
L-3 Communications Telemetry-West, Public Domain Information

Page 1 of 10

META-DATA VERSIONING

Greg Adamski
L-3 Communications, Telemetry-West

ABSTRACT

Telemetry missions spanning multiple years of tests often require access to archived

configuration data for replay and analysis purposes. The needs for versioning vary from simple

file-naming conventions to advanced global database versioning based on the scale and

complexity of the mission. This paper focuses on a flexible approach to allow access to current

and past versions of multiple test article configurations. Specifically, this paper discusses the

characteristics of a versioning system for user-friendly and feature-rich solutions. It analyzes the

tradeoffs of various versioning options to meet the needs of a given mission and provides a

simple framework for users to identify their versioning requirements and implementation.

KEY WORDS

Meta-Data, Versioning, SQL, Revision Control

INTRODUCTION

Telemetry missions may span multiple years and consist of many individual tests. The

configuration of the system will most likely change over time. Additionally, users may want to

assign arbitrary meta-information to each test to facilitate future data retrieval and cross test data

analysis. The management of such a system presents a very real issue: all historical versions of

system configuration must be stored, but more importantly, there has to be a mechanism to easily

recall those settings and apply them when needed. The role of the versioning subsystem

discussed in this paper is exactly this. It allows user to store historical versions of their system

configurations and let them retrieve when needed.

USE CASE OVERVIEW

To better understand user behavior, the following set of use cases has been created. This is not an

exhaustive list of user interactions with a versioned system. However, the use cases presented

below cover a majority of operational scenarios and were a basis for the system design and

implementation.

1. The user wants to create a new project

a. The user is starting from scratch

L-3 Communications Telemetry-West, Public Domain Information

Page 2 of 10

b. The user wants to use existing data as a baseline

i. The user has databases from a previous project he/she wants to re-use in

this new project

1. The user wants to re-use the full project as a starting point

2. The user only wants to use specific data from the project

a. A full module database

b. Specific parameters only

c. Module configuration only

d. Display overlays only

ii. The user wants to import external data

1. The user wants to import databases from an external TMATS file

a. The user wants to overwrite existing database information

b. The user wants to merge external information with existing

database information

2. The user wants to import databases from an external non-TMATS

source (Excel, SQL, text file, etc)

a. The user wants to overwrite existing database information

b. The user wants to merge external information with existing

database information

2. The user wants to save his/her work and stop using the system

a. The user just wants to save the current setup

b. The user has a working setup and wants to take a “snapshot” (to recall it later if

needed)

c. The user doesn’t care and wants to discard the current setup

3. The user wants to open an existing project

a. The user looks through the list of existing projects

b. The user uses keywords to find a specific project

4. The user found a project and opens it

a. The user wants to use the latest saved setup

b. The user wants to open a previous snapshot and make changes

i. The user knows which snapshot to open

ii. The user wants to compare versions of previous snapshots

5. The user wants to backup/restore one or more projects

a. The user wants to backup/restore all existing projects

b. The user wants to backup/restore a specific project

6. The user wants to export a project to another computer

a. The user wants to export measurements, configurations, display overlays, etc

b. The user only wants to export a subset of a project setup

7. The user exports a project from a main system and imports the data on a remote system

a. The user make changes to the project on the remote system

i. Someone else makes changes to the project on the main system

ii. No one changes the state of the project on the main system

b. The user brings his/her project back and tries to integrate with all the possible

changes

i. The main system is not changed

L-3 Communications Telemetry-West, Public Domain Information

Page 3 of 10

1. The user brings the project back and import the changes to the

main system (no merge / integration necessary)

ii. The main system has changed

1. The user merges with or overwrites the data on the main system

SYSTEM ARCHITECTURE COMPARISON

Architectures of a telemetry project can be divided into three categories based on the coupling of

individual components:

Shared modules model

Figure 1. Shared modules

In the shared modules model, module databases exist independently of the project. The Project

only keeps references to a module database definition thereby allowing other projects to share a

module database.

Self-contained project with module selection model

Figure 2. Self contained project with module selection; Bold line indicates active configuration

L-3 Communications Telemetry-West, Public Domain Information

Page 4 of 10

In a self contained project model, module databases belong to a particular project. This means

that changes to other projects do not affect the integrity of the current project. This model allows

users to have more than one configuration for each module that are individually selectable within

the current project.

Self-contained project model

Figure 3. Fully self -contained project

In this model project may have only one configuration per module. This assures that the project

information is consistent at all times, but limits user flexibility.

 Shared Module Self contained

project with

module selection

Self-contained

project

Flexibility Once created

modules can be user

anywhere; changes

to modules

propagate

automatically

Modules may not be

shared across

projects; user may

still select different

modules to test

different scenarios

A new project has to

be created to test

any variations

System Integrity Not maintained, left

to the user.

Project-level.

Changes to one

project do not affect

any other project

Full integrity

maintained at all

times

Usage Complexity Sharing module

databases may be

confusing and lead

to errors, requires

rigid user process

and methodology

No guarantee of

system integrity due

to multiplicity of

databases may lead

to configuration

errors

Simple

Storage No redundancy; Creating new Each change that

L-3 Communications Telemetry-West, Public Domain Information

Page 5 of 10

requirements maximum data

reuse

project means

recreating all data;

different scenarios

may exist in one

project

needs to be tracked

requires copying of

all the information

Table 1. Fully self -contained project

VERSIONING PROJECT VS. MODULE

A Project, as a collection of Modules may also change over time. Database assignments may

change, and modules may be added or removed from a project. This means that the system must

keep track of both project and module versions. How much of this functionality should be

exposed to the user will be discussed later. The design has to consider the following problems:

a. Should the user be allowed to have modules with different configuration versions

in a single project?

b. If a module database can be shared across different projects, how to keep track of

version consistency?

VERSIONING SCHEMES

a. Record Level Versioning

When looking at the system configuration at any point in time, it is a sum of initial configuration

plus subsequent changes. From system creation, only changes to objects were being recorded.

The example in Table 1 shows how changes were recorded.

Step Operation State

Initial state - Object1 = 1500

Object2 = 2000

Change 1 object1 = 1000 Object1 = 1000

Object2 = 2000

Change 2 object1 = 1700 Object1 = 1700

Object2 = 2000

Change 3 object2 = 3000 Object1 = 1700

Object2 = 3000

Table 2. Record level versioning

This provides the ability to restore system configuration from any point in time, but causes

problems when attempting to load a configuration, modify and then store it to the database. Since

continuity of changes is not maintained, integrity of the system can not be guaranteed. On the

other hand introducing a concept of branching turned out to be too difficult for users without

experience in software development.

L-3 Communications Telemetry-West, Public Domain Information

Page 6 of 10

b. Table Level Versioning

An alternative approach to versioning is to store a complete snapshot of the system whenever a

version is saved. This allows the user to maintain system integrity, but reduces flexibility and

increases storage requirements of such a system. The term table-level versioning refers to the

system’s ability to snapshot complete data tables when a version is saved.

c. Hybrid Approach

 In our system, we decided to use a hybrid approach that gives us the best of both worlds.

Storage area is divided into two parts: work data and archival storage. Work data is stored using

record-level versioning and archived versions use table- level versioning. Both areas are

constructed in such a way, that the access to them is possible using the same API calls. The

difference is that while the user has the ability to modify work data at will, access to stored

versions is read only. Modifications to stored versions are possible only by copying them to the

work area and modifying them there.

Work Data Past Versions

Vista

Database API

getNextObjects() Object[]

Figure 4. Fully self -contained project

STORAGE OVERVIEW

The system stores project information inside a relational database allowing us to provide shared

access to the data from all locations on a local network. Database objects are not accessed

directly though, but through an API that is responsible for mapping JAVA objects to database

tables. Versioning is built on top of that API. Applications requesting an older version of an

object/module/project database must use setVersion() call before requesting objects. After that,

all objects returned from the database will come from the specified version.

Version Storage

Storing a version is only a part of the problem. Getting information back is another, especially if

many versions of a single project have been created. While each object in the database is marked

with a version number, versions themselves contain a significant amount of meta-information:

L-3 Communications Telemetry-West, Public Domain Information

Page 7 of 10

• Version Number

By default versions are numbered using <major>.<minor> notation, but users may

change version number at will

• Version Date

Version date is typically an indicator of when the test took place. This information

also allows us to load a correct system configuration when playing back an

archival tape.

• Version Description

Description is a free form field. Users can enter anything they might want to

know/track about this particular version

• User-defined Tags

Users have the ability to specify a number of enumerable fields that are specific to

their test. Figure 5 presents sample user defined field combination. This is a

powerful feature providing flexible retrieval capabilities (custom filtering, sorting,

etc).

Providing well-defined meta information allows users to easily retrieve correct versions when

needed. Figure 8 shows an example version picker dialog. The Filter panel allows users to

quickly limit versions that are displayed to those that meet specific criteria be it version number,

time span, or user defined tags.

Sharing databases

As mentioned before, adding version information to the project leads to complications in

dependencies between databases shared across projects. To simplify this, the current design does

not allow users to share archived versions across projects. Users are still free to use shared work

data across project, which is not recommended though and will be disabled in future releases.

PERFORMANCE IMPLICATIONS

Versioning adds an additional layer of complexity on top of the existing database storage. Our

research has shown that the design chosen has minimal impact on data retrieval performance.

Figure 4 shows a linear increase in load time for a project with 10 objects. The slope of the curve

is small enough that the performance penalty can be easily disregarded in typical scenarios.

L-3 Communications Telemetry-West, Public Domain Information

Page 8 of 10

Time vs Number of Versions

0

100

200

300

400

500

600

0 500 1000 1500 2000 2500

Time

Linear (Time)

Figure 5. Changes of load time with increase of the number of versions

API CHANGES

An important factor when designing a versioning scheme was how big of an impact it would

have on the rest of the system. How much would the system have to modified to support

versioning and how much testing would have to be performed to make sure the system worked

correctly. That is why the API was designed to be transparent to applications that do not want to

take advantage of versioning. Only code that is responsible for transferring configuration data in

or out of the system (e.g. XML Import/Export, TMATS Import/Export) needs to be aware of the

internal workings of the versioning scheme. Most other applications use standard calls for

retrieving data that existed before. Only in a situation when a specific version is needed, do they

need to call setVersion().

GUI DESIGN

When designing GUIs for this task, contradicting requirements had to be taken into account. On

one hand GUIs had to be simple, not to overcomplicate an already complex notion of version

management. On the other, they had to give users enough flexibility to allow advanced

manipulation of data on systems with many versions. A decision was made to hide most of the

options to typical users, while at the same time allowing advanced users to access all the

functionality they may need on demand. After dialogs open, users are presented with a limited

set of settings. Advanced options only show after “More” is pressed. Figure 5, Figure 6, Figure 7

and Figure 8 demonstrate this approach. It is also important to note that users who do not want

versioning, do not need to worry about it even if it is enabled.

L-3 Communications Telemetry-West, Public Domain Information

Page 9 of 10

Figure 6. Storing new version of a project – simple view

Figure 7. Storing new version of a project – advanced view

L-3 Communications Telemetry-West, Public Domain Information

Page 10 of 10

Figure 8. Retrieving a stored version – simple view

Figure 9. Retrieving a stored version – advanced view

CONCLUSION

Meta-Data versioning is not a trivial task. It is crucial to identify the true usage scenarios that

must be addressed and make compromises along the way to promote ease-of-use of the design. A

hybrid approach seems to provide the most effective solution for typical telemetry system

versioning needs.

