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~ ABSTRACT

VIn'this'papef the class of two-surface optical sys-1
tems designated as modules,rwhich possess zero third-order
spherical aberration'relative to a pair of conjugate plaﬂes
“one of which is at infinityv has been‘fupther analyzéd using
the parameters of the Delano y,y diagram. For a given'éet of
three indices of refraction Ny, No, and nj, functional-relan
tionship among the y,y diagram parameters which eliminatez,
simultaneously othér Seidel aberrétions are derived., Expres-
‘sions for zero coma; astigmatism and Petzval curvature are
also given, Criteria for selecting‘the non-optical paraﬁeter
k Which defines the desifed properties of modules are.de-
scribed. A one-to-one correspondénce between the caﬁonical
optical parameters defined in previous studies of modules
and certain quantitiés derivable from the y,y diagram repfe-
‘sentation is shéwn° Critical valués of the free parameters
of modules for both the real and the imaginary cases are’déé
rived and defined‘relative to the v,y diagram parameters.
The problem of couﬁling two modulés‘for both finite and infi-
 nite cénjugates arevekplored and the pfoperties of two—moduie _
systems are analyzed for the two cases, Possible appiicétions

of these results to optical design are discussed.

viii



 CHAPTER 1
* INTRODUCTION

'j'Béékgféﬁnd

S - Certain two-surface optical systems with fixed focal
K lengths and having the property that, relative to a pair of
conjugate planes, one finite and the other infiﬁite, the

'third-order spherical aberration is zero, have been described
| ‘and analyzed by Stavroudis (1967, 1969a, 1969b). It is
| thougﬁt that such:systems mightvfind an applicafibn in the
~early stages of the process of optical design., If this class_
of systems could be arranged so thaf the rear and front focil
of adjacéﬁt systems coincide, then”the‘resulﬁing optical sys-
tem Would also hé&e zero third-order spherical aberration.
For tﬁis reason, thése two-surface optical systems which
possess zero third-order spherical‘aﬁerration with respect to
a pair of ponjugate planes, one of which is at infinity, are
designated in this fhesis.as_modules‘n

| Using con&ehtional optical parameters.of curvatures

and axial separations, Stavroudis (1967, 1969a, l969b)’ana§
. 1yzed'modules'whichvposseSS either refracfingior refleéting
-SPhéfical surfaces. To obtain a one-parameter family of .
lenses meeting the required conditions for modules, ﬁe

\

S



2
defiﬁed\a‘noﬁ-eﬁtical Parameter'and expreesed his'fouf con- |
fventienai opticallpafameters as functions of this new param-
eter. He defined aperture planes relative to which third—or;
der'astigmatism.is zero and heederived an expression for
eomau He also~ihdicated a means of defining'the demainSVOf
his free parameters for constructible meduleso

Powell (1970) analyzed the two-surface systems firét ‘
deécribed by Stavroudis (1969b) using the first-order_paramé‘
eters ef the y,y diagram which was introduced by Delano
(1963) aﬁd used by Pegis et eln (1967). The module analyzed
by Powell (1970) in terms of the y,§ diagram parameters was
a normalized two;surface refracﬁing system'which hés its -
object plane at infinity and has fixed focal length. Powell
(1970) expressed the third-order coefficients of spherical
- aberration, astigmatism and coma of modules in terms of the
first-order y,y diagram paramefers, He also defined a §aram-
eter to obtain a functional relationship ef the free param-
eters of'twoAintercohnected modules which varies the axial
»'separafion between the two systems;' .

This thesis amplifies the y,y diagram analysis ini-
tlated by Powell (1970) and extends the work already pub—

- 1lished on the general propertles of modulesu |

In this thesis, the third-order aberrations of modules
have been further analyzed to include Petzval'contributien
and distortion. Functlonal relatlonshlps among the y,y dla—

"gram parameters whlch provide oondltlons for modules toi'
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eliminate other Seidel aberrations are derived and analyzed.

A comparison of the canonical optical parameters defined by _

Stavroudis'(l969b) and certain quantities derivable from the
y,y diagram was made and the relationship betweén-his param-
eter £ and the Lagrange inVariént‘(K).is established. The
critical values of the free parameters for both the real and
the pure imaginary caseé are derived. Numerical examples of.
ﬁodules are incorporated to illustrate its propertiesa The

properties of two-module systems are discussed and analyzed

- for both the firiite and infinite conjugates cases,

Symbdlsg Definitions and Conventions.
The terms and symbols used in this thesis are defined
" as theybappéar in the text. In génefal; the~nomen§latﬁre, def-
initions and conventions ﬁéed follow those givéﬁ in the Mili-
tary'Stahdardization Handbobk of\Optical Deéién (:MIL-HDBKé
141, 1962), with the following exceptions and modificationssy
.the Smith;Helmholtz-Lagrange invariaﬁt is simply called the
Lagrange invariant and is denoted by the Russian letter X
“(zhe), t: will bé the axial thickness of the space between

J
“the j-1 and jth éurface,.and nj shall'be the refractive index
of .the space between the j-~1 and the jth surface. |

'-,With the above exCeptions.and changes, light is con-
Sidered'ﬁraveling from left to right through the.system, The
‘éptical system is regarded as a series of surfaces'sfarting

' With an object surface and ending with an image surface. The



~;eeurfaces are numbered eonsecutively,_ln the order 1n whlch
kllght is ‘incident on them, starting W1th zero for the obJect
surface and ending w1th k+1 for the 1mage surface, A general
surface will be ealled the jth surface. All quantities'be-~
tween surfaces will be given the humbef of the immediately
- sﬁcceeding surface, TheAradiue.of'the jth surface is r. aﬁd

J

its curvature is cj, the reciprocal of r;. The quantities Cj

- and T are considered positive when the center of eurvatufe

lies to the right of the surface. The thickness t: is posi-

J
tive if the jth surface physically lies to the right of the
(j-1)th surface and is‘negative if it'lies-teithe left. The
frefractive index;nj-is‘positive if the,physical ray travele
from left to right. Otherwise it is negative. The right-hand-
ed cartesian coordinate system is used wifh the optical éxis
‘,eeincideﬁt with the Z-axis, Light fravels initially toﬁard
larger values of z. Lower»case letters, yj and 53» have been f
'ueed to represent the paraxial heights of the marginal and
5.principal reys at the jihvsurface, respectivelyc The slope
fangles of the marginai and principal rays inetheASpece be-
 , tween the j—l and the jth surfaces are denoted by u; endjﬁj,

‘respectively, where s is equal to (yJ yJ l)/t and uJ is

-':;:equal to (yJ-yJ l)/%



Some changes in ndtationSIWere mace for the‘ygﬁ
‘diagram parameters as used‘by Delano (1963). The noﬁencla»‘
jfurefused for these parameters are defined as they appeaf-in
~the text. The figures in the text show the symbbls and quén—

-tities vused in this thesis,



' CHAPTER 2
THE DELANO Y,Y DIAGRAM

ThlS chapter éon81sts of a brief general dlscussion
of the y,¥ diagram flrst 1ntroduced by DeJano (1963) to re-
present ‘graphically the first-order propertles of‘any
axially symmetric optical system which has refracting or
reflecting surfaces. | |

The .y,y diagram is a two-dimensional plot in carte-'
sian éoordinates of the paraxial marginal ray height y
versus the paraxial principal ray height § for each sufface
throughéut an axially symmetric optical systéma The‘y—axis
is the axis of abscissas and the_yfaxis is the axis of ordi-
. nates. Generally, a ?oint Pj(ij,yj) in the y.¥ plane is
defined by the paraxial principal ray height ij and .the par~ 
axial marginal ray height yj at the jth surface. | |

.The Y,y diagram for an optiéal system is in general,

a polygonal figure on the y,¥ plane, The vertices correspond-

o to either refracting or reflecting~surfaces, Extensions of

the first and last segments of the diagram intersect. the ¥
and y axes at the obgect or image planes .and the pupll planes,
respectlvely, Therefore, the point (7,0) represents either
an object or image ‘plane and the point (O,y) denotes the
pupil'plane in.the»obtical system layout,.The distanée'

. 6



between two points on the same line in the y,y diazgram
corresponds to a transfer between corresponding planes or
surfaces in the optical system while a point common to two
different line segments corresponds to either a reflection
or a refraction. The layout of the optical system can be
constructed reacdily from the data obtained from its y,y dia-
gram, The separations between points in the y,y plane are
proportional to the distances between corresponding planes

or surfaces in the system layout.

Lhe Lagrenge Iuvariant

In an axlally symmetric optical system the paraxial
ray trace equations at the (j+1)th surface are given by the

following refraction equationss

W = 0y - ﬁjyj for marginal ray (1)

j+1

et

W3 - ﬁjyj for principal ray (2)

n

J+1

The transfer equations are as follows:

Yiel = V5 + T541%541 for marginal ray (3)

yj+l = ij + Tj+lmj+l for principal ray (4)
where

0y = Nju; reduced marginal ray angle - (5)

&j = njﬁj reduced principal ray angle (6)
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ﬁj = cj(nj+l - nj) power of jth surface (7)
T4l = tj+1/hj+l' reduced thickness (8)

The curvature'cj is the curvature of the jth surface and nj.

t5, uy and ﬁj are the index of refraction, axial thickness
and slope angles of the marginal and principal rays, respec-
tively, for the preceeding space.

Eliminating ﬁj from equations (1) and (2) and

rearranging terms the invariant on refraction is obtained as
E A Bl VF B USRS Bl P N (9)
Similarly, by eliminating 541 from equations (3) and (4)
and rearranging terms yields the invariant on transfer
given by
Fipd = O341¥ 541~ 95425541 = P500Y5 - 05415 5. (10)

Comparing equations (9) and (10) we have

¥j = Ky = ¥, (11)
where X is the Lagrange invariant defined by
X = (-Ily = UJ}-'. " (12)

Therefore the Lagrange invariant is constant throughout the
whole optical system. The Lagrange invariant together with

Y yj and Zj the axial coordinate of the jth surface with



respect to an axial origin located at the object or pupil
plane, at every surface of an axially symmetric optical sys-
tem forms a set of independent parameters which completely
define the paths of two paraxial rays through the system and
from which the conventional optical parameters of radii of

curvature and axial separations could be determined.

The 0,5 Parameters

The Q and (0 parameters are defined by the following

equations: .
= /A (13)
Q= w/%

Introducing the Q,Q parameters in equation (12) results to
0y - fiy + 1 = 0, (14)

Equation (14) is an equation of a straight line in the y,¥
plane with y-intercept equal to -1/0 and whose y-intercept
is 1/0. It has a slope equal to /0.

In general, fixed values of the 0,0 parameters imply
that the line in the y,y diagram refers to a space of fixed
index of refraction. Hence, every line segment in the y,y
plane is associated with a medium of refractive index n. The
coordinates of each point on a line represents a plane
normal to the optical axis in the actual system layout where-
by the coordinates are the heights of the principal and mar-

ginal rays at this plane.
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Basic Relationships

Delano (1963) has shown that given the value of the
Lagrange invariant, %, the yj.ij parameters and the axial
coordinate zj.at every surface of an axially symmetric opti-
cal system the following related quantities may be derived.

ty =25 - 251 axial thickness (15)
nj = tj/Tj refractive index (16)
ws = (yj—yj_l)/Tj reduced marginal ray angle (17)
mj = (yj-yj_l)/Tj reduced principal ray angle (18)
ry = (nj+l-nj)/¢j radius of curvature (19)
Ty = (yj_lyj - yjyjnl)/x reduced axial thickness (20)
ﬁj = (wj&j+l - wj+l&j)/x surface power (21)

If equations (17), (18) and (21) are divided by the

Lagrange invariant, the resulting equations are as follows:

05 = 03/ = (y3= y35.1)/%7; (22)
Q5 = 03/F = (¥3- ¥35.1)/%735 (23)
¥5 = £3/% = 0505,1 - Q35,105 (24)

Y'nereiore, given the Lagrange invariant and the 0,Q param-

eters at each surface the optical system is defined by the
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following set of equations written for the jth surface:

ﬁj = (Qjﬁj+l - Qj+1Qj)K power of surface (25)
vy = (Qj - Qj+1)/§j marginal ray height (26)
ij = (53 - ﬁj+l)/§j principal ray height (27)
Ty = (yj_lyj - yjyj_l)/x reduced thickness (20)

Equations (20), (22), (23), (24), (25), (26) and (27) form
the set of tools to be used in the analysis of the general

properties of modules,



CHAPTER 3.
CTWO-SURFACE OPTICAL SYSTEMS

In this chapter‘isediscussed;the,first—ofder ﬁreper-
ties of two-surface optical systems which possess_either'
, refracting-or reflecting spherical surfaces. The optical
systems described herein oould be either a two-mirror system
or a two-surface lens with fixed focal lehgthsf.Rotetional.
symmetry is assumed. The equations derived are geheral and
applicable to the two-surface systems at any locations of
fconjugate planes. The class of two-surface systems discussed
" is shown schematieall in Fig. 1. The y,§ diagram representa—
tion of two—sufface systemseat finite'conjugates is shown in

Fig. 2.

{ ' ’ A
Focal Lengths and Focal Distances

The focal lengths of_an optical system are defined
as thevaxial dietences separating the_focel and principal
'pianes in the object and image spaces. The exial:distance
;from the primary prineipal plane to the’front-focal plane is
called the front Tocal length whlle that separatlng the sec-
| ondary pr1nc¢pal plane to the rear focal plane is called the |

rear or back focal 1ength The focal planes in the actual'

'v layout of the two- surface system are represented by the p01nts

': eF(yF,yF) and F (yF°yF') in the v,y dlagram, The pr1n01pal

S 12
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(b) Reflecting System

Fig. 1. Two-Surface Optical Systems
with Image Flane Located at Infinity
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Fig, 2. Y,Y Diagram for a Two-Surface
Optical System with Finite Conjugate Points
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planes correspond to the points P(§p,yp) and P'(§p.,yp.)
which are coincident points in the y,¥ plane and simply
denoted by the point P, The primed coordinates denote poinfs
in image space. Hence, F and P are the front focal point and
primary principal point, respectively, while F' is the rear
focal point and P' is the secondary principal point,

Using equation (20) the front focal length is given
by - -
f = PF = nl(ypyF - ypyF)/ﬂ. (28)

and the rear focal length is

f* = P'F' = nB(yp's(F' - ypuyFl)/)‘w' (29)

The focal distances are defined as the axial dis-
tances separating the focal planes-and the lens surfaces in
the object and image spaces. The axial distance from the first
suriace Vy(yy,y1) to tne front focal plane F is called the
front focal distance and that from the last surface V2(§2,y2)
of the two-surface system to its rear focal plane F' is the
back focal distance, Applyiné equation (20), the front focal

distance is
FFD = VlF = nl(ylyF - ilyF)/‘K' . (30)
and the back focal distance is

BFD = V2F| = nB(yzyf\v - yzyF')/K- (31)
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Thickness and Power of System

The thickness of an optical system is the axial
distance from the first surface to the last surface. Using
equation (20), the thickness of the two-surface system is
given by

t, = ViV, = np(yyy, - ¥1¥2)/%. (32)
The reduced thickness, r,, is equal to tz/nz.

From elementary analytic geometry, twice the area of
a triangle with vertices at (il,yl), (§z,y2) and the origin,
(0,0), is given by

28 = (y1¥p - ¥1Y2).
Comparing the above relationship with those of equations
(28), (29), (30), (31) and (32), it is clear that the product
of the reduced axial distance and the Lagrange invariant is
equal to twice the area of the triangle formed by the points
representing the axial separations and the origin in the y,¥y
diagram.,

The power of a thick lens in terms of the axial

thickness and power of individual surfaces is given by

ﬁ{ = ﬁl + 10/2 - Tgﬂ{lﬂ{zv (33)‘
where ﬂl is the power of the first surface, 52 is the power
of the second surface and To is the reduced axial thickness.
The power of the two-surface system is also equal to the

reciprocal of the reduced focal length. Hence, g is equal to

-nl/f or n3/f'.
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Dividing equation (33) by the Lagrange invariant

results to

§ = /% = b, 4+ b, - ToRE B, (34)

Using equations (24), (26) and (27), equation (34) is

reduced to

$ = 0,0, ~ 0301. . (35)
Equation (35) gives the power of the two-surface system,
normalized to X, as-function of the 0,5 parameters of the

object and image spaces,

Conjugate Points and Planes

The object line of a two-surface optical system in

the y,y diagram is given by

0y - 0y +1=0 (36)
and its image line is

93§ - 535’ + 1 =20, (37)

where Qg and 51 are the 0,0 parameters in object space and
03 and 03 are the 0,0 parameters in image space.

Any pair of object and image points related by a
transverse magnification mp are conjugate points and the
corresponding planes in the optical layout defined by these
points in the y,y diagram are the conjugate planes, The con-

jugate points are represented in the y,§ plane by the points
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of intersection of a line through the origin with the object
and image lines. This line intersecting the origin and the

conjugate points is called the conjugate line and is given by
Yy =m &, . (38)

where me is the slope of the conjugate line.

For two conjugate points A(ya,ya) and A'(ya-,ya.) in
object and image spaces, repectively, the slope of the con-

jugate line is

mc = ya/ya = ya-/ya. . (39)

The transverse magnification at the conjugate points

A and A' is given by
m‘I‘ = ya'/ya = ya'/ya' (40)

Using equations (40) and (37) in (39) and the term (-1) in
the resulting equation is replaced by (Olia - ﬁlya), the

slope of the conjugate line becomes
mC = yamTOB/(‘Fsza' + Ql§a - ﬁlya). (Ll’l)

Dividing equation (41) by y, and solving for the slope we

obtain

m, = (mT03 - Ql)/(mT(-)B - ﬁl). (42)



19

Equation (42) gives the slope of the conjugate line as func-
tion of the transverse magnification at the conjugate planes
and the 0,0 parameters. |

The coordinates of the conjugate poi;ts in object
and image spaces can be determined by solving simultaneously
the equation of the conjugate line and that of the object
and image spaces. When equations (38) and (36) are solved
simultaneously and equations (42) and (35) are substituted,

the coordinates of the conjugate point in object space are

given by the followings

&<
n

1

y = = (mp05 - Q) /mp? (4l)

The coordinates of the conjugate point in image space is
obtained in the same way by solving equations (37) and (38)

simultaneously, resulting to

y' - (mT63 - f'2]_)/'1’ (45)

y' = - (mT03 - Ql)/@. (46)

Equations (43), (44), (45) and (46) express the coordinates
of the pair of conjugate points in the y,y diagram in terms
of their transverse magnification, the 0,0 parameters in
image and object spaces and the power of the two-surface

system normalized with respect to the Lagrange invariant.
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The Cardinal Points

Focal Points

The coordinates of the front focal point is defined
by the point of intersection of the object line with a conju-
gate line.parallel to the image line since the point in image
space conjugate to the front focal point is located at in-
finity. Hence, the slope of this conjugate line at the front
focal point is equal to the slope of the image line and is

given by

mg = 03/53, (47)
and the equation of the corresponding conjugate line is

y = myy. (48)

Solving equations (48) and (36) simultaneously, gives the
y,y¥ coordinates of the front focal point in terms of the 0,0
parameters in object and image spaces, The resulting equa-

tions are as follows:

yp = = 03/(005 - 030y) = -03/% (50)

The rear focal point is defined by the point of
intersection of the image line and a conjugate line with

slope my = dl/ﬁl which is equal to that of the object line.
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The equation of the conjugate line intersecting the image

line at the rear focal point is
y = my. (51)

The coordinates of the rear focal point is obtained by
solving equations (51) and (38) simultaneously which results

to

0,/8 (52)

«
)
I}

s‘)l/(o,lﬁ3 - 0 0Q5)

= 0,/(0,0, - N 03) = 0,/8. (53)

<
]
!

Substituting equations (49), (50), (52) and (53) in
equations (43), (44), (45) and (46), the coordinates of any
conjugate point can be expressed in terms of the coordinates
of the focal points and the transverse magnification at the

conjugate planes. The relationships are given by the follow-

ings
y = yF + (l/mT)Yl;.
y =Yg t (l/mT)ch
(54)
y' = mpJp + Jp

y' = mTyF + yF'

Principal Points
The principal points of the two-surface system are

axial conjugate points of unit transverse magnification and
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are represented in the y,y diagram by the point of intersec-
tion of the object and image lines. The principal points are
denoted by P(yp,yp) and P'(yp.,yp.) which are coincident
points in the y,y diagram, The y,J heights at these points
are determined by solving simultaneously equations (36) and
(37) or by applying equations (43), (44), (45) and (46) with

mp set equal to unity. The results are

1}

(0, - 63)/§ (55)

(0 - 03)/¢. (56)

Substituting equations (49), (50), (52) and (53) in the above
equations, the relationships between the coordinates of the
principal points and the focal points are obtained and they

are as follows:

Yp + Vg (57)

<
1l
<
It

Yp *t Ypo (58)

The locations of the principal points or planes
with respect to the surfaces of the two-surface system can
be determined by specifying their axial separations. The
distance from the first surface to the primary principal
plane, V;P, is obtained by employing equation (20) which
results to

VP = nl(ylyp - ylyp)/ﬁ. (59)
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Similarly, the distance separating the second surface from

the secondary principal point is
VZP' = n3(y2§pl - S.’Zypu)/xo (60)

Using equations (58), (57), (56), (55)o (36), (37) and
applying equations (22) and (23), the expressions for the
separations between surfaces and principal points are

reduced to the following:
ViP = ny1,8,/% = nltzﬁz/hzﬂ (61)
VaP'= -ngr,8./8 = -ngt, g /nyg (62)
Dividing equation (61) by (62) we obtain
VP = - (nydp/ngdy) (VP'). (63)

The relationships between the coordinates of the
principal points and the focal points given by equations
(57) and (58) make it possible to express the focal lengths
of the system given by equations (28) and (29) in terms of
the coorcinates of the focal points, Substituting equations

(57) and (58) in (28) and (29) result to
= I V) /R . (64)

£'= ny(ypip, ~ Jpyp.)/*. (65)
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Substituting equations (49), (50), (52) and (53), equations

(64) and (65) are reduced to

f= ’nl/ﬁ
(66)
f'= nB/ﬁ.

Nodal Points
The nodal points of the two-surface system are axial
points where the angular magnification is unity. The nodal
points are denoted by the points N(Jy,yy) and N*'(Fyoayye) in
the y,y diagram. Points N and N' are conjugate to each other.
The angular magnification m, between conjugate points
when expressed in terms of the transverse magnification is

given by
At the nodal points, my is unity and therefore
mT = nl/hB (68)

at this pair of conjugate points,

The coordinates of the nodal points in terms of the
coorainates of the focal points are obtained by substituting
equation (68) in equations (54). The results give the coor-

dinates of the primary nodal point as

yN = }_’F + (nB/nl)yFn (69)
yy = Yp + (ng/Mmy)yp. .
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The coordinates'of the secondary nodal pdint are as follows:

v,-SQ’N.v = ‘-(nl/DB)yF + .yF’ (70)
e = (/n3)yp + Vg |

‘Entrance and Exit Pupil Planes .

ViiIh Fig. 2,‘the‘point of intersection of the y-axis
and the object liné defines the entrance pupil of thé .
1 two-surface system., The entrance pupil point is denoted by
E(O,yE) in the y,y diagram, where yg is the height of the
entrarnce pupil-froﬁ the optical axis. The point E'(O,yE,)
defines the exit pupil of the system. The exit pupil point
is the point of intersecfion.of the image line with the
y-axis. The ordinate yE, represents‘the exit pupil height or
radlus from the optlcal ayl‘se ) -

The entronce and exit pupil heights are the y-inter-
cepté of the equatlons of the object and image lines and
their values as a function of the Q,0 parameters‘can be‘
determined.by equating the § Variable in equations (36) and

(37) to zero which result to
YE': 1/0, e .1 V_ .FA A5  'J l” fl ‘->(7l)'
Hence, the entrance pupil height is the feciprocal ofrthe-ﬁ

parameber in obgect space and the exit pvpll helght is- the

re01procaj of the 9] parameter in the image Space°
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Dividing equation (71) by (72) gives

YE = (DB/ﬁl)yE" (73)

the relationship between the entrance and exit pupil heights
in terms of the (! parameters. When expressed in terms of the

coordinates of the focal points, equation (73) becomes

Yg = - (Jp/Fp dygr . (74)

The axial distance FE from the front focal point to
the entrance pupil point is the entrance pupil distance.

Applying equation (20), we obtain

FE = - n Jpyu/*. (75)

The exit pupil distance, F'E', is similarly defined
as the axial distance from the rear focal point to the exit

pupil point and is equal to
F'E. = - nByF'yE./}"" (76)

Substituting equations (71), (72), (49) and (52) in (75) and
(76) result to

F'E' = -n351/.>1’,<1>§-23. (77)

From (77), the reduced pupil distances are related by

FE/ny = - (3/0)°(F'E'/ny), - (78)
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which ﬁheniéxpressed in termsboflf coofdinateé'bf the focal.
“points yiéids R | |
,FE/hl'; - (yp/Yg+) (F'E'/hB)o : _ (79)
By eliminating the 0,0 parameters from equations (78) and

(77), the relationship between the reduced pupilrdistances

. becomes

FE/hl = - (l/%)_(nB/F'E‘)n _ 3 :»H g _n(80)

iUsing equation (66), it can be shown that the reduced pupil
distances are related by the square of the reduced focal

lengths of the system. This relationship is givénrby
e/ (/02 (ny/005) = = (£ /0 (5B . (BL)
FE/n; = - ny ) (ng = - ny) (ng/F o

Equation (80) implies that the reduced entrance pﬁpil
distance is proportional to the negative reciprocal of the
“product of the square of the System power and the reduced

exit pupil-distancew

Normalization

So far, all the equations presented are general'and
‘appiy to any pair of conjugate planes, -Relative to a péir of
conjugate planes where one iS'finitevaﬁd the other is infi- -
nite;-like'the case of modulesyuali the equa%ioﬁs derived in
this chapter are greatly‘simplified if the y,y pafameters are

normalized. For this particular case where one of the conju-
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gate pianes is at . infinity, it is convenient to normalize the'
Y,y parameters with respect to the object or image.heighf and
one of the'pupil heights; This requires the image or object
height_and one of the pupil heights to be sét equal t; unity
in the y,§ diagram. If the object is located at infinity, the
Yy heights in the y,§ diagram are normalized with respect to
the éctual entrance pupil height:and the y heights are nor-
malized relative to the actual image height,‘For the case
where the image is at infinity, the normalization of the mar-
ginal ray heights is With'respect to the actual éxit pupil
height While'the principal_fay heights are'normalized rela-
tive ﬁo the actual object heightulThe'y;ﬁ diagrams for these
two cases are illuéfrated in Fig. 3. Hehceforth, the y,§
parametérs where one of the conjugaté'points is located at
_infinity,'éhall mean normaliz?d heighfsa The above nofmal-
 izatioh scheme follows that one proposed by Lopez-Lopez

(1970).

" Two-~Mirror System

- All the equations derived in this chapter are for the
general case of two-surface systems but biased to the refrac~

ting systems. To apply the equations presented to the case of

a two-mirror system in air, all that is required in the for-

mulasg is to set ny = n3 = l-andznz = -1,
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Fig. 3. Normalized y,y Diagrams for a Two-Surface
Optical System with One Conjugate Point at Infinity



CHAPTER 4
THIRD-ORDER ABERRATIONS AND THE MODULE .

In this chapter the third—orderlaberrations of the
”tWo—surface systems diséuSSed in chapter 3 are analyzed iﬁ
- terms of thé N4 diagraﬁ parameters., The two~8urface system
analyzed has fixed focal length and with one of the conjugate
planes located at infinity. |
.Ih the foregoing discuésion and derivation of egua-
tions, rotational symmetry is aséumed and the indices of
‘refraction ny, Ny and N, are fixedo It is also assumed fhat
the two~suffaoe system consists of,spherical surfaces and
' the image plane is ét infiﬁity. All y,§ céordinates and Qpﬁ
parameters used in fhis chapter'ére referred to the nofmal¥
ized y,y diagram foi_a‘two—surface.system éhoWn in Fig. 3.
'-ihe design module is defined in this chapter and the
oritical &élues of its free parameters are derived., A coﬁ—A
périson of the canonical opticél parameters defined by -
Stavroudis (1969b) and those used in this analysis is prem-
sented, The first-order properties of the two-surface Syétem

discussed in the preceding chapter apply to modules as well,

30’
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Auxiliary Quantities

To compute the coefficients of the third-order
aberrations in an optical system, several auxiliary quan-
tities should first be determined.

The paraxial angles of incidence at the jth surface

are given by

iy =u5+ ¢3¥5  for the marginal ray (82)

it
£l

+ cjij for the principal ray. (83)

Applying equations (19), (25), (22), (23), (26) and (27),
the paraxial angles of incidence can be written in terms of
the Lagrange invariant, the refractive indices and the Q,ﬁ

parameters as

X
lj = T;——T(QJHJ_*_]_ - Qj+lnj) (814')
I x (B.n B, .n.) (85)
ic BN IR R P R R
n. (n3+l’nj) ,

The other auxiliary Quantity associated with the

paraxial marginal ray is defined for the jth surface by

_ - njyj(uj+l+ij)(nj+l~nj)

2¥nj41

(86)

The same quantity defined for the paraxial principal ray at
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the jth surface is
- N335 (0g41+15) (ngq-ny)

§j = . (87)
2an+1 .

Substituting equations (84) and (22) in (86) and egquations
(85) and (23) in (87) result to

2 2 2
- -, 2 = 2 = 2
b,] = %(yJ/n,]+l)(OJ+an - anj-i-l)' (89)

Third-Order Aberration Coefficients

The Seidel aberrations of an optical system may be
computed from paraxial ray data which provide information to
calculate the third-order aberration coefficients, These
Seidel aberration coefficients represent the algebraic sum
of the third-order surface contributions throughout the opti-
cal system. The third-order aberration coefficients for an

optical system of k surfaces are given by the followings

k
‘ 2
Spherical B = E‘S-ij (90)

K
Coma F =’};s.i-1- (91)
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k
.2

Astigmatism C = Elsjij (92)

=1 '
‘ kK 2 2

Distortion E = z,{sjijij + X(ﬁj-ﬁj+l)} (93)
Jj=1
X

Petzval Curvature P = Z C. (n - nj+1)/hjnj+1 (ok)

Jj=1 J

Using equations (8%4), (85), (88), (89), (22), (23),
(19) and (25), the aberration coefficients could be written

in terms of the y,y diagram parameters as

2
B = 1x° Z (054105-0305,1) (201~ QJ+l 'Y (95)
Z2
j=1 anJ+l(nJ+l n }
P A?Z Z'(Qg+ln OJnJ+l)(QJnJ+l Q354103)Y 5% (96)
B n%n? (n n )2
JHLV T
k 2 2 = - 2
. (q, Q. A.n. .-0. .n.)°y.
c =32 ) (0501757035020 (U500 -05,005) ¥ 5 (97)
- o= L, 2 2 ( )
J:l njnJ+l nj+l nJ
E - 157 (Q5,1n35-03n5,1)(Qyn;,1-05,905)F 505
=zF 2.2 >
j=1 anj+l(nj+l nJ)

k 2 62 62 n2
N341%5 = 3410
+ 2,{ 272 2t (98)
J=1 nanii3
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{OJ j+1 - J+1OJ}

1 NNy

(99)

g

1

|
o=

1

J

QJnJ+l - Qj+1nj.

where aj =

For a two-surface system with image plane located at
infinity described in chapter 3 and whose normalized y,y
diagram is shown in Fig. 3, the above third-order aberration

coefficlents become

i ) 2 2
B = p{(QZni-ng)(nZ—Qan) (n3-n2) yl—angni(nz-nl)z} (100)
. 2 2 - -
F = 8{(%n]-n3) (np=ny) (Ayng=fipny ) (n3-np) “y;
- 2 -
- ninB(QZnB-nZ)(nz-nl) le} (101)
. 2 2,,~ - 2 2
C = ﬁ{(oznl—nz)(ﬂlnz-ﬂznl) (n3-n2) N
2 - .
- anl(anB—nZ)z(nz-nl)2 } (102)
(= 2 = 2 i, _ _
E = r‘{(021“1‘01n.2)(112"‘72’“1)(01“2‘92“1)(n3"“2)25’1
+ (n2 0,n )(n )0202 iyzf + —2—2-2{(0 ) 2
n n2n3 3
2, =2 2 2.
+ ny (@n5-n) } (103)
n3(M2-028;) + m%p .
P=- { nynynsg (104)
where B = 3 RZ/ ning(nz—nl)z(nj—nz)2
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The Module

The class of two-surface systems to be analyzed are
those which possess zero third-order spherical aberration
relative to a pair of conjugate planes one of which is at
infinity. Such two-surface systems, with one of its conjugate
planes at infinity and with the third-order spherical aber-
ration with respect to this pair of conjugate planes zero,
shall be designated as modules.

Modules are then defined by equating equation (110)

to zero, which yields

(95n1-n3) (ng=0pn) % (n3np)%yy - nfed(ny-ny)? = 0. (105)

Solving for Yy gives

2.2 -3
nln3(n2-nl) 03

= o— 106
Y1 (ani—ng)(nz-Qan)z(nj-nz)c ( )

Equation (106) gives the normalized value of the marginal
ray height at the first surface of the module in terms of
the 0, parameter and the indices of refraction. This func-
tional relationship is the condition that the two-surface
system be a module.

If equation (105) is expanded and the terms are

rearranged, it becomes a cubic of the form

3 2
a;05 + byQy + ¢70, + dl = 0, (107)

\
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2 [ 2 2 2 2
ay = ny {ny(n5-n)%; - n5(np-n))}

by = - n§n2(2nl+ ng)(nB—nz)zyl
(108)
c . n nz(n 2n, ) {(n,-n )Z
1 = Mo \ny+eny/ing-Ns) ¥y
dy = - ng(n3—n2)2yl.

Stavroudis (1969b) solved this cubic expresséd in terms of
the front focal disfance, a parameter related to the focal
length of the system and another parameter which he called q.
Applying the general method of solving cubic polynomials,
attributed to Cardan (1545), he solved this cubic by intro-
ducing a new non-optical parameter k. Following the procedure

he used, the three roots of equation (107) are

2
3np/ny

(109)
ny+2n,- (n2’n1)[1k+1 l/J + [k-1 1/3W J

0y =

k+1

(I‘ = 01112)’
where w ==exp(27i/3), a complex cube root of unity. The val-
ue of ¥1 obtained in terms of the parameter k is
2.2, 2
27ngn5(k"~1)

yq = . (110)
1 unl(nB-nZ)z(nz—nl)
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Only those values of k which yield real values of O
and y, are of interest. From equation (110) real values of
y; occur only if k is either real or pure imaginary. Stav--
roudis (1969b) has shown that for real values of k, the
solution to the cubic can be real only when r is equal to

zero, Hence for real k,

2
3na/ny

kel /3 (x-1.1/3
ny+2n, - (nz‘nl)[:ﬁéi} + 1ks1S ]

For pure imaginary values of k, Stavroudis (1969v)

introduced another free parameter 6 defined by

k = i tan @, , (112)

Substituting equation (112) in equations (110) and (109) we

obtain 2
3n,/n
271
Qp = s (r=0,1,2) (113)
ny+2n, + 2(ny-nq)cos 3(9 + mr)
and 2 2 2
-27n2n3 sec O
yl = . ) (114)

4n; (n3-ny)” (ny-n,)

Canonical Optical Farameters

Stavroudis (1969b), in his analysis of modules,
transformed the conventional optical parameters he used into
a more convenient form which he called canonical optical

parameters. He defined the canonical optical parameters,
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written using my notations, as follows:

Cz = (n3 - l’lz)sz

b (115)
Tl = ‘tl/nlf
‘1'2 = 1:2/r121"' )

where f = {n2t1+n1t2-(n2—nl)cltltz}/hlnz. cy and c, are the

curvatures of the module's first and second surfaces, tl is

the negative value of the front focal distance and t., is the

2
axial thickness of the module. He also defined

QI‘ = qr/nl’ (116)

2
3n2

where q_ = ' . A .
. (2n2+nl) - (nz_nl)[igil-l/Bwr + {k_l.l/Bw-rJ

k-1 K+1

and obtained Ty in terms of the free parameter k given by

. 2 2 ,.2
273 us5 (k° - 1)
T 3 2

—-—

1 . (117)

4nl(n3-n2)2(n2-nl)

Comparing the above canonical optical parameters and the
equations with the y,y diagram parameters, we note that
equations (116) and (109) are identical as are (117) and
(110)., Therefore, the canonical optical parameter Ty is

identical to y; and the parameter Q is identical to Q5.
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The equivalence of the remaining canonical optical
parameters and equations with the y,y diagram parameters
used in this analysis of modules is easily established when
the relationship between the parameter f and the Lagrange
invariant is obtained. To show the relationship existing

between £ and X, T. is equated to yl, which gives

1
y, = t1/mf. ‘ (118)

From the y,y diagram, the value of tl is obtained as

t, = (ny/%) = nyy /%, (119)

Substituting equation (119) in (118), we obtain
f = 1/%. (120)

Therefore, the parameter f defined and used by Stavroudis
(1969p) is tue reciprocal of the lagrange invariant.

From the relationship between the parameter f and the
Lagrange invariant given by (120), the equivalence between
the remaining canonical optical parameters and the y,y dia-

gram parameters are now established and they are as follows:
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In terms of the y,¥ and the 0,0 parameters, equation

(121) could be written as

0.2 (122)

2
N
1

(y1¥2 - ¥1) = (L - y1)/9;.

-3
N
1

Critical Values of Free Parameters

Parameter k

The first critical value, k is the value of the

O!
free parameter k when 02= 1, For 02 equal to unity, equation

(111) becomes

-1/3 21/3
{7 =L < - (ny + 3np) /g, (123)

which when solved for k gives

(31’12+21’11 )«/ 3n2—n]_ 41’1% .
o~ — =/1 ~ . (12“)
33 nZJnl+n2 27 ny(ny+n,)

This value of k results in zero values for the parameters Cis
I'he secona critical value, ko, of the parameter k is
its value when QZ is infinite. For this value of 0y, equa-

tion (111) is reduced to
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k-lf k+l n,-n '
2771
which when solved for k gives
(n2+2nl)J 5Ny V/ b(n -n, )3 (126)
ke = 1+ > . 1
33 npvny 2?n2 n,
At k = k,, the values of the parameters Cys Cl' @l, tz, T2

and T,X% vanish,
The third critical value, k®, is the value of k when
y; is unity. Substituting y;=1 in equation (110) and solving

for k, we obtain

bn) (ng-ny) % (ny-n, )
k=1 —2 L (127)
d
27n 3

This value of k makes t2, T2 and 723 to become zero.

Table I gives the corresponding values of the canon-
ical optical parameters and their equivalent y,y diagram
parameters for the three critical values of k including the

parameters values for k = 1, 0 and infinity.

Parameter 6

For the case where k is pure imaginary, the free
parameter 6 defined by equation (112) is used to evaluate
the y,y diagram parameters. The first critical value, 6., of
the free parameter 6 1is aefined as its value when 0, is

unity. For 0, = 1, equation (113) becomes
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(nl+2n2) + 2(n2—nl) cos %(6 + mr) = 3n22/hl, (128)

which when solved for 6, gives

: n1+3n2
8, = -Tr + % arc cos {—gﬁ———}. (129)

At this value of €, the parameters Cyo Cl and @l vanish.

The second critical value, 6 is the value of 6

w'
when Q, is infinite. Substituting infinity for Q, in equa-

tion (113) and solving for 6, gives

- nl+2n2

8, = -Nr + g arc cos {zThl—néTI . (130)

For this value of ®, the parameters cq, C; and ¢, become
intinite wnile tz, T2 and TZE vanish,

The third critical value of 6 is 9*, which is the
value of the free parameter when Y1 is equal to unity. For
y; =1 in equation (114),

L3
8 = -1mMmr + arc cos {Z(n

(131)

3nln3 3
3 - np) nl(nl—nz)} '
For 6 = e*, the parameters t,, T, and T,¥ become all equal
to zero,

Table 1II gives the corresponding values of the
canonical optical parameters and their equivalent y,§ dia-

gram parameters for the three critical values of 6,



Table I. Values of Canonical Uptical Parameters and Equivalent y,y
Diagram Parameters Corresponding to the Critical Values of k

. 0 = k, Koy
z
C - 2
2 ny (4n,-n4 ) ny
Q
v, _ 27n22n32 - ny2ny2 n3?(np-ny)?
2 > 72 ) z 2
Tl hnl(nB—nz) (nz-nq) (np -ny )(n3—n2) ny (n3-n2)
?1 [ 4(ng-ny)?(ny-np)¥(3n,-ny) . . 3
X n, (4n,-r
T2 1\4np-ny ) [jl N n12n3
27n.,°n.% - 2 0
2 Unl(nB—nZ)Z(nz—nl)

€4



Table II. Values of Canonical Optical Parameters and Equivalent y,§
Diagram Parameters Corresponding to the Critical Values of ©

8 90 6o
02
%
02 1 00
Q
2 2
Y1 - n12n3 n3 (np - ny)
2l 2
2 2 2 n, (n-. - n,)
Ty (n2 -ny )(n3—n2) 1 3 2
31
0 00
Cy
'rZF. n 21’1 2
1 1 3 0
+
2 2 2
TZ (n2 -ny )(n3-n2)

hh
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-Parameter Bounds | |

Values'of'taand y; as functions of kvare defined by
equations (110) ana (111) and their corresponding valueseas'
»vfunct‘iorlvs of 6 are defined by (113) and (11%), Since the
canonical optical parameters and the equivalent v,y diagram
parameters could be expressed 1n terms of Qo and yl, func-
tional relationships exist between the parameter k or 6 and
the canonlcal optlcal parameters or equivalent y,¥ dlagram -
parameters. Bounds on the free parameters k and ® are equiv-
alent to bounos placed on the canonical optical parameters or
the Y.y dlagram parametersn | -

The critical values of the free parameters k and 6
are functlons of the indices of refractlon Ny, nz and n3
Therefore, the order in which the critical values ocecur
depends-upon the relatlve\values of these refractive 1nd1ces,
‘Stavroudis (1969b) made a thorough analysis of all poss1ble
orderlngs of the crltlcal Values and the corresponding con-
ditions on the relative values of the-set~of,three indices

of refraction.



CHAPTER 5
ADDITIONAL PROPERTIES OF MODULES

This chapter presents further analysis of the
remaining third-order aberrations of the module. Conditions
for modules to simultaneously eliminate third-order spherical
and other Seidel aberrations are derived. Limitations in the
choice of values of the free parameters and the y,y diagram
parameters are discussed for modules free of additional
third-order aberrations, Numerical examples of modules are
given in the appendix. All equations derived in this chapter

conform with the assumptions made in the preceding chapter,

Modules with wero Coma

The two-surface system with image plane at infinity
can be made free from coma if equation (101) is set equal to

zero, That is

(ani—ng) (nZ-Oznl) (611’12—621’11) (n3-n2)2y1
- (62n3~n2)(n2—nl)2n§ n3022 = 0. (132)

Equation (132) when solved for Y+ becomes

2 2, 2
nln3(n2-nl) (an3-n2)Q2

yl = . (133)

2 2 = = 2
(anl-nz)(nZ—Qan)(anZ-anl)(n3-n2)

L6
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Equation (133) gives the value of y, as a function of the
0,0 parameters and the refractive indices of the three media
for a two-surface system with zero third-order coma.
Equating (133) and (106), the condition for zero
spherical aberration, results in & condition for the modules

to be free of coma. The condition is given by

Stavroudis (1969b) has shown that the two-surface
module can be free from coma only when k = 0. Hence, for
zero coma, 2, in equation (111) becomes a function of only

the refractive indices, That is
2
Q, = 3ny /n(4ny-ny), (135)

and the height of the marginal ray at the first surface is

. 2 2
-27n-n
y, = 22 . (136)
hnl(nB—nz) (nz-nl

When equation (26) is applied at the first surface

of the module, we obtain

yy = (1-0,)/(A,-9,0;). (137)
Equation (137) when solved for 52, yields

0p = (v + 1 - 03)/y, (138)

Substituting equation (135) and equation (136) in (138)
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results to
f, = 0 + 4q, (139)

where . 5 >
. 4{3n2 + nl(hnz-nl)}nl(nB-nz) (n2—nl

1 . (1%0)

42
81 n, n3

If equation (134) is expanded and solved for 52,

we obtain

0, = {nz + 02(n3§l - nl)}/ ny . (141)
Substituting equation (135) into (141), gives

62 = nz{nl(nz-nl) + 3n2n35l}/hln3(bn2—nl). (142)

Solving equations (139) and (142), simultaneously, will give
the values of O; and 0, as functions of the refractive
indices.,

The location of the stop S(O,ys) in the y,y diagram
is defined by the point of intersection of the line associ-

ated with n, which 1s given by

and the y-axis. Hence
yg =1/ 0, . (1h44)
Therefore, the value of 52 obtained by solving simultane-

ously equations (139) and (142), locates the stop position
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of the module with zero coma while the obtained value of 51

determines the height of the entrance pupil since Yg = l/ﬁl.

Modules with Zero Astigmatism

The condition for a two-surface system with image
plane located at infinity, to be free from astigmatism is

obtained when equation (102) is set equsl to zero, Hence,
2_.2V(& 3 2 2
(aynT-n5) (Qyny-0pn, )< (ng-ny) <y,
- n1202(62n3-n2)2(n2—nl)2 = 0, (145)
Solving for Yy gives

02(§2n3-n2)2(n2“n1)2n12 (146)
. 1

Yy = -
(ani-ng)(Oan-anl)z(nB—nz)2

Equation (146) gives the value of Y, as function of the 0,0
parameters and the indices of refraction for the two-surface
system with zero astigmatism., '

If equation (146) is equated to (1C€), the condition
for zero spherical aberration, the result provides the con-

dition for modules to be free from astigmatism,

(Bn5-n,)%(np=0,n1)% = (Byny-fyn; )2n 20,2 < o, (147)

Being a difference of two squares, the above equation is

factored.
{(52n3-n2)(n2—02nl) - n302(61n2°62nl>}

{(Bynyny) (ny-0,n1) + ny0,(fin,-fin ) f=0 (148)
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If the module has zero coma, then equation (134) is
satisfied. Since the left factor of equation (134) is iden-
tical to the first factor of equation (148), then astigma-
tism is also zero when (134) vanishes, which occurs only
when k = 0.

The second factor of equation (148) will also
eliminate astigmatism if it vanishes., This leads to the

equation

Substituting equation (138) in (149) and solving for 0,
gives

- nz{yl(nz-nlﬂz) - n3(0,-1) f

= . 150
2 Zgy, (ng=ny) (150)

Since 05 and Yy are functions of the free parameter k, the
solution of equation (150) gives the value of 52 for zero
astigmatism indirectly in terms of k. Equation (150) also
defines the location of the aperture stop in the y,y diagram
for the module to be free from astigmatism since Vg is the
reciprocal of 52. Once the value of 52 is obtained for zero
éstigmatism, the height of the entrance pupil could be deter-
mined by solving equation (138) for ﬁl and taking its

reciprocal.



Both Coma and Astiematism Equal to Zero

 Modules can be freé simultaneously of coma and

‘astigmatism only if eithervtheiéondition for zero coma is
satisfied or the first factor of the condition for ‘zero
astigmatism vanishes. However, equation (134)'vanishes'only
for cbhcentric sysﬁems as shoﬁh by Stavroudis (1969Db) ana
‘Powell (1970)o Theréfore, modulés with zero coma and aétig—
métism simultaneously must be concentric fWousurface systems,

The»y,ﬁ diagrem parameters of modules with both coma
 'fand7astigmatism equal to zero are defined by equations (135),
u(136), (139) and (142), The_paraﬁeters are all functions. of
‘the indices of refraction bf the three media., The aperture
stop location of the module is defined by the valﬁe of-ﬁzg’
l" obfained by solving simultaneously~equa£ioﬁs (139) and (142),

Its entrance pupil height is equal to the reciprocal of 0y .

Modules with Zero Petzval Curvature

The condition for a two-surface system with image
plane at infinity to have zero Petzval contribution is

obtained if equation (104) is set equal to zero,~
which using equation (137), can be written as

Congll = Qo) 4+ myy;0 = 00 B o (@s2)
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When solved for Yy equation (152) becomes

yl = - n3(1 - 02)/le2 . (153)
Equation (153) gives the value of yl as function of 0, and
the indices of refraction of the object and image spaces for
a two-surface system with zero Petzval curvature.

Equating (153) with (106) and rearranging terms

results to a quartic equation given by

b4 2
a0, + b 03 + ¢, 0, + 4,0, + e

2flp + Dplly + Cofly + dpfly + ep = 0, (154)
where
a, = n13n3(n22— nlnj)(nB- nl) —
b, = ninB(n3 - n2)2(nl + n2)2
Cp = = 2nln2n3(n3 - n2)2(n12+ nyn, + n22) L (155)
d, = n22n3(n3 - n,)%(ny + np)?
e, = - nZLFnB(n3 - n2)2 . ]

The quartic equation (154) is the condition for a module to
be free from Petzval curvature. The quartic has at most four
real roots, therefore, there are at most four possible
modules which will be free from Petzval contributions for a

given set of three indices of refraction,
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" Real Zeros of the Qﬁéftig - -
',Thé fﬁndémehtal theorem of algebra étates thaf such
'polynomial equation (154) has at least one root which could
be either real or cdmp_leicc We also.know that such polyhomial
has at most foﬁr zeros. Since we are intgrested only on the
real Valueé.of QZ; let us analyze the nature of tﬁerreal
z2eros of the given quarticc.To do this we make use of an inm-
portant theorem in algebra known as the Decartes' rule of
 signsn Every standaré'text in algebra  or theory of equations -
- such as Dickson (1939, ppo 76-80) discusses this theoremo o

- From the eouatlons of’ the coefflclents of the quartlo,
wé note that the relative Values of the three 1ndlces-of re-
'fraction determine the variations in sign of the successive
terms of the given polynomlal We also note that the quortlc
can hgﬁe Zero roots only when n3 = n2, which 1s an impossible
‘casé for modules or any other two—surface system, |

For a given set of three positive refractive indices
nl;_n2 and n3, we observe that only the first term bf the
quartic could possibly change in sign. The remaining terms
haﬁé the same algebraic signs regardless of the reiati&e
- values of the three 1nd1ces of refractlon, Let equatlon (154)

be“denqted,by-G(Og) = 0, The change in the number of varia-

-tioné in sign of the terms in the b1ven polynomial could ‘be

~grouped in the follow1ng three ca%ess
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Case is. (a) n,*- nln3 > 0, n3-nl > 0,

:(b)‘n22~ nyng < 0, nj—nl_<~0o

Cgse IIs (a) n22-_vnln3 < O,'nSnnl ? 0,

A (b) n, --'nln3 > O,‘nj—nl < 0,

. Case IIIs (a) n 2-,n n, = 0,

(b) n3~gl = 0. .
An analysis of the above three cases might prove useful in
the séiection of glasses for modules with zero Petzval sum.

Case I. Case I(a). implies that n, > n and i(b)

1
-implies ny > n,, For both, the number of variations'in'sign.
in G(Qy) isythree,,hence,'G(Qz) = O'has at most fhree pdsil‘.
tive real roots or at least one. The given quartié has at
most only one real negative root, sincé the number of Vafia-
tions in sign in G(-0,) is one. Therefore, for this case .
there are at most,threé~pbsitive values of 0, and at most one
reai negative value'Which shall make.ﬁhe'module eliminate
Petzval»éontributionor | ~7 |

Case II. The number of variations in sign iﬁ’G(QZ)
for this case is - -four, hence G(Q2) : 0, has at most four .

. positive real zeros, The given quartic could alsc have two

positive real roots or none at all, Since there is no



| 55
frfariations in Sign iﬁ-G(~Qz);.the quarfinCannot have any--
realfnegative‘rootu,This implies that Q, can have only posi—
tive real Values for this particular case, Case Ii(a) implies
that ng > n, while II(b),implies n, > nja
- Case III.. For i:hiscase9 the quaftic'reduces to a
'cﬁbica The ?ariations in sign in the resultant cubic is three
which‘implies that G(Qz) = 0, can have at most three positive
real roots or at least one, There is no variation in:sign in
G(—QZ), therefofeg the given polynomial cen never have any
real negative zero, Case II11(b) applies to the case of mod~
ﬁles in eirvor any medium common to the object and image

Spaces.

Twe;Mirror Case

| The quartic equation'(lSQ)‘degenerates into a simple
éuadratic equation fer the case of a two-mirror module-in
air. The resulting equation is |

o100 o a

,whlch when solved gives values of + ﬁJm for 025 These two
real values imply the existence of tWO»modules in air con- .
:sisting of spherical reflecting surfaces with zero Petzval

‘curvature., Equation (111), applied to a two-mirror module in

air could bhe wplitten as

k+3 1/5 k-1 1/3

= (02+3)/202 ’[':- Af:_e(;57)
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which when solved givés k =% 10221032 when Q, = 2. When o
Qo ='-%¢§, équation (157),yié1ds k =t i 1a364291; Using

: eciuation'(llz)y these pure imaginary values of k'éorrespond

- t0 € = mr + 0,9383 fadians,,where r=20,1,2, Théréfore,'zero.'
Petzval sum in & two-mirror module in air limits us to the
,abovévtwo values of the?QZ parameterVWhich implicitly impoée
a bound in the choice of values of the free parameters k éndv
6. Only the four calculated values of the ffee parametersv
satisfy the condition:for'this‘additional‘third-OEder pfop-

erty of the two-mirror module in air.

Both Coma and Petzval Sum Equal to Zero

_ The height of the marginal ray at the first surface
of the module with zero coma is given by equation (136) and
~the'marginal ray height at fhe samé surface fér a two-surface
system which has zero Petzval curvature is given by (15))
Equating (136) to (153) results 1n arn equation which prov1aes
thé condition for a module to S}multaneously have‘zero coma
'and Petzval sum. The’resultant equatidn when solved for Qz,
gives - | ‘ | | X -

Lml(n3 - nz)z(hz‘w.nl)

Qp = — ' 5 , - (158) -

Therefore, for a set of three indices of refraction, there
is only one module which can simultaneously possess zero‘

'coma and Petzval curvature,
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Both Astigmatism and Petzval Sum Equal to 4ero

The marginal ray height at the first surface of the
module with zero astigmatism is obtained if equation (150)

is solved for ¥y resulting in

- n2n3(02-l)
(nz-lez)(2n352-n2)

yy = : S (s9)

If equation (159) is set equal to (153) and the resultant

expression is solved for 52, we obtain

n2(2n102-n2)
. 160
2n3(n102—n2) ( )

f, =

Equation (160) provides the condition for a module with zero
astigmatism, in which the Petzval contribution is zero.
Equation (160) also defines the loéation of the aperture
stop in the y,§ diagram as a function of the Q, parameter

and the three indices of refraction.

Zero Coma, Astigmatism and Fetzval Sum

The condition for modules to eliminate both coma and
astigmatism is the vanishing of the expressions in equation
(134) or the left factor of equation (148). This implies
that a module with zero coma because it satisfies equation
(134) also has zero astigmatism. Hence, the condition for a
module to have simultaneously zero coma and zero FPetzval

contribution which is given by equation (158), is identical
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to the requirements for modules to be free simultaneously
of coma, astigmatism and Petzval curvature since (158) was
derived with the assumption that (134) vanishes,
If equation (158) is substituted in equation (141),

we obtain

o
13V)
it

2
: hnl(nB—nZ) (n2-nl)

.
[3V]
"

. 2 2 *
n3{27n2 n3 + “’nl(nB‘nz) (nz-nl)}
Equation (161) gives the functional relationship between 52
and 61' It also implies the relative locations of the stop

and the entrance pupil of the module to be free simultane-

ously of coma, astigmatism and Petzval curvature.

Modules with Zero Distortion

The two-surface system with image plane at infinity,
shall eliminate distortion if equation (103) vanishes. ‘'hat
is

- 2 = 2 = = 2.
(Qzny-0)n3) (nz-0zny ) (Qna-0ny ) (n3-nz) 77,

2. = - 2 2 = 2
+ leZQZ y2(n2 - nl) (n2 - an3 )

2 2:2 22222 =22 2 -
+ Xgnz—nl) (n3-n2) tnB(anz—u2n1)+(u2n3-n2)nlj = 0, (162)
n
3
Equation (27) applied to the first surface, yields
¥1 = (01-05)/(0,-0,0,). (163)

By eliminating the quantities in the denominator in (163) by
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by substituting equation (137), the relationship between yl

and y; is obtained.

When equation (27) is applied to the second surface,

1

g, = (9, - 1)/9,. (165)

Substituting equations (164) and (165) in (162), we obtain

2 2 - 2 2 = ~ 2R Ve
+ n3(n2—02n3)(n2-n1) (Q5-1)(1-025)n; 75, (166)
2 2 2 2 2
+ X(nz-nl) (n3—n2) (1-02){n3(91n2—02n1) + (’22n3-n2)nl}= 0.
When equation (166) is solved for y, and the resulting
equation is set equal to (106), the condition for zero spher-
ical aberration, we obtain the condition for the module to

have zero distortion.

2 4 3. 2. 2 .2 = o
ny ng 0,7 (Qyny-0yny) (Q3n,-0pn, ) (9;-05)

+ (1—02)(021’11-1'12)(nz‘anl){nj(nz‘anj)(02"'1) nl Qz
2. 2 =2 2 =
+ K(n3-n2) Ln3(an2 anl) + nl(92n3—n2)]} (167)
The above condition or equation (lo7) involves &all the

unknown 0,0 parameters of the module and seems very diffi-

cult to satisfy in practice.



CHAPTER 6
TWO~MODULE SYSTEMS

This chapter is concerned with the problem of

coupling or forming arrays of modules to produce'systems-

© " _which have zero thlrd order spherical aberration. The propn

erties of modules coupled are divided into two cases. The
first_case deals with the properties of two-module systems -
'at finite conjggates and the other pertains to two modules
“ceupled at infinite conjugatesarA,élightly different hofmal-

' -izatioh scheme has been used for each case to simplify their
Y.y diagram representatiens and the accompanying algebraic
.formulatio;so Astigmatism and coma were made to Vanish under
' ceftain eonditions° Expreseioné-for Ze¥'0 coma aﬁd astigmatism

for the two cases of the two-module system are derived.

- Two=-Module System at Finite Conjugates
The nomenclature used in the analysis of_tﬁo—module
systems at finite conjugates iseillustratedvin Fig, 4(a). The
_normalized Y,y diagraﬁ of the system is shown in Fig, 4(v) .
- The y helghts are normalized with respeot to the exit pupll
.of A or the entrance pupil of B, The . v helghts are normallzed
relatlve to the height of the image of the system. Typlcal
example of a two-module system at finite conJugates and the
\ .

cqrrespondlng y,y dlagram representatlon is shown in Flg° 5e

60
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Modules A and B are coupled in such a manner that the object
is at the front focal plane of A and its image located at
the rear focal plane of B,
Let k, and ky, be the free parameters for modules A

and B, respectively. For module A,

2.2¢,.2
2?n2n3(ka-l)

Yy =
and ) (168)
0, = 3 "/ - -
- Kg+1 kg~111 *
(ny+2np) - (nz-nl)[{;i;r} + kZ—+I} ]
For B
- 27n§ni(k%-l)
y -—
1 4n5(n4—n3)51n5—n4)
. (169)
- 3nj /h5
DLP =
kp+1 kp-1; 1/3
(2n4+nj) + (n5-n4)[{E;:I {kb+l

The two-module system coupled in such manner has zero

third-order spherical aberration,

Zero Coma

To determine the condition for which the two-module
system shall be free of coma, equation (96) is applied to
the four surfaces of the system and set equal to zero. The

result yields the following eguation,
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Fig. 4. Nomenclature Used in the Analysis of
Two-NModule System at Finite Conjugates
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2 3
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2 2 - -

anjyl(anl-anz)(anz—Qan)(anZ-Qan)
2= 2, =

- bnz(ﬂan—nz) - C L,(nu- 41’13)

2.0 02y (0 o, 0
- dngyy (n+ 0 ) (n eeny ) (ng-feny) = 0, (170)

where

a = nﬁn%(nB-nZ)z(nu—nB)z(n5-nu)2 —
b = n12n32n42n52(nz—nl)z(nu—na)z(n5-n4)2

y (171)

d = nlznzz(nz-nl)z(nj- nz)z(nu-nB)z. —

Equation (26) applied to the first and fourth

surfaces results to

Q
[aV]
|

E(ylﬁl-l)OZ + Ql]/ylol (172)

o)
=
I

L(-yuh)y + 1 1y, ' (173)

Substituting equations (172) and (173) in (170) and

collecting like terms, we obtain

AZ(-)]_ - ans + C2 = 0, (17“')
where
Az = nyyyilay) (nf-01n8) (Any-a,n1)% - 10,3)
- 03 2 2 2 (175)
By = ngQyy yyley” - dy,(n,“+ Qqnj)(ﬂun5+n4) ]
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2 2
C, = anlnjylyu(anl-anz)(anz—Qan)(Qz-Ql)

2 2 .
- ba, yu(nBQl—nBQZ-nZQlyl) - 0,9, yl(nhyh'n3ou'n3)
- danSQlylyu(n42+Qun52)(Q4n5+n4)(Qu+ l). (175).

Eguation (174) gives indirectly the functional relationship
between the locations of the entrance and exit pupil planes
of the two-module system since y

=1/8, and y = 1/0,. Equa-

E E!
tion (174) is the condition that should be satisfied to
eliminate coma for the entire system. A similar functional
relationship between 52 and ﬁh is obtained, had equation
(172) is solved for 51 and equation (173) is solved for 55,

before substitution to (170).

Zero Astigmatism

When equation (97) is applied to the system and set
equal to zero, the condition for zero astigmatism is ob-

tained, and is given by

2 2 2\ /= 2
an, yl(anl - Oyn, )(an2 - anl)

- bQ2(52n3 - n2)2 + 004(n4 - 64n3)2
2 2 2, ,= = 2
- dn3 yu(nu + th5 )(Qun5 - Q5n4) = 0, (176)

Substitution of equations (172) and (173) in (176), results

to the following after expanding and collecting like terms.,

=2 = - 2 =
ABQl + B3Ql -+ CBQS + DBQS + E3 = Op (17?)
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where
2 2 2 2 2 2
Ay = n37yy Yy Layy (00 "-0ny ") (np0y-ny05) 7 - b0,7]
B, = 2n 2Lan,nay. (n, 20 n,%) (n,0, -n. 0,) (Q,-0, )
3 % <Y1y 13y Wy =) 21 Pt ity
.2
- o6, (hng-nyyq ) -ngfly)
2.2 2 - 2
C3 = ny™ih Tyy y4L0943y4 - d(n4+ﬂun§)(n4+n504yu)2]
L . ) (178)
D3 = 2n3912y14y4Lc“uz(nuyu-nB-uunB)

+ dn3n5(n§ +Qun52)(94+1)(n4+n594Y4)]

2¢¢ 2 2 2 2
oy (A n3-npfhyy -n3 @)™ + ol “Oyy) “(nyyy,-n3-Yns)
2.2 2. 2 2 2 2
- dn3"n"0) %y, Ty (), T+ n ) (Y1) 5,
Equation (177) gives the functional relationship between the
entrance and exit pupil planes for the two-module system at

finite conjugates to eliminate astigmatism.

Zero Coma and Astigmatism

The two-module system atv 1inive congugates can be
made free simultaneously of coma and astigmatism if equations
(174) and (177) are both satisfied at the same time. Solving
equations (174) and (177) simultaneously results to two

qQuadratic equations given by the following:
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X155 + Y107 + %y = 0 (179)
and .

X108 + Yol + 4y = 0, (180)
where

Xy = A3B22 + A22C3 _

Y; = B3Bp® + 2034,Cp + D3AzBp

2 ='c3022 + D3BCp + By Es , (181)

Yp = B3ApBp - 2A3BCp + Dyhp”

2 2

Equations (179) and (180) give implicitly at most two pairs
of entrance-exit pupil heights for which the two-module sys-
tem has both coma and astigmatism equal to zero. Since only
real values of 0; and Qg are of interest, we impose the
following conditions on the discriminants of equations (179)

and (180).

2

5 (182)
Y,© - 4Xq24, 2 0,
The above set of equations could be used as a guide in the
selection of modules A and B, with free parameters ky and ky,

which may be coupled at finite conjugates to produce a sys-

tem with both coma and astigmatism equal to zero.
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Application
To apply the theory presented on the two-module

system at finite conjugates, the 1o0llowing system parameters
commonly used to specify an optical system should be givens

f* = system focal length

N = f-nﬁmber of system

6 = 2ﬁl, field angle
If the f-number of the system is defined as N = f'/ZyE, then

the Lagrange invariant of the system is
X = nju;f'/2N = n;6f' /4N, (183)

Equation (183) shall enable us to determine the conventional
optical parameters of the individual modules,
The axial separation between the two modules is

given by

The value of t, may be chosen arbitrarily or may be speci-

3
fied in addition to the system parameters. A given value of
t3 produce an additional constrained equation when substi-
tuted in (184) which may be used to determine explicitly the
pair of pupil planes to make the system eliminate either

coma or astigmatism.
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Two-Module SyStem»at'Ihfinite Conjugates

When two modules A and B defined by kg énd Ky 7 '
"fespectiveiy, are combined in a manner such that the -
'seqond conjugate”point of A coincides with the first conju=
gaté'point of B, the reéulting two-module sysﬁém has zéro
' thlrd order spherlcal aberratlon for obJects located at:ih—
Hflnltyu Such two-module system is afocal or telescopic. The
axial separatlon between the second surface of A and the -
fifst~sufféce of B is'equal to fhe'sum of the back focal
 disfance of 4 and the front focal distance of B. Two oommon
~ examples of afocal systems are Schematiéally shownlin Fig. 6,
For such systems,:it is cohvenient to normalize the ¥ heights
of the corrés@onding y,y diagram relative to the image neight
of A, The y heights are normalized with respectvfo the height
of the entrance pupil of the~systeﬁ which follows the norﬁal—
“ization scheme prﬁposed by POpez~Lopez,(l9?O); The normalized
y,§ diagrams correqunding to the optical system layouts |
shown in Fig, 6, are illustrated in'Fign 7. The first case
(é),'applies to Keplerian teléscopes While thé.second (b)'is
for‘thé Galilean type. A typidal example of two-module sys-
tem at infinite conjugatés is showh in Fig. 8.
| To define a functiqnal'relationShip between the free

_pérametefs ka.andvkb.fof the two-module system at infinite
conjugates, Powell‘(l970) irtroduced the parameter g'by:

‘%étting Y3 = &Y For module A, we have fhé followings .
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2 2, 2

Yo = ~
an(nz-nl}d(nj-nz)
(185)
2
0 - 3n2 /h3
2:
ka+1.1 1.1/3
(2n2+n3) + (n3-n2)[{ a } { } ]
For module B,
2, 2
2?n42n5 (kb—l)
3 " bn.(n_.-n )d(n -n,)
3VsTUS AT
and (186)
2
0 3ny /nj
Ly = .
Kkp+l l/j
(n3+2n4) - (ny- n3) {k ) {kb+l -

Solving for g, Powell (1970) obtained

-n42n52(n2-n1)z(n3-n2)(kbz-l)
g = 2 > > ) ’ (18?)
n; “ny (n5-n4) (nh'nB)(ka -1)

which defines g as function of k, and ky. For the case where
the free parameters are pure imaginary, equation (186) be-
comes

- n42n52(n2-n1)2(n3—n2) seczeb

g€ = y (188)
nlznzz(nS-nu)z(nu-nB) seczea :

where 65 and 6y are the free parameters of modules A and B,
respectively, and are defined individually by equation (112).
The parameter g could also define the functional relation-
ship between Qp and Q4 of the two-module system, but such

relationship is algebraically not feasible,
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130 f3b —_

o tpy —————

(a) Keplerian

t30

(b) Galilean

Fig., 6. Two Common Examples of Afocal Systems
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(a)
y
AT I | E(0,1)
w
S(O,y,
V3 ya)y 4 4)
| N \SA
E(O,y.) SR 4 .
E Pb\\\
\\\‘ 7
(0,0 FiF, (1,0)
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Fig. 7. Normalized y,§ Diagrams for Afocal Systems
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4‘J

Ty —e Lt T3y Ty

c, = -0.184135 . t3a= 16.0374 np=n;, = 1.5731 |

03 = 0,157263 t3b= 17.3695 n3 = 1.9525

cy = -0.26710? tLP = 1,13447 ka = 0.994
ky = 0.9935

(a) Layout of System

(b) y,9 Diagram

Fig. 8. Typical Example of Two-Module
System at Infinite Conjugates



74
Zero Astigmatism
The condition for zero astigmatism is obtained if
equation (97) is applied to the system and the resulting

expressions set equal to zero. Hence,

AQz(nZ—ﬁznl)Z/nl2 - B(n§+02n§)(ﬁzn3-ﬁ3n2)2y2
(188)
2 2, ,= = 2 - - 2 2
+ C(Yn3+ny) (O3ny-Oyn3) "y = DY (Qng-0eny ) yy/ng = 0,

where
2 -

A = [nlanu(ny-nZ) (nL',"n3) (n5—n4)]

_ 2
B = Lnu(nz—nl)(nu-HB)(n5-n4)3

) (189)

C = [nz(nz—nl)(nB—nz)(nS'nu)]

) 2
D = [nyn3ng(ng-ng)(nj-ny)(ny-n3)] . .

Equation (26) applied to the second and third sur-

faces of the two-module system, gives

= [O2(1'53y2) + 1]/}’2

N
L

(190)
= [0y (1-03y)) + 11/yy.

[
=
1

Replacing 55 by 1/yy,, @nd substituting (190) in equation
(188), results to

A453 + By = 0, (191)
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where

A = annSyzyq[AognSyq(nzyz—nl—ﬂznl)
+ B(n§+Q2n§)(QZ+1)(n302+n2)n1n3n5y2y4
- C(Qun§+n§)(1+Q4)(n4+04n3)n1n3n5y2y3

+ DQE(n504+n5-n4)nly2y4]

‘ }(192)

2 2

2 2 2 2 2
- B(n2+02n3)(02+l) nynsney Ly,

2, 2 2.2 2 2.2
+ C(Qun3+n4)(l+04) nINSNeyoY 4

- DQu(n5Qu+n5-nu)2n§y§y4].

Since yg= 1/53, equation (191) when solved for 53, gives the
location of the aperture stop of the two-module system in

order to eliminate astigmatism.

Zero Coma

When equation (96) is applied to the two-module
system at infinite conjugates and the result set equal to

zero, we obtain
Ca0° 0 2 2y (q L) (@ 0
LAOZ(TIZ-Oznl)/nl] + B(n2+021’13)(2n3+ nz)( 21’13- 'an)yz
+ C(Qun§+ni)(n4+04n3)(ﬁBnu-ﬁunB)yB

+ [Dﬂi(ﬁuns-ﬁ#qu)yu/nsj = 0, (193)
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the condition for the system to have zero coma., If 55 = l/&u
and equation (190) are substituted in (193), the resulting

equation after expansion and grouping of like terms, becomes

MOy + N.= 0, (19%4)
where
M = nln5y2y4[A023 - Byz(n302+n2)2(n§+02n§)
+ Cy3(n4+04n3)2(04n§+nﬁ) - Dy, >3] (195)

+ Bnln3n5y2y4(02+l)(n§+ ang)(Q2n3+ n2)
- Cnln3n5yzy3(l+nl+) (QL"n%'I'nE_) (n4+0un3)
+ Dnly2y4042(04n5+n5-n4). (196)

BEyuation (95) when applied to the two-module system at

infinite conjugates, gives
AQZ3 - Byz(n302+n2)2(n§+02n§)
+ Cy3(n4+04n3)2(04n§+nﬁ) - Dyu043 = 0. (197)

The left side of equation (197) is identical to the quanti-
ties inside the bracket, | ], in (195). Hence, M in equation
(195) also vanishes., Since M is equal to zero, then N should

also vanish to satisfy equation (194). Equation (196) when
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set equal to zero and solved for Vi yields

yL} = R/S, (198)

where
R = Cnln3n5y2y3(l+04)(Qqn§+nﬁ)(n4+04n3) (199)
S = An5Q§(nZyz—nl-leé)
+ Bnln3n5y2(02+l)(n%+02n§)(02n3+n2)
+ Dnly20u2(04n5+n5-n4). (200)

Equation (198) determines the exit pupil for which the
two-module system at infinite conjugates can have zero coma.
The exit pupil height, Yy is implicitly a function of the
free parameters k, and ky of the iﬁdividual modules, If equa-
tion (197) is solved for y, and the resulting expression is
set equal to equation (198), a functional relationship be-

k, and kb will be obtained which shail provide a criterion in
the choice of the free parameters of the individual modules
to be coupled to insure zero coma. in general, functional
relationship between the free parameters of the coupled

modules is algebraically complicated. A computer solution

of this problem is suitable.



CHAPTER 7
"CONCLUSION

Tt has been shown that parameters derlvable from the
rDelano y,y diagram form a convenlent set of independent pa-
rameters whlch;completely describe and deflne some of the
' general°properties of design modules. Such representations
were found to yvield. insights in the analysis of modules
which cannot readilylbe obtained using better kﬂown methods;
Tts only drawback is that the constructibility of modules is
not at once visualized from these parameters without trans-
forming to the conventional opticallparameters of curvatﬁres
“and axial separatlon. Such transformatlons are stralghtfor-
l:ward howevero N ’

The. canonlcal optical parameters aeflneo by . equatlon
(115) were 1ntroducea by Stavroudls (1969b) as a convenlent
form of describing modules., These are comparable to the pa-
rameters associated with the y,y dlagram when the parameter
f is equated to l/ﬁ, the reciprecal of the Lagrange invar-
. iant., o
| ’_Critieal values of the free non—optieal.parameters,
k and €, were defined in terms of the y;i aiaéram»parameters
~and tne three indices of refractlon ny, nz and N3 Values of
‘the canonical optlcal‘parameters and equivalent y,y dlagram_

" og,
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Apafameters, which curreSpOnd to the crifieal values of k and:
8, are given in Tables I and II, | -

- Conditions for modules to- ellmlnate blmultaneously
Vthird—order spherical and other Seldel aberrations were
obtained, The limitétions or constraints in the choice of_,
vaiues of the free parameters and fhe y,y diagram perameters.i'
were‘anal;yzedu The proper‘location oflaperture'stop defined
by equation (150) eliminates third-order astigmatism. For a
, and nB'the

module -was found to eliminate Petzval curvature if Q, is

given set of three indices of refraction nlv n

chosen so that it eatisfies the quartic equation (15@)o
Appllcatlon of Decartes' rule of sign in this quartlc deter-
mines the number of p0581ble values of Q, which prov1dei |
values of the free parameter k for zero Petzval contribution.
For a two-mirror module in air, the quartic Gegenerates into
'a,quadrétic whieh implies the_exisfence of tWo possible mod~
ules with zero Petzval sum. It was aiso shown that for a
twe-mirror module in aif,:there are exactly. two real and two
pufe‘imaginary values of the'free parameter K which provide-
z‘er;Q’Petzvai'curvatureo | R
It was shown that medules With Zero coma and.Petzval
_ curvature may be defined al&ebralcally by equatlon (158) .
;Thelr constructlblllty depenas on the relative values of the uv
three refractlve 1ndlced’nl, n, and n3 In like manner mod-

ules w1th Zero astlgmatlsm and Petzval curvature, modules"
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- with zero coma, astigmatism and“PetzvalEéuﬁ and modules wifh,
zero distortion have been.defined; Conditions for'Such desir;
“able combinations seém very difficultfté satisfy'fbr the cései
- of zero distortion but the others may be feasible defending
on the choice of parameters. Numerical examples of modules 7
generated with the aid of the General Electric time sharing
computer.yield promising data for possible applications of
rthese results in the process of OprCal Gesign. |

o Two-module systems w1th zero third- order‘spnerlcal

- aberration were defined for both finite and infinite conju--
’7gates;-Functional relationships among the y,y diagram
parameters of the indiyidual modules wefe obtained which
1insure zero third-order spherical aberration of the coupled
systemsg Location of the aperture stop bf the two—méduie
systems were specified to eiimiﬁaté third-order astigmatism,
Functional relationships between the free-parameters of the
individuél modules coupled to elimindte simultaneously coma
"and astigmatism were nof féasible. For a given set of five
indices of'refractibn‘nl, ny, nj, ny and h5 it is believed
ﬁhat a computer solution could be obtainéd such fﬁat fof a
chéice of k, for module A; thejcorrespondiﬁg valué of kb fér

module B could be determined for a constructible two-module

~ system with zero or minimum amount of coma and astigmatism.
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The method of- applylng the results of this study of .
the propertles of modules to the design of multi-element re-
fracting systems. is clearo Arrays of modules could Dbe
arranged such that the rear and front foci of successive mod-
 ules coincide which will yield to such required systems with
initially zero third-order spherical aberration. The param-
eters‘aSSOeiatee with the individual modules‘could.be varied

to optimize the design.,



 APPENDIX R
NUMERICAL EXANMPLES OF MODULES

To illustrate what have been discussed abéuf modules,
two values of refractiVé indicés; ny = 1.7335 and né=165i823,
are randomly picked from the glass dataloge For n3 = 1, the
calculated critical values of the free parameter k are as

~followss

k, = 0.947121
k, = 0,999815
x* = 0.996774

The above cfitical values of k Were.computed With,fhe aid of
the General Electric time sharing service, Mark I computer,
uéing thé program "M@DULE" in BASIC 1anguageb The computer (
. program, "MQEULE",_gpﬁéraies tables of conventional optical
parameters fof modules, real case, for three input values of"
- refractive indicese~ln addition to the criticél vaiues, ta-
bles calculated at five values betwéen critical Qaers;weré '
- generated., An optioﬁrfof including additiohal values of thé 
frée'parameters was prbvidéd_in‘the program.

. Another éomputer program, "M@D-BAR", which is a modi;
_ fioatioh.of>the "MgDULE" haéﬁbeeﬁ written to geﬁeréte,taﬁles;
5fjthe~y,§ diagram parameters, feal case df k, for'three'

(o |
input values of refractive indices. The data generated from

"82 
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- the "M@DULE" and the "MﬁD—BAR"'uslhg the samelsetlﬁf thréé 7
‘input values of refractive indices and an f-value (1/%) of |
0.1 are shown plotted-as functions of k in figures A-l; A;é,l
A-3 and A-k, o o .
'Using the same set of three indices of refraction,
'the fourth degree equatlon (154) was solved with the aid of
the General hlectrlc Mark IT tlme sharlng computeru A system
’.subroutlne called "LPRPpHEEN in FORTRAN, was employed to
determlne the zeros of the polynomial. The quartic equation
yields two real foots‘of 0y (250138932 and 0,55637065) which
imply the ekistehce’of two-modules withlzero Petiﬁal sﬁm for
the given set of three indices of refraction, |
The program "M@DULE" was also modified to generate
tables ofla and ¥ parameters for modUles with zero astigma-
tism. Graphs showing the values of fheée parameters as func-

tions of k, using the same set of three refractive indices

© . and f-value, are plotted in figures A-35 and A-6,

Some examples of COnstrudtible moduleé”are shown in
'_ flgures A-7 and A 8 The corresponding y,y dlagrams of two
rtyplcal modules are 1llustrated in Fig. A 9. Examples of .
ray trace data generated u81ng the program "THRAYA" are
vglven on pages 93 and 94 which show the relative values of

the.aberlatlons,
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Fig. A-7. Examples of Moaules (kO < ko <
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bl = 0,414699 c; = 0.264356
c, = -0.324973 ¢y, = -0,294339
tl = 10,7023 t, = 13.3712
t, = 3.81669 t, = 2.93919
kK = 0.9960 k = 0.9950
c; = 0.146009 ' ey = 0.135933
C2 = —0.2637?5 02 = —0.260681
t) = 18.0353 t, = 18,7009
t, = 0.793953 t, = 0.4L4LO06
k = 0.993250 k = 0,9930

ny = 1,955 n, = 1.5731 ng = 1,0 1/¥ = 10

Fig. A-8., Examples of Nodules (ko < k¥ < Ko < 1)
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y
16,0374 Cy = 0.184135
1.78539 C, = -0.274616
k = 0.994
(a)
y
N 2
—y
1.17703 c, = 0.245106
13-517 CZ = O'u0939h
k =1,009
(b)

Constructible Modules and Their y,§y Diagrams
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Cl 02
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t, = 1.78539 k = 0,994 t = 0,971702
n, = 1.5731
MARGINAL PRINCIPAL
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1y = . 00000 «20000
SURFACE 11 ¢y = 0.,274616
SPH = 000012 CIMA = -.000064
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IMAGE PLANE
Y = -.00000 -2.00000
I}y = « 00512 « 12051
SUMS OF ABERRATIONS
SPH = . 000000 CoMA = -.000125%
AST = -.000000 CURV = . 000773
DST = -.010207 PETZ = -.077301
LONG COL = . 000027 LAT COL = . 000392
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SUMS OF ABERRATIONS
SPY = -.000000 coMA = -.000024
AST = ~.000000 CURY = . 000724
PDST =  -.002322 PETZ =  -.072396
LONG COL = . 000005 LAT COL = . 000169
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