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ABSTRACT

A theory is developed which allows one to obtain the optimum asymmetric acquisition
search strategy of a PN code despreader when the a priori probability density function is
given. The results developed here extend the theory of an optimum symmetric PN code
search strategy [1] to the more easily implementable asymmetric search pattern. In the case
when the a priori probability density function is Gaussian and for an environment such as
the TDRSS (Tracking Data Relay Satellite System), the acquisition time is reduced by
about 40% compared to the more standard uniform sweep.

INTRODUCTION

The acquisition circuitry of a despreader (a PN code acquisition and tracking system) is
commonly designed so that complete passes are made across the entire code range
uncertainty, as shown in Figure 1, during the initial search for the code epoch. The actual
search is commonly made in discrete steps one-half a PN code chip apart in time;
however, for simplicity in the optimization, we consider “continuous steps” with negligible
loss in accuracy. This search, which is commonly implemented by retarding one-half a
chip at a time, then integrating and comparing to a threshold (Figure 2), continues until the
signal is acquired. This scheme is efficient when the a priori location of the signal in the
uncertainty region has a uniform probability density function; however, when the a priori
density function is peaked, it is more likely to find the signal in the peaked region than
elsewhere, so the full sweep approach may not be the best one.

This paper is concerned with a method that allows one to determine the optimum
asymmetric sweep pattern to minimize the acquisition time, while achieving a required
probability of signal detection, for a given a priori probability density of the signal
location. The calculation is carried out for a Gaussian a priori signal location probability



density function as illustrated in Figure 3. The approach is general, however, so that it can
be applied to any given a priori signal location probability density function.

The basis of this method relies on the fact that any meaningful statistics (see [2], for
example) of acquisition time, which is the time required to search the code until
acquisition, depends directly upon the number of chips (code symbols) to be searched.
Therefore, searching where the likelihood to find the signal first reduces the number of
positions and therefore time to search.

A POSTERIORI PROBABILITY AFTER ONE, TWO AND THREE SWEEPS

In this section, we will show how the a posteriori probability density function of the
location of the true signal position changes as a function of the number of sweeps across
the code phase uncertainty. In Figure 4B, the asymmetric sweep pattern is presented. This
scheme, although not symmetric about the midpoint position, is easier to implement than
the symmetric scheme (Figure 4A) of reference 1 ([1]) since the retraces do not have to be
“jam-set” to the next sweep’s code phase position, but just turned around.

Consider an asymmetric search centered at the mean of a symmetric, unimodal, a priori
probability density function, as shown in Figure 4B (for the case of N = 4 sweeps). Let L1,
L2, L3....LN+1 denote the search lengths during the N sweeps (as denoted in Figure 4B for
N = 4), and assume that LN+1 $ LN $ LN-1...$ L1. Let p(x) denote the a priori probability
density function of the location of the signal. Further, let Si denote the event that the signal
is not detected in anyone of the first i sweeps over regions L1, L2,...Li+1. Furthermore, we
shall use the notation S0 to denote the event that the signal is not detected with zero
sweeps, which is, of course, a sure event. It is clear that the conditional probability density
of the signal location x, given that no sweep has yet occurred, is equal simply to the a
priori density function p(x), i.e.,

(1)

This density is sketched in Figure 3 for a Gaussian distribution function, although the
theory applies to all symmetric, unimodal density functions. Suppose that no signal is
detected during the first sweep over L1UL2 (L1UL2 denotes the sum or union of the two
line segments) and that the event S1 has occurred. The conditional density of p(x *S1) is
equal to, by use of Bayes’ rule,

(2)



In (2), the conditional probability density function p(S1*x) is clearly given by

(3)

where PD is the probability of detection given that the signal is present. The notation           
                  and                   denotes the fact that the location of the signal is within the set
L1 or not in L1, respectively, and P(S1) is the probability of the event S1:

(4)

where P(L1UL2) denotes the probability that the signal location x is with the set L1UL2:

(5)

Substituting (3) and (4) into (2), we thus obtain, after the first sweep,

(6)

A sketch of (6) is shown in Figure 5A. Notice that the a posteriori density function is
smaller inside the region L1UL2, but greater outside the region L1UL2- It is easy to show
that

(7)

as, of course, it should. For two sweeps (N = 2), it is easy to show by the same reasoning
that the a posteriori density function of the location of the signal is given by

(8)



where it will be shown later that

(9)

The notation L3 - L1 denotes the region in L3 that does not include L1. A sketch of the a
posteriori density function after two sweeps is shown in Figure 5B. Extending the a
posteriori density function results to the case of three sweeps leads us to the result

(10)

where shortly it will be seen that

(11)

Again it can be shown that p(x*S3), integrates to one. The a posteriori density function,
p(x*S3), is sketched in Figure 5C. We see that, as the number of sweeps increases, the a
posteriori density function p(x*Si), approaches a uniform distribution.

Probability of Detection After N Sweeps

In this section, we determine the probability of acquisition after N sweeps. Let Pi , i =
1,2,3,...N, denote, respectively, the probabilities that the signal is acquired during the ith
sweep, but not in the lst, 2nd,... or (i-1)th sweeps. Therefore, QN, the probability of
acquiring the signal in N sweeps is given by

(12)



First consider the value of P1. The probability of acquiring after the first sweep is the
probability of the signal being in the region L1UL2 times the probability of obtaining a hit
PD, given that the signal is located in L1UL2. Hence,

(13)

The probability P2 is, by definition, the joint probability of acquiring in the second sweep
and not acquiring in the first sweep. So we have

(14)

For P3, we have

(15)

In the same manner, P4 and P5 are given by (extending Figure 4B in the obvious way)

(16)

and

(17)

It therefore follows that the probability of detection in one sweep, Q1, is given, from (12)
and (13)

(18)

The interpretation of QN is the acquisition probability accumulated after N sweeps.
Typically QN would be 0.5 or 0.9 in many applications. When QN is 0.9, it means that the
probability of acquisition is 0.9 at the end of the Nth sweep. Now, to find Q2, we add P1 to
P2 . From (12, (13) and (14), we have

(19)



Notice that P(S2) = 1 - Q2 and, in general, P(SN) = 1 - QN. Since the probabilities are
additive, we have

(20)

and
(21)

Using (20) and (21) in (19) leads us to

(22)

In the same way, it can be shown that Q3 and Q4 are given by

(23)

and

(24)

The Qi’s will be used to obtain the optimum sweep length.

OPTIMUM ASYMMETRIC SEARCH STRATEGY

In this section, we specify the optimum lengths {Li} so that the total search length, given
by the sum of all the individaul sweep segments, is minimized.

Define           as the time required to complete N sweeps with probability QN. It is assumed
that          is proportional to the sum of the individual sweep times. The proportionality
factor depends upon the false alarm probability, the dwell time, etc.

Hence, our problem becomes: determine the optimum search lengths L1 , L2,...LN, LN+1 for
our N sweep procedure so that QN equals the desired acquisition probability and so that

(25)



is minimized. The parameter K relates acquisition time to code length search length
segments {Li.}. Our optimization procedure is to use the La Grane multiplier method. Let F
be given by

(26)

where 8 is the unknown La Grange multiplier. Up to this point, the theory is quite general,
the only requirement being that the a priori density be unimodal and symmetric and that
P(Li) be differentiable.

Since this problem was initially motivated by the need to improve the acquisition time for
the TDRSS multiple-access ground receiver [3] ana since the best estimates for the a priori
location of the signal were Gaussian, we shall illustrate the theory by assuming that the a
priori density function is Gaussian. With the Gaussian assumption, we have

(27)

For N = 1, it is easy to show that L1 = L2 = L and a solution exists if L is large enough that
Q1 is equal to the acquisition probability. A more interesting case occurs for two sweeps
(N = 2). From (12), we have

(28)

where

(29)



From our La Grange function F (26), we have

(30)

Letting 8' = 8/F and differentiating with respect to L1 gives us

(31)

Solving (31) for L1 produces

(32)

This equation can be written as

(33)

where C is the constant

(34)

and Ri is the normalized chip uncertainty. In the same manner, we can solve for the
optimum value of R2 by solving

(35)

for R2 . We obtain

(36)

in the manner the optimum value of R3 satisifes

(37)



Substituting (33), (36) and (37) for Ri back into the equation for Q2 (29) allows one, in
principle, to solve for 8' and therefore C. Unfortunately, the resulting transcendental
equation makes it nearly impossible to solve for C analytically. However, the solution can
be solved simply on a digital computer by trial and error, choosing values of C so that Q2
equals the desired value. The actual optimum may occur for values of N > 2. Hence, in
general, the solutions must be obtained for all values of N, and the value of N which
minimizes the value of         corresponds to the true optimum under the constraint of an
asymmetric search pattern.

Now consider the solution for N = 3. From (23), (25) and (26), we have

Differentiating F3 in respect to L1, L2, L3 and L4,  respectively, we arrive at

(39)

(40)

(41)

(42)

In general, this procedure can be continued for any desired value of N.

UNIFORM A PRIORI DENSITY SWEEP STRATEGY

The usual strategy for sweeping to obtain acquisition is to start at the end of the
uncertainty region where the range delay is minimal, then retard the range in increments of,
typically, one-half chips. By sweeping from the minimum delay to the maximum delay, the
chances of acquiring a multipath signal are diminished. If the probability of detection,
given that the received code and reference code are aligned, is given by Pd and, if the a
priori probability density function is Gaussian with zero mean and 6 F = )T, then the
cumulative probability of acquisition is as shown in Figure 6. If, for example, a probability
of 0.5 is chosen as the desired probability of acquisition, the curve could be read off the



abscissa, and the associated time, denoted by T.5, would be the time it takes to acquire
with a probability of 0.5 (the median acquisition time)

A measure of the improvement of the optimized scheme over the uniform sweep scheme
can be measured as follows. Denote       as the time to acquire with a probability of Q
using the uniform sweep approach. Next, let       denote the time to acquire with the
optimized sweep, the improvement factor of the optimized sweep over the uniform sweep
is then given by

(43)

The acquisition time is then                         . Clearly, rQ $ 1 since unity is achieved with
the uniform sweep strategy and therefore the method never increases acquisition time.

NUMERICAL RESULTS

In this section, we present some actual optimizations for a few cases of interest. In what
follows, we let )T = 6F and neglect the end effects. In Table 1, the case of PD = 0.25 and
Q = 0.5 was specified so that the acquisition time was, in fact, the median time.

Table 1.  PD = 0.25, Q = 0.5

As can be seen from Table 1 when PD = 0.25 and Q = 0.5, a reduction to 1/rQ = 61.3% was
obtained. In Table 2, the parameters used were PD = 0.6 and Q = 0.9.



Table 2.  PD = 0.6 and Q = 0.9

As can be seen from Table 2, when Q increases, the improvement factor decreases; in this
case, a reduction to only 78% was obtained. A subtle point pertaining to the relationship
between rQ PD and Q is best illustrated in Figure 7 based on the theory given here [4]. A
can be seen from the figure, only certain values of PD and Q give a reduction in acquisition
time.

CONCLUSIONS

A general method has been presented that can be used to optimize (minimize) the
acquisition time for a PN-type spread spectrum system when the a priori probability
density function is not uniform by utilizing an asymmetric sweep.

 Specifically, we have calculated for an assumed a priori Gaussian density function that the
acquisition time, when the 0.5 probability acquisition time (median) was used as a measure
of acquisition time, was reduced by 39% for a cell detection probability of 0.25 and when
three sweeps were used. When the acquisition time probability was set to 0.9 instead of
0.5, the reduction was only 22% of the uniform sweep acquisition time.

Although the calculations were for Gaussian a priori density functions, the theory is
directly applicable to unimodal, symmetric a priori density functions and P(Li) is
differentiable. Extensions to more general a priori density functions could also be made.
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Figure 1  Uniform Sweep Strategy.

FIGURE 2  TYPICAL SIMPLIFIED FIXED DWELL TIME
ACQUISITION SYSTEM



Figure 3  Gaussian Location of The Signal.

Figure 4A  Symmetric Search Pattern

Figure 4B  Asymmetric Search Pattern



Figure 5.  Aposteriori Density Function After One, Two, and Three Sweeps.



Figure 6.  Cumultive Acquisition Time probability
versus Acquisition Time, T.




