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ABSTRACT

Measurements of neutron-star properties provide a natural way to test models of

cold dense matter and theories of gravity. In order to correctly interpret these mea-

surements, accurate models taking into account the special and general relativistic

effects arising from the strong gravity and fast spin of these sources are necessary.

Moreover, for some observables the effects of the rapid spin can dominate the mea-

surement. In this thesis, I develop a ray-tracing algorithm using the Hartle-Thorne

metric that allows me to determine the effects of gravity on several observables. I

use this algorithm to calculate the bias introduced when observations are interpreted

under the common assumption that the source is slowly spinning or not spinning at

all. I show that this assumption can lead to errors in mass and radius measurements

that are larger than the accuracy needed to distinguish between different models for

the equation of state.
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CHAPTER 1

Introduction

Neutron stars provide a window into some of the most extreme conditions in the

universe. At masses of up to 2 M� and radii . 15 km, their cores can reach densities

of nearly ten times the nuclear saturation density. Moreover, the strong gravity at

their surfaces and their rapid rotation cause affect measurements of emission from

the stellar surface through the extreme gravitational lensing and frame dragging of

the spacetime around the star. Measuring these strong gravitational effects provide

a means to test general relativity, while the physical properties of the neutron stars

can constrain theories of dense matter.

At their cores, neutron stars are expected to contain matter above the nuclear

saturation density. The properties of matter in this regime are poorly constrained by

terrestrial experiments. In particular, existing experiments can only probe nucleon

interactions at or below nuclear saturation density (see Lattimer 2012) or at temper-

atures much higher than the Fermi energy. Moreover, extrapolating from symmetric

matter found in atomic nuclei to the neutron-rich matter found in neutron star cores

is highly uncertain.

Neutron stars, on the other hand, provide ideal laboratories for the study of

cold dense matter. The relations between macroscopic properties of a neutron star

depend on the details of the equation of state of the matter at their cores. By

measuring properties such as the mass, radius, moment of inertia, quadrupole mo-

ment, or oblateness to sufficiently high precision, proposed models for the equation

of state may be verified or excluded. In principle, a measurement of any two of

these parameters can provide a constraint on the equation of state. In practice, the

mass and radius are the most straightforward properties to measure (see, however,

Raithel et al. 2016 for constraints on the equation of state from moment of inertia

measurements).
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1.1 Measuring Masses and Radii

Over the past forty years, great effort has been expended to accurately measure

neutron-star masses and radii. These efforts have fallen into two broad categories:

spectroscopic measurements of uniform emission from the stellar surface and timing

measurements of pulse profiles arising from temperature anisotropies on the neutron

star.

Thermal emission has been used to constrain neutron-star masses and radii in the

context of thermonuclear X-ray bursts since the discovery of bursters in the 1970s

(e.g., van Paradijs 1979). These bursts arise from sources that are accreting matter

from a nearby main sequence or post main sequence companion. As matter accretes,

hydrogen is burnt into helium, which builds up in a layer beneath the surface. When

the temperature and pressure in this layer are sufficient, it undergoes a helium flash,

and the entire surface of the neutron star undergoes rapid nuclear burning, resulting

in X-ray emission that is sometimes greater than the local Eddington limit. This

causes the photosphere of the star to expand until the photons diffusing out from

the nuclear burning layer are exhausted. As the photosphere cools, it contracts back

towards the stellar surface. At the moment the photosphere touches back down on

the neutron star, the flux of the thermal emission is related to the mass and radius

of the neutron star via the Stefan-Boltzmann law.

A similar method can be used to measure neutron-star masses and radii in sources

without thermonuclear bursts. In accreting sources, the accretion itself heats the

surface, causing it to emit thermal X-rays even in quiescence. Isolated neutron stars

can similarly display thermal emission arising from residual heat from the star’s

formation. Both quiescent accreting sources (e.g., Heinke et al. 2006, 2014; Webb &

Barret 2007; Guillot et al. 2013; Catuneanu et al. 2013) as well as on isolated sources

(e.g., Pons et al. 2002; Drake et al. 2002) have yielded mass and radius measurements

based on the flux, temperature, and distance of the source.

In addition to thermal emission, atomic features such as absorption lines, emission

lines, and edges can also in principle help constrain the neutron-star mass and radius.
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Light emitted from the surface of the neutron-star is redshifted as it passes through

the strong gravitational field of the star on its way to a distant observer. The amount

of redshift of any identifiable line measures the compactness 2GM/Rc2 of the neutron

star. Moreover, the rapid spin of the neutron star leads to Doppler broadening of

the line as different parts of the surface are moving at different velocities relative to

the observer. The magnitude of this broadening is related to the spin frequency and

radius of the star. As the spin frequency can often be determined independently, a

measurement of the line broadening leads directly to a constraint on the neutron-star

radius (Özel & Psaltis 2003).

In 2002, Cottam et al. found evidence of narrow absorption lines in the source

EXO 0748-676. These observations allowed for a precise determination of the surface

redshift, which, when combined with observations of thermonuclear bursts for the

same source, provided tight constraints on the mass and radius (Özel 2006). However,

subsequent observations failed to confirm the absorption lines (Cottam et al. 2008).

Moreover, after Galloway et al. (2010) found burst oscillations in the source at 552

Hz, Lin et al. 2010 argued that the Doppler broadening expected from such a high

spin frequency was inconsistent with previous observations. In Chapter 4, I offer a

possible resolution to these unexpectedly narrow absorption lines.

An alternative approach to spectroscopic observations relies on timing measure-

ments of brightness oscillations to constrain the mass and radius. These brightness

oscillations are caused by a hotspot on the stellar surface going into and out of view

as the star rotates. The temperature anisotropy necessary to produce a pulse profile

can arise in a variety of ways. In an isolated, rotation-powered pulsar, return cur-

rents along open field lines heat the magnetic pole to a higher temperature than the

rest of the stellar surface. In accreting sources, the magnetic field can also funnel

accretion onto the magnetic pole, creating a local hotspot.

Finally, burst oscillations have been observed during the rise or tail of X-ray

bursters. When an X-ray burst ignites on the neutron-star, nuclear burning begins

in one location before it spreads across the stellar surface. The timescale for the

nuclear burning to engulf the entire star is ∼ 1 s, during which time only a fraction
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of the surface is burning. Since this timescale is much faster than the ∼ 500 Hz

spin frequency observed in many burst sources, the flux from the source oscillates as

the burning region is alternately hidden and in the line of sight. When the nuclear

fuel is exhausted, the neutron star does not cool uniformly across its surface. The

excitation of non-radial modes leads some regions of the surface to be higher in

temperature than others. These temperature anisotropies again induce brightness

oscillations from the source.

The waveform of all these types of brightness oscillations encodes information

about the neutron star from which they originate. The usual method of extracting

this information is to decompose the pulse profiles into their Fourier modes. The

amplitude of the oscillation is related to the compactness of the neutron star due to

strong gravitational lensing. A star with a higher compactness experiences greater

self-lensing, so a smaller fraction of the surface is hidden from view for an observer.

Therefore, the hotspot is visible for a larger fraction of the spin period, and the

pulse amplitude is smaller. In the absence of any Doppler shifts, the pulse profile is

a perfect sinusoid that encodes only the compactness. However, the Doppler boost as

the hotspot moves towards or away from the observer causes the profile to differ from

a sinusoid and increases the first Fourier harmonic. The magnitude of the Doppler

boost depends on the surface velocity of the star, which is determined by the spin

period and the radius. Therefore, measuring the Fourier harmonics of the profile can

in principle provide simultaneous constraints on the mass and radius of the star.

1.2 Types and Properties of Neutron-Star Sources

To date, various constraints have been placed on neutron-star masses and radii using

the methods outlined above. These measurements have been carried out on neu-

tron stars in low-mass X-ray binaries (either during accretion episodes or during

quiescence), on rotation-powered pulsars, or, in a few cases, on accretion-powered

pulsars.

These three types of sources differ primarily in the energy sources of their emis-

sion. Neutron stars from low-mass X-ray binaries are accreting matter from a nearby
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Figure 1.1: Summary of mass and radius constraints from Özel & Freire (2016). The
left panel shows constraints from spectroscopic measurements of accreting sources
during quiescence. The right panel shows mass and radius constraints from ther-
monuclear bursts. In both panels, several sample equations of state are plotted.

companion. This accretion heats the surface and causes it to emit in the X-ray. A

fraction of neutron stars in low-mass X-ray binaries display X-ray bursts, in which a

layer of built-up fuel fuses, further heating the surface of the star. Rotation-powered

pulsars, on the other hand, are usually isolated sources whose emission is powered

by their decaying spin frequency. These pulsars are primarily detected through their

radio dipole emission, but in some cases return currents can sufficiently heat the mag-

netic pole to emit in the X-ray. Accretion powered pulsars similarly show variable

X-ray emission, which is powered by the accretion flow funneled onto the magnetic

pole, creating a local hotspot.

In recent years, radius constraints have been derived for bursting sources using

high precision Rossi X-ray Timing Explorer data (e.g., Özel et al. 2009, 2010; Güver

et al. 2010; Güver & Özel 2013; Steiner et al. 2010, 2013; Suleimanov et al. 2011;

Poutanen et al. 2014). These studies have been able to constrain neutron star radii

to a range of 8–11 km for the sources 4U 1608–52, EXO 1745–248, 4U 1820–30, and

KS 1731–260. The right panel of Figure 1.1 shows constraints for these sources as

well as several others.

The left panel of Figure 1.1 shows spectroscopic mass and radius constraints from
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quiescent sources. In particular, Webb & Barret (2007) place upper limits of 11 km

and 10.5 km on the radii of neutron stars in M13 and NGC2808, respectively. Guillot

et al. (2011) find a radius of 8.3–9.8 km for the source U24 under the assumption

that the neutron-star mass is 1.4 M�. In addition, Bogdanov et al. (2016) have

constrained the stellar radius for two sources in the globular cluster 47 Tuc.

To date, a handful of sources showing persistent oscillations have been analyzed to

determine masses and radii. The constraints from pulse profile analysis are somewhat

weaker than those from spectroscopic methods due to the correlated uncertainty

between the mass and radius and several geometric parameters related to the size

and location of the hotspot. Uncertainties in the radius from these measurements

is typically & 5 km (e.g., Poutanen & Gierlinski 2003, Bogdanov et al. 2007, Leahy

et al. 2008). In addition, lower limits have been placed on the radius of several

additional sources (e.g., Leahy et al. 2009, 2011; see review in Özel 2013).

All of the spectroscopic measurements discussed above have been made under

the assumption that the neutron star is not spinning. This assumption simplifies the

conversion between the surface area observed at spatial infinity and proper radius

as measured at the stellar surface. It also neglects the changes to the emission due

to Doppler shifts, frame dragging, and other consequences of the spin. For mass

and radius constraints derived from pulse profiles, a slow rotation approximation is

usually made under which the spacetime around the neutron star is unaffected by

its spin. By setting the spacetime of the neutron star to be identical to that of

a non-spinning, spherical mass, this assumption also neglects effects such as frame

dragging, changes in the shape of the star, and the introduction of higher order mass

multipole moments.

However, the assumption of slow spin is not appropriate for the majority of

sources that have been used for mass and radius measurements. Figure 1.2 shows the

distribution of spin frequencies for different types of source. As shown, a significant

fraction of neutron stars have “moderate” spins above 300 Hz (in the remainder of

this work, I use the term “moderate spin” to indicate a range of spin frequencies

that are well below the stellar breakup frequency but nevertheless high enough to
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Figure 1.2: Distribution of neutron star spin frequencies for three different types
of sources from Özel & Freire 2016. The blue line shows the spin frequencies of
isolated, rotation-powered pulsars. The red and green lines show the distribution
of spin frequencies for accreting sources, with and without thermonuclear bursts,
respectively.

cause a significant change in the neutron-star spacetime). In particular, more than

half of rotation-powered pulsars and nearly all X-ray bursters have such moderate

spins. As I discuss below, surface geometry as well as the spacetime around such

stars is significantly affected by the spin of the star, necessitating corrections to both

existing and upcoming mass and radius measurements.

1.3 The NICER Mission

In the near future, new constraints on neutron-star masses and radii are expected

from timing of rotation-powered pulsars. These sources will be the focus of an

upcoming NASA Mission of Opportunity that will be located on the International

Space Station. Scheduled to be launched in early 2017, the Neutron Star Interior

Composition Explorer (NICER) aims to accurately measure masses and radii for at

least three neutron stars. In particular, NICER will enable precise measurements of

pulse profiles of rotationally-powered pulsars in the soft X-rays. By modeling the
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waveforms of these pulses, the masses and radii of the neutron star can be measured.

The NICER satellite is designed to be sensitive in the energy range between 0.2

and 12 keV. This energy range coincides with the expected peak of the thermal

emission from hotspots on the neutron star surface. Moreover, NICER will enable

timing measurements to an accuracy of 300 ns, enabling temporal and spectroscopic

resolution of lightcurves. Over the course of its 18 month primary mission lifetime,

NICER is expected to collect on the order of 106 photons from each of three target

sources showing brightness oscillations. These observations are expected to allow

masses and radii to be constrained within 5% (Arzoumanian et al. 2014).

In order for NICER to correctly interpret measurements of pulse profiles, accurate

models that take into account the properties of the neutron star are needed. Here I

quantify the effects of rapid rotation on pulse profiles and other measurable quantities

of neutron-stars.

1.4 Outline of this Work

In this work, I consider the effects of the neutron-star spin on observations of the mass

and radius. I calculate the biases introduced in measurements when the assumption

is made that the source is not spinning. I also describe several other phenomena

arising from rapid rotation.

In Chapter 2, I summarize the properties of the neutron star spacetime including

the effects of spin at various orders. I describe the Hartle-Thorne metric, which I

use throughout the rest of this work.

In Chapter 3, I calculate the apparent surface areas of moderately-spinning neu-

tron stars. I show that whether a spinning star appears larger or smaller than its

non-rotating counterpart depends primarily on its equatorial radius. For stars with

relatively small radii (∼10 km), the apparent radius decreases with increasing spin.

In contrast, the apparent radius for larger radii(∼15 km) increases with spin fre-

quency.

In Chapter 4, I consider the effects of spin on atomic spectral features. I show

that line profiles acquire cores that are much narrower than the widths expected
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from pure Doppler effects for a large range of observer inclinations. I explore the

causes of these unexpectedly narrow spectral features.

In Chapter 5, I describe several empirical and analytic relations between neutron-

star parameters. In particular, I find a tight correlation between the compactness,

spin angular momentum, and spacetime quadrupole moment of neutron stars regard-

less of the equation of state. I also derive an analytic expression for the ellipticity of

the stellar surface.

In Chapter 6, I calculate the rotational broadening in the observed thermal spec-

tra from the surfaces of spinning neutron stars. I show that fitting the spectra and

inferring radii under the assumption that the star is not rotating causes an underesti-

mate of the inferred radii. I calculate the inclination-averaged correction to inferred

radii as a function of the stellar mass and radius and provide an empirical formula

for these corrections.

Finally, in Chapter 7 I calculate the effect of spot size on neutron-star pulse

profiles. Specifically, I quantify the bias introduced in radius measurements from

the common assumption that hotspots on the surface are infinitesimally small. I

consider the implications of these results for neutron star radius measurements with

the upcoming and planned X-ray missions NICER and LOFT.
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CHAPTER 2

Neutron-Star Spacetimes

The first solutions to Einstein’s field equations were obtained in 1916 for non-

spinning, spherically symmetric objects (Schwarzschild 1916). Soon thereafter, a

solution for a spherically symmetric mass with a non-zero electric charge was found

(Reissner 1916). This solution is of little astrophysical relevance, as any macroscopic

charge asymmetry in an astrophysical object is expected to rapidly neutralize. Kerr

(1963) found the first solution for a massive object with non-zero angular momentum.

The Kerr metric is the exact solution describing the spacetime around a spinning

black hole, and is a reasonable approximation for other spinning objects as long as

their mass distribution is relatively spherically symmetric.

Hartle & Thorne (1968) decomposed the solution to the Einstein equations in

terms of increasing multipole moments of the mass distribution. They found an

exact solution at second order for an object with an arbitrary mass quadrupole

moment. In recent years, solutions have been found for higher order mass multipoles

(e.g. Pappas & Apostolatos 2012). In this chapter, I discuss various orders of

approximations of the spacetime around a spinning neutron star. I then describe an

algorithm to calculate photon trajectories through the curved spacetime from the

neutron-star surface to an observer at spatial infinity.

2.1 Non-Spinning Stars

The spacetime around non-spinning, spherically symmetric stars is described exactly

by the Schwarzschild metric. The line element in this metric has the form

ds2 = −
(

1− 2M

r

)
dt2 +

(
1

1− 2M
r

)
dr2 + r2 dθ2 + r2 sin2 θ dφ2, (2.1)



20

where M is the neutron-star mass. Note that here and throughout this chapter I

have set G = c = 1.

The appearance of a star in the Schwarzschild metric differs in two important re-

spects from a star in a flat spacetime. First, light emitted from the surface of the star

is lensed on its path to a distant observer. This lensing causes a larger fraction of the

surface area to be visible to an observer at infinity, and consequently the apparent

radius to appear larger than the physical radius R by a factor of
(
1− 2M

R

)−1/2
. Sec-

ondly, photons traveling from the stellar surface is redshifted by a factor of
√

1− 2M
R

.

Therefore, the temperature measured by an observer at infinity is lower than the local

temperature on the stellar surface.

2.2 Slowly Spinning Stars

For slowly spinning stars, a variety of approximations have been employed for their

exterior spacetimes. The most commonly used of these approximations is the so-

called Schwarzschild+Doppler approximation. In this formalism, the spacetime is

treated to be spherically symmetric as in the Schwarzschild metric, but special rel-

ativistic Doppler terms arising from the high surface velocities are added to spectra

and lightcurves calculated at infinity.

Although formally inconsistent, this approximation is extremely useful for suf-

ficiently slowly-spinning stars as it decouples the rotation from the gravitational

effects. The spherical symmetry of the spacetime allows some lensing effects to be

calculated analytically and reduces the computational complexity of ray-tracing if it

is necessary.

In the regime of slow rotation, the spacetime around the neutron star has also

been approximated by the Kerr metric, even though this metric is not really appro-

priate for a neutron star, as I explain below. This metric has a line element of the
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form

ds2 = −
(

1− 2Mr

Σ

)
dt2 −

(
4Mar sin2 θ

Σ

)
dtdφ

+

(
Σ

∆

)
dr2 + Σ dθ2 +

(
r2 + a2 +

2Ma2r sin2 θ

Σ

)
sin2 θ dφ2, (2.2)

with

∆ ≡ r2 − 2Mr + a2, (2.3)

and

Σ ≡ r2 + a2 cos2 θ . (2.4)

In these equations, a is the dimensionless spin parameter of the neutron star:

a =
J

M2
, (2.5)

where J is the angular momentum.

The Kerr metric is the exact solution for the metric of a rotating spherical mass

distribution. It describes frame dragging, which arises from the tφ component of the

metric. This effect causes an inertial observer near a spinning neutron star to corotate

with the star at an angular rate equal to gtφ/gtt. However, the Kerr metric makes an

assumption about the quadrupole moment that is not entirely appropriate for neu-

tron stars. Unlike, for example, black holes, neutron stars do not remain spherically

symmetric as they increase in spin frequency. Instead, they become oblate in shape,

which introduces a significant extra quadrupole mass moment. For spin periods much

less than breakup, the neutron star surface remains approximately spherical and the

Kerr metric is an adequate approximation of the exterior metric. For more rapidly

spinning sources the Kerr metric is no longer an appropriate approximation.

2.3 Moderately Spinning Stars

For the majority of this work, I adopt a variant of the Hartle-Thorne metric (Hartle &

Thorne 1968) developed by Glampedakis & Babak (2006). The Hartle-Thorne metric
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is a multipole approximation of the spacetime around a neutron star truncated at

second order in spin frequency. The metric includes terms up to the quadrupole

mass moment, while all higher-order moments are set to zero. The Glampedakis &

Babak metric I employ for this work is an expansion around the Kerr metric that

allows for the quadrupole moment to be set to an appropriate value. The higher-

order moments are equal to their Kerr values. To second order in spin frequency,

the Hartle-Thorne and Glampedakis-Babak metrics are formally equivalent. I have

opted to use this metric in order to contrast my results with those obtained when the

external spacetime of a rapidly spinning neutron star is approximated by the Kerr

metric.

In Boyer–Lindquist coordinates, I write the metric as a deviation from the Kerr

metric:

gµν = gK
µν + ηa2hµν , (2.6)

where gµν is the metric element of the Kerr metric described by equation 2.2.

The quadrupole correction is given, in contravariant form, by

htt = (1− 2M/r)−1
[(

1− 3 cos2 θ
)
F1(r)

]
,

hrr = (1− 2M/r)
[(

1− 3 cos2 θ
)
F1(r)

]
,

hθθ = − 1

r2

[(
1− 3 cos2 θ

)
F2(r)

]
,

hφφ = − 1

r2 sin2 θ

[(
1− 3 cos2 θ

)
F2(r)

]
,

htφ = 0 , (2.7)

with the functions F1,2(r) shown explicitly in Appendix A of Glampedakis & Babak

(2006). Note that, because it is of even order, the mass quadrupole affects only the

diagonal components of the Kerr metric and not the tφ-component that measures

the amount of frame dragging.
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2.4 Rapidly Spinning Stars

To even higher orders in spin frequency, the external spacetime of the neutron star

depends on multipole moments that are of increasing order, which become important

when the spin frequency exceeds ∼800 Hz. These spacetimes can be calculated

numerically (see, e.g., Cook et al. 1994; Stergioulas & Friedman 1995). In principle,

these numerical calculations accurately describe the spacetime around a neutron star

of arbitrary spin frequency.

However, these numerical spacetimes depend on the details of the equation of

state. Since the primary aim of this work is to develop a framework for measure-

ments of neutron-star properties to constrain the equation of state, it is desirable to

formulate the metric in such a way that it depends only on the macroscopic prop-

erties of the neutron star. In addition, there are no known neutron star sources

that spin at frequencies above 800 Hz, rendering numerical spacetimes nonessential.

Therefore, for the purposes of this work, I have adopted the Hartle-Thorne metric

described above rather than an exact numeric metric.

For completeness, I note that in principle the external spacetime of a rapidly

spinning neutron star can also be accurately described by the analytic solution of

Manko et al. (2000a, 2000b; see Berti & Stergioulas 2004; Berti et al. 2005). However,

the Manko et al. (2000a, 2000b) metric does not reduce to the Schwarzschild or Kerr

solutions when the angular velocity of the star is reduced toward zero (Berti &

Stergioulas 2004), making it impractical for applications.

2.5 A Numerical Algorithm for Ray Tracing

In order to calculate the appearance of the neutron star at spatial infinity, I follow

the method outlined in Psaltis & Johannsen (2012) to develop a ray-tracing algo-

rithm that calculates the trajectories of photons in the neutron-star spacetime. This

algorithm follows the path of a number of photons from an image plane at a great

distance from the source along null geodesics back to the surface of the star.

I designate the position of the photon as the 4-vector xµ. Then the paths of the
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photons satisfy the geodesic equation,

d2xµ

dλ2
= −Γµαβ

dxα

dλ

dxβ

dλ
, (2.8)

where λ is an affine parameter. Here, Γµαβ are the Christoffel symbols:

Γµαβ =
1

2
gµν
(
∂gνα
∂xβ

+
∂gνβ
∂xα

− ∂gαβ
∂xν

)
, (2.9)

where gµν and gµν are the covariant and contravariant forms of the metric, respec-

tively.

The t and φ symmetries of the metric lead to the definition of two Killing vectors

ξ = (1, 0, 0, 0) and η = (0, 0, 0, 1). These two Killing symmetries are equivalent to

the conservation of energy and angular moment, respectively:

E = −gtt
dt

dλ
− gtφ

dφ

dλ
(2.10)

and

L = gφφ
dφ

dλ
+ gtφ

dt

dλ
. (2.11)

Following the notation of Johannsen & Psaltis (2012), I define λ′ as Eλ and the

impact parameter b as L/E. I can then write two first-order differential equations

for the t and φ components of the photon trajectory:

dt

dλ′
=
−gφφ − bgtφ
gφφgtt − g2

tφ

(2.12)

and
dφ

dλ′
=
b (gtt + gtφ)

gφφgtt − g2
tφ

(2.13)

Using equation 2.8 for the r and θ components of the photon position and equa-

tions 2.12 and 2.13 for the t and φ components, respectively, I can now solve for

the photon trajectory from the image plane to the surface of the star. I solve these

equations numerically using a fourth-order Runge-Kutta algorithm until the photon
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either intersects the surface of the star or exceeds the distance of the star by 10%,

at which point I assume that it has bypassed the star entirely. In order to check

the accuracy of the numerical integration, I use the additional constraint that the

photon trajectories should be null geodesics, i.e.

gµν
dxµ

dλ

dxν

dλ
= 0. (2.14)

I calculate the deviation from this relation along the photon path as a proxy for the

accumulated integration error.

Because the surface of the neutron star deviates from spherical symmetry at high

spin frequencies (see section 3.2) and photons may intersect the surface at oblique

angles, special care must be taken when evaluating the coordinates at which the

photon geodesics intersect the stellar surface. I use a simple procedure to determine

the spherical coordinates of intersection: once a step in the Runge–Kutta algorithm

crosses over the surface of the star, I perform a linear interpolation between the last

two points on the geodesic. I then employ a bisection algorithm to find the point of

intersection between that interpolation and the functional form of the stellar surface.

Following Cadeau et al. (2007), I calculate the beaming angle for a photon emitted

at the surface of the neutron star as

cosαe =

√
grr

1 + z

kr − kθR′(θ)√
1 + [R

′(θ)
R(θ)

]2
(2.15)

where kr and kθ are the components of the photon’s momentum at the point of

intersection with the stellar surface, R(θ) is the functional form of the surface of the

neutron star (Equation (3.2)), and z is the total redshift.
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CHAPTER 3

Images of Moderately Spinning Neutron Stars

3.1 Apparent Surface Areas

Converting a measurement of the apparent surface area of a neutron star to a radius

requires correcting for a number of general-relativistic effects. As the photons prop-

agate in the strong gravitational fields of neutron stars, their energies are redshifted

while their trajectories experience strong lensing. For a non-spinning neutron star,

both effects depend only on the tt-component of its exterior metric and can be ana-

lytically corrected for in any metric theory of gravity (Psaltis 2008). The situation,

however, becomes increasingly complicated as the angular velocity of the neutron

star increases toward the point of breakup.

Various effects of increasing the angular velocity of a neutron star have been stud-

ied in the context of predicting the orbits of test particles (e.g., Shibata & Sasaki

1998; Abramowicz et al. 2003; Berti & Stergioulas 2004; Berti et al. 2005), the

lightcurves that arise when the surface emission on a spinning neutron star is not

uniform (Miller & Lamb 1998; Braje et al. 2000; Muno et al. 2003; Poutanen &

Gierlinski 2003; Cadeau et al. 2005, 2007; Morsink et al. 2007), as well as the rota-

tional broadening of atomic lines that originate on the stellar surfaces (Özel & Psaltis

2003; Bhattacharyya et al. 2006; Chang et al. 2006). There are two conclusions that

emerged from these studies and are relevant for this work: (1) that the Hartle-Thorne

metric provides an approximation to the external spacetime of a rotating neutron

star that is adequate for most astrophysical applications (Berti et al. 2005) and (2)

that taking into account the oblateness of the stellar surface is at least as important

as considering the effects of frame dragging around a spinning neutron star (Morsink

et al. 2007).

In this chapter, I calculate numerically the apparent geometric surface area of
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a rotating neutron star using a variant of the Hartle–Thorne metric developed by

Glampedakis & Babak (2006). I use a new, fast ray-tracing algorithm that takes

into account the oblateness of the neutron star as well as deviations from the

Schwarzschild metric for its external spacetime that are formally correct up to the

contributions of the quadrupole mass moment. With this analytic metric I can cal-

culate the apparent surface area of a neutron star in a way that depends only on

global properties of the star and not on the details of an assumed equation of state.

Indeed, as I will show, the apparent surface area depends on six parameters: the

equatorial and polar radii of the neutron star, its mass, spin angular momentum,

and quadrupole mass moment, as well as the observer’s inclination. Using the ap-

proximate relation between the polar and equatorial radii of spinning neutron stars

obtained by Morsink et al. (2007) reduces the number of parameters to five.

I find that the apparent surface area of the neutron star changes only marginally

over the range of spin frequencies of known sources. The corrections to the observed

surface area only become significant at rotational frequencies greater than 1000 Hz.

3.2 Quadrupole Moment and Oblateness

For a compact object with mass M and specific angular momentum a, I write the

mass quadrupole moment of the spacetime as

q = −a2(1 + η) , (3.1)

so that, when η = 0, this reduces to the quadrupole moment of the Kerr metric.

(Note that, in the formalism of Glampedakis & Babak 2006, ε = ηa2.) This mass

moment of the spacetime for a rapidly spinning neutron star depends on its density

profile and hence on the underlying equation of state.

Laarakkers & Poisson (1999) calculated neutron-star quadrupole moments for a

wide range of equations of state, using a numerical algorithm that solves the Einstein

field equations with no approximations. They found that Equation (3.1) remains

valid even for neutron stars that are spinning near their breakup points. They
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calculated η ∼ 1− 6, depending on the stellar mass and radius. Berti & Stergioulas

(2004) further computed the quadrupole moments of stars in the Hartle–Thorne

approximation and compared them to those of the numerical spacetimes. They

concluded that the Hartle–Thorne approximation is adequate for all astrophysical

applications. This approximation is expected to be valid for observed neutron stars

because the fastest known X-ray burster is spinning at 620 Hz (4U 1608-52; Galloway

et al. 2008), and the fastest known pulsar is spinning at 716 Hz (Hessels et al. 2006),

which are expected to be significantly smaller than their breakup frequencies. Figure

3.1 shows the dependence of the quadrupole moment q on the spin frequency for a

1.8 M� star with the appropriate value of the parameter η taken from Laarakkers &

Poisson (1999) for two different equations of state.

In order to calculate the apparent surface area of a neutron star using the above

spacetime, I need to allow for the stellar surface to be non-spherical. This is required

by the fact that the deviations of both the external spacetime from the Kerr metric

as well as of the shape of the stellar surface from spherical symmetry are of second

order in fs/f0. Moreover, Morsink et al. (2007) have shown that, for purely geometric

reasons, the changes in the predicted lightcurves of spinning neutron stars when the

non-spherical shapes of their surfaces are taken into account are at least as important

as the effects of frame dragging that are formally only of first order in fs/f0.

Morsink et al. (2007) fit a large number of neutron-star shapes calculated for a

wide range of equations of state. They show that an equation of the form

R(θ)

Req

= 1 +
N∑
n=0

a2nP2n(cos θ), (3.2)

with Req the equatorial radius of the star and P2n(cos θ) the Legendre polynomial

of order 2n, accurately describes the shape of the neutron-star surface for even the

fastest spinning stars if the series is terminated at N = 2. For all equations of state

the coefficients of the expansion depend only on two parameters,

ζ ≡ GM

Reqc2
(3.3)
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and

ε ≡
(fs/2π)2R2

eq

c2ζ
. (3.4)

Excluding those equations of state that describe self-bound strange stars, Morsink

et al. (2007) obtain for the coefficients in Equation (3.2) the following empirical

relations:

a0 = −0.18ε+ 0.23ζε− 0.05ε2

a2 = −0.39ε+ 0.29ζε+ 0.13ε2

a4 = 0.04ε− 0.15ζε+ 0.07ε2 . (3.5)

Figure 3.2 shows the ratio of the polar to the equatorial radius of a neutron star, as

calculated with the above fitting formula.

In the Hartle–Thorne approximation, only terms up to second order are consid-

ered, i.e., the above series is terminated at N = 1. In this case, I can rewrite the

shape of the stellar surface in terms only of the equatorial and polar radii as

R(θ)

Req

= sin2 θ +
Rp

Req

cos2 θ . (3.6)

This introduces the two additional parameters, Rp and Req, which will determine the

apparent surface area of the neutron star. In Figure 3.2, I show the deformation of

neutron stars for both the full fitting formula (solid lines) and the approximation up

to quadrupole order (dashed lines). Over the entire region of interest, the agreement

between the approximation and the exact formula is within 5%. Therefore disregard-

ing higher order mass moment terms when calculating the shape of the neutron star

is justified.

The last free parameter in my simulation is the inclination angle of the observer.

Since there is no spherical symmetry, the apparent surface area of the neutron star

will depend on the angle at which it is viewed. I define this angle, θ0, as the angle

between the rotation axis of the star and the line of sight to an observer at infinity.
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3.3 Geometric Surface Areas of Neutron Stars

One way of inferring the apparent surface area of the neutron star, in principle, is by

direct angular measurement of the stellar image. If the distance of the star is known,

it is straightforward to calculate its physical radius given its angular dimension.

Another method to infer the surface area is by means of its thermal spectrum. By

measuring the temperature of the star and its total flux, one can again derive its

surface area. For slowly spinning neutron stars, these two measurements agree.

In the absence of rotation, the spacetime around the star is described by the

Schwarzschild metric. An observer at infinity will observe the star to be enlarged

due to gravitational self-lensing. The angular apparent surface area of the star is

then given by
AGSch

A
= (1− 2GM

Rc2
)−1 , (3.7)

where A = πR2. The spectroscopic area, on the other hand, is defined as

ASSch =
F∞

σT 4
eff,∞

, (3.8)

where F∞ is the thermal flux and Teff,∞ is its effective temperature. Gravitational

redshift reduces both the observed flux and the effective temperature as

F∞ = (1− 2GM

Rc2
)FNS,

T∞ =

√
1− 2GM

Rc2
TNS, (3.9)

where FNS and TNS are the flux and temperature measured at the surface of the neu-

tron star. Combining Equations (3.8) and (3.9) I find that the apparent spectroscopic

surface area at infinity is given by

ASSch

A
= 4(1− 2GM

Rc2
)−1. (3.10)
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Clearly, for a slowly spinning neutron star

ASSch

AGSch

= 4. (3.11)

The factor of four arises from the difference between the total surface area (4πR2)

measured spectroscopically and the projected surface area (πR2) measured geomet-

rically. For a moderately spinning neutron star, the lack of spherical symmetry in

the metric, the oblateness of the star, and the second order terms in the Doppler

shift will introduce different corrections to the geometric and spectroscopic areas as

measured at infinity. As a result, these two measurements will not agree in general.

In practice, only the spectroscopic area can be measured, as neutron stars are too

small to allow for a direct measurement of their angular sizes. However, the change

in apparent angular size of a neutron star plays a role even in the measurement

of its spectroscopic surface area. In the following, I use a ray-tracing algorithm to

investigate the effect of rapid rotation on the geometric surface areas of neutron

stars. I will discuss the additional effects of position-dependent redshift and Doppler

shifts in Chapter 4.
Table 3.1: Neutron-Star Parameters

Configuration M Req I η

(M�) (km) (1045g cm2)

1 1.8 10 1.4 1.2

2 1.8 15 3.0 3.9

Parameters of interest for the two neutron star configurations used in this chapter:
the mass M , the equatorial radius Req, the moment of inertia I, and the deviation
from the Kerr quadrupole η.

I calculate the apparent geometric surface area of a neutron star by counting

directly the number of rays originating at the image plane that intersect the surface
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of the star. The area on the image plane covered by the intersecting rays corresponds

to the angular area of the image of the neutron star. Moreover, the coordinates on the

neutron star at which each ray intersects the surface allow me to construct a contour

plot of the apparent image of the star to an observer at infinity (see Figure 3.3).

For my models, I used two different configurations of neutron-star parameters,

hereafter labeled “Configuration 1” and “Configuration 2”. In each case, I chose the

mass, equatorial radius, moment of inertia (from Cook et al. 1994), and quadrupole

deviation η (according to Laarakkers & Poisson 1999) corresponding to a proposed

equation of state in the non-spinning case. In order to demonstrate the range of

the change in surface area, I chose a relatively soft equation of state (EOS FPS) for

Configuration 1, and a relatively stiff equation of state (EOS L) for Configuration

2. I then held these parameters constant and varied only the spin frequency of

the neutron star. Therefore, as the spin of each star increases, its parameters will

increasingly deviate from the values predicted by the initial equations of state. While

the resulting models do not reflect the predictions of any particular equation of state,

they allow me to separate the various physical effects and estimate the magnitude

of the change in surface area across the parameter space. The parameters of both

configurations are summarized in Table 3.1.

Figure 3.3 illustrates the appearance of the two neutron stars in both the

Schwarzschild approximation and at a high spin frequency. Three effects influ-

ence the apparent image in the rapidly spinning case: frame dragging, the non-zero

quadrupole moment, and the oblateness of the stellar surface. The change in the

apparent image of the star due to each of these effects is illustrated in Figure 3.4.

Frame dragging causes the image of the neutron star to be displaced horizontally

while preserving its circular appearance. The negative quadrupole moment causes

the image to stretch horizontally about the axis of rotation. Finally, the oblateness

of the stellar surface squeezes the poles together, further emphasizing the elongated

appearance of the star. The combination of the displacement due to frame dragging

and the stretching due to the quadrupole moment give rise to the asymmetric shape

of the stellar image. A similar effect has been reported for images of accretion flows
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around black holes (Johannsen & Psaltis 2010).

Figure 3.5 shows the contributions of each of these effects to the geometric surface

area of the neutron star as a function of spin frequency. Note that the Hartle–

Thorne approximation to the metric formally becomes inaccurate at the highest spin

frequencies shown in this figure. The dominant effect on the image of a neutron star

with a Kerr metric is due to frame dragging. However, as discussed above, frame

dragging merely displaces the image of the star without altering its area. Therefore,

the apparent area under the Kerr metric stays nearly constant (the small increase

at high spin frequencies is due to the non-zero Kerr quadrupole). Including the

extra quadrupole moment described by Equation (3.1) increases the surface area

more significantly at faster spins. The oblateness of the stellar surface tends to

counteract these effects and decrease the apparent surface area. Whether the surface

area increases or decreases with higher spin frequency depends on which of these

corrections dominate.

Comparing the left and right panels of Figure 3.5, it is clear that the relative

importance of the oblate shape of the star grows as its equatorial radius increases.

Figure 3.5 shows that the radius of a star described by Configuration 2 falls within

the regime where the oblateness dominates the correction to the apparent surface

area. In this case, the observed surface area of the star primarily decreases with

increasing spin frequency, and the quadrupole moment only adds a small correction

at the highest spin frequencies. At a radius of 10 km, however, as in Configuration

1, the effect of the quadrupole moment outweighs the oblateness for spin frequencies

up to 1200 Hz, resulting in an overall increase of apparent surface area.

Since the presence of a spin axis breaks the symmetry of the spacetime, the image

of the neutron star also depends on the inclination at which it is viewed. Figure 3.6

shows this dependence for the two neutron stars with different radii. Again, the

direction of the trend depends on which of the effects is dominant. For the neutron

star with a larger radius (left panel), increasing the spin invariably leads to a smaller

observed surface area and a weak dependence on inclination. For the neutron star

with a smaller radius, however, the effects due to the oblateness and the quadrupole
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moment are comparable in magnitude (right panel). In this case, the direction of the

effect depends more strongly on inclination: the star appears to grow in area with

increasing spin frequency at large inclination, while it shrinks when viewed near the

poles.

The change in surface area with inclination is due to the non-spherical shape

of the neutron star and the θ-dependence of the metric. I investigate the behavior

of these two contributions further in Figure 3.7, where I show the contributions of

geometry and light-bending to this change in area for a fixed spin frequency for the

Configuration 2 neutron star.

The curve labeled “Geometry” shows the dependence of the apparent surface

area of the neutron star on inclination in the absence of any relativistic effects (see

Appendix A for the details of the calculation). As expected, changing the inclination

from pole-on to edge-on decreases the surface area of the image. On the other hand,

the curve labeled “Total” shows the change of the surface area with inclination when

relativistic effects are taken into account. I also plot the ratio of the two dependences

as the curve labeled “Gravity.” As the poles of the oblate spheroid lie deeper in the

gravitational well than the equator, the effect of light-bending is stronger when the

star is seen at a higher inclination. These two effects cancel to within 10%, leaving

the apparent surface area of the star practically constant over changing inclination.

3.4 Conclusions

A spinning neutron star introduces several effects in surface area measurements be-

yond those of the stationary Schwarzschild metric. Rapid rotation causes the neutron

star to acquire a quadrupole moment and an oblate surface. Both of these effects

distort the image of the star as seen by distant observers, introducing a correction

to the calculation of neutron star radii from a measurement of their surface areas.

The relative contributions of the quadrupole moment compared to the oblateness

depend strongly on the radius of the star. At a radius of 15 km, the quadrupole

contribution is negligible when compared to the change in apparent area caused

by the deformation of the stellar surface at all spin frequencies. At a radius of
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10 km, which are consistent with current observations (Özel et al. 2010; Steiner et

al. 2010), the self-lensing dominates over the oblateness for spin frequencies less than

∼ 1000 Hz.

While the apparent surface area does depend on the oblateness and quadrupole

moment caused by the neutron-star spin, these corrections are small for the spin

frequencies that have been observed to date. Only at frequencies above ∼ 800 Hz

does the apparent surface area change significantly. For the observed range of spin

frequencies, the change in apparent geometric surface area is less than 10%, for both

configurations considered here and at all inclinations.

Studies of the spectroscopic determination of surface areas for thermally emitting

neutron stars have so far relied on the Schwarzschild approximation, which neglects

the correction due to the changes in spin and oblateness of the neutron star due

to the stellar rotation (e.g., Rutledge et al. 2001; Özel 2006; Heinke et al. 2006;

Webb & Barret 2007; Özel et al. 2009; Güver et al. 2010a, 2010b). Observational

uncertainties inherent in these measurements are currently at the ∼ 10% level and

hence larger than the effects presented here. I will discuss the additional corrections

in the spectroscopic measurements of spinning neutron stars in Chapter 4. As the

uncertainties in the data shrink with future observations, it will be necessary to take

into account the corrections due to neutron star spins.
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Figure 3.1: Mass quadrupole moment of the spacetime as a function of the spin
frequency of the neutron star for two different radii. For each configuration, I show
the quadrupole moment for a star of mass 1.8 M�, with a radius of 10 km and 15 km,
and the remaining parameters chosen to correspond to models with EOS FPS and
EOS L, respectively (Cook et al. 1994).
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Figure 3.2: Ratio of the polar to the equatorial radius of a neutron star as a function
of its spin frequency, calculated using the approximate relation of Morsink et al.
(2007). The two pairs of curves correspond to two different stars with the same
mass of 1.8 M� and different radii. In each case, the solid curve is the result of the
complete fitting formula (3.2), whereas the dashed curve is the result when only the
terms up to the quadrupole order are used.
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Figure 3.3: Apparent image of neutron stars at infinity calculated for different con-
figurations. Two stars with Req = 15 km (left panels) and Req = 10 km (right panels)
are shown, one non-spinning (upper panels) and one with a spin frequency of 1400 Hz
(lower panels). In both cases, the observer is in the plane of the equator (θ0 = π

2
),

and the star rotates counterclockwise, the left side approaching the observer and the
right side receding.



39

Figure 3.4: Effect of frame dragging, quadrupole moment, and oblateness on the
image of a neutron star. The left panel shows the image of a star in a Kerr metric
with q = 0, where the only effect on the appearance of the star is the displacement of
the image due to frame dragging. The center panel shows the star in a Kerr metric
with an extra quadrupole moment as described in Equation (3.1), which causes the
image to stretch horizontally. The right panel includes both an extra quadrupole and
an oblate stellar surface, causing the poles to squeeze together. The mass, radius,
and moment of inertia for each star are chosen according to Configuration 2, as is
the quadrupole moment for all but the Kerr case. In each case the star is rotating at
1000 Hz. The red dashed circle in each panel indicates the location and size of the
image in the Schwarzschild metric.
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Figure 3.5: Ratio of the apparent surface area of a rotating neutron star to the
area of a static neutron star as a function of spin frequency. Two stars are shown,
corresponding to Configuration 1 (left panel) and Configuration 2 (right panel) as
described in the text. In both plots, the four lines show different approximations
of the metric outside the star: the Kerr metric, the Kerr metric plus a quadrupole
deviation, the Kerr metric with an oblate stellar surface, and the Kerr metric with
both a quadrupole deviation and oblateness. The dashed line is at A/ASch = 1. In
this plot, the inclination of the star is set to 90◦. Note that the plot is extended past
the mass shed limit in some configurations in order to show the general trend of the
relationship.
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Figure 3.6: As in Figure 3.5 but showing the apparent radius for three different
inclinations, taking into account both the quadrupole moment and the oblateness
of the star. The left panel corresponds to Configuration 1, while the right panel
corresponds to Configuration 2. Again, the x-axis is extended past the mass-shed
limit in some cases.
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Figure 3.7: Relative contributions of geometry and gravitational light bending to the
total surface area as a function of inclination. The green line, marked “Geometry,”
shows the apparent surface area normalized to πR2

eq in a flat spacetime (see Appendix
A). The red line, labeled “Total,” shows the area calculated by ray tracing in the
Hartle–Thorne metric. The ratio of these two areas shows the effect of gravitational
light-bending as a function of inclination, plotted in the blue line labeled “Gravity”.
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CHAPTER 4

Narrow Atomic Features from Rapidly Spinning Neutron Stars

4.1 Atomic Features

In addition to corrections in the observed surface area, the neutron star spin also

changes the properties of emission from its surface. The combination of Doppler

shifts and gravitational redshifts dictate the detailed profile and overall redshift of

atomic features emitted at the stellar surface. Previous works have modeled the

rotational broadening of spectral features by approximating the spacetime with the

Schwarzschild metric and adding Doppler shifts due to the motion of the surface

(e.g., Miller & Lamb 1998; Muno et al. 2002; Poutanen & Beloborodov 2006). In

this approximation, the rotational broadening of spectral features is largely due to

the Doppler shift and is approximately proportional to the neutron star radius (Özel

& Psaltis 2003; Chang et al. 2006).

At more rapid spins, however, the Schwarzschild metric is no longer an appro-

priate approximation for the spacetime. In the Kerr metric, the additional effect

of framedragging has a negligible effect on line profiles for the range of spins ex-

pected from astrophysical sources (Bhattacharyya et al. 2006). In the Hartle-Thorne

metric, the neutron star is allowed to become oblate in shape and acquire an ad-

ditional quadrupole moment. In this case, line profiles can further differ from the

Schwarzschild+Doppler approximation.

In this chapter, I calculate the profiles of atomic features from neutron-star sur-

faces in the Hartle-Thorne approximation (Bauböck et al. 2012). This approach

allows me to describe the external spacetimes of rotating neutron stars using only a

few of their macroscopic properties, such as their masses, radii, angular momenta,

and quadrupole moments, without a detailed knowledge of the equation of state;

naturally, these properties can be calculated for any given equation of state. I
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find that taking into account the quadrupole moment of the neutron-star space-

time leads to atomic features that are qualitatively different than those calculated in

the Schwarzschild+Doppler approximation. Indeed, atomic features with very nar-

row cores may originate on the surfaces of even moderately spinning neutron stars

when viewed at inclinations at which pure Doppler effects would predict significantly

broader features.

4.2 Line Profiles

Figure 4.1 shows the profiles of atomic features emitted from the surface of a neutron

star with a radius of 10 km and a mass of 1.4 M�, for different spin frequencies and

observer inclinations. For each simulated profile, I normalize the line so that the

bolometric luminosity is equal to unity.

In the absence of rotation, the only effect the geometry of the star has on the

line profile is to shift its observed energy by the gravitational redshift at the stellar

surface. In the case of a 1.4 M� star with a radius of 10 km, the energy of the line

center is redshifted by a factor of 0.77.

The first order effect of rotation on the line profile is the broadening associated

with the Doppler shift between the approaching and receding edges of the star. At

low spin frequencies, the width of the line is determined almost entirely by this effect.

A slight asymmetry appears in the profile that is due to the second order effect of

relativistic beaming—the photons emitted on the blueshifted portion of the star are

beamed toward the observer, shifting the peak of the observed spectrum to the right

as shown in Figure 4.1. The profiles corresponding to high observer inclinations

closely match the results of, e.g., Özel & Psaltis (2003), in which only first-order

Doppler shift corrections were considered.

At low inclinations and more moderate spins, I find a significant deviation from

the line profile predicted by the Schwarzschild + Doppler broadening. In that sim-

plified approach, the width of the line is determined by the line-of-sight velocity of

the neutron star surface and scales with the sine of the inclination to the observer.

I find, however, that neutron stars with relatively rapid rotations (such that their
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Figure 4.1: Line profiles for neutron stars spinning at three different rotational fre-
quencies. In each case, the star has a radius of 10 km, a mass of 1.4 M�, and an
inclination of (top) 90◦ and (bottom) 20◦ to the observer. As the spin frequency in-
creases, the lines become broader. At low observer inclinations, the lines also develop
narrow cores.
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Figure 4.2: Line profiles computed by taking different properties of spinning neutron
stars into account. In each case, the star is rotating at 700 Hz. As in Figure 4.1,
the stars have a radius of 10 km, a mass of 1.4 M�, and an inclination of 20◦.
The four lines show the results of calculations in four different approximations: the
Schwarzschild+Doppler approximation for a spherical and an oblate star, and the
Hartle-Thorne approximation for a spherical and an oblate star. The last case is
identical to the 700 Hz profile shown in Figure 4.1.
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Figure 4.3: Line profiles for five different inclinations to the observer’s line of sight.
The neutron star has a radius of 10 km, a mass of 1.4 M�, and a rotational frequency
of 700 Hz. At high inclinations, the profile displays only Doppler broadening. At
lower inclinations, however, a narrow peak appears.

quadrupole moments are large) and low inclinations (such that the Doppler effects are

small) generate line profiles with remarkably narrow cores that are strongly peaked

toward the blue end of the spectrum. These peaks are evident in the higher frequency

simulations shown in the bottom panel of Figure 4.1.

The deviation at low inclinations from the Schwarzschild+Doppler predictions is

due primarily to the quadrupole moment of the neutron star, with a small additional

effect from the oblate shape of the surface. To disentangle the relative roles of the

Doppler shift, the quadrupole moment, and the oblateness, I simulated two different

scenarios: one in which the profile is calculated in the Schwarzschild+Doppler ap-

proximation and the other in which the full Hartle-Thorne metric is used. In each

case, I performed the calculations both for a star with a spherical surface and for

one in which the surface becomes oblate. The results are shown in Figure 4.2. The

profile labeled “Spherical S+D” shows only the expected Doppler broadening and

relativistic beaming. When I allow for the shape of the star to become oblate, the
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Figure 4.4: Line profiles for different values of the parameter η which measures
the quadrupole moment of the neutron star. As in previous figures, the neutron
star has a 10 km radius, a mass of 1.4 M�, and a rotational frequency of 700 Hz.
The inclination to the observer’s line of sight is 20◦. As the quadrupole moment
(parametrized by η) increases, the line develops a narrow peak in the blueshifted
portion of the spectrum.
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Figure 4.5: Contours of constant redshifted energy at the neutron star surface. The
left panel shows the redshift for an oblate neutron star in the Schwarzschild+Doppler
approximation, while the right panel includes a fiducial value for the neutron star’s
quadrupole moment as calculated by Laarakkers & Poisson (1999). In both cases, the
star has a mass of 1.4 M�, a radius of 10 km, an inclination of 20◦ to the observer’s
line of sight, and is rotating at 700 Hz. The star is rotating counterclockwise when
viewed from above. In the right panel, the quadrupole moment of the neutron
star causes a local extremum in the redshifted energy near rotational pole on the
blueshifted side of the star. This maximum is responsible for the narrow core of the
atomic features from moderately spinning neutron stars.
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profile shifts toward the red. This shift is caused by the increased gravitational red-

shift in the region near the pole. The effect of the oblate shape of the stellar surface

is overpowered, however, by the contribution of a nonzero quadrupole moment. As

shown in the two Hartle-Thorne scenarios illustrated in Figure 4.2, the quadrupole

causes a narrow peak in the line profile for both the spherical and the oblate stellar

surfaces.

This narrow peak vanishes at higher inclinations, as shown in Figure 4.3. The

peak is very strong at inclinations below 30◦, but the effect of the quadrupole de-

creases rapidly as inclination increases because of the increasing relative importance

of the Doppler broadening. When viewed perpendicular to the axis of rotation, the

peak vanishes and the profile can be described purely by Doppler broadening. More-

over, the narrow core has a strong dependence on the magnitude of the quadrupole

moment of the neutron star. Figure 4.4 shows line profiles for four different values of

η, ranging from 0 (the Kerr case) to 3. As the quadrupole moment grows, the peak

in the line profile becomes more pronounced. At the quadrupole moment predicted

for this neutron star configuration, the narrow core dominates the line width.

The appearance of a narrow peak in the simulated spectra arises from the fact

that the addition of a quadrupole moment causes a significant portion of the stellar

surface to have roughly the same effective redshift. This effect is a combination of

the varying Doppler shift across the surface and of the quadrupole component of the

gravitational redshift. I show in Figure 4.5 contours of constant redshifted energy

on the stellar surface for two stars: the right panel depicts a neutron star with

my fiducial value of the quadrupole moment, while the left panel shows the same

calculation performed in the Schwarzschild+Doppler metric for an oblate neutron

star. On the star with zero quadrupole moment, the energy decreases monotonically

toward the right (the receding side) due to the changing Doppler shift. In the other

case, there is an additional effect due to the quadrupole moment that is symmetric

about the pole of rotation. The result is a local maximum of energy that is offset

slightly from the pole. The energy of this local maximum corresponds to the energy

of the peak in Figure 4.1.
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In Figure 4.6, I present another view of the combination of effects that give rise

to these particular line profiles. The top panel shows the total redshifted energy

as a function of colatitude for a constant value of the azimuth φ close to the local

maximum for the configuration shown in the right panel of Figure 4.5. For a spherical

star with no quadrupole, the redshift changes monotonically across the surface due

to the Doppler shift. An oblate star with no quadrupole moment is more redshifted

in the vicinity of the pole, causing the shift in the line peak seen in Figure 4.2. In

contrast, for an oblate star with the fiducial quadrupole moment, a local maximum

appears that is offset from the pole.

By taking various ratios of the curves shown in the upper panel of Figure 4.6,

I can identify the effect of the oblateness and of the quadrupole moment. This is

shown in the lower panel of Figure 4.6. For comparison, I also calculate the ratio

of the gtt terms of two metrics, one with fiducial quadrupole and the other with the

quadrupole deviation set to zero:

λ =
gtt,q[θ, R(θ)]

gtt,q=0[θ, R(θ)]
(4.1)

This ratio is shown as a dash-dotted curve in Figure 4.6. The similarity between the

energy ratios and the metric curve strongly suggests that the maximum in redshifted

energy is caused by the quadrupole moment.

Observed spectral lines from neutron star surfaces will be broadened by several

effects in addition to the geometric effects considered above. In Figure 4.7, I show

the broadening of several Gaussian lines with different intrinsic widths. Models of

neutron-star surface emission predict line widths on the order of 10−3 (Özel 2013).

As a result, the dotted line in Figure 4.7 shows a reasonable upper limit for the

intrinsic line width expected from a neutron-star surface. For completeness, I also

show profiles with significantly broader lines.
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4.3 Discussion

Second order effects of the rotation of neutron stars introduce significant corrections

to the observed profiles of atomic features from their surfaces. The dependence of

these profiles on the inclination of the observer deviates strongly from the expected

sin(θ0) behavior that is characteristic of Doppler effects. The principle cause of this

deviation is the extra quadrupole mass moment induced by the rapid rotation of the

star. The combination of the quadrupole moment and the Doppler shift due to the

motion of the neutron star surface cause a strong and narrow feature to appear in

the simulated spectra of emission lines. This narrow core is strongest at relatively

low inclinations (θ0 < 30◦) and high spin frequencies (fNS > 500 Hz).

Several previous authors have modeled the relativistic effects on spectral lines

emitted from neutron star surfaces. Özel & Psaltis (2003) calculate line broadening

in a Schwarzschild metric with Doppler shifts. Taking into account these first-order

effects of rotation, they found uniformly broadened profiles, as expected from pure

Doppler effects. At high inclination to the observer’s line of sight, where quadrupole

effects are small, my profiles are consistent with these calculations.

Bhattacharyya et al. (2006) extended this analysis to include the effect of frame

dragging. In their approximation, the authors assumed the neutron star to be spher-

ical and the exterior spacetime to be described by the Kerr metric. Moreover, they

assumed that line emission is confined to a band of latitudes on the surface of the

neutron star. A neutron star in the Kerr metric has a small but non-zero quadrupole

moment, so in principle narrow line cores could result in this approximation as well.

However, because the quadrupole moment is small, the effect is only apparent at

high spin frequencies, very low observer inclinations, and for bands of emission close

to the rotational pole. The profiles in Bhattacharyya et al. (2006) are predominantly

at high observer inclinations and for emission bands close to the rotational equator;

therefore the effects of the Kerr quadrupole moment on their profiles is negligible.

Chang et al. (2006) calculated line profiles using numerical metrics for several

equations of state. These numerical metrics incorporate appropriate quadrupole
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and higher order moments of the spacetime and should, therefore, reproduce the

effects discussed here. However, the authors confined their analysis to high-

inclination sources and relatively low spin frequencies, at which the contribution

of the quadrupole moment to the line profile is small.

Figure 4.8 shows a contour plot of the simulated full width at half-maximum of

emission lines for a range of spin frequencies and inclinations. At high inclinations,

the interpretation of line widths is straightforward, with narrow lines corresponding

to slow rotation and broad lines implying fast rotation. At lower inclinations, how-

ever, there is often a degeneracy. Narrow lines could be caused by slow rotation or

by the higher quadrupole induced by rapid rotation. Clearly, line broadening can

only be used as a reliable measure of neutron star radii if additional information is

available on the inclination of the observer and the spin frequency.

The presence of a narrow core in atomic features also increases the range of

inclinations at which these features are detectable. At high spin frequencies and

relatively low observer inclinations, atomic features from realistic stars are narrower

than those expected from purely Doppler effects (Chang et al. 2006). This may

allow for such features to be discernible from continuum spectra and translates into

a larger solid angle over which they are detectable

The models presented here may shed new light on observations of the source EXO

0748–676. XMM observations of this source showed evidence for narrow absorption

lines (Cottam et al. 2002), which were later used to constrain the mass and radius

of the neutron star (e.g., Özel 2006). However, Lin et al. (2010) argued that the

subsequent detection of the 552 Hz spin frequency and the large amplitude of burst

oscillations were incompatible with the narrow observed width of the absorption lines

and concluded that these lines did not originate at the neutron star surface.

In their calculations, Lin et al. (2010) use the Schwarzschild+Doppler approach

to model the line spectra. As shown above, however, the inclusion of second-order

effects leads to narrow profiles for much higher inclinations at a given spin frequency.

Therefore, it appears plausible that the narrowness of the absorption lines is not in-

compatible with the high amplitudes of the observed burst oscillations and, therefore
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does not exclude the possibility that they were emitted from the surface. A detailed

analysis of the EXO 0748–676 case will be presented in a future paper.
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Figure 4.6: The top plot shows the redshifted energy of photons originating on the
neutron star surface as a function of colatitude θ for a fixed value of the azimuth
φ and for the neutron star parameters depicted in Figure 4.5. The colatitude θ is
zero at the rotational pole; it assumes negative values on the blueshifted side of the
star and positive values on the redshifted side. The three lines correspond to three
different configurations of the neutron star: one in which the star is spherical and has
no quadrupole moment, one in which the star is oblate with no quadrupole moment,
and one with both oblateness and a quadrupole moment. In the lower panel, the
dashed line shows the ratio of redshifted energies on a spherical neutron star to those
on an oblate one. The dash-dotted line shows the ratio of the redshifted energies of
a neutron star with a quadrupole moment to those on a star without. The solid line
shows the ratio λ of the gtt components of two different spacetimes: one in which the
quadrupole deviation is set to zero and another in which the quadrupole is set to its
fiducial value.
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Figure 4.7: Line profiles for different intrinsic line widths. In each case, the result
of the ray tracing for a star of 1.4 M� and a radius of 10 km spinning at 700 Hz is
convolved with a Gaussian profile of width σ. The solid red profile shows a line with
an infinitesimal intrinsic width and corresponds to the profile shown in Figures 4.1—
4.3. In order to illustrate the effect of intrinsic line broadening, I have included
profiles corresponding to unrealistically broad lines. In practice, intrinsic line widths
are expected to be at or below the σ = 0.005 level shown by the blue dotted curve.
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CHAPTER 5

Relations Between Neutron-Star Parameters in the Hartle-Thorne Approximation

5.1 Neutron-Star Parameters

In the Hartle-Thorne metric, the appearance of a neutron star as measured by an

observer at spatial infinity depends on seven macroscopic parameters: the mass M ,

the equatorial radius Req, the spin frequency f , the inclination of the rotational pole

with respect to the observer θ0, the angular momentum J , the quadrupole moment

Q, and the eccentricity of the surface es. Three of these parameters (f , θ0, and,

e.g., M) are independent of the equation of state for any given observed source.

The remaining four parameters (Req, J , Q, and es) are uniquely determined by the

equation of state, given a neutron star mass and spin frequency. Therefore, it is

any of these four parameters that need to be measured observationally, in addition

to the mass and spin frequency, in order for the underlying equation of state to be

constrained.

Even though measuring only one of the four dependent parameters with high

precision would be sufficient, typical observables depend on all seven parameters in a

complex manner. It is unlikely that spectroscopic or timing observations in the near

future will be accurate enough to allow for independent measurements of all of these

parameters in individual neutron stars. In the work described above, I have assumed

a sample equation of state in order to set the relations between those parameters

that are not directly measured. In order to make progress, I can reduce the dimen-

sionality of the problem by using approximate relations that connect quantities that

are higher order in spin frequency (such as the spin angular momentum J , the space-

time quadrupole Q, and the ellipticity of the stellar surface es) to ones that are of

lower order (such as the mass M and equatorial radius Req). In this way, observable

phenomena from a moderately spinning neutron star can be calculated based only on



59

its mass and equatorial radius, given a spin frequency and an observer’s inclination.

This reduction of the parameter space by means of approximate relations allows

for the properties of dense matter to be constrained only if the relations themselves do

not depend strongly on the details of the equation of state. Andersson & Kokkotas

(1998) modeled pulsation modes of neutron stars and showed that the relations

between several parameters of interest have a significant dependence on the equation

of state. However, given the constraints imposed on the equation of state of dense

matter by recent observations (e.g., Demorest et al. 2010; Antoniadis et al. 2013),

I show that it is possible to find relations between the parameters described above

that are valid over the astrophysically relevant parameter range and for a variety of

equations of state.

Several authors to date have explored such approximate relations in different con-

texts. Ravenhall & Pethick (1994) and Lattimer & Prakash (2001) provide empirical

formulae for the moments of inertia and binding energies of slowly spinning neutron

stars as a function of their masses and radii. Morsink et al. (2007) obtained empirical

formulae that connect the ellipticity of the surfaces of spinning neutron stars to their

masses, equatorial radii, and spin frequencies. More recently Urbanec et al. (2013)

modeled the angular momenta and quadrupole moments of both neutron stars and

strange stars, showing that different relations exist for these two classes of objects.

Finally, Yagi & Yunes (2013a) found relations between the moment of inertia, the

quadrupole moment, and the tidal Love number that are highly accurate for several

equations of state.

In this chapter, I model the properties of moderately spinning neutron stars in

the Hartle-Thorne approximation, which is adequate for spin frequencies . 800 Hz.

I derive an analytic expression connecting the ellipticity of the stellar surface to the

compactness, the spin angular momentum, and the spacetime quadrupole. I also ob-

tain empirical relations between the compactness, the spin angular momentum, and

the spacetime quadrupole similar to those found in Lattimer & Prakash (2001) and

Yagi & Yunes (2013a). These relations allow me to fully determine the parameters

of a neutron star given a measurement of its mass, radius, and spin frequency. I
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demonstrate that these formulae reproduce the results of numerical calculations of

neutron-star spacetimes to within a few percent. This is sufficient for comparing

theoretical spectroscopic and timing models to observations that aim to measure the

masses and radii of neutron stars and to determine the high-density equation of state

prevailing in their interiors.

5.2 Numerical Models in the Hartle-Thorne Approximation

The Hartle-Thorne metric is based on a slow-rotation expansion. If the expansion is

truncated at second order in the spin frequency, the spacetime exterior to a rotating

object can be described by three parameters: the total mass, the angular momentum,

and the quadrupole moment of a neutron star. Observationally, the appearance also

depends on the geometry of its surface, i.e., on its equatorial radius and ellipticity.

Out of these parameters, I choose the mass M and the equatorial radius Req to

characterize each neutron star. The other three parameters depend on the equation

of state but are of higher order in spin frequency and introduce small corrections to

most observables (e.g., Poisson 1998; Morsink et al. 2007; Racine 2008; Bauböck et

al. 2013; Psaltis & Özel 2013). Therefore, I aim to find relations that allow for these

parameters to be approximated given a neutron-star mass and radius, independent

of the equation of state.

The angular momentum J of a neutron star is often represented by the dimen-

sionless spin parameter

a ≡ cJ

GM2
, (5.1)

which is zero for a non spinning object. Neutron stars typically have a spin a ≤ 0.7

for uniform rotation and physically motivated equations of state (Cook et al. 2004,

Berti & Stergioulas 2004, Lo & Lin 2011), but the spin magnitudes of neutron stars

in binaries observable by Advanced LIGO are likely to be much smaller than this

theoretical upper bound (Mandel & O’Schaughnessy 2010, Brown et al. 2012). The

spin periods of isolated neutron stars at birth should be in the range 10-140 ms

(Lorimer 2001), or a . 0.04. Accretion from a binary companion can spin up neutron
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stars but is unlikely to produce periods less than 1 ms, i.e., a . 0.4 (Ferdman et

al. 2008). The fastest-spinning observed pulsar has a period of 1.4 ms, (a ∼ 0.3)

(Hessels et al. 2006); the fastest known pulsar in a neutron star-neutron star system,

J0737-3039A, has a period of 22.70 ms (a ∼ 0.02; Burgay et al. 2003). The spin

parameter depends both on the rotational period and on the moment of inertia of

the neutron star, which is determined by the equation of state.

A spinning neutron star also acquires a nonzero quadrupole moment Q. I char-

acterize the quadrupole moment by the dimensionless quantity

q ≡ − c4Q

G2M3
. (5.2)

Laarakkers & Poisson (1999), Berti & Stergioulas (2004), and Pappas & Apostolatos

(2012) computed the quadrupole moment of rapidly spinning neutron stars for a

range of equations of state. They found values of q ranging between 1 and 11 (see

also Bauböck et al. 2012).

Lastly, a spinning neutron star also becomes oblate in shape. In the Hartle-

Thorne approximation, this oblateness is described by

R(θ) = R0 + ξ2P2(cos θ), (5.3)

where P2 is the second-order Legendre polynomial and ξ2 is a coefficient depending

on the equation of state and spin frequency of the neutron star. In the non-spinning

limit, ξ2 = 0 and R(θ) = R0. For moderately spinning neutron stars, there are two

frequently used parameters to characterize the oblate shape: the eccentricity of the

surface,

es ≡

√(
Req

Rp

)2

− 1, (5.4)

and its ellipticity,

εs ≡ 1− Rp

Req

, (5.5)

where Req is the equatorial radius and Rp is the radius at the pole.



62

As in Berti et al. (2005), I expand the parameters a, q, es, and εs to second order

in the spin frequency of the neutron star. Specifically, I define the parameter

ε0 ≡
f

f0

(5.6)

in terms of the characteristic frequency

f0 ≡

√
GM0

R3
0

. (5.7)

In this equation, M0 and R0 are the non-spinning mass and radius of the neutron

star. The characteristic frequency f0 corresponds to the Keplerian orbital period of

a test particle at a radius R0 around a mass M0 and thus corresponds roughly to

the maximum frequency a neutron star can be spun up to before breakup. For spin

frequencies much smaller than this characteristic frequency (f < f0), ε0 serves as a

suitable small parameter about which I can expand the metric. When f approaches

f0, the parameter ε0 approaches unity, and the Hartle-Thorne approximation is no

longer valid. The spin frequency at which this occurs depends on M0 and R0 and,

therefore, on the equation of state. However, for most proposed equations of state,

this approximation is valid for even the most rapidly spinning neutron stars observed

to date (Berti et al. 2005).

For a non-spinning neutron star, the parameter ε0 is equal to zero, and thus

the spin a, the quadrupole moment q, and the eccentricity of the surface es are all

zero, as well. As the spin frequency increases, corrections to the metric enter at

different orders in ε0. To first order in the spin frequency, the star acquires a non-

zero angular momentum, characterized by the spin parameter a. To the lowest order,

I can approximate the spin parameter as a linear function of spin frequency, i.e.,

a = ε0a
∗, (5.8)

where a∗ is a constant that depends on the equation of state. To second order in the
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spin frequency, the star acquires a quadrupole moment and an elliptical shape, i.e.,

q = ε20q
∗ (5.9)

and
Req

Rp

= 1 + ε20R
∗, (5.10)

where q∗ and R∗ are again constants depending on the equation of state. Substituting

Equation (5.10) into Equations (5.4) and (5.5) shows that the eccentricity of the

surface of the neutron star has a first order dependence on the spin frequency

es = ε0e
∗
s, (5.11)

while the ellipticity has a second-order dependence on the spin frequency, i.e.,

εs = ε20ε
∗
s. (5.12)

The above relations all depend on ε0, which in turn depends on the non-spinning

values M0 and R0. For a spinning neutron star, however, these quantities are not

readily measurable. Instead, observations can only constrain the spinning mass and

equatorial radius, M and Req, respectively. These parameters differ from their non-

spinning values at second order in ε0:

M = M0 + ε20δM
∗, (5.13)

Req = R0 + ε20δR
∗, (5.14)

where δM∗ and δR∗ are again constants depending on the equation of state. Since

M and Req differ from M0 and R0 at second order in ε0, the corrections introduced to

Equations (5.8)–(5.11) by the altered mass and radius will necessarily enter at third

or fourth order in ε0. Therefore, the lowest-order effects will be unchanged. For the

remainder of this work, I will use the spinning mass and radius interchangeably with

the nonspinning values.
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I use the procedure described in Berti et al. (2005) to calculate the values of

the parameters described above for several neutron-star equations of state. For a

given equation of state, a central density and spin frequency uniquely determine

the properties of a neutron star in the Hartle-Thorne approximation. First, I solve

the Tolman-Oppenheimer-Volkoff equations to find the parameters of a non-spinning

star with the same equation of state and central density. In this non-spinning case,

a, q, and e∗s are equal to 0. Next, I solve the full Hartle-Thorne equations for the

perturbative quantities, i.e. q∗, a∗, R∗, e∗s, and ε∗s. Once I have found the values

of these starred parameters, I can then use Equations (5.8)–(5.12) to determine the

parameters of a neutron star spinning at any intermediate rate characterized by

ε < ε0.

5.3 Relations Between Spin, Quadrupole, and Compactness

As in Lattimer & Prakash (2001) and Yagi & Yunes (2013a), I find that tight em-

pirical relations exist between the spin parameter a∗, the dimensionless quadrupole

moment q∗, and the compactness ζ = GM0/R0c
2 of neutron stars that depend very

weakly on the assumed equation of state. In addition, I derive an analytic formula

relating these four quantities to the eccentricity parameter e∗s and the ellipticity

parameter ε∗s of the neutron star surface.

In order to generate my fits, I selected several modern equations of state. Obser-

vations by Demorest et al. (2010) of a 1.97 M� neutron star and by Antoniadis et

al. (2013) of a 2.01 M� neutron star place significant constraints on the properties of

dense matter and strongly disfavor several equations of state. I selected only equa-

tions of state that allow a maximum mass of at least 2.0 M�. Following the naming

convention of Lattimer & Prakash (2001), I chose for the fits the equations of state

AP4, ENG, MPA1, and MS0, which cover a wide range of microphysics assumptions

and calculational procedures.

For each equation of state, I use a large number of numerical models covering

the astrophysically relevant range of masses M > 1.0 M� (Özel et al 2012). A

least-squares polynomial fit of the spin parameter a∗ as a function the compactness
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Figure 5.1: Empirical fit to the correlation between spin and compactness of a neu-
tron star for four equations of state, corresponding to equation (5.15). The lower
panel shows the residual in percent.

yields

a∗ = 1.1035− 2.146ζ + 4.5756ζ2 . (5.15)

Figure 5.1 shows this fit as a solid line, along with the results of numerical calculations

for four different equations of state. The lower panel shows the residuals: for all

equations of state, the residuals over the range of masses considered here are less

than 4%.

Both Lattimer & Prakash (2001) and Yagi & Yunes (2013b) found similar em-

pirical relations between the moment of inertia and the compactness. These authors

consider a wider range of equations of state and neutron star parameters than those

included in Figure 5.1. For less compact neutron stars than those shown in Fig-

ure 5.1, i.e., typically those with masses <1 M�, different equations of state predict

more divergent values for the moment of inertia (or equivalently the spin param-

eter a∗). For the purpose of modeling observations of astrophysical neutron stars,



66

however, the relation given in Equation (5.15) is adequate.

In order to determine the quadrupole moment, I adopt the relation proposed by

Yagi & Yunes (2013b). These authors present a relation between the quadrupole

moment and moment of inertia of spinning neutron stars with a variety of equations

of state. They define a dimensionless quadrupole moment Q̄ and moment of inertia

Ī that relate to my q∗ and a∗ via

Q ≡ q∗

a∗2
, (5.16)

and

I ≡ a∗ζ−3/2. (5.17)

They then find an empirical expression for Ī as a function of Q̄. Since the inverse

of this relation is required for use with the fit for the spin parameter a∗ in Equa-

tion (5.15), I find instead an analogous fit for Q̄ as a function of Ī,

lnQ = −2.014 + 0.601 ln I + 1.10(ln I)2 (5.18)

− 0.412(ln I)3 + 0.0459(ln I)4.

Alternatively, the fit of Yagi & Yunes (2013b) can be inverted numerically to obtain

an equivalent relation. The above fit is shown as the solid line in Figure 5.2 along

with numerical calculations for the chosen equations of state. Again, the residuals

shown in the lower panel are less than 2% for each considered equation of state.

5.4 Relations for the Elliptical Shape of the Neutron Star Surface

Given these two empirical fits for the spin parameter and quadrupole moment, I now

find an analytic expression for the eccentricity of the neutron star surface. Hartle

& Thorne (1968) solved the equations of stellar structure at second order in spin

frequency and showed that the eccentricity of the neutron star surface measured in

flat space is given by

es =
√
−3(v2 − h2 + ξ2/R0), (5.19)
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Figure 5.2: Empirical fit to the correlation between the dimensionless quadrupole
moment Q̄ and angular momentum Ī. The fit corresponds to Equation (5.18) and
is equivalent to that proposed in Yagi & Yunes (2013b). The lower panel shows the
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where v2 and h2 are functions of R0 that are second order in spin, and ξ2 is the pa-

rameter defined in Equation (5.3). Hartle & Thorne (1968) provide the exact forms

of the quantities v2 and h2 as functions of the mass, radius, angular momentum, and

quadrupole moment. Using Equations (5.1) and (5.2), I can reduce Equation (5.19)

to depend only on the dimensionless parameters ζ, a, q, and ε0 defined above. Sub-

stituting a∗ and q∗ for a and q via Equations (5.8) and (5.9) and using the definition

of e∗s in Equation (5.11), I can eliminate the dependence on spin and find an analytic

expression for the eccentricity e∗s,

e∗s(ζ, a
∗, q∗) =

[
1− 4a∗ζ3/2

+
15(a∗2 − q∗)(3− 6ζ + 7ζ2)

8ζ2
+ ζ2a∗2(3 + 4ζ)

+
45

16ζ2
(q∗ − a∗2)(ζ − 1)(1− 2ζ + 2ζ2) ln (1− 2ζ)

]1/2

. (5.20)

Figure 5.3 shows this expression for the eccentricity as a function of the com-

pactness, along with numerical calculations from several equations of state. I have

substituted Equations (5.15), (5.17) and (5.18) into Equation (5.20) in order to

present the relation as a function of the single parameter ζ. The residuals to this

relation are shown in the lower panel. The residuals are nonzero due to the empirical

nature of the fits between a∗, q∗, and ζ.

Alternatively, Hartle (1967) gives an expression for the ellipticity of the neutron

star surface in Hartle-Thorne coordinates as

εs = − 3

2R
ξ2. (5.21)

Again, I can reduce this equation to depend only on the dimensionless parameters

and eliminate the spin dependency to find an expression for ε∗s,
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Figure 5.3: Analytic expression for the eccentricity of the neutron star surface, cor-
responding to Equation (5.20). In order to express this relation as a function of
a single parameter, I have combined Equation (5.20) with the empirical fits for the
quadrupole moment and spin parameter from Equations (5.15) and (5.18). The lower
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this relation.
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ε∗s(ζ, a
∗, q∗) =

1

32ζ3

{
2ζ
[
8ζ2 − 32a∗ζ7/2

+ (a∗2 − q∗)(45− 135ζ + 60ζ2 + 30ζ3) + 24a∗2ζ4 + 8a∗2ζ5

− 48a∗2ζ6
]

+ 45(a∗2 − q∗)(1− 2ζ)2 ln (1− 2ζ)

}
. (5.22)

5.5 Applications

In order to reduce the number of parameters necessary when fitting a neutron star

observation, the following procedure can be used. For a given value of M , Req, and

f , one can calculate the parameter ε0 via Equations (5.6) and (5.7) as

ε0 = f

(
GM

R3
eq

)−1/2

. (5.23)

The spin parameter a can then be found from Equation (5.15),

a = ε0
[
1.1035− 2.146ζ + 4.5756ζ2

]
. (5.24)

The fit between moment of inertia and the quadrupole moment can then be used to

write

q = a2 exp

[
− 2.014 + 0.601 ln

(
a

ε0
ζ−3/2

)
+ 1.10 ln

(
a

ε0
ζ−3/2

)2

− 0.412 ln

(
a

ε0
ζ−3/2

)3

+ 0.0459 ln

(
a

ε0
ζ−3/2

)4
]
. (5.25)

The parameters a∗ ≡ a/ε0 and q∗ ≡ q/ε20 can then be used in Equations (5.20) or

(5.22) to find the eccentricity or ellipticity parameter of the neutron star surface in the

appropriate spacetime. As defined in Equation (5.22), the ellipticity of the neutron
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Figure 5.4: Comparison of the ratio of polar radius to equatorial radius found in this
work and the ratio found by Morsink et al. (2007)

star is given in Hartle-Thorne coordinates. In order to convert to the commonly used

Boyer-Lindquist coordinate system, the following transformation can be applied:

RBL(RHT, θ) =

RHT −
a2
(
GM
c2

)2

2R3
HT

[(
RHT + 2

GM

c2

)(
RHT −

GM

c2

)

− cos2(θ)

(
RHT − 2

GM

c2

)(
RHT + 3

GM

c2

)]
(5.26)

where RHT is the radial coordinate in the Hartle-Thorne coordinate system and RBL

is the radial coordinate in the Boyer-Lindquist coordinate system (Hartle & Thorne

1968).

In the context of modeling pulse profiles, Morsink et al. (2007) similarly reduce the

parameter space by finding an empirical description of the oblate shape of spinning

neutron stars that is accurate for multiple equations of state. They find that compact

objects can be divided into two broad classes with different oblateness at high spin

frequencies. Normal neutron stars and hybrid quark stars follow one relation, while
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Figure 5.5: Simulated line profiles of an emission line from a neutron-star surface.
The solid line shows a profile calculated using parameters from a numerical simulation
of an AP4 star with a mass of 1.40 M� and a spin frequency of 700 Hz. The dashed
line shows a star with the same mass, spin frequency, and radius (10.18 km), but
with the quadrupole moment, spin parameter, and eccentricity determined by my
fits. For reference, the dash-dotted line shows a profile with identical parameters but
with the quadrupole moment set to zero. The photon energy at infinity and in the
local Lorentz frame are denoted by E and E0, respectively.
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color-flavor–locked stars exhibit a different behavior. In both cases, Morsink et

al. (2007) find that the deviation of the stellar surface from the spherical shape

is proportional to the square of the spin frequency, with some additional correction

at fourth order in the spin.

The empirical model of Morsink et al. (2007) for calculating the shape of normal

neutron stars should agree with the analytic formula I find above when compared

in the same coordinate system. Morsink et al. (2007) define the shape of the stellar

surface in the Schwarzschild coordinate system. Since the Boyer-Lindquist coordinate

system reduces to the Schwarzschild coordinate system in the limit of zero spin, I

use Equation (5.22) to calculate the ellipticity in Hartle-Thorne coordinates and

apply the change of coordinates described in Equation (5.26). Figure 5.4 shows the

predicted ratio of the polar to the equatorial radius in the model of Morsink et al.

(2007) as well as the analytic relation described above for a range of spin frequencies.

In both models a neutron star with a mass of 1.4 M� and a radius of 10 km was

used. The deviation derived here of the empirical model of Morsink et al. (2007) and

the analytic formula is of order 1% in the range of observed spins.

The neutron-star shape and quadrupole moment play an important role in the

profiles of lines that originate on neutron-star surfaces. Bauböck et al. (2013) showed

that, at low inclinations, the quadrupole moment can cause anomalously narrow

features to appear even for neutron stars spinning at moderate rates. In order to

test whether the fits proposed in this work are precise enough to accurately model

line profiles, I compared the profile calculated with the parameters predicted by a

numerical simulation to one using the parameters from my fits. I show the result in

Figure 5.5. For this example, I chose a model where the fits have large residuals,

especially for the quadrupole moment, which provides the dominant contribution

to the profile shape (Bauböck et al 2013). Even in this case, the narrow profile is

recovered, and the difference in the resulting profiles is negligible.
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5.6 Conclusions

I have demonstrated that several macroscopic parameters of spinning neutron stars

can be approximated with high accuracy using relations that depend only on their

masses, radii, and spin frequencies, but that are practically independent of the equa-

tion of state. These fits enable measurements of neutron-star masses and radii using

X-ray spectroscopy, timing observations of pulse profiles, and gravitational-wave ob-

servations of neutron stars spinning at moderate frequencies.

Future detectors such as NICER, LOFT, and Advanced LIGO will soon allow

for more precise measurements of neutron-star parameters than have been possible

to date. Using these observations to constrain the equation of state of the dense

matter found in neutron star cores requires that the parameter space be reduced in

order to determine the mass and radius with the highest precision. The relations

demonstrated above allow this reduction of the parameter space independent of the

equation of state, making possible more precise measurement of the equation of state

of neutron-star cores.
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CHAPTER 6

Rotational Corrections to Neutron-Star Radius Measurements from Thermal

Spectra

6.1 Thermal Emission from the Stellar Surface

Although to date no observations of atomic emission or absorption lines from neutron-

star surfaces have been confirmed, thermal emission from the stellar surface has

been successfully used to constrain masses and radii. However, these measurements

have relied on the assumption that the sources are spinning too slowly to affect the

spectrum of radiation emitted from the surface. Here I investigate this assumption

by modeling thermal spectra that have been broadened and distorted by the neutron-

star spin.

An important component of theoretical modeling is related to spectral distortions

caused by radiative transfer effects in the neutron-star atmosphere. Because the free-

free opacity depends strongly on photon energy, the color temperature measured from

the peak of the spectrum emerging from the atmosphere is expected to be significantly

higher than the effective temperature of the surface (van Paradijs 1979). In addition,

the Compton scattering of photons off of the free electrons in the atmosphere further

distort the emitted spectra (London et al. 1986). Accurate models of neutron-star

atmospheres have accounted for these effects for a wide range of stellar parameters

(London et al. 1986; Madej et al. 2004; Suleimanov et al. 2012) and the results

of these calculations have been converging and now agree to within 10% (see the

discussion in Özel 2013).

I calculate simulated spectra from moderately spinning sources using an algorithm

(Bauböck et al. 2012, 2013b) that traces rays in a variant of the Hartle-Thorne metric

(Hartle & Thorne 1968). I investigate the distortions in the broadband spectra

resulting from spin effects, taking into account the oblate shape of the stellar surface
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and the quadrupole moment of the metric. Using these model spectra, I calculate

correction terms to account for the effects of rotation on measurements of the effective

temperature, flux, and spectroscopic radius that are accurate for spin frequencies up

to 800 Hz. These can be used to infer neutron-star radii from moderately spinning

sources.

6.2 Spectral Modeling

In principle, the metric of the spacetime around the neutron star depends on six

parameters: the mass M , the equatorial radius R, the spin frequency fNS, the mo-

ment of inertia I, the quadrupole moment Q, and the ellipticity of the surface of the

star ε. Additionally, measurements of the source depend on the inclination of the

spin axis to the observer’s line of sight θO. Using empirical and analytic relations

discussed above (see also Bauböck et al. 2013a; Morsink et al. 2007; see also AlGendy

& Morsink 2014), I determine three of these parameters (I, Q, and ε) in terms of

only the mass, equatorial radius, and spin frequency.

I model neutron stars with masses between 1.0 and 2.5 M�, radii between 8 and

16 km, and spin frequencies between 50 and 800 Hz over all possible inclinations.

For each configuration, I produce a transfer function between the spectrum at the

surface of the star and the spectrum an observer measures at a distant location,

which I define below.

Photons are initialized on an image plane located in the asymptotically flat space-

time at a large radial distance from the neutron star. The photons are then traced

backwards until they intersect the stellar surface. I record the position and energy

of each photon on the surface and use these to find an image of the source on the

image plane. I then integrate the specific intensity over this image in order to find

the flux measured by an observer at spatial infinity as

F∞(E∞) =
1

D2

∫∫
I∞(E∞, α, β) dα dβ, (6.1)

where E∞ is the energy measured at infinity, D is the distance to the neutron star, I∞



77

is the specific intensity measured at infinity, and α and β are Cartesian coordinates

on the image plane (see Bauböck et al. 2012 for detailed definitions).

Since the quantity I/E3 is Lorentz invariant, I can write

I∞(E∞)

E3
∞

=
Is(Es)

E3
s

, (6.2)

where Is and Es are the specific intensity and energy, respectively, as measured on

the surface of the neutron star. I assume uniform and isotropic emission over the

surface of the star, i.e., that Is does not depend on α and β. If I define

g(α, β) ≡ E∞/Es, (6.3)

I can then write equation (6.1) as

F∞(E∞) =
1

D2

∫∫
g3Is

(
E∞
g

)
dα dβ. (6.4)

My goal is to find a transfer function G(E∞, Es) such that I can write the flux

at infinity as

F∞(E∞) =

∫
Is(Es)G(E∞, Es) dEs. (6.5)

This allows me to understand the effects of rapid spin independent of the source

spectrum. In order to convert equation (6.4) into this form, I need to translate the

integral over the image plane into an integral over the energies on the stellar surface.

I do this by introducing a Dirac delta function which is zero at all points on the image

plane except at those where the energy on the surface Es is equal to the energy at

infinity E∞ scaled by the factor g, δ(E∞/g − Es). Since delta functions have the

property that

δ(ax) =
1

|a|
δ(x), (6.6)

I can rewrite this as

δ

(
E∞
g
− Es

)
= gδ(E∞ − gEs). (6.7)
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and equation (6.4) as

F∞(E∞) =
1

D2

∫∫∫
Is(Es)g

4δ(E∞ − gEs) dEs dα dβ. (6.8)

By comparing equation (6.5) to equation (6.8), I find the transfer function

G(E∞, Es) =
1

D2

∫∫
g4δ(E∞ − gEs) dα dβ. (6.9)

To calculate an observed spectrum for a given neutron-star configuration, I first

calculate the transfer function G(E∞, Es) from Equation (6.9). I then use this func-

tion as a kernel for a convolution with the spectrum at the surface, as in Equa-

tion (6.5). In principle, the surface spectrum Is(Es) can consist of a detailed at-

mospheric model, but for the purposes of this chapter I restrict my analysis to a

blackbody function with an effective temperature Ts.

The top panel of Figure 6.1 shows the blackbody spectrum as measured in the

rest-frame on the surface of the neutron star as a solid black curve. The spectrum

measured by an observer at infinity for a star spinning at 700 Hz is shown as a solid

red curve.

As expected, the spectrum at infinity is both broadened and shifted with respect

to the surface spectrum and can no longer be represented by a blackbody. However,

for the parameters of this calculation, the deviation from a blackbody spectrum

is relatively small. In order to find the approximate blackbody temperature that

would be measured at infinity, I fit a blackbody to the observed spectrum in two

different ways. First, I locate the peak of the broadened spectrum and calculate the

temperature and normalization of a blackbody with the same peak energy and flux.

Second, I perform a fit to find the parameters of a blackbody with the minimum

least-squares difference to the broadened spectrum over a range of energies. In order

to capture the spectral broadening around the peak near 3 kBTs, I consider a range

of energies between 0.04 and 12 kBTs. Changing the upper and lower energy bounds

does not have a significant effect on my results. The dashed line in the upper panel

in Figure 6.1 shows the latter fit, and the lower panel shows the residuals for both
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Figure 6.1: Broadened blackbody spectrum of temperature Ts emitted from the
surface of a neutron star of mass 1.4 M� and radius 10 km, spinning at 700 Hz, as
observed at an inclination of 85◦. The x-axis shows photon energy scaled by kBTs.
The surface spectrum has been normalized by a constant factor such that it has an
integral of 1. The black solid line shows the blackbody spectrum of temperature
Ts measured at the surface of the star. The red line shows the broadened spectrum
measured at spatial infinity. The blue dashed line shows the best fit blackbody to the
broadened spectrum found by a least-squares fitting algorithm in the energy range
0.04 ≤ E/kBTs ≤ 12. The curve corresponding to a different fit that matches the
energy and flux of the spectral peak is indistinguishable from the blue dashed line in
the upper panel. The lower panel shows the residuals for both fits. In the observable
range near the spectral peak, rotational effects introduce spectral distortions at the
. 5% level. The large residual at higher energies is difficult to observe, since the flux
at these energies is smaller by a factor of 10−3 than at the peak.
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fitting methods. As the two procedures produce the same blackbody parameters to

within a percent, I use only the least-squares method for the remainder of this work.

The deviation of the spectrum at infinity from a blackbody varies from 3%–4% below

the peak to ≥5% at higher energies. This is comparable to the measured deviation

of observed spectra from blackbodies in X-ray bursters (Güver et al. 2012).

Both the measured flux and the blackbody temperature are used in inferring

the masses and radii of thermally emitting neutron stars. When these inferences are

made under the assumption of a non-rotating source, a systematic error is introduced

in the measurements. For a non-spinning neutron star, the apparent spectroscopic

radius R∞ can be calculated from the measured flux F∞ and temperature T∞ using

F∞ = σ

(
R∞
D

)2

T 4
∞, (6.10)

where D is the distance to the source, which I set to unity for the remainder of this

work. In this case, the observed spectrum is a blackbody with a redshifted peak and

diminished flux, both caused by the gravitational redshift from the stellar surface.

In the Schwarzschild metric, both of these corrections can be calculated analytically.

The peak of the spectrum (and, therefore, its inferred temperature) is redshifted by

T
(fNS=0)
∞

Ts
=

√
1− 2GM

Rc2
. (6.11)

Likewise, I can find the bolometric flux at infinity by integrating the spectrum and use

a similar expression to correct for the gravitational redshift and strong-field lensing,

i.e.,

F
(fNS=0)
∞

Fs
=

(
1− 2GM

Rc2

)
, (6.12)

where Fs is the flux measured on the surface. This will allow me to relate the

spectroscopic radius observed at infinity to the circumferential radius of the star by

R = R∞

√
1− 2GM

Rc2
. (6.13)
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For a spinning neutron star, I can compare the values of the inferred temperature

and flux to those derived under the assumption that the source is spherical and non-

spinning in order to calculate correction factors introduced by the spin. In particular,

I define the rotational temperature correction factor as

ζrot ≡
T∞

T
(fNS=0)
∞

=
T∞

Ts

√
1− 2GM

Rc2

, (6.14)

and the correction to the bolometric flux as

brot ≡
F∞

F
(fNS=0)
∞

=
F∞

Fs
(
1− 2GM

Rc2

) . (6.15)

These correction factors quantify the bias in calculating the above quantities from

an observed spectrum when it is assumed that the source is not rotating. Using

Equations (6.14) and (6.15) I find that, for a spinning star, the inferred spectroscopic

radius will be biased by a factor of

R∞

RfNS=0
∞

=

√
brot

ζ4
rot

. (6.16)

6.3 Results

Figure 6.2 shows the bias ζrot in the measured temperature as a result of the spin of

the neutron star. The lines represent contours of constant rotational correction, as

defined in Equation (6.14), for a range of possible spin frequencies fNS and inclination

angles θO. These corrections are small, at the 1% level, for both values of the neutron

star radius shown in this figure. As the spin frequency approaches zero, the measured

temperature approaches the value calculated in the Schwarzschild approximation,

such that the correction factor becomes unity for all inclination angles.

The shape of the contours and whether the rotational correction factor is smaller

or larger than unity for a set of parameters can be understood as follows. At high

spin frequencies, Doppler shifts due to the velocity of the stellar surface become
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Figure 6.2: Contours of constant rotational correction to temperature for a range
of neutron-star spin frequencies (fNS) and inclinations (θO). The correction to the
temperature is defined as in Equation (6.14). The upper panel shows neutron stars
with equatorial radii of 10 km, while the lower panel shows stars with 15 km radii.
In both cases, the stars have a mass of 1.4 M�.
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significant, and the neutron star becomes oblate in shape. I can determine the effect

of Doppler shifts by considering the photon energy E∞ at infinity from a point on

the stellar surface. Ignoring gravitational redshift, this energy is

E∞ = ηEs, (6.17)

where Es is the photon energy at the surface and η is the Doppler function,

η =

√
1− (v/c)2

1− (v/c) cos ξ
. (6.18)

In this equation, v is the local magnitude of the velocity of a point on the stellar

surface and ξ is the angle between the velocity vector and the direction of emission

of the photon. The angle ξ is defined so that cos ξ is positive on the blueshifted side

of the star and negative on the redshifted side. For small values of v, the Doppler

factor can be approximated by

η ≈ 1 +
v

c
cos ξ +

(v
c

)2 (
cos2 ξ − 0.5

)
+O

[(v
c

)3
]
. (6.19)

When the photon energies are averaged over the surface of the star, the first order

term (as well as all higher odd powers of v/c) will cancel, leaving only the second

order term. At high inclinations, cos ξ is large for most of the stellar surface, leading

to a higher energy measured at infinity. At low inclinations, however, cos ξ is smaller

than 0.5 for most of the surface, resulting in an average Doppler factor smaller than

1. Moreover, at low inclinations the oblate shape of the surface leads to a stronger

gravitational redshift at the pole, further decreasing the inferred temperature.

The changes in the temperature also depend on the compactness of the neutron

star. Stars with a smaller compactness (corresponding to a larger radius for a con-

stant mass) have a larger quadrupole moment for a given spin frequency. For a 15 km

star, the high quadrupole moment results in a smaller gravitational redshift near the

pole, leading to a higher temperature for sources observed at low inclinations, as

shown in the lower panel of Figure 6.2.
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Figure 6.3: Rotational correction to the neutron-star temperature averaged over
inclination. The plot shows the rotational correction to the temperature weighted
by the sine of the inclination angle and averaged over a range of possible inclinations
for a neutron star with a mass of 1.4 M� and three different radii. The solid lines
show the correction averaged over inclinations from 0◦ (pole-on) to 90◦ (equatorial),
while the dotted lines show the correction averaged between 0◦ and 80◦.The largest
radii lead to the largest corrections.

For most sources displaying thermal emission, the inclination of the spin axis to

the observer’s line of sight is not known. In Figure 6.3 I show the rotational correction

to temperature as a function of spin frequency averaged over the inclination of the

source assuming a random orientation of the observer. I choose two inclination

ranges for these averages: from 0◦ (pole-on) to 90◦ (equatorial) and from 0◦ to 80◦.

I calculate the average over the latter range to take into account the possibility that

an accretion disk may obscure the surface at high inclinations and, therefore, these

objects would not be detected in a search for thermal emission. For both inclination

ranges, the correction to the temperature due to the spin of the neutron star is less

than 2% across the range of observed spin frequencies.

The different behavior of the lines in Figure 6.3 can be understood by an argu-

ment similar to the one presented above. For both the 10 km and 12 km neutron star,

the dominant effect is the second-order Doppler shift, which increases the observed
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temperature at high inclinations. Thus, when the highest inclinations are excluded

from the average, as in the case of the dashed lines in Figure 6.3, the average correc-

tion decreases. For a 15 km star, however, the effect due to the quadrupole moment

is comparable to the second order Doppler correction. In this case, the correction

factor is greater than unity at all inclinations. Excluding the highest inclinations

only negligibly affects the average temperature, as shown by the agreement of the

dashed and solid lines for the 15 km case in Figure 6.3.

In Figure 6.4, I show the correction to the bolometric flux due to the neutron-star

spin as defined in Equation (6.15). As before, the zeroth order gravitational redshift

has been removed, and first order Doppler shift effects cancel when integrated over

the surface. I find that brot is less than 1 across the parameter space, indicating that

rapid rotation decreases the flux measured by an observer at infinity. The value of

brot depends on several competing effects at second order in v/c: the second order

terms of the Doppler shift, the oblate shape of the star, the quadrupole moment of

the spacetime, and the frame dragging near the surface. I can first gain some insight

into the relative magnitudes of these effects by calculating typical values for these

corrections and how they scale with the neutron-star parameters.

I estimate the contributions of the Doppler shift by integrating Equation (6.17)

for a spherical star in Newtonian gravity at an inclination of 90◦,

∆E∞
E∞

=

∫ π

0

∫ π

0

η dθdφ (6.20)

I find that the average Doppler shift is

∆EDoppler
∞
E∞

≈ 0.004

(
Req

10 km

)2(
fNS

600 Hz

)2

, (6.21)

where Req is the equatorial radius.

Both the oblateness and the quadrupole moment affect the flux and temperature

primarily by changing the gravitational redshift at different points on the surface. In

the case of oblateness, I start from the Schwarzschild expression for the gravitational
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star with a 10 km radius, while the lower panel shows a 15 km star. Both stars have
a mass of 1.4 M�.



87

800

700

600

500

400

300

200

100

f N
S (

H
z)

 1.04 

 1.03 

 1.02 

 1.01 

 1 
 0.99 

 0.98 

 0.97 

Spherical Kerr

 1.03 

 1.02 

 1.01 

Spherical, Q

700

600

500

400

300

200

100

f N
S (

H
z)

80604020

θO(º)

 1 

 0.99 

 0.98 

 0.97 

 0.96 

 0.95 

 0.94 

 0.93 
 0.92 
 0.91 

Oblate Kerr

80604020

θO(º)

 0.98 

 0.97 

 0.96 

 0.94 

Oblate, Q

 0.99 

 0.95 

1.04

1.02

1.00

0.98

0.96

0.94

0.92

0.90

Bolom
etric Flux Correction b

rot

Figure 6.5: Contours of constant rotational correction to the bolometric flux for
four different neutron-star configurations aiming to illustrate the effects of surface
geometry and quadrupole moment. Each panel shows the result for neutron stars
with a mass of 1.4 M� and a 10 km equatorial radius. The top left panel shows the
result for a spherical neutron star in the Kerr metric. The top right panel shows the
results for a spherical star with an appropriate quadrupole moment. The lower left
panel corresponds to a star in the Kerr metric with an oblate surface. Finally, the
lower right panel corresponds to a star in the Hartle-Thorne approximation, with
an oblate surface and an appropriate quadrupole moment. The lower right panel is
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redshift
E∞
Es

=

√
1− GM

Reqc2
, (6.22)

and estimate the difference in the polar and equatorial redshifts as

∆EOblate
∞
E∞

≈ − GM

Reqc2

(
1− GM

Reqc2

)−1(
1− Rp

Req

)
, (6.23)

where Rp is the radius at the rotational pole. Using Equation (22) of Bauböck et al.

(2013a), I find that

∆EOblate
∞
E∞

≈ −0.015

(
Req

10 km

)2(
fNS

600 Hz

)2

. (6.24)

Similarly, to estimate the effect of a non-zero quadrupole moment, I find the

gravitational redshift at the poles and the equator using

E∞
Es

=
√
gtt, (6.25)

where gtt is the tt-component of the metric. The exact form of gtt can be found in

Glampedakis & Babak (2006). Approximating the quadrupole moment with Equa-

tion (25) of Bauböck et al. (2013a), I find that

∆EQ
∞

E∞
≈ 0.002

(
Req

10 km

)2(
fNS

600 Hz

)2

. (6.26)

Each of these effects introduce a bias in the flux and temperature measurements

at second order in the spin frequency of the star. For most of the parameter space,

the dominant effect is the oblateness, which tends to decrease the observed flux of

the star. However, the actual contribution of each bias depends on the inclination of

the observer and the gravitational lensing, which depends on M/R. Therefore, it is

possible for different effects to dominate depending on the neutron-star mass, radius,

and inclination. It should be noted that, although the effects calculated above are at

or less than the 1% level, the bias in the flux depends on these factors to the fourth
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power and can therefore be considerably larger.

In order to illustrate these effects, I calculated fluxes for several neutron-star

configurations that emphasize different effects at second order. (Note that this is only

for the purposes of delineating different effects; in reality, an oblate star would always

have a non-zero quadrupole moment, etc.) Each of the four panels of Figure 6.5 shows

the flux correction for a different neutron star configuration and for a range of spin

frequencies and observer inclinations. The upper left panel shows the flux for a

spherical neutron star in the Kerr metric. In this case, the only effects causing a

change in the flux are frame dragging and higher order terms in the Doppler shift. I

find that the frame dragging has a negligible effect on the flux. At low inclinations,

the transverse Doppler shift causes the limbs of the neutron star to appear redder and,

therefore, dimmer, causing the flux correction to be less than 1. At high inclinations,

on the other hand, Doppler boosting causes the blueshifted side of the star to appear

brighter than the redshifted side. Since the Doppler boost is second order in v/c,

the decreased flux from the redshifted side does not cancel the increased flux from

the blueshifted side of the star, leading to a flux correction greater than 1.

In the bottom left panel, I allow the surface of the neutron star to become oblate

with increasing spin frequency while retaining the Kerr metric. Comparing this panel

to the Kerr panel, I find that introducing oblateness decreases the measured flux at

all spin frequencies and inclinations. At low inclinations, this is due to the additional

redshift at the pole, which is deeper in the gravitational well (see Equation (6.24)).

At high inclinations, the geometric size of the neutron star decreases as it becomes

more oblate, also decreasing the measured flux (see Bauböck et al. 2013b).

The top right panel of Figure 6.5 shows a spherical star with a spacetime with

a quadrupole moment that is appropriate for a spinning neutron star. Note that

this is not a self-consistent calculation since the proper radius of the pole and the

equator are not the same. However, I use it here only to isolate the effect of the

spacetime quadrupole. Compared to the spherical star in the upper left panel, the

quadrupole moment decreases the gravitational redshift at the poles while increasing

it at the equator (see Equation (6.26)). Consequently, the flux increases for neutron
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Figure 6.6: Rotational correction to the bolometric flux averaged over inclination.
As in Figure 6.3, the three colored lines show the averaged correction for neutron
stars with three different radii. Solid lines correspond to the correction averaged over
0◦–90◦, while dashed lines show the correction averaged over 0◦–80◦. In the case of a
neutron star with a radius of 12 km, the solid and dashed lines are indistinguishable.

stars observed at low inclinations compared to the spherical Kerr case and decreases

at high inclinations.

Finally, the lower right panel shows the combination of all the above mentioned

effects. This panel shows an oblate star in the Hartle-Thorne metric and is identical

to the upper panel of Figure 6.4. At low inclinations, the flux-decreasing effects of

the oblate shape and transverse Doppler shift outweigh the decrease in redshift from

the quadrupole moment, leading to a flux correction factor less than one. Similarly,

at high inclinations the smaller area due to oblateness and the additional redshift

due to the quadrupole moment outweigh the Doppler boost to cause a decrease in

the flux. As expected from the order-of-magnitude estimates above, the dominant

effect is that of stellar oblateness.

In Figure 6.6, I show the correction to the bolometric flux averaged over the

inclination angle. As in Figure 6.3, I use two inclination ranges to account for

possible obscuration of the source by an accretion disk. I find that the flux observed
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from a neutron star spinning above 600 Hz is 2%–10% lower than for a non-spinning

source. The largest flux corrections apply to neutron stars with the larger radii,

which are more strongly modified by the second-order effects.

In general, excluding the highest inclination sources from the average leads to

a smaller value of brot (i.e., a value that is further from unity). This is because in

the high-inclination sources, the dominant effect is the second order Doppler shift,

which tends to increase the value of brot. Without these sources, the average flux

correction factor decreases. For a radius as large as 15 km at a high spin frequency,

the dominant effect at high inclination is the decrease in apparent area caused by

the significantly oblate surface. Since the oblateness decreases the flux correction

when viewed at high inclinations, excluding these high-inclination sources increases

the value of brot. This effect can be seen in the lower panel of Figure 6.4, in which

the lowest values of flux correction occur at high inclination and high spin frequency.

6.4 Conclusions

I have shown that moderate spins have significant effects on the observed thermal

spectra from neutron-star surfaces. At spin frequencies above 300 Hz, terms of

second order in v/c can change observable quantities such as the flux and surface

temperature. For moderately spinning stars, the temperature and flux measured by

an observer at infinity is biased by factors related to the spin and the gravitational

redshift of the stellar surface. Whether the inferred temperature is higher or lower

than that of a non-spinning source depends on the parameters of the neutron star.

However, I find that the magnitude of the bias is less than 2% across the parameter

space. Increasing the spin of the source also results in a decrease in the flux observed

at infinity. The magnitude of this decrease can be up to 12% for realistic neutron-star

parameters. In general, neutron stars with larger radii experience stronger rotational

effects and therefore have a decreased flux.

Given these biases, I can calculate how the correction to the flux and tempera-

ture due to the rapid spin of the source translates into a correction on the radius

measurement. In Figure 6.7, I show the apparent spectroscopic radius measured for
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Figure 6.7: Contours of constant spectroscopic radius R∞ plotted over the parameter
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a non-spinning star and one spinning at 600 Hz for a range of masses and radii.

The dashed lines show the apparent radii for non-spinning stars in the Schwarzschild

metric given in Equation (6.13). The solid lines correspond to sources spinning at

600 Hz and is given by Equation (6.16). The reduction in the flux that reaches the

observer at infinity leads to a smaller apparent radius across the parameter space.

In particular, assuming a non-spinning source leads to significant underestimation of

the equatorial radius in the case of neutron stars with large radii and small masses.

Consider a star that spins at a frequency of 600 Hz and is known to have a mass of

1.4 M�. If a measurement yields an apparent spectroscopic radius of 14 km and one

uses the Schwarzschild approximation to calculate the equatorial radius, the dashed

curve labeled 14 gives a value of 10.8 km. Using the solid curve which corrects for

the effects of the spin yields an equatorial radius of 11.2 km. In this case, using the

non-spinning approximation underestimates the radius by 3.5%.

Finally, I find an empirical formula to correct the bias introduced to radius mea-

surements by the assumption that a source is non-spinning. I calculate the bolometric

flux correction factor brot and temperature correction factor ζrot for neutron stars with

masses between 1.1 and 2.0 M� and radii between 10 and 15 km for all inclination

angles and spin frequencies up to 800 Hz. As in Figures 6.3 and 6.6, I average these

correction factors over inclination. Using Equation (6.16), I can then find the bias

in the apparent radius inferred from the measured flux and temperature. The solid

lines in the upper panel of Figure 6.8 show these correction factors. I calculate least-

squares quadratic fits to the correction factor as a function of spin frequency for each

neutron-star radius. Lastly, I fit the coefficients of this quadratic as a function of the

radius to find a general equation for the spectroscopic radius correction,

RfNS
∞

RfNS=0
∞

= 1 +

[(
0.108− 0.096

M

M�

)
+(

−0.061 + 0.114
M

M�

)
R

10 km
−

0.128

(
R

10 km

)2 ](
fNS

1000 Hz

)2

. (6.27)
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The dashed lines in Figure 6.8 show this fit for 1.4 M� neutron stars with six chosen

values of radius. The lower panel of Figure 6.8 shows the residuals to this fit. For

neutron stars with radii between 10 and 15 km and masses between 1.1 and 2.0 M�,

I find that this fit approximates the numerical value of RfNS
∞ /RfNS=0

∞ to within 0.5%

for spin frequencies below 800 Hz.

These results have two important implications for the spectroscopic measure-

ments of neutron-star masses and radii in X-ray bursters and quiescent sources.

First, the distortion of the observed spectra from blackbodies are predicted to be at

the ' 5% level. This is comparable to the spectral distortions caused by atmospheric

effects (see, e.g. Suleimanov et al. 2012) and to the inferred deviation of the observed

spectra in thermonuclear bursters from blackbodies (Güver et al. 2012). Second, the

equatorial radii of neutron stars spinning at moderate rates inferred under the as-

sumption that the stars are non-spinning are underestimated at a similar level. The

bias depends on the spin and radius of the neutron star as well as on the observer’s

inclination but can be corrected with the formulae presented in this work.
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CHAPTER 7

Effects of Spot Size on Neutron-Star Radius Measurements from Pulse Profiles

7.1 Masses and Radii from Pulse Profiles

Aside from observations of neutron star spectra, the other promising avenue for mea-

suring masses and radii is via modeling pulse profiles from sources with brightness

oscillations. Observations of such sources have already led to mass and radius con-

straints, and future missions such as NICER will provide constraints even tighter

than those achieved by other methods.

In order to extract the mass and radius from the pulse profile shape, accurate

theoretical models are needed that take account gravitational lensing, Doppler shifts,

and time delays from the neutron-star surface. Several studies to date have focused

on modeling pulse profiles in the Schwarzschild+Doppler approximation (e.g., Miller

& Lamb 1998; Muno et al. 2002, 2003; Lamb et al. 2009a, b; Lo et al. 2013). Poutanen

& Beloborodov (2006, see also Bogdanov et al. 2007) used this model to find analytic

approximations for the photon lensing and time delays and constructed analytic

lightcurves for neutron-star pulse profiles.

Braje et al. (2000) modeled pulse profiles in the Kerr metric and found that

the distortion of the profile due to these effects is at the 1% level. Cadeau et al.

(2007, see also Morsink et al. 2007) found that the oblateness of the stellar surface

significantly alters the pulse profile, causing the spot to be visible at inclinations

where it would be eclipsed by a spherical star. Psaltis & Özel (2014) used the

Hartle-Thorne metric to model pulse profiles, including an appropriate quadrupole

moment. Cadeau et al. (2007) modeled lightcurves for rapidly spinning neutron stars

by calculating the metric numerically. They found that corrections from higher-order

terms are negligible for the spin frequencies of known neutron stars.

The problem of modeling pulse profiles and, in turn, inferring neutron-star proper-
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Figure 7.1: Example pulse profiles for two different spot configurations. In the left
panel, the observer inclination is set to i = 90◦ and the spot colatitude to θs = 80◦.
In the right panel, they are set to i = 70◦ and θs = 40◦. In both panels, the angular
radius of the spot varies from 2◦ to 50◦. The flux has been scaled by (50◦/ρ)2 in
order to remove the primary dependence of the flux on the spot area. In all cases, I
have set M = 1.6 M�, R = 10 km, and fNS = 600 Hz.
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ties from pulse profiles, is difficult because of the large number of parameters needed.

In principle, for any neutron-star model, the pulse profile depends on the properties

of the neutron star as well as the size, shape, and position of the hotspot on the stel-

lar surface. In order to simplify the models and reduce the parameter space, pulse

profiles are often calculated under the assumption that the spot is infinitesimal in

size. Lamb et al. (2009a, b; see also Psaltis et al. 2000) considered the effects of spot

size on the amplitude of the pulse profile and found that the spot size has negligible

effect as long as it is below ∼ 45◦. However, they did not consider the effect of the

spot size on the higher harmonics of the profile, which are necessary for measuring

the stellar radius.

In this chapter, I investigate the effect of spot size on pulse profiles for moderately

spinning sources. Specifically, I determine the maximum spot size for which the spot

can be considered small for the purpose of measuring the neutron-star radius. I then

estimate the expected spot sizes as a function of spin frequency for rotation-powered

and accretion-powered X-ray pulsars. In the case of X-ray burst oscillations, I find

the fraction of the burst rise times during which a sufficient number of counts can

be accumulated before the spot size becomes large enough to significantly bias the

radius measurement from the pulse profile. I discuss the implications of these results

for future missions that will observe pulse profiles, such as NICER and LOFT.

7.2 Pulse Profiles

I use the ray-tracing code described in Bauböck et al. (2012) and Psaltis & Özel

(2014), which calculates pulse profiles using the Hartle-Thorne metric to approximate

the spacetime around a moderately spinning neutron star. This metric is formally

correct to second order in spin frequency and allows for the stellar surface to become

oblate and the mass distribution to acquire an appropriate quadrupole moment. This

algorithm also accounts for frame dragging around the star, time of flight delays, and

Doppler shifts and aberration due to the motion of the stellar surface.

The propagation of photons to infinity depends on seven parameters of the neu-

tron star: the mass, the equatorial radius, the spin frequency, the moment of inertia,
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the oblateness, the quadrupole moment, and the inclination of the observer’s line

of sight to the spin axis. Of these, the mass, spin frequency, and inclination are

independent and vary between different sources. The radius, oblateness, moment

of inertia, and quadrupole moment of the star are determined, for a given spin, by

the equation of state of the matter in its interior. (e.g., Bauböck et al. 2013; Yagi &

Yunes 2013). I use the relations described in Chapter 5 (see also Bauböck et al. 2013;

Yagi & Yunes 2013) to calculate the oblateness, moment of inertia, and quadrupole

moment for a star with a given mass, radius, and spin frequency.

By using the universal relations described above, I reduce the number of param-

eters for each pulse profile to six: the mass and radius of the neutron star, the spin

frequency, the inclination of the observer to the spin axis, and the colatitude and

angular radius of the hotspot. For the simulations presented in this work, I fix the

mass at 1.6 M�, the radius at 10 km, and the spin frequency at 600 Hz. I calculate

pulse profiles over the full range of observer inclinations i and spot colatitudes θs.

I define the observer’s inclination as the angle between the the observer’s line of

sight and the spin axis, such that i = 0◦ and i = 180◦ correspond to an observer

directly over the north and south pole of the neutron star, respectively, while i = 90◦

corresponds to an observer in the equatorial plane. I vary the colatitude of the spot

θs, such that a spot on the pole has a colatitude θs = 0◦ and a spot on the equator

corresponds to θs = 90◦.

Figure 7.1 shows several example pulse profiles for a variety of parameters. For

all neutron-star configurations, the flux observed from the hotspot is proportional

(to first order) to its area. In this figure, I have scaled the flux by this approximation

to the spot area in order to highlight the more subtle changes in the profile shape

introduced by increasing the spot size. In the left panel, the observer is in the

equatorial plane of the neutron star, while the spot is near the equator. In this

configuration, the spot is eclipsed behind the neutron star for a fraction of the spin

period. As the spot grows in size, the duration of the eclipse decreases until the spot

is visible at all phases.

The right panel of Figure 7.1 shows profiles for a smaller observer inclination and
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Figure 7.2: Fractional Fourier amplitudes of pulse profiles as a function of spot size.
The observer inclination is i = 70◦ and the spot colatitude is θs = 40◦. The remaining
parameters are as in Figure 7.1. The solid and dotted lines show the first and second
Fourier amplitudes, respectively. The dashed-dotted line shows the ratio between
the two components.

spot colatitude. In this case, the spot is visible at all phases, regardless of its size. At

larger angular radii, however, the amplitude of the profile still decreases. Moreover,

the higher order harmonics also decrease, leading to a more symmetric and sinusoidal

profile.

Since observations of neutron-star pulse profiles are usually limited by photon

counts, information is often extracted by means of decomposing profiles into their

Fourier components (Poutanen & Beloborodov 2006; Psaltis et al. 2014). The number

of parameters of the neutron star and the hotspot that can be constrained increases

with the number of Fourier components that can be measured from the lightcurve.

I limit my analysis to realistic situations where the fundamental and the second

harmonics can be measured in at least two energy bands.

As expected from the examples in Figure 7.1, in addition to encoding information

about the neutron star itself and the location of the hotspot, the Fourier amplitudes

of the pulse profiles also depend on the size of the hotspot. In particular, as the
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size of the spot increases, the higher order harmonics are damped and the profile

becomes more sinusoidal. In Figure 7.2, I show the amplitude of the first and second

Fourier components, labeled C1 and C2 respectively, for a specific configuration of

the observer inclination and the spot colatitude. For larger spot sizes, both the

first and second harmonics decrease in amplitude. However, the second harmonic

decreases more quickly than the first, causing the ratio between them to decrease

also, as shown by the dashed-dotted line. This introduces a potential bias in the

measurement of neutron-star radii, since the principal effect of a smaller radius is

the reduction of the higher-order harmonics and, thereby, of the ratio C2/C1.

7.3 Biases in Radius Measurements

I wish to determine the extent to which the common assumption of an infinitesimally

small spot is justified for the purpose of measuring the radius of a neutron star from

its pulse profile. In order to quantify the effect of the spot size on measurements of

the radius, I calculate profiles with a very small spot (with an angular radius ρ = 2◦)

and quantitatively compare these to profiles with larger spots. I find the maximum

spot size for which the assumption that the spot is infinitesimally small is reasonable,

i.e., leading to a radius bias that is less than 10%, allowing for meaningful constraints

on the equation of state.

Using the relationships from Bauböck et al. (2013) for a neutron star of known

spin frequency and the assumption that the hotspot is small, one can reduce the

number of model parameters that need to be determined from the pulse profiles to

four: the mass and radius of the neutron star, the colatitude of the hotspot, and the

inclination of the observer. The number of observable quantities obtained from a

pulse profile, on the other hand, depends to some extent on the relative inclinations

of the observer and the spot to the spin axis of the neutron star. I will consider two

cases: when the spot is visible for all phases, and when the spot becomes eclipsed

behind the star for part of the spin period.

In the first case, I can measure the radius directly using the first two Fourier

components of the pulse profiles at two broad energy ranges as the four required
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observables (see discussion in Psaltis et al. 2014). All four observables carry infor-

mation about the radius of the neutron star because Doppler shifts and aberration,

which are proportional to the stellar radius, affect their values. Following Psaltis et

al. (2014), I will use the ratio of amplitudes of the first two Fourier harmonics, which

to leading order is proportional to the Doppler shift (see below), in order to quantify

the effect of the spot size on the radius measurement.

The second case arises when both the hotspot and the observer are located near

the stellar equator. Although the strong lensing of photons increases the fraction

of the surface area visible to a distant observer, there is a region which is hidden

from sight in this configuration. When the spot is in this region, none of its flux

reaches the observer. This eclipse introduces sharp edges to the pulse profile and

causes many higher harmonics to become large. However, the amplitudes of these

higher order harmonics are not independent, as they are caused by the sharp eclipse.

In practice, the eclipse introduces one additional measurable parameter, which is

its duration. For a given spot colatitude and observer’s inclination, a spot with a

smaller radius will tend to have shorter eclipses, as the lensing is stronger and a

smaller fraction of the stellar surface is hidden. However, a large hotspot can mimic

the effects of a smaller radius. As the spot grows, the fraction of the profile during

which it is completely hidden from the observer decreases. In this second case, I will

determine the effect of the spot size on the eclipse duration in order to quantify the

possible bias in radius measurements.

In order to estimate the error introduced in the radius measurement by a non-

negligible spot size, I use the relation between the radius and the ratio of the first

and second harmonics (Psaltis et al. 2014)

C2

C1

≈ 4πf

c
R sin i sin θs. (7.1)

This scaling was derived for a slowly spinning star in the Schwarzschild metric and

is only expected to hold approximately for the most rapidly spinning stars. How-

ever, my purpose here is only to approximate the error in the radius measurement
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Figure 7.3: Maximum spot angular radius that leads to a ≤10% error in radius
measurement as a function of the spot colatitude and observer inclination. If a
radius measurement is made under the assumption of an infinitesimally small spot,
the contours correspond to the spot size for which the measurement differs from the
true neutron-star radius by ten percent.

introduced by large spot sizes, for which this expression is sufficient.

My goal is to calculate the maximum spot size at which the change introduced

to the ratio C2/C1 due to the spot size is comparable to the difference introduced

to this quantity by changing the radius by 10%. To determine this maximum size, I

first calculate the change in the ratio C2/C1 as

∆

(
C2

C1

)
≈ 0.025

(
∆R

1 km

)(
f

600 Hz

)
sin i sin θs. (7.2)

Next, I calculate the change in this ratio introduced by increasing the spot size.

Specifically, for each pair of angles i and θs, I calculate a pulse profile and its Fourier

components for a range of spot sizes between 2◦ and 50◦. As the spot grows in size,

there is an increasing change in the ratio C2/C1. Comparing the two, I find the

largest spot size ρ for which this change is smaller than the error corresponding to a

radius uncertainty of 10% given by equation (7.2).

The contours in Figure 7.3 show the spot size which corresponds to a maximum
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error of 10% in radius. For most of the parameter space, I find that a spot size of up

to 10◦–18◦ introduces biases in the radius that are smaller than 10%. The maximum

allowable size generally increases with increasing inclination and decreasing spot

colatitude. This effect is primarily due to the sin i sin θs term in equation (7.2).

For small angles i and θs, the change in the ratio C2/C1 for a 10% change in the

neutron-star radius becomes very small, leading to a small allowed spot size.

The contours in Figure 7.3 are calculated for a 10 km star. For stars with larger

radii, the maximum allowed spot size that leads to a 10% bias in the radius mea-

surement is smaller. This is due to the larger tangential velocity of the neutron star

surface for a given spin frequency. As the linear velocity increases, the differential

Doppler boost from the near and far edges of the spot reduces the amplitude of the

second harmonic of the pulse profile more than for a smaller star at the same spin

frequency. This leads to a larger bias in the radius measurement and therefore a

smaller maximum spot size.

The Doppler boost scales as the tangential velocity squared and thus as R2.

Therefore, the spot size that introduces a fixed absolute bias in the radius measure-

ment scales to first order as 1/R2. In order to achieve a fractional accuracy of 10%,

the maximum spot size scales as 1/R.

The shaded parts of the parameter space in Figure 7.3 correspond to regions

where my calculation of the maximum spot size is no longer valid or the measurement

becomes unfeasible. In the lower region, corresponding to configurations where the

observer and the spot are both near the rotational pole of the neutron star, the

amplitude of the pulse profile is very small and the second harmonic is less than one

percent. In the shaded region, the small amplitudes of pulse profiles make radius

measurements of neutron stars unfeasible.

The upper shaded region in Figure 7.3 corresponds to the part of the parameter

space where the spot is eclipsed for some fraction of the spin period. I focus on this

region in Figure 7.4. The contours in the top panel of Figure 7.4 show the fraction

of the profile during which the spot is eclipsed. Because of the strong lensing, the

spot is hidden from view entirely for only a small portion of the parameter space,
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when the spot is near one pole and the observer’s line of sight is near the other.

For the purpose of the top panel in Figure 7.4, I have set the spot size to ρ = 2◦.

As the spot grows in size, however, it spends less time completely hidden behind the

star and the eclipse duration decreases. If I were to make the assumption that the

spot was infinitesimal in size, this decrease in the eclipse duration would introduce

a bias in the parameters derived from the eclipse. In the lower panel of Figure 7.4,

the contours correspond to the spot size that introduces an error equal to 10% of the

total period to the eclipse duration. Note that the unevenness in the contours is a

result of the numerical uncertainty in the eclipse duration. The dominant source of

this uncertainty is the phase resolution of the pulse profile, which is on the order of

1%. As in the case of no eclipses, spot sizes smaller than 15–20◦ introduce marginal

biases to the measurements of the eclipse duration and, hence, of the neutron-star

radius.

7.4 Sources

I now compare my spot size limits to realistic situations where pulse profiles will be

used to measure neutron-star radii with upcoming missions such as NICER or LOFT.

I consider three types of sources in which X-ray pulsations have been observed. In

the case of rotation-powered and accreting millisecond pulsars, the precise size of the

spot is unknown a priori but can be estimated using physical arguments. For X-ray

bursters, the spot grows during the rise of the burst until it covers the entire surface

of the star. In each case, I estimate the size of the hotspot depending on the specific

parameters of the system.

In rotation-powered pulsars, hotspots on the surface are generated by magnetic

return currents. To obtain a size estimate, I consider the simple scenario in which

the hotspot corresponds to the footprint of the open field lines on the stellar surface

(Sturrock 1971). Open field lines are defined as those which pass through the light

cylinder radius RLC . This is the radius at which a cylinder corotating with the
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neutron star reaches the speed of light, i.e.,

RLC ≡
c

2πfNS

, (7.3)

where fNS is the spin frequency of the neutron star. In a dipole magnetic field, the

quantity sin2 θ/r, where θ is the polar angle, is constant along field lines, leading to

sin2 θ

R
=

sin2 θNS

RNS

. (7.4)

The edge of the hotspot (where θNS = ρ) corresponds to the field line that reaches

the light cylinder radius at the equator, where θ = 90◦. Therefore, I find the angular

radius of the hotspot to be

ρRPP = sin−1

(√
2πfNSRNS

c

)
. (7.5)

Figure 7.5 shows the spin the distribution of rotation-powered X-ray pulsars from

the online catalog compiled by D. Lorimer1. The lower axis shows the spin period of

the pulsar, while the upper axis shows the spot size from equation (7.5), assuming a

10 km neutron star. The peak of the distribution is near 300 Hz, corresponding to a

spot size of 14◦, and the majority of sources have spot sizes smaller than 18◦. This

implies that assuming that the hotspot on rotation-powered pulsars is infinitesimally

small is a reasonable approximation for all but the most rapidly spinning sources.

In order to compare my analytical estimate with more detailed numerical simula-

tions, I make use of the results of Bai & Spitkovsky (2010a, b), who modeled the size

and shape of the polar cap region under more realistic vacuum dipole and force-free

magnetosphere conditions. They found that the spot size can vary slightly from the

value derived in equation (7.5), especially for neutron stars in which the magnetic

pole is misaligned from the spin axis. Moreover, they found that the spot is not cir-

cular in shape. For spots smaller than the limits I derived above, I expect the spot

shape to be unimportant to the pulse profile. For larger spots, further investigation

1http://astro.phys.wvu.edu/GalacticMSPs/GalacticMSPs.txt
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is needed to find the effect of non-circular spots on the shape of the pulse profiles.

In accreting sources, matter is funneled from the disk onto the stellar surface along

magnetic field lines. I will approximate the radius at which matter is transferred onto

the magnetic field as the corotation radius Rc, i.e. the radius where a test mass in

Keplerian orbit is corotating with the neutron star. In this case, it is straightforward

to calculate the mass loading radius,

Rc ≡
(

GM

4π2f 2
NS

)1/3

≈ 2.46

(
R

10 km

)−1(
M

1.6 M�

)1/3(
fNS

600 Hz

)−2/3

. (7.6)

Using equation (7.4), I can again find the size of the hotspot as

ρAMXP = sin−1

(√
4π2RfNS

GM

)
. (7.7)
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In Figure 7.6, I show the histogram of the spin frequencies of accreting millisecond

pulsars from Watts (2012). As in Figure 7.5, the lower axis shows the spin frequency,

while the upper axis corresponds to the spot size derived from equation (7.7). Here, I

assume a neutron-star radius of 10 km and a mass of 1.4 M� as before. As Figure 7.6

shows, the majority of accretion-powered pulsars have hotspots that are significantly

larger than the maximum size I calculate above. Therefore, their pulse profiles will be

significantly affected by the spot sizes and consequently by the spot shapes. Further

study is needed to determine how to extract radius measurements from these sources.

The last class of sources I consider are X-ray bursters that show oscillations during

the burst rise. In this case, the hotspot on the surface arises from the relatively slow

spreading of the thermonuclear burning across the stellar surface. Therefore, during

the rise, the spot size changes with time and the amplitude of pulsations decreases

(see Strohmayer et al. 1996). I estimate here the fraction of the burst oscillations for

which I can assume that the spot is infinitesimal without introducing a large bias to

the radius measurement.

Assuming that the spot size increases linearly during the burst rise from a point

at t = 0 to a spot covering the entire surface (ρ = 180◦) at the burst maximum, I

write the angular radius as a function of time,

ρ(t) =
πt

tR
, (7.8)

where tR is the rise time of the burst. This equation is formally valid only when the

photon diffusion time from the burning layer to the photosphere is smaller than the

lateral propagation time of the burning front such that the rise time of the burst is

dominated by the lateral spreading. Nevertheless, for the purposes of my estimates

here, I will use this approximation to calculate the time before the spot reaches some

maximum size ρmax.

In the Newtonian case, I could calculate the emitting area on the stellar surface

analytically,

SNewton
spot =

∫ ρ

0

2πR2
NS sin ρ′ dρ′ = 2πR2

NS(1− cos ρ). (7.9)



111

However, this does not take into account the lensing of the spot, which distorts its

size and shape and increases the fraction of the stellar surface that is visible to a

distant observer or the effects of phase averaging. I numerically calculate the average

emitting area of the spot over all phases as in Psaltis et al. (2000). Figure 7.7

shows the emitting area as a function of the spot size for a configuration where

the spot colatitude and the inclination to the observer are both 45◦. The analytic

expression derived in equation (7.9) is shown in the dashed line. As expected in

this configuration, the analytic approximation underestimates the average flux, since

gravitational lensing tends to increase the apparent surface area.

Converting this surface area into a countrate depends on the specifics of the

spectrum emitted from the hotspot and the detector used. Since I am primarily

interested in an approximate estimate of the time needed to constrain the radius, I

assume that the hotspot emits a blackbody spectrum at a temperature of 2 keV. The

detected flux then depends only on the angular size of the source, which I encode

in the blackbody normalization A, in units of (km/10 kpc)2. The countrate also

depends on the detector efficiency, which I encode in the quantity C that measures

the number of photons detected from a 2 keV blackbody with an angular size of

(1 km/10 kpc)2. Then the countrate that will be observed for a spot of a given size

becomes
counts

second
=
Sspot

Smax

AC, (7.10)

where Smax is the apparent area of the whole star. I find the total number of counts

for a given burst by numerically integrating equation (7.10) from 0 to ρmax. In

order to estimate total number of photons N for a typical spot location and observer

inclination, I set ρmax to 15◦ and C to 2700 counts s−1 (10 kpc/km)2 (for the LOFT

Large Area Detector, T. Güver 2015, private communication) and find

N = 2.64AtR. (7.11)

The number of counts necessary to measure the radius to 10% depends on the

magnitude of the Fourier components as well as the geometry of the hotspot and the
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spin frequency of the neutron star. Psaltis et al. (2014) found that the number of

counts necessary to constrain the radius to 10% is approximately

N ≈ 4.7 · 104

(
C1

0.38

)2(
fNS

600

)2(
RNS

10 km

)2

(
sin i

0.71

)2(
sin θs
0.71

)2

, (7.12)

which is consistent with numerical simulations by Lo et al. (2013). Here, I have set

i = θs = 45◦ as above. For this configuration, I also find the first Fourier harmonic

C1 to have a fractional amplitude of 0.38 for a spot size of ρ = 2◦.

I now combine equation (7.11) with equation (7.12) to find the number of indi-

vidual bursts which must be added to measure the radius to a 10% accuracy. If I

further know the burst rate, rb, and the fraction of bursts showing oscillations during

their rise, fo, I can calculate the observing time necessary for each source as

t10% =
1.79 · 104

AtR
rbfo. (7.13)
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Table 7.1: Source Parameters

Name fNS
a A b tR

c rb
d fo

e Nosc
f Nbursts

g t10%
h

(Hz) (km/10 kpc)2 (s) (h−1)

EXO 0748-646 552 114.0 4.9 0.24 0.02 38 1900 27.1

4U 1608-52 620 324.6 3.0 0.07 0.13 17 131 7.0

4U 1636-53 581 124.6 2.6 0.22 0.11 59 536 8.7

4U 1702-429 329 164.6 1.0 0.13 0.26 359 1381 39.0

4U 1728-34 363 121.6 1.0 0.20 0.10 400 4000 69.3

KS 1731-260 524 88.4 1.1 0.20 0.37 73 197 35.6

Notes.
a Spin frequency
b Blackbody normalization
c Average rise time
d Burst rate
e Fraction of bursts with oscillations in the rise
f Number of bursts with oscillations needed to constrain RNS to within 10%
g Total number of bursts needed to constrain RNS to within 10%
h Observing time needed to constrain RNS to within 10%

Parameters for several bursting sources that show oscillations during the rise time.

I present in Table 7.1 the parameters for several bursting sources for which os-

cillations were detected during the rise time with the Rossi X-ray Timing Explorer

(RXTE ). Here, I use the burst rise times, the burst frequency, and the fraction of

bursts with oscillations from Galloway et al. (2008). I use the blackbody normaliza-

tion A from Güver et al. (2012) for sources 4U 1728-34, 4U 1702-429, KS 1731-260,

and 4U 1636-53, from Özel (2006) for EXO 0748-676, and from Güver et al. (2010) for

4U 1608-52. I have chosen only the sources for which the spin frequency and black-

body normalization are known. In Figure 7.8, I show the time needed to reach an

accuracy of 10% in measuring the radius versus the spin frequency for these sources.

It is evident from Figure 7.8 that sources with higher spin rates in general allow

for better constraints to the radius. This is because a faster spin leads to stronger

Doppler effects, causing the pulse profile to become more asymmetric. This results in
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plotted against their spin frequencies.

an increase in the higher Fourier harmonics and thereby an increase in the accuracy

of the radius measurement.

In the preceding estimate, I used the fraction of bursts with rise-time oscillations

as inferred from RXTE observations. Using a future timing instrument with a larger

collecting area such as LOFT will allow searching for burst oscillations during smaller

time segments in the rise of the bursts. This increased sensitivity will most likely

reveal oscillations in bursts in which the spreading time is short compared to the

typical duration of the RXTE time segments or the location of the ignition of the

bursts gives rise to smaller amplitude oscillations. Those bursts, however, will not

add an appreciable number of counts to the integrated pulse profiles that will be

used for measuring neutron star radii.

7.5 Conclusions

In this chapter, I focused on the problem of deriving neutron star parameters by

modeling pulse profiles from hotspots on the stellar surface. In particular, I addressed
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an often made assumption that the spot size can be treated to be infinitesimal in

size and investigated the conditions under which this leads to errors that can be

tolerated. I calculated the maximum size for which the hotspot can be considered to

be infinitesimal, both for derivations of the radius from the Fourier components of

the profile and for profiles which include an eclipse.

I found that hotspots with angular radius smaller than 10◦–18◦ produce profiles

that are not significantly different from those with very small hotspots. The maxi-

mum allowed spot size that corresponds to a 10% error in the derived radius depends

on both the location of the spot and the inclination of the neutron star spin axis to

the observer’s line of sight. In general, increasing the inclination and decreasing the

colatitude lead to a larger allowed spot sizes.

Similarly, I found that the duration of eclipses is relatively insensitive to the size

of the hotspot if it is below 10◦–20◦. In this case, increasing observer inclination and

decreasing spot colatitude lead to a smaller maximum spot size. Nevertheless, for

some extreme regions of the parameter space, even a spot smaller than 5◦ can have

an eclipse duration that is significantly smaller than that of an infinitesimal spot.

Finally, I considered the implications of spot size limits for the upcoming NICER

and the planned LOFT missions. I showed that, for rotation-powered millisecond X-

ray pulsars, the majority of sources are expected to have spot sizes smaller than the

limits derived above. For accretion-powered pulsars, I expect only the most slowly

spinning sources to have hotspots small enough that the spot size can be neglected.

For X-ray bursters, I calculated the fraction of the burst rise-time for which the spot

is small enough to constrain the radius to within 10%. I found that, for two sources

(4U 1636-53 and 4U 1608-52), it is possible to measure the radius to a 10% accuracy

within a time of 7–9 Ms. Other sources with less optimal configurations require

longer observations of 20–40 Ms in order to accurately measure their radii.
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In this appendix I calculate the Newtonian surface area of the neutron star as

a function of the inclination angle. Qualitatively, I am calculating the area of the

shadow cast by the neutron star onto the image plane in the presence of light rays

normal to the image plane. The outline of this figure is defined by the points on the

neutron star at which a normal to the image plane is tangent to its surface.

To find this locus of points, I first write a parametric expression for a vector from

the origin to a point on the surface of the neutron star with coordinates (θ,φ) in the

usual form:

R(θ, φ) = {R(θ) sin(θ) cos(φ), R(θ) sin(θ) sin(φ), R(θ) cos(θ)}, (A14)

with R(θ) defined as in Equation (3.2). I then define a normal vector to the surface

at (θ,φ) as

N(θ, φ) =
∂R

∂θ
× ∂R

∂φ
, (A15)

and a unit vector normal to the image plane at an angle θ0 to the rotational axis

of the neutron star as V(θ0) = {0, sin(θ0), cos(θ0)}. As θ0 varies from 0 to π
2
, the

inclination of the image plane ranges from pole-on to edge-on.

The boundary of the projection onto the image plane is defined by those points

on the stellar surface which satisfy the equation

N(θ, φ) ·V(θ0) = 0. (A16)

This equation is linear in sin(φ) and has the solution

sin(φ) = −cos(θ) cot(θ0)R(θ) + cot(θ0) sin(θ)R′(θ)

R(θ) sin(θ)− cos(θ)R′(θ)
. (A17)

This equation is no longer valid in the limiting cases θ = π
2

and θ = 0. In the former

case, the outline of the neutron star is described by Equation (3.2). In the latter case,

when the observer lies along the rotational axis of the star, the outline will of course

appear as a circle with radius R(π
2
). It should also be noted that not all values of

colatitude θ will correspond to a physical solution for the azimuth φ—the projected



117

circumference of the image will lie within a range of θ around the equator. I denote

by θ+ and θ− the limits of colatitude that contribute to the image at infinity.

In order to project the resulting outline of the neutron star onto the image plane,

I simply rotate the coordinate system by an angle −θ0 so the x–y plane is parallel

to the image plane. I then set the z-component of all the points on the outline to

zero to find a two-dimensional parametric form {Cx(θ; θ0), Cy(θ; θ0)} of the outline of

the projected image. Finally, I numerically integrate this curve to find the projected

surface area:

A = 2

∫ θ+

θ−

Cx
dCy
dθ

dθ. (A18)
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for the exterior field of a rotating neutron star. Phys. Rev. D, 61(8), 081501.
doi:10.1103/PhysRevD.61.081501.
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