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ABSTRACT 
 
Signal conditioning is a critical element in all data telemetry systems.  Data from all sensors 
must be band limited prior to digitization and transmission to prevent the potentially 
disastrous effects of aliasing.  While the 6th order analog low-pass Butterworth filter has long 
been the de facto standard for data channel filtering, advances in digital signal processing 
techniques now provide a potentially better alternative.   
 
This paper describes the challenges in developing a flexible approach to adaptable data 
channel filtering using DSP techniques.  Factors such as anti-alias filter requirements, time 
correlated sampling, decimation and filter delays will be discussed.  Also discussed will be 
the implementation and relative merits and drawbacks of various symmetrical FIR and IIR 
filters.  The discussion will be presented from an intuitive and practical perspective as much 
as possible. 
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INTRODUCTION 

 
All modern telemetry systems that collect continuous analog data from accelerometers, strain 
gauges and a host of other sensors, convert each analog signal to a digitally sampled data 
stream prior to transmission and/or storage.  This is such a basic aspect of telemetry that we 
rarely consider that a continuous analog signal is really a very different animal from a digital 
data stream.  Properly sampled digital data can be considered properly sampled if and only if 
a high quality replica of the pre-sampled analog signal can be reconstructed from the digital 
data.  Two things are required for proper sampling: 

1. Sufficient A/D converter resolution.  If the A/D converter step size is on the order of the 
analog noise in the system, no low-level data fluctuations present in the analog data 
will be lost. 

2. The frequency spectrum of the sampled signal must be band-limited to no more than 
½ the sampling frequency.  This requirement is known as the Nyquist criterion and 
although there is some confusion about the term’s definition, we will refer to the 
Nyquist frequency or Nyquist rate as meaning half the sampling frequency.  Violate 
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the Nyquist criterion and you get aliasing, which can make a high frequency electrical 
noise signal indistinguishable from a low frequency vibration and render your data 
useless. 

 
Requirement 2 is the primary reason a precision low pass filter is part of the entry price of 
every analog data channel in a telemetry system. 

 
ANALOG VS. DIGITAL 

 
Low-pass filters used to band-limit channel data can be analog or digital, which is to say, they 
can employ resistors, capacitors and op amps and operate on analog signals or they can 
mathematically process the digital data stream.  Analog filters are simple to build and 
understand and have low power consumption.  On the other hand, they are relatively 
inflexible and their accuracy is limited by available component tolerances.  Digital filters 
require a DSP or other high speed numeric processor and associated support hardware and 
ironically, also require a reasonably good analog filter for anti-aliasing (which will be 
discussed in greater detail in the next section). Once implemented, they provide very high 
accuracy and flexibility way beyond what can be implemented with analog circuitry. 
 

TIME CORRELATION 
 
At this point, it would be useful to contrast how low pass filtering occurs in an analog filtered 
telemetry channel vs. a digitally filtered one.  In telemetry channels that employ 
programmable analog filters such as those on TTC’s SCD-108S signal conditioning card, 
each channel is periodically sampled in the data format at perhaps four times highest data 
frequency of interest and the analog filter has been set to cut off at a filter setting slightly 
above the highest data frequency of interest.  Assuming the channel is configured for 
sequential sampling, each time the channel comes up in the format, an A/D convert 
command is generated and the output signal of the channel filter at that moment is digitally 
sampled.  At the same time, the previous A/D sample is placed in the format data stream.  
The important point is that the analog filter continuously processes channel data but the data 
is sampled only when the channel appears in the format.  The result is that every digital 
sample in the format is time-synchronous with its place in the format.  This is time-correlated 
sampling. 
 
In digitally filtered systems such as those employed by TTC’s SCD-116D card, the channel 
A/D converter samples the data at a substantially higher rate than the channel appears in the 
format.  These samples are then mathematically processed to provide each filtered data 
sample.  So how do you achieve time-correlation in digitally filtered systems? 
 
There are two ways.  The most straightforward is to sample the channel data at a fixed rate 
that is very high compared to the format sample rate.  Let’s assume we have a channel that 
appears periodically in the format at a 4KHz rate and we want our channel cut off frequency 
to be 1KHz.  If we sampled the channel data at a 100KHz rate, we would need to have a 
digital filter with a –3dB frequency of 0.01fS, where fS is the data sample frequency.  Since 
sampling is asynchronous to the format, the 100KHz sampled data used to calculate each 
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filtered data point will have an age-uncertainty of one sample period or 10us.  If we assume 
the data signal is a full scale, 1KHz sine wave, the maximum possible error in counts at zero-
crossing resulting from time uncertainty is given by the formula:   
 

EC =  (2BITS/2) * SIN (∆t*360° /PD)         (1) 
 
Where EC is the maximum possible error in counts, BITS is the bit resolution of the ADC, ∆t 
is the time-uncertainty (10µsec) and P D is the maximum data frequency period (1000µsec). 
 
For 12-bit sampled data, the maximum error can be as large as 128 counts or better than 3% 
of full scale.  Not good.  If we raise the filter sample frequency to 1MHz, we get about 13 
counts of error or about 0.3% of full scale.  Better but not outstanding.  In addition, we incur 
the huge DSP processing burden needed to handle the higher sample rate. 
 
The second approach is somewhat more complicated to implement but eliminates the 
problem described above by sampling the A/D converter at a frequency that is an exact 
multiple of the channel format rate and is phase-locked with it.  Digitally filtered data collected 
this way will be time-correlated with the format, as are analog filtered samples taken each 
time the channel appears in the format (such as those collected with the SCD-108S card). 
 
In the SCD-116D and the SCD-108D cards, digital phase locked loops (PLL) are used to 
multiply the format sample rate by 2N where N is an integer selected to provide a sampling 
rate in the octave from 28KHz to 56KHz (PLLs in the SCD-608D, MSCD-104D and MSCD-
604D operate from 56KHZ to 112KHz).  Phase locking the DSP sample rate to the channel 
format rate eliminates sample latency error.  Using the example cited earlier, the channel 
PLL will multiply the 4KHz format sample rate x8 (23) to provide an A/D sample rate of 
32KHz.  If the digital filter’s -3dB frequency is set to 0.031 (1/32) of fS, our channel -3dB 
frequency will be 1KHz as required.   
 
By varying fS to select the filter’s -3dB frequency within a given octave, we greatly reduce the 
number of possible filter characteristics that need to be stored or calculated.  On the other 
hand, we have made the job of the analog anti-aliasing filter more difficult.  In a perfect world, 
we would like our anti-aliasing filter to have no effect on the highest data frequency of interest 
yet attenuate frequencies above the Nyquist rate (fS/2) into oblivion.  In reality a reasonable 
goal is <-0.1dB attenuation (about 1%) at the highest data frequency of interest and >-40dB 
attenuation at the lowest possible value of fS/2.  In TTC’s SCD-116D, the maximum data 
frequency is specified as 2.8KHz (higher frequencies may be selected provided the 
attenuation of the anti-aliasing filter is allowed for) while the lowest possible value of fS/2 is 
14KHz.  Achieving the required performance requires an anti-aliasing filter with a minimum of 
a 4th order Butterworth characteristic.   
 
The end result is a fully time correlated system, not just channel to channel on a given card, 
or card to card within a given chassis, but channel to channel throughout an entire 
Distributed Data Acquisition System. This applies whether the channels are sampled 
sequentially or simultaneously. 
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DECIMATION 
 
Earlier references were made to digital filters having -3dB frequencies of 0.031fS and lower.  
In most instances, such FIR and to a lesser extent IIR filters are not directly realizable.  
Consider a 40-tap symmetrical FIR filter.  The form of an FIR filter is:  
 

y0 = a0*x0 + a1*x1 + a2*x2 + …….. + aN-1*xN-1       (2) 
 
where N = 40 for a 40-tap filter, x0 to xN-1 are progressively older input sample values, a0 to 
aN-1 are the filter coefficients, and y0 is the current output value. 
 
Basically, a FIR filter is nothing more than a weighted moving average filter where the weight 
of the kth sample is determined by the value and sign of coefficient ak.  If we applied a 
sinusoidal input to the above filter whose period was greater than 80 samples, it would be 
impossible to fully block this signal from appearing in the output no matter what filter 
coefficients we selected.  Table 1 shows a typical set of symmetrical FIR filter coefficients. 
 

Table 1:  Typical Set of 40-Tap Symmetrical FIR Filter Coefficients, Normalized to 1 
 
a0= -0.00002    a5=  0.00011   a10=  0.00937    a15=  -0.03896    a20=   0.26842   a25=  -0.03941      a30=   0.00179      a35=   0.00052   
a1= -0.00003    a6= -0.00133   a11=  0.01344    a16=   0.00662    a21=   0.19940   a26=  -0.01635      a31=  -0.00275      a36=   0.00032   
a2=  0.00007    a7= -0.00305   a12=  0.00547    a17=   0.09640    a22=   0.09640   a27=   0.00547      a32=  -0.00305      a37=   0.00007   
a3=  0.00032    a8= -0.00275   a13= -0.01635    a18=   0.19940    a23=   0.00662   a28=   0.01344      a33=  -0.00133      a38=  -0.00003   
a4=  0.00052    a9=  0.00179 a14= -0.03941    a19=   0.26842    a24=  -0.03896   a29=   0.00937      a34=   0.00011      a39=  -0.00002 

 
 If we carefully examine these coefficient values, we observe two things:  

1. The first half of the coefficients is a mirror image of the second half.  That is a0 = a39, 
a1 = a38, …. , a19 = a20.  This is what makes the filter symmetrical and also what makes 
its phase linear and its delay constant for all frequencies. 

2. The mid-range coefficients are much larger than the end coefficients.  This means 
samples 15 thru 24 are weighted much heavier than samples 0 thru 4 and 35 thru 39.  
It also means that the lowest frequency sinusoid we could effectively attenuate with a 
40-tap FIR filter has a period no greater than about 20 samples rather than 80 
samples.  This makes the minimum practical fC ~0.05fS. 

 
Enter decimation.  In the earlier example, data with no significant frequency content above 
14KHz was sampled at 32KHz, comfortably above the Nyquist rate.  If we pass this data 
through a 40-tap FIR filter having a -3dB frequency of 0.095fS (a decimation filter), we will 
attenuate all frequencies above 0.125fS by greater than -40dB.  In effect we have now band-
limited our data to 0.125*32KHz or 4.0KHz.  Next we decimate by 4.  Theoretically, this 
means discarding three filtered data samples out of every four.  In reality, we only execute 
the decimation filter algorithm once for every four input samples we add to the filter input 
buffer.  The filtered output data is now applied to another 40-tap FIR filter with fC = 0.125fS.  
The effective sample rate of this filter is 32KHz/4 or 8KHz which again satisfies the Nyquist 
criterion.  The filter -3dB frequency of this second filter is then 0.125*8KHz or 1.0KHz as 
required.  To achieve lower -3dB frequencies, decimation can be repeated as many times as 
necessary. 
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STRENGTHS AND WEAKNESSES 
 
The form of a FIR filter is given by equation 2 which is repeated below for clarity.   By 
examining the equation, it becomes clear that every output sample of an n-tap FIR filter is a 
function of only the filter coefficients, the current input sample and   n - 1 previous input 
samples.  Any change in the signal that occurred greater than n samples ago will have no 
effect on the filter output, hence the name Finite Impulse Response filter.  This type of filter is 
also referred to as non-recursive since there is no feedback path from output to input.   The 
FIR filter’s non-recursive nature is also why it is inherently stable.    

 
y0 = a0*x0 + a1*x1 + a2*x2 + …….. + aN-1*xN-1       (2) 

 
A 6-pole IIR filter is composed of three cascaded 2-pole stages and can be mathematically 
represented by equations 3, 4 and 5.  The output of the first cascaded stage is y2, the second 
is y1 and the third is y0.  Note the output of each stage is not just a function of the current 
input and two previous inputs but is also a function of two previous outputs as well.  The 
output terms are what makes this a recursive filter and are also the source of any tendency 
toward oscillation.   
 

y0 = a0*x0 + a1*x1 + a2*x2 + b1*y1 + b2*y2       (3) 
y1 = a3*x1 + a4*x2 + a5*x3 + b3*y2 + b4*y3       (4) 
y2 = a6*x2 + a7*x3 + a8*x4 + b5*y3 + b6*y4       (5) 
 

Referring to the figures below: 
 
Figure 1 displays step responses for 120-tap and 40-tap FIR filters as well as those for 
analog and IIR digital versions of a 6-pole Butterworth filter.  The –3dB frequency of all four 
filters is 14 Hz and the channel sample rate is 5x this value or 70 Hz.   
 
Figure 2 displays the frequency domain performance for 120-tap and 40-tap FIR filters in the 
pass and transition bands.  The –3dB frequency of both filters is 0.125fS.  
 
Figure 3 displays the frequency roll-off and stop band characteristics of the same 120-tap 
and 40-tap FIR filters as in Figure 2. 
 
Figure 4 displays the frequency domain performance for 6-pole Butterworth, 8-pole 
Butterworth, 6-pole Bessel and 6-pole Chebyshev IIR filters in the pass and transition bands.  
The –3dB frequency of all four filters is 0.050fS.  
 
Figure 5 displays the frequency roll-off and stop band characteristics of the same four IIR 
filters as in Figure 2. 
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Figure 1:  Analog/Ditital Filter Step Response and Delays
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Figure 2:  FIR Filters Pass and Transition Bands
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Figure 3:  FIR Filters Frequency Roll-Off
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Figure 4: 

IIR Filters Pass and Transition Bands
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Figure 5: 

IIR Filters Frequency Roll-Off
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Comparing the frequency roll-off characteristics of the filters depicted in Figures 3 and 5, it is 
clear that the 120-tap FIR has by far, the sharpest roll-off.  The 120-tap FIR will outperform a 
12-pole Butterworth or 10-pole Chebyshev filter in this respect while remaining completely 
stable and non-oscillatory.  From Figures 2 and 4, we see that the 120-tap FIR also has the 
flattest pass band of the group.  The –0.1dB point of this filter is at 86% of the –3dB 
frequency which beats all but the 6-pole Chebyshev filter.  However, unlike the Chebyshev 
filter, there is no oscillation in attenuation throughout the pass band.  If you are looking for the 
proverbial brick-wall filter, it would be hard to beat the 120-tap FIR filter.   
 
If the FIR filter has an Achilles heel, it is depicted in Figure 1.  A step function was applied to 
the input of the four filters shown at time, t = 0.  The relatively slow apparent rise time of the 
input step is an artifact of the plotting program.  Note that the propagation delay of the 120-
tap FIR filter is 3 times that of the 40-tap FIR filter and almost 10 times that of the 6-pole 
Butterworth IIR filter.  Theoretically, this should not be a problem since the filter has linear 
phase or constant delay.  Having said that, some people may simply not be comfortable with 
such a long latency.   
 
The 40-tap FIR filter offers frequency roll-off and pass band flatness that is fairly comparable 
to that of a 6-pole Butterworth filter.  Like other symmetrical FIR filters, it has linear phase.  
Its step response shows only a slight overshoot (about 5%) with very little ringing that 
appears symmetrically at the leading and trailing edges of the step.  Only the Bessel IIR filter 
(not shown), which has almost no overshoot and ringing, offers a better step response.  
Propagation delay of the 40-tap FIR filter is about 3 times that of one of the 6-pole IIR filters. 



 9

 
The 6-pole Butterworth has long been the standard by which other low-pass filters are 
measured and is why the step response of an analog version of this filter was included in 
Figure 1.  This filter features maximally flat pass band and –36dB/octave frequency roll-off 
beyond the –3dB frequency.  Note the nearly identical rise time, overshoot (about 14%) and 
ringing in the analog and IIR digital versions of this filter.  The slight additional delay in the 
digital version comes from a combination of decimation filter delay and slightly longer card 
latencies.  
 
The 8-pole Butterworth filter has the flattest pass-band of all the IIR filters shown with less 
than -0.1dB attenuation to beyond 0.6fS.  Its frequency roll-off is –48dB/octave beyond the    
–3dB frequency.  Its step response has slightly more overshoot and slightly longer delay than 
a 6-pole Butterworth filter. 
 
On the basis of its frequency domain performance illustrated in Figures 4 and 5, the 6-pole 
Bessel filter looks like a miserable performer.  However, this linear phase filter alone provides 
a symmetrical step response with essentially no overshoot or ringing on both leading and 
trailing edges of the step.  If the information you are interested is primarily in the time domain, 
that is if it is carried in the shape of the filtered waveform, the Bessel filter is the one to 
choose.  An electrocardiogram (ECG) signal is an example of a waveform whose information 
is primarily in the time domain.  More to the topic of telemetry, pulse coded modulation 
(PCM) data is usually passed through a Bessel filter to band-limit the pulse train without 
adding ringing before being sent to an RF transmitter. 
 
Of the IIR filters discussed, the 6-pole Chebyshev filter offers the sharpest transition from 
pass band to stop band.  Its performance in this area is matched only by that of the 120-tap 
FIR filter.  As shown in Figure 5, the frequency roll-off 6-pole Chebyshev filter exceeds that 
of the 8-pole Butterworth to beyond –60dB.  Part of the price paid for this sharp transition is 
oscillation of gain in the pass band (see Figure 4).  The Chebyshev characteristic chosen for 
use in TTC’s products limits this oscillation to +0.1dB or about +1%.  Other potential issues 
are the amount of overshoot and ringing present in the filter’s step response and its non-
linear phase response. 
 

CONCLUSION 
 
Successful signal conditioning of analog data requires attention to detail in several important 
areas.  The analog signal must be band-limited by a well-chosen analog filter and properly 
sampled at a rate that will not cause significant aliasing.  The resolution of the analog-to-
digital converter needs to be high enough to provide negligible quantization noise.   
 
When the data is being collected for inclusion in a PCM or similar system, a strategy must be 
in place to ensure that the collected data is, and remains, time-correlated with the data 
stream.  Finally, the characteristic of the channel filter chosen to band-limit the data (other 
than the anti-aliasing filter) must be selected in accordance with the kind of information that 
the data is collected to provide. 
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