NUCLEAR FUEL COPROCESSING PLANT

FLOWSHEET AND RADIOACTIVE WASTE SOURCES
by
Sayde Hamid Mortazavi

A Thesis Submitted to the Faculty of the DEPARTMENT OF NUCLEAR AND ENERGY ENGINEERING
In Partial Fulfillment of the Requirements For the Degree of MASTER OF SCIENCE In the Graduate College THE UNIVERSITY OF ARIZONA

STATEMENT BY AUTHOR

This thesis has been submitted in partial fulfillment of requirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library.

Brief quotations from this thesis are allowable without special permission, provided that accurate acknowledgment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his judgment the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author.

APPROVAL BY THESIS DIRECTOR

This thesis has been approved on the date shown below:

ACKNOWLEDGMENTS

The author would like to acknowledge the guidance of his Thesis Director, Dr。Roy G. Post.

The author would also express his gratitude to Dr。 Reiner Papp for his unlimited help and guidance during this study.

Some parts of this document were performed at The University of Arizona under a contract with Los Alamos Scientific Laboratory, New Mexico.

To My Parents
and
My Wife

TABLE OF CONTENTS

Page
LIST OF TABLES vi
LIST OF ILLUSTRATIONS vii
ABSTRACT viii
CHAPTER

1. INTRODUCTION
1.1 Proliferation and Nuclear Cycle. 1
1.2 Diversion Control Methods. 3
1.3 Coprocessing as an Option. 5
2. THE COPROCESSING FLOW SHEET 9
3. COPROCESSING TECHNICAL DESCRIPTION. 17
3.1 Assumptions and Computation Method 17
3.2 Fuel Receipt and Storage 17
3.3 Shearing, Tritium Removal, Dissolving 22
3.4 Solvent Extraction 30
3.5 Waste Treatment Systems 34
$3.6 \mathrm{UF}_{6}$ Production 40
3.7 Coconversion of Plutonium and Uranium. 43
3.8 Of̣f-Gas Treatment. 47
4. FUEL CYCLE IMPACT 53
4.1 Operational Impacts. 53
4.2 Resource Impacts 54
4.3 Advance Reactor Concepts 55
5. SUMMMARY AND RECOMMENDATION. 57
APPENDIX A: MASS BALANCE AND RADIOACTIVE PROCESS LOSSES FOR LWR COPROCESSING FUEL CYCLE 61
APPENDIX B: COMPUTER PROGRAM "COPRO" 75
APPENDIX C: COMPUTER PROGRAM "SX" 96

LIST OF TABLES

Table
Page
2．1 First Extraction Cycle and Associated Acid and Organic
Recovery System（LWR Fuel）。．．．．．．．．．．．．．．．． 14
2．2 First Extraction Cycle and Associated Acid and Organic
Recovery System（for LMFBR Fuel）．．．．．．．．．．．．． 15
3．1．1 Fuel Characteristics．．．．．．．．．．．．．．．． 18
3．2．1 Irradiated Fuel Rod Void Space Activity ．．．．．．．． 20
3．2．2 Radioactive Content of＂Waste Generated in Fuel
Recovering and Storage Station．o．．．．．．．．．．． 23
3．2．3 Waste from Fuel Receipt and Storage 。．．．．．．．．． 23
3．3．1 Wastes and Product of Shearing and Tritium Removal and
Dissolver ．．．．．．．．．．．．．．．．． 26
3．4．1 Waste from Second and Third Pu Purification Cycles ．．． 32
3．4．2 Product Streams from Solvent Extraction 。．．．．。．．． 33
3．5．1 Wastes from Uranium Purification Cycles 。．．．．．． 38
3．5．2 Concentrated Bottoms from G．P．，Services，and Halide
Evaporators to ILLW Solidification．．．．．．．． 41
3．6．1 Waste in U_{6} Production Normalized to 10 MTHI 。 ．．．．．． 44
3．8．1 Off－Gas Treatment．Flows ．．．．．．．．．．．．．． 50
3．8．2 Estimated Mainstack Gas Composition ．．．．．．．．． 51
3．8．3 Waste Generation by DOG，VOG Treatment。．。．。．。．。．。 52

LIST OF ILLUSTRATIONS

Figure Page
2.1 Conceptual LWR Spent Fuel Coprocessing Flowsheet．．．．． 11
2．2 First Solvent Extraction Cycle with its Acid Recovery System for LWR and LMFBR．．．．．．．．．．．．．．． 12
2．3 COPRO Solvent Extraction Block Flow Diagram（LWR）。。。． 16
3．5．1 Waste Evaporation and Acid Recovery Block Diagram 36
3．7．1 Coconversion Facility 46
3．8．1 Off Gas Treatment System。 48

Abstract

In this flow sheet the separation of plutonium and uranium is almost complete, comparable to the traditional Purex flow sheet. The plutonium product stream is finally diluted with uranium before it leaves the heavily shielded, inaccessible area. The most important difference is brought about by the omission of a second and third plutonium purification cycle, leading to some savings in the production of low activity radioactive waste.

INTRODUCTION

1.1 Proliferation and Nuclear Cycle

The United States and all other nuclear weapon states as well as non-weapon states are deeply concerned with the risks of nuclear weapons proliferation. Concepts for development of civilian nuclear power with integrated controls for non-proliferation of military nuclear weapons have been studied ever since the Baruch plan was first proposed in 1946. The goal is to reduce the risks of weapons proliferation while maintaining the option of nuclear power as a significant source of energy. The international agreements developed to this date, such as the treaty on the Non-Proliferation of Nuclear Weapons (NPT) and the 1977 "London Agreement" among 15 nuclear supplier nations, represent outstanding examples of international cooperation. The recognized need for such cooperation has led to the establishment of the International Atomic Energy Agency (IAEA) as a key organization for prevention of nuclear material diversion.

Additional measures are under investigation to reduce even further the risk of potential diversion of nuclear fuel cycle material to. illicit nuclear devices, such as the United States Non-proliferation Alternative System Assessment Program (NASAP) and the IAEA international Nuclear Fuel Cycle Evaluation (INFCE).

In most decision-making situations, there are competing factors that are of such nature that all interests cannot be fully satisfied. In deciding the question of plutonium utilization, the primary factors in competition are the need to meet the expanding world energy demand versus the potential of increasing the risk of nuclear weapons proliferation.

The risk associated with plutonium has led the U.S. to conclude that utilization of plutonium should be deferred pending further evaluation. The U.S. support of the deferral option, however, has been incorrectly interpreted by many as a desire to foreclose the use of plutonium and the breeder option permanently. The actual U.S. position is more accurately articulated by Joseph Nye, who stated, "President Carter's Apri1 7 (1977) statement did not prejudge the question whether some form of reprocessing would be necessary if we enter a breeder economy . . . In short, the President opposed the premature entry into plutonium economy" (Nye 1977). In spite of such policy statements and recommitment to guarantee enrichment services and fuel supply, the U.S. position of deferring the use of plutonium has frequently been viewed as a denial strategy by those nations not having abundant fossil fuel or uranium. The result is that a conflict of motives and interests exists, with the position of each nation being dictated by its own specific needs and the relative importance it places on the two competing factors of energy supply and proliferation risk.

1.2 Diversion Control Methods

The promulgation of a modified national energy program during the past years drastically changed the planning for completing the fuel cycle associated with commercial light water reactors (LWR). Proliferation of fissile material became the main issue of the new nuclear energy policy. Basic considerations of' any detailed nuclear fission system reveal that each will carry within itself a certain potential for proliferation with sufficient technical ingenuity available to the operator and owner of the system. The question of the resistance to proliferation are related to the technological requirements for achieving the isolation of sufficient quantities and purity of fissionable materials to permit the fabrication of a device critical with fast neutrons. The risk of diversion can be minimized by a variety of control methods. These methods can be.classified as safeguard regulations, institutional controls and technical controls.
(1) Safeguard Regulations; These safeguard techniques include concepts of both material control and physical protection and are rigidly enforced through federal or international regulations and compliance inspections. The major elements of material control are material accounting, indepth.measurements and timely inventories. Physical security measures include protection from intrusion, restricted access, continual surveillance.
(2) Institutional Controls; These include measures which utilize economic, political or societal factors to affect the ability or motivation
of a subnational or a nation group to achieve a nuclear capability. Example of such controls are the NPT and various contractual arrangements between nuclear supplier and user nation.

One of the most promising institutional type controls appears to be the use of a multi-national fuel services center where, by mutual agreement, nations could have fuel services performed in secure facility with no individual nation in position to use the facility for proliferation purposes.
(3) Technical Controls; These are measures applied to reactors and the basic fuel cycle that would inherently provide an increased margin of diversion protection. For maximum usefulness, these techniques should require a minimum of supplementary administrative controls. The following criteria may assure adequate proliferation resistance to uraniumplutonium fuel cycles:

- Spiking. This means that the fabricated fuel for reload to the reactor could be spiked by adding fission products or other isotopes such as $c 0^{60}$ emitting sufficient quantities of high energy gamma rays. This fuel then would present a significant problem in terms of radiation hazard to provide adequate protection against proliferation (EPRI 310 1975).
- Denaturing. The fissionable isotope would be diluted with a nonfissionable isotope of the same element and thus require isotope separation for the fissionable isotope to be concentrated enough to be used in a fast critical assembly.

Plutonium cannot be denatured because nonfissionable isotopes of this element is not abundant.

- Coprocessing and Partial Decontamination. The coprocessing concept is a fuel cycle option in which the recovery of fissile material from irradiated fuel is performed without producing a purified plutonium product. Obtaining weapons grade material then requires diversion of large quantities of material and subsequent chemical separation. The proliferation resistance can be further increased by incomplete separation of intensely radioactive fission products, leading to a situation similar to spiking.

1.3 Coprocessing as an Option.

Coprocessing is conceived as a method to control proliferation by maintaining the plutonium with the uranium at all times. The chemical operations would be carried out in a secure area, and the only materials leaving the secure area would be the product stream uranium and plutonium in a mixed oxide form.

The proliferation resistance of this cycle can be breached by the expedient of chemically separating the uranium and plutonium if it can be obtained outside the secure area. There is the possibility of increasing the proliferation resistance of this material by retaining some of the fission products. If the plant is operated with high levels of fission products in the product stream, less decontamination is . needed, and, in addition, it is possible to keep the transplutonium
actinides with the plutonium stream rather than allowing them to leave with the fission products and terminate in the high-level waste. Retention of these transplutonium actinides in the product stream provides an easy means for recycling and burning them in the reactor. The neutron physics has already been established for both the LWRs and LMFBRs (Patrasharn 1980). The big benefit is the reduction in the long-term hazard of the high level wastes. The chemical process necessary to accomplish these partitionings has not yet been fully demon-strated. Operation of this fuel cycle requires incomplete separation of the actinide and the fission product from uranium and plutonium in the first column of purex system and also the uranium and plutonium in the partition column. Thus, uranium would be present in controlled macroscopic concentrations in both exit streams. The operation of the partition column to provide two product streams, each with a specific composition, is very difficult. Since the concentration changes are geometric at each stage, the slightest change in flow ratios could result in major changes in the composition of the joint stream. It is operationally more desirable to operate the column as a fairly complete partition column so that the streams leaving the column would be a relatively pure plutonium and uranium stream, respectively, with the plutonium stream diluted with part of the uranium stream later in a mix tank within the secure area. This mode of operation would permit much more reliable process control than to try to operate the column in a way which would provide a particular ratio of uranium to plutonium in the streams leaving that column. The decontamination which is required
for plutonium stream would be reduced from about 10^{7}, as achieved in the Purex system, down to about 10^{3} which would leave a significant level of radioactivity in the uranium and plutonium product stream. Therefore, the usual solvent extraction flow sheet can be followed; the differences would be elimination of second and third plutonium purification cycles and incomplete operation of the first solvent extraction column.

The least developed equipment for coprocessing of nuclear fuel in the co-conversion process is that associated with the evaporation and solidification of the final product of plutonium streams. Reasonable means for maintenance must be assured. The conversion of uranium and plutonium nitrate to the mixed oxide will be by direct solidification from solutions of proper U / Pu ratios.

The efforts were directed toward the evaluation of the LWR fuel cycle based on the coprocessing of uranium and plutonium in order to assess the non-high level solid wastes, gaseous and liquid effluents. The LWR selected generated 72PJ of thermal energy per year which corresponds to an installed electrical capacity of 1000 MWe, a load factor of 0.8 and a thermal efficiency of 33%. Based on a burnup of 33000 MWd per Mg of heavy metal the annual replacement requirement amounts to 27 Mg of heavy metal. The mass balance for the fuel cycle under consideration is represented in Appendix A. Since the fuel after coprocessing is depleted in fissile material, additional $\mathrm{U}-235$ must be added to bring the reactivity level up to reactor fuel specifications. For
this purpose, 20% enriched uranium, which constitutes the upper limit of nonstrategic enrichment in $\mathrm{U}-235$, has been added.

The plutonium recycling reactor under consideration has an annual discharge of approximately 15.5 kg of plutonium per Mg of heavy metal, 63% of which are fissile material. The residual uranium-235 content of the spent fuel amounts to 0.8% (Papp 1977). The fissile plutonium in association with the non-fissile plutonium isotopes normally generated in reactor produced plutonium has less reactivity value than uranium-235, hence, for each atom of U-235 displaced approximately 1.25 fissile atoms of plutonium must be added (Pueshl 1977) 。

As major portions of the fuel cycle under consideration are similar in waste generation to those available in the literature for other fuel cycles many data could be obtained from the literature. But for coprocessing itself no data could be found in the current literature, so that additional assumptions on that step in the fuel cycle were necessary.

CHAPTER 2

THE COPROCESSING FLOW SHEET

Coprocessing is defined as a scheme in which plutonium is never available in a separate stream, the main products being a mixture of plutonium and uranium suitable for feed to a fuel fabrication facility, and uranium as a separate by-product. Coprocessing does not entail large changes in most of the conceptual solvent extraction flow sheet of the basic Purex process. Quite often the coprocessing flow sheet eliminates the scrub section of the uranium-plutonium partition column, which assures that a significant amount of uranium will follow the plutonium into the aqueous stream.

A slightly different version was chosen in this study: As the operation of a partition column to provide two product streams, each with a specific composition, is very difficult, it is operationally more desirable to operate the column as a fairly complete partition column so that the streams leaving the column would be a relatively pure plutonium and uranium stream, respectively. This mode of operation would permit much more reliable process control than to try to operate the column in a way which would provide a particular ratio of uranium to plutonium in the streams leaving the column. Uranium would be added to the plutonium stream after solvent extraction but before final concentration and calcination.

The overall process which is used as a basis for the model flow sheet contains the following main components.

1) Fuel receiving and storage.
2) Shearing and dissolution of irradiated fuel, feed preparation, tritium removal.
3) Gross decontamination and recovery of plutonium and uranium.
4) Partitioning of uranium and plutonium.
5) Final decontamination and recovery of uranium in two cycles.
6) Solvent recovery.
7) Nitric acid recovery (including waste concentration and disposa1).
8) The vessel off-gas (VOG) and dissolver off-gas (DOG) system.

Figure 2.1 shows the complete LWR spent fuel reprocessing flow sheet including all steps required to recover the fuel and bring it to reactor fuel specifications (UF_{6} production, uranium/plutonium conversion). This diagram is a schematic representation of all sources of waste, routes the waste takes, and waste treatment facilities.

Figure 2.2 shows the solvent extraction cycle with its acid wash system. The first compound column (1A) is a continuous centrifugal contractor, used to minimize the exposure of the solvent to degrading radiation. The $1 A^{\prime}, I B$ and $1 C$ column are Mixer/Settlers. The 1A' compound column provides additional decontamination under conditions which favor the scrubbing of Zr, Nb, and Ru compounds. The partitioning of uranium and plutonium occurs in the $1 B$ compound column. Only

Fig. 2.1 Conceptual LWR Spent Fuel Co-Processing Flowsheet

Fig. 2.2 First Solvent Extraction Cycle with its Acid Recovery System for LWR and LMFBR. -- Coprocessing.
traces of uranium remain with the plutonium in the $1 B P$ product stream (approximately 0.1% uranium in case of LWR fuel, 3% for the LMFBR). The 1C acts as a scrubber for further decontamination of the uranium stream 1CF. Since the plutonium is purified only once in the codecontamination cycle consisting of 1 A and $1 \mathrm{~A}^{\prime}$--in contrast to the usual three decontamination cycles--less solvent is used, which leads to a reduced amount of low active waste due to solvent clean-up operations. The decontamination factor for the plutonium amounts to only 10^{3} and the plutonium stream is later mixed with uranium makeup. The final product of the coprocessing step has a Pu / U ratio lying in the range 11 to 25%, respectively. The Tables 2.1 and 2.2 give an insight into the streams within the solvent extraction cycle. After having gone through the sections $1 A$ and $1 A^{\prime}$, where the bulk of the fission products is removed, the uranium is extracted back into the aqueous phase in the 1C column. Table 2.1 demonstrates that most of the fission products and americium/curium follow the plutonium product stream 1BF (Benedict and Pigford 1957, pp. 279-285). The ICU uranium stream is further decontaminated by two more cycles, which are shown in Fig. 2.3. The total decontamination factor for uranium eventually reaches 10^{7}, the requirement for feed to the isotope enriching plants.

The scrubbing sections $1 \mathrm{C}, 1 \mathrm{E}$, and 2 E generate waste which is directed to ILLW (intermediate level liquid waste) evaporators; the solvent from these three scrubbing sections goes through the solvent cleaning systems 1CSW, 1ESW, and 2ESW, respectively. LAW (low active waste) is generated in the $1 A^{*}$ column of the first cycle and in the extraction columns 1 D and 2 D of the uranium purification system.

Table 2.1. First Extraction Cycle and Associated Acid and Organic Recovery System (LWR Fuel).*.

		1AF	1AW	1AW	1BF	1BP	1 CU
Flow Rate, $/$ /h		1394	2178	419	5200	638	1122
U-238, g/h		398×10^{3}	26.7	26.7	398×10^{3}	3.9	393×10^{3}
Pu-239, g/h		3.7×10^{3}	1.86	~ 1.8	3.7×10^{3}	3.7×10^{3}	1.5
Fiss. Pr., G/h		12×10^{3}	11.9×10^{3}	68.	12.	10.8	1.2
Np, g/h		238.	235.	1.9	. 36	. 2	. 02
$\mathrm{Ru}, \mathrm{Ci} / \mathrm{h}$		1.1×10^{5}	1.1×10^{5}	103	11.4	7.6	2.5
$\mathrm{Zr}-\mathrm{Nb}$, Ci / h		3.65×10^{4}	3.64×10^{4}	327	36.4	32.55	3.3
$\mathrm{HNO}_{3}, \mathrm{~mole} / \ell$		2.5	2.45	2.08	. 077	. 67	. 22
TBP, \%		-	-	-	-	-	-
Actinides, g / h	Am	85.83	85.74	-	-	. 09	-
	Cm	17.29	17.27	-	-	. 02	-

*Based on $10 \mathrm{MgHM} /$ day
Burnup of $33,000 \mathrm{MWd} / \mathrm{Mg}$
Cooling time 160 days

Table 2.2 First Extraction Cycle and Associated Acid and Organic Recovery System (for LMFBR Fuel).*

	1AF	1AW	$1 \mathrm{~A}^{\circ} \mathrm{W}$	1BF	1BP	1 CU
Flow Rate, l/hr	3082	3846	4892	5946	7560	3894
Uranium, g / hr	385.5×10^{3}	<192	<192	385.11×10^{3}	716.75	384.4×10^{3}
Pu-239, g/hr	24.4×10^{3}	<12.2	<12.2	24.38×10^{3}	24.37×10^{3}	9.88
Fiss. Pr., Ci/hr	2.14×10^{6}	2.126×10^{6}	12.11×10^{3}	2.163×10^{3}	2160.74	. 876
Acid HNO_{3}, Mole/l	3.2	3.34	-	3.09	2.86	. 035
$\mathrm{Ru}-106$, $\mathrm{Ci} / \mathrm{hr}$	412875	410123	2335.4	417.04	325.58	91.45
g / hr	123.34	122.518	. 698	. 125	. 098	. 027
Ce-144, Ci/hr	33708.33	33483.6	190.6	34.049	27.85	6.19
g / hr	10.56	10.49	. 06	. 011	. 009	-
Am-241, g/hr	361.26	358.5	2.043	. 365	. 365	-
Am-243, g/hr	135.01	134.11	. 764	. 136	. 136	-
Cm-244, g/hr	4.81	4.78	. 027	. 005	. 005	-
Cm-244, g/hr	9.9	9.834	. 056	. 01	. 01	-

[^0]

Fig. 2.3 COPRO Solvent Extraction Block Flow Diagram (LWR).

CHAPTER 3

COPROCESSING TECHNICAL DESCRIPTION

3.1 Assumptions and Computation Method

This study is based on a flow sheet as presented in Fig. 2.1. A11 essential steps of spent fuel treatment are contained there. The technical description of coprocessing assumes that the uranium-plutonium cycle is the reference LWR fuel cycle. The coprocessing plant has a capacity of 3000 MTHM - fuel per year at a load factor of .82 , this is equivalent to 10 MTHM to the processing plant per day. The model is based on coprocessing of BWR, PWR and LWR reference fuel, the latter having a representative mixture of $B W R$ and PWR. Table 3.1.1 shows some characteristics of these fuels. This table serves as the input to the burnup calculation for which code ORIGEN (Bell 1973) was employed, the output of which is the basis for the calculation done on this model. Numerical values for the head-end of the coprocessing plant were done by aid of program COPRO (Appendix B) and the flow values of solvent extraction cycles were calculated using code SX (Appendix C).

3.2 Fuel Receipt and Storage

The coprocessing plant receives discharged fuel from the power reactor. This irradiated fuel is packaged in large, rugged containers, frequently with liquid coolant. A certain portion of the fuel elements may be found to be defective and releasing part of their radioactivity

Table 3.1.1 Fuel Characteristics

	PWR ${ }^{1}$	BWR ${ }^{2}$	$\begin{gathered} \text { "Reference" } \\ \text { LWR } 3 \end{gathered}$
Overall Assembly Length, m	4.059	4.470	---
Cross Section, cm	21.4×21.4	13.9×13.9	---
Fuel Element Length, m	3.851	4.064	---
Active Fuel Height, m	3.658	3.759	3.70
Fuel Element OD, cm	0.950	1.252	1.16
Fuel Element Array	17×17	8×8	121
Assembly Total Weight, kg	668.6	279	454.32
Uranium/Assembly, kg	461.4	188.7	311.4
$\mathrm{MO}_{2} /$ Assembly, kg	523.4	214.1	353.28
Zircaloy/Assemb1y, kg	129.7	56.7	89.55
Hardware/Assembly, kg	15.5	8.2	11.485
Total metal/Assembly, kg	145.2	64.9	101.03

[^1]to the coolant. At shipment, the irradiated fuel will have been "cooled" about 160 days, on the average. The total radioactivity in the fuel will be approximately 4.34×10^{6} curies per metric ton of irradiated fuel. After this cooling period, the containers are to be shipped to the reprocessing plant. At shipment, a maximum of 1% of the fuel rods is assumed to be damaged, with the consequences that fission products are released from the rod void spaces into the shipping cask coolant. Based on experiments the concentration of radioactivity in the cask water should range from 10^{-4} to $10^{-2} \mu \mathrm{Ci} / \mathrm{cm}^{3}$ (Wash-1238 1975, pp. 29-81). Table 3.2.1 illustrates maximum activity in void space. For high burnup fuel, a level of $1 \mu \mathrm{Ci} / \mathrm{cm}^{3}$ has been estimated; beside fission products, it may include a mixture of corrosion and activation products. The total activity in the coolant is based on approximately $1 \mathrm{~m}^{3}$ and $0.1 \mathrm{~m}^{3}$ coolant for rail and truck transportation, respectively, giving amounts of 1 Ci and 0.1 Ci . Assuming that each rail cask contains 3.2 Mg of irradiated fuel and a truck cask 0.5 Mg , $4.2 \mathrm{~m}^{3}$ of contaminated water will be generated per day (based on a fuel reprocessing capacity of 10 Mg per day and a fuel shipment of $1 / 3 \mathrm{by}$ truck $2 / 3$ by rail). If the cask coolant is contaminated above . 02 $\mu \mathrm{Ci} / \mathrm{m}^{3}$ (NUREG 0009 1976, p. 5-2), the cask water is pumped to a waste treatment system, where it will contribute to ILLW (intermediate level liquid waste) and general purpose evaporator flow with radioisotopes showing up in spent resins, filter sludges, and evaporator slurry.

Table 3.2.1 Irradiated Fuel Rod Void Space Activity. -(Burnup $33000 \mathrm{Mwd} / \mathrm{Mg}$)

Nuclide	Total Inventory Ci/Mg 150 days Cooling	Percent in Void Space of Fuel Rods	Activity in Void Spaces Ci/Mg
Kr-85	1.12×10^{4}	30	3.36×10^{3}
Xe-131m	1.78	2	3.56×10^{-2}
I-129	3.74×10^{-2}	30	1.12×10^{-2}
I-131	.923	2	1.85×10^{-2}
H-3	691	1	6.91
Other F.P.	4.19×10^{6}	0.01	4.49×10^{2}
Actinides	1.26×10^{5}	None	None

For a 3000 MgHM fuel coprocessing plant, the fuel receipt and storage building contains two systems of five interconnected pools of water with a total fuel capacity of 800 MgHM . Two of the pools are cask unloading pools, each of which holds approximately $871 \mathrm{~m}^{3}$ of water. The fuel assemblies are moved from the casks in portable storage canisters into these pools, then to the fuel storage pool ($2044 \mathrm{~m}^{3}$ of water). In the fuel transfer pool, the fuel assemblies are prepared for shear and dissolver. A fifth pool, the failed-fuel pool, is provided for fuel assemblies which leak or are damaged. The capacity of these two pools together is $1079 \mathrm{~m}^{3}$. Based on available literature, the activity in the storage pool water is primarily due to cesium-137 and 134. Data from storage pool operations have validated this assumption; the total volumetric activity of the pool water is about $5 \times 10^{-2} \mu \mathrm{Ci} / \mathrm{m}^{3}$ (NUREG 0009 1976, p. 5-5).

The liquid radioactive waste in the fuel receiving and storage station is divided into two main categories: low level ($<.02 \mu \mathrm{Ci} / \mathrm{cm}^{3}$) and high level (>.02 $\mu \mathrm{Ci} / \mathrm{cm}^{3}$) 。

- The high level tank will receive waste from the cask cooldown system, cask cooldown filter system back flush, regeneration liquids of ion exchanger columns, and pool cooling system backflush. The approximate concentration in the high level tank is $60 \mu \mathrm{Ci} / \mathrm{cm}^{3}$ consisting mainly of fission products.
- The low level tank will receive regeneration waste from pool cleanup operations at a maximum of $9 \mu \mathrm{Ci} \mathrm{Cs}-137 / \mathrm{cm}^{3}$. These
wastes are routed to the waste evaporation and solidification system.
- The pool cleanup system consists of filtration and demineralization wastes of the pool water. The regeneration solutions from this system drain to the low level tank. This system has a Cs-137 load of $4 \mathrm{Ci} /$ day.
- Off-gas system. A sintered metal filter in the cask cooldown system will provide rough filtration of gases released during venting and cooling down. There are usually two HEPA filters in the off-gas stream to collect particulate activity and a silver zeolite column to absorb iodine. If the radioactive load causes the dose rate to exceed $10 \mathrm{mrem} / \mathrm{h}$ at 1 ft , the units will be replaced. In Table 3.2 .2 , the isotropic composition of the fuel receiving and storage waste is given: In Table 3.2 .3 the main constituents of the waste from this part of the fuel cycle are given.
3.3 Shearing, Tritium Removal, Dissolving

In the shearing area, fuel assemblies are cut into small sections of approximately 2 cm in order to increase the UO_{2} area for dissolving. To prevent fires from zirconium fines produced by the shearing operation, an inert gas purge system is provided. Waste from the shearing station comprises end fittings from fuel elements, HEPA filters from the shear purge, approximately $2.27 \mathrm{~m}^{3}$ of filter deionizer for a $10 \mathrm{mg} /$ day operation, and argon from the purge system contaminated with traces of krypton, xenon, and iodine.

Table 3.2.2 Radioactive Content of Waste Generated in Fuel Recovering and Storage Station. -- Inventory 800 Mg , Burnup 33000 MGW/Mg, 160 Days Cooling, 2\% Failed Fuel.

Nuclide	Curie/Year	Pathway
H-3	415	Air/Water
Kr-85	1.98×10^{5}	Air
I-129	673.	1.11
I-131 Other $\beta-\gamma$	2×10^{-7}	Air/Water Air/Water Water
A11 α		Water

Table 3.2.3 Waste from Fuel Receipt and Storage

Waste Form	Waste Type	Quantity ${ }^{(m / y r}{ }^{3}$)
HEPA Filters	Combustible. $\beta-\gamma$. 85
Spent Resins	Combustible. $\beta-\gamma$	1.2
Cask Wash (ext.)	LLW to General Purpose Eyap.	1419
Demineralizer Waste and Filter Flushes	ILLW to Waste Evapor. ($5 \% \mathrm{NaOH}, 5 \% \mathrm{HNO}_{3}$)	4315
Cask Vent, Failed Fuel Container Vent	Off-Gas (Helium)	934
Fuel Unloading Vent and Storage Pool Vent	Stack (Air)	1.7×10^{9}

Tritium Removal: Voloxidation as a tritium removal process has not yet been demonstrated, but it is close to demonstration (DPST-LWR-77-1-1, DPST-LWR-76-4-1 1977) and was therefore included in the model. This process releases tritium as the oxide and some of the noble gases and other volatile fission products from the sheared oxide fuel by heating and oxidizing it in air. (About 10% of Kr 85 is released to DOG at this stage of process.) UO_{2} oxidation starts at $450^{\circ} \mathrm{C}$, and cooling of the voloxidizer is provided by excess air. The cooling air is routed through HEPA filters, while the off-gas containing tritium and other gaseous fission products goes through ruthenium adsorbers and a set of sintered metal filters and HEPA filters. This off-gas treatment is the major factor in controlling the amount of tritium being released. Since the tritium is in the form of tritiated water, its removal by adsorption on Zeolite is quite efficient. The overall tritium removal efficiency in coprocessing plant was estimated to be 99% at this stage.

The recovery of ruthenium by the Ru -sorber occurs at a rate of $10 \mathrm{~g} / \mathrm{Mg}$ of fuel which corresponds to 2% of the total Ru inventory. A decontamination factor across Ru-sorber was assumed to be 10^{8}. Solid wastes in the form of HEPA filters and Ru-sorbers are sent to the solid waste facility. Based on available information, two HEPA filters per month are needed for that process (Wash 1322 1972). The radioactive load on the ruthenium amounts to $12,000 \mathrm{Ci}$ of ruthenium per Mg of fuel; the apportioned volume of sorber is $10 \mathrm{l} /$ day.

Dissolver: ' The spent fuel is dissolved in nitric acid. Most of the volatile fission products such as iodines and much of the noble
gases are removed by the off-gas treatment system. Zircaloy hulls remain undissolved and are rinsed with nitric acid in order to remove traces of uranium and plutonium attached to the hulls; after final rinsing with NaOH , the hulls are transferred to fixation and final disposal. They are part of the high-level waste. In order to keep accumulation of insoluble solids--such as Zircaloy fragments, undissolved fuel, and insoluble fission products as low as possible, flushing of the dissolver is applied, which results in the formation of dissolver sludge. The sludge is routed to the solid waste faci1ity. The hull rinse is treated in the waste evaporator and acid recovery system.

Approximately 87% of the krypton is sent to the off-gas treatment system (DOG), where krypton can be retained with an efficiency of approximately 90%, according to the current status of low temperature techniques, the KALC (Krypton Adsorption Liquid Carbon dioxide) (Notz 1973, p. 318). Dissolver flush and hull rinse amount to approximately 630 \& per Mg of fuel and contain up to 3 kg Zircaloy, 26 kg NaOH , and 0.3 kg fission products, and less than .2 kg of plutonium. They end up on the waste evaporator and acid recovery and then the solid waste facility. Table 3.3.1, the Isotopic Composition of different streams of the shearing, Tritium Removal and Dissolver processes are shown.

Table 3.3.1. Wastes and Product of Shearing and Tritium Removal and Dissolver. -HLW, LAW and LLW Fuel Coprocessing Case (input in gram).

ALL UALUES OF IHIS TABLE IS IN UNITS OF GRAM／H＊ 3 OF FLIN OF MAIERIAL PER IAY

1Sutfe	SMEARING				HALL	RINSE HSSOLVERFLUSH	
	SIEEL	718		1 W0 FOUR		RIN	
HE ${ }^{\text {a }}$	0.	0 ．	0.	0.	0.	1．11E－04	0.
RN220	0.	0.	0.	0.	0.	B．22E－16	0.
RN222	0.	0.	0.	0.	0.	4．29E－17	0.
Fin224	0.	0.	0.	0.	0.	4．73E－12	0.
RA225	0.	0.	0.	0.	0.	2．94E－16	0 。
RA225	0.	0.	0.	0.	0.	6．675：－12	0.
11232	0.	0.	0.	0.	0.	1．15E－07	0.
11233	0.	0.	0.	0.	0.	1．61E－06	0.
U：34	0.	0.	0.	0.	0.	4．03E－02	0.
U235	0.	0.	0.	0.	0.	2．61E +00	0.
U236	0.	0.	0.	0.	0.	1．50E100	0.
4238	0.	0.	0.	0.	0.	3．11E＋0？	0.
NF 236	0.	0.	0.	0.	0.	1．56E－62	0.
NF237	0.	0.	0.	0.	0.	1．59E－01	0.
NF238	0.	0.	0.	0.	0.	5．Bise－27	0.
NF 239	0.	0.	0.	0.	0.	2．5日F－on	0.
11236	0.	0.	0.	0.	0.	3．92F－07	0.
PU238	0.	0.	0.	0.	0.	1．105－01	0.
FU239	0.	0.	0.	0.	0.	3．4日E 100	0.
Fu240	0.	0.	0.	0.	0.	1．43E400	0.
F－12911	0.	0.	0.	0.	0.	6．67E－01	0.
PU242	0.	0.	0.	0.	0.	$2.34 E-61$	0.
aH241	0.	0.	0.	0.	0.	1．53E－02	0.
AM242	0.	0.	0.	0.	0.	3．73E－09	0.
AMPT3	0.	0.	0.	0.	0.	3．12E－02	6.
AH244	0.	0.	0.	0.	0.	6．27E－29	0.
AH245	0.	0.	0.	0.	0.	2．02E－18	0.
CM242	0.	0.	0.	0.	0.	1．70E－0．3	0.
CH243	0.	0.	0.	0.	0.	2．64E－05	0.
CH244	0.	0.	0.	0.	0.	9．01F－0．3	0.

$40 \text { ? }$	11－3 Remounl． 1 IIF F lias	HEEH $10 \mathrm{sx}^{4}$
6．74E－11	0.	1．09f－OI
5．01E－22	0.	H．03E－13
2．6．9－23	0.	1．19F 11
2． 1 Aff－18	o．	1．611－07
1．79E－22	O．	2．47t－1．3
4．075－18	0.	6．52E－09
7．031． 14	0.	1．13E－04
9. GOF－13	0.	1．5\％ 0.3
2．46F－08	0.	3．94E101
1．61E 06	0.	2．3र403
9．16E－07	0.	1．1）10．3
1．90E－01	0.	3．0ar 10.5
2．74E－68	0.	4．1．55－59
9．70r－00	0.	1． 5.55102
3．5bE－3．3	0.	5．71E－24
1．57E－14	0.	2，54－05
1．19F－13	0.	1．91E－n4
3． $36 \mathrm{~F}-\mathrm{OB}$	0.	5.391101
1．0AE－06	0.	1.701903
4．37E－07	0.	$7.00110 ?$
2．0．5E－07	0.	3．285 102
7．12E－013	0.	1．148102
9．3．9E－09	0.	1．99E101
2．275－15	0.	3．64t－06
1．90E－O日	0.	3．04F 101
3．425－35	0.	6．1．3F－2．6
1．23E－24	0.	1．975－15
1．0．3E－09	0.	1．685100
1．61F 11	0.	－．5M－03
5．9AE－09	0.	9．：30t 100

FUEI. FIHIL CODL IHO

1 - IVIIIIIM FIFMIIUAL. CEII. UFNIIIAIIIN
AJR IO SAHLI FILTEK
TKITIUM FEHOUAL FIBFFNACF: COULING AIR IO SANI FILTER 111 IIEGFIEES I: TEMF. RISE,

TFACE OF KK, XFPI ANTO H
TRITIUM REMOUAL OFF GAS
(FURENACE FURGE)
C-DISSOL VER OFF GAS (IUJB). SHEARING FILTER IIFIONITER RE TIFN (ILLW) $50 / 0$ NAOH ANII $50 / 0$ HNO
3-HALI FINSE.
(NAUH , NANO3 ANII HZO)
IISSOLUEK RINSF (NITFIC AC:II)
TISSULUEF FLUSH (NAOH ANII H?O)
\angle-FAN MEIAL GOL'N TO SOI UFNT
FXIFAC:IION (HNO. 3 ANII NIIAIIH)

3.4 Solvent Extraction

In addition to the more general description of the coprocessing flow sheet in Chapter 2, the approach to a quantitative assessment of streams and nuclide distribution is going to be discussed in this section.

Coprocessing proposed in this study uses the basic Purex solvent extraction technology. The process utilizes a number of simple and compound columns (the compound column is composed of scrubbing and extraction sections and it is center fed). In the flow sheet (Fig. 2.3) the codecontamination of the Raw Metal Solution (RMS) coming from feed clarification is done by 1 A and $1 \mathrm{~A}^{\mathrm{\prime}}$ compound columns, with combined decontamination factor of about 10^{3}. The 1 A column removes the bulk fission product and $1 A^{\prime}$ contactor provides an additional decontamination under conditions which favor the scrubbing of Zr, Nb, and Ru compound.

The uranium-plutonium separation is performed in the partitioning column by adding reductant such as ferrous ion to the feed of this contactor. The valence state of plutonium is changed to nonextractable form pu (III).

$$
\mathrm{Pu}^{4+}+\mathrm{Fe}^{2+}+\mathrm{NH}_{2} \mathrm{SO}_{3}^{-} \rightleftharpoons \mathrm{Pu}^{3+}+\mathrm{Fe}^{3+} \mathrm{NH}_{3} \mathrm{SO}_{3}^{-}
$$

The sulfamate acts as a nitrite suppressor (Cleveland 1979, p. 463). The uranium bearing stream (1CF) overflows the $1 B$ column and flows into the bottom of scrubbing column 1C. The product-free solvent (1CW) is route to the solvent recovery. The aqueous effluent (1CP) is steam-stripped of residual organic phase, and concentrated in the ICU concentrator to meet the final uranium cycles feed specifications.

The second and third uranium purification cycles (Fig. 2.3) have a total decontamination factor of 10^{4}, changes in the decontamination of the product streams are brought about through variations of flows in the columns 1 A and $1 \mathrm{~A}^{\prime}$ only. As the decontamination factors in these contractor increases, the waste streams IAW and $1 A^{\prime} \mathrm{W}$ are growing accordingly, the latter giving rise to solid non high-level waste in the waste evaporation facility.

As mentioned in Chapter 2, the plutonium is purified only once in the codecontamination cycle (1A, 1A') leading to savings in the amount of low active waste, such as spent solvent, resins, etc. It is the purification of the plutonium in a second and third cycle, not present in the coprocessing flow sheet, that constitutes the main difference in waste production compared to a standard Purex system. Table 3.4 .1 shows the streams in the second and third $P u$ purification cycle; the savings due to omission of these two cycles amount to approximately 3500 \& of 1AW per hour.

It should be remembered that in both cases (standard reprocessing and coprocessing) the final products or uranium and plutonium are evaporated before being sent to the UF_{6} production and Pu conversion plants, respectively. The values in Table 3.3 .2 are those before evaporation.

The ratio Pu / U in Table 3.4 .2 is 1000 for the plutonium stream; this ratio is changed to an approximate value of 10 prior to conversion by adding U-238 from the head end of the fuel cycle. This blending occurs with a concentrated natural uranium nitrate solution to produce

Table 3．4．1 Waste from Second and Third Pu Purification Cycles。－ （Reprocessing）；Pu Product to Pu Conversion

	Second Pu Cycle LAW Evap．（HLLW）	Third Pu Cyc1e ${ }^{*}$ LAW（HLLS）
Flow，$/ \mathrm{h}$	1484	2126
Uranium，g／h	6.8×10^{-4}	4.2×10^{-3}
P1utonium，g／h	.38	$<.1 \%$
Zr／Nb，Ci／h	32.7	-
Ru，Ci／h	7.6	-
F。Po，g／h	12.6	105

Product Pu from Reprocessing．Plant to Pu Conversion
Flow，l／h
75.3
$\mathrm{U}, \mathrm{g} / \mathrm{h}$
3.8
$\mathrm{Pu}, \mathrm{kg} / \mathrm{h}$
3.7

FP，g / h
4.4×10^{-6}
$\mathrm{Ar}, \mathrm{Nb}, \mathrm{Ru}, \mathrm{Ci} / \ell$
3.1×10^{-3}
$\mathrm{HNO}_{3}, \mathrm{~mole} / \mathrm{h}$
2.96
＊Like the second cycle，the third cycle comprises three streams leaving the two contactors．One of these streams consists of evaporator condensate，which concentrates the Pu stream for Pu conversion（ ≈ 454 l／h）。

Table 3.4.2 Product Streams from Solvent Extraction. -- See Fig. 2.3, LWR Coprocessing before final concentration.

	Plutonium (18P)	Uranium (2EU)
Flowrate, ℓ / h	638	6244
Uranium, g/h	3.96	386.5×10^{3}.
Plutonium, g / h	3.7×10^{3}	8.7×10^{-8}
FP, g/h	10.8	7.49×10^{-3}
Np, g/h	. 2	6.6×10^{-3}
Ruthenium, Ci / h	7.66	2.75×10^{-3}
Zr-Nb, Ci/h	32.6	6×10^{-3}
α Emitters, Ci/h	-	5.22
Am, Cm	$<1 \%$ feed	
HNO_{3}, mole/l	.67	0.032

a "master-mix". Feed batches to coconversion are sufficiently large to permit a two weeks operation of each coconversion line on a solution having uniform plutonium isotopic composition.

Flow ratios for column in solvent extraction were calculated by aid of code SX (Appendix C). The code uses extension to the Kremser-Brown equation (Smith 1963, p. 257). This equation is applicable to the problem if the following assumptions are made;

- The equilibrium and operating curves for the column are linear
- The output flows of each stage of a column are at chemical equilibrium
- Steady state conditions are reached The computer program is able to calculate all flows for a given number of extraction and scrubbing stages (calculation of solvent extraction is based on the assumption of discrete stages, preferentially when the separation is done in stage-wise equipment such as mixer-settlers). The average distribution coefficient for isotopic species in input to the calculation, i.e., which is constant throughout a column.

3.5 Waste Treatment Systems

To describe the system properly, the different types of waste should be defined at this point:

- High level 1iquid waste HLLW). This waste is composed of two classes within itself: High Active Waste (HAW) which is produced by the lA column of the first solvent extraction cycle; it contains $\sim 99 \%$ of all fission products: Low Active Waste (LAW) is produced primarily by the 1A' column and in the
plutonium evaporator overhead. Generally, LLW is produced by all plutonium purification cycles; these are eliminated in the coprocessing plant. LAW contains about 1% of the fission products.
- Intermediate level liquid waste (ILLW). This type of waste is generated by aqueous solvent extraction washes from the purification of uranium and contains lower concentrations of fission products than LAW. This waste does not contain appreciable amounts of uranium and/or plutonium.
- Low level liquid waste (LLLW). These are condensates of ILLW evaporators. LLLW are monitored and may need some treatment before being released to the environment.

Waste Evaporation and Acid Recovery (Docket 50-332-57 1974)
This system accepts HLLW and ILLW from solvent extraction and other parts of the coprocessing plant. The main function of this system is to reduce the storage requirements for such waste. After HLLW and ILLW are evaporated, the condensates from this evaporation are further processed to recover nitric acid and water for reuse in the plant. The results of the acid recovery processes, condensate, and overhead are channeled to proper storage areas prior to solidification. Figure 3.5.1 shows a simplified version of waste evaporation and acid recovery. As stated above, HLLW is broken down into HAW and LAW and is guided to HAW and LAW evaporators, respectively. Each of these evaporators is composed of two stages: in the case of the LAW evaporator, the concentrate from the first stage is passed through an agitated anion-exchange

Fig. 3.5.1 Waste Evaporation and Acid Recovery Block Diagram.
column to recover plutonium. The acidic concentrate bottoms from the first stage of the HAW evaporator; feed clarification slurry, solids, and anion-exchange column products are then sent to the HLLW tanks. The operation in both systems, HAW and LAW, is carried out by adding a solution of sugar to suppress ruthenium oxidation, and volatilization. The overhead, from the second HAW stage and the first stage of the LAW evaporator, is sent to the second stage of the LAW evaporator; from there, the overhead is routed to the acid recovery unit. The product of this last stage is nitric acid to be used in the plant and water, some of which is evaporated through the off-gas system. The overhead of the second stage LAW evaporator consists of about $269 \mathrm{~m}^{3}$ per day (based on the processing of 10 MgHM per day) which contains. $13.2 \mathrm{w} / \mathrm{o}$ nitric acid. In the acid recovery, this is separated into $57 \mathrm{~m}^{3}$ of $50 \% \mathrm{HNO}_{3}$ to be recycled and $212 \mathrm{~m}^{3}$ of water, containing approximately $0.05 \% \mathrm{HNO}_{3}$. All the products of the acid recovery system have low level activity. This facility is also used for the UF_{6} acidic waste.

Depending upon its origin (acidic, alkaline, halide), ILLW is routed to one of three evaporator systems:

- The general purpose (G.P.) evaporator concentrates ILLW, generated by the uranium evaporator condensates in $S X$ (solvent extraction) and the solvent wash wastes from the uranium cycles, plus the external cask wash and some water from solid waste facilities and $\mathrm{UF}_{6}{ }^{\circ}$. These wastes are acidic, and their total volume amounts to approximately $300 \mathrm{~m}^{3} /$ day (see Table 3.5.1). The overhead of this evaporator is then sent to the LLW

Table 3.5.1. Wastes from Uranium Purification Cycles. -- For LWR Fuel.

	Codecontamination Cycle		Second U Cycle			Third U Cycle	
	1CW (ILLW)	$\begin{aligned} & \text { 1CSW } \\ & \text { (LAW) } \end{aligned}$	1DW (LAW)	$\begin{aligned} & \text { 1EW } \\ & \text { (ILLW) } \end{aligned}$	1ESW (ILLW)	$\begin{aligned} & \text { 2DW } \\ & \text { (LAW) } \end{aligned}$	$\begin{aligned} & \text { 2ESW } \\ & \text { (ILLW) } \end{aligned}$
Flow, l/h	7063	125	2109	5360	84	2107.	84
Uranium, g/h	35.3	38.7	40.0	39.7	39.5	40.	39.5
Plutonium, g/h	1.4×10^{-4}	. 36	1.39	0	. 02	5.9×10^{-4}	0
$\mathrm{Zr} / \mathrm{Nb}, \mathrm{Ci} / \mathrm{h}$	2.8×10^{-4}	. 36		1.4×10^{-2}	1.6×10^{-2}	1.4×10^{-4}	7.3×10^{-4}
$\mathrm{Ru}, \mathrm{Ci} / \mathrm{h}$	2.1×10^{-3}	1.24	3.16	2.3×10^{-4}	4.2×10^{-2}	6.32	. 14
FP, g/h	1.06×10^{-4}	7.77	1.2	1.7×10^{-3}	1.9×10^{-2}	-	. 08
NF-239, g/h	1.8×10^{-4}	. 22	2×10^{-2}	$3 . \times 10^{-7}$	3.2×10^{-2}	2.7×10^{-3}	1.4×10^{-5}
HNO_{3}, mole/h	- -	-		-	-	2.33	-

*Treatment of LAW leads to $54 \mathrm{\ell} / \mathrm{h}$ solid waste.
evaporator. In the G.P. evaporator, the activity at the inlet amounts to $128.4 \mu \mathrm{Ci} / \mathrm{kg}$, while the overhead condensate leaving this unit has only $1.7 \times 10^{-3} \mu \mathrm{Ci} / \mathrm{kg}$ (and is routed back to the LLW processor) and consists of approximately 450 Mg of liquid per day.

- The service evaporator concentrates ILLW wastes which are alkaline in nature. Typical waste streams include decontamination solutions, laundry wastes, wastes from all building floor drains not located in a high radiation area, and fuel storage pool wastes. The volume of these waste streams varies, depending upon the activities in the plant, but the amount of waste can be estimated to be $270 \mathrm{Mg} /$ day with activities of $24.8 \mathrm{mCi} / \mathrm{kg}$ (approximately $3 \mathrm{Mg} /$ day of which are contributed by the MOX fabrication). The mass reduction factor for this evaporator is 0.993, the output to the LLW evaporator has a specific activity of $25.3 \mu \mathrm{Ci} / \mathrm{kg}$ 。
- The halide waste evaporator concentrates waste streams containing some quantities of chlorides or fluoride. Such wastes include laboratory waste, raffinate from the Plutonium Ion exchanger recovery column in the Pu conversion process. The waste stream to the evaporator has an activity of $2.7 \times 10^{-2} \mathrm{Ci} / \mathrm{kg}$ and the mass is reduced by 9.7% 。

LLW Evaporator

Overheads from the general purpose and service evaporators are combined to produce an LLLW waste stream which is routed to the
low level waste (LLW) evaporator for further concentration. The concentrated bottom of the LLW evaporator is recycled to the service evaporator, and the overheads are either condensed and reused as process water or vaporized and discharged to the atmosphere.

The total condensed bottoms from the G.P., Service, and halide waste evaporators are directed as indicated in Fig. 3.5.1 and quantified in Table 3.5.2 to the ILLW solidification.

3.6. UF6 Production

In this section of the model, the $\mathrm{UO}_{2}\left(\mathrm{NO}_{3}\right)_{2}$ originating in the solvent extraction purification cycles is converted to $U F_{6}$, which is shipped to the uranium enrichment facility。 The UF_{6} facility receives purified uranium nitrate solution from solvent extraction (Table 3.4.2) in an accountability tank where it is weighed, sampled, and transferred to storage tanks. Then the uranylnitrate solution ($61.8 \mathrm{~g} \mathrm{U} / \ell$) is concentrated in an evaporator to approximately $1089 \mathrm{~g} \mathrm{U} / \ell$, becoming UNH. Uranium conversion is based on a demonstrated four-step process (ORNL/NUREG/TM-37 1977)。

The denitration process is based on thermal decomposition of uranyl nitrate hexahydrate to uranium trioxide by the following. series of reactions:

$$
\begin{aligned}
& \mathrm{UO}_{2}\left(\mathrm{NO}_{3}\right) \cdot 6 \mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{UO}_{2}\left(\mathrm{NO}_{3}\right)_{2}+6 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{HO}_{2}\left(\mathrm{NO}_{3}\right) \longrightarrow \mathrm{UO}_{3}+\mathrm{N}_{2} \mathrm{O}_{4}+\frac{1}{2} \mathrm{O}_{2}
\end{aligned}
$$

Table 3.5.2 Concentrated Bottoms Form G.P., Service, and Halide Evaporators to ILLW Solidification

	G.P.		
Mass, Mg/day	Service	Halide	
Activity, Ci/kg	51×10^{-3}	1.045	$25 . \times 10^{-3}$
Pu, g/day	6.75×10^{-3}	27×10^{-3}	
U, g/day	-	-	7.97
F。P。Activity, Ci/Kg	$50 . \times 10^{-3}$	25×10^{-3}	29.94
Actinides, Ci/Kg	$.095 \times 10^{-3}$	$.0824 \times 10^{-3}$	27×10^{-3}

The temperature at which these reactions take place are generally between $300^{\circ} \mathrm{C}$ to $400^{\circ} \mathrm{C}$.

Then, uranium dioxide is prepared by reduction of UO_{3} with hydrogen, utilizing the fluidized bed reactor technique developed at Oak Ridge. The reaction is presented by the equation:

$$
\mathrm{UO}_{3}+\mathrm{H}_{2} \longrightarrow \mathrm{UO}_{2}+\mathrm{H}_{2} \mathrm{O}
$$

Heat is applied to the reactor at the beginning of a cycle to increase its temperature from abiant to a value in range of $540^{\circ} \mathrm{C}$ to $620^{\circ} \mathrm{C}$. Once the reaction has been initiated, heat must be removed from system because of the exthermic nature of the reaction. Careful control of the temperature is essential at this stage of the process.

In the next step uranium tetrafluoride is prepared by reaction of HF with UO_{2} at temperatures of $350^{\circ} \mathrm{C}$ to $600^{\circ} \mathrm{C}$ according to the equation:

$$
\mathrm{UO}_{2}+4 \mathrm{HF} \longrightarrow \mathrm{UF}_{4}+2 \mathrm{H}_{2} \mathrm{O}
$$

The reaction is highly exothermic. The product of this stage is $93 \% \mathrm{UF}_{4}$ ("green salt") with $5 \% \mathrm{UO}_{2}$ and $2 \% \mathrm{UO}_{2} \mathrm{~F}_{2}$. The model plant uses a fluidized bed fluorinator as reference method with CaF_{2} as dilutent to control the highly exothermic reaction.

$$
\mathrm{UF}_{4}+\mathrm{F}_{2} \longrightarrow \mathrm{UF}_{6}
$$

Excellent conversion of UF_{4} to UF_{6} can be obtained when operating in the temperature range of $425^{\circ} \mathrm{C}$ to $565^{\circ} \mathrm{C}$ 。 The reaction
rate is extremely fast under these conditions and increases rapidly with the temperature. Such a condition can place a heavy load on the reactor. Hence, CaF_{2} is used in the bed as heat exchange medium and to dilute the $\mathrm{UF}_{4^{\circ}}$. Periodic removal of the fluorinator bed material is needed to control the buildup of plutonium and fission products in the system。 Filtered UF_{6} product is then passed through two cold-traps which are in series in order to remove impurities in $U F^{6}{ }^{\circ}$. This is done by first freezing to get the impurities out and finally be heating the cold-traps to vent the UF_{6} 1iquids. The product usually has less than $0.5 \mathrm{w} / \mathrm{OHF}$. Table 3.6 .1 shows some of the waste generated by the UF_{6} facility. The off-gas is treated by going through a scrubber after leaving the cold-trap to prevent release of F_{2} and HF to the atmosphere. The scrubber is followed by an absorber and filter. A solution of KOH is used to purify the off-gas. $\mathrm{K}_{2} \mathrm{UO}_{4}$ is part of the recovered solid waste and is drummed for storage. .

3.7 Coconversion of Plutonium and Uranium

The coconversion of plutonium and uranium is a critical step in the coprocessing flow sheet of LWR fuel. The process of coconversion of plutonium and uranium nitrate solutions to mixed power is under investigation by the General Electric and DuPont Companies. The process is dubbed "coprecal" (CONF-780304 1978 pp. VII-15; - VII-16), which is a short form of coprecipitation-calcination. It is done by first adding - ammonium hydroxide to concentrated plutonium-uranium nitrate solution to produce divided slurry of ammonium diuranate and plutonium hydroxide. Next, both slurries are introduced to an elutriative fluid bed unit

Table 3.6.1. Waste in UF_{6} Production Normalized to 10 MTHM .

Liquid Waste

Water from Concentration and Other Processes to	$146.57 \mathrm{Mg} /$ day
G.P. Evap. ($78 \mathrm{~kg} \mathrm{HNO} 3 /$ day)	
Acid from Acid Recovery from Calcination	$28.7 \mathrm{~m}^{3} /$ day (.18 mole HNO_{3})

Solids

Spent Electrolyte
Fluorination Tower Waste $\left(\mathrm{CaF}_{2}+\mathrm{Ash}\right)$

Solid $\mathrm{K}_{2} \mathrm{UO}_{4}$ Mud from Cold Trap
Solid $\mathrm{KOH}+\mathrm{CaF}_{2}$ from Cold Trap
$1814 \mathrm{~kg} /$ day
$152.4 \mathrm{~kg} /$ day (contains Pu and F.P.)
$43.54 \mathrm{~kg} /$ day
$1251.91 \mathrm{~kg} /$ day $(2,61 \mathrm{~W} / \mathrm{o} \mathrm{KOH})$
until they are calcined to $\mathrm{UO}_{3}-\mathrm{PuO}_{2}$ ．Then it is further reduced by mixing 6% hydrogen in nitrogen at high temperature to produce $\mathrm{UO}_{2}-\mathrm{PuO}_{2}$ 。 The powder is treated with hot carbon dioxide gas to stabilize the powder，so that reoxidation is inhibited when contacted with air．

The 1BP stream（Fig．2．1，Table 3．4．2）containing uranium， plutonium and traces of fission products，carries approximately 89 kg of plutonium and 0.1 kg of uranium per day with a flow rate of approx－ imately $15.3 \mathrm{~m}^{3} /$ day．This flow is concentrated by a factor of about 8 in a final evaporation．So the 1BP stream feeding into a coconversion facility has a flow rate of $2.1 \mathrm{~m}^{3} /$ day or $42.7 \mathrm{mgHM} / \mathrm{Cm}^{3}$ 。 In a next step，some of the uranium from the UF_{6} facility is mexed with this stream to bring the concentration of heavy metal up to $400 \mathrm{mg} / \mathrm{m}^{3}$ ．This can be done in two ways：

1）．Wet mixing：Concentrated uranium nitrate from the UF 6 facility is mixed with the 1BP stream．

2）．Dry mixing： UO_{2} from the reductor is mdxed with $\mathrm{Puo}_{2}, \cdot \mathrm{Pu}_{2}$ which has been denatured with natural uranium to a Pu / U ratio of $1 / 9$ 。

The first alternative is more practical at this time．After bringing the concentration of $400 \mathrm{mgHM} / \mathrm{m}^{3}$ of solution，a certain quantity of natural uranium solution（from the head end of the fuel cycle）is added to produce a＂master mix＂containing 10% plutonium in the $\mathrm{U}-\mathrm{Pu}$ product （Fig．3．7．1 shows a schematic of this facility）．

The feed to coconversion is provided in a sufficiently large batch so that the feed solution is uniform in isotopic composition．

Fig. 3.7.1 Coconversion Facility.

The product of the conversion is then sent to the MOX fuel fabrication. All processes in this facility are done in caves. The final product consists of approximately 1 Mg of $\mathrm{PuO}_{2}-\mathrm{UO}_{2}$ per day with an activity of 2.146 KCi." The acidic and aqueous waste of this process can be recycled; solid waste consists of spent filters and resins. As the facilities are not yet developed fully, assumptions about waste quantities have to be made.

3.8 Off-Gas Treatment

The atmospheric releases of radioactive radioisotopes from a fuel processing plant are greatly reduced by the use of effluent treatment systems. Figure 3.8.1 shows the block diagram for the vessel off-gas (VOG) and dissolver off-gas (DOG) systems (ORNL/NUREG/TM-6 1977) 。

The present off-gas systems include voloxidation and trapping for tritium (or HTO) removal, fluorocarbon absorption of $\mathrm{Kr}-85$ and $\mathrm{C}-14$ (as CO_{2}) (the process is called KALC: Krypton Absorption in Liquid Carbon dioxide), volatilization of I-129 and I-131 from dissolver solutions followed by sorption in a scrubber system, filtration of particulates by HEPA filters, and Ru by silicagel beds. This system is designed to meet all existing NRC requirements.

The majority of gaseous radionuclides is released in the head end of the fuel processing plant, which includes fuel shearing, tritium removal, and dissolver operations. Radioactive gases from H-3.removal are first passed through a silver zeolite bed to recover iodine. The effluents are combined with the argon shear purge (and the shear cell

Fig. 3.8.1. Off Gas Treatment System.
purge, if contaminated) and passed through the tritium recovery system. H-3 is oxidized to HTO and absorbed on special zeolite beds (Yarbro 1974) 。

The off-gas from the dissolver is first passed through a stainless steel-wool ruthenium abosrption bed, then through NO_{x} recovery. After that, this flow is treated to remove TBP vapor and more of the iodine. This flow is combined with effluents from the HTO recovery system and is further purified from C-14 and Ru-103, 106. Finally, Kr-85 is recovered by a selective absorption process using $\mathrm{R}-12$ (dichlorodifluoromethane).

Table 3.8.1 shows the flow rates and order of magnitude of activities of the off-gas system. The total discharge to sand filters is $1.56 \times 10^{6} \mathrm{~m}^{3} / \mathrm{hr}$. The sand filters are a final step in removal of particulates before the off-gas is discharged to the environment.

Sand filters are long-lived, have high efficiency of particulate retention, and high air permeability. To obtain these qualities, a flow velocity of about 2.5 to $3 \mathrm{~cm} / \mathrm{sec}$ is suitable, leading to an efficiency of approximately 99.95%. After passing through sand filters, the flow is routed through a series of HEPA's and is finally released to the atmosphere at the top of a 200 ft stack. The activity of the stock air is listed in Table 3.8 .2 , based on data from various sources.

In a final Table 3.8.3, the solid waste generated by dissolver off-gas and vessel off-gas treatment is shown.

Table 3．8．1 Off－Gas Treatment Flows＊

Stream	$\mathrm{m}^{3} / \mathrm{day}$	Gas Composition	$\mathrm{Ci} / \mathrm{m}^{3}$
Failed Fuel Vent	3.12	$\mathrm{He}, \mathrm{I}, \mathrm{Kr}, \mathrm{H}^{3}$	1.55
Purge Shear	1430	Argon， $\mathrm{Kr}, \mathrm{Xe}, \mathrm{I}, \mathrm{H}$	
Voloxidation Furnace Purge	4764	Air， $\mathrm{HTO}, \mathrm{Kr}, \mathrm{I}, \mathrm{Xe}, \mathrm{Ru}$	－3
Dissolver Off－Gas	2.38×10^{4}	$\mathrm{Air}, \mathrm{NO}_{\mathrm{X}}, \mathrm{Kr}, \mathrm{I}, \mathrm{Xe}, \mathrm{CO}_{2}$	
Vessel Vent Hot Canyon	3.43×10^{5}	Air，Solvent（TBP）F。P。	2.5×10^{-4}
HLLW Tank Off－Gas	4.05×10^{4}	Air，FoP。	3.5×10^{-3}
Warm Canyon and			
Vitrification			
Off－Gas－to－Sand Filter			
Various Exhaust Systems	7.13×10^{6}	Air，Impurities（ $\mathrm{NO}_{\mathrm{x}}, \mathrm{CO}_{2}$ ）	nil
Off－Gas Treated（Purified）	2.38×10^{5}	Air	nil
Off－Gas Treatment Bldg。Rent	21.76×10^{3}	Air	nil
Other Building Rents			
（ILLW，ILLW，Vessel，etc． Rent）	3.01×10^{7}	Air，（ $\mathrm{NO}_{\mathrm{x}}, \mathrm{CO}_{2}$ ）	nil

[^2]Table 3.8.2 Estimated Mainstack Gas Composition

Species	$\mu \mathrm{Ci} / \mathrm{Dm} 3^{\mathrm{Con}}$	tion ppm
NO_{x}	---	5
Kr-85	4.45×10^{-4}	---
	8×10^{-3}	8×10^{-3}
HTO, HT	1.75×10^{-5}	---
	3×10^{-5}	4×10^{-4}
$\mathrm{I}_{2}-129$	4.45×10^{-11}	---
	3×10^{-12}	2×10^{-5}
Ru-106	4.45×10^{-8}	-
	1×10^{-9}	---
C-14	3.11×10^{-8}	---

Table 3.8.3 Waste Generation by DOG, VOG Treatment. -- Based on a fuel throughput of $10 \mathrm{Mg} /$ day.

Facility	Quantity ($\ell /$ day)	Activity Ci/day
I Removal (Silver Exchanged		
Mordenite ${ }^{\text {Beds) }}$	7.4	~ 1.12 (I-129, 131)
HTO Sieve Bed	. 08	772
Sorbent CO_{2} as CaCO_{3}	40.	---
HEPA Filters	792.	4965 (TRU, α)
	736	10 ($\mathrm{FP}, \mathrm{B}-\gamma$)
Ru Adsorbers	10	$6.8 \times 10^{3 *}$
Sand Filter m ${ }^{3 \% *}$ (Gravel and Sand)	39000	- ---

[^3]
CHAPTER 4

FUEL CYCLE IMPACT

4.1 Operational Impacts

Should the coprocessing with partial decontamination option be adopted, various steps in the fuel cycle will be effected in a variety of ways. But, coprocessing, by itself creates relatively minor changes in the traditional fuel reprocessing in way of plant design, equipment, or operational constraints. This fact is its basic and most important advantage of a coprocessing strategy. In the case of reactors and fuel fabrication, coprocessing with partial decontamination will introduce some impact over that previously projected for mixed-oxide fuel cycle.

In reprocessing facilities, only a few pieces of equipment will be directly affected. Major changes as mentioned in the Chapter 3 will be in the solvent extraction's first cycle 1 A and $1 B$ contactors and the coconversion facilities, however, in order to ensure that the equipment, and flow sheet of facility are not modified to produce a pure.plutonium stream, new operating and monitoring constraints could be imposed.

The basic designs required to achieve the conversion and partial separations dictated by coprocessing are not expected to be much different from the conventional reprocessing hardware. The technological challenge would be to design equipment that is temper-resistant and inherently limits the separation or mixing of uranium and plutonium,
to those concentrations specified by coprocessing concept. While it may be theoretically possible to design equipment to limit the product (CONF-780304 1978 pp. v-7 - v-9), it would be extremely difficult to do so practically.

The conversion step is the most heavily impacted portion of the fuel cycle because of the large increase in volume throughput. For comparison purposes in pure plutonium conversions plant servicing a $10 \mathrm{mg} /$ day reprocessing a throughput volume of only about $60 \mathrm{~kg} /$ day of PuO_{2} would be expected. The throughput volume increases to $1 \mathrm{mg} /$ day of $\mathrm{PuO}_{2}-\mathrm{UO}_{2}$ in case of coprocessing with partial decontamination. This increase in the throughput volume will increase the radiation level and the number of processing lines, which will result in higher operating risks. The operation of multiple lines will also increase maintenance requirements, sampling and analytical needs, and operating crew size in a manner far less efficient than normally assumed when scaling up a process for greater throughput. One advantage is a gain of reliability, because of multitrain process equipment.

4.2 Resource Impacts

Coprocessing has a negligible impact on the overall uranium and enrichment requirements when it is compared to previous plutonium LWR recycling concepts. However, coprocessing can play an important role in increasing the effective uranium and enrichment supply by helping to provide a.plutonium utilization fuel cycle that is acceptable for use. If coprocessing can enable plutonium and uranium to be recycled to LWR's, the potential exists for reducing the uranium requirements by
about one-third and the enrichment requirements by about one-fourth. Of still more importance is the potential that coprocessing has for demonstrating commercial-scale plutonium procéssing such that there will be an existing technical base from which a viable breeder program can be launched. The breeder option represents one of the few demonstrated sources for meeting the energy needs of the 21 st century and prudent energy planning should ensure that this option remains open. From the standpoint of global security and stability, the lack of adequate power may well be a greater risk than the risk that nations will use the fuel cycle as a source for nuclear weapons.

4.3 Advance Reactor Concepts

The coprocessing strategy for LWR uranium-plutonium fuel cycle appears practical and achievable. This is made possible by the fact that utility reactors are not significantly affected and the existing infrastructure needs not suffer major dislocation. The experiences with mixed oxide fuel implant minor changes in fuel rod composition within a fuel assembly (all-rod concept for PWR and island design for BWR), it is possible to utilize current reactors (Regional Nuclear Fuel Cycle Centers 1977 pp. 167-191).

Coprocessing appears to easily integrate into the more commonly proposed advanced reactor concepts (Williams 1978). One parameter that must be defined to enable coprocessing service a wide range of reactor concepts is the degree of proliferation risk associated with products containing upwards of $25-30 \%$ plutonium. Without such definition, the application of coprocessing to breeder fuels may be
jeopardized. It should be noted that while the majority of data in this report has assumed an LWR fuel cycle as the reference case, there have been no identified factors that prevent coprocessing from being successfully applied to a breeder fuel cycle or to mixed LWR and breeder cycles.

Undenatured (no U-238) thorium cycles could logically incorporate the coprocessing concepts by utilizing thorium as the chemical diluent for the fissile U -233. In genera1, with the presence of $\mathrm{U}-238$ in the flow sheet, the recovery system will be required to handle a combination of not only thorium and uranium, but also the plutonium which is produced in the reactor form the fertile $\mathrm{U}-238$. The plutonium could be coprocessed using portions of the $U-238$ present as diluent or it could be diluted with depleted uranium after having been recovered in purified form. The coprocessing plant's main stream would process the bulk thorium and uranium such that the $\mathrm{U}-233 / \mathrm{U}-238$ mixture would be the proper proportion for recycle. The actual ratio of U-238 denaturant and thorium diluent to the U-233 fissile product wi:11 1ikely be determined by reactor physical considerations more than non-proliferation attributes (LA-7411-MS 1978).

CHAPTER 5

SUMMARY AND RECOMMENDATION

Coprocessing with partial decontamination is one alternative which can help to meet nonproliferation objectives in the nuclear fuel cycle. Its implementation requires change in only two steps of the nuclear fuel cycle, a relatively minor change in the reprocessing concept, and a substantial development effort in the field of coconversion of uranium and plutonium solutions. It is one of the attractive features of the coprocessing option that an incremental reduction in diversion risk is gained at a relatively small increase in fuel cycle complexity. Basically, there are two coprocessing techniques: In one the partitioning of plutonium and uranium from irradiated fuel is performed without producing a pure plutonium stream. In this version plutonium is chemically diluted with uranium whose main constituent is fertile uranium-238 (Pobereskin 1977). A second approach, which served as a model for this study; uses the traditional Purex.flow sheet. but confines the plutonium product stream to heavily.shielded, inaccessible areas of the plant until uranium diluent is added (DPST-AFCT-77-1-2) 。

An objective of this study was to estimate the non high level wastes generated in this modified reprocessing facility. This assessment is based on the amounts of waste encountered in the Purex process and related operations. Even though not too many detailed data are
available, this analysis was aided by the fact that the main steps in the reprocessing flow sheet are similar for both coprocessing and standard Purex. The most striking difference lies in the omission of a second and third plutonium purification cycle. All other processes are found in both reprocessing alternatives. In order to quantify the savings in waste production, equal waste categories should be compared; in terms of LAW production, comparison is based on one Mg of fuel processed:

Coprocessing: $54 \ell / h$ of LAW stemming from codecontamination $422 \ell / h$ of LAW from second and third uranium cycle

Total: $476 \mathrm{l} / \mathrm{h}$
Standard Purex: $476 \mathrm{l} / \mathrm{h}$
148
\} Waste from 2nd and 3rd Pu Purification (Table 3.3.1)
213

Total: $837 \mathrm{l} / \mathrm{h}$
Savings: $361 \ell / h(\sim 58 \%)$
Besides these savings, there are also penalties which contribute especially to solid waste which cannot be quantified as easily as the Iiquid waste mentioned above. The product stream 1BP from solvent extraction to the $U-P u$ conversion is contaminated with $F P^{r} s$ and actinides, which requires additional precaution in adding to the solid waste in the form of small equipment and HEPA filters.

The coprocessing flow sheet as it is presented in this document suggests the following conclusions:

- The inherently safe nuclear fuel cycle cannot be established. The safeguarding measures already in effect have reduced the risk to a relatively low level. A coprocessing measure will only result in an incremental reduction of such a risk.
- As an effective method of non-proliferation measures, any technical control should be supplemented with institutional controls.
- Coprocessing with partial decontamination can be a substantial deterrent to potential diverters who are members of a subnational group. The increases in mass of material that has to be diverted plus the activity of this material will reduce its attractiveness.
- The technology required for coprocessing is readily available, therefore the option coprocessing can be applied to nuclear fuel cycle in a short period of time.
- No major barrier have been identified which would prevent orderly implementation of the coprocessing and partial decontamination into LWR or breeder
fuel cycle. Implementation timing would largely be dependent on the lead time required for facility design and construction. Furthermore coprocessing with partial contamination does not aggravate existing sensitive nuclear issues such as waste disposal but on the contrary it would be a method to reduce high active waste (Patrashakorn 1980).

This document considered only LWR fuel cycle. In order to complete the perspective of nuclear fuel cycle, further studies in the following areas are recommended:

1) Reactor physic calculation concerning recycle of fission products.
2) Development of a general computer code for $\mathrm{Pu}-\mathrm{U}$, Th-U fuel coprocessing using the codes "COPRO" and "SX".

APPENDIX A

MA'SS BALANCE AND RADIOACTIVE PROCESS LOSSES FOR LWR COPROCESSING FUEL. CYCLE

Fig. 1 Coprocessing Fuel Cycle with Process Indices for Table 1.

Table 1 Radioactive Process Losses and Effluents. -- A LWR cycle using coprocessing.

Index	Isotopes	State		Concentration ($\mathrm{HCl} / \mathrm{ml}$)	$\begin{aligned} & \text { Mass } \\ & (\mathrm{Mg})^{\mathrm{b}} \end{aligned}$	Radioactivity	
		Physical	Chemical			(Ci)	(Bq)
$\stackrel{A}{\text { u-mining }}$		Liquid			4.7 E $5 \mathrm{~m}^{3}$		
	U-238		oxides	2.3 E-8	3.1 E-2	1.0 E-2	3.8 E 8
	U-235		oxides	1.1 E-9	2.3 E-4	$4.9 \mathrm{E}-4$	1.8 E 7
	U-234		oxides	2.3 E-8	1.7 E-6	1.0 E-2	3.8 E 8
	Th-234		oxides	2.3 E-8	4.6 E-13	$1.0 \mathrm{E}-2$	3.8 E 8
	Ra-226		oxides	2.3 E-8	1.0 E-8	$1.0 \mathrm{E}-2$	3.8 E 8
	Other			$1.7 \mathrm{E}-7$	$5.5 \mathrm{E-7}$	7.8 E-2	2.9 E9
$\stackrel{B}{U-m i l l i n g}$		Caseous					
	Rn-222		Rn	1.4 E-12	9.1 E-10	1.4 E 2	5.1 E 12
	Rn-222 daughters		NA	6.5 E-10	3.7 E-7	6.3 E 2	2.3 E 13
	U (tails)	Solid	oxides		5.9 E 4	1.6 E 4	5.7 E 14
	U daughters		oxides		(talls)		
	$\begin{aligned} & \mathrm{U} \text { (tails } \\ & \text { pond) } \end{aligned}$	Liquid	oxides, ions	NA		Not Released	
	U daughters						
	U (natural)			$5.2 \mathrm{E}-7$		NA	
	Th-230		Th(iv)	$1.4 \mathrm{E}-5$		na	
	Ra-226		Ra (II)	$2.31-7$		NA	

Table 1 -- Continued

Index	Isotopes	State		Concentration ($\mu \mathrm{Ci} / \mathrm{ml}$)	$\begin{gathered} \mathrm{Mass}_{\mathrm{b}} \\ (\mathrm{Mg})_{\mathrm{b}} \end{gathered}$	Radioactivity	
		Physical	Chemical			(C1)	(8q)
		Gaseous					
	U-238		oxides	2.0 E-16	5.9 E-2	2.0 E-2	7.2 E 8
	U-235		oxides	9.1 E-18	4.2 E-4	9.1 E-4	3.4 E 7
	U-234		oxides	2.0 E-16	3.2 E-6	2.0 E-2	7.2 E 8
	Th-234		ha	1.0 E-16	4.2 E-13	9.8 E-3	3.6 E 8
	Pa -234m		na	1.0 E-16	1.4 E-17	9.8 E-3	3.6 E 8
	Th-231		na	9.1 E-1\%	1.7 E-15	9.1 E-4	3.4 E 7
	Pa-231		na	9.1 E-18	1.7 E-3	9.1 E-4	3.4 E 7
	Th-230		na	1.0 E-16	4.9 E-7	9.8 E-3	3.6 E 8
	Ra-226		na	1.0 E-16	9.8 E-9	$9.8 \mathrm{E}-3$	3.6 E 8
	Rn-222		Rn	4.5 E-13	2.9 E-10	4.4 E 1	1.6 E 12
	Po-218		na	4.5 E-13	1.6 E-13	4.4 E 1	1.6 E 12
	Pb-214		NA	4.5 E-13	$1.3 \mathrm{~F}-12$	4.4 E 1	1.6 E 12
	Bi-214		NA	4.4 E.-13	9.8 E-13	4.4 E. 1	1.6 E 12
	Po-214		na	4.5 E-13	1.4 E-19	4.4 E 1	1.6 E 12
	Other		nA	2.6 E-15	4.6 E-10	2.5 E-1	2.9 E 10

Table 1 -- Continued

Index	Isotopes	State		Concentration ($\mu \mathrm{Cl} / \mathrm{ml}$)	$\begin{aligned} & \text { Mass } \\ & (\mathrm{Mg}) \end{aligned}$	Radioactivity	
		Physical	Chemical			(Ci)	(Bq)
C		Solld					
UF_{6} Conversion	U-238		oxides		$1.4 \mathrm{E}-1$	4.8 E-2	1.8 E 9
	U-235		UF_{6}		3.9 E-3	2.0 E-3	7.4 E 7
	U-234		UF_{4}		7.7 E-6	$4.8 \mathrm{E}-2$	1.8 E 9
	Th-230		ThO_{2}		$5.2 \mathrm{E}-4$	1.0 E 1	3.9 E 11
	Ra-226		Ra (II)		$1.0 \mathrm{E}-7$	1.0 E-1	3.9 E 9
	Other		--		--	1.1 E-1	3.9 E 9
		Liquid			2.4 E 4m $^{3 \mathrm{c}}$		
	U-238		oxides	5.3 E-10	3.9 E-5	$1.3 \mathrm{E}-5$	5.3 E 5
	U-235		$\left(\mathrm{NH}_{4}\right)_{2} \mathrm{U}_{2} \mathrm{O}_{7}$	2.3 E-11	$9.5 \mathrm{E}-9$	$6.3 \mathrm{E}-7$	2.3 E 4
	U-234			$5.2 \mathrm{E}-10$	2.3 E-9	$1.4 \mathrm{E}-5$	5.3 E 5
	Th-234		Th(IV)	5.3 E-10	6.2 E-16	1.4 E-5	5.3 E 5
	Other		tons	4.6 E-9	7.4 E-10	$1.2 \mathrm{E}-4$	4.6 E 6
		Caseous					
	U-238		$\mathrm{UO}_{2} \mathrm{~F}_{2}$	6.7 E-17	1.7 E-3	5.6 E-4	2.1 E 7
	U-235		oxides	3.0 E-18	6.9 E-5	2.6 E-5	9.5 E 5
	U-234			$6.7 \mathrm{E}-17$	9.1 E-8	5.6 E-4	2.1 E 7
	Th-234		NA	$6.7 \mathrm{E}-17$	2.5 E-8	5.6 E-4	2.1 E 7
	Pa-234m		NA	6.7 E-17	8.2 E-19	5.6 E-4	2.1 E 7

Table 1 -- Continued

Index	Isotopes	State		Concentration ($\mu \mathrm{Ci} / \mathrm{ml}$)	$\begin{aligned} & \text { Mass } \\ & (\mathrm{Mg})^{b} \end{aligned}$	Radioactivity	
		Physical	Chemical			(Ci)	(Bq)
D Enrichment	Th-231	Solid	nA	3.0 E-18	4.8 E-17	2.6 E-5	9.5 E 5
	Th-230		nA	1.3 E-19	5.7 E-11	1.1 E-6	4.2 E 4
	Ra-226		NA	1.3 E-19	1.1 E-12	1.1 E-6	4.2 E 4
	Rn-222		na	1.3 E-19	7.4 E-18	1.1 E-6	4.2 E 4
	Po-218		NA	1.3 E-19	4.1 E-21	$1.1 \mathrm{E}-6$	4.2 E 4
	$\mathrm{Pb}-214$		NA	1.3 E-19	2.9 E-20	1.1 E-6	4.2 E 4
	B1-214		na	1.3 E-19	2.6 E-20	1.1 E-6	4.2 E 4
	Po-214		na	1.3 E-19	3.5 E-27	1.1 E-6	4.2 E 4
	B1-210		NA	9.2 E-20	6.2 E-18	7.7 E-7	2.9 E 4
	$\mathrm{Pb}-210$		NA	9.2 E-20	1.0 E-14	7.7 E-7	2.9 E 4
	Po-210		na	9.2 E-20	1.7 E-16	$7.7 \mathrm{E}-7$	2.9 E 4
	U-238		UF_{6}		$9.4 \mathrm{E-2}$	$3.2 \mathrm{E-2}$	1.2 E9
	U-236		UF_{6}		1.3 E-5	8.2 E-4	3.0 E 7
	U-235		UF_{6}		3.2 E-4	6.9 E-4	2.6 E 7
	U-234		UF_{6}		2.7 E-5	$1.7 \mathrm{E}-1$	6.3 E 9
	Th-234		ThO_{2}		1.3 E-12	$3.2 \mathrm{E}-2$	1.2 E 9
	Other				--	3.8 E-2	1.5 E 9

Table 1 -- Continued

Index	Isotopes	State		Concentration ($\mu \mathrm{Ci} / \mathrm{ml}$)	$\begin{aligned} & \text { Mass, } \\ & \left(\mathrm{Mg}_{\mathrm{b}}{ }^{\mathrm{b}}\right. \end{aligned}$	Radioactivity	
		Physical	Cheraical			(Ci)	(Bq)
		Liquid			4.0 E $4 \mathrm{~mm}^{3}$		
	U-238		$\mathrm{UF}_{6}, \mathrm{UO}_{2} \mathrm{~F}_{2}$	$1.2 \mathrm{E}-8$	1.5 E-3	4.9 E-4	1.8 E 7
	U-236		UF $\mathrm{F}_{6}, \mathrm{UK}_{2} \mathrm{~F}_{2}$	3.1 E-10	1.9 E-7	$1.2 \mathrm{E}-5$	4.6 E 5
	U-235		UF ${ }_{6}, \mathrm{UO}_{2} \mathrm{~F}_{2}$	2.6 E-9	4.9 E-5	$1.0 \mathrm{E}-4$	3.7 E 6
	U-234		$\mathrm{UF}_{6}, \mathrm{UO}_{2} \mathrm{~F}_{2}$	6.2 E-8	$3.9 \mathrm{E-7}$	2.5 E-3	9.1 E 7
	Th-234		TH (IV)	$1.2 \mathrm{E}-8$	2.2 E-14	4.9 E-4	1.8 E 7
	Other		charged atoms	7.1 E-9	--	2.8 E-4	1.0 E 7
	U-238	Gaseous	$\mathrm{UO}_{2} \mathrm{~F}_{2}, \mathrm{UO}_{2}$	$1.8 \mathrm{E}-18$	1.3 E-4	4.5 E-5	1.7 E 6
	U-236		$\mathrm{UO}_{2} \mathrm{~F}_{2}, \mathrm{HO}_{2}$	2.2 E-19	8.7 E-8	5.5 E-6	2.0 E 5
	U-235		$\mathrm{UO}_{2} \mathrm{~F}_{2}, \mathrm{UO}_{2}$	7.5 E-18	8.2 E-6	$1.8 \mathrm{E}-5$	6.6 E 5
	U-234		$\mathrm{UO}_{2} \mathrm{~F}_{2}, \mathrm{UO}_{2}$	$1.5 \mathrm{E}-18$	6.0 E-8	3.7 E-4	1.3 E 7
	Th-234		NA	1.8 E-18	1.9 E-15	4.5 E-5	1.7 E 6
	Pa-234m		NA	1.8 E-18	6.3 E-20	4.5 E-5	1.7 E 6
	Th-231		NA	$7.5 \mathrm{E}-18$	$3.2 \mathrm{E}-17$	$1.8 \mathrm{E}-5$	6.6 E 6
	Other			$1.0 \mathrm{E}-16$	$1.9 \mathrm{E-8}$	2.6 E-3	9.6 E 7
E		Solid					
Mox-	U-234		NA		2.1 E-8	1.3 E-4	4.8 E 6
Fabrication	U-235		NA		9.5 E-7	2.0 E-6	7.4 E 4

Table 1 -- Continued

Index	Stream	Isotopes	State		Concentration ($\mu \mathrm{Ci} / \mathrm{ml}$)	$\begin{aligned} & \text { Mass } \\ & \left(\mathrm{Hg}_{\mathrm{b}} \mathrm{~b}\right. \end{aligned}$	Radioactivity	
			Physical	Chemical			(C1)	(Bq)
		U-236		na		7.7 E-7	5.0 E-5	1.8 E 6
		U-238		NA		1.8 E-4	6.0 E-5	2.2 E 6
		Pu-238		na		5.8 E-7	1.0 E-1	3.7 E 11
		Pu-239		na		$1.2 \mathrm{E}-4$	7.5 E-1	2.8 E 10
		Pu-240		na		6.6 E-6	1.5 E 0	5.6 E 10
		Pu-241		na		$4.2 \mathrm{E}-6$	4.2 E 2	1.6 E 13
			Liquid			Not released		
		U-234		UO_{2}		1.8 E-8	1.1 E-4	4.1 E 6
		U-235		UO_{2}		7.1 E-6	$1.5 \mathrm{E}-5$	5.6 E 4
		U-236		vO_{2}		2.6 E-8	$1.7 \mathrm{E-6}$	6.3 E 4
		U-238		UO_{2}		1.5 E-4	$5.0 \mathrm{E}-5$	1.9 E 6
		Pu-238		PuO_{2}		1.1 E-12	7.0 E-8	2.6 E 3
		Pu-240		PuO_{2}		4.4 E-14	1.0 E-8	3.0 E 2
		Pu-241		PuO_{2}		3.9 E-13	3.9 E-5	7.4 E 6
		Am-241		NA		3.0 E-16	7.0 E-10	2.6 E 1
			Caseous					
		U-234		UO_{2}	2.7 E-19	3.5 E-10	2.2 E-6	8.1 E 4
		U-235		UO_{2}	2.4 E-21	9.5 E-9	2.0 E-8	7.4 E 2
		U-238		UO_{2}	1.2 E-19	2.9 E-6	9.6 E-7	3.6 E 4

Table 1 -- Continued

Table 1 -- Continued

Table 1 -- Continued

Index	Stream	Isotopes	State		Concentration ($\mu \mathrm{Cl} / \mathrm{ml}$)	$\underset{(\mathrm{Mg})^{\mathrm{b}}}{\substack{\mathrm{bass}}}$	Radioactivity	
			Physical	Chemical			(Ci)	(Bq)
		$\mathrm{Pa}-233$		$\mathrm{Pa}(\mathrm{II})$	6.0 E-15	1.0 E-15	2.1 E-5	7.8 E 5
		$\mathrm{Np}-239$		Np(III)	3.4 E-16	4.8 E-18	1.2 E-6	4.4 E 4
		Cr-51		NA		3.7 E-12	$3.0 \mathrm{E}-2$	1.1 E 9
		Mn-54		na		1.0 E-11	8.0 E-2	3.0 E 9
		Co-58		na		2.8 E-11	8.8 E-1	3.3 E 10
		Co-60		na		2.5 E-10	2.8 E-1	1.0 E 10
		2n-65		na		3.6 E-11	3.0 E-1	1.1 E 10
		2r-95		na		1.4 E-13	$3.0 \mathrm{E}-3$	1.1 E 8
		Nb-95		na		7.6 E-14	7.0 E-3	2.6 E 8
Gaseous								
		Kr -83m		Kr	1.8 E-12	2.8 E-9	5.9 E 0	2.2 E 11
		Kr -85		Kr	3.9 E-10	$3.4 \mathrm{E}-6$	1.3 E 3	4.8 E 13
		$\mathrm{Kr}-85 \mathrm{~m}$		Kr	3.0 E-11	$1.2 \mathrm{E}-11$	1.0 E 2	3.7 E 12
		Kr-87		Kr	4.8 E-12	5.8 E-13	1.6 E 1	5.9 E 11
		Kr -88		Kr	3.0 E-12	7.8 E-13	1.0 E 1	3.7 E 11
		Xe-131m		Xe	3.0 E-11	$1.2 \mathrm{E}-10$	1.0 E 2	3.7 E 12
		xe -133		Xe	9.1 e-10	$1.6 \mathrm{E}-8$	3.0 E 3	1.1 E 14
		Xe-133m		Xe	6.1 E-12	4.7 E-11	2.0 E 1	7.4 E 11
		Xe-135		Xe	9.1 E-11	$1.2 \mathrm{E}-10$	3.0 E 2	1.1 E 13

Table 1 -- Continued

Index	Isotopes	State		Concentration ($\mu \mathrm{C} 1 / \mathrm{ml}$)	$\begin{gathered} \text { Mass } \\ (\mathrm{Mg})_{b} \end{gathered}$	Radioactivity	
		Physical	Chemical			(Ci)	(Bq)
	Xe-135m		xe	4.2 E-13	$1.5 \mathrm{E}-14$	1.4 E 0	5.2 E 10
	I-129		I_{2}	9.1 E-21	1.8 E-10	3.0 E-8	1.1 E 3
	I-131		I_{2}	9.1 E-14	2.5 E-12	3.0 E-1	1.1 E 10
	1-132		I_{2}	8.1 E-16	2.6 E-16	2.7 E-3	1.0 E 8
	1-133		I_{2}	1.1 E-14	3.2 E-14	3.6 E-2	1.3 E 4
	I-135		I_{2}	3.6 E-16	3.5 E-16	$1.2 \mathrm{E}-3$	4.4 E 7
	H-3		HT	3.0 E-11	1.0 E-8	1.0 E 2	3.7 E 12
	C-14		$\mathrm{CO}, \mathrm{CO}_{2}$	9.5 E-13	7.2 E-7	3.2 E 0	1.2 E 11
	Sr-89		Sr	3.0 E-15	3.4 E-13	$1.0 \mathrm{E}-2$	3.7 E 8
	St-90		Sr	3.0 E-16	7.0 E-12	1.0 E-3	3.7 E 7
	Rn-103		Rn	6.0 E-16	6.2 E-14	2.0 E-3	7.4 E 7
	Rn -106		Rn	3.0 E-16	3.0 E-13	1.0 E-3	3.7 E 7
	Cs-134		Cs	1.2 E-15	1.3 E-12	4.0 E-3	1.5 E 8
	Ca-137		Cs	2.1 E-15	8.1 E-11	7.0 E-3	2.6 E 8
ReprocessIng		Solld			1.0 E $2 \mathrm{~m}{ }^{3}$	1.3 E 2	
	transuranics				1.6 E $1 \mathrm{~m}^{3}$		
		Gaseous					
	H-3		HT	1.6 E-10	$1.7 \mathrm{E-7}$	4.0 E 3	1.5 E 14
	Kr-85		Kr	1.1 E-9	$6.7 \mathrm{E}-5$	2.6 E 4	9.6 E 14

Table 1 -- Continued

Index	$1 . \mathrm{rtopes}$	state		Concentration ($\mathrm{LC} 1 / \mathrm{ml}$)	$\underset{(\mathrm{Mg})^{\text {Mass }}}{\substack{\text { b }}}$	Radioactivity	
		Physical	Chemical			(C1)	(Bq)
	C-14		$\mathrm{co}, \mathrm{CO}_{2}$	8.2 E-14	4.5 E-7	2.0 E 0	7.4 E 10
	1-129		I_{2}	3.7 E-17	5.7 E-6	9.0 E-9	3.3 E 7
	1-131		I_{2}	2.7 E-17	5.4 E-9	6.7 E-4	2.5 E 7
	Ru -106		$\mathrm{Ru}_{x} \mathrm{O}_{\mathrm{y}}$	7.4 E-16	5.4 E-12	1.8 E-2	6.7 E B
	Cs-134		na	2.2 E-16	4.1 E-12	5.3 E-3	2.0 E 8
	Cs-137		na	1.2 E-16	1.2 E-13	$2.9 \mathrm{E}-3$	1.1 E 8
	Sr-90		na	7.4 E-17	1.3 E-11	1.8 E-3	6.7 E 7
	Ce-144		na	1.2 E-18	8.8 E-12	$2.8 \mathrm{E}-2$	1.0 E 9
	Y-91		NA	3.5 E-15	3.4 E-13	8.5 E-3	3.2 E 8
	Y-90		NA	1.2 E-16	5.4 E-15	2.9 E-3	1.1 E 8
	2r-90		na	8.2 E-16	9.5 E-13	2.0 E-2	7.4 E 8
	$\mathrm{Nb}-95$		na	8.2 E-16	5.2 E-13	2.0 E-2	7.4 E 8
	$\mathrm{Pax-1}^{147}$		na	2.0 E-16	5.3 E-12	4.9 E-3	1.8 E 8
	Sr-89		NA	4.6 E-17	3.9 E-14	$1.1 \mathrm{E}-3$	4.1 E7
	Ce-141		na	1.8 E-17	1.5 E-14	$4.4 \mathrm{E}-4$	1.6 E 7
	U-238		oxides	1.3 E-23	9.5 E-10	3.1 E-10	1.1 E 1
	U-236		oxides	9.6 E-4	3.7 E 8	2.3 E 10	8.9 E 20
	U-235		oxides	4.2 E-2S	4.6 E-12	1.0 E-11	3.7 E-1
	U-234		oxides	2.8 E-23	1.1 E-13	6. 6 E-10	3.4 E 1

Table 1 -- Continued

Index	Isotopes	State		Concentration ($\mu \mathrm{Ci} / \mathrm{ml}$)	$\begin{aligned} & \mathrm{Mass}_{(\mathrm{Mg}}^{\mathrm{b}} \end{aligned}$	Radioactivity	
		Physical	Chemical			(Ci)	(Bq)
	Pu-238		oxides	6.2 E-13	B. 3 E-14	1.5 E-4	5.6 E 6
	Pu-239		oxides	4.5 E-19	$1.8 \mathrm{E}-10$	$1.1 \mathrm{E}-5$	4.1 E 5
	Pu-240		oxides	8.0 E-19	9.0 E-11	2.0 E-5	7.4 E 5
	Pu-241		oxides	2.4 E-16	5.2 E-11	5.8 E-3	2.1 E 8
	Am-241			5.8 E-19	4.3 E-12	1.4 E-5	5.2 E 5
	Am-243			2.1 E-19	2.8 E-11	5.0 E-6	1.9 E 5
	Cmo-242			1.1 E-16	8.1 E-13	2.7 E-3	1.0 E 8
	Cm-244			5.0 E-17	1.4 E-11	$1.2 \mathrm{E}-3$	4.4 E 7

a - Incomplete data.
b - Quantity in units of mega grams, unless otherwise noted.
c - Includes chemically contaminated wastes with the radioactivity.
NA - Not available.

APPENDIX B

COMPUTER PROGRAM "COPRO"

B. 1 Introduction

COPRO is a program to calculate the wastes and the main stream composition for a model nuclear fuel coprocessing plant with a maximum capacity of $3000 \mathrm{Mg} / \mathrm{yr}$. This calculation includes wastes (Fig. I) and effluent streams associated with transportation of fuel from the reactor pool to the coprocessing plant, the fuel receiving and storage station (FRSS), the "head end" consisting of the shearing, tritium removal and dissolver steps and the feed preparation.

COPRO is a comparatively short program with one data library. This library contains data for a "Base Case" which is for a U-Pu LWR fuel cycle. The data contained in the library is composed of 806 isotopes identification ${ }^{*}$ members and their half lifes.

COPRO is written FORTRAN EXTENDED VERSION IV and is tested on a CYBER-175 digital computer. The program is constructed in asemimodular manner, which.allows the user to add or eliminate stages. The input/output files and the main processes (FRSS, head end) are contained in the main program of COPRO.

[^4]

Fig. 1 Origins of the Various Catagories of Waste.

The mathematical model of the individual system was simplified in most cases by the assumption of a linear relationship bwtween waste production and the amount of material processed.

B. 2 Input/Output

B.2.1 Input

The input data are to be prepared in the order shown in Table. B.2.1 "Subroutine" indicates the subroutine into which the data from the card are read. "Card number" denotes the order within the group of input cards. "Columns" refers to the actual columns on the computer card in which the data must be punched. "Remarks, variables, etc." gives an explanation as to the variable name, definitions, and the format how data must be punched. Table B.2.1 lists all of the card inputs that are required to perform a variety of calculations with the COPRO code. An example of input cards for a sample case is illustrated in Table B.2.2。

The cards numbered "4" contain the most important set of input data. These cards include the amount of each isotope charged to the coprocessing plant. These values are calculated using the computer code ORIGEN (Bell 1973). The program COPRO uses the same identification code for isotopes as ORIGEN. The isotope identification code used has a maximum of six digits and is used by the program to allocate data from the library to parameters in the program.

NUCL 3 (I) = atomic number $\mathrm{x} 1000+$ atomic weight $\mathrm{x} 10+\mathrm{M}$ where

$$
\begin{aligned}
& M=0 \text { for ground state } \\
& M=1 \text { for excited state }
\end{aligned}
$$

(NUCL 3 (I) is the isotope identification code used in the program.)
B.2.2. Output

The output exhibits in a first table the amount of waste and the composition of different contaminated streams of fuel receiving and storage facilities and possible material flow throughout the process.

A second table will summarize the waste and different streams in sharingThe units of these tables are Gram/M3 or Curie/ M^{3} of flow of The units of these tables are $\mathrm{Gram} / \mathrm{M}^{3}$ or Curie $/ \mathrm{M}^{3}$ of.flow of a specific stream. The final table gives the main streams isotope composition at different location of head end process. (Table 3 shows the listing of program COPRO.) The tables are divided into three subgroups; structural, heavy.elements and fission products.

B. 3 Further Research Efforts

Program COPRO does not take into account the isotopic decay. To improve the code it would be necessary to include a subroutine to calculate such a decay. The next step is to expand the program COPRO to process HTGR and LMFBR fue1.

Table 1 Input Data Cards for "COPRO"

Subroutine	Card No.	Columns	Remarks, Variables, etc.
COPRO	1	1 to 10	RPOWR - Specific power of
			Unit: MW
			Format: F10.3
	1	10 to 20	INMASS - The mass which datas of card number 4 is normalized to:
			Unit: Mg
			Format: F10.3
	1	20 to 30	BURNUP - The average burning of fuel discharged from reactor.
			Unit: MWD/Mg of heavy metal
			Format: F10.3
	1	30 to 40	CAP - Maximum capacity of coprocessing plant.
			Unit: MgHM/yr.
			Format: 10.3
-	1	40 to 45	RTYPE - Reactor type.
			Enter: 0 for BWR
			Format: I5
	1	45 to 50	INCOOL - Cooling period after reactor discharge and
			Unit: Day
			Format: I5
			,

Table 1 -- Continued

Subroutine	Card No.	Columns	Remarks, Variables, etc.
COPRO	2	1 to 80	TITLE - A title for calculation can contain up to 80 alphabets. Format: 10A8
	3	1 to 5	IFUEL - This variable defines the fuel type of reactor. Enter: $1 \quad u-P u$ fuel 2 Th-u fuel
			Format: I5
	3	5 to 10	IOUT - Indicates that the output values are in units of curies or grams. Enter: 1 curie 2 gram
	3	10 to 15	ISOTS - The number of structural isotope inputed. Format: I5
	3	15 to 20	ISOTH - The number of heavy isotope imputed.
			Format: I5
	3	$\left\{\begin{aligned} 20 & \text { to } 25 \\ 25 & \text { to } 30 \end{aligned}\right.$	```ISOTFP - The number of fission product isotope inputed. Format: I5```
	3	25 to 30	KJZ - A flag to print the library. Enter: 0 do not print 1 print
			Format: I5

Table 1 -- Continued

Subroutine	Card No.	Columns	Remarks, Variables, etc.
COPRO	4	1 to. 2	ELE - The chemical name, such as $\mathrm{Pu}, \mathrm{U}, \mathrm{etc}$. Format: A2
	4	2 to 5	MWT - The atomic weight of the isotope. Format: I3
	4	5 to 6	STA - Indicates the isotope is in excited state or ground state. Format: A2
	4	11 to 20	FD - The amount of isotope in curies or grams in IMASS of fuel discharged. Discharge means after the cooling off period in the reactor pool. Format: PB 9.2
	4	26 to 33	LNUC3 - The isotope code number. Format: I7
	4	43 to 47	K - Kind of isotope. Enter: 1 Structural 2 Heavy elements 3 Fission Products

Table 2 Input Cards for COPRO

Table 2 -- Continued

PU240	2.17E+03	942400	2
FU241	1.01E+03	942410	2
FU242	$3.54 E+02$	942420	2
AM241	$4.63 E+01$	952410	2
AM242	1.13E-05	952420	2
AM243	9.44E+01	952430	2
AM244	1.90E-25	952440	2
AM245	6.12E-15	95.2450	2
CM242	$5.14 \mathrm{E}+00$	962420	2
CM243	7.99E-02	962430	2
CM244	$2.97 E+01$	962440	2
H 3	7.13E-02	1.0030	3
NF: 84	1.12E+02	360840	3
KF 85	2.83E+01	360850	3
KF 86	$1.93 E+02$	360860	3
ZF90	2.80E+01	400900	3
ZF 91	$6.05 E+02$	400910	3
ZF: 92	$6.64 E+02$	400920	3
2F: 93	7.36E+02	400930	3
2Fi 94	7.91E+02	400940	3.
ZF 95	1.18E+01	400950	3
ZR 9\%	8.32E+02	400960	3
NB 95	1.20E+01	410950	3
RU101	7.77E+02	441010	3
RUl03	2.31E+00	441030	3
F:U104	$5.45 E+02$	441040	3
FiJlot	1.29E+02	441060	3
FH103	3.83E+02	451030	3
RH103M	2.31E-03	451031	3
EH10\%	1.13E-04	451060	3
AGI 10	7.34E-09	471100	3
CTH33	2. $23 \mathrm{E}-01$	481130	3
SN125	9.14E-07	501250	3
SN126	1.92E+01	501260	3
1129	2.29E+02	531290	3
J. 131	7.45E-06	531310	3
I132	1.76E-16	531320	3
XE133M	7.20E-23	541331	3
XE133	7.70E-09	541330	3
XE136	$2.31 E+03$	541360	3
Csi33	1.01E+03	551330	3
Cs 134	1. $63 E+02$	551340	3
csi35	3.24E+02	551350	3
csil 37	1. $23 E+03$	551370	3
CE141	1.59E+00	591410	3
CE144	2. $36 E+02$	581440	3

Table 3 List of COPRO

00001
00007
00003
00004
00005
00006
00007
00009
00009
00010
00011
00012
00013
00014
00015
00016
00017
00018
00019
00020
00021
00022
00023
00024
00025
00026
00027
00078
00029
00030
00031
00032
00033
00034
00035
00036
00037
00038
00039 00040 010041 00042 00043 00044 00045 00046 00047 00048 00049 00050 00051 00052 00053 00054 00055 00056 00057 00058 00059 00050 00051
00062

```
    FFOGRAM COFRO(INFUT,DUTFUT,LIERAY,TAFES,TAFEG=OUTPUT,
    x TAFE7)
```

 THIS FROGERAM COMFUTES ACTIUITY AN[I AMOUNT OF. THE HIGH LEUEL AND
 NON HIGH LEUEL WASTE DF FUEL COFFOCESSING FLANT. THE MODEL
 FROCESS ,FWF, EWF,LWR FUEL.
 ＊＊＊＊＊
IIMENSION ELE（800），MWT（900），STA（800），LNUC1（800），LNUC2（800），FI（800）
IIMENSION ELE1（800），MWT1（800），STA1（BOO）
UIMENSION OGI（800），KINI（800），T（800），LNUC $3(800)$ ，WW2（800），WW3（800）
IIMENSIUN WW（BOO），FI（800），WWI（800），VILLW（800），HEIE（800）
IIMENSIDN AIR（20），FII（800），FII（800），FLI（4，800），SW1（7），SWF（20）
IIMENSION SLSL（3．800），HALL（2，800），SOLL（800），CINCOL（800）
DIMENSIUN CINCO（800，2），SOLI（800．2）FFII（800），FI2（800）
IIMENSION FI2（800），FI3（800），FI4（800），TITLE（8）
REAL INMASS，ISS
INTEGEF RTYFE
C

FEAII（G， 9001 ）FFOWER，INMASS，HUFNUP，CAF，RTYFE，INCOOL
REAI（5．9003）TITLE
FEAII（S，¢OOS）IFUEL，IOUT，IIN，ISOTS，ISOTH，ISOTFF，KJZ，JZK
NTOTAL＝ISOTS＋ISOTH＋ISOTFF
OID $10 \mathrm{I}=1$ ，NTOTAL
REAU（5，9007）ELE（I），MWT（I），STA（I），FI（I），LNUC3（I），K゙IMI（I）
MWT1（I）＝MWT（I）
STAI（I）＝STA（I）
10 ELE1（I）＝ELE（I）
IF（JZK．NE，1）GO TO 13
WRITE（6，9501）RFOWER，INMASS，BUFNUP，CAF，RTYFE，INCOOL，IFUEL，IOUT，IIN
1．ISOTS，ISOTH，ISOTFP，K゙JZ，JZK
WFI TE（6，9006）TITLE
WRITE（6，9502）
IO $11 \mathrm{I}=1$ ，NTOTAL
11 WFITE（6，12）ELE（I），MWT（I），STA（I），F［（I），LNUC3（I），KIND（I）
13 WRITE（6， 6 Ë 18）
IF（K゙JZ．ER．1）WFITE（6，9503）

C
C
C
C
C
C
$\mathrm{KL}=1 \quad \$ \mathrm{KH}=3$
IO $5 \mathrm{I}=1$ ， 246
FEAII（7，900日）（L．NUC？（K゙），T（K），K゙＝KL，K゙H）
IF（KJZ．IHE．1）GO TO 2
WFITE（6，9516）（LNUC2（K゙），T（K゙），K゙こドL，K゙H）
$2 \mathrm{KL}=3+k \mathrm{~L}$
$K H=K H+3$
35 IF（FTYFE．LE．3）GO TO 40
WFITE（6，9050）
GO TO 10000
40 IF（IFUEL．EQ，2）WFiITE（ 6,9052 ）
IF（IFUEL．EQ，2）GO T0 10000
5气 IF（IIN，NE，O）GO TO SO
CALLL GKAM（FII，T，NTOTAL，LNUC3，LNUC2，O，MWT）
GO TO 70
OO CALI CURIE（FD，T，NTOTAL，LMUCZ，LNHCD．O）
＊＊＊＊＊＊＊＊UALUES OF YEAF DF OFEFATION＊＊＊＊＊＊＊＊

Table 3 -- Continued

```
00063
00064
00055
00066
00067
00068
00069
00070
000>1
00072
00073
00074
00075
00076
00077
00078
00079
00080
00081
00082
00083
000B4
00085
00086
00087
00088
00089
00090
00091
00092
00093
00094
00095
00076
00097
00098
00099
00100
00101
00102
00103
00104
00105
00106
00107
0010日
00109
0 0 1 1 0
001111
00112
00113
00114
00115
00116
00117
00119
00119
0 0 1 2 0
00121 C
00122
00123
00124
00125
00126
00127
00129
70 DFEE=.8919178
    CCK=CAF'/(365*OFE*10.0)
    ICAF=800.0*CCK
    IS5=10.0*CCK
    IO 75 I=1,NTOTAL
    OGI(I)=F口(I)
    FHI(1,I)=FI(I)
75
    10 99 KIN=1.3
    MM=0
    CALL KINII%(NIN,ISOTS,ISOTH,ISOTFF,NPNISOT,MM)
    IF(MM.EG.1) GO TO 99
    CALL NUC1(N,NISOT,KIN,LNUC1,LNUC3,FD,MWT,STA,ELE)
    IF(KIN.EG.2) GO TO 205
    CAI.L CUFIE(FD,T,NISOT,LNUC1,LNUC2,&)
C MAXIMIJM FOOL WATEK ACTIUITY IS IO**-2 CI/M**3 DOKET NO }70172
C FFSS INUENTORY 8OO TONNES OF FUEL, STEAIY STATE FUEL FLOW
    OF 10 MTHM FOR 3000 MT FUEL REFROCESSING PLANT,
    nO 80 I=1,NISOT
    FII(I)=0,0
    WFITE(6,12)ELE(I),MWT(I),STA(I),FD(I),LNUC3(I),KIND(I)
    IF(LNUC1(I).EQ.270580.0F%.LNUC1(I).EQ,270600) FI1(I)=0.1
    IF(LNIJEI(I).EO,400950,OR, LNUCI(I),ER,410950) FII(I)=.06
    IF(LNUC1(I),EQ.441060.0F*, LNUC1(I).EQ.451060) FII(I)=0.080
    IF(LNUJC1(I).EO.531290.0F. LNUC1(I),ER.531.310) FII(I)=.01
    IF(LNUCI(I).EQ.551340.OR.LNUCI(I),ER.551370) FII(I)=.5
    IF(LMUC1 (I),EQ.511240)FII(I)=.05
    IF(LNIJC1(I),EQ.581440) FII(I)=0.05
    IF(LNUC1 (I).EO.250540)FII(I)=0.05
    F1(I)=FII(I)
        BO CONTINUE
    MM=0
    ID 100 I=1,NISOT
    IF{LNUCI(I).EG.270580.DR.LNUC1(I).EQ.270600) GO TD 95
    IF(LNUC1(I).EQ.400950.0K. LNUCI(I).EG.410950) 50 T0 94
    IF (LNUC1(I),EQ,441060.OR, LNUC1(I).EG.451060) [0 T0 94
    IF LLNUC1(I),EQ.531290.0F, LNUC1(I),EG.531310) F0 T0 94
    IF(LNUC1(I),EQ.551340,OK.LNUC1(I),EQ.551370) GO TO 94
    GO TO 100
    94 IF(CK1.GT.1)MM=0.0
    95 MM=MM+1
    IF(MM.EQ.1) GO TO 9G
    IF(FII(I),NE,FII(M))GO TO 97
    ALFHA=F[D(M)/FD(I)
    FII(M)=FII(I)/(1+AI.FHA)
    FI1(I)=ALFHA*FI1(M)
    MMOO
    C<1=2.
    GO TO 100
9 7 M = I
    CK1=1.
    GO TO 100
98 M=I
    CK1=MM
    100 EDNTIPNUE
    C
C
```



```
1O170 I=1.NISOT
    WW(I)=0.0
    IF (LNJJC1 (I), EG,10030)WW(I) =0.01
    IF(LNUC1(I),GE.3608CO, AND.LNUIC1(I) LEE.360840)WW(I)=0.3
    IF(LNUCI(I),GE,531290,ANTI.LNUC1 (I) LE,5,I130n)WW(I)=0.7
```


Table 3 -- Continued

```
00129
00130
00131
00132
00134
00135
00136
00137
00138
00139
00140
00141
00142
00143
00144
00145
00146
00147
00148
00149
00150
00151
00152
00153
00154
00155
00156
00157
00158
00159
00160
00161
00162
00163
00164
00165
00166
00167
0 0 1 6 8
00169
001>0
00171
00172
00173
00171
00175
0 0 1 7 6
00177
00178
00179
00180
00181
00182
00183
00184
00185
00186
00187
00198
00189
0 0 1 9 0
0 0 1 9 1
00192
00193
00194
C
C
170.1F(LNUCI(I).EG.531310)WW(I)=.02
170 CONTINUE
C
C
C
C
C
C
C
c
175 UGAST = 110.0*0.02832*CCK
    UWAT =1.5665*CCN*(10.0/3.7)
        DO 1BO I=1,NISOT
        WW1(I)=FD(I)*0.02*WW(I)*ISS/UGAST
        FH(I)=FI(I)*(1.-WW(I)*.02)
    180 CONTINUE
    **** AIR FROM STOKAGE POOL FLIGG . UENT ANII FUEL UNLOADING UENT******
        AIF FRDM STOKAGE POOL FLIIG UENT AND FU
    AIR(1)=5664000*CCK
    ******* EXTRNAL CASK WASH DEION SOL'N ANII FILTER DEONIZEF REGEN .WASTE
        VALUE IN M**3.
    AGF1=4,7318*CCK
C
C
c
C
    ******** SOLID WASTE FROM FRSS HEFA FILTERS ANII SPENT FILTER
    FOR IIEIONIZER (COMBUSTIBLE BETA-GAMA)
    HENE(1)=.00283*CCK
C
C
    ****准** FOOL CONTAMINATION ILLW FROM IIEMINERAIZER***********
    ******* CONTAMINATEII CASK WATER *********
    C1=(300.0*1440*3.785E-03)*CCK
    UILLW(1)=14.3846*CCK
    [0] 190 I=1,NISDT
    FIB(I)=FI1(I)*1,E-02
    FI4(I)=FI3(I)*CI/UILL.W(1)
    FI2(I)=FI3(I)*C1*ISS/(ICAF*UWAT*2.0)
    IF(KIN,NE,3)GO TO 185
    F[11(I)=FI2(I)
    FII2(I)=FI3(I)
    F[13(I)=FI4(I)
    185 IF(F[M(I),EG,0.0) GO TO 190
    F1(I)=FI3(I)*CI/(FIB(I)*ICAF)
    F[I(I)=FI(I)-(FI2(I)*UWAT/ISS)-(FI3(I)*CI/ICAF)
    1 9 0 ~ C O N T I N U E ~
C
    ******** LEANERS IN TRANSIT *********
    *O FERCENT OF FUEL. TFIANSFORTEII EY FAIL ANL JO FERCENT BY TRUCK
    1 FERCENT FAI IT FUEL , EUERY LIAY THERE WILL FE ONE TRUCNK ANII 3 FAIL FDAD
            CAFSS COMING IN, TOTAL CARGO WILL BE 5.3 FUEL OF EWR(GE) OR 22 FUEL OF
        FWF (WH).
        UOLUME OF WATER IN TRUCK CASK 1O**S CC
    UOLIJME OF WATER IN F:AIL FODAII CASK 2.3*10**G CC
    1 FRESFNT OF 4 CASK WILL HAUE CONTAMINATEI WATER.
    ********* FAIL[I FIJEL OFF GAS VENT ANII SHIFPING CASK UENT*******
C
```



```
    if(k,iri,ea,3)툐0 to 192
    if(kirieq. 3)so
    WFITE(b,9006)TITLE
    WRITE(6,9504)ICAF,ISS,GURNUF,INCOOL
    WKITE(6,9508)
    WRITE(6,9512)
192 तo 200 i=1,NISOT
    IF(KIN,EQ,3) GO TO 19S
```


Table 3 -- Continued

```
0014'S IFIFI2<1),EQ.0.O.ANT.FI3(I),EQ,O,O,AN[I,FIA(I),EQ,O.O
00106 X.AH[I.WWI(I).ER.O.O)
00197
0019日
00197
00200
00201
00202
00203
00204
00205
00204
00207
00208
00269
00210
00211
00212
00213
00214
00215
00216
00217
00219
00217
00220
00221
00222
00223
00224
00225
00226
00227
00228
00229
00230
00231
00232
00233
00234
00235
00236
00237
00238
00239
00240
00241
00242
00243
00243
00244
00245
00246
00247
00247
00248
00249
00250
00251
00252
00253
00254
00255
00254
00257
00258
00258
00259
00260 C MASS OF FWF (WH) FUEL S68.6 KG/ASSEMFLY
    1 GO ro 200
    if(i,eg.1)write(6,9013)
    WFITE(6,9014)ELE(I),MWT(I),STA(I),FI2(I),WWI(i),FI3(I),FIA(I)
    1,F1(I)
        GO TO 200
    105 IF(FII\(I),EG,O,O,ANI,F[I2(I),EQ,O,O,AN[I,FIIZ(I),EQ,O,O
        1.ANII,WWI(I),EG,O.0) GO TO 200
        if(i,eq, 1)write(b,9555)
        WRITE(G,9014)ELE(I),MWT(I),STA(I),FII(I),WW1(I),FII2(I),FIJ(I)
        1,FI (I)
    200 CONTINUE
C
C
        CALL CUFIE(FI,T,NISOT,LNUC1,LNUC2,0)
    205 H0199 I=1,NISOT
        IF(KIN.EQ,1)K=I
        IF(KIN,EQ,1)K=I
        IF(KIN,EQ.2)K=ISOTS+I
        IF(KIN.EQ.3)K=ISOTS+ISOTH+I
            IF(FI(I),EG,O,O) FI(I)=0GI(K)
        OGI(K)=FI\I)
        FOI(2,K)=FO(I)
    17B CONTINUE
C
C
    9 9 ~ C O N T I N U E ~
        DO 206 I=Y,NTOTAL.
        DO 206 I=1,NTOTAL
        ELE(I)=ELE 1(I)
        MWT(I)=MWTI(I)
        STA(I)=STA1(I)
    206 CONTINUE
        IO 215 I=1,NTOTAL
    215 F[1(I)=FIII(I,I)
    WFITE(G,O515)UWAT,AIR(1),VGAST,AGF1,UILLW(1),HEIE(1)
C
C************ FRAMETER FOR SHEARING ANII H-3 REMOVAL ANII MISSOLUEF*******
C C********** FRAMETER FRMMETERS ARE IN M**3/LIAY
C
        VGAS2=1700.0*CCK
        AIR(2)=5664*CCK
        AIF(3)=CCK*4.OBE+05
        AIR(3)=566*4.OBE
        VGAS3=5664.0*CCKK
        AGF2=2.271*CCK
        FLNUM1=5*CCK
        FLNUM2=2*CCK
        HETIE (2)=CCK*9.6288E-02
        IIISF=CCK*3.028E-01
        VILLW(2)=3.028*CCKK
        VILLW(2)=3.028*CCKK
        FAWM=31.0*CCK
        F'RINT*,IDUT
        IF(IOUT,GT,0) GO TO 216
        CALL GRAM(FL,T,NTOTAL,LNUC3,LNUC2,1,MWT)
        GO 10 217
    215 CALL CUFIE(FI,T,NTOTAL,LNUC3,LNUC2,1)
    217 HO 520 KIIN=1,3
        MM=O
        CALL KINIX(KIN,ISOTS,ISOTH,ISOTFF,N,NISOT,MM)
        IF!MM.EQ.1)GO TO 520
        CALL NUCI(N,NISOT,KIIN.LNIJC1,LNUCZ,FI,MWT,STA,ELE)
    C
```



```
    C ISASS OF EWF (GE) FUEI 270 KG/ASSEMMFLY
```


Table 3 －－Continued

```
00261 C
```



```
00363
00264
00565
00266
00267
00269
00270
00271
00272
00273
00274
00275
00276
00277
00278
00279
00280
00281
00282
00283
002B4
00285
00286
00287
00288
00289
00290
00291
00292
00293
00294
00295
00296
0 0 2 9 7
00298
00299
00300
00301
00302
00303
00304
00305
00306
00307
0030日
00309
00310
0 0 3 1 1
00312
00313
00314
00315
00316
00317
00318
00319
00320
00321
00322
0032
00324
00325
00326
C
IF(KIN.NE,1)GO TO 390
    IF(RTYFE-1)220,250,300
    C
C******草草茾********************************************
C ENI FITTING FOR FWR FUEL(GE);STAINLESS STEEL
C INCDNAL X750 ANII ZIRCALOY 2ANII A
C
C******************************************************
    220 ENUM=CCK*10000.0/188.7
        COL=ENUM*759.0
        SST=ENUM*8535.0
        ZF2=ENUM*1960.0
        ZF4=ENUM*2386.0
        no 230 I=1,NISOT
        WW(I)=0.
            WW2(I)=0.
        WW3(I)=0.
            F1(I)=0.
            FII(I)=0.
        IF(LNUC1(I),GE,60120.AND.LNUCI(I),LE.60130) GO TO 221
        IF(LNUC1(I),GE,130270,ANI,LNUC1(I),LE,130290) WW(I)=100.
        IF(LNUC1(I).GE.140280,ANN.LNUCI(I).LE.140310) GO TO 222
        IF(LNUC1 (I).GE.150310.AND.LNUCI(I),LE.150340) WW2(I)=100.
        IF(LNUC1(I),GE.160320.AN[I.LNUEI(I).LE,160370) GO TO 223
        IF(LNUC1(I).GE.220460.ANHI.LNUC1(I),LE,220510) WW(I)=100.
        IF(LNUCI(I),GE.240500.ANII.LNUCI(I),LE.240550) GO TO 224
        IF(LNUC1(I),GE.250540.ANII.LNUC1(I).LE.250580) GO TO 225
        IF(LNUC1(I).GE.260540.ANN.LNUCI(I).LE.260590) GO TO 226
        IF(LNUC1(I).GE.280580.ANT.LNUCI(I).LE,280650) GO TO 227
        IF(LNUC1(I),GE.200400.ANII.LNUC1(I),LE,200480) WW(I)=100.
        IF(LNUC1(I).GE.290620.AND.LNUC1(I).LE.290660) WW(I)=100
        IF(LNUCI(I).GE, 340760.AND.LNUCI(I).LE,340850) WW2(I)=100.
        IF(LNUCI(I).GE.400900.ANI,LNUCI(I).LE.400980) GO TO 228
        IF(LNUC1(I).GE.501140.ANII.LNUC1(I).LE.501320) G0 T0 229
        GO TO 230
    221WW(I)=2.717 WW2(I)=97.2日3
        GO TO 230
    222 WW(I)=1.7480 * WW2(I)=99.252
        GO IO 230
    223WW(I)=1.0320 WW2(I)=98.96日
        G0 TO 230
    224 WW(I) =6.4171 $ WW2(I)=90.4976
        WW3(I)=.13314*F1(I)=.1531 FI1(I)=2.79906
        GO TO 230
    225 WW(I)=2,8083 $ WW2(I)=97.192
        GO TO 230
    226 WW(I)=.82813 WW2(I)=97.0309
        WW3(I)=.04806 & FI(I)=.07507 & FII(I)=1.01029
        GO TO 230
    227 WW(I)=41.0121 $WW2(I)=57.03531
        WW3(I)=.09269 $ FII(I)=1.86012
        GO TO 230
    229 WW3(I)=4.37774 $ FI(I)=3.9054
        FII(I) =91.71686
        G0 10 230
    229 WW3(I)=4.367 $ F1(I)=3.827
        FI1(I)=91.806
    230 CONTINUE
        GO TO 350
    C
C***************************************************************
C FWR (WH) ENI FITTING ANI OTHEF FAFTS OF FUEL ASSEMELY
C*****************************************************************
C
```

Table 3 -- Continued

00327
00328 00329 00330 00331 00332 0033.3 $003 \sqrt{3} 4$ 00335 00336 00337 00338 00339 00340 00341 00342 00343 00344 00345 00346 00347 00348 00349 00350 00351 $0035 ?$ 00353 00354 00355 00356 00357 00359 00359 00360 00361 00362 00363 00364 00365 00366 00367 0036 B 00369 00370 00371 00372 00373 00374 00375 00376 00377 00379 00379 00380 00381 00392 00393 00384 00385 00386 00387 00388 00389 00390 003 ? 1 00392

```
250 ENUM=CCK*10000./461.4
    COL=ENUM*5500.0
    SST=ENUM*10000.0
    ZR4=ENUM* 129700.
    HO 260 I=1,NISOT
    WW(I)=0.
        WW2(I)=0.
    WW3(I)=0.
        F1(I)=0.
        FII(I)=0.
    IF(LNUC1{I),GE,60120.ANII.LNUC1(I).LE.60130) GO TO 251
    IF(LNUC1(I),GE.130270.ANH.LNUC1(I).LE.130290) WW(I)=100.
    IF(LNUC1(I).GE.140280.AND.LNUC1(I).LE.140310) GD TO 252
    IF(LNUC1(I).GE.150310.AND.LNUC1(I).LE.150340) WW2(I)=100.
    IF(LNUC1(I),GE.160320.AND,LNUCI(I),LE.160370) GO TO 253
    IF(LNUC1(I),GE.220460.AND.LNUC1(I).LE.220510) WW(I)=100.
    IF(LNUC1(I),GE.240500.ANN.LNUC1(I).LE.240550) GO TO 254
    IF (LNUC1 (I),GE.250540.ANI.LNUC1(I).LE.250580) WW2 (I)=100.
    IF(LNUC1(I),GE.260540.AND.LNUC1(I),LE,260590) GO TO 255
    IF(LNUC1(I).GE.2B05B0.AND.LNUC1(I).LE.280650) GO TO 256
    IF(LNUC1(I).GE.270540.ANII.LNIJC1(I).LE.270620) WW(I)=100.
    IF(LNUC1 (I).GE.290620.ANII.LNUC1(I).LE.290660) WW(I)=100.
    IF(LNUC1(I).GE.340760.AND.LNUC1(I).LE.340850) WW2(I)=100.
    IF(LNUC1(I),GE,400900,AND,LNUCI(I),LE,400980) GO TO 257
    IF {LNUC1(I).GE.420920.ANII.LNUC1(I).LE,421050)WW(I)=100.
    IF(LNUC1(I),GE.501140.AND.LNUC1(I).LE,501340) GO TD 257
    IF(LNUC1(I).GE.410940.AND.LNUC1(I).LE.411010) WW(I)=100.
    IF(LNUC1(I),GE,731800.AND.LNUC1(I).LE.731821) WW(I)=100.
    GO TO 260
    251 WW(I)=12.51 $WW2(I)=87.49
        GO TO 260
    252 WW(I)=9.01 * WW2(I)=90.99
        GO TO 260
    253 WW(I)=.2197 *WW2(I)=99.7803
        CO TO 260
    254 WW(I)=33.37 WW2(I)=60.B194
        F1(I)=.2906 FII(I)=5.52
        GO TO 260
    255 WW(I)=12.16 WW2(I)=84.1766
        FI(I)=.1834 FII(I)=3.48
        G0 T0 260
    256 WW(I)=78.06 WW2(I)=21.94
        GO TO 260
        257 F1(I)=5.0 * FII(I)=95.0
    260 CONTINUE
        GO TO 350
    c
    C********放************************************************************
    C LWR CIAIIDING ANII STRUCTURAL MATERIAL EFIIA-76-43 VOL 1.
```



```
    C
        300 ENUM=CCK**10000,/311.4
        COL=ENUM*2500.
        SST=ENUM*9000.0
        ZF4=ENIJM*89550.0
        IO 310 I=1,NISOT
        WW(I)=0.
        WWz(I)=0.
        WW3(I)=0.
        FI(I)=0.
        FII(I)=0.
        IF(INUC1(I),GE.130270.AMO.LNUC1(I).LE.130290) WW(I)=100.
        IF(LNJC1(I).GE.G0120.AND.LNUC1(I).LE.60130) GO TO 301
        IF(LNUCI(I),GE,140280.ANI.LNUCI{I).LE,140310) G0 T0 302
        IF(LNUC1(I).GE.150310.HNT.LNUC1(I).LE. 150340) WW2(I)=100.
        IF{LNUC1(I),GE,160J20,AND,LNUC1(I),LE,1o0370) G0 TO 303
```


Table 3 -- Continued

00393 00.394 00395 00396 00398 00399 00400 00401 00402 00403 00404 00405 00406 00407 00408 00409 00410 00411 00412 00413 00414 00415 00416 00417 00418 00419 00420 00421 00422 00423 00424 00425 00426 00427 00428 00427 00430 00431 00432 00433 00434 00435 00436 00437
00438 00439 00440 0044 00442 00443 00444 00445 00446 00447 0044 00449 00450 0045 00452 00453 00454 00455 00456 00457 00459

IF (LNUC1 (I).GE.220460.ANI.LNUC1 (I).LE.220510) IF (L.NUC1 (I), GE. 240500.ANI.LNUC1 (I).LE. 240550) IF (LNUC 1 (I), GE, 250540.ANI.LNUC1 (I).LE. 2505B0) IF (LNUC1 (I).GE. 260540 . ANI.LNUC 1 (I). LE. 260590) IF (LNUC 1 (I).GE. 280580 . ANH.LNUC1 (I).LE. 280650) IF (LNUC 1 (I), GE. 270540 , ANII.LNUCI (I), LE, 270620) IF (LNUC 1 (I), GE. 290620.ANH.LNUC1 (I). LE. 290660) IF (LNUC1 (I), GE. 340760 .ANII. LNUC 1 (I). LE, 340850) IF (LNUC1 (I), GE, 400900.ANH. LNUC1 (I), LE , 4009 80) IF (LNUC1 (I), GE, 420920.ANI,LNUC1 (I). LE.421050) IF (LNUC1 (I). GE. 501140 .ANH.LNUC1 (I). LE . 501340) IF (LNUC1 (I), GE, 410940, ANH, LNUC1 (I), LE . 411010) IF(LNUC1 (I).GE.731800.ANH.LNUC1 (I).LE.731821) GO TO 310
$301 W W(I)=6.67 \quad W W 2(I)=93.33$ GO TO 310
302 WW(I)=4.72 *W2(I):=95.28
GO TO 310
$303 \mathrm{WW}(I)=3.8 \quad W W 2(I)=96.2$ GO TO 310
304 WW (I) $=20.52 \$$ WW2(I) $=74.59$ FI (I) $=.24$ FII(I) $=4.65$ GO TO 310
$305 W W(I)=6.54 * W W 2(I)=90.5$
FI(I) $=15$ \& FII(I)=2, BI
GO TO 310
306 WW (I) $=61,92 \quad \$ W W 2(I)=38.18$
GO TO 310
$307 \mathrm{Fi}(\mathrm{I})=5.0$ FII(I)=95.0
310 CONTINUE
C
C***
C CALCULATIDN OF SHEAFING ANII IISSOLUEF FRODUCT
C (STFUCTURAL MATERIAL IS SENO TO SOLID WASTE FAEILITY)
C**
C
350 10 $370 \quad \mathrm{I}=1$,NISOT
IF (WW (I), EO.O.O.ANT, WW2 (I), EG.O.O.AND,FI (I) ER, O. O.AND
1.WW3(I).EQ.O.O.ANII.FII(I).EG.O.0) GO TO 360

CINCO(I, 1)=FI(I)*WW(I)*ISS/100.
SLSL $(1, I)=F \mathrm{D}(\mathrm{I}) * W \mathrm{~W} 2(\mathrm{I}) * I S S / 100$.
SLSL(3,I)=FD(I)*FI(I)*IS5/100.
SLSL(2,I)=FI(I)*WW3(I)*ISS/100.
OGI(I)=FI(I)*(100.0-\{WW(I)+WW2(I)+WW3(I)+FI(I)+FII(I)))*ISS $\operatorname{IF}(\operatorname{OGI}(I), N E, 0,0)$ OGI $(I)=0,0$ GO TO 370
360 CINCO (I, 2) =FD(I)*ISS OGI (I) $=0.0$
370 CONTINUE
C

C DISSOLVER INFUT; FUEL BASKET FROM H-3 FEMQUAL FACILITY
C IIISSOLUER OUTFUT: FAN METAL SOLUTIDN
HISSOLVER DFF GAS HALL FINSE(2M NADH) EQUIFMENT FLUSH(F -) HALL
 [

00 $380 \mathrm{I}=1, \mathrm{NISOT}$
$\operatorname{HALL}(1, I)=\{F[(I) * F I 1$ (I)*ISS+CINCO(I,2))*.9877*ISS SOLI(I,1)=(FH(I)*FI1(I)*ISS+CINCO(I,2))*.0112*ISS SOLI (I,2) = (FIT I)*FI1(I)*ISS+C1NCO(I,2))*.0011*155
380 CONTINUE GO $10 \quad 450$

WW2(I) $=100$. GO TO 304 WW2 (I) $=100$. GO TO 305 60 TO 306 $W W(I)=100$. $W W(I)=100$. $W W 2(I)=100$. GO TO 307 $W W(I)=100$. GO TO 307 $W W(I)=100$. $W W(I)=100$.
C IISSOLVER DFF GAS
C
C HALL FINSE 2 2M NADH
EGUIFMENT FLUSH $(F \rightarrow)$
C HALI

- TOO $380 \quad I=1$, NISOT
ONTINUE
TO TO 45

Table 3 -- Continued

00459 00460 00461 00462 00463 00464 00465 00466 00467 00468 00469 00470 00471 00472 00473 00474 00475 00476 00477 00478 00479 00480 00481 00482 00483 00494 00485 00486 00487 00488 00489 00490 00491 00492 00493 00494 00495 00495 00497 0049 B 00499 00500 00501 00502 00503 00504 00505 00506 00507 00508 00509 00510 00511 00512 00513
00514
00515
00516 00517 - 5518 00519 00520 00521
00522
00523
00524

```
    390 IF(NIN.NE.2) GO TO 420
C
```



```
C IIISSOLUER RINSE ACTINID AND HEAUY ELEMENT CONSENTEFATION
C FU LESS THAN 0.02 0/0
C U LESS THAN 0.05 0/0
C OTHEFS LESS THAN 0.01 0/0
```



```
C
    IO 400 I= I,NISOT
    F'R=0.0001
    IF(LNUC1(I).GE.942360.ANII.LNUC1(I).LE.942450)FR=.0002
    IF(LNUC1(I).GE.922400.AND.LNUC1(I).LE.922700)PR=.0005
            SOLI(I, ב)=FI|(I)*ISS*F.R
            OGI(I+N-1)=F口(I)*(1-FR)疌ISS
    400 CONTINUE
```



```
            FFF=5.7E-7
            DO 410 I=1,NISOT
            WW3(I)=PR*FIT(I)*ISS
    4100GI(I+N-1)=OGI(I+N-1)*(1-F'R)
            GD TD 450
C
```



```
C TFITIUM REMOUEF
C FIJRNACE FUFGE 5664 H**3/DAY CONTAMINATED (IOG) AIR
    FIJRNACE FUFGE 5664 H**3/DAY CONTAMINATED (IIOG) AIR 
    FLIRNACE COOLING 4.08E+S M**3/DAY 11 DEGREE TEMP. RISE (TO STACK) AIR
```



```
C
```



```
C
    420 10 440 I=1,NISOT
            PK=0.0
            FR1=5.7E=07
            F\cdotR2=.0001
            IF(LNJJCI(I).ER.10030) GO TO 421
            IF(LNUCI(I),GE.360800.ANII.LNUCI(I).LE.360900) GO T0 422
            IF(LNUC1(I).GE.441000.AN[I.LNUC1(I).LE.441600) FRR=.207
            IF(LNUC1(I).GE.531290.ANI.LNUC1(I).LE.531330) GO TO 423
            IF(LNUC1(I),GE,541290.ANII,LNUCI(I),LE,54I340) GO TO 424
            GO TO 425
    421 F'RO=.99 s F'R1=0.0 & F'R2=0.0
    GO TO 425
    422 FFR=.742E-03 * FRI=1.0 & FR2=0.0
    GO T0 425
    423 F'F=.00487 & FR1=1.0 & F'R2=0.0
    G0 T0 425
    424 F'F:=.709E-0.3 $F'R1=1.0 $F\cdotR2=0.0
    42S SOLI(I,2)=F'R2*FD(I)*ISS
    WW2(I)=FI|I)*ISS*F'R
    WW3(I) =FII(I)*ISS*PRI
    IF(FFI.NE.1.0) 60 T0 430
    WW3(I)=F[I(I)*ISS*(1-PR)
    FFR1=1-FF
    4.30 0GI(N+I-1)=FI(I)*ISS*(1-FFRI-FR-FR2)
    440 CONT INUE
    450 WFITE (A,9520)
            WFITE(6,9,006)TITI.E
            IFIIRUT,GT.0)GO TO 453
            WFIITE (6,9505) ICAF'ISS. FUNNUF*, INCOOL
            GO TO 455
        453 WFIITE(6.7504)ICHF,ISS, BIJFNUF, INCOOL
    455 WFITE (6,95,25)
    IF(FETYFE.GT,O)GO TM 457
    HKITE(%,9530)
```


Table 3 －－Continued

00525
00526
00527
00528
00529
00530
00531
00532
00533
00534
00535
00536
00537
00538
00539
00540
00541
00542
00543
00544
00545 00545 00547 00548 00549 00550
00551
00552
00553
00554
00555
00556
00557
00558
00559
00560
00561
00562
00563
00564
00565
00566
00567
00568
00569
00570
00571
00572
00573
00574
00575
00576
00577
0057 9
00578
00580
00581
00592
00583
0058 4
00585
00596 00587

GO TO 459
457 WFITE（6，9535）
45\％IF（NIIN－2）456，480，500
456 WFITE（6，9537）
ID $470 \quad I=1$ ，NISOT
$W W 2(I)=0.0$
SOLI（I，I）＝SOLI（I，1）／DISF
SOLI（I，2）＝SOLI（I，2）／VILLW（2）
$\mathrm{F} \cdot \mathrm{R}=0.0$
IF（LNUCI（I）．EG． 60140$) \mathrm{FR}=1.0$
IF（LNUC 1 （I）．GE．360800．AND．LNUCI（I）．LE． 360900 ）PR＝1．0
IF（FR．EG．O．0）GO TD 460
WW3（I）$=$ FD（I）＊ISS／UGAS4
$\operatorname{HALL}(1, I)=0.0$
SOLI $(I, 2)=0.0$
SOLI $(I, 1)=0.0$
OGI（I）$=0.0$
460 FII（I）＝OGI（I）／RAWM
WRITE（6，9540）ELE（I），MWT（I），STA（I），SLSL（1，I），CINCD（I，1），SLSL（2，I），
1 SLSL（3，I），HALL（I，I），SOLI（I，2），SOLI（I，I），WW3（I），WW2（I），FI（I）
470 CONTINUE
GO TO 520
480 WFITE（ 6.9545 ）
［10］ $490 \quad I=1$ ，NISOT
$S L S L(1, I)=0.0$
SLSL $(2, I)=0.0$
SLSL $(3, I)=0.0$
CINCO $(I, 1)=0.0$
HALL $(1, I)=0.0$
SOLI $(I, 1)=0,0$
$W W 2(I)=0.0$
SOLI（I，2）＝SOLI（I，2）／VILLW（2）
WW3（I）＝WW3（I）／UGAS4
$F I(I)=0 G I(N+I-1) /$ RAWM
WRITE（6，9540）ELE（I），MWT（I），STA（I），SLSL（1，I），CINCQ（I，1），SLSL（2，I）， $15 L S L(3, I), H A L L(1, I), S O L I(I, 2), S O L I(I, 1), W W 3(I), W W 2(I), F I(I)$
490 CONTINUE
GO TO 520
500 WFITE（6．9555）
LID $510 \quad I=1$ rNISOT
SI＿St $(1, I)=0,0$
$S L S L(2, I)=0.0$
$\operatorname{SLSL}(3, I)=0.0$
CINCO $(I, 1)=0.0$
$\operatorname{HALL}(1, I)=0.0$
SOLI $(I, 1)=0.0$
SOLI（Ir2）＝SOLI（I•2）／VILLW（2）
WW？（I）＝WW？（I）／UGAS3
WW3（I）$=$ WW3（I）／UGAS4
FI（I）$=0$ gI $(N+I-1) /$ FAWM

$1 S L S L(3, I)$ ，HALL（ $1, I), 50 L I(I, 2), S O L I(I, 1), W W 3(I), W W 2(I), F I(I)$
510 CONTINUE
520 CONTINUE
WFITE（6，9550）AIF（1），AIF（2），UGAS2，UGAS3，UGAS4，AGF2，UILLW（2）
1，リILLW（3），［1ISF，RAWM
IF IIDUT．ER．O）GO TO 505
CALL CUKIE（DGI，T，NTOTAL，LNIJC3，LNIJC？．0）
60 「口 530
505 CAL．L ERAM（OGI，T，NTOTAL．LNUC3．LNUC2，O，MW11）
530 IO $525 \mathrm{I}=1$ ．NTOTAL
$E L E(I)=E L E 1\langle I)$
HWT（I）＝MWTI（I）

Tabie 3 -- Continued

00588 00589 00590 00591
00592 00593 00514 00595 00596 00597 00598 00599 00600 00601
00502
00603 00604 00605 00606 00607 00609 0050 O 00610 00611 00812 00813 00514 00815 00816 00617 00818 00619 00620 00621 00.522 00623 00624 00625 00626 00627 00328 00629 00630
00631 00632 00633 00534 00635 00636 00637 00638 00639 00640 00641 00642 00643 00 e 44 026.45 00696 00647 00448 00549 00650 00651 00652 00.853

STA(I)=STA1(I)
525 FII (3,I)=0GI(I)/ISS WRITE (6.9560)
WFITE(6,74) (ELE(I),MWT(I),STA(I),FII(1,I),FII(2,I),FII(3,I)
$1, I=1$, NTOTAL
STOF
ᄃ
C************** FORMAT STATEMENTES *******************
C
9001 FQFMAT (4F10.3.2I5)
9003 FOFMAT (8A10)
0005 FOFMAT(8IS)
9007 FOKMAT (A2, I3, A2, 5X, 1FE9, 2, $6 \mathrm{X}, \mathrm{I7}, 10 \mathrm{X}, 14$)
9501 FORMAT (1H1,//,40X. "INFUT IAATA "///10X, "RFOWER",F10.3, "INMASS"
1, F10.3, "EUFNUF ' F 10.3 ,
1/, 10X, "CAF", 3X,F10.3,"RTYFE",6X,I5,"INCOOL",5X,I5

9502 FOFMM $(1 H 1, / / /, 4 X$, "ISOTOFES WHICH ARE FEALI IN EY FDKMAT 9007 ")
12 FORMAT ($10 \mathrm{X}, \mathrm{A} 2,13, \mathrm{~A} 2,5 \mathrm{X}, 1 \mathrm{FE}, 2,6 \mathrm{X}, \mathrm{I} 7,10 \mathrm{X}, \mathrm{I} 4$)
9518 FDRMAT (1H1,////)
9503 FDFMAT (10X, [IATA IN THE LIFRARY IS"',//)
9008 FOFMAT(3(I7,3X,1FE10,4))
9516 FOFMAT(10X,3(I7,3X,1FE15,4))
9050 FDFMAT ($15 \times$."DATA FOF THIS TYFE OF REACTOR NOT AVALIELE")
9052 FDF:MAT ($15 X$, "DATA FOR THOKIUM FUEL IS NOT AUALIBLE ")
OEOO FORMAT (1H1,37X, "**** WASTE FROM SHIPING ANG FUEL RECIUEING - STORA 1GE FOOL *****')
9006 FOFMAT (10 X , EAIO)
9504 FOFMAT(///,10X,"FUEL FOOL CAFACITY ",I5,"MTHM",5X,"STEADY STA 1 TE FLOW OF MATERIAL",F6.2, "MTHM/LIAY",4X, BURNUF",F10.3, "MWI", /,10X 2 , "CODLIMG TIME*, IS, "IAY,", //,10X, "ALL UALUES OF THIS TABLE IS IN 3 UNITS OF CUFIE/M央3 OF FLOW OF MATERIAL PER [IAY*, //)
9508 FOFMAT $3 X$, "ISOTOFE", $4 X$, "FAILER FUEL", $6 X$, "FAILEII FUEL ANII", 日X, "FOOL 1 WATEK", $9 X$, "ILLW", $10 X$, "FOOL WATER")
9512 FORMAT (14X, "CASK WATER', 5X, "SHIPFING CASK VENT',5X," $1,3 x$ 1, 'LEEIONIZEF FLUSHES *,10X, "NF")
9013 format($3 X$, "CLALIIING ANII STRUCTUFAL MATERIAL")
 1,10X,1PE15.4)
9515 FOFMAT (1X.//, "**", /, 10 x , 1 "VOLUME DF THE CA5K WITH FATLEII FUEL",5X,1FE10.2, "M**3/[IAY*, $1,10 \mathrm{X}$, 2 VOLUME OF STOFAGE FOOL RLLG UENT , SX, 1FE 10.2 , "M W $3 /$ LIAY,$/, 10 X$, 3' AIF TO SAND FILTEK $\quad 1 / 10 \mathrm{X}$, 4'UOLUME OF FAILEII FUEL ANII CASK VENT", SX,1FE10.2,"M**3/IAY", /, 10X. S"HELIUM ${ }^{\circ}$, $/ 10 \mathrm{OX}$, G"VOLUME OF EXTERNAL CASK DEION 5OL'N',5X,1FE10.2, 'M**3/DAY*, /, 10 X , 7*VOLUME OF FILTER DEIONIZEF REGEN •, SX,1FE10.2, "M**3/LAYY, /, 10X, 8.WASTE. (EQUAL AMTS. OF S FERSENT $\because / 10 X$, 9. NA- OH ANII 5 FERSENT H- NO3) ", /10X, A"VOLUME DF SFENT HEFA, IEIDNTZER FILTER",3X,1FE10.2,"M**3/[IAY") 9520 FORMAT 1 1H1,37X,"***** WASTES AND FRODUCT OF SHEARING ANG TRITIUM 1 REMOUAL ANO IISSOLUEF: *****")
8505 FOFMAT(///, 10 X , "FUEL FDOL EAFACITY *.IS,"MTHM", 5X, "STEADY STATE
 2 , 'CODLING TIME*, IS, "IAY,", //.10X, "ALL VALUES OF THIS TABLE IS IN 3 UNITS OF GFAM/M**3 OF FLOW OF MATERIAL FER LIAY*, //,
9525 FORMAT (30X, "SHEARING", 40X, "DTSSDLUER", 20 X, "H-3 FEMDUAL",/

 1.FEEETO $5 X^{*}$)

9537 FGFMAT 3 XX , "STFULTEAL ******************)
 1 2X,1FEQ,2,5X,1FE7.2:

Table 3 －－Continued

```
00654
00855
00656
00657
00558
0065%
00.660
00661
00652
00463
00564
00&65
00.56is
00667
00669
00649
00670
00671
00672
00873
00674
00&75
00476
005?7
00nig
00679
00690
00681
00.5H2
09क83
00684
00685
00ょ&月
00:587
00648
00.839
00690
00491
00692
00693
00.594
00695
00.496
00697
00678
00699
00700
00701
00702
00703
00704
c0705
00706
00707
00708
```

9545 FOFMAT(3x, "HEAUY ELEMENTS******************")

```
9545 FOFMAT(3x, "HEAUY ELEMENTS******************")
9E55 FOFMAT(3X, *FSSIITN FROIUCT\##***************)
9E55 FOFMAT(3X, *FSSIITN FROIUCT\##***************)
9550 FOFiMAT<1X%!/, "**********************************************,/,10X,*
9550 FOFiMAT<1X%!/, "**********************************************,/,10X,*
    1"TRITIUM FEMQUAL. CELL YENTILATION",5X,1FE10.2. "M**3/[IAY",/,10X,
    1"TRITIUM FEMQUAL. CELL YENTILATION",5X,1FE10.2. "M**3/[IAY",/,10X,
    2,AIR TO SAND FILTEF'/.1OX.
    2,AIR TO SAND FILTEF'/.1OX.
    3"TFITIUM REMOUAL FUFENACE CUOLING*, SX, 1FE10.2."M**3/LIAY",/,10X,
    3"TFITIUM REMOUAL FUFENACE CUOLING*, SX, 1FE10.2."M**3/LIAY",/,10X,
    4"AIF TO GANI| FILTEF (11 LIEGNEES C*,/, 10X,
    4"AIF TO GANI| FILTEF (11 LIEGNEES C*,/, 10X,
    5*TEMP, KISEJ* %/,10X,
    5*TEMP, KISEJ* %/,10X,
    $"SHEAFING CELL. FUFGE. AFGON WITH * 5X,1FE10.2, "M**3/IIAY",/,10K,
    $"SHEAFING CELL. FUFGE. AFGON WITH * 5X,1FE10.2, "M**3/IIAY",/,10K,
    7.TFIACE OF KRI,XE,I ANII H*//.10X,
    7.TFIACE OF KRI,XE,I ANII H*//.10X,
    &"TRITIUM FEHOUAL OFF GAS *,5X,1FE10.2, "M*变3/IIAY",/1,10X,
    &"TRITIUM FEHOUAL OFF GAS *,5X,1FE10.2, "M*变3/IIAY",/1,10X,
    O" (FIJFENACE FUKGE)*,/,10X,
    O" (FIJFENACE FUKGE)*,/,10X,
    A"IISSOLUEF OFF GAS (IOG). ",5X,1FE10.2."M**3/LIAY',/, 10X,
    A"IISSOLUEF OFF GAS (IOG). ",5X,1FE10.2."M**3/LIAY',/, 10X,
    E"SHEAFING FILTEF IIEIUNIZER REGEN ", SX,1FE10.2,"M**3/[IAY":/, 10X,
    E"SHEAFING FILTEF IIEIUNIZER REGEN ", SX,1FE10.2,"M**3/[IAY":/, 10X,
    C'(ILLW) 5 0/0 NAOH AN[I 5 0/0 HNO *,/,10X,
```

 C'(ILLW) 5 0/0 NAOH AN[I 5 0/0 HNO *,/,10X,
    ```


```

 E" (NAOH,NANO3 AN[I H2O)"./.10X.
    ```
    E" (NAOH,NANO3 AN[I H2O)"./.10X.
    F"IISSOLUER RINSE (NITRIC ACIII) *,SX,1FE10.2,"M**3/IAY",/,10X,
    F"IISSOLUER RINSE (NITRIC ACIII) *,SX,1FE10.2,"M**3/IAY",/,10X,
    G* WISSOLUEF FLUSH (NADH AN[I H2O) - 5X,1F.E10.2,"M**3/LAY",/, 10X,
    G* WISSOLUEF FLUSH (NADH AN[I H2O) - 5X,1F.E10.2,"M**3/LAY",/, 10X,
    H'FAAW METAL SOL'N TO SULUENT *,5X, 1FE10.2, "M**3/DAY",/,10X,
    H'FAAW METAL SOL'N TO SULUENT *,5X, 1FE10.2, "M**3/DAY",/,10X,
    I "EXTRAACTION (HNOS ANLI NH4OH)")
    I "EXTRAACTION (HNOS ANLI NH4OH)")
9560 FOFMAT(1H1r5X, "MAIN STREAM FLDW IN NUMEER OF ATOMS/MTHM*
9560 FOFMAT(1H1r5X, "MAIN STREAM FLDW IN NUMEER OF ATOMS/MTHM*
        1./. 3X, "ISOTOFE*, 10X, "FII(1,I) ",BX."FLII(2,I)*,BX, 'FII(3,I)*)
        1./. 3X, "ISOTOFE*, 10X, "FII(1,I) ",BX."FLII(2,I)*,BX, 'FII(3,I)*)
    74 FIVFMAT (( 3X,AZ,IJ,A2,4X,3(E14,7,4X)),/)
    74 FIVFMAT (( 3X,AZ,IJ,A2,4X,3(E14,7,4X)),/)
10000 ENI:
10000 ENI:
    SUEFROUTINE GFAM(FI,T,NISOT,I,NIJCI,LNUCZ,M1,HWT)
    SUEFROUTINE GFAM(FI,T,NISOT,I,NIJCI,LNUCZ,M1,HWT)
    IIMENSION F[I(BOO), CON1(BOO),T(BOO),LNUC1(800),LNUC2(800),MWT(800)
    IIMENSION F[I(BOO), CON1(BOO),T(BOO),LNUC1(800),LNUC2(800),MWT(800)
C
C THIS SUEFOUTIN CHANGES ISOTOFE QUANTITIES FROM GRAM TO ATOM IIENSITY
C THIS SUEFOUTIN CHANGES ISOTOFE QUANTITIES FROM GRAM TO ATOM IIENSITY
        OF}\mathrm{ ATOM DENSITY TO GFAM
        OF}\mathrm{ ATOM DENSITY TO GFAM
        IIO 10 I=1 pNISOT
        IIO 10 I=1 pNISOT
        [0 10 J=1,738
        [0 10 J=1,738
        IF(LNUC2(J).NE.LNUC1(I)) GO TO 10
        IF(LNUC2(J).NE.LNUC1(I)) GO TO 10
        CUN1(I)={6.02252/MWT(I) )*10.0.**23
        CUN1(I)={6.02252/MWT(I) )*10.0.**23
    10 CONTINUE
    10 CONTINUE
        IF(M1.NE.O) GO TO 30
        IF(M1.NE.O) GO TO 30
C
C
C
C
C
        ****&******** [JKAM TO ATOMS ***************
        ****&******** [JKAM TO ATOMS ***************
        [10 20 I=1 HNISOT
        [10 20 I=1 HNISOT
    20 F[|(I)=F[I(I)*C[]N1(I)
    20 F[|(I)=F[I(I)*C[]N1(I)
        GO T0 50
        GO T0 50
            ************ ATOMS TO GRAM ************
            ************ ATOMS TO GRAM ************
C
C
    30 IO 40 I=1,NISOT
    30 IO 40 I=1,NISOT
    40 FII(I)=FI!(I)/CON1(I)
    40 FII(I)=FI!(I)/CON1(I)
    5O FIETUFN
    5O FIETUFN
        EP\I
        EP\I
            SUBKUUTINE CURIE (FD,T,NISOT,LNUC1,LNUC2,M2)
            SUBKUUTINE CURIE (FD,T,NISOT,LNUC1,LNUC2,M2)
            IIMENSIDN F[I(800),T(SOO),LNUC1(800)PLNUC2(800), CON(800)
            IIMENSIDN F[I(800),T(SOO),LNUC1(800)PLNUC2(800), CON(800)
C
C
            THIS SUEROUTIN CHANGES CUFIES TO ATOMS DF: THE OTHEF WAY
            THIS SUEROUTIN CHANGES CUFIES TO ATOMS DF: THE OTHEF WAY
            C=3.7*10**10
            C=3.7*10**10
            10 10 I:=1 NISOT
            10 10 I:=1 NISOT
            [I]] 10 J=1,738
            [I]] 10 J=1,738
            IF (LNIUC2(J).NE.I.NUI:1(I)) GO TO 10
            IF (LNIUC2(J).NE.I.NUI:1(I)) GO TO 10
            CON(T)=C*「(J)/ALDG(2.0)
            CON(T)=C*「(J)/ALDG(2.0)
    10 CONTINUE
    10 CONTINUE
            IF(M2.NE.O) GO IO 30
```

 IF(M2.NE.O) GO IO 30
    ```


```

 (10) 20 I=1.NTSU!
    ```
```

 (10) 20 I=1.NTSU!
    ```

\section*{Table 3 -- Continued}

00716
00717
00718
00719
00720
00721
00722
00723
00724
00725
00726
00727
00728
00729
00730
00731
00732
00733
00734
00735
00736
00737
00738
00739
00740
00741
00742
00743
00744
00745
00746
00747
00748
00789
00750
00751
00752
00753
00754
00755
00756
00757
00758
00759
00760
00761
00762
00763
00764
00765
00766
00767
00768
00769
00770
00771
\(20 \mathrm{FI}(\mathrm{I})=\mathrm{FI}(\mathrm{I}) * C D N(I)\) GO TO 50

30 L10 \(40 \mathrm{I}=1\). NISOT
IF (CON(I), ER, O.0) GO TO 42
FI(I) \(=\) FII(I)/CON(I)
GO TO 40
\(42 \mathrm{FH}(1)=0.0\)
40 CIINTINUE
50 RETUKN
ENEI
SUEROITINE KINIY (KIN,ISOTS, ISOTH, I GOTFF, N, NISOT, MM)
C THIS SUFFOUTINE SETS THE FRAMETEFS FOF 【IFFERENT KINE OF INFUTEII ISOTOFE

C
C IF KINII IS 1 THE ELEMANT IS CLAIIIING OR STRUCTUAL MATERIAL
IF KINI IS 2 THE ELEMENT IS A HAUEY MATERIAL
IF KINII IS EQUAL TO 3 THE ELEMENT IS FISSION FROIUCTS

IF (KIN-2) 20,25,30
20 NISOT = ISOTS
IF (NISOT,ER.O) MM=1
\(\mathrm{N}=1\)
GO TO 35
25 NISOT=ISOTH+ISOTS
IF (ISOTH,EQ, O) MM=1
IF (ISOTS, EQ,0) GO TO 35
\(N=I S O T S+1\)
GO TO 35
30 NISOT \(=I S O T S+I S O T H+I S O T F P\)
IF ( ISOTFF', EQ, O) MM=1
IF (ISOTS.EQ, O. ANI, ISOTH.EQ, O)GO TO 35
\(\mathrm{N}=\mathrm{I}\) SOTS+ISOTH+1
35 FETUKN
ENII
SUAROUTINE NUCI(N,NISOT,KIN,LNUC1,LNUC3,FI,MWT,STA,ELE)
\(C\)
\(C\)
THIS SUFROUTINE TRANSFERS LNUC3 UALUES TO LNUCI FOR CALCULATION

IIMENSION LNUC1 (800), LNUC3(800), FD (800), MWT (800), STA (800), ELE (800)
\(\mathrm{J}=1\)
IO SI I=N,NISOT
IF (KIN.NE. 1) GO TO 50
LRUC1 (I) = LNUC3(I)
GO TO 51
50 LNUC1 (J)=LNUC3(I)
\(F \amalg(J)=F \Gamma(I)\)
MWT (J) = MWT (I)
STA(J)=STA(I)
\(\operatorname{ELE}(J)=E L E(I)\)
\(51 \mathrm{~J}=\mathrm{J}+1\)
NISOT \(=\mathrm{J}-1\)
FETUFN
ENII

\section*{APPENDIX C}

\section*{COMPUTER PROGRAM "SX"}

\section*{C. 1 Introduction}

SX is a program utilized to calculate the flow ratios for a compound or a simple column of solvent extraction cycles. The program is developed for a common type of solvent extraction. This problem can be expressed as follows. In a particular two phase system of immiscible solvents, it estimates the number of equilibrium extraction and scrub stages, and the solvent flow rate above and below of feed stage that are required to achieve a given separation between two distributing solutes. Figure 1 shows a simple diagram of two types of columns.

Nomenclature
A \(\quad(\alpha-1) /\left(\alpha^{\mathrm{n}+1}-1\right)\)
B
\(\left(\beta^{\mathrm{m}+1}-1\right) /(\beta-1)\)
D \(y / x=\) distribution coefficient in catraction section
\(D^{\prime} y^{\prime} / x^{\prime}=\) distribution coefficient in scrub section
\(\mathrm{R} \quad\) Flow rate of raffinates aqueous in extraction reaction
\(S \quad\) Flow rate of scrub aqueous in scrub section
F Flow rate of feed aqueous in principal stream
E Flow rate of extracting organic
n
m
f

X
\(x^{\prime}\)
\(\bar{x}\)
y
\(y^{9} \quad\) Concentration of solute in extract phase in scrub section

Z
\(\alpha\)
\(\beta\)
\(\rho\)

Subscripts

1,2,...., Effluent from stage

F Feed

P
r
u
Number of extracting states
Number of scrub stages
\((1-A) /(1-A+A B)\)
Concentration of solute in feed or scrub phase in extraction section

Concentration of solute in feed or scrub phase in scrub section

Concentration of solute in feed or scrub phase in principal feed stream.

Concentration of solute in extract phase in extraction section
\(x-Y_{F} / D\)
\(E\)
\(\mathrm{ED} / /_{\mathrm{R}}=\) extraction factor
\(S / E D^{\prime}=\) scrub factor
\(E Y^{\prime} / \mathrm{FX}\)

Plutonium

Rare earth

1 Uranium


\section*{Simple Extraction Column}


\section*{Compound Exeraction Column}

Fig. 1 Schematic Diagram of Extraction Column.

\section*{C. 2 Method of Solution}

The Kremser-Brown Equation is used to design an equation relating the composition of different streams and their flow (Smith 1963). As mentioned in chapter 4 several assumptions are made, here are some additional assumptions:

1 - The distribution coefficients are constant throughout the scrubbing and the extraction section ( \(D \neq D^{\prime}\) ).

2 - The principal feed to the column is only an organic or aqueous solution.

The derivation presented here for the equation of the compound column can be reduced to a simple column by setting one of the subscript \(n\) or \(m\) to zero, then the equation will be applicable to the scrubbing or the extraction column respectively (ANL - 7165).

1 - Case 1: Derivation of compound column equation with pure aqueous feed to scrubbing section;

The Kremser-Brown equation below the feed is
\[
\frac{x_{F}-x_{n}}{x_{F}-\frac{x_{F}}{D}}=1-A=\frac{\alpha^{n+1}-\alpha}{\alpha^{n+1}-\alpha}
\]

Define \(z=x-\frac{y_{F}}{D}\). Then
\[
\begin{equation*}
\frac{x_{F}-\frac{y_{F}}{D}-x_{n}-\frac{y_{F}}{D}}{x_{F}-\frac{y_{F}}{D}}=1-\frac{z_{n}}{z_{F}}=1-A_{0} \tag{2}
\end{equation*}
\]

The Kremser-Brown equation above the feed is
\[
\begin{equation*}
\frac{y_{1}-y_{1}^{\prime}}{y_{1}-x_{F}^{\prime} D^{\prime}}=1-\frac{y_{1}^{\prime}}{y_{1}}=1-\frac{1}{B}=\frac{\beta^{m+1}-\beta^{\prime}}{\beta^{m+1}-1} \tag{3}
\end{equation*}
\]

Solving for \(A\) and \(B\), one obtains
\[
\begin{equation*}
B=\frac{y_{1}}{y_{1}^{\prime}} ; \quad A=\frac{z_{n}}{z_{F}} . \tag{4}
\end{equation*}
\]

The material-balance equation above the feed is
\[
\begin{equation*}
E y_{1}=E B y_{1}^{\prime}=E y_{1}^{\gamma}+S x_{\mathrm{n}}^{\gamma} \tag{5}
\end{equation*}
\]

Then,
\[
\begin{equation*}
S x_{n}^{p}=E y_{1}^{p}(B-1) \tag{6}
\end{equation*}
\]

The material-balance equation below the feed is
\[
\begin{equation*}
E y_{F}+R x_{F}=E y_{1}+R x_{n}=E B y_{1}^{\prime}+R x_{n} \tag{7}
\end{equation*}
\]

Rearranging Eq. (7) results in
\[
\begin{equation*}
E\left(y_{F}-B y_{1}^{\prime}\right)=R\left(x_{n}-x_{F}\right) \tag{8}
\end{equation*}
\]

Substituting Eq. (2) into Eq. (8) results in
\[
\begin{equation*}
E\left(y_{F}-B y_{1}^{\gamma}\right)=R(A-1) z_{F} \tag{9}
\end{equation*}
\]
or
\[
\begin{equation*}
R z_{F}=\frac{E\left(y_{F}-B y_{1}^{1}\right)}{A-1} \tag{11}
\end{equation*}
\]

The material-balance equation around the feed is
\[
\begin{equation*}
R x_{F}=F \bar{x}_{F}+S x_{n}^{\gamma} \tag{12}
\end{equation*}
\]
or
\[
\begin{equation*}
R \dot{x}_{F}=R\left(z_{F}+\frac{y_{F}}{D}\right)=\frac{E\left(y_{F}-B y_{1}^{\prime}\right)}{A-1}+R \frac{y_{F}}{D} . \tag{13}
\end{equation*}
\]

Substituting Eqs. (6) and (19) into Eq. (13) produces
\[
\begin{equation*}
\frac{E y_{F}-E B y_{1}^{\prime}}{A-1}+R \frac{y_{F}}{K}=F \bar{x}_{F}+E y_{1}^{\prime}(B-1) \tag{14}
\end{equation*}
\]

Rearranging Eq. (14) results in
\[
\begin{equation*}
\rho=\mathrm{f}\left[1-\frac{R}{\mathrm{~F}} \frac{\mathrm{y}_{\mathrm{F}}}{\overline{\mathrm{x}}_{\mathrm{F}} \mathrm{D}}+\mathrm{g} \frac{\mathrm{Ey}_{\mathrm{F}}}{\mathrm{Fx}_{\mathrm{F}}}\right. \tag{15}
\end{equation*}
\]
where
\[
\begin{align*}
& \mathrm{f}=\frac{1-A}{1-A+A B},  \tag{16}\\
& g=\frac{1}{1-A+A B},  \tag{17}\\
& 1-A=\frac{\alpha^{n+1}-\alpha^{\circ}}{\alpha^{n+1}-1},  \tag{18}\\
& 1-\frac{1}{B}=\frac{\beta^{\mathrm{m}+1}-\beta}{\beta^{m+1}-1},  \tag{19}\\
& \alpha=E D / R=\text { extraction factor, } \tag{20}
\end{align*}
\]
and
\[
\begin{equation*}
\beta=S / E D^{\prime}=\text { scrub factor } \tag{21}
\end{equation*}
\]
and
\[
\begin{equation*}
\rho=\frac{E y_{1}^{\prime}}{E \bar{x}_{F}}=\text { recovery factor } \tag{22}
\end{equation*}
\]

If the extraction solvent is pure, Eq. (15) would reduce to
\[
\begin{equation*}
\rho=f=\frac{1-A}{I-A+A B} \tag{23}
\end{equation*}
\]
- Case 2: In a similar manner, an analogous expression acan be derived for the case of impure scrub solvent (aqueous) and a pure extracting solvent, i.e., \(y_{F}=0, x_{F}^{\prime} \neq 0\). The result is;
\[
\begin{equation*}
\frac{E y_{1}^{\prime}}{F x_{F}+S x_{F}^{\prime}}=f+(1-g) \frac{E D^{\prime} x_{F}^{\prime}}{F \bar{x}_{F}+S x_{F}^{\prime}} \tag{24}
\end{equation*}
\]

The program SX utilizes the equation 15 and \(\underline{23}\) for its numerical calculation. Both of these equations are polynomials of \(m^{\text {th }}\) or \(n^{\text {th }}\) order (depending on magnitude of \(m\) or \(n\) ). The solution to these polynomials are the flow ratios \(E / F\) and \(S / E\). If the composition of different streams, distribution coefficient, principal feed flow and number of stages in scrubbing and extraction are known values.

The program in its inner iteration calculates the \(E / F\) and \(S / E\) ratios using the equation 23 ;
\[
\begin{array}{ll}
\rho_{1}=\frac{1-A_{1}}{1-A_{1}+A_{1} B_{1}} & \text { element number } 1 . \\
\rho_{1}=\frac{1-A_{2}}{1-A_{2}+A_{2} B_{2}} & \text { element number } 2 . \tag{26}
\end{array}
\]

The separation is performed on element No. 1 and element
number No. 2. The program \(S X\) assumes a set of constant values (increasing linearly) for \(S / E\) and then it calculates the scrub factor. Knowing all parameters for both elements, \(S X\) then calculates the value of extraction factors ( \(\alpha\) ) in subroutine ALFAZ independently. The ratio of \(E / R\) for element no. 1 should be equal to the ratio of \(E / R\) for element no. \(2(\Delta=0)\) in an ideal calculation;
\(\Delta=\frac{E}{R}\) Element No. \(1 \cdots \frac{E}{R} \cdot\) Element No. 2
The program utilizes this fact and finds the minimum value of \(\Delta\) and expands the value of \(S / E\) about this point. Then the procedure is repeated until the error is less or equal to the one set by the user.

The program \(S X\) then does outer the integration using equation 15 if the organic feed to the extraction cycle is impure. At this stage of calculation, \(S X\) uses the value of \(E / R\) found by the inner iteration as a first estimate and using a procedure very similar to the inner iteration it calculates the new \(S / E\) and then \(E / R\) which met the specification set by error conditions.

The program \(S X\) calculates the flows in most realistic cases. One of the limitations on the program arises if the distribution coefficients of two elements are equal or if they are more than 3 order of difference from each other.

In each case the program gives an error message.

The data obtained by \(S X\) is in agreement with the result published in ANL-7165 within accuracy of \(10^{-4}\) and comparing with actual operation with 10 percents (TID-7534 1957).

\section*{C. 3 Input/Output}
C.3.1 Input

The input data are to be prepared in order Table 1。 Description of different columns of this table is presented in Section 3.2.1 of Apprndix \(B\). An example of input cards for a sample case is illustrated in Table 2. The important parameters are distribution coefficients which can be obtained in lithenature (C1eveland 1979). C.3.2 Output

The output exhibits in the first table the solution to the inner iteration and then in the next table the solution of the problem
 of program is shown in Table 4.

Tab1e 1 Input Data Card for "SX"
\begin{tabular}{|c|c|c|c|}
\hline Subroutine & Card No. & Columns & Remarks, Variables, Etc. \\
\hline \multirow[t]{4}{*}{SX03} & 1 & 1 to 5 & N - Number of extraction stages Format: I5 \\
\hline & 1 & 5 to 10 & NP - Number of scrubbing stages Format: I5 \\
\hline & 1 & 10 to 15 & \begin{tabular}{l}
LCH - A flag for output \\
Enter: 1 Prints all values of Alpha \\
0 Values of Alpha are not printed \\
Format: I5
\end{tabular} \\
\hline & 1 & 15 to 20 & LAF - A flag for dumping all information in outer iteration Format: I5 \\
\hline \multirow[t]{3}{*}{Sx03} & 2 & 1 to 10 & \begin{tabular}{l}
GUK - Distribution coefficient of uranium. \\
Format: F10. 3
\end{tabular} \\
\hline & 2 & 10 to 20 & PUK - Distribution coefficient of element No. 1 extracted in raffinate Format: F10.3 \\
\hline & 2 & 20 to 30 & FAK - Distribution coefficient of element No. 2 inproduct stream. Format: F10.3 \\
\hline \multirow[t]{3}{*}{SX03} & 3 & 1 to 10 & \begin{tabular}{l}
FPU - Mass fraction of element No. 1 in raffinate (Feed/raffinate) \\
Format: F10.7
\end{tabular} \\
\hline & 3 & 10 to 20 & FFA - Mass fraction on element No. 2 in raffinate (Feed/raffinate) Format: F10.7 \\
\hline & 3 & 20 to 30 & ```
SU - Uranium solubility in feed
Unit: U/kg of solute-free solvent
metal.
Format: F10.7
``` \\
\hline
\end{tabular}

Table 1 -- Continued
\begin{tabular}{|c|c|c|c|}
\hline Subroutine & Card No. & Columns & Remarks, Variables, Etc. \\
\hline \multirow[t]{3}{*}{SX03} & 4 & 1 to 10 & ```
GUMASS - Mass of uranium in
principal feed.
Unit: Kg/day
Format: F10.3
``` \\
\hline & 4 & 10 to 20 & \begin{tabular}{l}
PUMASS - Mass of element No. 1 in principal feed. \\
Unit: Kg/day \\
Format: F10.3
\end{tabular} \\
\hline & 4 & 20 to 30 & \begin{tabular}{l}
FAMASS - Mass of element No. 2 in principal feed. \\
Unit: Kg/day \\
Format: F10.3
\end{tabular} \\
\hline SXO3 & 5 & 1 to 10 & \begin{tabular}{l}
YEORG - Concentration of element \\
No. 2 in organic feed to extraction \\
section \\
Unit: \(\mathrm{Kg} / \mathrm{kg}\) solvent solt \\
Format: E10. 3
\end{tabular} \\
\hline
\end{tabular}

Table 2 Input Data for SX. -- \(3 \times 3\) Compound-Column.
\begin{tabular}{ccccc}
00001 & 3 & 3 & 3 & 3 \\
00002 & .015 & 0.035 & 1.2 \\
00003 & .902 & .20000 & .0267 \\
00004 & 40.0 & 9.0 & 8 \\
00005 & \(00009 . E-05\) & & &
\end{tabular}

Table 3 Sample Output for SX. -- 3x3 Compound Column.

00001
00002
0000,3
00004 00005
00006
00007
00009
00009
00010
00011
00012
00013
00014
00015
00016
0001 ?
00018
00019
\(000 \% 0\)
00021
00022


\section*{Table 4 List of SX}

0n001
0000 ？
PROGRAM SXO3（INFUT，OUTFUT，FLLOT，TAFEE＝INF＇UT FIAFEG＝OUTFUT，
00003 00004 00005 0000 n 00007 conos 0non9 00010 かonl 1 0.0012 00013 00014 00015 00016 0กロ17 0001 H 00017 （）0020 00021 norins \(000 \% 3\) \(000: 4\)
00025
（000） 26 00027 0no2A 00029 00030 000.1 00032 00033 00034 00035 0003 s 00037 00038 00039 00040 00041 00142 000143 00044 00045 00046 00047 00049 00049 00050 00051 0005？ 00053 00054 0005.5 0005 \＆ 00057 0005 F onnco 00065 поのA1 ＋TAFFOQ＝FL（IT ）
C
THIS PRUGERAM WTII．FINTI THE FLIU RATIO
OF A COMFOUMTI COLUMNS KY USING KKEMSER－HKHINN EO．FIJR MOKE INFDRMATION SEE ANL－7tBE OFERATIHG FRAMFTERS FOR COMFOIJNT SOLUENT EXTRAC：TION C：DI！IMNS．

IIMENGIJHN RFOF（100），RETAF（100）．HETAFA（100），ALFAFU（100） IIIMENEIIIN AI FAFA（100），IIES T（100）
IITMENSIUN ROFF（100），KOE，1F（100），ROFIF（100），ROFFA（100）
DIMENSIOH DELI？（10））
DIMENSION［IFI－I3（100），IUEI．TA（100）， 3 YY（100）
TJMENSION ROEF X（100），ROFFX（100），RPOEX（100）
IIMENSION FRFOFS（11，101），ROEFAS（11，100），ROEFS（11，100），ALEX（11，100）
DIMENSINM AI GC：\((11,100)\) ，HFTEX \((11.100)\) ，EETSC \((11,100)\)
COMMON N．NF，HETAF，RETAFA，FFA1，FF＇J1，ALFAF＇II，AL FAF A，LAF，J
REATI（5，MOO）N．NF•LCH．I．AF
800 F（IRMAT（4I5）

BO2 FOFMAT（Sí 10. E）

804 FOFMAT（3F 10．7）
READ（5．ROG）（IIMASS，FUMMASS，FAMASS
月OB FURMAT（31 10．5）
FRINTH，N，NF•LCH，LAF
FRINI＊•F「U，FFA，SU
FRINT＊－GIKK，FUK，FAK
FRINT＊RIIMASS，PLIMASS，FAMASS
C
C
INTIAL VALUE：
\(P N=N F+1.0\)
ZZN＝1．0聿N
\(F F \cdot 11=1 \cdot n-F F \cdot\)
Jk＝
FFA \(1=1.0-F F A\)
RFOE（1）＝．01
Io \(10 \quad \mathrm{I}=\) ？ 100
（F（I－50） 30.20 .20
20 RFOE（J）＝RFOE（1－1）\(+(1.9) / 50.0)\)
GOTO 10
30 RFOF（I）\(=\) RFOE \((1-1)+(10,04) / 50.0)\)
10 CONTINIJE
CAI CILLATIDN STEAIMFNTS
no－\(I-1.10 n\)
RETAF＇（1）＝FF（IF（I）／FUK
5 RETAFA（I）＝RPOE（I）FAK
CAlI．Al．f AZ
no an \(1=1.100\)
ROEF（I）＝F（IK／AIFAFU！！
ROEFA（I）＝FAK：AI．FATA（T）
ROE IF（I）＝ROEF：（I）－RFUE（I）
40 ROESF（1：－RIEFA（I）－FFDE（J）
IF（IMH．FU．O）RO TO 110
WFRITE（ 6.000 ）
UFITE（6－902？）
I－0
Dn \(50 \quad 1=1,50\)

\section*{Table 4 －－Continued}

00062
00053
00064
00085
000．46
00067 OOO々R 00069 00070 00071 00072 00073 00074 00075 00076 00077 00078 00079 00080 \(000 \mathrm{B1}\) 00082 00083 00084 00085 00048 0008 ？ 00088 000.99 00090 00091 00092 00093 00071 00075 00096 00097 00098 00094 00100 00101 00102 00103 00104 00105 00106 00107 00108 00109 00110 00111 00112 00113 00114 00115 00116 00117 00119 00119 00120 00）121 00122 00123 \(0012 \cdot 1\) 00125 00126 00127
\(J=I+50\)
50 WRITE（G，903）RPOE（I），ROEFA（I），ROEF（I）PRFOE（J），ROEFA（J）RROEF（J）
210 CALL XMINX（ROEF，FOEFA，DELT2，DELT，IIII，ZMIN）
CALL STORE（RFOE，RUEFA，ROEF＇，AL FAFA，ALFAFU，HETAFA，GETAF＇，
IRFOES，ROEFAS，ROEFS，ALEX，ALSC，RFTEX，RETGC，IIII，JK） IF（ZMIN．FQ．O．）（GO TO 2＊ill
\(x \times X J=(0,0018) /(100.0)\) ［10 \(250 \mathrm{JX=1.10}\)
\(220 \operatorname{RFOE}(1)=R \mathrm{RFOE}\)（IIII）
BETAF（1）＝RFOE（1）／FIUK
HETAFA（1）＝FFOF（1）／FAK
［10 \(230 \quad \mathrm{I}=? \cdot \mathrm{~F} 00\)
RFOE（I）＝FFOEE（I－1）＋XXXJ
HETAF＇（I）＝RFOE（I）／FUK
230 RETAFA（I）＝RFOF（I）／FAK
\(N=Z Z N * 1 \quad N F^{\prime}=F^{\prime} N^{*} 1\)
CALL ALFAZ
［10 240 \(I=1.100\)
ROEF（I）＝FUK／ALFAFU（I）
240 ROEFA（I）＝FAK／ALFAFA（I）
CALL XMINX（ROEF，FOEFA，IHELT2，IIELT，IIII，ZMIN）
CALI STORE（RFOE，ROEFA，RUEF，ALFAFA，ALFAFU，HETAFA，RETAF．
1RFOES，ROEFAS，ROEFS，ALEX，ALSC，EETEX，EETSC，IIII．JK ）
IF（ZMIN．ER．O．）GO TO 251
IF（L．C．H．FO．O）G（1 TO 242

WETTE（ \(\boldsymbol{H}\) 900）
900 FORMAT（1H1， \(7 X\) ，＂FATIU OF FLOW K／E＂， \(5 X\), ＂SCFUH＂ \(8 X\)
1 ，＂EXTKACTION＊，23X．＂SCKUH＂，BX，＂EXTRACTION＂，／／／）
WFITE（6，902）
    \(J=0\)
    Do \(51 \quad 1=1,50\)
    \(J=I+50\)

51 WFITE（6，903）FEF（IE（1），ROEFA（I），FOFF（I），RFOE（J），KNEFA（J）－ROEF（J） 903 FORHAT（10X．2（16）PF10．3－E10．3－E10．3））
242 IF（ARS（IIELT2（IIII））－0．0001）260．260．245

250 CTINT INIIE
251 RFOOFX（JX）\(=\) RFOE（IIII）
ROEF \(X(J X)=\) FOEF：（IIII）
ROEFX（JX）＝ROEFA（IIII）

IHELT3（JX：＝ARS（LEEIT2（IIII））
JXY \((J X)=\) I I I I
［0 \(265 \mathrm{I}=2, \mathrm{JX}\)
ZZMI＝AMIN1（DELT3（JX－1），DELT3（JX））

265 IUELT3（JX）\(=7.7 \mathrm{MI}\)
［10 267 \(\mathrm{I}=1\) ：JX
267 IF（DELT4（．JX）．E日．ZZMI．IIII \(=\mathrm{JXY}(\mathrm{JX})\)
260 I＝I I I I
270 RFOF \(1=\mathrm{FPPOE}(\mathrm{I})\)
ROEF 1 ＝ROEF（ 1 ）
ROEFA \(1=\) FilleFA（I）
ROF \(1=K: O E F 1-R F \cdot T\) F 1
FSF＝GUMASS／SU
\(\mathrm{PF}=\mathrm{F}\) SF／FOE 1
FSS＝FF＊RFOE 1
KAF \(=\mathbf{f} \mathbf{S f t F S S}\)
AI FAX＝GUTV，KOE 1
HETAX－RF＇IEJ／GUN
WFITF（ 6. のNO）F＇GF FF


WRITE（6．011）FST•FMF

\section*{Table 4 －－Continued}

001 2R
00124
00130
00131
\(0013 ?\)
00133
00134
00135
00136
00137
00139
00139
00111
00111
00142
00143
00144
00145
00146
00147
00148
00149
00150
00151
0015
onl：3 00154 00155 00156 00157 00158 00159 00160 00161 00162 00163 00164 00165 00166 00167 00168 00169 00170 00171 00172 00173 00174 00175 00176 00.177 00178 00179 00180 00181 0018 ？ 00183 00181 00185 00186 00187 00187 0018 B 00100 00191 00192 のヘ191

```

 +5x,"RAFFINATE FI OW NG/HF; =",F!5,5)
 WFITE(6,91.j) AI_FAY,HETAX
 913 FORMA1 (/,5x, "ALFA UFANIUM 15*,F10.5,5X,"META="F10.5)
 WFITE (6,006) FFINE 1, FOEF1, ROEFA1. JX
 906 FORMAT (SX, "RFOE = 'F F 10.5.5X, 'KOEF=',F10.5,5X, 'ROEFA=",F10.5
 1,15::,"NUMRER OF INT,=",14)
 Write(G,907)AL.FAFU(I),AL.FAFA(I),FHETAF(I), BETAFA(I)
    ```

```

 1p10.3,5%,*treta f.p",e10.3)
 IF(Jx.E(t.10) GO TO 2?O
 IF(FAR/F'F.LT.RF'OF1) GO TO 300
 REATI(5.0.O8)YEOFG
 90% F[IRMAT(E:10.3)
 FFINT*, YFOKG
 DUALUL=FAMASS*FFA
 kJ=小゙
 275 IIIT=FFOFS(KJ,101)
 [10 230 I J=IIII, 100
 .II= J J
 ALEX(K.J.IT)=FAK/ROEFS(K.l:JI)
 FF=FSF/(K:UEFS(KJ.JI)-RFFOES(K.J.|I))
 RAF=FSF+(fF*RPOES(NJr.JI))
 A=((AIEX(K.1,JI))-1.)/((ALEX(K,J,JI)**(N+1))-1.)
 F=((HETEX(NJ, JI)**(NF+1))-1.)/(HETEX(KJ.JI)-1.)
 F=(1,0-n)/(1,0-A+A*F)
 G=1.0/((1.0--A+A*E)
    ```

```

 IF(1 CH.EO.O) GO TO :\77
 FRINT*,RFOFS(K.J,JI),FFIEX(KJ,JI),ALEX(KJ.JI),A,E,G,EYS,JI,F
 277 EFENOK:=AFS(IUUALUE-(FAMASS+FF BYEORG-EYS))
 IF(ERROF.LF..O1) GO TO 310
 240 CONTINJF.
 KJ=k゙J-1
 IF(KJ.EO.0)(AO TO 320
 G0 rO 2フミ゙
 290 WFITE(6.907)
 STOF
 300 WFITE(G,910) FAF ,FF, FFOOE!
 STOF:
 310 WRITE(6,712)
 FSS=RAF-1:SF
 WRIIE(6.31A)FSF,FF,FSS*RAF
 WFITE(6.7t&)NJ,|l-FFROF:
 STOF
 320 WRITE(6,918)
 STOF
 910 FOFMAT<10X,"***** KAYJO SHF/E [S LESS THAN S/E *****,/,
 110x."FEn4-",EE10.3.5X,"FF=",F10.3.5X,"RFOE=".F10.3)
 912 FOFHAT(IH1,40X, SOLUTION TO COMPOLIND COLUMN HITH IJNFIJEE GFGANIC*
 1,5(/))
 914 FDKMAT(10X,"FIOW OF FFEI =",F10.3.5X,"NG/HE:",%
    ```

```

 110X,*FI.IW OF THE AOHEOUS STREAM =*,F10.3,5X,"KR/HF",',
 110X."FLOLS OF THE WASTE STKEAM - "F10.3.5X, "KG/HE:"
 916 FOHMAT(10X,"1 ORATION OF SOLUTITIN IN MF,TFIXX.10X,"COLIJMN - "
    ```


```

 EH!
 SUHFOOIITNF FILFA?
    ```



```

 |O! 20@15-1•?
 m!! 150 5-1.100
 |r(!|-\cdots`10.つn.?0
    ```

Table 4 -- Continued
00.194 00195 00196 00.197 00198 00199 00200 00201 00202 00203 00204 00205 0020n 00207 00208 00209 00210 00211 0021 ? 00213 00214 00215 00216 00217 00218 00219 00220 00221 00222 00223 00224 00225 00226 00227 00228 00229 00230 00231 00232 00233 00234 00235 00236 00237 00238 00239 00240 00241 00242 00243 00244 00245 00246 00247 00248 00249 00250 00251 00252 00253 00254 00255 00256 00257 00258 00259

10 HETA(I)=HETAP(I)
FF=FFULI
GO TO 30
20 HETA(I)=HETAFA(I)
FF=FFA1
\(30 \mathrm{~B}=1\).
no \(40 \mathrm{~K}=1\), NF

ALFA(1) \(=.000995\)
I \(D=1\)
\(50 A=0.0\)
In \(60 \mathrm{MHE}=1, \mathrm{~N}\)
60 A=AtALFA(I)**HM
\(F O F A=(A /(A+B))-F F\)
IF(ID-2) 70,100:130
70 I \(1=2\)
IF (FOFA)90,160,B0
90 ALFA \((1)=0.0\)
GO TO 160
\(90 \mathrm{ALFAKF}=.000995\)
ALFA (I) \(=1000.0\)
00 TO 50
100 I \(11=3\)
IF (FDFA) \(160,160,120\)
110 IF (ALFA(I)-ALFAKF- (ALFAKF\% 0.0001 ))160 .120
120 ALFAH=ALFA(I)
ALFA (I) = (ALFAH+ALFAKP) \(+0 .{ }^{5}\)
GO TO 50
130 IF (FOFA) \(140,160,110\)
140 IF (ALI AH-ALFA (I) - (ALFA(I) 10.0001 )) 160,160,150
150 ALFAKF:=ALFA(I)
ALFA \((I)=(A L F A H+A L F A K P) * 0.5\)
GO 1050
160 IF(II-2) \(170,180,180\)
170 ALFAFU(I) \(\triangle A L F A(I)\)
GO TO 190
180 ALFAFA(I)=AL-FA(I)
190 CINTIHUE
200 CONTINUE
IF (LAF-2)230,201,205
201 IF (J.GT. \(\mathbf{0}\) ) GO TO 230
205 URITE(6.900)
900 FORMAT \(11 H 1,20 X\), "TARLE OF VALUES OF BETA ANO ALFA FOR FU*, 1 / )
WRITF (6.905)
905 FOKMAT(2(11X, "\$ETA*, 10X, "ALFA").///)
n0 210 \(I=1,50\)
\(J=I+50\)
WRITE (6,?06) HETAF (I), ALFAF'U(I) , REIAF'(J), ALFAF'U(J)
906 FORMAT (2 (5x,F10,5,5X,F10.5))
210 CONTINUE
WFITE ( 6,907 )
907 FORMAT (1H1, 20X, "IARLE OF VALUES OF RETA AND ALFA FOR RARE-EARTH" 1 (///)
WRITE (6,905)
IG \(220 \quad I=1,50\)
WFITE! Я, 906) RETAFA(I), ALFAFA(I), RETAFA(J), AL.FAFA(J)
220 CONTINUE
230 RETUFiN
ENI:


DO \(10 \quad \mathrm{I}=1.10 \mathrm{O}\)
INELT2(I)=FOEF(J)-ROEFA?I)
10 DELT (I) = AFS(DELT2(I))
D0 \(201=2,100\)

\section*{Table 4 -- Continued}
002.43

002 21
00262
00283
00264
00265
00264
00267
00268
00269
00270
00271
00772
00273
00274
00275
00276
00277
\(0027 A\)
00779
00290
00281
00282
0029?
00784 00295 00286 00297 00288 00289 00290 00291 00292 00293 00294 00205 00296 00297
```

 ZMIN=AMIN1(IIELT(I), LIELT(I-1))
 IF(ZMIN.LE,.ONO1)GO TO 110
 if(delt?(i).It.0.0)so to 25
 20 [IELT(1)=2MIN
25 DO 30 I=1,100
30 IF(AHS(DELI2(I)),EQ.IMIN)GO TO 5O
50 IIIII= I
IF(IEELT2(IIII))60,70,100
60 IIII= IIII-1
GO TO 100
70 IF(IUELT2(IIII+1))80.90.100
80 IIIJ=IIII-1
G0 10 100
90) 11III=1
G0 TO }10
110 IIII= I
100 IUELT2(IIII)= ZMIN
FETIJRN
END
SUBFOUTINE STOEE (FFOE,FOEFA,ROEF,ALFAFA,AL.FAFU,FETAFA,
1RETAF,RFUES,FOEFGS,ROEFS,ALEX,ALSC,RETEX,REISC,IIII,JK)
DIMENSIUN KFUFS(11,101),ROEFAS(11,100), ROEFS(11,100), ALEX(11,100)
IIMENSION ALSC(11,100), FETEX(11,100), FETSC(11,100)
DIMENSIUN RFOE (100), ROEFA(100),ROEF(100), ALFAFA(100)
DIMENSIOH ALFAFU(100), BETAFA(100), EETAF(100)
JK=JN.+1
IO 10 I=1.100
RPUES(N-I)=RFOF(I)
ROEFAS(.IK,I)-RDEFA(I)
ROEF'S(IN,I)=ROEF(I)
ALEX(JK,I)=ALFAFA(I)
AI.SC(JK,I)=ALFAFU(I)
EETEX(JK,I)=RETAFA(I)
BETSC(JK,I)=RETAF(I)
10 CDNTIWISE
RFOES(JH.101)=IIII
RETUE:N
ENII

```

\section*{REFERENCES}

ANL-7185, "Tables for the Calculation of Operating Parameters for Compound Solvent-Extraction Columns", Argonne National Laboratory, February 1966.

Bell, M. J., "ORIGEN-The ORNL İsotope Generation and Depletion Code", Oak Ridge National Laboratory, ORNL-4628, May 1973.

Benedict, M., and Thomas H. Pigford, "Nuclear Chemical Engineering", McGraw Hill, N. Y., 1957.

Carter, J., "Contro1 of Nuclear Proliferation" 95th Congress, First Session, U. S. Government Printing Office, Washington D. C., April 28, 1977.

Cleveland, J. Mo, "The Chemistry of Plutonium" American Nuclear Society, 1979。

CONF-780304, "Back End of the LWR Fuel Cycle", Proceedings of the American Nuclear Society Topical Meeting, Savannah, Georgia, March 19-23, 1978.

Docket 50-332-57, "Alied-General Nuclear Service Final Safety Analysis Report", Barnwell Nuclear Fuel. Plant, Barnwell, S. C., 1974.

DPST-AFCT-77-1-2, "Savannah River Laboratory Quarterly Report AprilJune 1977, Alternate Fuel Cycle Technologies", Savannah River Laboratory, Aiken, South Carolina, September 1977.

DPST-LWR-76-1-4, "Savannah River Laboratory Quarterly Report OctoberDecember 1976, Light Water Reactor Fuel Recycle", Savannah River Laboratory, Aiken, South Carolina, March 1977.

DPST-LWR-77-1-1, "Savannah River Laboratory Quarterly Report JanuaryMarch 1977, Light Water Reactor Fuel Recycle", Savannah River Laboratory, Aiken, South Carolina, May 1977.

EPRI 310, "Denatured Plutonium: A Study of Deterrent Action", Electric Power Research Institute, July 1975.

ERDA-76-43, "Alternative for Managing Wastes from Reactors and Post Fission Operations in LWR Fuel Cycle", Energy Research and Development Administration, Vo1. 1, May 1976.

General Electric Co., "Standard Safety Analysis Report", Vol. 2 BWR/6.
Notz, J. Jo, A. B. Maservey, and R. D. Ackley, "The Solubility of Krypton and Xenon in Liquid \(\mathrm{Co}_{2}\) ", American Nuclear Society Transaction, San Francisco Meeting, Vo1. 17, November 1973.

NUREG-0009, "Safety Evaluation Related to Operation of Barnwell Fuel Receiving and Storage Station", Allied-General Nuclear Services, January, 1976.

Nye, J. S., "Time to.Plan for Next Generation of Nuclear Technology", The International Conference on Nuclear Power and Its Fuel Cycle, Salzburg, Austria, May 2-13, 1977.

LA-7411-MS, "Preliminary Concepts: Coordinated Safeguards for Material Management in a Thorium-Uranium Fuel Reprocessing.Plant", Informal Report, Los Alamos, New Mexico, October 1978.

ORNL/NUREG/TM-6, B. C. Finney, R. E. Blaneo, R. C. Dahlman, G. S. Hill F。G。Kitts, R.E. Moore, and J. P. Witherspoon, "Correlation of Radioactive Waste Treatment Costs and Environmental Impact of Waste Effluents in the Nuclear Fuel Cycle-Reprocessing Lightwater Reactor Fue1', Oak Ridge National Laboratory, January 1977.

ORNL/NUREG/TM-37, J. W. Roddy, R. E. Blanco, B. C. Finney, and C. S. Hill, "Correlation of Radioactive Waste Treatment Costs and Environmental Impact of Waste Effluents in the Nuclear Fuel Conversion of Recycle Uranium to \(\mathrm{UF}_{6}\) ", Oak Ridge National Laboratory, August 1977.

Papp, Ro, "Fuel Man Flow, Radioactive Inventories and Releases of LWR's and LMFBR's", KFK 2453, Karlsruhe Germany, 1977.

Patrasharn, S., "Recycling of Actinides in Light Water Reactors", Nuclear Technology, Vo1. 51, Number 1, November 1980.

Pobereskin, Mo, et al., "Coproning-An Evaluation of Chemical Reprocessing without Plutonium Separation", BMI-EQAC-1, October 28, 1977.

Puech1, K., "Low Concentration Pu-Recycle", Nuclear Engineering International, June 1977.
"Regional Nuclear Fuel Cycle Centers, Basic, Study", Vol. II, IAEA, Vienna, 1977.

Smith, D. Buford, "Design of Equilbrium Stage Processes"; McGraw Hill Inc., N. Y., 1963.

TID-7534, "Symposium on the Reprocessing of Irradiated Fue1s", held at Brussels Belgium May 20-25, 1957, USAEC, Book 1, 1957.

Wash 1238, "Environmental Survey of Transportation of Radioactive Material to and from Nuclear Plants", U. S. Atomic Energy Commission, December 1975.

Wash 1322, "Proceedings of the Second AEC Environmental Protection Conference", U. S. Atomic Energy Commission, Albuquerque, N. M., 1974.

Westinghouse Co., "Standard Safety Analysis Report", Vo1. II, RESAR-35, July 1975.

Williams, D. C., and B. Rosenstroch, "A Review of Nuclear Fuel Cycle Alternatives Including Certain Features Pertaining to Weapon Proliferation", Sandia Laboratories, SAND-77-1727, January 1978.

Yarbro, O. O., F. E. Harrington, and D. S. Joy, "Effluent Control in Fuel Reprocessing Plants", Chemical Technology Division, ONRL-TM-3899, March 1974.```


[^0]:    *Based on $10 \mathrm{MgHM} /$ day
    Burnup of $40,800 \mathrm{MWd} / \mathrm{Mg}$ (Core and blankets mixed proportionally)
    Cooling time 200 days

[^1]:    1 - (Westinghouse, 1975)
    2 -- (General Electric)
    3 - (ERDA 76-43, 1976)

[^2]:    Flow rate per $10 \mathrm{MTHM} /$ day．

[^3]:    *This activity si calculated at 270 days after discharge of fuel from reactor.
    ** The lifetime of the sand filter is not known.

[^4]:    * Code number is a six-digit number which identifies each isotope for the program. For more information, see section in Inputs.

