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This dissertation clarifies two aspects of neutron-star formation and evolution: 

the formation of neutron stars through the accretion-induced collapse of white 

dwarfs and the common envelope evolution of neutron stars. In both cases, we 

utilize a 1-D lagrangean and 2-D SPH hydrodynamics codes equipped with a 

broad range of physics including neutrino emission, absorption, and transport, 

general relativity and dense equations of state. These results are then applied to 

a Monte-Carlo population synthesis code to study the effects of kicks placed upon 

neutron stars near the time of their formation. By comparing these results with the 

current observational data, we find that a bimodal kick distribution of neutron-star 

kicks is required. 
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CHAPTER 1 

INTRODUCTION 

This thesis is devoted to several aspects of neutron star formation and evolution, 

a field which covers a broad range of astronomical objects from supernovae and 

gamma-ray bursts to X-ray binaries and 0/B runaway stars. Before we become 

mired in the details, let us begin with a brief overview of what makes neutron stars 

such fascinating objects. Neutron stars, along with black holes, are the primary-

sources of the high-energy emission in the universe. High-energy astrophysics is 

one of the youngest and fastest-growing fields in astronomy. Because of its relative 

youth (in comparison to optical and radio astronomy), every new instrument brings 

with it new insights, surprises, and problems (Bradt, Ohashi, &: Pounds 1992). 

Neutron stars allow the adventurous theorist to utilize a wide range of physics. 

The potential energy liberated from 1 gram of matter falling onto a neutron star is 

~ 2 X 10^° ergs, an energy roughly equivalent to a 50 kiloton bomb! The free-fall 

velocity of this matter is ~ 60% the speed of light. Neutron stars have densities 

~ 5 X 10^" g cm~^, over 13 orders of magnitude greater than anything found on the 

Earth. In addition, neutron stars exhibit some of the strongest magnetic fields in 
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the universe (Chanmugam 1992). 

This chapter provides an introduction to neutron stars and the many systems 

in which they are found. In §1.1, we list and describe the basic systems along with 

the current and upcoming instruments used to detect these systems. Of course, the 

first step in studying these systems is to imderstand the systems themselves, but, 

as we shall discuss in §1.2, they can also be used as probes of the environments 

through which neutron stars pass. In addition, neutron star systems, with their 

extreme energetics and densities, provide ideal laboratories to test fundamental 

laws in physics. Let us now look into the details of these studies. 

1.1. Neutron Star Systems and Observations 

Although the emission from neutron stars is not limited to high-energy radiation, 

X-ray and gamma-ray satellites such as Einstein, ROSAT, COS-B, HEAO-1, 

HEAO-3, GRO, Ginga, ASCA, etc. have secured the prominent role neutron 

stars and the accretion onto neutron stars play in astronomy. A majority of the 

brightest high-energy sources in the sky involve accretion onto compact objects 

(e.g. neutron stars or black holes). The era of high-energy astronomy has just 

begun and the future holds many new high-energy observatories: AXAF, Integral, 

XMM, Spectrum-X/7, etc. 

Probably the most famous example of an X-ray emitting object involving 

a neutron star is PSR053H-21 (the Crab pulsar), but pulsars near supernova 

remnants are not the only high-energy emitting neutron stars observed. For 

example, using Einstein satellite data, Trincheri and Fabbiano (1991) analyzed 

the X-ray sources near M31 and found that not only could the entire X-ray flux 

be explained by discrete sources (many of which are accreting neutron stars), but 
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that a majority of the sources appeared to be associated with the globular clusters 

around M31. AXAF will provide sufficiently accurate spectral information for these 

objects to achieve reliable identifications, placing constraints upon their formation 

rates and/or lifetimes if combined with a detailed theoretical model. 

Accreting neutron stars can also explain such peculiarities as Be/X-ray 

systems. These objects have optical components compatible with Be spectra, but 

X-ray fluxes much too high for B stars or even accretion onto white dwarfs (see 

the ROSAT data analysis by Motch et al. 1991). It is probable that these objects 

are neutron stars accreting in common envelopes, but this speculation can only be 

verified with detailed accretion models. 

These are just a few examples of a long list of high-energy emitting neutron-star 

sources which includes low-mass X-ray binaries, high-mass X-ray binaries, gamma-

ray bursters, X-ray bursters, millisecond pulsars, objects exhibiting quasi-periodic 

oscillations, and so on. Although neutron stars have gained prominence as sources 

of high-energy emission, they are not limited to low-wavelength radiation. Of 

course, as with any well-studied object, PSR 0531+21 (the Crab Pulsar) has 

been observed in virtually all wavelengths. Many neutron stars have large fluxes 

in lower-energy wavelengths. A large database of strong radio-emitting pulsars 

exists with well over 100 of these sources in the galaxy (Taylor, Manchester, & 

L)aie 1993). In addition, merging neutron stars and supernova are likely sources 

of gravitational wave emission that may be detected by LIGO (Abromovici et al. 

1992, Ruffert, Janka, & Schafer 1996, Burrows & Hayes, 1996). 
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1.2. Astrophysical Applications 

As part of the incessant curiosity of astronomers, just understanding the observed 

neutron star systems themselves makes research on neutron stars a worthwhile 

endeavor. However, neutron star systems can also be used as probes to study many 

other aspects of astronomy. In this section, we list some of the applications of 

neutron stars and neutron star systems to other aspects of astronomy. 

As the products of supemovae, neutron stars can be used to understand the 

supernova mechanism itself. The remnant neutron star mass may provide insight 

into the supernova progenitor as well as the explosion itself (Timmes, Woosley, & 

Weaver 1996). In addition, the magnetic fields, spin-rates, and, as we shall show 

in this dissertation, the velocities, all can give information about the supernova 

explosion. 

Observations of neutron star populations can be used in combination with 

population synthesis models of these systems to gain insight into the formation and 

evolution of massive star binaries. For instance, we shall show that the number of 

low-mass X-ray binaries found in the galaxy imply that the companion/primary 

mass ratio for massive stars is peaks at extreme values (~ 0.1). A more direct 

example of neutron-star probes in massive binaries is PSR J0045-7319. (Kaspi et 

al.) This binary system contains a neutron star and a B-star companion. The orbit 

of this system is highly eccentric with its closest separation a mere 3.7 ± 0.5i?©. 

The neutron star strongly disturbs the B-star during periastron and measurements 

of the B-star's oscillations will allow an alternate way to probe and understand 

massive star evolution (van Kerkwijk 1996). 

High-velocity pulsars can also be used as probes of the galactic halo. The work 

in this dissertation prepares us for these studies, but there are many selection effects 
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which must be overcome before any concrete conclusions can be drawn (Narayan & 

Ostriker 1990). If gamma-ray bursts are galactic in nature, the distribution of these 

bursts combined with some knowledge of neutron-star velocities can be used as a 

probe of the galactic halo (Podsiadlowski, Rees, & Ruderman 1995). If gamma-ray 

bursts are cosmological (e.g. mergin neutron stars), we can set limits on early star 

formation. As we leam more about neutron stars, this list will increase. 

1.3. Applications to physics 

Even more interesting are the many applications neutron-star systems provide for 

testing basic physics. The nature of neutron stars, with their high densities and 

high magnetic fields along with the high energies of the matter accreting onto 

neutron stars make neutron stars ideal laboratories to study general relativity, the 

properties of degenerate matter, particle physics, magnetic fields, etc. 

For instance, as we shall show in this dissertation, models of collapsing white 

dwarfs depend strongly upon the dense equation of state used. There remain many 

uncertainties on the behavior of dense matter and it is costly, if not impossible, to 

devise experiments to sort out these uncertainties in Earth-based labs. However, 

such conditions already exist in collapsing white dwarfs and by modeling them 

and comparing these models to observations, we can constrain the uncertainties in 

the physics. Another example using neutron star systems to gain some knowledge 

about the properties of dense material comes from measuring the masses of neutron 

stars. Different equations of state predict different maximum stable masses for 

neutron degenerate material. By measuring the masses, we may be able to rule out 

some dense equations of state (van Kerkwijk, van Paradijs, & Zuiderwijk 1995). 

Neutron star formation involves the emission of a large number of neutrinos. 
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By observing these neutrinos and coupling these observations to models of the 

collapse of white dwarfs or supemovae, we gain insight into the nature of neutrino 

emission, neutrino mixing, and similar aspects of particle physics. For instance, 

the neutrinos emitted from neutron star mergers, supemovae, and the collapse of 

white dwarfs give information about the maximum mass of neutrinos (e.g. Bahcall 

& Glashow 1987). 

Pulsar 1913+16 has already provided an alternate test for general relativity 

(Hulse & Taylor 1975). But, as we have already mentioned in §1.1, the merging of 

binary pulsars and asymmetric explosions of supemovae should be observable by 

LIGO and, hence, provide another verification of general relativity. (Abromovici et 

al. 1992, Ruffert, Janka, & Schafer 1996, Burrows & Hayes, 1996). 

1.4. Outline of Dissertation 

We begin the work of this dissertation (Chapter 2) with the hydrodynamical study 

of rapid infall onto neutron stars (M 10~'^Moy~'^). These rates apply to physical 

conditions for neutron stars in common envelope systems with their companions, 

Thome-Zytkow objects, and supemova fallback. During the evolution of many 

types of neutron star binaries, the neutron star passes through a phase where it is 

in the envelope of its companion. These simulations cire critical to understanding 

this common envelope phase. Thome-Zytkow objects are also a common phase for 

alternate formation mechanisms of many neutron star populations. Our results 

show that if the neutron star does develop into a Thome-Zytkow object, it will 

quickly collapse into a black hole. We can not rely upon Thorne-Zytkow objects 

to be an alternate route in the formation for neutron star systems. The accretion 

of supernova fallback also has consequences upon neutron star and black hole 
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formation. All of these implications will be discussed in Chapter 2. 

We can apply our results to the study of specific neutron star systems. 

Chapter 3 discusses the formation of double neutron star systems such as PSR 

1913+16 using the additional constraint provided by our rapid infall models. Our 

rapid infail models place limits on the conditions required for a neutron star to 

survive a common envelope phase. In Chapter 4, we describe a binary population 

model designed to study the formation of massive binaries. We use our results of 

neutron-star accretion with this populution synthesis code to gain some information 

of velocity imparted on the neutron star due to some asymmetry in the supernova 

explosion which created the neutron stax. This chapter gives the first results of this 

powerful code which we will later use to address many astrophysical puzzles. For 

instance, we include in this code the motion of our neutron star systems through 

a galactic potential. With a better understanding of the neutron star populations, 

our simulations can be used to probe the galactic halo. 

A weak point in our population synthesis simulations is that these models do 

not include a potentially important alternate neutron-star formation mechanism: 

the collapse of accreting white dwarfs. Population synthesis calculations place only 

rough constraints upon the rate of collapsing white dwarfs. However, by modeling 

the collapse of these white dwarfs, we can use the nucleosynthetic yield of these 

objects to constrain their rate. These models are discussed in Chapter 5. 

We end this chapter with a brief summary of this thesis. We have outlined 

the chapters based upon our hydrodynamical models of accretion. We then apply 

these results based on basic physics to a variety of neutron star populations. 

Alternatively, from the observational perspective, we can begin by studying a 

range of neutron star populations. Population synthesis models are plagued by 
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a number of uncertainties, chief among them being common envelope evolution 

and the role of accretion-induced collapse of white dwarfs play in the formation of 

neutron stars. We attack two problems, rapid infall onto neutron stars, a part of 

common-envelope evolution, and the collapse of accreting white dwarfs. As with 

most scientific endeavors, we find that we have uncovered more new questions than 

we have answered, but a wealth of information in physics and astronomy lies before 

us. 
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CHAPTER 2 

THE DYNAMICS AND OUTCOMES OF 

RAPID INFALL ONTO NEUTRON STARS 

Brief Summary 

We present an extensive study of accretion onto neutron stars in wiiich the 

velocity of the neutron star and structure of the surrounding medium is such that 

the Bondi-Hoyle accretion exceeds 1O~^M0 y~^. Two types of initial conditions are 

considered for a range of entropies and chemical compositions: an atmosphere in 

pressure equilibrium above the neutron star, and a freely falling inflow of matter 

from infinity (also parametrized by the infall rate). We then evolve the system 

with one- and two-dimensional hydrodynamic codes to determine the outcome. 

For most cases, hypercritical (also termed "super-Eddington") accretion due to 

rapid neutrino cooling allows the neutron star to accrete above the Bondi-Hoyle 

rate as previously pointed out by Chevalier. However, for a subset of simulations 

which corresponds to evolutionaxily common events, convection driven by neutrino 

heating can lead to explosions by a mechanism similar to that found in core-collapse 
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supernovae. 

Armed with the results from our calculations, we are in a position to predict 

the fate of a range of rapid-infall neutron star accretors present in certain low-mass 

X-ray binaries, common envelope systems, supernova fallbacks and Thome-Zj^kow 

objects (TZOs). A majority of the conunon envelope systems that we considered 

led to explosions expelling the envelope, halting the neutron star's inward spiral, 

and allowing the formation of close binary systems. As a result, the smothered 

neutron stars produced in the collisions studied by Davies & Benz may aJso 

explode, probably preventing them from forming millisecond pulsars. For the most 

massive supernovae, in which the fallback of material towards the neutron star after 

a successful explosion is large, we find that a black hole is formed in a few seconds. 

Finally, we argue that the current set of TZO formation scenarios is inadequate 

and leads instead to hs^jercritical accretion and black hole formation. Moreover, it 

appears that many of the current TZ models have structures ill-suited to modeling 

by mixing-length convection. This has prompted us to develop a simple test to 

determine the viability of this approximation for a variety of convective systems. 

2.1. INTRODUCTION 

It is only in the last few decades, with the arrival of high-energy observatories, that 

the problem of accretion onto neutron stars has moved from the speculations of 

theorists to the constraints of observations. Satellites such as Einstein^ ROSAT, 

GRO, Ginga, and others, have contributed to a growing list of accreting neutron 

star sources such as gamma-ray bursters. X-ray bursters, millisecond pulsars, high 

mass X-ray binaries (HMXB), low mass X-ray binaries (LMXB), and a number 

of objects entangled within the current evolutionary scenarios for binary pulsars. 
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Future observations {AXAF, Integral XMM, Spectrum-X/f, etc.) promise to add 

more. Unfortimately, the current state of theoretical models falls short of the 

present and upcoming data. At the root of the theoretical difficulties is the range 

of extreme physical conditions encountered in many of the observed systems: high 

magnetic fields, angular momentum, degenerate matter, neutrino effects, etc. In 

addition, as we shall demonstrate in this paper, it is likely that multidimensional 

effects are important. As a result, progress in understanding neutron star accretion 

has been slow. In this paper, the first of a series, we will consider the effects of 

rapid mass infall onto neutron stars (Msondi-Hoyie > lO^^M© y~^). By infall rate, 

we mean the rate at which material is added to the atmosphere surrounding the 

neutron star. This is to be distinguished from the term accretion which we reserve 

for the mass incorporated into the neutron stax. High infall rates occur in common 

envelope systems such as Be/X-ray objects, more deeply buried systems such as 

Thome- Zytkow objects (TZOs), and supernova fallback. 

Early work studying rapid mass infall onto neutron stars logically began with 

estimates of the fallback of matter onto newborn neutron stars in supernovae 

(Colgate 1971; Zel'dovich, Ivanova, & Nadezhin 1972). Both groups found that the 

canonical photon Eddington accretion rate vastly underestimates accretion onto 

the neutron star as neutrino, rather than photon, emission becomes the dominant 

cooling source. Chevalier (1989), and Houck &: Chevalier (1991) have studied in 

greater analytic detail the fallback of matter onto the adolescent neutron star, 

confirming this "hypercritical" accretion rate. Even though the amount of fallback 

matter is generally a small fraction of the material expelled by the supernova, it is 

a large portion of the material undergoing heavy element nucleosynthesis. Thus, 

understanding supernova fallback is crucial, not only to decide whether or not 

a neutron star or black hole is left after the explosion, but also to understand 
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the nucleosynthetic 3delds of supernova explosions which, in turn, have profound 

repercussions for galactic chemical evolution. 

However, most of the interest in atmospheres around neutron stars has been 

directed toward understanding Thome-Zytkow objects, an hypothetical red giant 

in which the normally white dwarf-like core is a neutron star. These objects are 

supported, in addition to the "normal" contribution from thermonuclear burning, 

by the release of gravitational energy from accretion onto the neutron star, and 

therefore have longer lifetimes than standard red giants. The concept of powering 

a star from mass accretion onto a degenerate object was revived from its pre-fusion 

days (Landau 1937; Gamow 1937) by Thome &: Zytkow (1975). In their study of a 

range of models for stellar envelopes greater than 1 M©, Thome & Zytkow (1977) 

separated their models into two classes depending upon atmosphere mass. For the 

more massive envelopes, accretion alone is insufficient to provide pressure support, 

suggesting nuclear buming arising from the extreme conditions near the surface 

of the neutron star as a possible complementary mechanism. Follow-up work by 

Biehle (1991, 1994), Cannon et al. (1992), and Cannon (1993) focused on this 

class of objects, using more detailed descriptions of the nuclear burning processes. 

These simulations established abnormal nuclear buming (such as the rp-process) as 

an additional source of energy and led to more definitive results on the observable 

chemical compositions of TZOs, should they exist. In recent years, the usage 

of the terms TZO has grown in the literature to encompass a broader range of 

neutron-star atmosphere systems. In this paper, we reserve the TZO designation 

for those objects originally envisioned by Thome, Zytkow Cannon and Biehle. 

As an ever-branching list of formation scenarios has been dreamed up, the 

occurence of rapid infall on neutron stars has evolved from the seed of a theorist's 
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imagination to a virtual certainty. Among them one finds: 1) supernova fallback, 

2) common envelope evolution (Taam, Bodenheimer, &: Ostriker 1978; Terman, 

Taam, & Hemquist 1994), 3) collisions between main-sequence stars or red giants 

and neutron stars in globular clusters or galactic nuclei (Benz & Hills 1992; 

Davies & Benz 1995), 4) an induced collision between a newly formed neutron star 

and its binary companion as it is kicked by an asymmetric supernova explosion 

(Leonard, Hills, & Dewey 1994), and 5) a neutron star caught within the torus 

of an active galactic nucleus or within a dense molecular cloud (D. N. C. Lin 

- private communication). Supernova fallback excepted, not much attention 

has been paid to the link between formation scenario and their h3T)othetical 

product (LMXB, TZO, etc.). Along those lines, the stability of the build-up of an 

atmosphere around a neutron star has been in dispute ever since TZ objects were 

conjectured. At the heart of this controversy is the impact of neutrino physics 

on the structure of the atmosphere. Neutrino cooling, an aspect of the problem 

first brought up by Bisnovatyi-Kogan & Lamzin (1984), dismissed by Eich et al. 

(1989) and subsequently ignored by Biehle (1991, 1994), Cannon et al. (1992) and 

Cannon (1993) has regained prominence as understanding of supernova fallback 

onto neutron stars has progressed. In particular, Chevalier (1993) has found that 

hypercritical accretion can occur, not only in the case of supernova fallback, but 

also in the entire range of common envelope systems, including TZ objects. 

This paper is about what occurs when a neutron star is forced to accrete 

matter at a high rate. A generic scenario might be as follows: a neutron star 

encounters a star (or a gas cloud, or an AGN disk, or its own ejecta). During 

an initial transient, an accretion shock moves from the surface of the neutron 

star to some equilibrium radius. The region inside the shock then becomes an 

atmosphere in near-pressure equilibrium which settles on the neutron star. Both of 
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these phases of the evolution can last for many dynamical times so that it is not 

possible to model the comprehensive evolution of the accreting neutron star. Since 

we would still like to determine what will be the final outcome, we have devised 

the following plan of attack: in a first set of simulations, we compute the evolution 

of a series of initial free-fall conditions over a range of parameters (entropy, 

chemical composition, and most importantly, infall rate). These conditions typify 

the expected initial structure obtained as a neutron star plows into a medium. 

For reasons explained in §2.4.1.1, the transient structure which develops while 

the accretion shock moves outward immediately becomes convectively unstable, 

pushing the accretion shock beyond its steady state radius. Unfortunately, the 

convective episode lasts too long to follow to completion, but the end result can 

be inferred, namely that an isentropic atmosphere will eventually build up above 

the neutron star. In a second set of simulations, we examine just such isentropic 

atmospheres initially in gravitationed and pressure equilibrium for a range of 

entropy and chemical composition. In the absence of neutrino processes, these 

atmospheres are stable. Starting with these "pseudo-stable" initial conditions, we 

turn on neutrino processes and determine how stability is affected by energy losses 

due to neutrino emission. Combining these two sets of simulations, we can take 

a given infall structure and, using our first set of models, estimate the resulting 

structure of the isentropic atmosphere. With this structure, the second series of 

models will then predict the ultimate fate of the system. 

Section 2.2 discusses the numerical methods used in our simulations and §2.3 

presents the range of initial conditions and physical processes included in this 

study. The results, including comparisons to the work of Chevalier (1989, hereafter 

C89), Chevalier (1993), Houck & Chevalier (1991) (hereafter HC), and Colgate, 

Herant, & Benz (1993) (hereafter CHB), are presented in §2.4. We conclude with 
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a discussion of the implications of our findings for the variety of systems involving 

high mass infall and the potential observational consequences. 

2.2. NUMERICAL METHODS 

To explore the behavior of our range of atmospheres, we utilize both one-

dimensional and two-dimensional codes. The one-dimensional code is used to 

determine the subset of atmospheres that develop negative entropy gradients 

of sufficient magnitudes to induce convection and thus break the otherwise 

spherical symmetry. This allows us to limit two-drmensionai simulations to those 

atmospheres that really require it. All physical processes such as neutrino physics 

(absorption, emission and transport), equation of state, etc., are implemented in 

identical ways for both codes. The two codes have already been described in detail 

(Herant et al. 1994, hereafter HBHFC). Thus, we will limit ourselves to an overview 

except to describe modifications introduced specifically for these simulations. 

2.2.1. One-dimensional Lagrangian Code 

The one-dimensional simulations were performed with an explicit, grid-based, 

Lagrangian code (Benz 1991) using a second order Runge-Kutta integrator. This 

code does not include any form of convection modeling (mixing length or other), 

and as a result, its usefulness is limited to non-convective regimes, and to the 

diagnosis of the onset of convection. The neutron star surface is modeled by a 

reflective inner boundary, exterior to which lies the atmosphere. For most of the 

one-dimensional simulations we used a total of 140 cells modeling the pressure 

equilibrium atmospheres out to a radius ~2500 km and the infall atmospheres out 

to ~25,000 km. Since the mass of the atmosphere strongly depends on entropy for 
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the equilibrium models [see eq. (39)] and on the infall rate for the infall models 

[see eq. (13)], the mass resolution for the models varies according to the computed 

model. It was however chosen in such a way as to maximize resolution near the 

surface of the neutron star. 

Both Newtonian and general relativistic (in the style of Van Riper 1979) 

formalisms have been implemented in the code. We have found that the general 

relativistic implementation leads to an increase in the Brunt-Vaisala frequency 

of up to 40% over the Newtonian case in the intermediate entropy models (see 

§2.4.2), and in addition, a factor of ~ 3 increase in accretion rates. These effects 

are comparable to those calculated by HC. However, since angular momentum and 

accretion concerns limit us to mostly qualitative estimates anyway, in most of the 

simulations presented here, general relativistic effects have been ignored. 

2.2.2. Two-dimensional SPH Code 

The basic structure of the two-dimensional cylindrical geometry smooth particle 

hydrodynamics (SPH) code used for the simulations of this paper has been 

presented in Herant & Benz (1992). The code was further developed in Herant, 

Benz, & Colgate (1992) and HBHFC to incorporate neutrino processes and an 

equation of state of extended range. 

As in HBHFC we run our calculations in a wedge centered on the equatorial 

plane with periodic boundary conditions to avoid the complications associated with 

the z-axis which corresponds to a singularity of the cylindrical coordinate system. 

The opening angle is usually 90° corresponding to -\/2/2 of the total volume. We 

have varied the opening angle (up to 160°) and the number of particles [factors of 4 

(4,000 - 16,000 particles)] in the simulations without noticing appreciable changes 
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in the results. The gravitational force is calculated in the Newtonian limit by 

evaluating the mass interior to each particle, thereby assuming spherical sjnnmetry, 

which is reasonable considering that the central neutron stEir provides the dominant 

contribution. The kernel used is the same as in HBHFC. 

The structure of the initial atmospheres (see §2.3.1) is mapped to an SPH 

representation. Particles are placed on concentric circles around the origin. There 

axe of order 50 particles per circle, which in a 90° wedge translates to an angular 

resolution of a few degrees. As in the one-dimensional case, the mass of the 

particles is dependent upon the specific characteristics of the atmosphere being 

studied with the maximal mass resolution near the surface of the neutron star. 

Also similar to the one-dimensional code, a fixed, hard boundary represents the 

neutron star surface. Its implementation is as described in HBHFC. Once particles 

reach a critical density {p > 10^^ g cm~^) and electron fraction (Ye < 0.1), they 

are accreted onto the neutron star surface. In addition, an outer boundary was 

introduced to allow us to control the pressure of the outer atmosphere. 

2.3. INITIAL CONDITIONS AND PHYSICAL 

PROCESSES 

2.3.1. Initial Conditions 

In most of our simulations, the neutron star has a 1.4 M© gravitational mass 

and a radius of 10 km. Atmospheres with initially uniform entropy and chemical 

composition are constructed above the neutron star. Their initial density structure 

is determined by pressure equilibrium in the equilibrium atmosphere models, or by 

assigning a mass infall rate and assuming free-fall initial conditions for the infall 
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simulations. We considered initial compositions of pure iron, pure oxygen, and a 

primordial mix of hydrogen and helium. Because the temperature at the base of 

the atmosphere is usually high enough to lead to nuclear statistical equilibrium 

(NSE), the initial composition is important to determine the energy release from 

nuclear burning. 

For the equilibrium atmosphere calculations, pressure equilibrium was verified 

in our code by allowing the atmosphere to evolve hydrodynamically without 

neutrino physics. For the two-dimensional simulations, inaccuracies in the mapping 

scheme from the one-dimensional structure lead to small initial transients which 

have to be damped, preserving constancy of entropy. In general however, the 

atmospheres were found to remain in equilibrium for times much longer than our 

simulation times. 

2.3.2. Equation of State and Neutrinos Processes 

The equation of state and neutrino processes are discussed in HBHFC to which 

the reader is referred for further details. The equation of state includes perfect 

gas, photon, and electron contributions to any degree of degeneracy and relativity 

(Nadezhin 1974; Blinnikov, Dunina-Barkovskaya, &: Nadezhin 1995), and a nuclear 

equation of state (Lattimer & Swesty 1991). Additionally, when the temperature 

rises above 5 x 10® K, NSE (see Hix et al., 1995) is enforced to approximate 

the effect of nuclear burning, and to compute the free nucleon fraction which is 

important for neutrino emission and absorption. Although matter does burn at 

lower temperatures without going immediately into NSE, burning is a slow process 

compared to the hydrodynamics. 

The neutrino emission processes accounted for include electron and positron 
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capture by free protons and neutrons, and pair and plasma neutrino-antineutrino 

creation. Neutrino absorption processes include electron neutrino capture by-

free neutrons, electron antineutrino by free protons, and neutrino antineutrino 

annihilation. Neutrino scattering includes electron and positron scattering of 

neutrinos, and neutral current opacities by nuclei. Three species of neutrinos 

are tracked separately by the transport algorithm: electron neutrino, electron 

antineutrino, and a generic "r" neutrino bundling together /i and r neutrinos 

and antineutrinos which have very similar characteristics in the regimes under 

consideration. The neutrino transport consists of two schemes; flux-limited 

diflFusion for the optically thick regions and a light-bulb approximation for 

the optically thin regions. The light-bulb approximation was introduced for 

computational speed and is only valid if the absorbed neutrino luminosity 

in this regime is much less than the total neutrino luminosity In most of 

our calculations, we limit the to 10%. We have run test calculations 

limiting 3% without appreciable changes in the results. 

2.3.3. Infall rates and Assumptions 

The objective of this paper is to determine the effects of neutrino processes on 

accretion for a range of initial conditions. We then apply our results to specific 

circumstances which lead to rapid infall on neutron stars. In this section, we 

discuss the probable infall rates for various scenarios and the suitability of our 

assumptions, which include ignoring the effects of angular momentum, magnetic 

fields, and photon diffusion. 
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Infall 

The infall of matter onto a neutron star plowing through a medium is 

characterized for many, if not all, of the formation scenarios by Bondi-Hoyle "infall" 

and has been further studied numerically in a series of papers by RuflFert (1994a, 

b, 1995) and Ruffert &: Arnett (1994). They compare numerical results to the 

canonical Bondi-Hoyle infall in a homogeneous medium, and introduce a new set of 

equations to estimate the infall rate. However, except at Mach numbers (M) close 

to 1, the infall rate is within 20 % of the canonical rate (it can increase by factors 

of 3 for M = 1 infall). Since we are only interested in rough estimates of the infall, 

we will use the simpler equations of Bondi-Hoyle-Lyttleton (Bondi 1952): 

MB ~ 47rr|/9(u^ + (1) 

where the Bondi infall radius is 

_ GMTIS 
B 2 I 2' ^ ' + C| 

and G is the gravitational constant, p and Cs are the density and sound speed of 

the ambient medium. Table 2.1 lists the infall radii and infall rates for a neutron 

star plowing through stars (modeled with a stellar structure code developed by D. 

Arnett) of different masses and at different distances from the center for a range of 

impact velocities spanning possible high infall scenarios. Note that proper motion 

measurements of neutron stars imply an average spatial velocity of neutron stars 

on the order of 450 km s"^ and, in some cases, as high as 1000 km s~^ (Lyne & 

Lorimer Lyne &: Lorimer 1994; Frail, Gross, &: Whiteoak 1994). However, common 

envelope systems will involve much lower velocities (~ Uorbitai)-
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Angular Momentum 

Estimating the effects of inhomogeneous media on Bondi-Hoyle accretion 

has been fraught with difficulties both from an analytic and numeric standpoint. 

Analytical approaches tend to depend heavily upon unphysical assumptions 

(sometimes assuming that the fluid flow system is identical to the standard 

Bondi-Hoyle structure for the homogeneous case) and in general, results have 

not been corroborated by simulations. Moreover, the lack of agreement among 

numerical endeavors has made their estimates equally inconclusive. A partial list 

of numerical studies representing the large variation in results includes: Davies 

& Pringle (1980); Fryxell & Taam (1988); Taam & Fryxell (1989); Sawada et al. 

(1989); Theuns &: Jorissen (1993); and Ruffert & Anzer (1994). Most of these 

discrepancies are probably due to differences in resolution, boundary effects, or a 

difference in accretion between two- and three-dimensional models. However, the 

numerical simulations virtually all agree on two points: the average infall rate is 

within a factor of two of the Bondi-Hoyle infall (even though in many simulations 

the infall rate is seen to vary with time, e.g. the "flip-flop" instability seen by 

Fryxell and Taam), and the angular momentum accreted within the accretor radius 

(typically O.lrs) is generally non-zero, but less than that predicted by a majority 

of the analytical estimates. 

Despite these diflaculties, we would like to try to evaluate, using currently 

favored numerical models, the effects of angular momentum on accretion. A typical 

estimation for angular momentum accretion is (see, for example, Ruffert &; Anzer 

1994): 

j z  = Jz /M = i(6e„ - ep)VrB (3) 

where is the angular momentum accretion rate, M is the mass accretion rate 
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and V is the velocity of the accretor, and are the inhomogeneity parameters 

defined as (Taam & Pryxell 1989): 

= '^b/^p,V (4) 

where Hp^-o is the scale height of the density (p) or the velocity (including the 

sound speed, i.e. {c^ + profile perpendicular to the direction of motion of 

the accretor. Ruffert and Anzer consider a.V = 3cs accretor in a €„ = 0.3 medium 

with an accretion radius one tenth the size of the Bondi radius. Their results give 

a 40% decrease in the angular momentum accreted in comparison to equation 

(3). Assuming no angular momentum is lost once the material passes within the 

accretion radius and using equation (3), one can determine an upper limit for the 

radius at which rotational support stops the infall (rang) of material (also shown in 

Table 2.1). This is most likely an over-estimate since, until an axisymmetric regime 

is attained, angular momentum can be effectively transported by pressure waves 

and shocks. 

From Tang inward, a thick accretion disk forms. For a thick a disk, the 

timescale for the outward transport of angular momentum is estimated to be 

(Chevalier 1993): 
_2 3/2 

tin ~ ~ ~ rl' s (5) 
ay/GM ® ^ ' 

where the sound speed (cs) is approximated as the orbital velocity, H is the disk 

scale height and is estimated to be ~ tns, a is a measure of the viscous stress 

typically found to be ~ .01 — .1 (we use .07), and rg is Tang in units of 10® cm. 

Once the material loses its angular momentum, it will accrete onto the neutron 

star. Thus tm is essentially the time delay for the accretion of material. Since tin 

is not much larger than the free-fall timescale, this delay should have a relatively 

small impact on the accretion rate. 
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Despite this discussion, we are aware that the question of the effect of angular 

momentum accretion is unsettled, and it will remain so until more comprehensive 

results from numerical and analytical calculations become available. However, we 

believe that in the case of buried neutron stars, the effect of angular momentum 

should be a perturbation on the classical Bondi regime. One reason is that the 

dynamics of self-gravitating, thick accretion disk is ripe with hydrodynamical 

instabilities (unlike cold, thin disks), which should allow rapid transport of angular 

momentum. Another reason for sustained accretion is that just as there exists a 

plane in which the angulax momentum accreted is maximal, there is also a plane 

in which it is nil, and that is where the accreted matter may come from primarily 

(i.e. the polar direction in the case of an inspiral). 

Photon Diffusion 

Our current set of simulations is limited by the assumption that the photons 

are "trapped" within the infalling material. By trapped, we mean that the 

photons are carried inward with the accretion flow significantly faster than they 

can diffuse outward. As a result, we only consider cases for which the accretion 

rate is sufficiently high (infall models), or for which the entropy is not too large 

(equilibrium atmosphere models). We derive below the conditions for which the 

assumption of photon trapping is valid. 

For equilibrium atmospheres, the timescale for neutrino cooling (r^) sets the 

accretion rate and therefore the dynamical timescale. We can therefore compare 

the photon diffusion timescale (r^, calculated near the surface of the neutron star 

since this is where the interesting dynamics occur) with to determine the range 

of constant entropy, equilibrium atmospheres for which we can assume neutrinos 
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axe trapped. Using the approximations for the structure of the equilibrium 

atmospheres derived in §2.4.2, we obtain: 

= 3.2 X ^ 5rad/55) 5 (6) 

and 

_ ^ ^scale •^mfp (7) 
mfp A£.f„ C 

where E'reg and Lreg are the energy and neutrino luminosity near the surface of the 

neutron star over the scale height rgcaie [see equation (40)], S'rad is the radiation 

entropy of the atmosphere, A^fp is the mean free path of the photons, and c is 

the speed of light. For entropies in which > r^, {S < 600 - see Fig. 2.1) the 

photons will be carried in with the accreting material and we can reliably assume 

that the photons are trapped. However, this argument implicitly relies upon a 

spherically symmetric inflow. When convection becomes important, we must once 

again examine the effects of this convection-enhanced photon diffusion. We will 

consider these specific cases as they appear in our equilibrium simulations. 

For the infall atmospheres, we can use the infall rate to determine the inward 

motion of the material and compare it to photon diffusion. The trapping radius is 

then the radius where these speeds are equal and is commonly denoted (e.g. see 

Chevalier 1989): 

where M is the mass infall rate, K is the opacity of the infalling material (we 

assumed K = 0.2 cm^ g~^), c is the speed of light and re is the Bondi accretion 

radius. From Table 2.1, we see that the trapping radius for most neutron star 

encounters with stellar objects is close or equal to the Bondi radius and, as a result, 

the diffusion of photons is unimportant. 
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Magnetic Fields 

We have assumed in. our simulations that the magnetic field of the neutron star 

has no effect upon the hydrodynamics. This assumption is valid for two regimes; 

for neutron stars with low magnetic fields and for high infall rates which smother 

the magnetic field of the neutron star. The importance of magnetic fields can be 

estimated by finding the radius at which the magnetic energy density equals the 

kinetic energy density of the infalling matter (Shapiro & Teukolsky 1983): 

y? I M 2 
Svrr® 2 

Where B is the magnetic field, fi is the magnetic dipole moment, p is the density 

of the matter, vg is the free-fall velocity, ta is the Alfven radius and M is the 

mass infall rate. To insure that magnetic fields are unimportant, the Alfven radius 

should lie within the neutron star. For a 10^^ Gauss magnetic field, the accretion 

rate has to be: 

M 0.8 Mq y-\ (11) 

Thus for high infall rates the infalling material effectively smothers even high 

magnetic fields and its trajectory is unaffected by them. 

However, the above calculation may be overly conservative because it ignores 

the pile-up of material which occurs at lower infall rates. As the infalling material 

builds up around the neutron star, the pressure at the base of the atmosphere 

increases. In a more detailed analysis. Chevalier (1989) calculated the relative 

importance of radiation and magnetic pressure for this built-up material around 
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a neutron star. He found that for the radiation pressure to exceed the magnetic 

pressure at the surface of a 10^^ Gauss neutron star, the infall rate need only 

exceed 5 x 10~^MQ y~^, in support of our assumption that magnetic fields are 

unimportant at high accretion rates. 

2.4. RESULTS 

Following the strategy that we mapped out in the introduction, we present two sets 

of simulations for which the initial atmosphere structures were defined by either 

free-fall or pressure equilibrium conditions. Recall that the infall atmospheres 

model the likely initial conditions encountered by a neutron star entering a 

medium. The infall simulations provide clues to the structure of the developing 

atmosphere which, in most cases, will become similar to our second set of models, 

the equilibrium atmospheres. From the equilibrium atmosphere simulations, we 

can then determine the ultimate fate of these systems. In both cases, we found that 

the outcome is primarily dependent upon one parameter: the infall rate for the 

infall atmospheres and the entropy for equilibrium atmospheres. In this section, we 

also compare our results to prior analytical derivations obtained by C89 and HC 

for infall atmospheres and CHB for equilibrium atmospheres. 

2.4.1. Infall Atmospheres 

The structure of infall atmospheres has been discussed analytically by C89 and 

in more detail by HC and Brown (1995). The qualitative structure, and indeed 

much of the quantitative results, predicted by C89 is in good agreement with our 

numerical simulations. The density and pressure profiles derived by C89, with 

only a slight modification of the adiabatic index, match our numerical simulations 
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closely. Still, as we shall see further, the seemingly innocuous deviation of the 

adiabatic index for very high infall rates has non-negligible consequences on the 

overall hydrodynamical evolution. Yet of greater importance, convection adds a 

new dimension to the problem as high-entropy bubbles drive the accretion shock 

outward. We begin this section with a summary of conditions prevailing in steady 

state infall atmospheres, much along the ideas set forth by C89. We then go on 

to the analysis of the initial transient which occurs during the onset of accretion 

and has important consequences for the subsequent evolution. We then discuss our 

one-dimensional simulations and compare them to the work of C89. We end this 

section discussing the effects of convection on infall atmospheres. 

Steady State Infall Structure 

As a neutron star plows through an ambient medium, material within 

the Bondi infall radius is captured and falls inward. Initially, pressure forces 

are insignificant so that the infall structure is similar to that predicted by the 

free-fall solution. Rapidly however, "the sink backs up" as the Bondi infall rate 

[MB = 47rr|pext(^^ + '"ns)^''^ where the "ext" subscript indicates the external 

density and sound speed] exceeds the acceptance rate determined by the cooling 

rates. As matter continues to crash down, it heats up and pressure increases until 

it is sufficient to slow down the infall by a shock. The accretion shock moves 

outward from the neutron star, until the flow structure (especially conditions in the 

neighborhood of the neutron star) allow neutrino losses to match the energy output 

due to accretion, or in the case of low infall rates, until the shock emerges from the 

optically thick domain. In the latter case, which we will not consider further, the 

accretion is Eddington-limited, while in the former case, neutrino cooling allows an 
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essentially unliniited accretion rate. 

The accretion shock separates two distinct structural regions in the infall (see 

Fig. 2.2). Outside the shock, the infall can be characterized by the free-fall solution 

(see, for example C89): 

l2GM 
vs = \J—^ (12) 

and 

where G is the gravitational constant, M is the neutron star mass and r is the 

distance from the center of the neutron star. 

At the shock, using mass, momentum and energy conservation in addition 

to a perfect gas equation of state and assuming a strong shock, the shock jump 

conditions axe (C89): 

fth = (14) 

and 
'Y + 1 

Psh = TPS (15) 
7 - 1  

where the pressure outside the shock is considered to be negligible (strong shock 

assumption) and 7 is the adiabatic index. 

Inside the shock front, in the settling region, we again turn to the conservation 

equations assuming spherical symmetry and that all initial transients set by the 

outmoving shock wave are quickly ironed out by convection (C89): 

dpidt+ V{pv) = 0 mass conservation, (16) 

dvjd t  + V(t;^/2 + P/p)  = Fr momentum conservation, (17) 

and 

P oc adiabatic perfect gas, (18) 
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where FT is the aet external force (in our case, gravity). Steady state solutions 

demand that dv/dt = dpjdt = 0, so that the mass conservation equation becomes 

4irr^pv = const = MB- Moreover, right behind the shock radius, we have that 

u^/2 P/p since the flow becomes subsonic {V^ < (^ = 7P/P oc From the 

mass conservation equation, oc so that the ratio (u^/2)/(P/p) oc 

Since p is obviously a decreasing function of radius, we have that u^/2 ^ P/p 

everywhere behind the shock. One can thus neglect the term in the momentum 

conservation equation (17) throughout the region behind the shock, so that the 

determination of the density and pressure becomes straightforward (C89). 

/ r \ 
P = Psh{ — ) (19) 

vrsh/ 

and 

= . (20) 

As the pressure, and hence temperature, at the base of the atmosphere increases, 

the neutrino emission increases. Because of the low cross-section of interaction 

with matter (a^ = 10"''^ cm^ vs. cr^ = ctt = 6 x 10"^® cm^), the neutrinos are 

not trapped like the photons and commence cooling the base of the atmosphere. 

An important cooling mechanism is the capture of electrons and positrons by 

free protons and neutrons with emission of electron neutrinos and anti-electron 

neutrinos respectively. In the regime where pairs dominate and the matter is 

completely dissociated into free nucleons (corresponding to a high temperature and 

entropy), the emission rate can be approximated by (Herant et al. 1992): 

de„ 
dt 

= 2xlO^®r^ev ergg ^s ^ (21) 

Also important is the annihilation of electrons and positrons into neutrino 

antineutrino pairs of all flavors which, if pairs dominate, can be written as (Herant 
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et al. 1992): 

= 1.9 X 1025^ erg g"' s"'. (22) 
(ZO P 

In steady state, the neutrino losses balance the gain in potential energy due to 

accretion; 

^ 2 /A A GMhsMB . 47rr^s(A^ER)p-^ = —; (23) 
at TNS 

where ATER is the thickness of the emission region at the base of the atmosphere 

where most of the cooling takes place (one temperature scale height, ^NS/8), 

detot/dt is the specific neutrino cooling rate from the neutrino emission processes[eqs. 

(21), (22)]. This last expression closes the set of equations that determines the 

steady state of the system and allows one to determine rgh- For instance, we can 

use the approximation that the pressure is dominated by radiation at the base of 

the atmosphere (i.e. Patm = 7 = 4/3) to determine the temperature at the 

base of the atmosphere from equations (12)-(20), and thus the cooling rate for free 

nucleon emission: 

DE^ _. ( MB V" ( T„S -I -I 
dt • il.4Maj (.Afoy-'j (lOkm) UOOkmJ 

(24) 

and pair annihilation: 

^ = 9.2x10^^ f ^ \ Y ( yV ^sh ergg-^s-^ 
dt \1.4Moy VlOkm/ VlOOkm/ 

(25) 

For most steady-state accretion scenarios, the pair annihilation emission process 

dominates the cooling, so we will ignore nucleon emission in determining rgh-

Assuming a 10 km, 1.4 M© neutron star, we obtain a result similar to C89; 

= 6.7 X 10®MB cm, (26) 

where MB is in M© y~^ Our neutrino emission processes are slightly different 

from those in C89 which, combined with a different value for the emission region 
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(we used TNS, accounts for the slight differences between the two solutions. We can 

repeat this derivation for various values of gamma to obtain: 

= 3.3 X cm (27) 

and 

rjf = 1.7 X cm. (28) 

The Onset of Accretion and the Initial Transient 

We now leave the steady state solution and return to the analysis of the initial 

transient which takes place at the beginning of the evolution. During the initial 

phase of the accretion, the shock moves out from the surface of the neutron star 

towards its steady-state position fsh- As a result, the post-shock entropy decreases 

as the accretion shock progresses outwards and weakens. Assuming that radiation 

dominates, but that electrons are non-relativistic (which is reasonable away from 

direct proximity of the neutron star), the post-shock entropy can be written 

S'sh = 1.1 X We can then apply the shock equations (14) and (15) 

and the free-fall equations (12) and (13) to determine the entropy for a given shock 

radius and infall rate: 

where 5 is in per nucleon, MNS is the mass of the neutron star in solar masses, 

MB is the infall rate in M© y~\ and R^ is the radius of the shock in units of 10® cm. 

Note that in the strong shock regime (which applies if the shock radius remains 

much smaller than the Bondi radius), the entropy below the shock is independent 

of the entropy above the shock. Consequently, in most of our simulations, the 

initial entropy of the infalling material has little effect on the resulting structure. 



46 

Because of the dependence on radius (exponent —3/8) of the postshock 

entropy, the outward motion of the shock imprints a negative entropy gradient 

in the inner region during the initial transient. This entropy profile is evidently 

unstable and leads to a break in the spherical symmetry which is not included in 

the picture developed in C89. The timescale for convection can be approximated 

using the Brunt-Vaisala frequency N (see Cox, Vauclair, & Zahn 1983): 

For dSfdz  < 0 ,  <  0  and the atmosphere is unstable. The timescale for this 

the chemical composition as an atmosphere may be stabilized by a negative gradient 

of the molecular weight. However, the entropy gradients are sufficiently high in 

our simulations that this is not a concern. The region within the accretion shock 

convects until stability is achieved and ultimately develops into an equilibrium 

atmosphere. 

An additional effect of this initial convection is to drive the shock beyond its 

steady-state value, lowering the entropy at the shock [eq. (29)] with respect to the 

steady-state prediction. This material ultimately makes its way down to the base 

of the atmosphere, defining the entropy of the equilibrium atmosphere. Since the 

base of the atmosphere depends on its entropy, this convection-driven overshoot 

can drastically alter the evolution of the system. Equilibrium atmospheres and the 

effect of the initial transient on their entropy will be addressed in §2.4.2. 

However, this description does not apply to extremely high infall rates. 

Beginning from the free-fall solution of matter crashing down on the neutron star 

surface we have: 

(30) 

convection (rconv) is yJ \ l /N^\ .  Of course, convective instability can also depend on 

GMNs/?at m rpil 

I ~ at RM atm (31) 
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so that the temperature at the bottom of the atmosphere is proportional to the 

density at the bottom of the atmosphere to the one-fourth power: Tatm oc Patm-

From mass conservation, we also have that patm oc M, and as a result Tatm oc 

Since neutrino cooling has a high power dependence on temperature (see section 

2.4.2) there exists a critical mass infall rate beyond which the accretion shock can 

hover right above the neutron star and provide a suflBciently high temperature for 

neutrino cooling to allow accretion to take place immediately. In our simulations, 

this occurs at infall rates upward of 10® MQ y (see Table 2.2). The critical infall 

rates are slightly higher for the higher initial entropy atmospheres due to their 

lower initial neutrino luminosities. 

Thus, rapid mass infall atmospheres lead to three distinct regimes. For 

a low rate of infall, material builds up around the neutron star and sends an 

accretion shock outward from the core. The unstable negative entropy gradient 

inprinted by the motion of the shock leads to instabilities. The low-entropy matter 

at the shock is convected downward onto the neutron star, and eventually an 

equilibrium atmosphere forms, with the range of outcomes discussed in section 

2.4.2. Intermediate rates of infall initially lead to similar situations. However, the 

intense neutrino emission leads to cooling times shorter than the convective time, 

thus preventing the formation of an equilibrium atmosphere. For a high rate of 

infall, the material is shocked at close proximity of the neutron star surface and 

cools efficiently through neutrino emission without further ado. 

One-dimensional Simulations 

We have modeled a series of infalls for a range of infall rates and initial 

entropies. The results from the one-dimensional simulations are shown in Table 



48 

2.2. Note that the initial entropy has little impact, except in mass accretion rates 

near the transition between high and intermediate infall regimes. 

Although the structure of the infall atmosphere is reasonably well described by 

the analytical derivation of C89, we found that the effective adiabatic index 7 from 

our more detailed equation of state is slightly higher than the radiation dominated 

4/3 assumed by C89 (see Fig. 2.3). For infall rates below 1 M© y"^ this deviation 

is too small to have a significant impact on the flow structure, but for higher infall 

rates, it has a crucial influence ou the steady state position of the shock. Figure 

2.4 shows Tsh versus accretion rates for a range adiabatic indices (1.33, 1.37, 1.40) 

using equations (26-28). Note that by merely changing 7 from 4/3 to 4.2/3 for the 

100 Moy~^ simulation changes Tgh by an order of magnitude. This is important 

because, as we have seen in the previous section, the position where the shock 

stalls determines the entropy of the atmosphere which develops in the inner region 

in the vicinity of the neutron star. As we shall discuss in section 2.4.1, this entropy 

determines the ultimate fate of the atmosphere. 

Figure 5 shows the entropy profile established by the transient motion of the 

shock from the surface of the neutron star toward its steady state radius. As 

predicted by equation (29), the entropy gradient is negative and will thus be subject 

to convective instabilities. Table 2.2 lists Brunt-Vaisala timescales along with 

neutrino luminosities, effective 7's, and central entropies for all the one-dimensional 

simulations. It is clear, however, that multidimensional simulations are needed to 

calculate the subsequent evolution. 



Two-dimensional Simulations 

Since the high infall regime is not conducive to instabilities, we have limited 

our two-dimensional simulations to intermediate and low rates of infall. These 

atmospheres become active quickly (recall the short Brunt-Vmsala timescales) 

sending bubbles outward through the inner region. These bubbles contribute 

to the outward push of the shock, while plumes of low-entropy material stream 

down towards the neutron star (see Fig. 6). To better appreciate the properties 

of infalling atmospheres, the distinction between intermediate and low infall 

atmospheres needs to be elucidated. In addition, for the low infall regimes, we 

would like to determine the entropy of the resulting equilibrium atmosphere. As 

stated in the introduction, due to the relatively long convecting timescales (> 10'* 

s), it is impossible to simulate a complete convective turn over as the Courant time 

step restriction near the neutron star is of order of tens of fjs. Nevertheless, the 

simulations seem to have reached steady-state, indicating that we may understand 

the long-term behavior of the system, allowing us to predict the ultimate outcome 

of the evolution. 

In our simulations, we have noticed that the typical velocity of an infalling 

plume of material travelling between the shock and the neutron star is ~ 0.1 the 

free-fall velocity. Knowing this, we can estimate the convective turnover timescale 

(see Table 2.3); 
7rr Ttr^'^ 

''conv = lOidyn = 10 = 10 __== (32) 
Cs VGMns 

where is the dynamical timescale, r is the radius of the material to be convected 

inward; Tconv is the time to advect material from the shock to the neutron star 

surface. The time Tconv must be compared with the time tbh required for the 

neutron star to accrete enough material to collapse into a black hole (see Table 
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2.3): 
_ _ 1 GMnsm 
rsH = 7 (33) 

LU TNS 

where L„ is the total neutrino emission per unit time, m is the additional mass 

required to induce collapse (we use 0.2 MQ), and TNS is the neutron star radius. 

When Tconv > tbh which corresponds to the case of intermediate rate of infall, 

we expect the neutron star to collapse into a black hole before an equilibrium 

atmosphere can be formed. However, when rconv < tbHJ which corresponds to 

low rates of infall, there is suflScient time for convection to form an equilibrium 

atmosphere. In these cases, we can use equation (29) to determine the resultant 

entropy for the equilibrium atmosphere. 

These results can be approximately summarized as follows. Very high rates 

of infall (M ^ 10® MQY'^ - Note that these numbers are estimates as these rates 

depend on additional factors such as the Bondi radius and initial atmosphere 

entropy) clamp the shock close to the neutron star and lead to rapid accretion and 

black hole formation. An intermediate rate of infall (10^ MQY'^ ^ M ^ 10® MQ y~^) 

does not have the time to form a proper atmosphere as it rapidly leads to collapse 

into a black hole. Low rates of infall (M ^ 10^ Moy~^) allow sufficient time for an 

equilibrium atmosphere to develop. The structure and fate of these equilibrium 

atmosphere are discussed in the next section. 

2.4.2. Equilibrium Atmospheres 

In the previous section, we have studied the initial development of an accretion 

structure around a neutron star encountering an external medium. We now turn 

to the ultimate fate of these systems after convective stability has been achieved. 

Given the condition of initial pressure equilibrium, the most massive atmosphere 

that can form stably above a neutron star is isentropic, where the entropy is 
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determined by whichever density and temperature is chosen at the surface of 

the neutron star. More massive atmospheres can be constructed with a negative 

entropy gradient, but they are unstable to convection. Because even a small 

negative entropy gradient rapidly drives convection [see eq. (30) for convective 

timescale], stellar models always adjust themselves to constant entropy or positive 

entropy gradient structures. We expect the same situation for atmospheres around 

neutron stars. Consequently, we believe that the most simple and appropriate 

way to parametrize the set of the possible atmospheres is to use isentropic initial 

conditions. 

The analytical work of CHB has examined the characteristics of constant 

entropy equilibrium atmospheres with the additional assumption that the pressure 

and internal energy are dominated by radiation and electron pairs contributions 

(that is, P = ll/12ar^). This remains valid at the base of the atmosphere for 

entropies less than 400 fcs/nucleon [see eq. (38)] and larger than 30 fce/nucleon. 

The radiation component of the entropy (in units of Boltzman factor per nucleon) 

can then be expressed (CHB): 

5»1 = i X jaT'/ipkeN )̂ = 1.4 x = 5.2 x (34) 

This expression is valid when the entropy and temperature are high. For high 

entropies, S^d ^ •S'tot) so that the analytical derivations can be compared directly 

to our models with increasing accuracy the higher the entropy. 

Assuming constant entropy and a radiation pressure dominated system, one 

can use the hydrostatic equation of pressure equilibrium to derive the structure of 

the atmosphere (CHB). 

P = [jMNsG(5rad/5'o)-'(l/r - 1/ri) + Y dyne cm'^, (35) 
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where So = 1.4 x 10"^^ fea/nucleon with ri and Pi referring to the radius and 

pressure at the outer boundary. Implicit to this derivation is that the mass of the 

atmosphere is negligible when compared to the neutron star mass. As we shall see, 

for high-entropy atmospheres, this is a good assumption. 

In most cases, the radius of the outer boundary is sufficiently large that the 

terms involving ri and Pi can be neglected. In the equilibrium simulations, we 

have included varying degrees of boundary pressiure (motivated in part by the 

computed pressure of the infalling material from our infall simulations - §2.4.1). 

Thus, we have incorporated the full equations in our comparison with the analytic 

solutions. Nonetheless, the basic structure of the atmospheres changes very little 

(less than a factor of 2 for even the most extreme external pressures) by ignoring 

the boundary conditions, so we will present the structure equations in their simple, 

= 0, n > TNS form (CHB): 

^atm = 1.83 X 10^® Tg dyne cm~^, (36) 

and using equation (34), we find, 

Patm = 3.9 X 10^= 5^ g cm-^ (37) 

T,tm = 195 MeV, (38) 

A^atm = 24.5 5;;^ In(rinaxANs), Mq (39) 

where re is the radius in units of 10® cm, and 5rad is the radiation entropy in 

units of Aja/nucleon. These expressions assume a 1.4 M© neutron star, as in our 

simulations. The most significant consequence of setting Pi = 0 and RI ::|> TMS is 

in the total mass of the atmosphere, Matm- Figure 2.7 plots Matm as a function 

of entropy for an outer radius of the atmosphere of 10® cm and 10^^ cm using 
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equation (39) in the case of no external pressure (dashed lines) and additional 

external pressure (solid lines). When present, the external pressure was determined 

using our infall models (see §2.4.1) to find the maximum realistic infall pressure 

(-Pinfaii = ^/'ffVff) at a given radius and entropy. These lines represent the maximum 

achievable mass for a stable atmosphere of the prescribed radius and entropy. Note 

that despite the fact that constant entropy structures are the most massive stable 

atmospheres, their masses tend to be small. More massive atmosphere would 

require a negative entropy gradient which would then be convectively unstable. 

Using equations (21), (22) combined with the structure equations for 

temperature and density, it is apparent that the neutrino energy emission per gram 

falls off roughly as r~®, implying that most of the neutrino emission (and hence 

cooling of material) occurs close to the neutron star. We estimated the cooling rate 

by assuming a nearly constant neutrino cooling over a scale height of the emission 

region (subscript "ER") TER = TNS/S above the neutron star and calculating the 

neutrino luminosity per gram in this region. The mass accretion is then: 

where MER is the mass within a scale height of the neutron star, LER is the neutrino 

emission from that region using equations (21) and (22), and ^^ER was chosen 

(somewhat arbitrarily) to be half the potential energy GMNsMER/(rNs + ^er) 

gained by the material falling from infinity. Combining these equations and using 

the Pi = 0 atmosphere structure, we obtain: 

Neutrinos emitted at the base of of the atmosphere can be recaptured and heat 

matter higher up. This is especially important for low- and intermediate-entropy 

M = MERGER/ (40) 

M = 9.0 X 10^^5,-;i° (1 + 5rad/55) M© s"^ (41) 
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atmospheres (5 < 50). Neutrino absorption by free nucleons gives rise to the 

following heating term (Herant et al. 1992): 

§ = 4-8'<10'̂ T̂„̂  (42) 

where L^, is the electron neutrino luminosity (in 10®^ erg s~^) which is due to 

neutrino emission at the base of the atmosphere, and is the neutrino temperature 

which tends to be similar to the matter temperature near the surface of the neutron 

star. We have seen earlier that cooling is proportional to r~®, while it appears that 

heating is proportional to r~^. One therefore expects that there exists a radius 

separating an inner region where cooling dominates from an outer region where 

there is a net gain in energy from neutrino processes. This is known in supernova 

circles as the gain radius. 

The preceding equations give an anal3rtical picture of the dominant physical 

processes involved for atmospheres in which photons are trapped. Note that nuclear 

burning effects were ignored. In our simulations, we have noticed that the initial 

chemical composition of the atmospheres has little effect upon the end result. 

As was seen analytically, we find that the primary parameter characterizing the 

atmospheres is entropy. For a low-entropy atmosphere, an immediate explosion is 

generated by the intense emission of neutrinos and the resulting energy deposition 

just beyond the gain radius. Intermediate ranges for entropy still exhibit noticeable 

effects from neutrino heating which induce convection. For these entropies, 

two-dimensional simulations of the atmospheres are required to fully investigate 

the hydrodynamical evolution. For high-entropy atmospheres, neutrino heating 

turns out to be unimportant, and hence there is no convection. However, neutrino 

cooling continues to determine the accretion rates up to extremely high entropies. 

These results are summarized in Table 2.4, and presented in more details in the 
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following sections. 

Low-entropy Atmospheres 

Figure 2.1 shows the sound travel time (r,) through the neutrino emission 

region together with neutrino cooling and photon diflFasion time scales. For 

'S'rad ^ 14 fefl/nucleon, which corresponds to S'tot ^ 22 fcs/nucleon for our 

simulations, we find that the neutrino cooling time is faster than the sound travel 

time. Because of this, it is physically impossible to form such an atmosphere in 

hydrostatic equilibrium. It is thus unlikely that equilibrium atmospheres with low 

entropies can exist. Just to see what would happen, we have constructed such 

atmospheres in pressure equilibrium artificially maintained by ignoring neutrino 

efiects. These atmospheres lead to neutrino-driven explosions as soon as neutrino 

processes are turned on. Despite the fact that they are unphysical, low-entropy 

atmospheres illustrate the importance of neutrino energy deposition beyond the 

gain radius. This process also plays a critical role in the more physical scenarios of 

supernova explosion, or in intermediate entropy atmospheres which are discussed 

below. 

Intermediate-entropy Atmospheres 

For atmospheres within a range of intermediate entropies (30 ^ 5tot ^ 50), 

the sound crossing time is much less than the neutrino cooling time {TS ^ O.OITI,), 

allowing the formation of atmospheres in pressure equilibrium. However, neutrino 

deposition is still sufficiently strong to heat the atmosphere just beyond the gain 

radius and thus raise the otherwise constant entropy of this region above the value 
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of the rest of the atmosphere. The resulting negative entropy gradient is unstable 

and convection takes place. In supernova simulations (HBHFC), this convection 

increases the efficiency of neutrino heating leading eventually to an explosion. In 

the context of our simulations, in order for the convection to be important, it must 

be able to overcome the general advection inward resulting from the sharp decrease 

in pressure support as material near the neutron star surface is quickly cooled by 

neutrino emission. Or in simpler terms, the bubbles have to rise faster than they 

are dragged inward by the general accretion flow. We can estimate the relative 

importance of these effects in the atmosphere by comparing the Brunt-Vais^a 

and infall time scales (see Table 2.4). Evidently, multidimensional simulations are 

required to correctly model these phenomena. 

Figure 2.8 shows the effects neutrino heating for an 5tot = 50 atmosphere 

on the entropy profile in a one-dimensional computation. While neutrino cooling 

rapidly decreases the entropy at the base of the atmosphere near the neutron star, 

neutrino absorption further up leads to the formation of an entropy peak and 

an associated negative entropy gradient which will drive convective instabilities. 

When the same atmosphere is simulated in two dimensions, large scale convection 

arises from the neutrino induced negative entropy gradient as can be seen in Figure 

2.9. Within this entropy range, the two-dimensional calculations resulted in the 

expulsion of the atmosphere in what might be considered a "mini-supernova" (see 

Fig. 2.10). Table 2.4 gives explosion energies for atmospheres of different entropies. 

The energies are much lower than supernova energies primarily due to the low mass 

of the atmospheres (Matm(lOOOkm) ~ 10~® — 10"^M©). 

Rather than trap the released gravitational energy near the surface of the 

neutron star to be ultimately emitted in neutrinos, convective bubbles transport 
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the energy up through the atmosphere as they rise. Such extensive convection raises 

the question whether our one-dimensional analysis which showed photon diffusion 

to be negligible is still valid. However, given the short timescales required for the 

explosion to develop in our simulations, photon diffusion remains unimportant. For 

example, in the worst case scenario of our Stot = 50 atmosphere after 0.5 s (see Fig. 

2.10), we find from equations (37) and (7) that photons at 2000 km diffused less 

than 1.5 km during the course of the simulation, a fraction of the particle size at 

that radius. 

High-entropy Atmospheres 

In the case of high-entropy atmospheres (5tot ^ 60), neutrino deposition has 

little effect upon the infalling atmosphere. Neutrino emission, however, remains an 

efficient source of cooling for all our simulations which extend up to 5tot = 125. In 

fact, neutrino losses dominate photon losses up to 5tot = 600 (Fig. 2.1). 

Figure 2.11 plots the entropy profile at discrete time intervals (80 ms) for a 

t)T)ical one-dimensional run (5tot = 80). The cooled, low-entropy matter consists 

primarily of neutrons {Ye ~ 0.1) and has essentially become part of the neutron 

star. Note that for these high-entropy atmospheres, no entropy "bump" develops 

through neutrino heating. Figure 2.12 shows the neutrino luminosities and mean 

energies vs. time. The neutrino luminosity increases initially and then stabilizes, 

indicating a constant rate of accretion for the duration of the simulation. In 

essence, the system has reached a steady state in which the neutrino emission 

exactly balances the compression work done by gravity on the gas settling on the 

neutron star. In these conditions, hjqjercritical accretion is maintained until the 

neutron star collapses into a black hole. 
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For each simulation, the constancy of the accretion rate was verified by fitting 

the accreted mass vs. time with a straight line (see Fig. 2.13 for a typical fit), and 

the r.m.s. deviation was estimated. Figure 2.14 presents a comparison between the 

accretion rate calculated analytically and numerically as a function of atmosphere 

total entropy. The open symbols were plotted using a straight insertion of the 

total entropy while the filled symbols were plotted by computing the radiation 

entropy from the numerical simulations and using this value in equation (40). The 

remarkable agreement between analytical and numerical calculations (when the 

radiation entropy is used) shows that our models are self-consistent. In addition, 

we note that as entropy increases, the difference between Stot and 5rad becomes 

smaller and smaller. Together with the good agreement with the CHB model, 

this allows us to extrapolate the behavior of our atmospheres beyond the range of 

entropies that we have simulated. 

Figure 2.15 show the analytical accretion rates for high-entropy atmospheres. 

The lower and upper curves represent the cases with no external pressure, and with 

external pressure at 1000 km of 0.25% the pressure at the surface of the neutron 

star respectively. Of course, in reality the external pressure on the atmosphere is 

determined by the formation mechanism. However, the limits that we have chosen 

bound the results from all our infall models (see section 2.4.1) and it is unlikely 

that any of the formation mechanisms will produce atmospheres with external 

pressures beyond these limits. Note also that photons are still trapped out to 100 

times the neutron star radius at an entropy ~ 600 fcs/nucleon, which is over a 

factor of ten times higher than typical stellar entropy values. 
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2.4.3. Summary of Results 

We are now in position to tie together our studies of infall models with the behavior 

observed in our equilibrium atmosphere simulation, to create a complete picture of 

the evolution of rapid accretion onto neutron stars (see table 2.5). As we know from 

section 2.4.2, if the entropy is greater than ~ 600, then the atmosphere is be stable 

over long time scales. For 600 < 5 < 50, the atmosphere accretes hypercritically. 

But for 50 < 5 < 30, neutrinos heat the base of the atmosphere, ultimately leading 

to explosions. The mass accreted before the explosion is Mexp = Mrgxp, where 

M = (GMNs/rNs)/-f'i/ and rgxp ~ Tconv These values are shown in Table 2.3. The 

final results for the objects in Table 2.1 are listed in the last column. Immediate 

collapse designates atmospheres in the high or intermediate regimes, S > 600 

atmospheres are stable, 600 < 5 < 50 atmospheres suffer delayed collapse, and 

50 < 5 < 30 atmospheres result in explosions. 

We will now summarize these results in terms of accretion rates. Very 

high rates of infall {M ^ lO^Moy"^) clamp the shock close to the neutron star 

and lead to rapid accretion and black hole formation. Very low rates of infall 

(M ^ MQY'^) allow the entropy to rise to about 600 fct/nucleon and form 

a stable atmosphere lasting many dynamical times. Low rates (10~''Moy~^ 

M 0.1 MQY~^) of infall form a stable atmosphere in near pressure equilibrium 

which nonetheless accretes hypercritically and lead to the eventual formation of a 

black hole. Medium-low (0.1 ^ M ^ 10^ Moy~^) rates of infall also form 

a stable atmosphere in near pressure equilibrium but neutrino heating eventually 

leads to an explosion rather than black hole formation. Finally, an intermediate 

rate of infall (10^ ^ M ^ 10® Moy~^) does not have the time to form a 

proper atmosphere as it rapidly leads to collapse into a black hole. 
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2.4.4. Initial Transient Revisited 

We have implicitly assumed in §2.4.3 that the initial transients define the fate of 

the system. However, if a system evolves into a steady state, this steady state 

can be maintained as long as any variations in the infaU rate are sufficiently slow 

that the atmosphere can adapt to the changes before vigorous convection develops. 

The ultimate fate of the system is identical under the steady-state solution and 

the transient solution for all regimes except the medium-low regime which results 

in explosions. We will thus limit this discussion to the specific cases where a 

steady-state system evolves and then the infall rate is gradually changed to place it 

in the medium-low regime. If the steady state is maintained, the boundary between 

low and medium-low regimes will rise, limiting the range of atmospheres that fall 

into the medium-low regime. In this section, we will estimate how slow the infall 

rate must change to maintain the steady state system under various developments 

of the infall rate and the modifications to the results if a steady state is maintained. 

We will consider two possible scenarios in which we begin with a steady state 

system and then modify the infall rate: a very high initial rate (M 10^ MQY'^) 

corresponding to supernova fallback, and a low initial rate {M ^ M0y~^) 

corresponding to stellar encounters. For the very high initial rate, a steady state 

system can not be formed because the convection timescale is longer than the 

timescale for the neutron star to accrete sufficient material to become a black hole. 

For low initial infall rates, a steady state system can form and be maintained with 

a sufficiently slow increase in the infall rate. 

As we increase the infall rate on an initial equilibrium atmosphere, the entropy 

of the material at the shock radius decreases, becoming lower than the entropy 

of the equilibrium atmosphere. This system is then unstable to convection. If 
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convection caji equilibrate this disparity in entropy before the entropy changes 

suflSciently to cause vigorous convection, then the system will remain in steady 

state. We can estimate a minimimi timescale required for the convection from 

our calculation of the convective turnover timescale [see eq. (32)]. This timescale 

was derived assuming the same vigorous convection which we are trying to avoid 

and is, therefore, certainly an underestimate of the time required. At a radius 

of lO^'^cm, the vigorous convective timescale is 1.6 x 10"^$. We will discuss the 

details of convection in the appendix from which we determine that for density 

enhancements greater than ~ 20%, the convective velocity rises within a factor of 2 

of the sound speed, which is too fast to model under the mixing length algorithm. 

We will define 'Vigorous" convection to begin where mixing length fails. With this 

approximation and using equation (13), we notice that only for situations where 

M changes by less than 20% over the convective timescale can a steady-state 

system be maintained. Prom Table 2.1, we see that even this underestimate of the 

timescale precludes most collision formation scenarios, but allows for the possibility 

to maintain a steady state in common envelope systems. 

As mentioned in section 2.4.3, for 50 < .S < 30 atmospheres, neutrino heating 

leads to an explosion. Assuming that the initial transient defines the entropy 

profile, these entropies are achieved for M 0.1 Moy"^ In the steady state 

solution, we can use equation (29) and equations (26-28) to determine the infall rate 

above which the equilibrium atmosphere entropy is less than 50: Merit = 20 

Thus, if a steady state is maintained, the critical infall rate between the low 

(hypercritical accretion) regime and the medium-low (explosion) regime will move 

from 0.1 to 20 MQY'^. 
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2.5. IMPLICATIONS 

We can now apply the results from the two sets of simulations to a range of 

astrophysical situations involving high infall rates onto neutron stars. In this 

section, we discuss neutron star accretion in the context of TZ objects, common 

envelope systems, neutron stars in dense molecular clouds, and supernovae. 

Because our two-dimensional simulations invalidate a number of results previously 

obtained in one dimension, we present a criterion for the appropriateness of the 

mixing length algorithm to model convection. Further, the discussion of specific 

systems provides examples of the methodology in applying our results to the study 

of other objects. We end this work with a brief discussion of the observational 

properties of the explosion regime and a note on plans for future work. 

2.5.1. TZ Objects 

All the formation scenarios for TZ objects discussed previously (see §2.1) involve a 

neutron star spiralling into a red giant star. As it approaches the core, the infall 

rate becomes high. For example, a neutron star moving at 100 km s~^ at a radius of 

5 X 10^° cm inside a 20 M© giant has a mass infall rate of 1.8 x 10® M© y~^ (again, 

we use the stellar evolution code by D. Amett). We can easily verify that all our 

assumptions hold. That is, the time delay due to angular momentum transport 

is short (~ 0.5 s) and the impact of rotational support is minimal (see §2.3.3), 

magnetic fields ^ 10^® Gauss will be buried by the inflow of material (see §2.3.3), 

and photons will be trapped out to the Bondi accretion radius (see §2.3.3). Looking 

at Tables 2.3 and 2.4, we see that this infall fits into the intermediate regime, which 

forms a shocked atmosphere but accretes it through neutrino emission before it 

can become completely mixed. These kind of systems quickly collapse into black 

holes (for our specific case, the time scale for collapse ~ 1 minute). Hence, the 
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cnrrent range of scenarios cited in the literature as possible birth mechanisms for 

TZ objects will not form TZ objects. 

Even assuming that a proper formation scenario can be found, it is difficult to 

imagine how a TZ object could exist for an extended period of time. Peculiarities 

in the structure of TZO seem to inevitably lead to instabilities which destroy 

the object. All stellar structure models of TZO have to smoothly connect the 

base of the envelope to the surface of the neutron star. In order to prevent 

significant neutrino emission, the base of the atmosphere must remain relatively 

cool (;^ IO®iiL). Eich et al. (1989) were able to construct such cool inner regions 

(which they call insulating layers) with low neutrino emission while maintaining 

the appropriate pressures. They argued that high-temperature atmospheres would 

emit neutrinos and turn into the low-temperature stable atmospheres that they 

had created. Our results clearly show that this is not the case and that once it 

begins, neutrino emission increases to a high value which maintains a high rate of 

accretion. In our simulations, after an initial transient, the neutrino emission rate 

becomes nearly constant (see Fig. 2.12) rather than shutting itself off after cooling 

the material at the surface of the neutron star. 

This can readily be explained by the fact that energy losses due to neutrinos 

deleptonize and decrease the specific internal energy of the base of the atmosphere. 

Since the pressure is set by the structure above, the base of the atmosphere can only 

adjust and try to maintain pressure equilibrium by compression. This increases 

density and temperature (or if degeneracy has set in, the Fermi energy increases) 

and thus keeps up the neutrino emission rate until the material is incorporated 

into the neutron star. It may appear paradoxical that a loss of energy via neutrino 

emission could increase the temperature (or the Fermi energy). However, as a star 
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evolves, the entropy of the core continually decreases, while the central temperature 

keeps increasing [see also eq. (38)]. All this is related to the fact that under certain 

conditions, the heat capacity of gravitational systems can be negative (inasmuch as 

a gravitational system can be considered a thermodynamical system). As a result, 

once neutrino emission begins to have a dynamical eflfect, i.e. the compression 

of the base of the atmosphere, it will continue to be important. Thus the low 

temperature atmospheres constructed by Eich et al. (1989) are unstable. 

In addition, the region above the inner layer postulated by Eich et al. (1989), 

has to have a high entropy S > 600 fc^/nucleon, so that neutrino losses remain 

unimportant (Fig. 2.16). Not withstanding the fact that such entropies are an 

order of magnitude greater than those found in main sequence or even giant stars, 

a gravitationally bound atmosphere with S > 600 would have little mass (recall 

Fig. 2.7). Biehle (1991, 1994), Cannon et al. (1992), and Cannon (1993) have 

attempted to overcome this mass problem by placing a low-entropy envelope on top 

of the high-entropy inner region, with associated large negative entropy gradients 

(see Fig. 2.16). These atmospheres are, of course, unstable and Biehle and Cannon 

use the convective instability to transport energy outward and bring fuel down into 

the burning region of their stellar models. However, they treat convection with 

the mixing-length approximation. While Biehle and Caimon were able to maintain 

the structure of their atmospheres by assuming mixing length convection, we have 

found that this assumption is invalid by running two-dimensional calculations. 

Figure 2.17 illustrates the vigorous convection arising from Biehle's initial structure 

after 0.1 s. This convection eventually drives a shock through the atmosphere, 

disrupting it, and blowing it away. 

An intrinsic assumption of mixing length theory is that the convective 
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evolution is nearly adiabatic, and slow compared to the dynamical timescale so 

that the evolution can be represented by a series of quasi-static equilibria. As a 

result, a necessary (but probably not sufficient) criterion for the validity of mixing 

length is that the soimd travel time across a convective cell is much less than the 

rise time for that cell to move one cell length, or equivalently that the convective 

velocity is very subsonic. The mathematical details of this criterion are discussed in 

the appendix. Table 2.6 lists the rise times and velocities calculated with equations 

(47) and (48) for the convective cells after they travel one scale height for a typical 

supemovae simulation, the Sun, and the TZ models of Biehle and Cannon. Note 

that only for the Sun is the ratio of the rise time over the sound crossing time much 

less than one. Of our four examples, only the Sun satisfies this essential assumption 

of mixing length theory. 

We have argued above that currently envisioned astrophysical scenarios are 

incapable of forming TZ objects. It also appears that present models of TZ 

structures improperly account for convection using mixing-length algorithm, and 

thus result in unphysical objects which are artificially stable. 

2,5.2. Commoa Envelope Systems 

For a common envelope system, comparison to our results is less straightforward. 

Let us again discuss the characteristics of a specific case from Table 2.1. For a 

neutron star 10^^ cm from the center of a 20MQ giant, moving at u « Uorb = 100 

km s~^ the infall rate is 175 M© y'^ Again, photons are trapped out to the Bondi 

radius and magnetic fields ^ 4 x 10^^ Gauss will be smothered by the infalling 

material. Angular momentum induces a significant delay time in the accretion of 

order 200 s which is nevertheless much less than the orbital timescale. As we shall 

see, this situation leads to a neutrino induced explosion. 
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The convection timescale for this particular case is much less than the 

neutrino cooling timescale (see Table 2.4). This corresponds to the medium-low 

infall rate regime from our results. In this regime, the postshock entropy of the 

infalling material is critical to determine the outcome. From Figure 2.4, it is clear 

the accretion shock will lie at a radius > 10® cm, and using equation (29) the 

postshock entropy will be ^ 50 fcs/nucleon, if the shock is strong, which it is not 

since this value is close to the specific entropy of the material outside the Bondi 

radius. Nevertheless, this allows us to estimate that the entropy of the equilibrium 

atmosphere which forms above the neutron star corresponds to 29 < 5 < 50 where 

the upper limit comes from the maximum post accretion shock entropy and the 

minimum comes from the entropy of the ambient matter. 

Prom our models of equilibrium atmospheres (see §2.4.2), we know that these 

conditions will lead to explosions. These explosions may be sufficient to blow 

off the atmosphere and halt the inward spiral of the neutron star, forming close 

binary systems such as PSR 1913+16 (see Smarr & Blandford 1976 or Burrows & 

Woosley 1986). However, if the injected energy is insufficient to completely expel 

the atmosphere, the neutron star continues to fall into the giant star, as a new 

atmosphere once again builds up around it. Extrapolating from Table 2.4, we 

estimate that the neutron star might survive 50 outbursts over 100 years before 

it accretes ~ 0.2 MQ. Simulations of double core evolution (Terman, Taam, & 

Hemquist 1994) estimate inspiral times ^ 1 year with some cases where the energy 

input from viscous forces on the neutron star (~ 10^^ ergs) is sufficient to drive 

off the envelope and halt the inward spiral of the neutron star. The neutron star 

will certainly survive this evolution, and this offers yet another way to form close 

binary systems. 
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However, we must here qualify our claims. As we have said before, it is not 

possible to run a continuous simulation from the convective infaU regime to the 

stable equiUbrium atmosphere which eventually appears. Thus, we are forced to 

infer indirectly the entropy of this equilibrium atmosphere from the early behavior 

observed in our infall simulations. Should the entropy for some reason end up 

larger than 50, then an explosion will not occur, but rather, the atmosphere will 

undergo steady, h3T)ercritical accretion until the neutron star collapses to form a 

black hole. 

2.5.3. Supernovae 

At present, the details surrounding the explosion mechanism for supernovae are not 

sufficiently well understood to place any firm constraints on the fallback of matter 

onto the neutron star after a successful explosion (e.g. see Herant et al. 1994). 

Taking into account these uncertainties we would still like to address the questions 

whether fallback can lead to the formation of a black hole or a secondary explosion. 

A 25 MQ supernova progenitor exploded by Woosley & Weaver (1995) gives rise to 

an initial fallback rate of 10^ MQ y~^, decreasing thereafter. This initial value is 

just within the high accretion regime which corresponds to unrestricted accretion 

by the neutron star. This may or may not push the neutron star over its maximum 

mass, and make it collapse into a black hole. If this does not happen, the declining 

accretion rate will eventually reach the low infall regime which corresponds to 

explosions. Those would then blow off the remaining bound atmosphere. Note that 

the infall rate from this particular simulation was near the division between the 

high and low infall regimes, impljdng that uncertainties in the explosion mechanism 

coupled with differences between supernova progenitors may lead to very different 

outcomes, one in which a black hole forms, and another in which a secondary 
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explosions expels the remaining material bound to the neutron star. 

2.5.4. Explosions 

Explosions add an entirely new observational dimension to the the evolution of 

rapid mass infall systems which we have considered in this paper. Physically, these 

explosions are most akin to Type II supemovae, and thus, some of the observational 

aspects may be similar (velocities, compositions) even though the amount of mass 

expelled and energy should be a factor of 10"^ smaller. Moreover, it is clear that 

the extent and amount of material in which a neutron star is embedded during such 

an explosion will have a crucial impact on the observational signature. The range 

of possible signatures is vast, requiring a more detailed analysis which we relegate 

to future work. However, in some circumstances, these supemova-like objects may 

still be bright enough to be seen in nearby galaxies. 

Using observed abundances of Be systems and Massive Binary systems, Biehle 

(1991) has derived the formation rate of common envelope systems to be between 

2 X 10~® and 6 x 10"'' per year in our galaxy. Using the entire set of observations 

of massive X-ray binaries, Cannon (1993) gave a not too different estimate of 

10"^ objects per year in our galaxy. Iben, Tututov, & Yungelson (1995) predict 

1.5 X 10"^ objects using an entire neutron star census. Because the "embedding" 

companion star will usually be massive, explosions in these systems are likely to 

be damped as they propagate through the massive envelope. They may therefore 

appear only as enhancements of an already strong wind, and changes in chemical 

abundances. 

Focusing on globular clusters, Davies &; Benz (1995), have obtained a reliable 

formation rate of 10~® per year per cluster (which corresponds to ~ 10~® per 
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year per galaxy) through extensive encounter simulations. They also predict that 

these collisions generally result in a ~ 0.3 M© atmosphere remaining bound to the 

neutron star. Due to the smaller amoimt of mass surrounding the neutron star, 

explosions from these atmospheres will be less damped and might be observed as 

supernova-like objects. However, the low formation rates limit the observational 

prospects for these objects. One should note though, that these objects have been 

proposed as progenitors of millisecond pulsars. If, instead, they blow off their 

atmospheres before accreting sufficiently to be spun up, other scenarios for the 

production of millisecond pulsars will have to be found. Further study including 

angular momentum effects will better address this problem. Similarly, the dense 

stellar systems of galactic bulges offer opportunities for mergers involving neutron 

stars through collisions. However, we are not aware of reliable estimates for 

collisional rates in the galactic center. 

Leonard et al. (1994) investigated the scenario in which the velocity kick 

received by a neutron star in a supernova explosion makes it merge with a binary 

companion. They predicted an occurence rate of 2.5 x 10"'' per year in our galaxy. 

These systems may result in an inwaxd spiralling neutron star. However, since 

the kick produces collisions with similar velocities to those from the globular 

cluster collisions of Davies & Benz, we might instead expect the likely result to 

be ~ 0.3 MQ smothered neutron stars as predicted in their models. Assuming the 

latter to be the case, we would expect 1% of observed supemovae to produce a 

secondary explosion and lead to a peculiar structure of the remnant. 

2.5.5. Future Work 

We would like to follow-up the discovery of these "accretion induced" explosions 

with detailed calculations of their observable signatures. The observational 
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prospects for the ejection of neutron star atmospheres are tightly linked to the 

fraction of encounters which result in energetic explosions. This fraction is in 

turn strongly dependent on the effects of angular momentum. While at best 

difficult, accoimting for those effects will be essential to understanding neutron 

stars accreting at high rates. We would also like to determine the observational 

properties and chemical composition of the ejected material. This will be addressed 

in future work. 

Although it is an interesting topic, we have not discussed the case of neutron 

stars embedded in dense molecular clouds or in AGN disks elsewhere in this paper. 

Unfortunately, in these conditions, the photon trapping radius is within the Bondi 

radius so that radiation transport plays an important role in the evolution. It 

is plausible that dense molecular cloud will first accrete slowly, at the Eddington 

rate, until sufficiently high pressures and temperatures near the neutron star 

surface develop, leading then to hypercritical accretion or possibly an expulsion 

of the material. This ejecta will enrich the surrounding medium and, since the 

mass accretion will be low, may be a repeatable process, facilitating an important 

mechanism to enrich the interstellar medium or the disk of an AGN. Understanding 

these effects will require the implementation of a radiation transport scheme. 

2.5.6. A Necessary Criterion for the Validity of the Mixing Length 

Approximation for Convection 

Despite the many problems with mixing length (choice of scale height, etc.), 

there is no better convection algorithm short of multidimensional simulations. 

Hence, mixing length theory remains the most common technique for dealing with 

convective instabilities. It is thus worthwhile to try to derive a simple criterion to 

verify the validity of a mixing length approach in a given situation. An intrinsic 



71 

assumption of mixing length theory is that the convective evolution is nearly 

adiabatic, and slow compared to the dynamical timescale so that the evolution can 

be represented by a series of quasi-static equilibria. As a result, a necessary (but 

probably not sufficient) criterion for the validity of mixing length is that the sound 

travel time across a convective cell is much less than the rise time for that cell to 

move one cell length, or equivalently that the convective velocity is very subsonic. 

In the following paragraphs, we first provide a rigorous calculation of the motion 

of a convective cell which we then complement with a more physically intuitive 

interpretation. We go on to show that typical convective neutron star atmospheres 

do not satisfy our criterion and therefore cannot be modeled using mixing length. 

The sound travel time across a cell is simply given by: 

where Hp is the convective scale length, typically approximated as the pressure 

scale height and Cs is the sound speed of the convective cell. The acceleration for 

the cell is [see Hansen & Kawaler (1994) for a basic summary]: 

where g is the gravitational acceleration at the position of the cell, pc is the density 

of the cell, p is the density of the medium through which the cell is passing and 

V is the volume of the cell. The quantity 17 is the linear viscous term and can be 

written (see Kippenhahn & Weigert 1990): 

Ts — ^ p /  (43) 

(44) 

I) Ith + I/red » pCfpI'tli + aT*/cKp (45) 

where Z^fp is the electron mean free path and Uth is the electron's thermal velocity. 

We shall approximate = v/{fHp)'^ where / < 1 (in our calculations, we choose 
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/ = 0.01). The term ^turb is the turbulent drag [see, for example, Shames (1992)]: 

a ^ C'turb/W^A 
"turb ~ 2 

where Cmrb depends upon how streamlined our convective cells are (values range 

from 0.01-1 and we conservatively use 1) and A is the effective surface area of the 

cell. 

We can then integrate this equation to determine the velocity of the cell 

(assuming it starts at rest) and distance as a function of time: 

/ g2ici _ \ 

where L = yJh'^l{A(^) - a/c and M = b/2c with a = Obuo, b = —r]/{fpHp), and 

c = —(CturbpA)/(2pc)- Setting x = Hp, one can solve for the rising time scale, 

and determine whether the evolution can be appropriately modeled with a mixing 

length algorithm. 

In most circumstances, the dominant viscous force arises from the turbulent 

drag term. Ignoring the linear viscous terms simplifies the preceding equations 

and provides a more intuitive picture of the conditions required for using the 

mixing length formalism (although we recommend the general argument for any 

applications). As we stated earlier, a necessary condition for mixing length is that 

the sound travel time is much less than the convective travel time, or equivalently, 

the convective velocity must be much slower than the sound speed. By eliminating 

the linear term from equation (44), using equation (46) with A/V = I/Hp, and 

setting g = VP/p = P/{pHp), we can solve for the maximum bubble velocity; 

= (49) 
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For a 7 = 4/3 gas and pc < .85p, we find that Vmax > -^Cs, violating the mixing 

length assumption that u •C c,. However, these high velocities are only a problem 

if the bubble can attain them before dispersing. We can estimate the velocity of 

the bubble after travelling a distance d by assuming that the turbulent viscosity is 

small until v approaches Umax-' 

V = V2da = c. ^ (P/Pc-I). (50) 
•Hp ^turbT 

Setting d = Hp gives v —>• v^nax- It is likely, then, that the bubble will approach its 

maximum velocity after rising one scale length. The ratio of the bubble density to 

the density of the ambient medium is clearly the primary parameter behind this 

necessary criterion for mixing length and can be simply applied to any system. 

One merely needs to determine the buoyancy (or density) of a bubble raised 

adiabatically one scale height. 
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TABLE 1 

ACCRETION PARA:VlETERS 

Stellar Typea Velocity Cs Bondi Radius ~[ Inhom. Rang Trap. Rad.Resultb 
km s- 1 km s- 1 10 11 em iv£0 y- 1 Factor fp.u 108 cm 1011 cm 

1 M 0 .YIS 
@ 4 x 10 10cm 1000 300 .17 N/A N/A N/A N/A IC 
p = .4gfcm3 300 300 1 N/A N/A N/A N/A IC 
S = 1.'5ks/nucleon 100 300 2 N/A N/A N/A N/A IC 
@ 1.2.) x 1010cm 1000 475 .15 N/A N/A N/A N/A IC 
p = 60gfcm3 300 475 .6 N/A N/A N/A N/A IC 
S = 12ka/nucleon 100 475 .8 N/A N/A N/A N/A IC 

5 .V!0 ~IS 
:@ l0 11 cm 1000 400 .16 1.4 X 103 .72,-.07 .77 .16 IC 
p = .25g/cm3 300 400 .75 1.4 X 104 3.4 ,-.004 200 .75 IC 
5 = 17ks / nucleon 100 400 1.0 2.0 X 104 4.5,- 0 68 1.0 IC 
@ 4 x 10 10cm 1000 550 .14 2.7 X 104 .56,- .17 1.3 .14 IC 
p = 6.:3g f cm3 300 5.)0 .5 2.0 X 105 2.0,-.20 4.8 .5 IC 
S = l5ks/nucleon 100 5.)0 .6 2.5 X 105 2.4 ,-.20 1.2 .6 IC 

10 .\I,:, :Y!S 
@ 2 x- 10 11 cm 1000 350 .17 1.5 X 103 .4.- .03 .47 .17 IC 
p = .2Sg/cm3 300 350 .9 1.8 X 104 2.0,-.16 "26 .9 IC 
S = 18ks / nucleon 100 3.)0 1.4 3 .. ) X 104 3.2 ,-. 10 44 1.4 IC 
:9: 6 x l0i 0c,m 1000 600 .14 1.0 X 104 .3.),-.03 .19 .14 IC 
p = 2 .. )g/cm3 300 600 .4 5 .0 X 104 1.0,-.05 2.4 .4 IC 
S = 17ka/nucleon 100 600 .5 7.5 X 104 1.25,- .06 4.5 .5 IC 

20 .\{:; MS . 
'.9: 1 x 10 1 ~cm 1000 200 .18 20 .14 ,.01 .43 .18 EX 
p = 3 x 10- 3gfcm3 300 200 1.4 300 1.0,.07 120 1.4 EX 
S = 22ks/nucleon 100 200 4.0 2000 3.0,.11 720 4.0 IC 
.:g_. .) x lO':cm 1000 300 .17 75 .034 ,-.01 7 X 10-3 .17 EX 
P = !.:3 x 10-"1gfcm3 300 300 .74 570 .3,-.01 .10 .74 EX 
S = 2lka/nucleon 100 300 1.3 1300 .52,-.03 .06 1.3 IC 

10 M,;_; Giant 
@ 2 .. ) x l0 13 cm 1000 40 .2 4 X 10--t .0024,-0 8 X 10-5 .14 DC 
p = 5 X 10-8gjcm3 300 40 2.0 .01 .024,- 0 .07 2.0 DC 
S = 26ka/nucleon 70 40 30 .7 .36,-.01 130 30 EX 
@ 6 x 10 1 ~cm 1000 60 .2 2.5 X 10-J .005,- 0 3 X .10--t .2 DC 
p = 3 x 10- 1g/cm3 300 60 2.0 .06 .05,- .01 .01 2.0 EX 
S = 26ka/nucleon 70 60 20 2 .5,-.0.) 26 20 EX 
@ 1 x 1011 cm 1000 300 .17 480 .13,-.06 5 X 10-3 .17 EX 
p = 8 x 10-2g/cm3 300 300 .74 3700 .58,-.15 1.7 .74 IC 
S = 10ka/nucleon 70 300 2.0 2 X 104 1.6,-.37 2.5 2.0 IC 

20 ;vi.;; Giant 
@ 1 x 10 1 ~cm 1000 250 .18 7 .06,.01 .15 .18 EX 
p = 10- 3g/cm3 300 250 1.2 100 .42,.07 31 1.2 EX 
S = 29ka/nucleon 100 250 1.8 175 .63 ,. 12 20 1.8 EX 
@ 4 x 10 11cm 1000 400 .11 25 .06,- 0 .01 .11 EX 



TABLE 1-Continued 

Stellar Type0 Velocity Cs Bondi Radius ~I Inhom . Rang Trap. Rad. Result" 
km s-i km s- 1 10 11 em M J y-t Factor £p.u 108cm 10 11 em 

p = 10-:?gjcm3 300 400 .. 5 2.50 .2.5.-.06 .09 .5 EX 
5 = 24ks/nucleon 100 400 1.0 800 .5,-.1 .01 1.0 EX 
©t .) x 1010cm 1000 1000 .094 6.0 X 105 .11.- .04 .:36 .094 IC 
p = 250gjcm3 300 1000 .1 I 1..) X 106 .20 ,-.06 .02 .1 I IC 
S = lOks/nucleon 100 1000 .18 1.8 X 106 .21,-.01 5 X 10-3 .18 IC 

c:vrc 
1000 10 .2 8 X 10-8 0? 0? 3 X 10- 5 ? 

p = 10-11gjcm3 300 10 2.0 2 X 10- 6 0? o·] I X 10- 4 ? 
S = 4.)ks/nur.leon 10 10 9:30 .024 0'? 0? 9 ? 

acnderneath e~ch stellar type, we also list the position in the star that we are considering as well as the density 
and entropy at that position. 

biC = Immediate Collapse, EX = Explosion, DC=Delayed Collapse 
ali nderneath each stellar type, we also list the position in the star that we are considering as well as the density 

a nd ~ :1 tropy at thu.;: pos ition. 
b[C = Immed ia te Collapse, EX = Explosion , DC=Delayed Collapse 
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Table 2.2. Infall Atmospheres 

Infall Rate 
Mo y-^ 

1-D 
(erg s~^) 'conv is)  

Results 
7 'center 

•^infall — 30 
Merit =~ 10® 
10° 
10^ 
102 
10^ 

10^ 

•^infall — 10 
Merit =~ 5 X 10® 
10° 
102 
10® 
10® 

•^infall — 50 
Merit =~ 2 X 10® 
10^ 
10^ 

< 10^9 
- 3 X 10^^ 
- 7 X 10''3 
- 6 X lO'^® 
2.5 X lO-*® 

- 1 X 10®° 

< 10^® 
' 9 X 10^3 
' 3 X 10®° 
' 7 X 10®^ 

2 X lO''^ 
2 X 10''® 

.02 
.06 
.05 
.03 
.03 
.03 

.02 

.03 

.03 

.02 

.02 

.03 

1.35 
1.37 
1.4 
1.4 
1.4 
1.43 

1.35 
1.4 
1.4 

1.43 

1.37 
1.4 

630 
380 
220 
120 
85 

~50 

650 
200 
~ 40 
~ 25 

650 
130 

Table 2.3. Infall .Atmospheres 

Infall Rate 2-D Results 
Afo y-^ (erg s"') KE^ (erg) TBH(S) ''conv('S) S (Aa/nuc) AfecpOV/o) 

Sin/all = 30 
lO-* - 10® 10' ~ 4 X 10'»' ~ 3 X lO" ~ 10" lO-* - 10® 50 -100 10-^ 

10^ ~ 8 X 10-" ~ 2 X lO'" ~ 10' ~ 10® ~ Sinfall .1 
10® ~ 7 X 10^' ~ 2 X lO'"' ~10^ ~ 10® ~ SinfaU 100 
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Table 2.4. Constant Entropy Atmospheres 

'S'tot Results 

10 Immediate explosion 
20 Immediate explosion 
30 ^onv ^ 5 ms iinfaii~'05s — 2 xlO er^ 
50 ^conv ^ -Is ^infall~2s XlO Srg 

M w 3 X 103Mq y-^ w 3 x 10^^ erg s"^ 
60 M = 3.8 X 103(±300)M© y"^ « 4 x 10"^^ erg s-^ 
70 M = 5.2 X 102(±50)Mo y"^ LJf' « 5 x 10"® erg s"! 
80 M = 1.8 X 102(±20)MQ y-^ « 2 x IQ-^® erg s"^ 
90 M = 33(±6)MQ Y~^ 5 x 10"^^ erg s~^ 
100 M = 13(±3)Mo y-i « 2 x 10"^ erg s'^ 

Table 2.5. Infall Results 

Infall Transient Neutrino End 
Rate Convection Convection Result 

M > 10®Moy-^ No No Black Hole 
10®MO2/-^ > M > LO^MOY"^ No » No Black Hole 

LO^MOJ/-^ > M > O.OLMOJ/"^ Yes Yes Explosion 
O.OLMOY-I > M >  I Q - ^ M O Y - ^  Yes No Steady Accretion 

^A transient is produced but a black hole forms before it can fully develop. 

Table 2.6. Convection 

Core Collapse Model 
ratio Solar Envelope Supernova Biehle's TZ Cannon's TZ 

tea / tcs ~ 2 X 10^ ~ 1.2 r\j 4 ~ 2 
V / C s  ~ 4 X 10~2 ~ 1.0 ~ .2 ~ .5 
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Figure 2.1 characteristic timescales; photon diffusion r^, neutrino cooling T„, and 

sound travel time versus entropy. Note that at an entropy lower than that 

defined by the intersection between the sound travel and neutrino cooling timescale, 

no stable atmosphere can form. Note also that the intersection between photon 

diffusion and neutrino cooling defines the entropy at which photon trapping is 

complete. 
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/ Accretion Radius 
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Shock Radius 

Neutrinosphere 

Neutron Star 

Figure 2.2 structure of an infall atmosphere. Note that the region within the 

accretion shock is convectively unstable. 
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Figure 2.3 Density vs. radius for a 10^M© infall model. The points are from 

numerical simulations. The lines are analj^tical results for different adiabatic indices. 
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Log Mass Accretion Rate (Mg/year) 

Figure 2.4 steady state shock radius versus accretion rate for a range of adiabatic 

indices in a one-dimensional infall model. 
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Figure 2.5 Entropy versus radius after 50 ms for a range of infall atmospheres. 
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Figure 2.6 entropy-driven convective plume for 103 M0 y-1 infall atmosphere 10 s 

after creation of the accretion shock. The negative entropy gradient is induced by 

the initial outward motion of the shock. Average plume velocity is 3000 km/s and 

mean inflow velobity is 1000 km/s. 



84 

100 

10 

1 

1 

0.01 

0.001 

0.0001 

10-« 

10-« 

10-« 

10-" 

1000 1 

Figure 2.7 atmosphere mass versus entropy for two sizes of atmosphere: R = 10® 

cm and 10^® cm. The dashed lines denote atmospheres with no external pressure, 

whereas the solid lines include a pressure term derived from typical values for Bondi-

Hoyle accretion. 
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Figure 2.8 entropy profiles at 70 ms intervals for an Stot = 50 equilibrium 

atmosphere. Note that with increasing time, the innermost material cools (lowering 

its entropy) while an increasing amount of material is heated (raising its entropy). 
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Figure 2.9 entropy-driven convection for an Stot = 50 equilibrium atmosphere 200 

ms after turning on neutrino processes. The negative entropy gradient is induced 

by neutrino heating and drives convection. The mean outflow velocity is 4000 km/s 

and the mean inflow is 9000 km/s . 
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Figure 2.10 the same simulation from Figure 4 after 500 ms. The atmosphere is now 
f 

exploding with a kinetic energy of 2 x 10-6 foe. The mean outflow velocity is 5000 

km/s and the mean inflow is 3000 kmjs. 
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Figure 2.11 entropy vs. mass at 80 ms intervals for an 5tot = 80 equilibrium 

atmosphere. Note that the inner material radiates its energy through neutrino 

losses, lowering its entropy. 
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Figure 2.12 Neutrino luminosity and mean neutrino energy as a function of time for 

an 5tot = 80 equilibrium atmosphere. 
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Figure 2.13 total mass accreted versus time with the best constant accretion fit for 

an iStot = 80 equilibrium atmosphere. 
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Figure 2.14 a comparison between numerical accretion rates and the analj^ical 

results of Colgate et al. (1993). The filled circles compare analytical results 

using only the radiation entropy from the numerical calculations, whereas the open 

symbols use the total entropy. 
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Figure 2.15 accretion rate versus entropy. The two lines denote analytical results 

using outer pressures of 0% and 0.25% that of the pressure at the surface of the 

neutron star. The points are results from the simulations. 
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Figure 2.16 entropy profiles versus radius for the nucleosynthesis models of Cannon 

(top line) and Biehle (bottom line). 
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Figure 2.17 Biehl
1
e's structure model after 0.5 s. The high entropy material is driving 

the atmosphere outward. Outward velocities approach 6000 km/s. 
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CHAPTER 3 

DOUBLE NEUTRON STAR SYSTEMS: 

EVIDENCE FOR KICK VELOCITIES 

Brief Summary We study the four double neutron stax systems found in the 

Galactic disk in terms of the orbital characteristics of their immediate progenitors 

and the kicks imparted to neutron staxs at their formation. First, we address 

the issue of the nature of the radio pulsar companions. We find the evidence 

that they are indeed neutron stars to be adequately convincing, although not 

conclusive. Analysis of the effect of the second supernova (SN) explosion on 

the orbital dynamics of the systems combined with results from simulations of 

common-envelope evolution and accretion onto neutron stars lead us to conclude 

that the observed systems could not have been formed had the explosion been 

symmetric. The conclusion is independent of the evolutionary sequence followed by 

the progenitors, and remains unaltered even when we account for post-SN orbital 

evolution due to gravitational radiation, as well as when we relax the assumption 

of pre-SN circular orbits. 
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The formation of the observed systems becomes possible only if kick velocities 

are imparted to the pulsar companions at birth. We study the limits imposed 

on the progenitor characteristics, orbital separations and masses of the exploding 

stars, and study their dependence on the magnitude of the kick velocity and the 

time elapsed since the explosion. For each of the double neutron stars, we are able 

to derive a minimum kick velocity required for their formation. For the two systems 

in close orbits (;^ 10 R©), the lower limits are as high as 250km/s. Moreover, we 

calculate the center-of-mass velocities acquired at the explosion and we find them 

to be in agreement with the current observations of proper motions. 

Subject headings: stars: neutron - pulsars: general - supemovae: 

general 

3.1. Introduction 

The prototypical Double Neutron Star (DNS) system containing PSR 1913+16 

was discovered in 1975 by Hulse &: Taylor. This discovery was the first of a binary 

pulsar for which observational data strongly suggested that both components 

axe compact objects. One of the two members is undoubtedly a neutron star 

since it is detected as a radio pulsar. Over the years, several astrophysical tests 

have been developed to reveal the nature of the pulsar companion. Their results 

strongly indicate that it is either another neutron star or a black hole (for detailed 

discussions see Taylor & Weisberg 1982, 1989). 

Following PSR 1913+16\ additional DNS candidate systems have been 

^Hereafter, we will refer to the double neutron star systems using the designation 

of their radio pulsar component 
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discovered: PSR 2303+46 (Stokes, Taylor, & Dewey 1985), PSR 2127+llC 

(Anderson et al. 1990), PSR 1534+12 (Wolszczan 1991), and PSR J1518+4904 

(Nice, Sayer, & Taylor 1996). Their relatively recent discoveries have not allowed 

a detailed investigation of the pulsar companions in these systems. However, 

the inferred total masses for all of these systems lie within a narrow range of 

values, ~ 2.5 — 2.8 M©, and their orbits are highly eccentric. These parameters are 

suflBciently similar to those of PSR 1913+16 to suggest that they are also DNS 

systems. 

Despite their small number, double neutron stars have proven to be highly 

important objects for relativistic astrophysics. The orbital evolution of PSR 

1913+16 due to gravitational radiation has provided additional confirmation of 

general relativity, which may be corroborated by PSR 2127+llC and 1534+12 

in the future (Taylor & Weisberg 1982, 1989). Furthermore, mergers of close 

DNS systems represent one of the primary sources of gravitational wave emission 

expected to be detected by observatories such as LIGO and VIRGO (for a review 

see Thome 1996). Such mergers have also been invoked in theoretical models for 

the origin of gamma-ray bursts (Paczynski 1986). 

The existence of DNSs has instigated studies of their origin and a variety of 

evolutionary sequences have been proposed for their formation (Webbink 1975; 

Smarr & Blandford 1976; Srinivasan & van den Heuvel 1982; Burrows & Woosley 

1986; Brown 1995; Tennan, Taam, & Hemquist 1995). Regardless of the details of 

prior evolution, all formation mechanisms converge to a helium-star/neutron-star 

binary systems for the immediate progenitors of the observed double neutron stars. 

The helium star then collapses to form the companion to the observed pulsar, a 

neutron star (or possibly a black hole). 
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In this paper, our goal is to study the origin of the observed double neutron 

star systems and in particular, to constrain the binary characteristics of their 

immediate progenitors. Before addressing the evolutionary issues involved, we 

examine in detail the existing evidence that the pulsar companions in all five 

systems are indeed compact objects by applying the tests previously developed 

for PSR 1913+16 (§3.2). In §3.3 we review the various formation mechanisms 

for DNSs and identify the qualitative properties of their immediate progenitors. 

The possibility that such progenitors lead to the formation of DNSs via symmetric 

supernova explosions is investigated in § 3.4. Considerations of the orbital dynamics 

related to such explosions, along with recent results on the fate of neutron stars in 

common envelope phases (Chevalier 1993, 1996; Brown 1995; Terman, Taam, & 

Hemquist 1995, Fryer, Benz, &: Herant 1996) lead us to the conclusion that the 

second supernova in DNSs could not have been symmetric, and that kick velocities 

were imparted to the neutron stars at birth. Our conclusion holds even when we 

take into accoimt post-supemova orbital evolution due to gravitational radiation 

and allow for eccentric pre-supemova orbits. In view of these results, in § 3.5 we 

expand our study of DNS formation to include the effects of kick velocities and find 

that double neutron stars are then formed. We are able to identify the properties of 

DNS progenitors, i.e. orbital separations and masses, which we find to be restricted 

in relatively narrow ranges. In addition, we derive an absolute lower limit on 

the magnitude of the kick needed for the formation of the observed systems. For 

reasons of completeness, the case of eccentric pre-supemova orbits is also studied. 

We conclude with a discussion of the implications of our results for the intrinsic 

kick velocity distribution and the center-of-mass velocities of double neutron stars. 
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3.2. The Nature of the Pulsar Companion 

Before studying the origin of double neutron star systems, we must first understand 

the nature of the companions to the observed radio pulsars. Although the pulsars 

are assuredly neutron stars, the properties of their companions are not so easily 

constrained. In principle, they can be either extended stars (main sequence or 

helium stars) or compact objects, such as white dwarfs, neutron stars, or black 

holes. For PSR 1913+16, a variety of tests has been developed supporting the idea 

that the pulsar companion is a compact object (Taylor & Weisberg 1982, 1989). In 

this section, we apply these tests to the entire set of DNS candidates. 

The current sets of measured and inferred properties of all five double neutron 

star candidate systems are listed in Table 3.1. The results from some of the tests 

that we discuss here rely upon having accurate determinations of the masses of each 

of the binary components. For two of the systems, PSR 1913+16 and 1534+12, the 

timing observations are precise enough that not only the periastron advances but 

also the gravitational redshifts and second-order Doppler shifts can be measured. 

These are used to determine the individual masses of the two components to a 

high accuracy (less than 3% under the assumption that the rate of periastron 

advance is purely relativistic). For the other three systems, only the total mass 

has been accurately determined. Although, one can use statistical arguments to 

estimate the individual masses, direct measurements are not yet available. Given 

that the values of the well-determined component masses in two of the systems 

are strikingly similar, for the three remaining systems we simply assume that the 

individual component masses are equal. Our results do not change significantly by 

using the range of masses from the statistical estimates. 
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3.2.1. Roche Lobe Overflow 

We consider the case that the companions to the pulsars are extended stars. Roche 

lobe overflow at some position along the binary orbit would then result in accretion 

onto the pulsar (Davidsen et al. 1975). Since no X-rays are detected from the 

observed systems, we can exclude extended companions with radii greater than the 

Roche lobe radii at periastron (Masters & Roberts 1975). 

The radius of the Roche lobe of the pulsar companion at periastron is given by 

0.49(72/3 
~ ^ - 2/3 , /, l/3s ~ ®)' (^1) 

0.6gc + ln(l + qc ) 

where Q c = Mc/Mp, Mp and Mc being the pulsar and companion masses respectively, 

A is the orbital separation, e is the eccentricity, and we have used the expression 

for the Roche lobe radius normalized to the orbital separation given by Eggleton 

(1983). For main-sequence stars, we use the radius-mass fitting relation given by 

Kalogera & Webbink (1996), and for helium stars we use the relation given by 

Wijers, van Paradijs, & van den Heuvel (1992). The calculated ratios of Roche 

lobe radius, ilt, to the radii of a main-sequence and a helium star, Rus and Rue, 

are given in Table 3.1 for all five systems. 

It is evident that for PSR 1913+16, 1534+12, and 2127+llC, the companion 

cannot be a main sequence star since the above ratio is smaller than unity. The 

conclusion is not altered by the use of other radius-mass relations existing in 

literature such as Iben (1967), Cisneros-Parra (1970), and Allen (1973). However, 

the orbits of PSR 2303+46 and PSR 1518+4904 are wide enough to accommodate 

a main sequence companion even at periastron. Helium stars are so compact that 

they could fit within their Roche lobes in all five systems. 
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3.2.2. Rate of Periastron Advance 

Precession of the longitude of periastron in the DNS orbits is one of the prinaary 

quantities derived from detailed pulsar timing models fit to observational data. 

Under the assumption that the periastron advance (also referred to as apsidal 

motion) is purely relativistic, it can be used as a constraint to the total mass of 

the binary (Masters & Roberts 1975; Smarr & Blandford 1976). However, tidal 

and rotational distortions may, in principle, contribute to the observed precession 

rate. In the case of compact objects, these effects are negligible. On the other 

hand, the precession rate for extended stars may exceed the observed value, thus 

excluding such pulsar companions. In what follows, we examine in detail the 

possible contributions to the measured periastron advance rates of extended stars 

due to both tidal and rotational effects. 

Provided that the companion reacts to an external torque as a rigid body 

and the angle between the total and orbital angular momentum axes is small (see 

Smarr & Blandford 1976), the periastron advances due to both tidal and rotational 

effects are given by^ 

where fc is a measure of the central concentration of the companion^, P is 

the orbital period in years, F{e) = (1 — e^)~®(l + |e^ + |e^), 6 is the angle 

^Hereafter, all masses and radii are expressed in solar units 

^We use 0.005 <k < 0.01 main-sequence stars (Schwarzschild 1958) and k = 0.06 

for helium staxs (Roberts, Masters & Amett 1976). 

(52) 

^rot = 2.4 k ~ degyv \ 
C C 

(53) 
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between the companion's spin and the orbital angular momentum axes, and Pc is 

the spin period of the companion in days. Unless the companion is spinning very 

rapidly, the rotational apsidal progression is small compared to the tidal advance. 

Depending on the angle 9, the rotational precession can acquire negative values 

causing a periastron regression. In principle, this could cancel out the tidal and 

relativistic rate; however, it is typically too small to appreciably aflfect the total 

precession rate. We evaluate both precession rates for main-sequence and helium 

stars adopting a typical spin period of 1 day and assuming that the spin and orbital 

angular momentum axes are aligned, 9 = 0; the results are given in Table 3.1. 

For PSR 1913+16, 1534+12, and 2127+llC, both main-sequence and 

helium-star compajiions are safely ruled out since the predicted tidal advances 

typically exceed the observed value and the rotational part is too small to cancel 

the tidal effect. For the other two systems, the rates are all too small to have 

a significant contribution, and hence they can't be used to exclude extended 

companions. 

3.2.3. Optical Identification of the Companion 

The most direct way of revealing the nature of the companion is to actually 

observe it! Optical observations can be used to exclude both extended stars and 

white dwarfs (Davidsen et al. 1975). We estimate visual magnitudes using the 

information about the companion masses, distances and positions on the sky. For 

main-sequence stars we adopt an F5 spectral type {My = 3.5), which is appropriate 

for the measured companion masses (Allen 1973), and for white dwarfs of different 

temperatures, and hence ages, we use the models by Bergeron, Wesemael, & 

Beauchamp (1995). We also apply a reddening correction using the maps of 

Burstein & Heiles (1982) and the extinction relation: AY = E{B — V)/0.3. The 
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estimated values are given in Table 3.1. We note that helium stars are typically 

more luminous than main sequence stars of the same mass (Habets 1985; Allen 

1973). Main sequence and helium star companions would be easily detected for all 

five systems. White dwarfs on the other hand would be detected in PSR 1534+12, 

1518+4904, and possibly PSR B2303+46. Relatively deep optical searches have 

been performed only for PSR 1913+16 and 1518+4904 (Crane, Nelson, Tyson 

1979; van Kerkwijk 1996). These safely exclude main sequence and helium star 

companions but not the possibility of white dwarf companions. 

3.2.4. Summary 

For four of the pulsars (1913+16, 1534+12, 1518+4904, and 2127+llC), the 

presence of an extended companion is excluded based on their stellar size, their 

implied periastron advances and/or their non-detection in optical. For PSR 

2303+46 such a companion can be easily ruled out by optical observations (down 

to a visual magnitude of 16-17). White dwarf companions can in principle be 

excluded for three of the five pulsars (1534+12, 2303+46, 1518+4904) using deep 

enough optical observations, whereas the distances to PSR 1913+16 and 2127+llC 

are so high that even hot white dwarfs would remain undetected. 

However, additional arguments have been proposed to rule out white dwarf 

companions. In the Galactic field, all binary pulsars known to have white dwarf 

companions are found in circular orbits (van den Heuvel 1994, 1995), in contrast 

to the five systems studied here. Provided that the observed pulsars have indeed 

been recycled, as suggested by Srinivasan & van den Heuvel (1982) based on 

their low inferred magnetic fields (see Table 3.1), the recycling process must have 

circularized the orbit. The observed eccentricities then can only be explained by 

invoking a supernova explosion following the mass transfer phase, which would 
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then lead to the formation of a compact companion, a neutron stax or a black hole. 

Furthermore, this second supernova explosion (and, in particular, an explosion 

imparting a kick to the collapsed object) is supported by observational evidence 

for the spin axis of the pulsar being misaligned with the orbital momentum axis, in 

the case of PSR 1913+16 (Kaspi et al. 1996). 

Given all of the above arguments that these pulsar companions are neither 

extended stars nor white dwarfs, we regard the evidence for neutron star (or black 

hole) companions to be quite convincing. 

3.3. Formation Mechanisms 

The standaxd formation mechanism for double neutron stars (Srinivasan &: van 

den Heuvel 1982) involves the evolution of a massive binary system. As the more 

massive star evolves, it fills its Roche lobe and transfers mass to its companion 

until its hydrogen envelope is exhausted. Further evolution of the remnant helium 

core leads to a supernova explosion and the formation of a neutron star. As its 

massive companion evolves to become a red giant, the neutron star accretes matter 

from the stellar wind and the system appears as a high-mass X-ray binary. Further 

expansion of the companion eventually leads to Roche lobe overflow and spiral in 

of the neutron star into the hydrogen envelope of its companion. Provided that 

the orbit at the onset of the common envelope (CE) phase is suflBciently wide, the 

stars do not merge and a binary consisting of a neutron star and a helium star 

remains after the ejection of the envelope. Due to mass transfer before and/or 

during the common envelope phase, the neutron star is recycled to short (~ ms) 

spin periods. Furthermore, dissipative processes during mass transfer lead to a 

tight circular orbit for the He-star/neutron-star binary. Depending on its mass, the 
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helium star may terminate its evolution with a supernova explosion (the second in 

the evolutionary history of the system) and the formation of another neutron star. 

Variations of the above evolutionary sequence have been proposed by Terman 

& Taam (1995) to ensure that the neutron star will not merge with its companion 

during the CE phase. This requires that the pre-CE orbits be suflficiently wide, 

which can be achieved: (i) by partial loss of mass and angular momentum during 

the first mass transfer phase, or (ii) by avoiding this mass transfer phase altogether 

with the binary members evolving independently until the formation of the 

neutron star. Another variation has been proposed by van den Heuvel, Kaper, & 

Ruymaekers (1994) to explain the existence of the double neutron star systems 

with wide orbits (PSR 2303+46, 1518+4904). In this evolutionary sequence, the 

neutron star does not go through a common envelope phase, but instead the 

hydrogen envelope is lost in a strong wind. 

Studies of highly supercritical accretion onto neutron stars (Chevalier 1993; 

Brown 1994) indicate that matter can be accreted at rates much in excess of the 

photon Eddington limit, leading to the collapse of the neutron star into a black hole 

(although spiral-in through a hydrogen envelope may still be viable; see Chevalier 

1996; Fryer et al. 1996). To overcome this difficulty Brown (1995) suggested that 

double neutron stars are formed by stars with masses within 4% of each other, 

which evolve through two mass transfer phases to a binary consisting of two helium 

stars of almost equal mass. The subsequent supernova explosions of these lead to 

the formation of two neutron stars. 

In this paper, we focus our interest on the binary characteristics of the 

immediate progenitors of double neutron star systems and the nature of the second 

supernova explosion. Prom the description of the various evolutionary channels. 
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it becomes evident that they all converge to the same configuration prior to the 

formation of the second neutron star: a binary consisting of a neutron star and a 

helium-star in a circular orbit. Therefore, this is the configuration on which we 

base the analysis that follows. 

One of the five double neutron star systems, PSR 2127-f-llC, is found in a 

globular cluster (Anderson et al. 1990). Anderson et al. showed that, given the 

dense stellar environment for this system it is quite possible that it was formed 

via dynamical interactions (capture or exchange) and not through one of the 

evolutionary sequences described in this section. For this reason, we will not study 

it further. 

3.4. Symmetric Explosions 

According to all the formation mechanisms suggested so far, the immediate 

progenitors of double neutron star systems consist of a helium star and a recycled 

pulsar. In this section, we investigate the formation of the companion neutron 

star via the supernova explosion of the helium star. We use the knowledge of 

the present binary characteristics to derive the corresponding parameters of the 

progenitors just prior to the explosion (pre-SN). As a first step, we assume that the 

explosion is symmetric, its only effect being an instantaneous mass loss from the 

system. Since the radius of the pulsar is much smaller than the orbital separation 

(~ IRQ), we may neglect the effect of the interaction between the pulsar and 

the supernova ejecta. Combining our results for the pre-SN configuration and 

recent developments on common envelope evolution of inspiraling neutron stars, 

we conclude that the four observed double neutron star systems cannot be formed 

unless a kick velocity is imparted to the nascent neutron star. 
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3.4.1. Orbital Dynamics 

We assume, for simplicity, that the double neutron star systems have experienced no 

post-supemova orbital evolution (the validity of this assumption will be examined 

in §3.4.1.1). Then for each of the observed systems, the post-SN characteristics 

are known: eccentricity, e, pulsar mass, Mp, companion mass, Afc, and orbital 

separation. A, or period, P. We denote the corresponding parameters for the 

pre-SN system with a subscript "o". The pulsar mass remains the same before and 

after the explosion, while the mass of the exploding star is Mo-

For the general case of eccentric pre-SN orbits, the relations connecting the 

pre- and post-SN states have been derived by Hills (1983): 

± ^ {Mo + Mp) - {Mo - Me) 
Ao {Mo + Mp) - 2 {Ao/r) {Mo - M,)' ^ ' 

and 

where r is the distance between the two stars, Mo and Mp, at the time of the 

supernova explosion. For a circular pre-SN orbit r = Ao-

As discussed in § 3.3, all current formation mechanisms for double neutron 

stars involve mass transfer to and recycling of the first neutron star, and thus lead 

to the circularization of the orbit prior to the formation of the second neutron star. 

Accordingly, we assume that the pre-SN orbit is circular. We then use equations 

(3) and (4) to solve for the pre-SN orbital separation, Ao 

Aq _ Mp + 2 Mc - Mp 
A Mp + Mc 

(56) 

and the mass of the exploding star, Mo 

M o  =  e { M p  +  M c )  +  M c .  (57) 
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According to the formation mechanisms, the exploding star is an evolved 

helium star, which is also the most compact possible configuration for the 

progenitor of the pulsar companion. During the course of their evolution, helium 

stars less massive than 3.5 M© expand significantly. We use a fit for the maximum 

helium-star radius, Rmax, as a function of its mass, MHC, (Kalogera & Webbink 

1996) based on helium star models calculated by Habets (1985) (in agreement with 

Woosley, Langer, &: Weaver 1995): 

_ / 3.0965 - 2.013logMae Ma, < 2.5Mq , . 
10g.Kn.ax - | 0.0557 (logMffe - 0.172)-2-5 Mffe > 2.5MQ. 

The results for the pre-SN orbital separations and helium star masses, and 

the corresponding heliimi-star maximum radii are listed in Table 3.2 for all DNS 

systems. It is evident that in all cases, the stellar radius of the NS progenitor 

is greater than the orbital separation. In other words, under the assumption 

of a symmetric supernova explosion, we find that for the progenitors of all the 

observed systems, the pulsar lies within its companion at the time of the supernova 

explosion. For PSR 1913+16, this problem was also recognized by Burrows & 

Woosley (1986). In what follows we investigate the robustness of this conclusion. 

Gravitational Radiation 

In the previous analysis, we assumed, as all work to date has, that the 

observed double neutron star systems have not experienced any orbital evolution 

since their formation (Wijers, van Paradijs, &: van den Heuvel 1992 recognized the 

possibility but did not account for the eflfect). However, both orbital separations 

and eccentricities do evolve because of gravitational wave emission. Hence, the 

observed orbital parameters are not necessarily identical with those of the post-SN 
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binaries. 

We use the expressions derived by Junker & Schaefer (1992) for orbital 

evolution due to gravitational radiation, and calculate the post-SN orbital 

separation and eccentricity as a function of the time elapsed since the explosion, 

TSN- This effect is most evident for the close systems, PSR 1913+16 and 1534+12 

(see Figure 1). 

Allowing for orbital evolution due to gravitational radiation we re-calculate 

the pre-SN separations, Ag, progenitor masses of the pulsar companions. Mo, and 

the ratios of Roche lobe over helium-star maximum radii, RL/RHCJ functions of 

TSN- The results for PSRs 1913+16 and 1534+12 are shown in Figure 2, while the 

range of radii ratios for all systems are given in Table 3.2. Based on these results 

we conclude that post-SN orbital evolution does not alter our conclusion: the 

progenitors of the second neutron stars for all observed systems overfill their Roche 

lobes prior to the explosion, even in this case. Hence, under the assumption of a 

symmetric supernova, the explosion occurred during a common envelope phase. 

Eccentric Pre-SN Orbits 

Despite the fact that all current evolutionary sequences for the formation of 

double neutron stars involve a circular orbit, we can still investigate the robustness 

of our conclusion that the pulsar enters a common envelope phase, by allowing for 

eccentric pre-SN orbits. 

In this case, we use the general equations (3) and (4). There are four unknown 

pre-SN characteristics: orbital separation, heUum-star mass, pre-SN eccentricity, 

Co, and the distance, r, between the two stars at the time of the explosion. Since 
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we only have two equations, we treat two of the above quantities, and Mo, 

as parameters and solve for Ag and r. Note that r can acquire values within 

a restricted range, between periastron and apastron of the pre-SN orbit (from 

i4o(l — Co) to Aoil + 60)). The ratio of the Roche lobe radius to the maximum 

radius for the helium star as a function of Mg and for a complete range of pre-SN 

eccentricities is shown in Figure 3 for all four of the observed systems (see also 

Table 3.2). We see for PSR 1913+16 and 1534+12 that the helium star overfills 

its Roche lobe, whereas for PSR 2303+46 and 1518+4904 the ratio RHC/RL may 

exceed unity by a small factor. However, even in these cases it is quite improbable 

that the pulsar will not spiral into its companion's envelope, because of the onset 

of the tidal instability (e.g. Rasio 1996). Such an instability sets in when the sum 

of spin angular momenta of the binary members exceeds one third of the orbital 

angular momentum. This can occur when one of the stars expands appreciably 

and almost fills its Roche lobe, as is the case for PSR 2303+46 and 1518+4904. 

Therefore, even for the extreme case of eccentric pre-SN orbits our conclusion 

remains unaltered and, under the assumption of a symmetric supernova explosion, 

the pulsar experiences common envelope evolution before the explosion. 

3.4.2. Neutron Stars in Common-Envelope Phases 

For a symmetric explosion, the immediate progenitors of double neutron star 

systems must evolve through a common-envelope (CE) phase. Therefore, it is 

essential to investigate the fate of neutron stars spiraling into the envelope of an 

evolved helium star. In this section, we use recent results on CE evolution and 

conclude that survival of a neutron star through such a phase is not possible. 

Terman, Taam, k, Hemquist (1995) have studied the inspiral of a neutron star 

in the hydrogen envelope of a massive star. They find that the inspiral time is 
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very short (~ 1 — 100 yr). Whether or not the neutron star merges into the core 

depends not only on the amount of orbital energy at the onset of the spiral-in 

(which should be large enough to overcome the binding energy of the envelope), 

but also on the evolutionary stage of the extended star. Their simulations indicate 

that the massive star must be sufficiently evolved to form a steep density gradient 

in its interior. 

Although massive stars with hydrogen envelopes develop steep density profiles 

during their core helium burning, evolved helium stars do not exhibit such a 

distinct core-envelope separation (helium-star models by Woosley 1996). Their 

density structure is smoother, and hence the neutron star would spiral all the way 

into the core with the infall time-scales (~ 1 — 100 yr) predicted by Terman et al. 

(1995). As a result the binary system is destroyed unless the helium star can evolve 

more rapidly than the infall phase and explode as a supernova before the neutron 

star merges into the core. Using the pre-SN parameters derived in §3.4.1 and 

helium-star evolutionary models by Habets (1985), we calculate the time interval, 

Tev, between Roche lobe overflow and collapse (Table 3.2). For all of the systems, 

these evolutionary time scales greatly exceed the predicted spiral-in times indicating 

that the neutron star merges before the explosion occurs. We should note, however, 

that the above calculations have received some criticism (Rasio & Livio 1996) 

because of the very low resolution (3000 particles for a three-dimensional model) of 

the Smooth Particle Hydrodynamics (SPH) simulations. Although low-resolution 

effects render the quantitative results suspect, the qualitative conclusions for the 

fate of the CE phase may still be valid. 

Accretion of matter onto the neutron star is another aspect of CE phases 

which has recently been studied by various investigators (Chevalier 1993, 1996; 
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Brown 1995; Fryer et al. 1996). In common envelope situations, the Bondi-Hoyle 

accretion rate (Bondi 1952) typically exceeds ~ lO'^Moy"^, which is much greater 

than the photon Eddington limit for neutron stars. For such high accretion rates, 

neutrino emission dominates the cooling processes. In these cases, accretion is not 

limited by the photon Eddington limit, but instead by the corresponding limit for 

neutrinos, which is 20 orders of magnitude greater than the photon Eddington 

limit. For the calculated Bondi-Hoyle rates, neutrino emission carries away the 

energy released by accretion and a steady state flow is achieved. At these high 

rates, the pulsar collapses into a black hole on a time scale of hours or months soon 

after it enters the envelope of its compajiion. 

In the standard formation mechanism (and its variations) for double neutron 

stars, the pulsar spirals into a hydrogen rich envelope before the helium-star/neutron 

star binary is formed. The above results imply that the DNS progenitors are 

destroyed at that early stage. These considerations led Brown (1995) to suggest an 

alternative formation mechanism which circumvents such a CE phase. However, 

depending on the conditions in the common envelope, other physical processes can 

facilitate the survival of the neutron star. Chevalier (1996) showed that angular 

momentum accreted with the material onto the neutron star may prevent collapse. 

Also, Fryer et al. (1996) found that the neutrinos emitted close to the neutron star 

may be able to heat a region of the infalling atmosphere, and ultimately drive an 

explosion which temporarily halts mass accretion. A series of such explosions may 

also prohibit the collapse of the neutron star into a black hole. However, in the 

envelopes of helium giants, the densities and temperatures are such that neither of 

these processes are sufficiently important to prevent accretion from reaching high 

rates. 
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Effects of Angular Momentum 

Material being accreted onto the neutron star is expected to contain a certain 

amount of angular momentum due to density and velocity gradients in the flow. 

Infall of material is halted at all polar angles except in a cone around the poles 

defined by the angular momentum axis. For a given value of the specific angular 

momentvun, j, we can define a critical polar angle, 9c, within which angular 

momentum does not affect the inflow appreciably. This angle is set by the balance 

between the centrifugal and gravitational forces at the neutron star radius: 

fsm^9c _ GMNS 
d3 ~~ /?2 ' ^NS ^NS 

where M^s and R^s are the mass and radius of the neutron star. For the specific 

angular momentum we use the analytical estimates by Ruffert & Anzer (1995): 

i = i = ^(6er; - Cp) VRb, (60) 

where J and M are the angular momentum and mass accretion rates respectively, 

V is the velocity of the neutron star, RB is the Bondi-Hoyle accretion radius (Bondi 

1952), and are the velocity and density gradient parameters, as defined in 

Ruffert & Anzer (1995). 

For the observed systems, we have derived the mass of the progenitor of the 

second neutron star as well as the position of the pulsar in the envelope of its 

compajiion, that is the pre-SN orbital separation (Table 3.2). Using helium star 

models by Woosley (1996) we calculate the Bondi-Hoyle accretion rates and radii 

appropriate for the conditions in the stellar envelopes. We have assumed that the 

neutron star velocity in the envelope is equal to the pre-SN relative orbital velocity. 

The results for both cases, with and without angular momentum accretion, are 

listed in Table 3.2. Also, the ratio of the Bondi-Hoyle radius to that of the helium 
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stars are listed; this ratio must remain smaller than unity to ensure that the flow 

region is included in the stellar envelope. 

Given the above accretion rates we can calculate the time TBH required for 

the neutron star to accrete ~1 M© of matter and collapse to a black hole (see 

Table 3.2). Only when TBH is greater than the time interval between Roche 

lobe overflow and collapse of the helium star, will the neutron star survive the 

CE phase. For all observed systems (with the possible exception of J1518+4904), 

the collapse time scale is many orders of magnitude shorter than the evolution 

time scale, clearly indicating that the pulsar becomes a black hole long before 

the SN explosion. We note that numerical calculations indicate that equation 

(60) overestimates the amount of angular momentum accreted onto the neutron 

star (Ruffert & Anzer 1995). Moreover, we have ignored any effects of angular 

momentum transport which must be present to some degree (Chevalier 1996). 

Ignoring these effects underestimates the mass accretion rate and overestimates the 

time required for collapse. 

Until now we have implicitly assumed that the derived distances of the pulsars 

prior to the explosion represent the pre-SN orbital separations. However, this may 

not be necessarily true. It is possible that the neutron star has reached such a 

short distance from the helium-star core because of spiral into the envelope. We 

can still apply the above time scale argimients, but rather than we use the 

shortest possible time from the onset of the CE phase to the supernova stage. This 

is defined as the interval, TCE, between the time that the helium star acquires its 

maximum radial extent and the time of its collapse (see Table 3.2). We note that 

TCE is prohibitively long for all the observed pulsar systems. 

In view of the above analysis, we conclude that the pulsar does not survive a 
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common envelope phase with its helium star companion. A merger with the core 

and, more importantly, a collapse into a black hole will precede the supernova 

explosion of the helium star. These circumstances do not lead to the formation of 

a double neutron star system. 

3.5. Asymmetric Explosions 

We have already shown that, under the assimiption of symmetric supernova 

explosions, the pre-SN orbital separations for the progenitors of the observed 

double neutron star systems places the pulsars within the envelopes of their 

helium-star companions. The times required for both inspiral and black-hole 

collapse are much shorter than the evolution time interval from the onset of the 

CE phase to helium-star SN explosion. Under these conditions, double neutron 

star formation is aborted. Neither post-SN orbital evolution due to gravitational 

radiation nor pre-SN eccentric orbits alters this conclusion. The only remaining 

assumption, is that of a symmetric supernova explosion. To form double neutron 

star systems we are then forced to relax this assumption and examine the case that 

asymmetries are present and a kick is imparted to the nascent compact object. 

Kick velocities acquired at the supernova explosion indeed allow the observed 

double neutron stars to be formed. However, the range of pre-SN binary parameters 

is restricted to relatively narrow ranges. We study the dependence of these 

parameters on the magnitude of the kick velocity, the time elapsed since the SN 

explosion, and eccentric pre-SN orbits. For each of the systems we calculate the 

minimum value of the kick velocity that is necessary for the pre-SN system to avoid 

a CE phase. 
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3.5.1. Circular Pre-SN Orbits 

First, we study the case of circular pre-SN orbits, which is consistent with the DNS 

formation mechanisms. Using the orbital energy and angular momentum equations 

for eccentric orbits, and for a kick velocity of specific magnitude and direction, 

expressions for the pre-SN orbital separation, Ao, and mass of the helium star, Mo, 

as a function of the post-SN binary characteristics can be derived (e.g. Kalogera 

Al [Vf sin20cos20 -i- {Vkcose + V;)^] = G{Mp + Ma) A (1 - e^), (62) 

Vk is the magnitude of the kick, 6 is the polar angle of the kick with respect 

to the pre-SN orbital velocity of the helium star relative to the pulsar, and <f) 

is the corresponding azimuthal angle. For each of the observed double neutron 

star systems, the post-SN parameters are known (at this point we ignore orbital 

evolution due to gravitational radiation, although we will come back to it later). 

For a specified kick magnitude in any direction, we calculate the two unknown 

pre-SN parameters, Ao and Mg. 

The region of allowed pairs of values is restricted by a set of constraints that 

DNS progenitors must satisfy. The first of the constraints arises from the fact that 

the post-SN orbit must include the position of the two stars at the time of the 

explosion (see e.g. Kalogera 1996), hence the pre-SN separation must be within the 

bounds set by the periastron and apastron distances in the post-SN orbit 

1996): 

+ K' + 2FfcV;cos0 = GiMp + Mc) (61) 

where K is the relative orbital velocity before the explosion 

'G(M„ + Mp)Y'^ 
(63) 

A { l - e )  <  A „  < /!(1 +e). (64) 
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These limits can be derived using equations (61) and (62) and requiring that 

cos^ (f> <\i where the equality corresponds to kicks perpendicular to the orbital 

plane. 

A second constraint is set by demanding that cos^ (f> remains always positive. 

Using equations (61) and (62) we find that for a specific pre-SN separation the 

mass of the helium star is restricted by: 

,r ^ 2k^{Mp + Mc) 
Mo < ^^ - Mp, (65) 

2q: 2o!2(i_e2)_fc]-4a2(i_e2)i/2[a2(i_e2)_fc]V2 P' v ; 

where 
V3A 

k  =  2 a  —  + 1 (66) 
G { M p  +  M , )  

and a = AjAo- The extreme case of cos^ (^ = 0 corresponds to kicks restricted in 

the plane of the orbit before the explosion. We can physically understand this 

constraint in terms of the orbital angular momentum content of the system before 

and after the explosion. Equation (65) expresses the maximum allowed Mo for a 

given value of Ao, and hence it corresponds to a maximum value of the pre-SN 

orbital angular momentum. The post-SN parameters fix the angular momentum 

content after the explosion, which is comprised of contributions from both the 

pre-SN orbital velocity and the kick velocity. Since their sum is fixed, the maximum 

pre-SN contribution is obtained when the kick contribution is minimum, and in 

fact opposes that of the orbit. Any component outside the pre-SN orbital plane 

increases the angular momentum of the system, therefore the kick contribution 

becomes minimal only when it lies in the orbital plane (cos^ 0 = 0). 

The final constraint arises from the condition that the pulsar must avoid a 

common envelope phase with the helium star. The ranges of allowed values for Ao 

and Mo are then restricted by the condition that the heUum star must fit within 

its Roche lobe when its radius is at a maximum (equation 58). At a given value of 
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Aoi a lower limit is derived for the mass of the helium star. 

The limits imposed on the values of Ao and Mo are shown in Figures 4 and 

5 for the two observed systems for which the individual masses are accurately 

known (PSR 1913+16 and 1534+12). For the close systems, ~ 3 — 4.5/2© and 

Mo 4iWo whereas for the wide binary systems ~ 20 — 50 R© and Mo M©. 

The solid thick vertical line corresponds to the geometrical constraint (equation 64) 

and sets an upper limit on the pre-SN orbital separation. Although there exists a 

lower limit to Ao, as well, its value is too low to restrict the parameter space. The 

thin lines correspond to kicks unparted in the pre-SN orbital plane (cos^cf) = 0), 

and thus to maximum pre-SN orbital angular momentum. Of the three limiting 

curves only the latter depends on the assumed kick magnitude. The relative orbital 

velocity in pre-SN orbits leading to the formation of the observed systems increases 

with increasing kick velocity. Thus, systems with shorter separations and more 

massive helium stars are included in the progenitor parameter space when the kick 

magnitude increases (see Figure 4). 

We have already shown that in the absence of kick velocities none of the 

progenitors are wide enough to accommodate the evolved helium stars. Instead, 

sufficiently large separations and He-star masses are required to avoid Roche 

lobe overflow, which correspond to higher relative orbital velocities as well as 

larger amounts of mass lost in the explosions, compared to the case of symmetric 

explosions. Such progenitors are permitted only if the magnitudes of the kick 

velocities exceed a certain minimum value (see Figure 5), which is unique to each 

of the observed systems. For the two close systems, PSR 1913+16 and 1534+12 

the minimum kick velocities that the pulsar companion acquired at its birth are as 

high as 290 and 230 km/s, respectively. For the wider systems, PSR 2303+46 and 
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1518+4904, the minimum kick magnitudes are lower, 70 and 50km/s, respectively. 

In the case of the observed double neutron star systems with small orbital 

separations 5Ro), orbital evolution after the supernova explosion due to 

emission of gravitational waves has been found to be significant (see §3.4.1.1). 

Therefore, post-SN orbital parameters for these systems may have been different 

than the ones observed at present. Consequently, the limits on the range of pre-SN 

parameters are also altered, with the exception of the limiting curve related to the 

size of evolved helium stars (thick solid lines in Figure 5). As the time, TSN, elapsed 

since the explosion increases, post-SN separations and eccentricities increase too, 

and hence the maximum allowed pre-SN separations are shifted to higher values 

(equation 64). On the other hand, an increase in e and A may result in either 

an increase or decrease of the post-SN orbital angular momentum depending on 

whether the change in A or e, respectively, is more dominant. In either case, the 

change in the post-SN angular momentum is followed by an analogous change in 

that of the pre-SN orbit, and thus can lead to either an increase (PSR 1534+12) 

or a decrease (PSR 1913+16) of the upper limit on the mass of the helium star. 

The region of the Ag, Mo space allowed to progenitors becomes more extended the 

longer the time since the explosion, and progenitors become wider and wider. The 

decrease in relative orbital velocity before the explosion also results in a decrease of 

the minimum kick magnitude required for the formation of the observed systems, 

but not by a large amount. For values of TSN equal to the characteristic age, TC, of 

the observed pulsar (Table 3.1), the minimum kick magnitude required decreases to 

~ 250km/s for PSR 1913+16. For the rest of the systems the effect is negligible. 
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3.5.2. Eccentric Orbits 

Despite the fact that none of the current formation mechanisms requires an 

eccentric orbits for the pulsar-helium star binary, we explore such a possibility 

and its effect on the pre-SN binary parameters for completeness. As already 

discussed, in the case of eccentric orbits, the pre-SN parameter space becomes 

four-dimensional: the eccentricity, eo, and the position along the orbits at the time 

of the explosion, expressed by the eccentric anomaly, Eo, are added to the orbital 

separation, AQ, and helium-star mass, Mo- We have sampled the complete range of 

values for both eg (0 to 1) and Eo (0 to TT), and calculated the outer envelope of 

the limits imposed on pre-SN separation and mass of the exploding star, based on 

the three physical constraints discussed above. These limits are shown in Figure 

6 for PSR 1913+16 and 1534+12 for three different values of the kick magnitude 

and ignoring any post-SN orbital evolution, value. The lower limit on helium-star 

masses is not affected by eccentric orbits, although a significant expansion of 

the parameter space occurs towards more massive progenitors for the pulsar 

companion. However, we note that helium stars are known to lose mass in strong 

stellar winds and thus their masses at collapse are expected to be relatively small 

SM©) (Woosley, Langer, & Weaver 1995). Finally, the minimum magnitude of 

a kick required for the system also remains unaltered. 

3.6. Discussion 

We have shown that for all candidate DNS systems detected so far, the evidence 

that the radio companions to the pulsars are not extended stars (main sequence or 

a helium stars) is adequately strong. The possibility that they are white dwarfs can 

not be completely excluded yet and deep optical observations would be decisive 
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PSR 1534+12 and 1518+4904. Support for the formation of these companions in 

a supernova explosion is also provided by the high measured eccentricities. Given 

the results of the detailed ajialysis presented in § 3.2 we conclude that white dwarf 

companions are unlikely. 

A careful account of the change in orbital characteristics of binaries systems 

experiencing symmetric supernova explosions, the sizes of helium stars approaching 

collapse into a neutron star, and the fate of neutron stars in common envelope 

phases with helium stars led to our conclusion that the observed double neutron 

star systems in the galactic disk could not have been formed if the SN explosions 

forming the pulsar companions were sjonmetric. Kick velocities imparted to neutron 

stars at birth are required to explain the observed parameters of DNS systems, 

even if they have experienced significant orbital evolution due to gravitational wave 

emission. We find that kicks not only need to exist but in fact their magnitudes 

must exceed some minimum values. It is only then that the progenitor orbits can 

be sufficiently wide to accommodate the evolved helium stars, and also produce 

the short separations observed for the systems. In other words, kicks are necessary 

because they allow the production of post-SN orbits smaller than those before the 

explosion, in contrast to symmetric supemovae, which always result in an expansion 

of the orbit. For the observed double neutron stars in close orbits the minimum 

kick velocities required are in excess of 200km/s. We consider this as the most 

direct evidence so fax that such high kicks are indeed imparted to neutron stars 

in nature. Whatever the physical mechanism responsible for the kick velocities, it 

must be efficient enough to give rise to kicks up to a few hundreds km/s. 

The analysis presented here enable us to set limits on the orbital parameters 

of the immediate progenitors of the observed DNS systems, as well as, on the 
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kick velocities impaxted to the pulsar companions. However, obtaining the 

most probable of the parameters within the allowed ranges requires modeling 

of the evolutionary history of the DNS progenitors up to the formation of the 

pulsar/helium-star binaries. Here, we use the population synthesis code (Monte 

Carlo) described in Fryer, Burrows, & Benz (1996) to estimate the most probable 

kick velocities, and hence progenitor parameters, for the observed systems. The 

standard DNS formation mechanism (Srinivasan &: van den Heuvel 1982) is 

modeled, including the constraint that the helium stars must be accommodated in 

their orbits prior to collapse. The formation rate of DNS systems with separations 

less than 5RQ peaks at 200km/s (5 x 10~®yr~^) and falls off sharply beyond 

300km/s. Although higher kicks are allowed by our analysis, they disrupt most 

of the binaries and do not contribute significantly to DNS formation. For double 

neutron star systems with separations ^ 50 R®, the formation rate (~ 10~®yr~^) 

peaks at kicks lower than lOOkm/s, and is consistent with the rate inferred 

observationally (van den Heuvel 1995). These results indicate that kick velocities 

comparable to the derived lower limits are mostly favored. Consequently, orbital 

separations and masses of ~ 4.5 R© and ~ 4.5 M© are favored for the close systems 

(PSR 1913+16 and 1534+12). Separations of ~ 50Ro are more probable for PSR 

2303+46 and ~ 30Ro for PSR 1518+4904, and the helium star mass is ~ SM© for 

both of these systems. 

We may use our knowledge of the parameters of DNS progenitors, to 

calculate the center-of-mass velocities, VCM, acquired by the systems after the 

explosion (equation 34 in Kalogera 1996) for specific kick magnitudes. Their 

lowest possible value depends solely on the parameters of that progenitor binary 

with the lowest orbital relative velocity. For the systems in close orbits (PSR 

1913+16 and 1534+12) we find minimum center-of-mass velocities of ~ 240km/s 
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and ~ 230km/s, respectively. These minimum velocities also correspond to the 

lower kick magnitudes which, from our population synthesis calculations, are 

the most probable velocities. Post-SN orbital evolution affects only mildly these 

minima. For the two wider systems the minimum values of VCM are considerably 

lower, ~ 50km/s. Because the pre-SN orbital velocities increase with increasing 

magnitude of the kick (Figure 4), the center-of-mass velocities tend to increase, as 

well. Measurements of proper motions of the observed have been reported in the 

literature the past few years (Taylor 1993; Arzoumanian year; Nice 1996). The 

inferred values of transverse velocities are relatively accurate for the two close 

systems, PSR 1913+16 and 1534+12, 110±25km/s and 160±101an/s. For PSR 

1518+4904 only an upper limit of 40 km/s can be set, while for PSR 2303+46 there 

is no significant measurement. We note that no errors in the distance estimates 

has been taken into account for the inferred values. Moreover, in the theoretical 

estimates we have neglected any center-of-mass velocities of the pre-SN system 

as well as the effects of the galactic potential. We should also bear in mind that 

only transverse velocities are measured and that the number of systems is too 

low for any statistically significant conclusions to be drawn. Considering all of 

these caveats, we conclude that comparison of the observationally inferred and 

theoretically predicted values provide a positive consistency check for our results. 
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Figure 3.1 Post-supernova orbital separation, A, and eccentricity, e, as a function 

of the time, TSN, elapsed from the supernova explosion, for PSR 1913+16 and PSR 

1534+12. 
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Figure 3.2 Pre-supernova orbital separation, Ag, mass of the exploding (helium) star, 

Mo, and ratio, Ri/RHe, of the Roche lobe radius to the maximum radius acquired 

by a helium star prior to the supernova, as a function of the time, TSN, elapsed 

from the explosion. Quantities are plotted for PSR 1913+16 and PSR 1534+12 and 

under the assumptions of circular pre-supemova orbits and symmetric supemovae. 
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Figure 3.3 Ratio, RL/RHB^ of the Roche lobe radius to the maximum radius acquired 

by a helium stax prior to the supernova, as a function of the mass. Mo, of the helium 

star, for a complete range of pre-supemova eccentricities. Plots are shown for PSR 

1913+16 and PSR 1534+12 and for symmetric supemovae. A minimum helium star 

mass for neutron star formation of 2 M© has been assumed. 
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Figure 3.4 Limits on the pre-supemova orbital separation, Ao, and mass of the 

helium star, Mo for (a) PSR 1913+16 and (b) PSR1534+12, and for three different 

magnitudes of the kick velocity, 14- The thick dashed vertical line corresponds to 

the maximum separation set by the geometrical constraint; the thick dotted Une 

corresponds to the minimum helium-star mass that can be accommodated in the 

orbit; the thin lines correspond to the maximum possible pre-supemova orbital 

angular momentum and their position depends on the kick magnitude. Limits 

are calculated for circular pre-supemova orbits and neglecting any post-supernova 

orbital evolution. 
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Figure 3.5 Limits on the pre-supemova orbital separation, Ao, and mass of the 

helium star, Mo for (a) PSR 1913+16 and (b) PSR 1534+12, and for three different 

values of the the time, TSN elapsed from the supernova in units of the pulsar 

characteristic ages, The thick solid line corresponds to the minimum helium-

star mass that can be accommodated in the orbit; the thin lines correspond to the 

geometrical (vertical) and the angular momentum constraints, and depend on the 

value oi TSN- Limits are calculated for circular pre-supemova orbits and for kick 

velocity magnitudes (a) Vk = 400km/s and (b) Vk =• 300km/s. 
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Figure 3.6 Limits on the pre-supemova orbital separation, Ao, and mass of the 

helium star. Mo for (a) PSR 1913+16 and (b) PSR 1534+12, for eccentric pre-

supemova orbits and for different values of the magnitude of the kick velocity, V^. 

Post supernova orbital evolution has been neglected. 
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CHAPTER 4 

POPULATION SYNTHESES FOR 

NEUTRON STAR SYSTEMS WITH 

INTRINSIC KICKS 

Brief Summary 

We use a Monte-Carlo binary synthesis code to model the formation and 

evolution of neutron star systems including high-mass X-ray binaries, low-mass 

X-ray binaries, double neutron star systems and radio pulsars. Our focus is on the 

signature imprinted on such systems due to natal or post-natal kicks to neutron 

stars over and above that imparted by orbital motions. The code incorporates the 

effect of the galactic potential on the velocities of these systems. A comparison 

between our models and the observations leads us to infer mean natal kicks 

^ 400 — 500 km s~^. Moreover, to be consistent with all the data, we derive that 

the kick distribution is bimodal with one peak near 0 km s~^ and the other above 

600 km s~^ 
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4.1. Introduction 

Support for the claim that many neutron stars have high velocities continues 

to mount. Probably the most compelling evidence lies in the velocities, and 

to a lesser extent, the scale height off the galactic plane of the observed radio 

pulsar population. With the most recent proper motion observations and the 

newly-corrected distance determinations of Taylor & Cordes (1993), Lyne & 

Lorimer (1994) have derived a mean pulsar velocity of 450 km s~\ an increase of 

almost a factor of 2 over previous estimates. Velocities as high as ~ 800 km s~^ have 

been inferred by associating pulsars with supernova remnants (Caraveo 1993 and 

Frail, Goss & Whiteoak 1994) and from observations of the bow shocks produced 

by neutron stars as they plow through the interstellar medium (Cordes,Romani, &: 

Lundgren 1993). Neutron star kicks have been invoked to explain characteristics 

of 0/B runaway stars (Blaauw 1961), double neutron star systems (DNS) such as 

PSR B1913+16 and PSR B1534+12 (Flannery & van den Heuvel 1975, Burrows & 

Woosley 1986, Yamaoka, Shigeyama, & Nomoto 1993), the angle between the spin 

and orbit axes of recycled pulsar systems (Kaspi et al. 1996, Wasserman, Cordes, 

& Chemoff 1996), galactic gamma-ray bursters (Colgate & Leonard 1994, Lamb 

1995), and highly eccentric Be/NS binaries (van den Heuvel k. Rappaport 1986). 

Iben & Tutukov (1996) have claimed that these high velocities can be explained 

using binary effects alone. By considereing a 16Mo helium star with a neutron 

star companion, they have shown that NS velocities as high as 1000 km s~^ can 

be obtained. Thus, the existence of a single high-velocity neutron star does not 

require neutron star kicks. However, we show in this paper that neutron-star kicks 

are required to explain the transverse-velocity distribution of pulsars. We present 

the results of a series of Monte-Carlo simulations of massive star systems through 
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binary evolution and compare our simulated pulsax transverse velocities with the 

pulsar sample, including the effects of the galactic potential. This technique is 

similar to that of Dewey & Cordes (1987), who, however, were limited to the old 

pulsar velocity data. Even with this old data set, Dewey & Cordes (1987) found 

that 100 — 150 km s~^ kick velocities were required to explain the observed pulsar 

proper motions. 

The radio pulsar velocity data alone provide evidence for kicks, but they are 

unable to restrict the actual kick distribution itself. We show that Maxwellian 

distributions, flat distributions, even a delta function kick distribution, will match 

the observed radio pulsar data with varying degrees of success. To learn more 

about the kick distribution, we expand our study to include additional neutron 

star populations: Low-Mass X-ray Binaries (LMXBs), High-Mass X-ray Binaries 

(HMXBs), DNSs, and globular cluster neutron stars. Employing the constraints of 

all these systems, we can rule out many of the kick distributions in the literature. 

The most probable distribution is double-peaked, with one peak at ~ 650 km s~^ 

and the other near 0 km s~^ This bimodal kick distribution is a challenge to any 

theory of kick origins. 

In §4.2, we discuss the methods we employ for the simulations of each massive 

binary population and our comparison with the observations. In §4.3, we describe 

our model of the galactic potential and our approach to calculating neutron 

star retention fractions in globular clusters. Section 4.4 discusses the various 

uncertainties in binary population synthesis, along with results from the individual 

parameter studies. Sections 4.2-4.4 are devoted entirely to a description of our 

Monte-Carlo simulations and a careful analysis of the uncertainties and difficulties 

involved in these population synthesis calculations. In §4.5, we discuss the results 
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and implications of these new simulations and the constraints they place on the 

neutron star kick velocity distribution. 

4.2. Neutron Star Populations 

We use not only the radio pulsar proper motion data, but also the estimated 

formation rates of LMXBs, HMXBs and DNSs, to constrain the neutron star kick 

distribution. The birthrate (BR) for the binary systems is given by: 

„ „ Number of Systems SN , . 
BR = ^ X — X (67) 

Using our Monte Carlo code, we simulate 10® binary systems and calculate the 

number of each type of system produced and the total number of supernovae {SN), 

from which we derive the first term in equation (67). By assuming a supernova rate 

{SN/yr) and the fraction of systems in binaries fbinary, we calculate the birthrate 

of each type of system. 

The birthrate itself can not easily be compared with the observations and, 

hence, we resort to a variety of inderect techniques to constrain the models. Since 

we use a different technique for each system, we discuss each system separately. 

When we encounter any uncertainty in a calculation, we choose the conservative 

bound. Thus, our simulated birthrates are always upper limits. 

There are a number of ways to determine the supernova rate. Kalogera & 

Webbink (1996b, KW96) use the star formation rate along with an initial mass 

function (IMF) and obtain a supernova rate 7.7 X 10 ^SNy Iben, Tutukov, 

& Yungelson (1996a,1996b) also use the star formation rate and estimate a similar 

rate (~ 9.1 x 10~^SNy~^). Dalton & Sarazin (1995, DS95) use the galactic Lyman 

continuum flux (which is dominated by massive stars) along with an IMF with 
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an upper mass cutoff and derive ~ 7 x 10~^SNy~^ However, galactic SN rates 

themselves are tjrpically estimated to be in the range 10"^ — 3 x 10"^ SN 

(Tammann, Loeffler, & Schroeder 1994). We assume a supernova rate of 

10"^ SN for our simulations. The binary fraction depends upon the mass ratio 

of binaries that we adopt. We discuss the various mass ratios and their resultant 

binary fractions in §4.4. 

4.2.1. Low-Mass X-ray Binaries 

The X-ray emission of an LMXB is powered by Roche-lobe overflow from its 

low-mass companion. Although a necessary condition in LMXB creation is that 

the low-mass companion remain boimd to the neutron star after the supernova 

explosion, this condition is not suflScient. The bound system must evolve to a 

phase in which stable Roche-lobe overflow occurs. For our simulations, we use 

the technique of KW96. We evolve the orbital separation by both gravitational 

radiation and magnetic braking. Following the work of Kalogera &; Webbink 

(1996a), we restrict our sample to those systems that develop stable sub-Eddington 

or super-Eddington accretion. Since systems with super-Eddington accretion may 

not be observed as LMXBs and since this accretion occur an order-of-magnitude 

more often than sub-Eddington accretion, the inclusion of of super-Eddington 

systems may overestimate by a factor of 10. 

The astute reader may worry that our simulations do not consider all of the 

possible formation scenarios for LMXBs and, hence, that we are underestimating 

their formation. Our simulations include the standard formation scenario which 

uses a common-envelope phase to tighten the pre-SN orbit. In addition, we 

include scenarios which use the kick to reduce the orbital separation after the 

supernova without the aid of a common-envelope phase (Kalogera 1996). We do 
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not include any scenarios involving a Thorne-Zytkow phase (Eggleton &: Verbunt 

1986). Models of common-envelope evolution (Chevalier 1993, Brown 1995, Fryer, 

Benz, & Herant 1996) show that the neutron star would collapse into a black hole 

before it could spiral into the core of its companion to form a Thome-Zytkow 

object. Similarly, we ignore the accretion-induced collapse (AIC) route to LMXBs. 

Simulations by Woosley & Baron (1992) limit the total rate of AICs to 10""* y~^ to 

avoid nucleosynthetic contamination by their ejecta. This rate is comparable to the 

rate predicted by Iben, Tutukov, & Yungelson (1996b), who conclude that AICs 

make up no more than a few percent of the LMXB population. Recent simulations 

of AICs by Fryer et al. (1996) suggest that the upper limit set by Woosley &: Baron 

is an order-of-magnitude lower still. Hence, it is unlikely that AICs contribute to 

the LMXB population. 

With this information, we can calculate the number of LMXBs formed per 

supernova (the first term in equation 67). To compare with the observations, we 

would like to multiply our birthrate with the lifetime of our LMXBs to derive the 

number of galactic LMXBs. However, the lifetime of LMXBs is very difficult to 

estimate. Instead, we calculate an upper limit to the X-ray flux of these systems 

collectively by assuming that the low-mass companion is completely consumed by 

the neutron star and that all of the energy from mass accretion is converted into 

X-ray photons. This galactic luminosity is: 

Lf = X BR, (68) 
^ N S  

where G is the gravitational constant and Mi^s and are the mass and the 

radius of the neutron star, respectively. BR is the LMXB birthrate calculated in 

our Monte-Carlo simulations (eq. 67). KW96 estimate the X-ray flux from galactic 

LMXBs to be Lx,tot = 1-7 ± 0.1 x 10^® erg s~\ In §4.5, we make use of the fact 
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that we have overestimated both the LMXB formation rate and the LMXB X-ray 

emission. If, for a given kick distribution, our calculated upper limit falls below the 

observed value, that kick distribution is excluded. 

4.2.2. High-Mass X-ray Binaries 

HMXBs are thought to be powered by material from the massive companion's 

wind. For these systems, we use the same technique as DS95. Using the models of 

Schaller et al. (1992), we determine the high-mass companion's radius, its mass 

loss rate, etc., from which we can estimate the mass accretion rate onto the neutron 

star as a function of time. Then 

Lf = (69) 
^ N S  

where Macc is determined in the same manner as in DS95. DS95 introduce an 

eflBciency parameter for the conversion of potential energy into X-ray photons, but 

we will assume, as we do in the case of LMXBs, that the conversion is 100% when 

calculating an upper limit to the formation rate of HMXBs. 

Using the Schaller et al. (1992) models, we not only recover the X-ray 

luminosity, but the HMXB lifetime. For HMXBs, we can combine our estimated 

birthrate with this lifetime to determine a total HMXB population. We compare 

our brightest sources with the bright galactic sources. Meurs & van den Heuvel 

(1989) estimate the number of HMXBs with Lx > 10^®ergs~^ to be 55 ± 27. We 

will require the upper limit from our simulations to give N{Lx > 10^®) 28. As in 

the case for LMXBs, if our simulated upper limit falls below the lower limit in the 

observations, we conclude that the kick distribution does not fit the data. 
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4.2.3. Double Neutron Star Systems 

We calculate the birthrate of DNSs by including all bound double neutron star 

systems. This simple prescription is suggested by the fact that there are many 

opportunities during the evolution of these systems to tighten their orbits and 

recycle their pulsars. Our inclusion of all bound DNS systems gives us a reasonably 

solid upper limit. Although the birthrate of close DNS systems has been estimated 

to be ~ 10~®y~^ previous population syntheses have predicted almost 100 times 

more wide-orbit DNSs (van den Heuvel 1995). These systems are not observed, 

both because they are much more difficult to detect as binaries and because the 

pulsar in the wide binary systems is not recycled, and, hence, has a much shorter 

lifetime. We require only that our total number of bound DNS systems be greater 

than the ~ 10~®y~^ predicted by van den Heuvel (1995). 

Alternate scenarios for double neutron stars do exist. In globular clusters, a 

viable formation scenario for DNSs such as PSR 2127+1IC involves stellar collisions 

with binaries in cluster cores. This scenario is not a likely formation mechanism 

for the galactic disk DNSs. Brown (1995) has suggested an alternate formation 

scenario which includes a double helium star phase. This mechanism requires that 

the binary components have nearly equal masses. Our code models these systems, 

but for the mass-ratio distributions we use (see §4.4), this mechanism provides a 

negligible contribution to our DNS formation rate. 

4.2.4. Radio Pulsars 

Rather than calculate the birthrate of radio pulsars, we compare our simulated 

pulsar velocity distribution with the observations. In our simulations, we assume 

that each neutron star has an early pulsar phase. We extract from our simulations 
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the young pulsar population {tage < 3 x 10® y) within 5 kpc of the sun. Since 

our results depend sensitively upon the velocity distribution of the radio pulsar 

population, it is important to understand the uncertainties and biases connected 

with the pulsar observations. 

Our pulsar sample is taken from the proper motion data of Taylor, Manchester, 

& Lyne (1993) with distances determined using the new electron density model of 

Taylor & Cordes (1993). For some pulsars, their new distances are diflferent from 

their old ones by over a factor of two. Alternate distance estimation techniques 

provide some support for the Taylor & Cordes distances, but there exist specific 

cases such as PSR J0738-4042 where the preferred distance is 5 times smaller than 

that predicted by the electron density model (Johnston et al. 1996). The distance 

estimated by Taylor & Cordes for PSR J0738-4042 was quite high (>11 kpc). By 

restricting our sample to the radio pulsars within 5 kpc of the sun, we hope to 

avoid the most grevious distance errors. Nonetheless, distance measurement errors 

are a major concern and we will discuss their effect on our results in §4.5. 

Aside from uncertainties in the distance, we must be careful to avoid any 

biases in our radio pulsar sample. A clear selection bias is that very fast pulsars 

rapidly leave the galactic disk and can even escape the galactic potential. Slow 

pulsars, on the other hand, remain bound to the disk and are easily detected. 

We avoid this bias by limiting our sample to the young radio pulsar population 

{iage = P/2P < 3 X 10® y). In addition, by restricting our sample to those pulsars 

whose ages are less than the typical luminosity decay times (Gunn & Ostriker 

1970), we avoid uncertainties in the pulsar age-luminosity relation. 

Iben & Tutukov (1996) have suggested that there may be a bias against 

slow-moving pulsars. The proper motion of a distant, slow-moving pulsar is difficult 
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to determine. Iben & Tutukov (1996) have claimed that there is a trend in the data 

supporting this h3T)othesis (see Figure 4.1). This bias is probably due to errors in 

the distance measurement and is akin to the luminosity/velocity relation suggested 

by Tutukov, Chugai, & Yungelson (1984). They noted a clear trend in the data 

showing that the lowest velocity pulsars had lower luminosities. By realizing that 

Vtrans oc proper motion x distance and that Luminosity oc distance^, Dewey &: 

Cordes (1987) argued that this trend was not a bias, but a consequence of distance 

errors. This effect is illustrated in Figure 4.2. Distance errors also explain the 

trend upon which Iben &c Tutukov (1996) base their selection bias (see Fig. 4.3). 

Therefore, we do not make any correction for this effect. 

Using Monte-Carlo statistics, we compare our simulated pulsar population to 

the radio pulsar sample, constrained by our age {tage < 3 x 10® y) and distance 

{Daun < 5 kpc) limits. For each kick distribution, we calculate a pulsar velocity 

distribution. We assume that the simulated pulsax velocity distribution does not fit 

the radio-pulsar sample only if the probability that the two data sets are not from 

the same population is 99% or greater. 

4.2.5. O/B runaway stars 

0/B runaway stars are 0 or B stars that have somehow been ejected into the 

galactic halo. One proposed mechanism for O/B runaway stars is ejection during a 

supernova event (Blaauw 1961). However, this mechanism requires that the O/B 

runaway stars remain bound to the newly-formed neutron star (Leonard 1990, 

Leonard &: Dewey 1992) and the current observational evidence suggests that these 

O/B stars are not in close binaries (Gies & Bolton 1986, Sayer, Nice & Kaspi 

1996, Philp et al. 1996). An alternate formation mechanism for these objects is 

dynamical ejection in cluster environments (Leonard 1995) and this mechanism 
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may well explain most 0/B runaway stars. Without knowing the contribution the 

supernova ejection scenario of 0/B runaway star formation, we can not use it to 

constrain the neutron-star kick distribution. 

4.3. Galactic and Globular Cluster Potentials 

To obtain the galactic velocity distribution of pulsars, we must place our evolved 

systems into a galactic or a globular cluster model. This allows us to directly 

compare the observed pulsar velocities with our simulated velocities. In addition, 

the escape fraction of neutron stars can be determined, and this is crucial in the 

case of globular clusters. In this section, we briefly describe our models for the 

galactic and globular cluster potentials. 

4.3.1. Galactic Models 

We use the galactic potential of Miyamoto and Nagai (1975) 

" (/?2 + [a + (22!,.f^)i/2]2)i/2 (^0) 

where R is the distance from the galactic center in the plane of the disk, z is the 

distance off the disk and G is the gravitational constant. We use fits by Miyamoto 

and Nagai for a and b (a = 7.258kpc and b = 0.520kpc). We normalize Mgai by 

insuring that the rotational velocity of the sun at 8.5 kpc is 225 km s~^ 

We distribute our initial binary systems randomly following the 0/B disk 

population (Mihalas & Binney 1968) with a disk scale length of 3.5 kpc and a scale 

height out of galactic plane of 60 pc with a cutoff at 300 pc. The motion of each 

system consists of a component from the galactic rotation and a randomly oriented 

velocity due to binary and kick effects. The galactic rotation itself plays a very 
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small role in the pulsar velocity distribution 5% change in the mean transverse 

pulsar velocities). Including the galactic potential in our calculations leads to 

significant changes (up to 40%) in the pulsar velocities and can not be ignored. 

4.3.2. Globular Clusters 

The large population of neutron stars observed in globular clusters requires that 

a sizable fraction (> 1 — 10%) of their neutron stars remain bound to the cluster 

(Bhattacharya k van den Heuvel 1991). If they form primarily from core-collapse 

supernova in situ, then the retention fraction places useful constraints upon the 

neutron-star kick distribution. An alternate formation mechanism in globular 

clusters involves the accretion-induced collapse of white dwarfs (e.g. Bailyn & 

Grindlay 1990). The role AICs play in globular clusters is restricted, just as with 

LMXBs, by the nucleosynthetic 5delds predicted by Woosley & Baron (1992) and 

Fryer et al. (1996). Bailyn & Grindlay (1990) estimate an AIC rate close to 10"'* 

y~^ to explain the neutron stars in globular clusters, aji order of magnitude higher 

than the upper limit given by Fryer et al. (1996). It is therefore unlikely that AICs 

make up more than about 10% of the neutron stars in globular clusters. 

However, if neutron stars created through core-collapse explosions do indeed 

receive large kicks, Dnikier (1995) has shown that the retention fraction of these 

neutron stars can be quite low 1% of the neutron stars formed). We use the 

retention fractions versus kick velocity derived by Dnikier (1995) to determine the 

retention fractions of neutron stars (both bound and unbound systems) for all of 

our kick distributions. Drukier uses both Fokker-Planck and Mitchie-King models 

to simulate the range of globular cluster retention fractions and includes specific 

models for NGC 6397 and u Cen. Our limit for a satisfactory neutron-star kick 

distribution requires that 1% of the neutron stars formed in NGC 6397 remain 
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bound. We caculate the entire range of retention fractions derived using the 

Drulder models. 

4.4. Simulations 

To determine the birthrate of each neutron star system, we first calculate the 

number of systems formed per supernova. This is the first term in equation (67). 

To calculate this term, we have created a Monte-Carlo population synthesis code 

which chooses from a range of initial conditions and then evolves the binary system 

through one, and if the secondary mass is suflSciently high, a second explosion. A 

variety of uncertainties and "free-parameters" (both in the initial conditions and in 

the subsequent orbital evolution) results in a broad range of birthrates. Therefore, 

to attack the problem of neutron star kicks, we must explore the realistic range 

in these rates. In this section, we present the results of an intensive study of the 

effects of the initial conditions and free parameters on the production rates of 

LMXBs, HMXBs and DNSs, and on the radio pulsar velocity distribution. The 

results for the different populations is summarized in Figure 4.4. Although the 

birthrates for these systems can change by over an order of magnitude as we vary 

the parameters, if the kick is suflSciently strong, it will dominate the pulsar velocity 

distribution (Figure 4.5). 

4.4.1. Initial Conditions 

Four parameters are required to describe a binary system. These are the masses of 

the two stars, Mp,o and Mc,o, the orbital separation, Ao, and the initial eccentricity, 

eo- Unfortimately, for massive binaries observational data only moderately 

constrains these parameters (Habets 1985). Therefore, we are forced to consider a 
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wide range of initial conditions and to use the neutron star binary production rates 

themselves to limit the initial conditions. 

Mass Ratios and the Initial Mass Function 

In our simulations, we determine the initial mass of the primary by sampling 

an Initial Mass Function (IMF): 

a M-f'*". (71) 

We retain aiMP as a free parameter, but must choose a minimum and a maximum 

neutron star forming primary mass. Table 4.1 lists the range in results for the 

various binary populations as a function of and Table 4.1 gives the range for 

various limits on the primary mass. The results are shown for several delta-function 

kicks to give some indication of the strength of these effects at different kick 

velocities. For most of our simulations, we will use ck/MF = 2.7 (Scalo 1986) and 

primary mass limits of 10 and 40Mq. 

The companion mass distribution is much more difficult to determine. The 

standard technique prescribes a mass ratio (g = ^) distribution P{q) by 

P{q) oc (72) 

Observational data for massive star binaries is limited and the effects of selection 

biases can be extreme. Garmany, Conti, and Massey (1980) claim a strong, 

bias-corrected, peak at q = I. This led DS95 to choose Qmr = —1 for the bulk 

of their simulations. However, by accurately accounting for the selection biases, 

Hogeveen (1991) found that the Garmany et ai results vastly underestimate the 

number of low-mass companions. Hogeveen favors a mass ratio distribution which 
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is peaked at low q values with umr = 2.7 which flattens to umr = 0 below some 

critical q = qo. We use a range of values for and go- In Table 4.1, we see that 

low values of a^R such as those given by Garmany, Conti, and Massey (1980) lead 

to a maximum in the DNS production rate. However, the higher value of aMR 

claimed by Hogeveen (1991) is required to explain the production rate of LMXBs. 

For most of our simulations we use the high a^R = 2.7 value, and vary only the 

critical value go-

The binary fraction depends upon the choice for the mass ratio distribution 

parameters. For a^R = 2.7 and qo = 0.35, Hogeveen (1991) gives a binary fraction 

of 35%. For omr = 2.7 and qo = 0.15, this value increases to ~ 65%. For the mass 

ratio distributions derived by the Garmany, Conti, Sc Massey (1980), we use their 

calculated binary fraction of 43%. 

The distribution of initial eccentricities and separations is also not well known 

for massive systems. For orbital separation, we assume with Kraicheva et al. (1979) 

that 

We use an inner separation of twice the initial primary radius and a range of outer 

separations (10^"®/?©). For eccentricity, we choose two distributions: 

Orbital Parameters 

p{aq) oc i/^iq. (73) 

P(eo) =5(eo) (74) 

and 

P{eo) = 1. (75) 
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For most of our simulations, we use an outer separation of 10"*i?© and the 

eccentricity distribution from eq. (74). As can be seen in Table 4.1, the choice of 

these has very little effect upon the neutron star system production rates. 

4.4.2. Stellar Models and Binary Evolution 

We base our binary evolution calculations on stellar models of single stars, to 

which we add the effects of binary systems. For stellar radii and masses at different 

evolutionary periods, we use the fits from KW96 of the massive stellar models of 

Schaller et al. (1992) and the helium star models of Habets (1985) and Woosley, 

Langer, & Weaver (1995). Although many aspects of binary evolution are not well 

understood, the uncertainties have, either rightly or wrongly, been lumped into a 

few categories. Chief among these are mass transfer, common envelope evolution, 

and stellar winds. 

When the primary star overfills its Roche Lobe, mass transfer begins. For 

binary systems with mass ratio q < 0.4, we assume that there is no stable mass 

transfer (Webbink 1979; Yungelson k Tutukov 1991; van den Heuvel 1983) and 

that the system immediately goes into a common envelope. For systems with less 

extreme mass ratios, we assume, as did DS95, that the mass transfer is initially 

stable. When the two stars attain equal masses, it is assumed that the mass 

transfer is no longer stable and a common envelope phase begins. 

For stable mass transfer, we follow the prescription of van den Heuvel (1995): 

AM, = -AMp X (1 - ftrans) (76) 

where AM,, AMp are the change in mass of the secondary and primary star, 

respectively, and ftrans is the fraction of mass lost from the primary which does 

not accrete onto the secondary and is removed from the system. Table 4.2 depicts 
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the effects of the variation of ftrana between 0.1 and 0.9 and shows that the results 

depend only slightly on ftrans- Therefore, for most of the simulations, we use 

ftrans = 0-5. During this phase, the loss of orbital angular momentum is determined 

by the pajameterization of de Loore & De Greve (1992): 

where Jorb and Mtot are the pre-overflow values. The value of the parameter 7 is 

poorly constrained. However, as seen in Table 4.2, uncertainty in 7 has very little 

effect on the results. For most of the simulations, we use 7 = 2.1 as estimated by 

De Greve et al. (1985). 

For common envelope evolution, we assume that no mass is gained by the 

secondary star and that the primary loses its hydrogen envelope. For the ratio of 

post-common envelope to pre-common envelope binary separation, we use Webbink 

(1984): 
_ O^CETLiQ f Mffe \ 

A- 2 \{Mp-MH,) + '^acErL^Mj' ^ ' 

where is the dimensionless Roche lobe radius of the primary (Eggleton 1983), 

0A9q-''' 
'• 0.6J-V3+ („(! + ,-1/3)-

Mfie is the mass of the primary's helium core and acs represents the efficiency with 

which orbital energy is injected into the common envelope. The fate of close binary 

systems depends strongly upon this parameter and the current set of simulations 

(Rasio & Livio 1996, Terman & Taam 1996) provides no definitive value. Indeed, 

QcE is probably a function of binary system. Iben, Tutukov, & Yungelson (1995a) 

use a slightly different equation for the post-common to pre-common ratio in which 

the efficiency parameter ctcE has a different meaning. However, as can be seen 

in Table 4.2, by choosing a higher efficiency, we increase the numbers for all the 
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binary populations. In our comparison with observation, we use our simulations 

only to provide upper limits and, to be conservative, we maximize the numbers by 

choosing a high efficiency {qce = !)• 

The theory of neutron stars in common envelopes has trajisformed in the past 

4 years. The high densities of the mediimi that surrounds the neutron star in 

the common envelope phase imply that neutrinos, rather than photons, are the 

dominant coolant. Hence, the accretion rate onto the neutron star is not limited 

by the Eddington rate (Chevalier 1993,1996; Brown 1995; Fryer et al. 1996). 

For hydrogen giants, angular momentum (Chevalier 1996) or explosions induced 

by neutrino heating (Fryer et al. 1996) may restrict the accretion and allow the 

neutron star to survive this phase. However, in the denser environments of helium 

star giants, angular momentum and neutrino heating will not be sufficient to 

prevent black hole formation. In our simulations, we assume that neutron stars 

survive hydrogen-giant common envelope phases, but not helium-giant common 

envelope phases. 

Mass loss due to stellar winds has a direct effect on stellar mass which, in turn, 

has a strong effect upon the stellar radius. For both the models of Schaller et al. 

(1992) and those of Woosley, Langer &: Weaver (1995), we parameterize the wind 

mass loss with 

^M^ind = fwind X (80) 

where is the mass loss from winds predicted by Schaller et al. (1992) 

which agrees reasonably well with Woosley et al. (1995). In our simulations, 

0.0 < fwind < 1-0 (see Table 4.7), but for most of our simulations /mind is set equal 

to unity. 
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4.5. Natal Kick Distributions 

Given a kick distribution, we can use our Monte-Carlo code to derive the production 

rate of LMXBs, HMXBs, and DNSs cis well as the pulsar velocity distribution and 

the globular cluster retention fraction. We stress that for all of the neutron-star 

populations, we overestimate the production rate. The ratio of our simulated rates 

to the actual rates may well be greater than ten (see §4.2). Similarly, our globular 

cluster retention fractions are upper limits. Recall that we normalize the simulated 

LMXB luminosity with the estimate of KW96 {Lx,tot = 1-7 x 10^®), the HMXB 

population by the lower limit of Meurs & van den Heuvel (1989) {N = 28 for 

Lx > 10^® ergs"^), our DNS formation rate by 10~®y~^ (van den Heuvel 1995), and 

our derived retention fraction by 1% for the globular cluster NGC 6397 (Drukier 

1995). 

In sections 4.5.1 and 4.5.2, we present these ratios for a series of neutron-star 

kick distributions. Since we are calculating upper limits, we require that all ratios 

be greater than unity for a successful kick distribution. We use the results from 

§4.4 to create the best fit within the range of the many free binary-evolution 

parameters. Unless otherwise noted, we use the standard set of assumptions 

described in §4.4: ajMp = 2.7, mass limits = 10, 40Mq, a^R = 2.7, go = 0.35, 

P{Aq) oc 1/Aq, P(eo) = 1.0, ftrans = 0.5, 7 = 2.1, acE = 1, and = 1.0. 

In §4.5.2, we use the results from our series of 5-function distributions to 

derive the neutron-star kick distribution which best fits all of the observations. 

We find that double-peaked kick distributions are best suited to explain both the 

pulsar velocity data and the binary system formation rates and we study these 

distributions in more detail. Our results depend most significantly on the distance 

measurements and we include a brief discussion of the distance errors on our 
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conclusions. 

4.5.1. Maxwellian and Flat Distributions 

We ran a series of simulations with Maxwellian kick distributions for a variety 

of Figure 4.6 summarizes the results of these simulations, using the 

standard input parameters. Table 4.3 gives the total number of bound neutron 

stars given the globular cluster models by Drukier (1995), along with the specific 

results for NGC 6397 and uj Cen. The large kick velocities are required to explain 

the pulsar velocity distribution. Over 20% of the observed pulsars have transverse 

velocities greater than 500 km s~^ Even without the effects of the galactic 

potential, high kick velocities are required to match the observations (Figure 4.7). 

We ran an alternate simulation using qa = 0.15 and the mass limits = 10, IOOMQ. 

The lower value for increases the number of LMXBs, while the higher mass limit 

allows more very massive stars to contribute to the HMXB and DNS populations. 

The results are summarized in Figure 4.8 and Table 4.4 and can be directly 

compared to Figure 4.6 and Table 4.3. For this simulation, we set the binary 

parameters to maximize the production rate of the neutron-star populations. 

Nevertheless, we see in Figure 4.8 that there is no acceptable solution. Keeping in 

mind that all of our ratios are upper limits, we conclude that it is impossible to fit 

the data with a Maxwellian kick. 

Similarly, we ran a series of simulations with flat kick distributions ranging 

from a magnitude of 0 km s~^ to a maximum of Vmax- For these simulations, we 

used go = 0.15 and the standard parameter set. We see in Figure 4.9 and Table 4.5 

that the fit is worse for this kick distribution than for a Maxwellian. Again, we 

conclude that it is impossible to fit the data with a flat kick distribution. 
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4.5.2. Delta Function and Bimodal Distributions 

We repeated this set of simulations once again for delta function kick distributions. 

Figiure 4.10 shows that we can find a delta function kick distribution that is not 

inconsistent with the observed pulsar velocity distribution. However, the delta 

function kick distribution fails to explain our entire data set, especially the globular 

cluster retention fraction (Table 4.6). Note also in Figure 4.10 that the best fit to 

the pulsar data gives a kick distribution with a mean near 500-600 km s~^, higher 

than the mean pulsar velocity calculated by Lyne & Lorimer (1994). The effects of 

binary evolution and the galactic potential lower the mean neutron-star velocity 

after its initial kick. As mentioned in §4.3, the galactic potential can alter the 

pulsar velocities by up to 40% for a given kick distribution. 

Next, we use the results of the delta function simulations to determine the 

optimal kick distribution. We can approximate an arbitrary kick distribution as 

a weighted sum of delta functions of different kick magnitudes. For this study, 

we employ as constraints the LMXB, HMXB and DNS populations, as well as 

the globular cluster retention fractions. We bin the observed pulsar velocity 

distribution into 5 bins with roughly equal numbers in each bin. We bin the 

velocity distributions for each delta function simulation in a similar manner. 

We calculate the kick distributions which satisfy the four population constraints 

(requiring that the formation rates exceed the minimum values we calculated in 

§4.2). For the pulsar velocity bins, we calculate residuals. In our calcualations, 

we use the velocity distributions from 7 delta function kicks ranging from 0 to 

600 km s~^ The residuals do not improve significantly by including velocity 

distributions from additional delta function kick amplitudes, so we we use only 

these 7 unknowns to explain our 9 constraints: three binary systems, the globular 
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cluster retention fraction, and five pulsar velocity bins. The solid curve in Figure 

4.11 is our best fit to the entire data set. Varying the binning of the pulsar velocities 

does not change the qualitative and quantitative results noticeably. Notice that 

the best fit has a roughly double-peaked profile. The high-velocity peak is required 

to explain the pulsar velocities and the low-velocity peak is required to form the 

binary systems. 

To determine the prevalence of this double-peaked profile, we fill the 

intervening velocity bins and calculate the resulting residuals. We note that the 

best-fitting distributions retain the double-peaked profile, but the residuals 

increase dramatically as we force the distribution to fill the middle velocity bins, 

strongly supporting our claim that the neutron star kick velocity distribution is 

double-peaked (see Figure 4.11). 

To ascertain the effect of the uncertainties in the radio pulsar distances, and 

hence their velocities, we have repeated these calculations for a set of velocity 

distributions in which we have axtifically scaled down the observed velocities. If 

the distances are overestimated by some value, then the velocities will also be 

overestimated by this amount. By scaling down these velocities, we gain insight 

into the effect of overestimating the distances. Figure 4.12 shows the best-fitting 

distributions using a range of distance scale factors. The residuals normalized 

by the best-fitting kick distribution are plotted in Figure 4.13. The double peaked 

profile disappears if we scale down the distances by just 25%. 

We validate this double-peaked profile by repeating the process used on the 

previous kick distributions and verify that a double-peaked profile does indeed 

satisfy the constraints of the data. For these simulations, we use go = 0.15 and the 

standard parameter set. The first series of simulations uses two 5-function kick 
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amplitudes. 30% of the pulsars are given a kick of 0 km s~^ and the remaining 70% 

are given a non-zero kick. We range this velocity from 500 — 950 km Note 

in Figure 4.14 that over this series of simulations, the kick distributions satisfy 

our minimum requirements for an allowed kick distribution. A second series of 

simulations using a kick distribution where 30% of the pulsars are given a kick 

of 0 km s~^ and the remaining 70% have a flat distribution with a mean of 625 

km s~^ and a range in thickness (Figure 4.15). In both cases, the range of bound 

neutron stars in globular clusters is stable (28%-30%) corresponding to 2800 and 

1000 neutron stars retained in NGC 6397 and w Cen respectively. 

4.6. Conclusions 

We have created a Monte-Carlo code which simulates the binary evolution of 

massive stellar systems and includes HMXB, LMXB, DNS, and radio pulsar phases. 

This code also follows the motions of these systems in the galactic potential. In 

addition, we calculate the retention fraction of neutron star systems in globular 

clusters. For this paper, we restricted our attention to the consequences of intrinsic 

kicks given to neutron stars, perhaps at birth. First and foremost, a neutron star 

kick with a mean magnitude above 400 km s~^ is required to explain the pulsar 

velocity data for all the kick distributions we study. By considering the radio pulsar 

observations alone, we can not constrain the kick distribution, beyond simply 

requiring a kick. However, if we include the constraints placed upon the kick 

distribution from the binary populations and the globular cluster retention fraction, 

we can rule out many of the kick distributions appearing in the literature, including 

Maxwellian, flat, and 5-fvinction distributions (KW96, Brandt & Podsiadlowski 

1995). Distributions which fit all of these constraints do exist, all of which are 
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double-peaked. To explain the many binary populations, we derive that roughly 

30% of the neutron stars receive almost no kick. To explain the radio-pulsar 

velocity distribution, the remaining ~70% receive a large kick (600 — 700 km s~^). 

It is worth noting that Narayan & Ostriker (1990) also required two populations of 

pulsars. 

Of course, there are many caveats to these conclusions. Our results depend 

sensitively upon the pulsar velocity distribution. If the pulsar distances and hence, 

the velocities, are systematically lower by 25%, a bimodal distribution is no longer 

necessary to explain the observations. However, it would require an extensive 

revision in the velocities to render some sort of neutron star kick unnecessary. 

Also, we rely heavily on the reasonableness of binary population-synthesis models. 

Although we have studied the effects of many parameters and have calculated 

upper limits for all of our production rates, we can not eliminate the possibility 

that alternate models can explain the data. For instance, Iben & Tutukov (1996) 

explain the pulsar velocity distribution using the old distance model with no kick 

whatsoever by allowing only the fastest neutron stars formed in binary evolution to 

become radio pulsars. Scrutiny of Figure 4.7 reveals that this is not possible unless 

we remove mass loss from winds. Even so, we require that only the fastest 1% of the 

neutron stars are observed as pulsars to explain the pulsar velocities from the old 

distance model. For the new distance model, this percentage becomes prohibitively 

small. We incorporate the effects of a wide range in binary parameters, so that 

unless the understanding of binary population synthesis is drastically altered 

(winds, common envelope evolution, etc.), our basic conclusions still hold. Our 

results agree with the models of KW96 and DS95. 

This bimodal kick distribution has direct implications for a variety of objects 
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whose evolution may involve a neutron star. To meet the isotropy requirements for 

gamma-ray bursts using accreting neutron stars in a galactic model, Podsiadlowski, 

Rees, & Ruderman (1995) require neutron star kicks upwards of 600 — 700 km 

s~^. Our bimodal kick distribution results in ~70% of the neutron star population 

with these velocities (Figure 4.16). The bimodal distribution provides a natural 

breaJc between the low-velocity neutron stars, which burst, and the high-velocity 

neutron stars which make up the gamma-ray burst population in the galactic model 

(Leonard & Colgate 1994). 

Our kick distribution can also be applied to explain 0/B runaway stars. 

Although 0/B runaway stars are not observed to be in close binaries, the 

observations do not preclude wide binary systems. (Gies & Bolton 1986, Sayer, 

Nice & Kaspi 1996, Philp et al. 1996). Figure 4.17 plots the distribution of 

velocities of 0/B stars, both bound and unbound, assuming no neutron star kick. 

The unbound 0/B stars are all moving slower than 50 km s~^ The bound systems 

have significantly higher velocities, but very few 0/B stars have velocities greater 

than 100 km s~^ However, using our bimodal kick distribution, we see that 

unbound 0/B stars can achieve velocities in excess of 200 km s~^ 

This bimodai distribution poses an additional problem for kick mechanisms. 

Not only must a kick mechanism produce neutron stars with velocities greater than 

500 km s~^, but the mechanism must be ineffective for a subset of the neutron star 

population. 

Our simulations give us a wealth of data on the characteristics of neutron star 

systmes. The orbital characteristics of the binary systems formed using a variety 

of kick distributions may also provide insight into this distribution. For instance, 

wide orbit LMXBs (KW96) and close period DNSs may further constrain the kick 
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distribution. We have not yet explored variations in the galactic potential and 

the scale-height distributions of the various neutron star systems. With improved 

distances and with an increasing sample of radio pulsars, we hope to apply this 

technique not just to constrain the neutron star kick and binary evolution, but also 

the galactic potential. 
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Table 4.1. Parameters: Initial Conditions^ 

LMXB HMXB DNS 
10^® erg s~^ N with Lx > 10^® erg s~^ Rate (10~®y~^) 

Vkick = Qkms-^ 

"standard" 2.80 92.7 45.2 
aiMF = 2.1 2.62 142.4 62.7 
Mmin,max =s,i0 1.36 65.8 26.0 
A^iin maa: = 10,100 1.68 47.7 36.1 
auR = l-O'' 0.227 60.9 200. 
c^UR = 0.0'' 2.41 82.6 135. 
aMH = -2.7,go =0.15'= 11.1 152.1 26.8 
P(e)=5(e) 2.91 71.2 54.6 
Umax = 10® 1.26 48.2 73.4 

Vkick = 200A:ms~^ 

"standard" 4.16 40.3 1.15 
ocimf = 2.1 4.47 53.3 1.42 
Mmin,max = 8A0 2.81 35.5 0.641 
Mminmax = 10,100 2.56 29.4 0.820 
aMR = 1.0 0.420 35.1 3.56 
aMfl = 0.0 3.07 42.3 2.49 
Q!mr =-2.7, go =-15 19.3 100.5 0.751 

32.8 1.11 P(e) = 6{e)  5.12 
p ^ ino 1 71 Rmax = 10® 1.71 21.8 0.547 

Vkick = 400A:ms~^ 

"standard" 1.68 13.0 0.474 
aiMF = 2.1 1.98 16.9 0.656 
Mmin,max = 8A0 1-24 10.7 0.289 

= 10,100 0.937 10.5 0.384 
dMR = 1-0 0.159 10.6 1.85 
oa/R =-2.7,90 = 0.35 1.68 13.0 0.474 
aAfR =-2.7,90 = -15 6.95 29.8 0.437 
P(e) = S{e] 1.96 10.7 0.491 
Rmax = 10^ 0.660 7.51 0.265 

^ For these simulations, we use a "standard" set of parameters: arMF = 2.7, mass limits 
= 10,40Mo, aMR = 2.7, go = 0.35, P{Ao) oc 1/Ao, •P(eo) = 1.0, ftrana = 0.5, 7 = 2.1, acB = 1, 
and fwind = 1.0. We have combined the simulations with a SN rate= O.Olj/"^ and a binary 
fraction determined by the choice of mass ratio (unless otherwise stated, we use 0.35). We use 
the technique in §4.2 to determine each population. 

For aMR = 1.0,0.0, we assiraie a binary frziction of 0.43. 

For aMR = 1.0,0.0, we assume a binary fraction of 0.65. 
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Table 4.2. Parameters: Orbital^ 

LMXB HMXB 
10^® erg s~^ N with Lx > 10^® erg 

DNS 
Rate (10~®y~^) 

^kick — OICTTIS 
"standard" 2.80 
ftrans =0.1 2.47 
ftrans = 0.9 2.39 
occE — 0-2 ^ 0.028 
QcE = 2.0 4.94 
fwind ~ 0 1.75 
7 = 1.5 2.48 

ykick = 200A:7n5~^ 

"standard" 4.16 
ftrans = 0.1 4.06 
ftrans = 0.9 4.43 
OLcE — 0-2 ^ 0.028 

occ£ = 2.0 11.4 
fwind = 0 24.2 
7 = 1.5 4.71 

^kick = 400/:ms~^ 

"standard" 1.68 
ftrans = 0.1 1.54 
ftrans = 0.9 1.71 
OicE ~ 0.2 ^ 0.028 

otcE ~ 2.0 3.7 
fwind — 0 13.3 
7 = 1.5 1.45 

92.7 
60.3 
61.9 
4.82 

181.5 
89.7 
238.2 

40.3 
23.3 
32.0 
2.28 
71.7 
65.0 
85.9 

13.0 
6.94 
9.93 
0.839 
20.4 
21.3 
29.3 

45.2 
45.0 
36.0 
45.2 
45.3 
39.2 
36.3 

1.15 
2.00 
0.955 

0.0232 
2.13 
6.01 
1.38 

0.474 
0.854 
0.513 

0.00664 
0.927 
2.43 
0.577 

^For these simulations, we use a "standard" set of parameters: olimf = 2.7, mass 

limits = 10,40Mo, olmr = 2.7, go = 0.35, P{Aq) oc 1/Aq, P(eo) = 1.0, ftrans = 0.5, 

7 = 2.1, acE = a^d f^ind = 1-0. We have combined the simulations with a SN 

rate= O.Olj/"^ and a binary fraction determined by the choice of mass ratio (unless 

otherwise stated, we use 0.35). We use the technique in §4.2 to determine each 

population. 
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Table 4.3. NS Retention: Maxwellian Kick Distribution^ 

(yL.)'" Range in RF'' RF NS retained RF NS retained 
(km 8 ^) NGC6397 u Cen 

0.0 91.6- 99.9% 98% 9.5 X 10^ 99.1% 3.5 X 103 

50.0 4.71 - 49.0% 15.4% 1.5 X 10^ 29.2% 1.0 X 10^ 
100.0 1.91 - 38.3% 5.30% 5.1 X 102 11.1% 3.9 X 102 

150.0 1.19- 37.5% 2.95% 2.9 X 10^ 5.83% 2.0 X 102 
200.0 0.88- 18.9% 2.06% 2.0 X 102 3.88% 1.4 X 102 
250.0 0.70- 13.6% 1.60% 1.6 X 10^ 2.89% 1.0 X 102 
300.0 0.57- 10.2% 1.27% 1.2 X 102 2.26% 79 
350.0 0.49-•8.1% 1.08% 1.0 X 10^ 1.90% 67 
400.0 0.42 -•6.6% 0.93% 90 1.63% 57 
450.0 0.38-• 5.5% 0.83% 81 1.42% 49 
500.0 0.34-•4.7% 0.74% 72 1.28% 46 
550.0 0.31 -• 4.1% 0.66% 64 1.12% 37 
600.0 0.29-•3.6% 0.61% 59 1.02% 35 

^Standard Parameters: ctrMF = 2.7, mass limits = 10,40Mo, a^R = 2.7, 

qo = 0.35, PiAo) oc \/Aq, P(eo) = 1.0, ftrans = 0.5, 7 = 2.1, acs = 1, and 

fwind = 1.0. 

''The range in retention fractions (RF) is determined using the Fokker-Planck 

models of Dnikier (1995). 
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Table 4.4. NS Retention: Maxwellian Kick Distribution^ 

Range in RF RF NS retained RF NS retainec 
(kins NGC6397 (jj Gen 

0.0 89.0- 99.7% 95% 9.2 X 10^ 97% 3.4 X 10^ 
50.0 3.96- 70.4% 18.4% 1.8 X 10^ 39.6% 1.4 X 10^ 
100.0 1.25- 54.7% 4.8% 4.7 X 102 12.7% 4.4 X 10^ 
150.0 0.70- 37.5% 2.25% 2.2 X 10^ 5.65% 2.0 X 102 
200.0 0.50- 25.0% 1.41% 1.4 X 10^ 3.26% 1.2 X 10^ 
250.0 0.41- 17.0% 1.04% 1.0 x 10^ 2.21% 77 
300.0 0.31- 12.1% 0.77% 75 1.59% 56 
350.0 0.28-•8.9% 0.67% 65 1.3% 46 
400.0 0.23-• 6.9% 0.55% 53 1.1% 37 
450.0 0.21-• 5.4% 0.47% 46 0.89% 31 
500.0 0.19-• 4.4% 0.44% 43 0.80% 28 
550.0 0.18-• 3.7% 0.39% 38 0.69% 24 
600.0 0.17-• 2.4% 0.34% 33 0.61% 21 

^same as table 3, go = 0.15. 
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Table 4.5. NS Retention: Flat Kick Distribution^ 

MeanVelodty Range in RF'' RF NS retained RF NS retained 
(km s-^) NGC6397 a; Cen 

50.0 9.44 - 69.9% 20.1% 1.9 X 10^ 33.3% 1.2 X 10' 
150.0 3.13 - 32.1% 6.66% 646 11.0% 385 
200.0 2.35 - 24.1% 5.00% 485 8.28% 290 
250.0 1.88 -19.2% 3.99% 387 6.62% 232 
300.0 1.56 - 16.0% 3.33% 323 5.52% 193 
350.0 1.34 -13.7% 2.85% 276 4.73% 166 

^Parameters: cximf = 2.7, mass limits = 10,40^©, a^R = 2.7, qq = 0.15, 

P{Ao) cc 1/Ao, F(eo) = 5(eo), ftrans = 0.5, 7 = 2.1, qce = 1, and fy,ind = 1-0. 

''The range in retention fractions (RF) is determined using the Fokker-Planck 

models of Drukier (1995). 
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Table 4.6. NS Retention: 5-Function Kick Distribution^ 

Velocity Range in RF'' RF NS retained RF NS retained 
(km s~^) 

Range in RF'' 
NGC6397 (jj Cen 

0.0 89.5 - 99.9% 97.1% 9.4 X 103 98.7% 3.5 X 103 

50.0 0.19 - 96.8% 3.62% 3.5 X 10^ 42.5% 1.5 X 103 

100.0 .011 - 67.3% 0.077% 7 0.398% 13.9 

150.0 4.2 X 10-3 - 36.6% 0.033% 3 0.127% 4 

200.0 2.8 X 10-3 - 11.8% 0.028% 3 0.078% 3 

250.0 1.2 X 10-3 - 1.39% 0.016% 2 0.045% 2 

300.0 5.1 X 10-^ - 0.43% 7.6 X 10-3% 1 0.025% 1 

350.0 2.2 X 10-5 - 0.30% 5.5 X 10-3% 1 0.021% 1 

400.0 1.7 X 10"® - 0.21% 2.1 X 10-3% 0 0.011% 0 

450.0 0.0 - 0.16% 1.0 X 10-3% 0 7.9 X 10-3% 0 

500.0 0.0 - 0.11% 7.1 X 10-''% 0 4.7 X 10-3% 0 

550.0 0.0 - 0.080% 1.7 X 10"''% 0 2.3 X 10-3% 0 

600.0 0.0 - 0.062% 7.9 X 10-®% 0 1.4 X 10-3% 0 

650.0 0.0 - 0.023% 5.1 X 10-®% 0 2.5 X 10-''% 0 

^Standard Parameters: aiMF = 2.7, mass limits = 10,40Mo, umr = 2.7, qo = 0.35, 

P(>lo) oc 1/Aq, P(eo) = 1.0, ftrans = 0.5, 7 = 2.1, acE = 1, and = 1.0. 

''The range in retention fractions (RF) is determined using the Fokker-Planck models 

of Dnikier (1995). 
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Figure 4.1 The observed transverse velocities of radio pulsars versus their distances 

D from the Sun (Harrison et al. 1993). The open triangles denote the 44 pulsars 

with proper motions determined by Harrison et al. and the filled hexagons are the 

43 additional pul
1
sars with proper motions calculated by other techniques. 
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Figure 4.2 Luminosity versus velocity for a simulated sample (no biases) without 

distance errors on the left and with distance errors on the right. The pulsars in the 

simulated sample are evenly chosen in velocity/luminosity space with no intrinsic 

biases. We assume the distance errors are Gaussian with a magnitude of 20% 

distance. The faster pulsars appear to be more luminous. 
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Figure 4.3 The same as Figure 2, except velocity is plotted versus distance. Note 

that with distance errors, another fictitious bias appears with the nearby pulsars 

tending to have slower velocities. 



167 

T I I 

* 0 + • ~ 0 

* 100 ~ • 100 f-. + i t § 10 -
0 0 

• I I 
-- • 7 • + 0 

I i ~ ~ :>... 
rtJ 0 co + 1-. 

~ 
I 

bD 

~ 
Q) 0 

1-. 

= 
Q) ...0 10 ~ 10 

Cl 8 9 C'J 0 ;::::1 Q) 

0 ~ 0 

' 
z +-) * + (lj 

1-. e li?l. IIl ..c: 0 
J X +-) 

1 ::E 1-. - ~- + @ 0 * IIl :r:: * X 0 

::E 0 \/) 0 
.....:l z • 0 

1 Cl 1 X 

* 0 + t 0 
0 

I 
0 6 

0 

0.1 I I I 0.1 0.1 
0 200 400 0 200 400 0 200 400 

Velocity (krn/s) Velocity (krn/s) Velocity (krn/s) 

Figure 4.4 The dependence of the various neutron-star binaries with respect to the 

various initial binary and evolutionay parameters and velocity. The filled circles 

correspond to the two standard parameter set that we use with q0 = 0.35, 0.15. The 

open symbols correspond to the initial binary parameters (§4.4.1) and the skeletal 
j 

symbols correspond to the binary evolution parameters (§4.4.2). 
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Velocity (km S"')  

Figure 4.5 The velocity distribution of pulsars for a range of initial and binary-

evolution parameters with a (5-function kick of 200 km/s. The binary parameters 

affect only a small number of the pulsars. The typical pulsar velocity is unchanged 

by even extreme changes in the binary parameters. The largest differences come 

from assuming that there is no mass lost from winds. 
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Figure 4.6 The simulated populations normalized by the observations versus the 

root-mean-square velocity for a Maxwellian Distribution. For the pulsars, we plot 

(99.99 — P) where P is the percentage probability that the simulated velocity 

distribution and the observed velocity distribution are not from the same parent 

population. We use our standard set of binary parameters. A "successful" solution 

is one for which all the normalized numbers are greater than unity simulataneously. 
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Figure 4.7 Fraction of Neutron Stars with a velocity greater than a given velocity 

versus that velocity for the series of Maxwellian kick distributions. A zero kick 

simulation with no mass loss from winds is included to give the maximum effects 

from the binary parameters. 
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Figure 4.8 The same as Fig. 6, but with qo = 0.15 and M/,„=10,100Mo. 
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Figure 4.9 The same as Fig. 6, but for flat distributions with qo = 0.15. 
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Figure 4.10 The same as Fig. 6, but for ^-function kicks. 
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Figure 4.11 Kick distributions with fraction of neutron stars versus velocity bin. 

The solid line denotes the best-fitting overall kick profile. The remaining curves are 

constrained by requiring that the middle range of velocities be non-zero to varying 

degrees. 
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Figure 4.12 Same as Figure 11, but with the best-fitting overall profiles for a range 

of distance scale factors. 
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Figure 4.13 residuals versus the degree to which the middle velocities are filled, 

normalized by the residuals from the best-fitting overall distribution. The curves 

represent a range of scale factors for the distance. 
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Figure 4.14 Same as Fig 6. with a double-peaked (5-function distribution: 30% at 0 

km s~^ and 70% at the value on the plot. Again, we use go = 0.15. 
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Figure 4.15 Same as Fig 6. with a double-peciked distribution: 30% at 0 km s~^ and 
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Figure 4.16 The neutron star velocity distribution for our best fitting double peaked 

distribution. 
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Figure 4.17 The velocity distribution of 0/B stars for simulations with no kick 

(solid line - bound systems, dotted line - unbound 0/B stars) and for our best 

fitting double peaked distribution (long-dashed line - bound systems, short-dashed 

line - unbound systems.) 
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CHAPTER 5 

EJECTA FROM ACCRETION INDUCED 

COLLAPSE: A COSMIC POLLUTANT 

Brief Summary 

The accretion induced collapse (AIC) of a white dwarf has been invoked to 

account for gamma-ray bursts, Type la supernovae, and a number of problematic 

neutron star populations. So far, AIC studies have focussed on determining the 

event rates from binary evolution models and little attention has been directed 

toward understanding the collapse itself. However, the formation of a neutron 

star through AIC of a white dwarf is followed by the ejection of rare neutron-rich 

isotopes. The observed abundance of these chemical elements may set a more 

reliable upper limit to the rate at which these events have taken place over the 

history of the galaxy. 

In this paper, we present a thorough study of the collapse of a massive white 

dwarf and determine the amount and composition of the ejected material. We 

discuss the importance of the input physics (equation of state, neutrino transport, 
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rotation) in determining these quantities. 

5.1. Introduction 

As an accreting white dwarf approaches the Chandrasekhar mass limit, two physical 

effects compete to determine its fate. If the central densities and temperatures 

become sufficiently high to ignite explosive nuclear burning, a thermonuclear 

explosion ensues. However, electron capture may reduce the central pressure of 

the white dwarf, causing it to collapse into a neutron star prior to the ignition of 

a thermonuclear explosion can occur. The path the white dwarf actually follows 

depends upon its initial state and the rate at which it accretes material (Nomoto 

& Kondo 1991). Combining results of binary evolution and accretion models, 

Nomoto & Kondo predict that the rate of the accretion-induced collapse of white 

dwarfs (AICs) is comparable or greater than the rate of thermonuclear explosions 

of Chandrasekhar mass white dwarfs. 

The thermonuclear explosion of white dwarfs has become the "standard" 

mechanism behind Type la supemovae (see Woosley & Weaver 1986 for a summary) 

and a large amount of effort has been devoted to imderstanding the details of this 

explosion. The accretion induced collapse of a white dwarf has garnered much less 

attention and the evolution of the collapse is much less thoroughly understood. 

This lack of attention has allowed rampant speculation about the observable 

properties of AICs and the characteristics of the neutron stars born in these events. 

Assuming some mass ejection occurs during collapse, AICs have been proposed 

as an alternate mechanism for Type la supernova (Colgate, Petschek, & Kriese 

1980) and as a source for gamma-ray bursts (Paczynski 1986, Goodman 1986, 

Goodman, Dar, & Nussinov 1987, Paczynski 1990, Dar et al. 1992). Neutron 
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stars formed through AICs have also been used to explain a variety of troublesome 

neutron star systems (see Canal, Isem, & Labay 1990 for a review). In addition, 

AICs have been proposed as an alternate channel to form millisecond pulsars in 

globular clusters and the galactic disk, circumventing the LMXB phase (Bailyn 

& Grindlay 1988, Bailyn & Grindlay 1990, Kulkami, Narayan, & Romani 1990, 

Ray & Kluzniak 1990, Ruderman 1991, Chen & Ruderman 1993, Chen & Leonard 

1993). AICs have also been invoked in several X-ray binary formation scenarios 

(Canal et al. 1990, van den Heuvel 1984) and as a formation mechanism for specific 

cases of close neutron star binaries (Ergma 1993). 

For AICs to be a viable solution for any of these objects, they must satisfy at 

least two basic requirements. First and foremost, AIC events must occur at a rate 

comparable to that predicted by the observations. This can be verified by either 

determining the progenitor systems leading to AICs and their formation rate or 

by comparing observed abundances of rare isotopes with the computed production 

rate of these elements in single AIC events. While the first approach has been the 

most widely used, it suffers from the large uncertainties associated with our current 

knowledge of binary system evolution. The second approach obviously requires a 

detailed knowledge of the dynamics of the collapse and nucleosynthetic yield of the 

ejecta (Woosley & Baron 1987, hereafter WB87). Because matter is ejected at a low 

electron fraction, the nucleosynthetic products from AICs include many anomalous 

neutron-rich isotopes (e.g. ®^Ni, ®®Zn, ®®Zn, ®^Rb, and ®®Sr) which pollute the 

interstellar medium. Comparing the observed abundance of these elements with 

the amount ejected per event, we can place constraints on the allowable rate of 

AICs in the galaxy. AICs must also have the appropriate observational signature 

to match that of the observations. This second requirement pertains most strongly 

to gamma-ray bursts and Type la supemovae. For example, to be a source for 



184 

gamma-ray bmrsts, AICs must be able to produce sufficient energy in gamma-rays 

to explain the observations. For Type la supemovae, AICs must reproduce both 

the light curves and spectra of the observed Type la supemovae. 

The previous work on AICs has identified three possible ejection mechanisms. 

Mass can be ejected by the outward moving shock launched as the collapsing 

core rebounds when reaching nuclear densities. However, simulations (Baron 

et al. 1987; Mayle & Wilson 1988, hereafter MW88; Woosley and Baron 1992, 

hereafter WB92) have shown that, just as in Type II supemovae, the bounce shock 

stalls because of energy losses due to neutrino emission and dissociation. MW88 

carried out simulations of the collapse of massive star (8 — IOMQ) OMgNe cores 

which have similar stmctures to most AIC progenitor models. They showed that 

neutrino-driven explosions akin to the ones obtained as a result of the so-called 

"delayed mechanism" in Type II supemovae could occur and lead to the ejection of 

~ O.O42iW0 on timescales ~ 200 ms. WB92 calculated the evolution of the collapse 

of a CO white dwarf and showed that ~ O.OIM© was ejected at late times (~ 2s) 

by a strong neutrino driven wind resulting from the cooling of the neutron star. In 

their calculation, the explosion itself did not result in any ejected matter, contrary 

to the results by MW88. 

Whether in the delayed explosion or in the wind, the mass ejection mechanism 

relies upon neutrino absorption, which in turn, leads the ejection of neutron-rich 

material and, hence, disastrous nucleosynthetic yields from AICs. Thus, even 

though the amount of ejecta may be quite small, its abundance of neutron-

rich nuclear products can severely contaminate the galaxy. To avoid nuclear 

contamination, one can either limit the amount of matter ejected or the rate at 

which these events occur. By calculating the amount and composition of the 
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ejecta in AIC events, we limit the event rate of AICs and place constraints on the 

evolution of binary stars. Conversely, the knowledge of the event rate can provide 

important information on the physics of core collapse, neutrino driven explosions 

and winds. 

In this paper, we have run a series of AIC simulations using the CO white 

dwarf progenitor from the WB92 model (Nomoto 1986) to determine the amount 

and composition of the ejecta. To measure the reliability of our results, we vary a 

number of parameters such as the details of the neutrino physics, the equation of 

state, and the initial rotation of the white dwarf. We discuss the models in §2 and 

summarize the results and their implications in §3. 

5.2. Models and Results 

Table 5.1 summarizes the entire set (60 in total) of simulations we have performed. 

The different simulations were run to test the sensitivity of the results to changes in 

the neutrino physics (both source and transport columns 3 and 4 of Table 5.1), the 

inclusion of relativistic effects, (run 6), the choice of the equation of state (EOS) 

(column 2), multi-dimensional effects (run 2) and initial rotation rate of the white 

dwarf (run 3). 

Most of these parameter variations lead to relatively small changes in the 

results. However, changes in the equation of state for dense matter which lead to 

significant differences in the results. We performed calculations using either the 

equation of state by Lattimer k. Swesty (1992) or Baron, Cooperstein, & Kahana 

(1985). The large differences can be appreciated by comparing density profiles (Fig. 

1) and the mass-point trajectories over the course of the simulation (Figs 2,3). 
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Below, we describe in detail the physical modules and the variations that were 

used in order to assess the sensitivity of the results. 

5.2.1. Numerical Methods 

The internal structure of the initial white dwarf is taken from WB92 (Nomoto 

1986). The density profile of our initial model is represented by the solid line 

in Figure 1. This model is then mapped into our one- and/or two-dimensional 

codes and run for 0.2s. The one-dimensional simulations were performed using 

an explicit, grid-based Lagrangian code (Benz 1991, Fryer, Benz & Herant 1996) 

with a second order Runge-Kutta integrator and typically ~ 110 zones. This 

code does not include any form of convection modeling (mixing length or other). 

The two-dimensional simulations were performed using the Smooth Particle 

Hydrodynamics (SPH) code discussed in Herant et al. (1994) with typically ~ 2300 

particles. 

5.2.2. Neutrino Physics 

To illustrate the importance of neutrinos on the composition of the ejecta, we 

compare the results of a simulation which includes the effects of neutrino physics 

(Fig. 2 - run 1) and a simulation with no such effects (Fig. 4 - run 24). By 

comparing the mass-point trajectories between these two simulations, we note that 

without the cooling effects of neutrino emission, the bounce shock does not stall and 

an explosion develops. Although the shock stalls for the simulation which includes 

the effects of neutrino physics, neutrino absorption revives the explosion, ejecting 

a comparable amount of matter. However, the net effect of neutrino absorption is 

to lower the electron fraction of the ejecta. Although the amount of material is 

roughly equal in the two simulations, the actual composition differs immensely. 
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Including neutrino physics in the simulations involves two difficulties: The 

determination and numerical representation of the processes that emit or absorb 

neutrinos and the subsequent transport of these neutrinos through matter. Our 

neutrino processes are described in Herant et al. (1994) and include many of the 

possible emission and absorption rates for the standard three neutrino species 

(electron neutrino, electron antineutrino, and the entire set of /x and T neutrinos 

and antineutrinos). 

In many Type II supernova simulations, it is often assumed that the neutrinos 

are emitted from ultra-relativistic electrons (T » \MeV). This is not always 

necessarily a good approximation. For example, a numerical representation of 

the electron/positron neutrino emission rates and luminosity has been derived by 

Takahashi, El Eid &:Hillebrandt (1977): 

A.-, = C2iS 
e+n 

i-5 

and 

Lv = C/3^ i-6 

FI{±N) ± (2 - 2A)F3(±7,)/3 + F-,(±RIW 

±(2A=' - A)Fi(±,)^= + Fa{.±Tl)P^ 

F^{±R,) ± (2 - 3A)F4(±I,)^ + "A + 6A'\ 

(81) 

'z2A±mlz3^) , /-1.12y-16A3N 

'2 + 3A-4A3' 
Fo(±77)/3 (82) 

where A^-p are the transition rates for electron and positron capture, are 
e+n 

the electron neutrino and anti-electron neutrino luminosities, C2 = 6.15 x 10"'^ 

s~^ per nucleon, C3 = 5.04 x 10~^° erg s~^ per nucleon, A = 1.531 MeV is the 

neutron-hydrogen mass difference and P = F„ are Fermi integrals of order n 

and 77 is the degeneracy parameter. 
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Adopting the ultra-relativistic limit, WB92 have simplified these equations, 

taking only the first term in each equation. To estimate the importance of this 

assumption, we have used both the limited and the fiill equations. In Table 5.1, 

the runs using the full equations are identified by the letters TEH while those 

using the ultra-relativistic assumption are marked by WB92. As can be seen from 

a careful comparison of these simulations, adopting the ultra-relativistic limit does 

not change the results appreciably in most cases. 

Despite the low cross-sections for neutrino interactions, the high densities 

involved in core-collapse scenarios place the neutrinos within the depths of the 

collapsing star in the diffusion regime. Thus, the neutrino transport must include 

both the diffusion and free-streaming limits of the transport equations. The 

"standard" approximation to couple these two extremes calls upon the use of a 

fiux-limiter (see for example, Janka 1991). We have incorporated several different 

fiux-limiters (Bowers & Wilson 1982; Levermore & Pomraning (1981); Herant et 

al. 1994) and the properties of their ejecta can be compared in column 2 of Table 

5.1. The Bowers-Wilson and Levermore-Pomraning flux limiters seem to bound 

the more accurate Monte-Carlo calculations by Janka (1991) and can be used to 

gauge the effect of the flux-limiter on the amount and composition of the ejecta. 

By comparing these two flux limiters in otherwise identical simulations (e.g. run 

8 and 12), we see that the two approximations in the neutrino diffusion lead to 

differences by factors of 4-5 in the explosion energies but only 10% differences in 

the mass ejected. 

5.2.3. Equation of State 

Uncertainties surrounding the equation of state for dense matter lead to the 

largest differences in the ejecta from AICs. We used two such equations of state: 
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the one described in Herant et al. (1994) which couples the nuclear equation of 

state by Lattimer & Swesty (1991) to a low density equation of state (Blinnikov, 

Dunina-Barkovskaya & Nadyozhin 1996) and a nuclear statistical equilibrium 

(NSE) scheme (Hix et al. 1994) (hereafter called SL EOS), and the equation of 

state developed by Baron, Cooperstein, & Kahana (1985 hereafter called BCK 

EOS), which covers both low- and high-density regimes. The BCK EOS is the 

equation of state used by WB92. For our progenitor, the effects of nuclear burning 

were minimal. We verified this by running a simulation (run 7) in which we added 

a nuclear network to our code (Benz, Hills, k Thielemann 1989). It is apparent 

that an NSE scheme is sufficient to model the effects of nuclear burning during 

AICs. 

Again, the main results of our simulations using one or the other equation of 

state are listed in Table 5.1 (see column 1 - e.g. compare runs 8 and 20). By using 

the BCK equation of state, we recover the results by WB92. However, the equation 

of state dramatically affects the amount and compositon of the ejecta in the 

simulations. Swesty, Lattimer, & Myra (1994), in a previous comparison between 

the two equations of state, report similar findings (the softer BCK equation of 

state leads to denser, and hotter, cores after bounce). These differences have been 

discussed by Swesty, Lattimer, & Mjnra who argue that, given the standard equation 

of state parameters for the BCK EOS, the SL EOS is physically more accurate. 

We have run the SL EOS using two values for the incompressibility of bulk nuclear 

matter {Kg = 180,375 MeV) and have run a grid of the faster BCK EOS varying 

the BCK gamma (1.5 < 7 < 3.5), the bulk surface coefficient (25 < < 38), the 

symmetric bulk compressibility parameter (180 MeV < < 375 Mev), and an 

asymmetry parameter (1.5 < xkz < 3.5). Table 5.2 gives the results for this grid of 

simulations in which we used the Levermore-Pomraning flux limiter. Despite this 
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wide range in the physical parameters, the results from the BCK EOS never agreed 

with those from the SL EOS. 

The ratio of the SL EOS pressure to the BCK EOS pressure along a.n S = 2 

ka/nucleon adiabat is plotted in Figure 5. Note that for densities less than 10^'' g 

cm~^, the pressure of the BCK EOS is 10-20% greater than that of the SL EOS. 

This explains the slower collapse for the simulations using the BCK EOS. In Figure 

1, we have plotted the density profiles at 40 ms from simulations using the BCK 

EOS, the SL EOS, and a simulation where the pressure from the BCK EOS was 

artificially scaled down by 20%. This small modification made a large difference in 

the evolution of the collapse and emphasizes the strong dependence of our results 

on the equation of state. 

Coupled with the SL EOS, we have implemented spherically symmetric general 

relativity as described by van Riper (1979). From table 5.1, we can compare the 

results of simulations with or without general relativity (runs 1,6). The primary 

effect of general relativity is to cause the material to fall deeper into the potential 

well resulting in increased neutrino absorption. Hence, the material ejected has 

significantly lower electron fractions. However, since the progenitor structure was 

obtained by Nomoto (1986) without including general relativity effects, we might 

be overestimating these effects by introducing them a posteriori. 

5.2.4. Convection and Rotation 

Two-dimensional simulations of AICs can be used to test both the effects of 

convection and rotation. Since large entropy gradients do not develop in the 

one-dimensional simulations, we do not expect convection to cause large differences 

in the ejecta from AICs. We first use our two-dimensional simulations to verify that 
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convection does not play a major role in the collapse and ejecta of AICs. Given 

the resolution differences in our one- and two-dimensional models, the results are 

strikingly similar (compare nm 1 and 2 in Table 5.1). 

The progenitors to AICs accrete not only mass, but angular momentum, as 

the white dwarf approaches the Chandrasekhar limit. Typical rotation periods for 

cataclysmic variables range from 200 — 1200 s (Liebert 1980) although periods of 

~ 30 s exist (King & Lasota 1991). A lower limit on the rotation period is set by the 

the break-up spin period (~ 0.5 s for solar-mass white dwarfs). With these rotation 

periods, we can approximate the white dwarf as a Maclaurin spheroid (Shapiro 

& Teukolsky 1983). The stability of a Maclaurin spheroid can be determined by 

calculating the ratio of the kinetic energy to the gravitational potential energy (tc). 

If this ratio rises above 0.1375, secular instabilities set in and our assumption that 

the collapse is roughly spherical will no longer be valid. 

la our models, we assume solid-body rotation and conserve each individual 

particle's angular momentum for the duration of the simulation. We take an 

extreme case of a white dwarf rotating with a 2 s period prior to collapse. We 

conserve angular momentum and collapse the white dwarf to our initial conditions. 

Tc for this simulation is initially near 0.008 and increases to 0.05 near the time of 

bounce so our assumption that the collapse is roughly spherical holds throughout 

the simulation. 

However, for this rotation period, the ratio of surface rotational velocity over 

the keplerian velocity is 0.39 and rotation severely affects the motion of this outer 

material. This ratio drops precipitously as we move inward in radius. For example, 

this ratio is 0.19 at the radius which encloses l.SM© (still 94% of the white dwarf 

mass). Thus, while the collapse of the outer envelope of a white dwarf is affected 
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by rotation, the core collapse itself is not. Comparing nms 2 and 3 in Table 5.1, 

we see that the amount and composition of the ejecta is not altered significantly by 

the effects of rotation. 

5.2.5. Neutrino Wind 

The results in Table 5.1 do not include any mass loss from neutrino-driven winds. 

The amount of this ejecta is small when compaxed to that of our simulations using 

the SL equation of state (WB92 predict ~ O.OOSMq/s for the first two seconds). 

However, for the BCK EOS simulations, neutrino-driven winds dominate the mass 

loss. Using a cell-adding routine, we follow the fate of an AIC model beyond the 

delayed neutrino-induced explosion to obtain the wind-driven mass loss (run 1). 

Because we are also modeling the core, we are limited to very small timesteps and 

are able to follow this phase for only 0.4s after bounce. We find that during this 

period of time, an additional ~ O.OO2M0) peels off the neutron star. Thus, in this 

limited way, we confirm the results obtained by WB92 that further neutrino driven 

mass loss is to be expected. Independent of the equation of state or other input 

physics, it is likely that a neutrino-wind phase exists and ~ O-OIM© is ejected 

during this phase. 

5.3. Discussion and Conclusions 

We have performed a number of AIC simulations varying the input physics within 

the range of current uncertainties and obtaining the corresponding mass ejected 

from AIC. We can use these results to constrain the rate of AIC events in the 

galaxy. However, these constraints are uncertain primarily due to the lack of 

understanding of dense matter physics. Because the nucleosynthesis is so dependent 
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upon the neutrino absorption, one cannot exclude that a more accurate treatment 

of neutrino physics may also have a decided effect. With these caveat in mind, the 

nucleosynthetic yields place the most stringent constraints upon the rates of AICs. 

Hartmann, Woosley, and El Eid (1985) estimate that there must be less than 

10~®Mq of < 0.4 material ejected per supernova to avoid anomalous abundances 

of particular isotopes (e.g. ®^Ni, ®®Zn, ®®Zn, ®^Rb, and ®®Sr). Using the value of 

0.02 MQ of material with less than Ye < 0.4 ejected per AIC events (see Table 5.1) 

and assimiing a supernova rate of two per century for the galaxy we find that the 

upper limit for rate of AICs must be (2/lOOy~^)(lO~®M0)/(O.O2Mo) = 10~® y~^ 

Note that we have assumed AIC to be the only source for material with such a low 

¥&. Should there be another source, the allowed AIC rate will be correspondingly 

smaller. A more conservative estimate is obtained by assuming that this material 

is ejected with 0.45 < K < 0.40 rather than with < 0.4 (a real possibility given 

the crude neutrino physics used). Following the method of WB92, the upper limit 

for the rate of AICs becomes (1/170,000)(1/0.07)(1/0.13)(2/100) = 1.3 x 10"^ y-^ 

Although the electron fraction is very sensitive to the neutrino physics, a laxge 

portion of the low Yg ejecta must change considerably to alter our conclusions. If 

we include general relativistic effects, this rate decreases by an order of magnitude. 

Several attempts have been made to estimate the rate of AICs required to 

explain various neutron star populations. Assuming OMgNe white dwarfs to be 

the sole contributor to AICs, Iben, Tutukov, &: Yungelson predict an AIC rate of 

3 X 10~^ y~^ in the galactic disk. Even with this high rate, AICs do not contribute 

significantly to any of the neutron star systems in the galactic disk. Bail3ni and 

Grindlay (1990), in an effort to explain the millisecond pulsar population in 

globular clusters, require a comparable rate (~ 10"'^ y~^) in the galactic globular 
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cluster population. These rates axe an order of magnitude higher than that allowed 

from our results suggesting that AICs can not be used to solve problems pertaining 

to neutron star systems. However, specific objects may still be explained by AICs. 

The gamma-ray burst models require that less than about of 

baryonic matter is ejected along with the gamma-ray burst fireball (Paczynski 

1986, Goodman 1986, Goodman, Dar, &: Nussinov 1987, Paczynski 1990, Dax et al. 

1992). With our high ejected masses, we do not get the high velocities required to 

create gamma-rays. In addition, assuming the Nomoto &: Kondo (1991) prediction 

that AICs are more common than Chandrasekhar mass thermonuclear explosions, 

the limit on the rate of AICs is also an upper limit to the number of Type las 

that can be explained by Chandrasekhar mass thermonuclear explosions. Then 

from our results, less than 1% of the observed Type las come from this "standard" 

mechanism. However, the amount of nickel ejected and explosion energy are 

becoming tantalizingly close to the properties of peculiar Type la supernovae such 

as SN 1991bg (Filippenko et al. 1992). 

The applications of AICs, both in producing neutron stars and supernova 

or gamma-ray outbursts, mandates continued research on their evolution. To 

fully understand the fate of AICs, the physical processes that cause the largest 

variations in the results (in particular, the equation of state and the effects of 

general relativity) must be undestood. The characteristics of the progenitors may 

also have an effect on the subsequent evolution. If we can reduce the uncertainties 

due to numerical techniques and initial conditions, we are then in the position to 

do one of two things: either by understanding the basic physics of dense matter, 

we can calculate accurate upper limits of the event rate of AICs, or by knowing 

something of the event rate of AICs, we can gain some understanding of the basic 
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Table 5.1. A.IC Simulations 

Model EOS" Fluxb vc KEexp M<!j(J.Io) 

Num. Limiter Source Term 1051 ergs yo!> 0.45 0.40 <Yo! < 0.45 Ye < 0.40 

SL ;vm TEH 1.3 0.09 0.04 0.07 

2 SL-2Dd ~IH TEH 0.6 0.07 0.01 0 .09 

3 SL-2D (rot) MH TEH 0.5 0.07 0.01 0.11 
4 SL MH WB 1.2 0.10 0.02 0.08 

5 SL-375e MH TEH 1.1 0.08 0.03 0.09 

6 SL-GRr MH TEH 1.4 0.02 0.04 0.22 
i SL-...\dv. Burns MH TEH 1.0 0.07 0.05 0.05 

8 SLh BW TEH 0.2 0.05 0.06 0.02 

9 SL BW WB 0.2 0.07 0.03 0.03 
10 SL-Adv. Burn B\V - TEH 0.7 0.04 0.06 0.0 

11 SL-GR BW TEH 1.4 0.01 0.01 0.26 

12 SL LP TEH 0.5 0.05 0.06 0.01 

13 SL LP WB 0.5 0.07 0.0.5 0.02 
14 SL-Adv. Burn LP TEH 0.7 0.06 0.03 0.02 
1-5 SL-No Burn LP TEH 0.2 0.1 0.01 0.03 
16 SL-No Burn LP \VB 0.02 0.08 0.05 0.03 
li SL-GR LP TEH 1.2 0.01 0.01 0.25 
18 BCK MH TEH 0.8 0.04 0.04 0.0 
19 BCK MH \VB 0.5 0.03 0.03 0.0 
20 ' BCK BW TEH 0.0 0.0 0.0 0.0 
21 BCK B\\" WB 0.0 0.0 0.0 0.0 
22 BCK BW TEH 0.0 0.0 0.0 0.0 
2:3 BCK BW WB 0.0 0.0 0.0 0 .0 
24 SL none none 1.0 0.20 0.0 0.0 

"We use both the Swesty-Lattimer (SL) and Baron-Cooperstein-Kahana (BCK) equations of state 

bThe following flux limi ters are employed: Herant (:\!H) , Bowers-Wilson (BW), Levermore-Pomraning (LP) . 

ewe use the detailed electron/positron emission rates of Takahashi, El Eid &Hillebrandt (TEH-1977) and the 
simplified rates used by WB. 

dTbe 2-D models are SPH simulations with - 2300 particles. The rotational simulation assumes a white dwarf 
spinning with a period of 2s. 

e K, = 37.5. In all other SL EOS simulations , I{. = 180. 

rThis run includes General Relativistic effects. 

SSome runs include an additional burning network to be used prior to the onset of nuclear statistical equilibrium. 
In other runs, there we have turned off even the NSE network to test the range of effects from nuclear burning. 

hThe most probable outcomes are bold-faced. 
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Table 5.2. BCK EOS models^ 

BCKy j^sym xkz Result 

1.5 31.5 180 2.0 _b 
1.5 31.5 375 2.0 -

2.5 31.5 180 2.0 -

2.5 31.5 375 2.0 -

3.5 31.5 180 2.0 -

3.5 31.5 375 2.0 -

1.5 25.0 180 2.0 -

1.5 25.0 375 2.0 -

3.5 25.0 180 2.0 -

3.5 25.0 375 2.0 -

1.5 38.0 180 2.0 -

1.5 38.0 375 2.0 -

3.5 38.0 180 2.0 -

3.5 38.0 375 2.0 -

1.5 25.0 180 1.5 -

1.5 25.0 375 1.5 -

3.5 25.0 180 1.5 -

3.5 25.0 375 1.5 -

1.5 38.0 180 1.5 -

1.5 38.0 375 1.5 -

3.5 38.0 180 1.5 -

3.5 38.0 375 1.5 -

1.5 25.0 180 2.5 0.05iV/g ejected 
1.5 25.0 375 2.5 -

3.5 25.0 180 2.5 O.OSMq ejected 
3.5 25.0 375 2.5 -

1.5 38.0 180 2.5 -

1.5 38.0 375 2.5 -

3.5 38.0 180 2.5 -

3.5 38.0 375 2.5 -

2.5 25.0 180 2.0 -

2.5 25.0 375 2.0 -

3.5 25.0 180 2.0 -

3.5 25.0 375 2.0 -

2.5 25.0 180 2.5 0.05Mq ejected 
2.5 25.0 375 2.5 -

2.5 31.5 180 2.5 -

2.5 31.5 375 2.5 -

^In all these models we use the Levermore-Pomraning 

flux limiter and the full neutrino source terms. 

''Except where specifically noted, the end result for these 

simulations was no explosion. Of course, this does not 

exclude mass ejection from neutrino winds. 
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Figure 5.1 shows density profiles for the initial model (solid line), the BCK EOS after 

40 ms (short-dashed line), the SL EOS after 40 ms (dotted line), and a simulation 

using 80 % of the pressure from the BCK EOS after 40 ms (long-dashed line). 

Chaxiging the pressure by 20 % drastically alters the evolution of the collapse. 
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Figure 5.2 displays mass-point trajectories for a simulation using the SL EOS. 
I 

The resolution is increased near the transition between ejected material and proto-

neutron star material. The inner 9 lines represent the 1M0 core. 
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Figure 5.3 is ide~tical to Figure 2 using the BCK equation of state. 
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Figure 5.4 is identical to Figure 2 with the same SL EOS but without neutrino 
f 

transport. Comparison with Figure 2 differentiates a prompt explosion from a 

delayed neutrino explosion. 
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Figure 5.5 plots the ratio of pressure from the SL EOS and the BCK EOS. For 

densities less than 10^'^ g cm~^, the BCK pressure is consistently higher by 10-20 %. 
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