. doi:10.1051/
0004-6361:20052896.

Padoan, P. and Å. Nordlund (2002a). The Stellar Initial Mass Function from Tur-
bulent Fragmentation. ApJ, 576, pp. 870–879. doi:10.1086/341790.

Padoan, P. and Å. Nordlund (2002b). The Stellar Initial Mass Function from Tur-
bulent Fragmentation. ApJ, 576, pp. 870–879. doi:10.1086/341790.

Pang, B., U.-l. Pen, and M. Perrone (2010). Magnetohydrodynamics on Heteroge-
neous architectures: a performance comparison. ArXiv e-prints.

Pettini, M., C. C. Steidel, K. L. Adelberger, M. Dickinson, and M. Giavalisco (2000).
The Ultraviolet Spectrum of MS 1512-CB58: An Insight into Lyman-Break Galax-
ies. ApJ, 528, pp. 96–107. doi:10.1086/308176.

191

Poludnenko, A. Y., A. Frank, and E. G. Blackman (2002). Hydrodynamic Interac-
tion of Strong Shocks with Inhomogeneous Media. I. Adiabatic Case. ApJ, 576,
pp. 832–848. doi:10.1086/341886.

Portegies Zwart, S. and J. Bédorf (2014). Computational Gravitational Dynamics
with Modern Numerical Accelerators. ArXiv e-prints.

Portegies Zwart, S. F., H. Baumgardt, P. Hut, J. Makino, and S. L. W. McMillan
(2004). Formation of massive black holes through runaway collisions in dense
young star clusters. Nature, 428, pp. 724–726. doi:10.1038/nature02448.

Quirk, J. J. (1994). A contribution to the great Riemann solver debate. In-
ternational Journal for Numerical Methods in Fluids, 18, pp. 555–574. doi:
10.1002/fld.1650180603.

Rich, J. A., M. A. Dopita, L. J. Kewley, and D. S. N. Rupke (2010). NGC
839: Shocks in an M82-like Superwind. ApJ, 721, pp. 505–517. doi:10.1088/
0004-637X/721/1/505.

Robertson, B. and P. Goldreich (2012). Adiabatic Heating of Contracting Turbulent
Fluids. ApJ, 750, L31. doi:10.1088/2041-8205/750/2/L31.

Robertson, B. E., A. V. Kravtsov, N. Y. Gnedin, T. Abel, and D. H. Rudd (2010).
Computational Eulerian hydrodynamics and Galilean invariance. MNRAS, 401,
pp. 2463–2476. doi:10.1111/j.1365-2966.2009.15823.x.

Roe, P. L. (1981). Approximate Riemann Solvers, Parameter Vectors, and Dif-
ference Schemes. Journal of Computational Physics, 43, pp. 357–372. doi:
10.1016/0021-9991(81)90128-5.

Rubin, K. H. R., J. X. Prochaska, D. C. Koo, A. C. Phillips, C. L. Martin,
and L. O. Winstrom (2014). Evidence for Ubiquitous Collimated Galactic-scale
Outflows along the Star-forming Sequence at z ˜ 0.5. ApJ, 794, 156. doi:
10.1088/0004-637X/794/2/156.

Rubin, K. H. R., J. X. Prochaska, B. Ménard, N. Murray, D. Kasen, D. C. Koo, and
A. C. Phillips (2011). Low-ionization Line Emission from a Starburst Galaxy: A
New Probe of a Galactic-scale Outflow. ApJ, 728, 55. doi:10.1088/0004-637X/
728/1/55.

Rupke, D. S., S. Veilleux, and D. B. Sanders (2005). Outflows in Active Galactic
Nucleus/Starburst-Composite Ultraluminous Infrared Galaxies1,. ApJ, 632, pp.
751–780. doi:10.1086/444451.

192

Ryu, D., J. P. Ostriker, H. Kang, and R. Cen (1993). A cosmological hydrodynamic
code based on the total variation diminishing scheme. ApJ, 414, pp. 1–19. doi:
10.1086/173051.

Saltzman, J. (1994). An Unsplit 3D Upwind Method for Hyperbolic Conservation
Laws. Journal of Computational Physics, 115, pp. 153–168. doi:10.1006/jcph.
1994.1184.

Sandalski, S. (2012). Neptune: An astrophysical smooth particle hydrodynamics
code for massively parallel computer architectures. Ph.D. thesis, California State
University, Long Beach.

Sanders, R., E. Morano, and M.-C. Druguet (1998). Multidimensional Dissipation
for Upwind Schemes: Stability and Applications to Gas Dynamics. Journal of
Computational Physics, 145, pp. 511–537. doi:10.1006/jcph.1998.6047.

Scannapieco, E. (2017). The Production of Cold Gas Within Galaxy Outflows. ApJ,
837, 28. doi:10.3847/1538-4357/aa5d0d.

Scannapieco, E. and M. Brüggen (2015). The Launching of Cold Clouds by Galaxy
Outflows. I. Hydrodynamic Interactions with Radiative Cooling. ApJ, 805, 158.
doi:10.1088/0004-637X/805/2/158.

Schaye, J., R. A. Crain, R. G. Bower, M. Furlong, M. Schaller, T. Theuns, C. Dalla
Vecchia, C. S. Frenk, I. G. McCarthy, J. C. Helly, A. Jenkins, Y. M. Rosas-
Guevara, S. D. M. White, M. Baes, C. M. Booth, P. Camps, J. F. Navarro,
Y. Qu, A. Rahmati, T. Sawala, P. A. Thomas, and J. Trayford (2015). The
EAGLE project: simulating the evolution and assembly of galaxies and their
environments. MNRAS, 446, pp. 521–554. doi:10.1093/mnras/stu2058.

Schive, H.-Y., Y.-C. Tsai, and T. Chiueh (2010). GAMER: A Graphic Processing
Unit Accelerated Adaptive-Mesh-Refinement Code for Astrophysics. ApJS, 186,
pp. 457–484. doi:10.1088/0067-0049/186/2/457.

Schneider, E. E. and B. E. Robertson (2015). CHOLLA: A New Massively Parallel
Hydrodynamics Code for Astrophysical Simulation. ApJS, 217, 24. doi:10.1088/
0067-0049/217/2/24.

Shin, M.-S., J. M. Stone, and G. F. Snyder (2008a). The Magnetohydrodynamics
of Shock-Cloud Interaction in Three Dimensions. ApJ, 680, pp. 336–348. doi:
10.1086/587775.

Shin, M.-S., J. M. Stone, and G. F. Snyder (2008b). The Magnetohydrodynamics
of Shock-Cloud Interaction in Three Dimensions. ApJ, 680, pp. 336–348. doi:
10.1086/587775.

193

Shopbell, P. L. and J. Bland-Hawthorn (1998). The Asymmetric Wind in M82. ApJ,
493, pp. 129–153. doi:10.1086/305108.

Shu, C.-W. and S. Osher (1989). Efficient Implementation of Essentially Non-
oscillatory Shock-Capturing Schemes, II. Journal of Computational Physics, 83,
pp. 32–78. doi:10.1016/0021-9991(89)90222-2.

Smith, B., S. Sigurdsson, and T. Abel (2008). Metal cooling in simulations of cosmic
structure formation. MNRAS, 385, pp. 1443–1454. doi:10.1111/j.1365-2966.2008.
12922.x.

Sod, G. A. (1978). A survey of several finite difference methods for systems of
nonlinear hyperbolic conservation laws. Journal of Computational Physics, 27,
pp. 1–31. doi:10.1016/0021-9991(78)90023-2.

Springel, V. (2005). The cosmological simulation code GADGET-2. MNRAS, 364,
pp. 1105–1134. doi:10.1111/j.1365-2966.2005.09655.x.

Springel, V. (2010a). E pur si muove: Galilean-invariant cosmological hydro-
dynamical simulations on a moving mesh. MNRAS, 401, pp. 791–851. doi:
10.1111/j.1365-2966.2009.15715.x.

Springel, V. (2010b). Smoothed Particle Hydrodynamics in Astrophysics. ARA&A,
48, pp. 391–430. doi:10.1146/annurev-astro-081309-130914.

Spurzem, R. (1999). Direct N-body Simulations. Journal of Computational and
Applied Mathematics, 109, pp. 407–432.

Stone, J. M., T. A. Gardiner, P. Teuben, J. F. Hawley, and J. B. Simon (2008).
Athena: A New Code for Astrophysical MHD. ApJS, 178, pp. 137–177. doi:
10.1086/588755.

Stone, J. M. and M. L. Norman (1992). The three-dimensional interaction of a
supernova remnant with an interstellar cloud. ApJ, 390, pp. L17–L19. doi:
10.1086/186361.

Strang, G. (1968). On the Construction and Comparison of Difference Schemes.
SIAM Journal on Numerical Analysis, 5, pp. 506–517. doi:10.1137/0705041.

Strickland, D. K. and T. M. Heckman (2007). Iron Line and Diffuse Hard X-
Ray Emission from the Starburst Galaxy M82. ApJ, 658, pp. 258–281. doi:
10.1086/511174.

Strickland, D. K. and T. M. Heckman (2009). Supernova Feedback Efficiency and
Mass Loading in the Starburst and Galactic Superwind Exemplar M82. ApJ, 697,
pp. 2030–2056. doi:10.1088/0004-637X/697/2/2030.

194

Sugimoto, D., Y. Chikada, J. Makino, T. Ito, T. Ebisuzaki, and M. Umemura (1990).
A special-purpose computer for gravitational many-body problems. Nature, 345,
pp. 33–35. doi:10.1038/345033a0.

Teyssier, R. (2002). Cosmological hydrodynamics with adaptive mesh refinement.
A new high resolution code called RAMSES. A&A, 385, pp. 337–364. doi:
10.1051/0004-6361:20011817.

Teyssier, R. (2015). Grid-Based Hydrodynamics in Astrophysical Fluid Flows.
ARA&A, 53, pp. 325–364. doi:10.1146/annurev-astro-082214-122309.

Thompson, T. A., E. Quataert, D. Zhang, and D. H. Weinberg (2016). An origin
for multiphase gas in galactic winds and haloes. MNRAS, 455, pp. 1830–1844.
doi:10.1093/mnras/stv2428.

Toro, E. F. (2009). Riemann Solvers and Numerical Methods for Fluid Dynamics.
Springer.

Toro, E. F., M. Spruce, and W. Speares (1994). Restoration of the contact surface
in the HLL Riemann solver. Shock Waves, 4, pp. 25–34.

Tripp, T. M., J. D. Meiring, J. X. Prochaska, C. N. A. Willmer, J. C. Howk, J. K.
Werk, E. B. Jenkins, D. V. Bowen, N. Lehner, K. R. Sembach, C. Thom, and
J. Tumlinson (2011). The Hidden Mass and Large Spatial Extent of a Post-
Starburst Galaxy Outflow. Science, 334, p. 952. doi:10.1126/science.1209850.

van Leer, B. (1977). Towards the Ultimate Conservative Difference Scheme. IV. A
New Approach to Numerical Convection. Journal of Computational Physics, 23,
p. 276. doi:10.1016/0021-9991(77)90095-X.

van Leer, B. (1979). Towards the ultimate conservative difference scheme. V - A
second-order sequel to Godunov’s method. Journal of Computational Physics, 32,
pp. 101–136. doi:10.1016/0021-9991(79)90145-1.

Veilleux, S., G. Cecil, and J. Bland-Hawthorn (2005). Galactic Winds. ARA&A,
43, pp. 769–826. doi:10.1146/annurev.astro.43.072103.150610.

Vogelsberger, M., S. Genel, V. Springel, P. Torrey, D. Sijacki, D. Xu, G. Snyder,
S. Bird, D. Nelson, and L. Hernquist (2014). Properties of galaxies reproduced by
a hydrodynamic simulation. Nature, 509, pp. 177–182. doi:10.1038/nature13316.

Wang, B. (1995). Cooling gas outflows from galaxies. ApJ, 444, pp. 590–609.
doi:10.1086/175633.

Wang, P., T. Abel, and R. Kaehler (2010). Adaptive mesh fluid simulations on
GPU. New Astronomy, 15, pp. 581–589. doi:10.1016/j.newast.2009.10.002.

195

Weiner, B. J., A. L. Coil, J. X. Prochaska, J. A. Newman, M. C. Cooper, K. Bundy,
C. J. Conselice, A. A. Dutton, S. M. Faber, D. C. Koo, J. M. Lotz, G. H. Rieke, and
K. H. R. Rubin (2009). Ubiquitous Outflows in DEEP2 Spectra of Star-Forming
Galaxies at z = 1.4. ApJ, 692, pp. 187–211. doi:10.1088/0004-637X/692/1/187.

Westmoquette, M. S., L. J. Smith, J. S. Gallagher, and K. M. Exter (2009). Mapping
the roots of the galactic outflow in NGC1569. Ap&SS, 324, pp. 187–193. doi:
10.1007/s10509-009-0126-3.

Xu, J. and J. M. Stone (1995a). The Hydrodynamics of Shock-Cloud Interactions
in Three Dimensions. ApJ, 454, p. 172. doi:10.1086/176475.

Xu, J. and J. M. Stone (1995b). The Hydrodynamics of Shock-Cloud Interactions
in Three Dimensions. ApJ, 454, p. 172. doi:10.1086/176475.

Zeldovich, Y. B. and Y. P. Raizer (1966). Elements of gasdynamics and the classical
theory of shock waves.

Zhang, D., T. A. Thompson, E. Quataert, and N. Murray (2015). Entrainment
in Trouble: Cool Cloud Acceleration and Destruction in Hot Supernova-Driven
Galactic Winds. ArXiv e-prints.

	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	CHAPTER INTRODUCTION
	Numerical Hydrodynamics in Astrophysics
	The Importance of Supercomputing
	Eulerian Versus Lagrangian Methods
	Finite-Volume Codes: Theoretical Framework

	Galactic Winds
	The Starburst-Driven Wind Model: Theoretical Perspective
	Multiphase Galactic Winds: Observational Perspective

	CHAPTER CHOLLA: A NEW MASSIVELY-PARALLEL HYDRODYNAMICS CODE FOR ASTROPHYSICAL SIMULATION
	Introduction
	Hydrodynamics
	The CTU Algorithm
	Interface Reconstruction
	Riemann Solvers

	Code Architecture
	Simulation Overview
	Memory Structure
	The GPU Grid
	The GPU Kernels
	Time Step Calculation
	Subgrid Splitting
	MPI Implementation and Scaling

	Tests
	1D Hydrodynamics
	2D Hydrodynamics
	3D Hydrodynamics

	New Results for Astrophysical Phenomena: Shockwave-ISM Interactions
	The Simulations
	Results

	Conclusions

	CHAPTER Hydrodynamical Coupling of Mass and Momentum in Multiphase Galactic Winds
	Introduction
	A Multi-Component Wind Model
	Hot Wind Component
	Cool Cloud Component

	Simulations
	Cool Cloud Evolution
	Turbulent Clouds vs Spheres
	Median Density and Cloud Lifetimes

	Phase Structure of the Wind
	Density and Temperature Structure

	Momentum Coupling
	Cool Cloud Entrainment
	Integrated Mass and Momentum

	Resolution Effects
	Discussion
	Cloud structure
	Entrainment and Mass Loading
	Additional Physics
	Ram Pressure vs Gravity

	Summary and Conclusions

	CHAPTER SUMMARY AND FUTURE PROSPECTS
	Global Disk Simulations of Galactic Winds
	Additional Physics in Cholla

	APPENDIX RECONSTRUCTION METHODS IN CHOLLA
	PLMP
	PLMC
	PPMC
	PPMP

	APPENDIX RIEMANN SOLVERS IN CHOLLA
	The Exact Solver
	The Roe Solver
	The HLLC Solver

	APPENDIX THE H CORRECTION
	APPENDIX A SIMPLE INTEGRATION METHOD
	APPENDIX DUAL ENERGY IN CHOLLA
	APPENDIX OPTICALLY-THIN RADIATIVE COOLING IN CHOLLA
	Coupling of Source Terms
	Calculating Cooling and Heating Rates

	REFERENCES

