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ABSTRACT 

Each chapter of this dissertation focuses on a different aspect of strategic behavior. 

The first chapter presents research in which humans play against a computer deci

sion maker that follows either a reinforcement learning algorithm or an Experience 

Weighted Attraction algorithm. The algorithms are more sensitive than humans to 

exploitable opponent play. Further, learning algorithms respond to calculated oppor

tunities systematically; however, the magnitudes of these responses are too weak to 

improve the algorithm's payoffs. Additionally, humans and current models of their 

behavior differ in that humans do not adjust payoff assessments by smooth transition 

functions but when humans do detect exploitable play they are more likely to choose 

the best response to this belief. 

The second chapter reports research designed to directly reveal the information 

used by subjects in a game. Human play is often classified as adhering to reinforce

ment learning or belief learning. This is typically due to using subjects" observed 

action choices to estimate the learning models' parameters. We use a different, more 

direct approach; an experiment in which subjects choose which kind of information 

they see - either the information required for reinforcement learning, or the informa

tion required for behef learning. Results suggest that while neither kind of information 

is chosen exclusively, subjects most often choose information that is consistent with 

belief learning and inconsistent with reinforcement learning. 

The third chapter discusses the Groves-Ledyard mechanism. In economics we 

typically rely on continuous analysis, however doing so may not lead to an accurate 

assessment of a discrete environment. The Groves-Ledyard mechanism is such a case 

that demonstrates a drastic divergence of results between continuous and discrete 

analysis. This chapter shows that given quasi-linear preferences, a discrete strategy 

space will not necessarily yield a single Pareto optimal Nash equilibrium, but typi
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cally many Nash equilibria, not all of which are necessarily Pareto optimal. Further, 

the value of the mechanism's single free parameter determines the number of Nash 

equilibria and the proportion of Pareto optimal Nash equihbria. 
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Chapter 1 

LEARNING ABOUT LEARNING IN GAMES THROUGH 
EXPERIMENTAL CONTROL OF STRATEGIC 

INTERDEPENDENCE 

1.1 Introduction 

Identifying how humans respond and adapt their behavior in repeated strategic deci

sion making tcujks has emerged as a core, but difficult, question in the social sciences. 

Most studies that address this question formulate alternative adaptive or "learning" 

models and estimate model parameters from human experimental data. These esti

mated models are either evaluated for goodness-of-fit by statistical criteria or they are 

used to generate simulations which are subsequently compared to human experimental 

play. Unfortunately, definitive conclusions are difficult to achieve with this approach 

because current econometric techniques generate exceedingly high rates of Type 1 

and Type II errors when evaluating alternative adaptive models of play (Salmon [29] 

(2001)). 

One source of this difficulty is the nature of the problem. Learning in games is 

a multivariate stochastic process. One component of this process is a set of latent 

variables, such as beliefs about opponents or values associated with alternative ac

tions. which each individual uses to select actions and adjusts according to game 

history. If play doesn't coincide with an equilibrium and players condition actions 

on the common observed history of play, strong interdependencies are likely to exist 

among the adjustment rules of the players' latent variables. When a researcher seeks 

to identify the rules underlying the interdependent latent processes, typically the 

only observable information is the sequence of realized choices from discrete action 

sets. Unfortunately, these interdependent and dynamic latent processes, and the re
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sultant sequences of discrete choices axe substantial obstacles for current econometric 

methods. 

In this study we adopt a technique that exercises experimental control of strategic 

interdependence and enables us to gain greater insight into the rules humans use to 

adjust their play in games. We conduct hybrid experiments in which humans play 

simple 2x2 games against alternative computer-implemented learning algorithms. 

Each game has a unique Nash equilibrium in mixed strategies. This technique lets 

us directly control the nature of the dependence of one of the players. In turn this 

allows us to more accurately assess human response to opponents adopting particular 

learning rules. Furthermore, we are able to better evaluate the appropriateness and 

properties of alternative hypothesized models of human adaptive behavior in games. 

Several recent learning models embody two common principles: smooth adjust

ment rules for values of actions and probabilistic choice. First, for each of the players' 

actions the models ascribe a latent variable which represents the value of the action. 

This value is updated after each play of the game according to an adaptive rule and 

the stage game outcome. Second, in each stage game a player selects his action ac

cording to a probabihstic choice rule. This probabilistic choice rule assigns higher 

probabilities to actions with greater latent values. Typically these models include 

unobservable parameters whose values are estimated from experimental data. Uni

formly across studies, estimated parameter values specify adaptive rules that have 

significant memory and thus the incremental relative stage game impact on calcu

lated action values is small. In turn, this leads to "smooth" adjustment rules: from 

period to period, action choices and resultant mixed strategies do not drasticalh' vary. 

In this study we evaluate two prominent learning models of this type: Erev and 

Roth's [8] (1998) reinforcement learning model and Camerer and Ho's [2] (1999) 

experienced weighted attraction model. There are many other similarly structured 

models worth studying with our technique, but models in this class tend to generate 

similar play (Salmon [29]) and consequently most of the potential insights can be 



14 

gained through evaluation of just one or two models of this type. 

We believe our technique reveals properties about both human learning and learn

ing models which cannot be discovered through either pure human experimentation 

or pure simulation. We present the following summarj' of our main results. Human 

play does not significantly var\' depending on whether the opponent is a human or a 

learning algorithm. In contrast, algorithm play markedly differs when playing against 

a human rather than an identical algorithm in a simulation. When humans' action 

frequencies deviate from their Nash equihbrium proportions, the algorithms" action 

choice proportions respond with systematic adjustments towards their pure strategy-

best responses. Adjustments of algorithms in response to their human opponents" play 

result in a strikingly linear relationship between the learning models' and humans' 

action frequencies. Moreover, the linear relationship is suggestive of the computer 

players' best response correspondence. While adjustments by the algorithms are re

markably regular, their hnear nature produces quite muted response magnitudes. In 

fact, magnitudes of the adjustments are too small to result in statistically significant 

gains in their game payoffs. 

Our experimental study is just one of several that exploit laboratory control to bet

ter measure some of the latent variables underlying human play in games.' The com

posite finding of these studies paints a significantly different picture of human learning 

in games than the class of models considered by this study. Specifically, experiments 

with unique mixed strategy Nash equilibrium games have shown that humans' be

liefs about opponent play are highly volatile from period to period (Nyarko and 

Schotter [231(2002)), and correspondingly players' mixed strategies exhibit significant 

variability with significant amounts of switching between pure and mixed strategy 

play (Shachat [30](2002)). Furthermore, humans are also quite successful at signif-

'For example Camcrer. Johnson, Rymon, k. Sen [3] (1993) and Crawford. Costa-Gomcs, & 
Broscta [7](2000) studied information look-up patterns of subjects. .^Iso, Nyarko k. Shot-
tcr [23](2002) elicited subjects' beliefs of opponents' future actions. 
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icantly increasing their payoffs when computerized opponents play either stationary' 

non-equilibrium fixed mixed strategies (Lieberman [17](1961) and Fox [10](1972)) or 

highly serially correlated action sequences (Messick [19](1967) and CoriceUi [6](2001)). 

In summarj', human play is characterized by volatile beliefs, variable mixed strategy 

choices, and successful exploitation of some strategies. In contrast, the learning mod

els we evaluate generate beliefs that are smooth, make only minor mixed strategy-

adjustments from period to period, and have an inability to take advantage of calcu

lated payoff-increasing opportunities. 

We proceed with a discussion of several past studies incorporating human ver

sus computer game play. Then we present the two learning models adopted in our 

study. In the fourth section we discuss the games used in our experiments and our 

experimental procedures. Section 5 covers our experiment results, findings and inter

pretations. In conclusion, we integrate our results with other experimental results to 

provide a summary of human play in games and contrast this with current learning 

models. 

1.2 Literature Review 

In a number of past studies, researchers have used the technique of humans inter

acting with computerized decision makers. This technique has been used in various 

studies to identify social preferences in strategic settings (Houser and Kurzban [15] 

(2000), and McCabe et al. [18] (2001)), to establish experimental control over player 

expectations (Roth and Shoumaker [28] (1983) and Winter and Zamir [32] (1997)). 

and to identify how humans play against particular strategies in games (as in Walker. 

Smith, and Cox [31] (1987)). In this section, we discuss the last type of study and 

summarize established results on how humans play against unique minima;': solutions, 

non-optimal stationary mixed strategies, and variants of the fictitious pla\' dynamic 

(with deterministic choice rules) in the context of repeated constant-sum games with 
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unique minimax solutions in mixed strategies. 

All of the studies we discuss incorporated fixed human-computer pairs playing 

repetitions of one of the zero-sum games presented in Table 1.4." Studies by Lieber-

man [17] (1961), Messick [19] (1967). and Fox [10] (1972) all contain treatments 

where humans played against an experimenter-implemented minimax strategy. In 

these studies, the human participants were not informed of the explicit mixed strat

egy adopted by their computerized counterparts.^ All three of these studies reach the 

same conclusion: human play does not correspond to the minimax prediction, and 

only in the Fox study does the human play adjust - albeit weakly - towards the min

imax prediction. These results are not surprising because when a "computer" adopts 

its minimax strategy the human's expected payoflfs are equal for all of his actions. 

However, this indifference is not present when the computer adopts non-minimax 

mixed strategies. Lieberman [17] and Fox [10] both studied human play against non-

optimal stationary mixed strategies and discovered that humans do adjust their play 

to exploit (though not fully) their opponents. In the relevant Lieberman treatment, 

subjects played against the experimenter for a total of 200 periods. In the first 100 

periods, the experimenter played his minimax strategy of (.25. .75) and then in the 

final 100 periods the experimenter played a non-minimax strategy of (.5, .5). Humans 

players were not informed that their opponent had adjusted his strategy. Human play 

adjusted from best responding approximately 20 percent of the time right after the 

experimenter began non-minimax play, to best responding appro.ximately 70 percent 

of the time by the end of the session. However, this experimental design made it 

difficult to differentiate between the attractiveness of the minimax strategy tmd the 

best response since they both lay in the direction of this observed shift. 

^In some of these studies the experimenters implemented stationary mLxed strategies by using 
prc-sclccted computer generated random sequences in their non-computcrized experiments. 

^When reported, humans were instructed something similar to, "The computer has been pro
grammed to play so as to make as much money as possible. Its goal in the game is to minimize the 
amount of money you win and to maximize its own winnings."' (Messick [19], page 35) 
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In one of Fox's treatment, humans played 200 periods against a computer which 

played the non-minimax mixed strategy' (.6. .4) for the entire session. This design 

placed the humans best response, (1, 0), on the opposite side of (.5. .5) from the 

human's minimax strategy, (.214, .786). Human play started slightly above (.5. .5) 

and then slowly adjusted towards the pure strategy best response over the course of 

the experiment. Specifically, humans were best responding approximately 75 percent 

of the time by the latter stages of the experiment. These experiments established that 

humans will adjust their behavior to take advantage (but not as much as possible) of 

e.xploitable stationary' mixed strategies. 

Messick [19] and Coricelli [6] (2001) conducted experiments to evaluate how hu

mans respond when playing against variations of fictitious play."* These experiments 

are notable in that the computer's strategy' was responsive to the actions selected 

by its opponent. Messick studied humans matched against two fictitious play algo

rithms: one with unlimited memory and the other with only a five period memory. 

.Against unhmited memory fictitious play, humans earned substantially more than 

their minimax payoff level. Humans earned an even greater average payoff against 

limited memory fictitious play. In the study by Coricelli, there are two treatments 

(both utilizing the game form introduced by O'Neill [24] (1985)) in which humans 

play against unlimited memory fictitious play and against the same algorithm that 

has a bias in the beliefs that subjects tend not to repeat their "P" action. In both 

treatments humans win significantly more often against the algorithms than they do 

against humans.^ Establishing that humans can "outgame" these algorithms is sig

nificant. though not surprising. It is well known that in games with unique mixed 

strategy equilibrium, the fictitious play algorithm can generate strong positively se-

"^In the original formulations of fictitious play (Brown [1](1951) and Robinson [26]{195I)) a player 
uses the empirical distribution of the entire history of his opponent's action choices as his belief of 
the opponent's current mi.xed strategy and then chooses a best response to this belief. 

^Human versus human data for this conclusion arc taken from O'Neill [24] (1985) and 
Shachat [30](2002). 
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rially correlated action choices that are easily exploited.® It was this speculated 

vulnerabiUty that partially motivated game theorists to propose and study adaptive 

learning models which incorporated probabilistic choice as a key component.' 

To summarize, through the use of experiments pitting humans against algorithms 

in constant sum games with strictly mixed strategy solutions we have learned (1) that 

humans do not tend to play their minimax strategy- in response to opponents playing 

their minimax strategy. (2) humans exploit (but not fully) opponents who play mixed 

strategies significantly different from their minimax strategy, and (3) humans exploit 

adaptive algorithms which generate highly serially correlated action choices. 

1.3 Response Algorithms 

A large number of adaptive behavioral models have been recentlj' introduced into 

the literature on games. Most of these models have similar frameworks with two 

main components. First, each player retains a latent "score" for each of his available 

actions, and the score of each action is adjusted after each game iteration based on the 

outcome. Second, each player chooses an action according to a probability distribution 

that places higher probability on actions with higher scores. For obvious reasons we 

limit the number of models we consider. We focus on two of the more popular models 

in the experimental games literature: Erev and Roth's [8|(1998) Reinforcement model 

and Camerer and Ho's [2] (1999) Experience Weighted Attraction model. 

1.3.1 Reinforcement Learning 

Erev and Roth's model (hereafter ER) is motivated by the reinforcement hypothesis 

from psychology: an action's score is incremented by a greater amount when it results 

in a "positive" outcome rather than a "negative" outcome. More formally, let Rij{t) 

"See Jordan [16](1993) and Gjerstad [13](1996). 

'For example, see cautious fictitious play proposed bj' Fudenberg and Levine [11] (199.5), and the 
two learning models we utilize in this study. 
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denote player i's score for his Jth action prior to the game at iteration t: let 

denote the probability that i chooses j at iteration t: and let X, denote the set of 

player i's possible stage-game payoffs. The two initial conditions for the dynamical 

system are (1) that at the initial iteration, each of a player's actions is selected with 

the same probability of being selected (i.e.. in our two games. (T,J(1) = .5 for each 

player i and each action j) and (2) that 

where 5(1) is an unobservable strength parameter, which influences the player's sen

sitivity to subsequent experience, and Xi is the absolute value of player i's payoff 

averaged across all action profiles. 

After each iteration, each action's score is updated as follows 

R,j{t -t- 1) = (1 - <?)R^j{t) + ^(1 - s)/(a.(i)=j) + - min{X.}). 

where o is an unobservable parameter that discounts past scores. !{a,u)=j) 's an in

dicator function for the event that player i selected action j in period t. s is an 

unobservable parameter determining the relative impacts on the scores of the se

lected versus the unselected action, and Tri{j, a-i{t)) is i's payoff when he plays action 

j against the deleted action profile a-i{t). Also player i's minimum possible payoff 

for any action profile. min{Xi}, is subtracted from 7r,(j,a_,(i)) as a normalization 

to avoid negative scores. The second component of the model, a probabilistic choice 

rule, is specified as 

For each game we consider, parameters of the model are estimated along the lines 

suggested by Erev and Roth. We estimate the values of S(l), <?, and c by minimizing 

the mean square error of the predicted proportions of Left play in 20-period trial 

blocks for the human versus human treatments. More specifically, for each fbced 

triple of parameter values from a discrete grid, we proceed as follows: we simulate 
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the play of 500 fixed pairs engaging in 200 iterations, and then we calculate separately 

the frequency of Left play by the 500 Row players and by the 500 Column players in 

each 20-period block. These frequencies are the modeFs predictions for that triple of 

parameter values. The grid is then searched for the optimal parameters. 

1.3.2 Experience-Weighted Attraction 

We use the version of EWA developed by Camerer .k Ho [2](1999). While the structure 

of the EWA formulation is similar to ER learning, it adopts a different parametric 

form of probabilistic choice and it updates actions' scores according to what actions 

actually earned in past play, and what actions hypothetically would have earned if 

they had been played. 

According to EWA subjects choose stage-game actions probabilistically according 

to the logistic distribution 

= 

where at stage t player i chooses action j with probability where A is the inverse 

precision (variance) parameter, and where Rijit) is a scoring function, as in the ER 

model, albeit defined (i.e., updated) differently. The updating of involves a 

"discounting" factor N { t ) ,  which is updated according to N { t  +  I ]  =  p N { t )  -f 1 for 

< ^ 1, where p is an unobservable discount parameter and .V(l) is an unobservable 

parameter, interpreted as the strength of experience prior to the beginning of play. 

The score Rij{t) is updated as follows: 

n , n\  + ((1 -^)Aa.(0=j) + 
= AfiTTT) • 

where 7r,(j, a_i(f)). 0, and s are interpreted as in the Erev and Roth model. Initial 

scores, Rij{l) for each i and j, Eire additional unobservable parameters. 

Parameters of the EWA model are estimated via maximum likelihood. It is worth 

noting that EWA is a flexible specification that includes several other models as 
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special cases. For example, a simple reinforcement learning model is generated when 

.V(l) = 0. £• = 0. and p = 0: and probabilistic fictitious play is generated when 

s = p = o = 

1.4 Experimental Procedure 

There are three basic steps in our experimental methodology. First, we collect basehne 

data samples consisting of fixed human versus human pairs playing 100 or 200 rounds 

with one of two 2x2 games. Second, we estimate parameters for the two learning 

models separately for each of the two games. In the third step, a new sample of 

humans play one of the two games against an estimated learning algorithm. We 

proceed by describing the two games we used and then present more details on the 

outlined steps. 

1.4.1 The Two Games 

The first game we consider is a zero-sum asymmetric matching penny game called 

Pursue-Evade. This game was introduced by RosenthaJ, Shachat, and Walker [27](2002) 

(hereafter RSW). The normal form representation of the game is given in Table 1.1. 

The Nash equilibrium (and minimax solution) of this game is symmetric: each player 

chooses Left with probability of two-thirds. 

There are several reasons why this game is a strong candidate to use in our study. 

(1) Zero-sum games eliminate social utility concerns often found in experimental 

studies of games, thereby mitigating some behavioral effects that might arise if a 

human suspects he is playing against a computer rather than another human. (2) 

With some standard behavioral assumptions, the repeated game has a unique Nash 

equilibrium path which calls for repeated play of the stage game Nash equilibrium. 

®\Vc refer the reader to Camerer and Ho [2](1999) for more discussion of how E\V.'\ can emulate 
various models and for a more complete interpretation of the parameters. 
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This eliminates potential repeated game effects that the algorithms are not designed to 

address. (3) Piirsue-Evade is a simple game in which the Nash equilibrium predictions 

differ from equiprobable choice. This generates a powerful test against the alternative 

hypothesis of equiprobable play. 

We selected our second game to pose a more serious challenge to the learning 

algorithms. We refer to our second game, presented in Table 1.2, as Gamble-Safe. 

Each player has a Gamble action (Left for each player) from which he receives a payoff 

of either two or zero and a Safe action (Right for each player) which guarantees a 

payoff of one. This game has a unique mixed strategy in which each player chooses his 

Left action with probability one-half, and his expected Nash equilibrium payoff is one. 

The difference between the Nash equilibrium and the minimax solution makes this 

game challenging for the learning models. Notice that this game is not constant-sum: 

therefore the minimax solution need not coincide with the Nash equilibrium. In this 

game. Right is a pure minimax strategy for both players that guarantees a payoff of 

one. A game for which minimax and Nash equilibrium solutions differ but generate 

the same expected payoff is called a non-profitable game.'-' The potential attraction of 

the minimax strategy can (and does) prove to be difficult for the learning algorithms 

which, loosely speaking, have best response flavors. 

1.4.2 Protocols 

Human versus Human Baselines For the human versus human baseline play in the 

Pursue-Evade game we use the data generated by RSW. In their hand-run experi

ments, a pair of subjects were seated on the same side of a table with an opaque 

screen dividing them. The Evader was given an endowment of currency. Each player 

was given two index cards: one labelled Left and the other labelled Right. At each 

iteration the players shd the chosen card to the experimenter seated across from them. 

^Morgan and Sefton [21](2002) present an excellent study of human play in non-profitable games. 
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Then the experimenter simultaneously turned over the cards, executed the payoffs, 

and recorded the actions. Twenty' pairs of human subjects played this treatment: 

fourteen for 100 periods and six for 200 periods. 

The human versus human baseline experiments for the Gamble-Safe game were 

e.xecuted via computerized interaction. Each subject was seated at a separate com

puter terminal such that no subject could observe the screen of any other subject. 

All subjects participated in either 100 or 200 repetitions of the game maintaining a 

constant role throughout. 

The protocol for each period was as follows. At the beginning of each repetition, 

a subject saw a graphical representation of the game on the screen. Column players 

had the display of their game transformed so that they appeared to be a Row player. 

Thus, all subjects selected an action by clicking on a row, and then confirmed their 

selection. Subjects were free to change row selections before confirmation. Once an 

action was confirmed, a subject waited until his opponent also confirmed an action. 

Then a subject saw the outcome highlighted on the game display, as well as a text 

message stating both actions and the subject's earnings for that repetition. Finally, 

at all times a history of past play was displayed to the subjects. This history consisted 

of an ordered list with each row displaying the number of the iteration, the actions 

selected by both players, and the subject's earnings. 

Human versus Algorithm Treatments We conducted our hybrid treatments using both 

the e.xperimental software and protocol used for the Gamble-Safe game baseline.'® 

In these treatments, two human subjects played against each other for the first 23 

repetitions of the game. Then, unbeknownst to the human pair, they stopped playing 

against each other and for the remainder of the experiment they each played against 

a computer that implemented either the EWA or ER learning algorithm. 

We adopted a simple technique to make the "split" seamless from the subjects' 

'°For the Pursue-Evade game, the Evader was given a currency endowment. 
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perspectives. From period twenty-four on. the two human/computer pairs had no 

interaction except for the timing of how action choices were revealed. Specifically, 

although the computers generated their action choices instantly, the computers didn't 

reveal their choices until both humans had selected their actions. This protocol 

preserved the natural timing rhythm established by the humans in the first twenty-

three stage games. 

The non-human opponent treatments began with an initial stage of human versus 

human play in order to give the algorithms a better chance of successfully "standing 

in" for the human whose place it takes. Both ER and EWA rely on actions' scores to 

determine the chosen action in a probabilistic manner. During the first 23 repetitions, 

we allow these scores to •'prime" themselves with the play generated by the subjects. 

(Although updating of scores is determined by the parameter estimates obtained 

from the baseline treatments). That is. even though the response algorithms are not 

selecting actions during the first 23 repetitions, the scores are still being updated 

according to the specifications of the previous section. For example, consider the 

24th repetition of a game. The human Row player is now facing a computer that 

plays the Column position. Moreover, during the first 23 repetitions, the computer 

Column player updates the scores associated with Column's actions based on the 

observed actions of both humans. We conjecture this will de-emphasize the imptict 

of the estimated initial score values of the actions. 

In summary, we have two treatment variables, the stage game and the type of 

opponent. The data samples we have for each treatment cell are given in Table 1.3.'^ 

"We e.xplain in the ne.xt section why we have no observations for the EWA Gamble-Safe treatment. 
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1.5 Baseline Results, Model Estimation, caid Model Simula

tion 

Our experimented baselines are the human versus human play in each of the games 

we consider. Inspection of the aggregate data reveals that play in the two games 

departs from the Nash equilibrium and the dj-namic features of the data suggest 

non-stationarity of play. After estimating the unobserved parameters of the learn

ing models, we simulated large numbers of experiments based upon these estimated 

versions. Simulations reveal that the learning models generate aggregate choice fre

quencies similar to the experimental data, but only weakly mimic the experimental 

data time series. Furthermore, the simulations do not reveal striking differences be

tween the two learning models. 

We use the data from RSW as the Pursue-Evade game basehne data set. Fig

ure 1.1 shows contingency tables for the data aggregated across subject pairs and 

stage games. A graph of the time series of the average proportion of Left play for the 

Row and Column players is shown below each table. Each obser\'ation in a series is 

the average across a twenty period time block. As noted by RSW, the contingency 

table is distinctly different from the Nash equilibrium predictions (the numbers in 

parentheses) and Column subjects play Left significantly more often than the Row 

subjects.'- In the block average time series, we see that the Column series almost 

always lies above the Row series and that both series exhibit an increasing trend. 

Using this data, RSW estimated the parameters of both the ER and EWA mod

els. As noted by RSW, both models have some success in explaining the deviation. 

Using the estimated models we simulated 10,000 experiments of twenty pairs play

ing the Pursue-Evade game for 200 iterations. Averages from the 10,000 simulated 

experiments were used to construct contingency tables and time series in the same 

'"Moreover, the Column subject plays Left more frequently than his Row counterpart in almost 
all pairs. 
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format as those presented for the baseUne data. These results are presented along

side the baseline results in Figure 1.1. Unsurprisingly, given the respective objective 

functions used to select model parameters, casual observation suggests that the EWA 

model generates an expected contingency very close to the human baseline and the 

ER model more accurately mimics dynamics in the times series. 

We provide a corresponding analysis for the Gamble-Safe game in Figure 1.2. In 

the contingency table for the baseline data we observe that the Row subjects play 

Right significantly more than Left, while Column subjects played Left more often. 

This result partly comes from two pairs in which the Row and Column subjects" 

action profile sequence eventually converged to the profile (Safe. Gamble). This is 

evident around the midpoint of the times series for the baseline treatment, where we 

see the Column and Row subjects' series diverge. 

This convergence to minimax play by the Row subjects in these two pairs is prob

lematic for the maximum likeHhood estimation used in the EWA model. Specifically, 

the long strings of Left by Column leads the EWA model to assign a near zero proba-

bihty to Right (Safe) by Row for any possible parameter values. However, since Row 

is repeatedly choosing Right in these instances there is a zero likelihood problem in 

estimating the EWA parameters. Rather than violate the maximum likelihood crite

rion for parameter selection specified by Camerer and Ho we chose not to conduct a 

Human versus EWA treatment for this game. 

Since the ER model parameter selection does not rely upon maximum likelihood 

estimation we obtain estimates which generate the best fit for the baseline data. In

terestingly we see that the ER contingency table is remarkably similar to the baseline 

table. However, the predicted ER dynamics are excessively smooth and do not re

semble the baseline time series. We believe this failure results from the inability of 

the model to incorporate the heterogenous behavior the occurs when some players 

adopt the minimax strategy and other players adopt adaptive strategies. 

Comparison of the experimental data to simulations based upon estimated ver
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sions of the learning models suggests that the learning models successfully capture 

some features of the humans' disequilibrium behavior. However, time series views of 

the simulation data exhibit much smoother and less extreme dynamics than the ex

periment data, which suggests that learning models are not as responsive as humans 

and tend to simply "fit" aggregate human choice frequencies. 

1.6 Analysis of Humsai/Algorithm Interaction 

In the previous section we used a common technique of comparing experimental data 

to simulation results to evaluate the appropriateness of alternative learning models. 

Now we proceed to present analysis of human/algorithm interaction which reveals 

a significantly different story. Action choice frequencies by the algorithms are more 

responsive to opponents' play than the humans" action choice frequencies. Moreover, 

the action frequencies by each algorithm adjust linearly toward its best response to 

its opponent's non-equilibrium action frequencies. However, the magnitude of these 

adjustments is too small to generate payoff gains for the learning algorithms. Finally, 

we see that human play does not vary significantly whether the opponent is another 

human or a learning algorithm. Examination of the human/human experiments and 

the model simulations don't reveal these results. 

1.6.1 Learning Algorithm Response to Opponents' Play 

We now introduce pair-level data to better highlight differences in play across treat

ments. Inspection of the Row and Column players' proportions of Left play in each 

pair reveals surprising differences from purely human play and the simulations re

ported in the prior section. The learning algorithms are quite responsive to human 

deviations from Nash equilibrium play. Specifically, the algorithms' frequencies of Left 

play have a striking linear correlation to their human opponents' Left play propor

tions. Moreover, these linear relationships are consistent with a linear approximation 
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of the algorithms' best response correspondences. 

These results axe most easily seen in Figures 1.3 - 1.5. Each of these figures is 

a 2 X 2 array of scatterplot panels. The rows in the panel array correspond to the 

decision maker type for the Row player: the top row indicates human decision maker 

and the bottom row indicates computer decision maker. Similarly the columns of the 

panel array correspond to the decision maker type for the Column player: the left col

umn for human and the right column for computer. Hence the upper left panel is from 

the human/human baselines, the lower right panel is from the algorithm/algorithm 

simulations, and the off diagonal panels are from the human/algorithm and algo

rithm/human experiments. 

The scatterplots show the proportions of Left play by the Row and Column players 

in each pair after the first 23 iterations. In the simulation panel we only use the 

data from a single simulated experiment with twenty pairs playing 200 iterations. 

Also, each of these scatterplots displays a regression line of the Row proportion Left 

regressed on the Column proportion Left, and a dashed hne for the computer's best 

response correspondence. 

Examination of these figures reveals important common results across the two 

games and learning models. Comparisons between the two main diagonal panels 

reveal consistent differences and similarities between human/human play and pure 

simulations of model interaction. Both types of interactions generate uncorrelated 

"clouds" with the simulations' clouds exhibiting much smaller dispersion.'^ This 

raises the issue of whether the learning models are quite aggressive in adaptation 

and quickly converge to an equihbrium or instead the models are quite insensitive to 

opponents' play and just stubbornly mimic human aggregate frequencies. We can ask 

a similar question regarding human play. Do the humans' dispersed clouds result from 

high variance in the humans' propensities to play Left coupled with little response 

'•^F-tosts reject the significance of the presented regression lines; this gives statistical support for 
claims of no correlation. 
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to the opponents' play or is it tlie result of differential skill in human play in which 

some humans more successfully exploit other humans' play? 

Inspection of the human and learning algorithm interactions answers these ques

tions. In contrast to the model simulations and human/human play, the scatter plots 

of human and learning algorithm interactions (found in the off-diagonal panels of 

Figures 1.3 - 1.5) exhibit strongly correlated interactions. This is evident by the 

tight clustering of the data along the plotted regression hnes. Also, in each case the 

regression Une is in the direction of the computer players' best response correspon

dence (the dashed correspondence given on each scatterplot). In other words, the 

computer "better" responds instead of best responds. This is best illustrated by an 

observation in the upper right scatter plot of Figure 1.3. In this scatterplot. Column 

ER players play against human Row players in the Gamble-Safe game. One of the 

human players chose his Minimax strategy. Right, exclusively and his computer ER 

opponent best responded to this only about 70 percent of the time. Hence, we see 

that (1) the frequency of Left by the learning algorithms move toward (but not all 

the way to) the best response to their opponents' frequencies, and (2) the magnitude 

of these responses by the algorithms is described by a surprisingly predictable linear 

relationship. 

Table 1.5 gives some quantitative support for these observations by presenting the 

OLS results of regressing the learning algorithms' Left frequencies on their human 

counterparts' Left frequencies. A learning algorithm that is highly sensitive and 

adjusts systematically to opponents' play should generate regressions that explain a 

high percentage of the variance of the algorithm's Left frequencies, and the estimated 

slope coefficient should be consistent with the best response correspondence. These 

features are found in the Table 1.5 regressions: the slope of each regression has the 

'"'Note that the regression lines displayed in the upper-right panel of Figures 1.3 - 1.5 differ from 
the regression results in Table 1.5. This is because the figures show the plot of Row proportion Left 
regressed on Column proportion Left, while the table reports Computer proportion Left regressed 
on Human proportion Left. 
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correct sign, three of the regressions have exceedingly large adjusted R" statistics, 

cind a fourth is still quite large considering the data is cross sectional. These adjusted 

R" results reflect the tight clustering to the fitted regression line observed in the 

scatterplots and correspondingly the detection and systematic reaction by the learning 

algorithms to calculated payoff-increasing opportunities. Correspondingly. F-tests for 

these four regressions do not reject the significance of the regressions at the 5 percent 

level of significance. Interestingly, the two cases where F-tests reject the regressions 

are when the EVVA and ER algorithms assume the Column role in the Pursue- Evade 

game. We do not see a reason for the differential performance, but do note that the 

mean of the computers" data is close to their minimax strategy in this case. 

1.6.2 Learning Algorithms' Lack of Effective Exploitation 

Previous arguments established that the learning algorithms sensitively detect oppo

nents' exploitable action choice firequencies and then the algorithms respond with a 

systematic but tempered reaction in the direction of their best response. However, we 

will now see that these statistically significant responses are too weak in magnitude 

to generate statistically significant payoff gains. Table 1.6 presents the average stage 

game winnings for all decision maker types when pitted against a human for each role 

and game. If the learning algorithms successfully exploit human decision makers we 

would expect the algorithms in each game and role to have greater winnings than a 

human when playing against a human in the competing role. The average stage game 

winnings in Table 1.6 do not exhibit this trait. 

The reported average stage game payoff statistics are calculated by first taking 

the total session payoffs for each decision maker who plays against a human, and 

dividing by the number of stage games played. Then we partition these decision 

makers according to the game played, role played, and decision maker type. Finally. 

'®Wc normalize this way bccause in the baseline data for Pursuc-Evade and Gamble-Safe some 
pairs played 100 stage games and others 200. 
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we report the average stage game payoffs across decision makers in each partition. 

For each game and player role we conduct t-tests with the null hypothesis that on 

average a non-human decision maker earns the same as a human when the opponent 

is a human. At a 5 percent level of significance we fail to reject the null hypothesis 

in four out of the sbc tests. In the two rejections, the human average exceeds the 

algorithm average. 

Why don't the learning algorithms, which are sensitive and responsive to oppo

nent play, generate higher payoffs than humans? The answer is twofold. First, the 

two games we consider have fairly flat payoff spaces in the mixed strategy' domains 

presented in Figures 1.3 - 1.5. Thus a pair must be far removed from the Nash 

equihbrium to generate large payoff deviations from Nash equilibrium payoffs. Sec

ond, whenever the algorithm calculates a difference between its two action scores, it 

adjusts choice probabilities without assessing whether this difference is statistically 

significant. If this difference is not statistically significant, then there is no adjustment 

that can generate a real increase in payoff. Alternatively, an adjustment to a statis

tically significant score difference may also fail to generate a real increase in payoffs. 

Why? We have already seen that algorithms adjust in statistically significant ways, 

but these adjustments are relatively small in magnitude. These weak adjustments 

are the product of probabilistic choice rules, which were adopted to avoid generating 

transparent serially correlated choice patterns. 

1.6.3 Human Play Conditional On Opponent Decision Maker Type 

Past studies have demonstrated that humans play differently against Nash equilibrium 

strategies than they do against other humans. However, we also have presented 

arguments that play by learning algorithms is more responsive to opponents" decisions 

than human play is. A natural question to ask is, do humans play differently against 

learning algorithms than they do against other humans? To answer this question 
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we compare the empirical distributions of the proportions of Left play by humans 

when facing the different decision-making types as presented in the scatter plots of 

Figures L3 - L5. We report a series of Kolmogorov-Smimov two-sample goodness-of-

fit tests (hereafter denoted KS) comparing the distributions of Left play proportions 

against human opponents to Left play proportions against the alternative algorithms. 

The main result is that we can't find differences in human play except in the case 

when the human is the Row player in the Pursue-Evade game. 

Figure 1.6 shows the empirical CDFs of proportion of Left play by human Row 

players as they face human. ER, and EVVA Column decision maker types in the 

Pursue-Evade game. Additionally, the figure reports the results of Kolmogorov-

Smirnov tests of whether the Human's distribution of Left play frequencies differs 

when facing an algorithm opponent as opposed to a human opponent. Previously we 

have observed that the learning algorithms performed differently in the Colunm role 

of the Pursue-Evade game than in any other situation. This trend continues as the 

proportions of Left by humans in the Row role are significantly different when facing 

each learning algorithm than when facing another human. 

Next we consider the CDFs generated by human Column players when playing 

against Human, ER. and EWA Row decision maker types in the Pursue-Evade game. 

We see in Figure 1.7 that play against human opponents is statistically indistinguish

able from play against both EWA and ER opponents. 

Next, we turn our attention to human play in the Gamble-Safe game. Figure 1.8 

shows that human Row players' CDFs of proportion of Left play are not statistically 

different as they face Human and ER Column decision maker types. Finally, the 

CDFs and associated KS tests generated by human Column players in the Gamble-

Safe game are shown in Figure 1.9. We see that play against human opponents differs 

from play against ER opponents at the six-percent level of significance. 
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1.7 Discussion 

Through experiments in which humans play games against computer- implemented 

learning algorithms, we have established that humans do not detect nor exploit the 

estimated models' non-stationciry but rather smooth mixed strategy processes. Fur

thermore, our experiments provide a unique evaluation of the learning models by 

establishing that the models are more sensitive than humans in detecting exploitable 

opponent play. However, the models' corresponding mixed strategy- adjustments are 

systematic but too weak to increase their payoffs. 

Recall the common formulation of both the ER and EWA models. We see their 

adaptive functions generate sequences of action scores which adjust smoothly across 

periods because stage game outcomes weakly impact action scores. Furthermore, our 

experiments reveal that the learning algorithms' mixed strategies respond uniformly 

and linearly to opponents non-equilibrium action choice frequencies. The algorithms" 

uniform better responses are too weak to generate significant payoff gains. 

Our study, in conjunction with other studies, reveals a different depiction of human 

learning in games. First, through the technique of pitting humans against algorithms 

we know that humans successfully increase their payoffs (but not as much as possible) 

against non- optimal but stationary mixed strategy- play and against adaptive play 

that generates highly serially correlated action sequences. On the other hand humans 

do not exploit the subtle dynamic mixed strategy- processes of the learning models 

examined in this paper. 

Some sources of behavioral departure between learning models and humans are 

identified in experiments that elicit subjects' beliefs (Nyarko and Schotter [23]) or 

subjects' mixed strategies (Shachat [30]). Elicited beliefs are highly volatile and often 

times correspond to a belief that one action will be chosen with certainty. Similarly 

elicited mixed strategies show erratic adjustments and a significant amount of pure 

strategy play. 
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This set of stylized facts should set benchmarks which new learning models need to 

explain. Furthermore, the use of human/algorithm interactions can play an important 

role in future efforts to identify how humans adapt in strategic environments. First, 

the technique brings increased power in evaluating proposed models. Second, the 

adoption of carefully selected algorithms will facilitate further identification of human 

learning behavior. For example, one could determine the extent of human abihty 

to exploit serially correlated strategies by altering the variance incorporated in the 

probabilistic choice rule of a cautious fictitious play algorithm. In this instance, the 

algorithm is not being evaluated: rather it is a carefully chosen stimulus to yield 

informative measurements of human behavior. 
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Column player 

Row player L 

R 

L R 

1. -1 0. 0 

0. 0 2. -2 

TABLE 1.1. Pursue-Evade 
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Column player 

Row player L 

R 

L R 

2, 0 0.  1 

1.  2 1,  1 

TABLE 1.2. Gamble-Safe 



Opponent treatment 

Game treatment Human EWA ER 

Pursue-evade 40 30 30 

Gamble-safe 34 0 24 

TABLE 1.3. Number of subjects that participated in each treatment. 
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Zero-Sum Games Used In Previous Studies 
(Humans are row player. Payoffs are for row player, minimax strategy proportions are next to action names) 

Lieberman Messick 

El (.25) E2(.75) A (.556) B (.244) C (.2) 

SI (.75) 3 -I a (.400) 0 2 -1 

S2 (.25) -9 3 b(.lll) -3 3 5 

c (.489) I -2 0 

Fox Coricelli (Introduced by O'Neill) 

al (.426) a2 (.574) G(.2) R(.2) B(.2) P(.4) 

bl (.214) 6 -5 G(.2) -5 5 5 -5 

b2 (.786) .2 1 R(.2) 5 -5 5 -5 

B(.2) 5 5 -5 -5 

P(.4) -5 -5 -5 5 

TABLE 1.4. Zero-sum games used in previous studies. 



OLS Regression Results 
Computer Left Frequency = a + p* Human Left Frequency 

Game Algorithm Algorithm Human a P Adjusted F-Stat F-Stat 
Role Role (t-siat) (t-stat) R-square P-value 

Gamble-Safe RE Row Column 0.07 0.66 0.85 62.40 0.00 
(2 .11 )  (7.90) 

Gamble-Safe RE Column Row 0.75 -0.69 0.96 276.54 0.00 
(40.03) -(16.63) 

Persue-Evade RE Row Column -0.26 1 .16  0.85 82.92 0.00 

(-2.89) (9 .11 )  

Pursue-Evade RE Column Row 0.72 -0.21 0.05 1.68 0.22 
(9.40) (-1.30) 

Pursue-Evade EWA Row Column 0.28 0.29 0.29 6.64 0.02 

(3.24) (2.58) 

Pursue-Evade EWA Column Row 0.69 -0.20 0.03 1.42 0.25 
(8.85) (-1.19) 



Average Stage Game Payoffs For Decision Makers When Facing A Human Opponent 

Game Human Human's Decision Maker T-test Approx. P-value 
Role Opponent Avg. Payoff Statistic d.o.f. 

Gamble-Safe Row Human Column 1.0776 
Gamble-Safe Row RE Column 1.0786 -0.012 23 0.990 
Gamble-Safe Column Human Row 0.9888 *** *** 

Gamble-Safe Column RE Row 0.8983 2.187 25 0.038 
Pursue-Evade Row Human Column -0.6709 *•* *** 

Pursue-Evade Row RE Column -0.6829 0.498 32 0.622 
Pursue-Evade Row EWA Column -0.7205 2.312 33 0.027 
Pursue-Evade Column Human Row 0.6709 *** *** 

Pursue-Evade Column RE Row 0.6395 1.285 31 0.208 
Pursue-Evade Column EWA Row 0.6395 1.557 32 0.129 
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Column decision maker percentage left play 
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FIGURE 1.3. Gamble-Safe joint densities of proportion Left: ER interactions. 
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FIGURE 1.4. Pursue-Evade joint densities of proportion Left: ER interactions. 
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FIGURE 1.5. Pursue-Evade joint densities of proportion Left; EWA interactions. 
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Opponent type: 
human 
reinforcement 
ewa 

r 
—r-
0.8 0.0 0.2 0.4 0.6 1.0 

Proportion left 

Dist. Left when facing 

Human tested against 

dist. Left when facing: KS statistic P-value 

ER 0.567 0.005 

EWA 0.633 0.001 

FIGURE 1.6. Distributions of Left by Human Row players in Pursue-Evade. 
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FIGURE 1.7. Distributions of Left by Human Column players in Pursue-Evade. 
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Opponent type: 

human 
reinforcement 

Proportion left 

Dist. Left when facing 

Human tested against 

dist. Left when facing: 

ER 

KS statistic P-value 

0.183 0.952 

FIGURE 1.8. Distributions of Left by Human Row players in Gamble-Safe. 
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FIGURE 1.9. Distributions of Left by Human Column players in Gamble-Safe. 
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Chapter 2 

INFORMATION PROCESSING AND LEARNING MODELS 

2.1 Intr oduct ion 

Theoretical and experimental research on out-of-equilibrium behavior, or "learning." 

in strategic situations has largely fallen into two classes of models, reinforcement 

learning models and belief learning models. The two classes of models make quite 

different assumptions about the information on which participants base their choice of 

action. Previous experimental research has attempted to discriminate between these 

two clcisses of learning models via an indirect, inferential approach that uses subjects' 

observed action choices to estimate the models' parameters. 

We report here on a different, more direct approach: an experiment in which 

subjects choose which kind of information they wish to see - either the information 

required for reinforcement learning, or the information required for belief learning. 

Thus, we can directly observe whether a subject has the information necessary for his 

fictions to be generated by one kind of learning model or the other. Moreover, it is 

natural to assume that had the subject instead been given both kinds of information, 

the decision process he would have employed would be more accurately described by 

the models that are consistent with the information he chose than by the models 
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that are inconsistent with the chosen information.' The results of the experiment 

suggest that wliile neither kind of information is chosen exclusively, subjects most 

often choose information that is consistent with belief learning and inconsistent with 

reinforcement learning. Moreover, the extent to which subjects choose one kind of 

information or the other is influenced by the amount of "free" information they are 

provided. 

The fundamental character of belief learning models (some examples of which are 

fictitious play, cautious fictitious play, and Bayesian learning models) is that a player 

will use his opponent's past actions to form an estimate, or forecast, of the action 

the opponent will choose at the current play." The player is then assumed to use this 

forecast, together with his own payoff function, to determine, either deterministically 

or stochastically, a "good" action for himself. By contrast, reinforcement learning 

models (a recent example is the model introduced by Erev k. Roth [8]), assume that 

a player chooses his current action by reviewing the payoffs he has obtained from 

the actions he has taken in the past, and by then choosing with a greater propensity 

those actions that have produced higher average payoffs. 

Notice that the information required in order for a subject to be able to carry out 

the prescribed decision-making process differs markedly in the two kinds of model. 

In the belief model the player must know the actions taken by his opponent in the 

past, and he must know his own paj'off function (which includes his own and his 

'To put it another way, it's as if, when choosing one kind of information in the e.\periment, a 

subjcct is effectively choosing to use the associated learning model. 
"For simplicity, we couch our description of learning models in the two-person conte.xt. 
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opponent's action sets, as well as his own payoff at each pair of actions). He need not 

know his own past actions nor the payoffs he has obtained in the past. By contrast, 

in the reinforcement model the player must know which actions he has taken in the 

past and the payoffs the actions have produced, but he need not know his own (or 

his opponent's) payoff function, nor the actions his opponent has taken in the past. 

Thus, the two kinds of information are mutually exclusive.^ 

The experiment we report uses a simple two-person constant-sum ("strictly com

petitive") 2x2 game in which there is just one equilibrium, in mixed strategies. The 

game matrix is depicted in Figure 2.1; the matrix was always available for subjects 

to view. The game was played repeatedly by fixed pairs of subjects. After every 

ten plays, each subject was given the opportunity to request information about the 

history of play. He could request information about the history of his own actions 

and the payoffs they achieved for him ("Own Inf"), or information about the history 

of his opponent's actions ("Opp Inf"). Or he could request no information at all. 

Note that Own Inf is precisely the information a player needs in order to choose 

according to reinforcement models, but it is insufficient to enable a player to choose 

according to belief models. Conversely, Opp Inf is the information (along with his 

payoff table) a player needs in order to choose according to belief models, and it is 

inadequate for choosing according to reinforcement models. 

Of course, players may be able to remember their own actions without periodically 

receiving the information again. And if they are also told, at the conclusion of each 

^This is not to say. of course, that one couldn't use one kind of information to make at least 

partial inferences about the other kind of information. 
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play, what action their opponent has taken, then they have (and they may be able 

to remember) all the information required for either kind of model. Consequently, 

two alternative variations in treatment were implemented, which hmited the amount 

of "free" information a subject was provided: information that was provided after 

each play in one treatment (such as the subject's own realized payoff, or his oppo

nent's action) could be obtained in another treatment only as part of the requested 

information provided at ten-play intervals. 

We present the following summary of our main results. Subjects exhibit a strong 

preference for information required by belief learning, as opposed to that needed by 

reinforcement learning. While this result is not evident in our full information con

dition, we find strong support for the finding when subjects are provided with lesser 

amounts of information. Additionally, we find evidence against Nash equilibrium 

play. However, we find play to be positively serially correlated (even more when less 

information is provided to subjects). This finding is at odds with previous work that 

identified strong negative serial correlation of play. 

We describe briefly three of the most salient previous papers that have attempted 

to discriminate between reinforcement and belief models. All three papers use sub

jects' observed action choices to estimate parameters of the alternative models. Erev 

& Roth [8] introduce a multi-parameter model of reinforcement learning and find 

that the model, when estimated, characterizes observed play better than alternative 

behef models.Camerer & Ho [2] introduce a multi-parameter model that combines 

•"The following belief models were considered by Erev and Roth: deterministic fictitious play, 

probabilistic fictitious play, probabilistic fictitious play with an e.xponential response rule, and simple 
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elements of both reinforcement and belief learning, and they report that their hybrid 

model performs better than either of the pure models. Feltovich [9] finds that on 

some criteria a reinforcement model better reflects observed action choices, and on 

other criteria a belief model performs better. Clearly, there is no consensus regarding 

the model type that more accurately explains human behavior. 

Using subjects' observed action choices to estimate the parameters of alternative 

models does not directly reveal the process by which subjects made their decisions, 

and in particular it does not reveal the information the subjects used. Instead, the 

decision process and the information it used are inferred. But this inferential approach 

typically becomes extremely tenuous as soon as there are more than a handful of 

decision periods, because the models' predictions quickly become much less precise 

as the number of periods increases. 

In a cleverly designed Matching Pennies experiment Mookherjee k Sopher [20] 

attacked this problem by controlling the information available to subjects in two 

alternative treatments: in Treatment I the Matching Pennies payoff matrix was re

vealed to the subjects, and in Treatment 2 it was not revealed. Recall that one's 

own payoff function is required in belief models but not in reinforcement models. In 

each treatment the subjects were told their own payoffs after each stage of play, but 

were told nothing else about how play had proceeded. Thus, in Treatment 1 a sub

ject could always infer which action his opponent had just taken, but he had no way 

of knowing this in Treatment 2. Consequently, each time a subject was required to 

best reply. 



make a choice in Treatment 1, he had been given, over the course of previous play, all 

the information he would need in order to choose according to either a belief model 

or a reinforcement model. In Treatment 2, on the other hand, he had been given 

all the information required for adhering to a reinforcement model, but none of the 

information required for belief models. 

Mookherjee Sopher found that in Treatment 2. where information required for 

belief models was not available, a reinforcement model described observed choices 

better than belief models. But in Treatment 1. where adequate information for using 

either model was available, subjects did not play according to reinforcement models or 

belief models, and indeed there was Uttle evidence to reject minimax play - i.i.d. play 

at the 50-50 equilibrium rate. Play was thus clearly different in the two treatments, 

and Mookherjee & Sopher suggest that the difference in play "constitutes strong 

evidence that information regarding the opponent's choices does alter the nature 

of play." It's not so clear, however, that this is the appropriate interpretation of 

their results. Perhaps it is knowledge of the payoff matrix that influences play, in 

the following way: in Treatment 1, where subjects know the payoff matrix, perhaps 

they recognize that they need to play unpredictably, mixing at a roughly 50-50 rate 

between Heads and Tails. This is the kind of behavior that has been observed in 

past Matching Pennies experiments, and researchers have often avoided using the 

pure Matching Pennies game in experiments just because there is evidence that 50-50 

unpredictable play is focal. 

Our own experiment utilizes a 2 x 2 game in which the unique equilibrium requires 
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each player to play Left 2/3 of the time and Right 1/3 of the time. Subjects were at 

all times provided with the complete payoff matrix. Where M&S in one treatment 

withheld the information required for belief learning (rendering subjects unable to 

choose according to belief models), and in the other treatment made both kinds of 

information available (so that it is difficult in this case to determine which model bet

ter describes the observed behavior), our experiment instead partitions the two kinds 

of information exactly and then allows a subject to choose which kind of information 

he will have. Thus, while we still cannot observe how the subjects process their infor

mation to reach a decision, we can at least see what information they choose and. by 

extension, which kind of model they could be using. Moreover, this approach allows 

us to identify- one model or the other without the need to estimate any parameters. 

The remainder of the paper is organized as follows: First, we briefly discuss both 

the belief-based and reinforcement learning models, and establish the differing infor

mational requirements. Next, we explain our experimental design and describe our 

information conditions. Finally, we present our experimental results. 

2.2 Theory 

We now more clearly define both reinforcement and belief learning, and show how the 

information required by each model is mutually exclusive. To simplify the discussion, 

we assume two players are repeatedly playing a 2 x 2 normal form game in which the 

players' payoff functions are denoted by and TTO. We index the plays by t, and we 

denote player i's action at t by an and his payoff at t by Zu: zu = TTt{ait,aot). 
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According to each theory, a player's action at t is determined by a mixture (which 

is a probability measure) over the player's set of possible actions, and this mixture 

is written for player i at time t as an- Note that this allows for a theory in which 

players don't actually mix. by specifying that players use only degenerate mixtures. 

In each theory, a player's mixture at play ^ -h 1 is somehow determined by the historij 

of play over the first t repetitions, ((AI^. AAR). (~IT--2r))r=i- The difference between 

reinforcement theories and belief-based theories lies in the way the players" mixtures 

are determined from histories. 

According to belief learning. Player 1 forecasts his opponent's next play mixture 

and formulates his own mixture based on this forecast.^ He uses his observations of 

Player 2's past play to generate the forecast, and thus to generate his own mixture 

in the following manner; 

Forecast of cro.t+i ; = faWi.i-^ • • • • o-2.t) 

Mixture by Player 1: cri.^+i = 5B(CT2.£+i) 

Note that belief learning implies Player I's mixture is formed using only qot and not 

a i r .  - I r .  o r  Z o r -

In contrast, the idea of reinforcement learning is that actions resulting in higher 

payoffs tend to be chosen more often. Specifically, each of Player i's actions has 

an associated latent propensity. These propensities serve as a relative value of each 

action, and are used to formulate play mixtures. After each play of the game. Player 

^Without loss of generality, we e.xplain the learning models by using Player 1 as the decision 

maker. 
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I's propensities are adjusted according to the relative success of the action. Rein

forcement learning is expressed for Player 1 as: 

Mixture by Player l:cri.t+i = /iff(ai.i, ai.(;-i.i -i.t) 

VV'e see that reinforcement learning implies Player Ts mixture is formed with ai- and 

ri-. but not a^r or 

We see that Belief and Reinforcement learning require two distinctly different sets 

of information to formulate actions. Behef learning requires knowledge of the past 

actions of one's opponent(s). while reinforcement learning requires the knowledge of 

ones own past actions and associated payoffs. If either model is in fact an accurate 

description of how humans actually learn to play strategic games, then we ought to 

observe systematic preference for the model's required information. The next section 

explains the design of an experiment whose purpose is to test the existence of these 

informational preferences. 

2.3 Experimental Design 

Our goal is to design an experiment that will allow subjects multiple opportunities to 

select exclusively between information needed for reinforcement learning and infor

mation needed for belief-based learning. The opportunity to view either of the two 

information types will be provided at regular intervals throughout the experiment. 

The exact nature of the available information will depend on the treatments in use, 

as described below. 
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While we are interested in what information is used, we must be aware that 

perhaps people can "internalize"' the needed information from reported stage game 

results. Because of this possibility, we need to restrict the level of information provided 

to the point that subjects must consult the history reviews in order to obtain needed 

information. That is, we want to increasinglj' restrict information to the point that 

subjects must actively seek it out. 

2.3.1 The Game 

The game used in this experiment is shown below in Figure 2.1. This game yields 

a constant sum of 20. Even though the game is not symmetric, it has a unique 

symmetric mixed-strategy equihbrium of each player selecting "L" with probability 

2/3, and 'R' with probability 1/3. Further, in equilibrium, the expected value of 

playing the game for each player is 10. 

Subjects selected for this experiment were undergraduates at the University of 

Arizona. Each session involved a subject being randomly and anonymously matched 

with the same opponent for 200 repetitions of the game. Each experimental session 

consisted of several pairs of subjects simultaneously playing the game, so that no one 

would know with whom he was matched. 

2.3.2 Review of histories 

After every 10 repetitions of the game, each subject was given the opportunity to 

review history information of either his own actions and associated payoffs, or his 



60 

opponent's actions. Thus, each subject had the opportunity to review information 

relevant to belief learning or reinforcement learning. If a subject chose to review 

Own Inf. then he would see the sequence of his individual actions and associated 

payoffs, as well as aggregate statistics of his average payoff from choosing both "Left" 

and "Right". Alternatively, if a subject chose to review Opp Inf. he would see the 

sequence of his opponent's past moves, as well as the count of his opponent's "Left' 

and "Right' actions. Notice that a subject's own payoff information wtis only given 

when he selected Own Inf. as own payoflF information is relevant to reinforcement 

learning but not belief learning. 

Each subject had the choice of how many periods back to review. After a subject 

selected which type of information to review, he was given the option to review the 

last n periods, where n ranged from zero to the current number of completed periods. 

The default history length was set at zero periods, as this allowed us to capture 

subjects who did not actually review either type of information. 

While it is possible that selecting to view Own Inf could in fact allow for a subject 

to deduce his opponent's actions as well, we do not believe this to be likely. According 

to the two alternative learning models, each model views the information needed by 

the other as irrelevant. Thus, if a subject was indeed adhering to behavior implied 

by either reinforcement or belief-based learning and ignoring the information needed 

by the other model, then it seems Hkely that the subject would choose to directly 

view the relevant information, as opposed to viewing irrelevant information simply to 

deduce needed information. 
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2.3.3 Stage game information 

Because it is possible that subjects can obtain all needed information from reported 

stage game results and thus will opt not to review either type of information, we em

ployed alternative information environments that would compel subjects to actually 

seek needed information. Thus, we allowed the reporting of stage-game results, as 

well as the running balance, to be a treatment. Note that removal of the running 

balance was necessary, as a subject could easily use it to discern the outcome of 

each repetition, and infer his opponent's action, by observing the change of his total 

balance. 

By removing the display of stage-game results, the onlj' way a subject could 

ascertain either his opponent's actions or his o\vn outcomes was to review past history 

information. While it is true that this procedure in essence forces subjects to select 

past play information, it is nonetheless the case that if one type of history information 

is more useful, then we should observe its selection with a higher frequency than the 

other. 

2.3.4 Own payoff information 

For the treatment in which stage-game results are not revealed, subjects must review 

history information in order to obtain play information. Consequently, if a subject 

opts to review his opponent's history of play, he will be unable to observe his own 

aggregate performance. While belief-based learning does not formally require any 

knowledge of one's own payoff information, it is somewhat unusual in game theoretic 
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experiments to not report monetary' earnings to a subject after each play. 

To address this issue, we introduce the treatment of revealing a subject's owm 

payoff Information when viewing Opp Inf. This additional information is extraneous 

to both belief-based learning as well as reinforcement learning. However, it does allow 

for a subjects to observe his earnings information while choosing to view opponent 

actions, and thus perhaps "balances" the two types of history reviews in the eyes of 

the subjects. 

2.3.5 Information Conditions 

A 2 X 2 treatment design was used in this experiment. A total of 164 subjects 

participated in this study. Figure 2.2 displays how many pairs of subjects participated 

in each of the four cells of our 2x2 treatment design. Additionally, this table 

establishes the naming convention used to refer to the different information conditions. 

Each information condition is referred to as "Condition n" where n represents the four 

different cells in the table. 

2.4 Experimental Results 

The results reported in this section can be summarized as follows: (1) When stage 

game results are freely revealed, subjects have no clear preference for a specific form 

of review information. However, when stage game results are not revealed, subjects 

exhibit a strong preference for reviewing Opp Inf. (2) In general, subjects do not 

play the Nash equilibrium mixture. (3) Similar to previous studies, we find our 
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subjects exhibiting serially correlated play. However, while previous work has found 

that subjects tend to generate negatively serially-correlated play, we find our subjects 

generating positively serially-correlated play. 

2.4.1 Information Selection 

We will now look at the observed informational preferences of the subjects. Recall 

that after ever\- tenth repetition each subject had the choice of reviewing either belief 

learning information or reinforcement learning information. Although subjects were 

forced to choose only one of these two information types, the subject then had the 

choice of how many repetitions into the past he wanted to review. The default history 

review length was zero periods, thus subjects not wishing to review any information 

could simply exert the least effort and select the default settings in order to not review 

any information. We categorize subject information selection into three types: Opp 

Inf, Own Inf. and 'None" which represents selecting a history view containing the 

default of zero periods. 

Figure 2.3 reveals the percentages of information selection by type within each 

condition. We see that when subjects are shown results after each stage game, there 

is no definite preference for either information type over the other. Indeed, in both 

Condition 1 and Condition 2, each of the three review types are selected roughly one-

third of the time. A plausible explanation of this is that a significant portion of the 

subjects are able to sufficiently internalize memory and processing of the results that 

were presented after each stage game. Figure 2.4 supports this assertion by showing 
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that subjects spend roughly forty-five percent more time viewing histor\- information 

when stage-game results are not shown, as opposed to when they are shown. 

We see that information preferences are dramatically different when subjects are 

not provided with results after each stage game. The frequency of viewing no infor

mation falls from about one-third to near zero. This strongly suggests that subjects 

were indeed using the data freely provided to them after each stage game. When the 

data are no longer available, subjects actively seek it out during the review period. 

Thus, by not revealing the stage-game information, we have induced a state in which 

the subjects can be expected to rely upon the history review sessions to obtain the 

information they need for making their strategic decisions. 

We will now discuss Condition 3 and Condition 4 in greater detail. We first 

consider Condition 4. and see that subjects selected Opp Inf 57 percent of the time, 

while selecting Own Inf only 41 percent of the time. Recall that when a subject 

selected Opp Inf in this condition, he received no information regarding his own 

earnings. Thus, we see an overall preference to view information regarding one's 

opponent, even to the extent that the viewer is not informed of his own performance. 

One could argue that the subject could remember his own moves, and then by viewing 

Opp Inf, he could infer his own earnings. However, this information could be obtained 

much more directly by simply choosing to view his own information. 

When we allow subjects to see own payoff information while reviewing Opp Inf 

in Condition 3, we see a drastic change in information preferences. Specifically, the 

frequency of viewing Opp Inf increases to 74 percent, and the frequency of selecting 
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Own Inf falls to 22 percent. Perhaps subjects prefer a minimal amount of information 

regarding their own earnings, even when engaged primarily in belief learning behavior. 

While this apparent preference for belief learning information presented in Fig

ure 2.3 is revealing, it does not distinguish whether each subject consistently selected 

the same type of information, or instead alternated review choices during the nine

teen review opportunities. To better address this issue, we determine the number of 

subjects within each condition who selected primarily one type of information during 

the course of the experiment. Figure 2.5 reports the number of subjects that selected 

the same information type at least seventeen of the nineteen times. 

It is clear that revealing stage game results discriminates whether subjects prefer 

primarily one type of review information. Specifically, when stage game results are 

displayed in Conditions 1 and 2, few subjects relied upon only one review information 

type across the span of the experiment. Indeed, combining the similar results of both 

Condition 1 and Condition 2, we see that only fourteen of seventy (20.0%) subjects 

relied upon primarily one type information. Of the fourteen who did, three selected 

belief learning information, five selected reinforcement learning information, and six 

did not use either type of information. Perhaps the requisite information needed for 

strategic decision making was gathered easily enough from the stage game results. 

However, when no stage-game results were displayed, we see an extreme prefer

ence for belief learning information. Neither Condition 3 nor Condition 4 has any 

subjects completely forgoing review information during review opportunities. Fur

ther. when looking at Condition 4, we see that fifteen of thirty-eight (40%) subjects 
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relied mainly on belief information, while only six of thirty-eight (16%) relied mainly 

on reinforcement information. Thus, subjects were two-and-a-half times more likely 

to review belief learning information over reinforcement information, even when this 

consistently left them without knowledge of their own earnings during the course of 

the game. 

When subjects are given a means to assess their aggregate earnings while viewing 

behef information, in Condition 3 we see an extreme increase of the preference for 

viewing belief information. In this case, thirty-five of fifty-six (63%) subjects primarily 

viewed belief information, while only four of fifty-six (7%) subjects viewed primarily 

reinforcement information. Subjects were almost nine times more hkely to prefer belief 

learning information than reinforcement information as a primary form of information 

to review. 

Summarizing, subjects significantly preferred belief information over reinforce

ment information. However, subjects seem to obtain sufficient strategic information 

from stage-game feedback to render both belief and reinforcement information review 

as redundant and somewhat unnecessary. Only when stage-game feedback is withheld 

do we see an extreme preference for belief information. 

2.4.2 Observed Play Mixtures 

Tables 2.1 - 2.4 report the pair-level action frequencies from the experiment. Each 

table corresponds to one of the four treatment conditions, and each row within a table 

corresponds to a specific pair of subjects. The first column identifies the specific pair. 
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Columns two through five list the observed outcome frequencies. Columns six and 

seven give the frequencies with which the Row and Column player, respectively, played 

Left. Columns eight through ten report the results of statistical tests, to be explained 

immediately below. 

To address the question of whether subjects' play adheres to the predictions of 

Nash equilibrium theory, we conduct a x' goodness of fit test on the observed out

come frequencies of each game against the expected outcome frequencies according 

to the equihbrium mixture of each player mixing two-thirds Left and one-third right. 

Column eight reports the resulting p-value from the x~ t^^st on each game session. 

We see that 66 of the 82 pairs (81%) have their play rejected as being generated 

by the Nash equilibrium frequencies at the 5% significance level. Further, when we 

condition the x' test results on whether stage-game results were revealed, we see that 

23 of the 35 (66%) pairs that do see stage game results reject the test at the 5% level 

of significance, while 43 of 47 (92%) pairs that do not see the results reject at the 

5% level of significance the null hypothesis that play is generated by the equilibrium 

frequencies. Clearly, this is support that many subjects are not adhering to the play 

frequencies predicted by Nash equilibrium theory. Further, it appears that masking 

stage-game results leads to an even greater number of subjects not playing according 

to Nash equilibrium frequency predictions. 

The aforementioned x' tests jointly consider whether both subjects in a game are 

playing predicted equihbrium frequencies. To ailow for the possibility that one subject 

may be playing his equilibrium frequency while his opponent is not, we also conduct 
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a binomial test of wliether each subject is individually adhering to the equilibrium 

frequency. Columns nine and ten report the resulting p-vaJues from these binomial 

tests for the row and column player, respectively. We see that 63 of the 82 row players 

(77%) have their play rejected at the 5% level of significance as being generated by 

the row equilibrium frequency of two-thirds Left and one-third Right. Next, we see 

that 32 of the 82 column players (39%) have their play rejected at the o% significance 

level as being generated by the equilibrium frequency of two-thirds Left and one-

third Right. Conditioning on whether subjects observe stage-game results, we see 

that when subjects see stage results, row players have their play rejected 60 percent 

of the time while column players are rejected 31 percent of the time. Moving to the 

subjects that do not see stage results, we see that row players have their play rejected 

89 percent of the time, while column players have their play rejected 45 percent of 

the time. 

The reported binomial tests indicate we have two factors that influence the sub

jects' frequency of play. Figure 2.6 summarizes the proportion of equilibrium fre

quency rejections due to the binomial test, conditioned on seeing stage-game results. 

First, we observe a role asymmetry, as the frequency with which the row player has his 

play rejected by the binomial test is approximately double that of the column player. 

Second, we see that the number of binomial test rejections is increased by about fifty-

percent when we move from subjects seeing stage-game results to not being able to 

see stage-game results. 

Given that the previous tests establish that many of the subjects are not play
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ing equilibrium frequencies at an individual level, what are the aggregate frequencies 

we observe? Across all experimental sessions, we see that row players select Left 53 

percent of the time, and column players select Left 67 percent of the time. Even 

though pair level analysis rejected the majority of subjects as not playing equilibrium 

frequencies, it appears that in aggregate, column players axe right on the equilibrium 

frequency. However, the row players are not: in fact they are much under the equilib

rium frequency prediction. Indeed, of the 82 pairs that participated in this study, the 

column player selected Left at a higher frequency than his row counterpart 76 times, 

or 93 percent of the time. This result is quite striking, and it is similar to the results 

reported by Rosenthal, Shachat, and Walker [27]. 

2.4.3 Runs Analysis 

.Mash Equilibrium theory holds that in a repeated game, the actions chosen by a 

player will be serially uncorrected. One way to test for serially correlated actions 

is to analyze the runs generated by a player.® Tables 2.5 - 2.8 report runs tests on 

each individual. Of the 164 subjects, 89 were observed selecting serially correlated 

actions according to a two-tailed runs test at the 5 percent level of significance. Of 

the 89 subjects exhibiting serially-correlated actions, 74 subjects displayed too few-

runs, and 15 displayed too many runs. 

Figure 2.8 displays the empirical distribution of p-values generated by runs tests 

^ "Given an ordered sequence of two or more types of symbols, a run is defined to be a succession 

of one or more identical symbols which are followed and preceded by a different symbol or no symbol 

at all." (Gibbons and Chakraborti [12], page 68) 
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on the actions of each subject. If subjects" actions were indeed uncorrelated. then 

the distribution plot would be indistinguishable from a 45-degree line. Clearly, this is 

not the case. In fact, the plot indicates that subjects are generating fax too few runs 

and thus selecting actions in a positively correlated manner. 

This evidence of positive serial correlation of actions contrasts with many previ

ous reports of serial correlation: O'Neill [24], Rapoport and Boebel [25]. as well as 

Mookherjee and Sopher [20] all report negative serial correlation of action choices. 

Only Rosenthal, Shachat, and Walker [27] reports evidence of positive serial correla

tion of action choices in a two-person normal-form game. 

2.5 Discussion 

This work does not definitively conclude whether reinforcement or belief learning is 

the better description of human behavior in strategic games. However, by directly 

observing subject information selection during the play of a repeated game, we can 

confidently state that subjects tend to select information that is consistent with belief 

learning. Although, this tendency exists only when the information is needed: when 

all information is revealed to subjects, no type of information is preferred. Only 

when information is withheld from subjects do we see a systematic preference for the 

information required by belief learning. 
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Reveal period results 
Yes No 

Condition 2 Condition 3 

Reveal own earnings Yes 16 pairs 28 pairs 

when reviewing Opp Inf Condition 1 Condition 4 
No 19 pairs 19 pairs 

FIGURE 2.2. Number of subject pairs in each condition. 



Reveal period results 

Yes No 

Condition 2 Condition 3 

None 36% None 4% 

Yes Opp Inf 29% Opp Inf 74% 

Reveal own earnings Own Inf 36% Own Inf 22% 

when reviewing Opp Inf Condition 1 Condition 4 

None 27% None 2% 

No Opp Inf 36% Opp Inf 57% 

Own Inf 37% Own Inf 41% 

FIGURE 2.3. Summary' of Review Choices 
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Reveal period results 

Yes No 

Condition 2 Condition 3 

Yes Opp: 9.6 Opp: 14.7 

Reveal own earnings Own: 10.3 Own: 13.5 

when reviewing Opp Inf Condition 1 Condition 4 

No Opp: 9.6 Opp: 14.1 

Own: 10.8 Own: 14.7 

FIGURE 2.4. Average number of seconds spent reviewing summary information. 
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Reveal period results 

Yes No 

Condition 2 Condition 3 

None 3 None 0 

Yes Belief 1 Belief 35 

Reinf. 2 Reinf. 4 

Reveal own earnings (32 subjects) (56 subjects) 

when reviewing Opp Inf Condition 1 Condition 4 

None 3 None 0 

No Belief 2 Behef 15 

Reinf 3 Reinf. 6 

(38 subjects) (38 subjects) 

FIGURE 2.5. Number of subjects who selected the same information type at least 17 

of the 19 times. 
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Reveal period results 

Yes No 

Row: 60.0% 

Col: 31.4% 

Row: 89.4% 

Col: 44.7% 

FIGURE 2.6. Proportion of subjects whose play is rejected as NE according to the 

binomial test. 
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Reveal period results 

Yes No 

Row: 56.2% 

Col: 66.5% 

Row: 50.7% 

Col; 67.8% 

FIGURE 2.7. Porportion of Left play. 
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FIGURE 2.8. Empirical distribution of p-values generated by runs tests on each 

subject. 



Pair 
"M 
102 
103 
104 
105 
106 
107 
108 
109 
110 

111 
112 

113 
114 
115 
116 
117 
118 
119 

79 

Action Profile Ratio Left Binomial 
LL RL LR RR Row Col NE test row col 

85 43 48 24 0.665 0.640 0.886 0.507 0.233 
60 71 32 37 0.460 0.655 0.000 0.000 0.389 
78 51 55 16 0.665 0.645 0.088 0.507 0.281 
69 61 36 34 0.525 0.650 0.000 0.000 0.333 
65 64 39 32 0.520 0.645 0.000 0.000 0.281 
44 72 35 49 0.395 0.580 0.000 0.000 0.006 
70 58 43 29 0.565 0.640 0.016 0.002 0.233 
94 38 38 30 0.660 0.660 0.180 0.447 0.447 
43 57 42 58 0.425 0.500 0.000 0.000 0.000 
57 55 41 47 0.490 0.560 0.000 0.000 0.001 
81 65 31 23 0.560 0.730 0.003 0.001 0.977 
78 64 29 29 0.535 0.710 0.001 0.000 0.917 
69 54 39 38 0.540 0.615 0.000 0.000 0.071 
89 55 45 11 0.670 0.720 0.042 0.566 0.955 
96 46 36 22 0.660 0.710 0.526 0.447 0.917 
39 98 20 43 0.295 0.685 0.000 0.000 0.732 
33 73 37 57 0.350 0.530 0.000 0.000 0.000 
78 53 43 26 0.605 0.655 0.299 0.039 0.389 
66 56 40 38 0.530 0.610 0.000 0.000 0.053 

TABLE 2.1. Condition 1 pair-level analysis. 



Pair 
W 
202 

203 
204 
205 
206 
207 
208 

209 
210 
211 
212 

213 
214 
215 
216 

80 

Action Profile Ratio Left x~ Binomial 
LL RL LR RR Row Col NE test row col 
72 58 49 21 0.605 0.650 0.049 0.039 0.333 
92 52 27 29 0.595 0.720 0.016 0.020 0.955 
86 61 30 23 0.580 0.735 0.012 0.006 0.985 
71 70 24 35 0.475 0.705 0.000 0.000 0.891 
84 50 35 31 0.595 0.670 0.092 0.020 0.566 
88 41 47 24 0.675 0.645 0.904 0.625 0.281 
54 48 39 59 0.465 0.510 0.000 0.000 0.000 
87 53 40 20 0.635 0.700 0.502 0.190 0.859 
94 52 36 18 0.650 0.730 0.263 0.333 0.977 
124 38 23 15 0.735 0.810 0.000 0.985 1.000 
86 45 39 30 0.625 0.655 0.322 0.121 0.389 
91 44 41 24 0.660 0.675 0.927 0.447 0.625 
88 50 29 33 0.585 0.690 0.010 0.010 0.780 
92 51 36 21 0.640 0.715 0.432 0.233 0.938 
99 57 23 21 0.610 0.780 0.002 0.053 1.000 
54 92 32 22 0.430 0.730 0.000 0.000 0.977 

TABLE 2.2. Condition 2 pair-level analysis. 



Pair 
W 
302 
303 
304 
305 
306 
307 
308 
309 
310 
311 
312 
313 
314 
315 
316 
317 
318 
319 
320 
321 
322 
323 
324 
325 
326 
327 
328 

81 

Action Profile Ratio Left x' Binomial 
LL RL LR RR Row Col NE test row col 
55 94 11 40 0.330 0.745 0.000 0.000 0.993 
44 74 42 40 0.430 0.590 0.000 0.000 0.014 
106 53 26 15 0.660 0.795 0.002 0.447 1.000 
61 66 39 34 0.500 0.635 0.000 0.000 0.190 
39 50 37 74 0.380 0.445 0.000 0.000 0.000 
55 84 28 33 0.415 0.695 0.000 0.000 0.822 
61 62 29 48 0.450 0.615 0.000 0.000 0.071 
56 77 36 31 0.460 0.665 0.000 0.000 0.507 
40 119 18 23 0.290 0.795 0.000 0.000 1.000 
141 38 16 5 0.785 0.895 0.000 1.000 1.000 
81 58 24 37 0.525 0.695 0.000 0.000 0.822 
67 80 28 25 0.475 0.735 0.000 0.000 0.985 
87 55 31 27 0.590 0.710 0.054 0.014 0.917 
73 79 27 21 0.500 0.760 0.000 0.000 0.998 
76 52 47 25 0.615 0.640 0.302 0.071 0.233 
78 67 22 33 0.500 0.725 0.000 0.000 0.968 
52 78 23 47 0.375 0.650 0.000 0.000 0.333 
61 76 18 45 0.395 0.685 0.000 0.000 0.732 
81 55 33 31 0.570 0.680 0.022 0.003 0.680 
53 71 41 35 0.470 0.620 0.000 0.000 0.094 
33 50 60 57 0.465 0.415 0.000 0.000 0.000 
68 76 25 31 0.465 0.720 0.000 0.000 0.955 
38 78 32 52 0.350 0.580 0.000 0.000 0.006 
88 71 18 23 0.530 0.795 0.000 0.000 1.000 
65 55 27 53 0.460 0.600 0.000 0.000 0.028 
59 60 39 42 0.490 0.595 0.000 0.000 0.020 
71 65 39 25 0.550 0.680 0.003 0.000 0.680 
85 67 34 14 0.595 0.760 0.001 0.020 0.998 

TABLE 2.3. Condition 3 pair-level analysis. 



Pair 

"M 
402 
403 
404 
405 
406 
407 
408 
409 
410 
411 
412 
413 
414 
415 
416 
417 
418 
419 

82 

Action Profile Ratio Left Binomial 
LL RL LR RR Row Col NE test row col 

113 59 24 4 0.685 0.860 0.000 0.732 1.000 
78 59 32 31 0.550 0.685 0.005 0.000 0.732 
72 61 46 21 0.590 0.665 0.023 0.014 0.507 
70 64 30 36 0.500 0.670 0.000 0.000 0.566 
54 64 48 34 0.510 0.590 0.000 0.000 0.014 
80 70 38 12 0.590 0.750 0.000 0.014 0.996 
85 70 24 21 0.545 0.775 0.000 0.000 1.000 
75 55 29 41 0.520 0.650 0.000 0.000 0.333 
80 83 21 16 0.505 0.815 0.000 0.000 1.000 
78 55 28 39 0.530 0.665 0.000 0.000 0.507 
56 63 35 46 0.455 0.595 0.000 0.000 0.020 
64 74 21 41 0.425 0.690 0.000 0.000 0.780 
86 68 23 23 0.545 0.770 0.000 0.000 0.999 
63 63 46 28 0.545 0.630 0.001 0.000 0.153 
72 53 45 30 0.585 0.625 0.055 0.010 0.121 
81 64 43 12 0.620 0.725 0.003 0.094 0.968 
71 51 50 28 0.605 0.610 0.080 0.039 0.053 
55 85 24 36 0.395 0.700 0.000 0.000 0.859 
49 48 56 47 0.525 0.485 0.000 0.000 0.000 

TABLE 2.4. Condition 4 pair-level analysis. 



Ratio Left Runs Runs Test Rvalue 
Pair Row Col Row Col Row Col 
101 0.665 0.640 67 89 0.000 0.288 
102 0.460 0.655 94 81 0.202 0.062 
103 0.665 0.645 85 87 0.233 0.217 
104 0.525 0.650 81 95 0.003 0.708 
105 0.520 0.645 120 82 0.997 0.059 
106 0.395 0.580 95 92 0.436 0.193 
107 0.565 0.640 98 95 0.453 0.641 
108 0.660 0.660 73 109 0.003 0.999 
109 0.425 0.500 119 89 0.999 0.051 
110 0.490 0.560 89 84 0.052 0.015 
111 0.560 0.730 73 61 0.000 0.001 
112 0.535 0.710 95 79 0.238 0.256 
113 0.540 0.615 85 73 0.017 0.000 
114 0.670 0.720 87 77 0.379 0.236 
115 0.660 0.710 78 89 0.027 0.859 
116 0.295 0.685 72 107 0.024 1.000 
117 0.350 0.530 98 96 0.843 0.278 
118 0.605 0.655 80 92 0.009 0.564 
119 0.530 0.610 85 92 0.015 0.291 

TABLE 2.5. Condition 1 runs. 



Ratio Left Runs Runs Test Pvalue 
Pair Row Col Row Col Row Col 
201 0.605 0.650 63 83 0.000 0.094 
202 0.595 0.720 62 79 0.000 0.356 
203 0.580 0.735 83 73 0.015 0.166 
204 0.475 0.705 97 64 0.322 0.000 
205 0.595 0.670 88 83 0.095 0.172 
206 0.675 0.645 98 88 0.942 0.261 
207 0.465 0.510 90 92 0.077 0.115 
208 0.635 0.700 83 74 0.060 0.039 
209 0.650 0.730 79 73 0.027 0.131 
210 0.735 0.810 76 61 0.320 0.409 
211 0.625 0.655 95 76 0.546 0.010 
212 0.660 0.675 88 87 0.356 0.421 
213 0.585 0.690 93 72 0.251 0.010 
214 0.640 0.715 90 93 0.338 0.976 
215 0.610 0.780 91 61 0.244 0.052 
216 0.430 0.730 67 69 0.000 0.034 

TABLE 2.6. Condition 2 runs. 
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Ratio Left Runs Runs Test Pvalue 
Fair Row Col Row Col Row Col 
301 0.330 0.745 53 72 0.000 0.195 
302 0.430 0.590 43 71 0.000 0.000 
303 0.660 0.795 61 35 0.000 0.000 
304 0.500 0.635 104 72 0.690 0.001 
305 0.380 0.445 83 92 0.039 0.148 
306 0.415 0.695 82 77 0.011 0.085 
307 0.450 0.615 38 76 0.000 0.002 
308 0.460 0.665 68 69 0.000 0.001 
309 0.290 0.795 44 33 0.000 0.000 
310 0.785 0.895 64 34 0.190 0.060 
311 0.525 0.695 29 37 0.000 0.000 
312 0.475 0.735 89 47 0.055 0.000 
313 0.590 0.710 66 57 0.000 0.000 
314 0.500 0.760 99 73 0.416 0.468 
315 0.615 0.640 95 71 0.488 0.000 
316 0.500 0.725 63 58 0.000 0.000 
317 0.375 0.650 67 79 0.000 0.027 
318 0.395 0.685 79 78 0.006 0.074 
319 0.570 0.680 60 109 0.000 1.000 
320 0.470 0.620 83 87 0.007 0.123 
321 0.465 0.415 67 81 0.000 0.008 
322 0.465 0.720 95 76 0.238 0.179 
323 0.350 0.580 23 76 0.000 0.001 
324 0.530 0.795 84 79 0.011 1.000 
325 0.460 0.600 122 111 0.999 0.984 
326 0.490 0.595 104 122 0.692 1.000 
327 0.550 0.680 87 77 0.037 0.045 
328 0.595 0.760 45 36 0.000 0.000 

TABLE 2.7. Condition 3 runs. 
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Ratio Left Runs Runs Test Pvalue 
Pair Row Col Row Col Row Col 
401 0.685 0.860 28 9 0.000 0.000 
402 0.550 0.685 104 65 0.740 0.000 
403 0.590 0.665 95 70 0.371 0.001 
404 0.500 0.670 38 73 0.000 0.006 
405 0.510 0.590 72 135 0.000 1.000 
406 0.590 0.750 42 35 0.000 0.000 
407 0.545 0.775 115 20 0.986 0.000 
408 0.520 0.650 77 116 0.000 1.000 
409 0.505 0.815 44 54 0.000 0.055 
410 0.530 0.665 59 38 0.000 0.000 
411 0.455 0.595 93 48 0.170 0.000 
412 0.425 0.690 55 69 0.000 0.003 
413 0.545 0.770 91 13 0.107 0.000 
414 0.545 0.630 90 61 0.083 0.000 
415 0.585 0.625 103 86 0.785 0.106 
416 0.620 0.725 42 40 0.000 0.000 
417 0.605 0.610 49 66 0.000 0.000 
418 0.395 0.700 78 76 0.004 0.075 
419 0.525 0.485 135 124 1.000 1.000 

TABLE 2.8. Condition 4 runs. 
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Chapter 3 

THE GROVES-LED YARD MECHANISM IN DISCRETE 

STRATEGIES 

3.1 Introduction 

When a theoretical model is implemented in the laboratory or the field. Ciireful at

tention must be paid to any deviation between the implementation and the theory. 

If any premise of the theory is altered when designing the implementation, then it is 

possible that a conclusion of the theory will no longer hold. In particular, strategy-

spaces are continuous in the theoretical specifications of many economic mechanisms. 

However, when these mechanisms are implemented, strategy spaces are generally dis

crete. Whether discrete strategy sets at all alter the properties of an implemented 

mechanism is often not even considered, and the theoretic properties of the mecha

nism are simply assumed to still hold. 

This paper will undertake a detailed examination of the consequences of discretiz-

ing the strategy space of the Groves-Ledyard mechanism. Groves and Ledyard [14] 

has shown that this one-parameter incentive-compatible mechanism allows for financ

ing the production of public goods, such that the Nash equilibria of the mechanism 

are Pareto optimal. Moreover, given quasi-hnear preferences, the mechanism yields a 

unique Pareto-optimal Nash equilibrium. We find that with discrete strategy spaces, 

the set of Nash equiUbria is often surprisingly different than when the strategies are 

continuous. 
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To better understand the impact of allowing agents to have a discrete set of strate

gies. we take as case studies implementations of the Groves-Ledyard mechanism that 

have used discrete strategy spaces. More than one thousand computing hours on the 

University of Arizona supercomputer were used to numerically evaluate whether each 

discrete strategy profile was a Nash equilibrium. We will see that with discrete strat

egy- spaces and quasi-linear preferences, the mechanism no longer necessarily yields 

a unique Nash equilibrium. Further, by allowing the mechanism's free parameter 

to vary, we find that a unique Nash equilibrium is a special case, and not all Nash 

equilibria are Pareto optimal. 

The remainder of this paper is organized as follows. Section two will review the 

equilibria of the Groves-Ledyard mechanism with a continuous message space, where 

it is well known that the equilibria are Pareto optimal. Section three will discuss 

how Nash equilibria are calculated with a discrete message space, and will solve 

for the Nash equilibria of recent published implementations of the Groves-Ledyard 

mechanism with discrete strategy spaces. We will see how equilibria are altered once 

we allow for discrete, rather than continuous, message spaces. In section four, we 

conclude with a discussion of the implications of these results. 

3.2 The Groves-Ledyard Mechcinism 

In their celebrated 1977 paper. Groves and Ledyai'd constructed a one-parameter fam

ily of incentive-compatible mechanisms for financing the production of public goods, 

and showed that the Nash equilibria of the mechanisms are Pareto optimal. This sec

tion will review the properties of the Groves-Ledyard mechanism and explicitly show 
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the well-known results within the context of constant production costs and quasi-

hnear preferences. First, the game form will be established. Next, we will determine 

the Pareto optimal provision level. Further, we will derive the Nash equihbrium. and 

see that it is both unique and Pareto optimal. Finally, we will characterize the Nash 

equilibrium as the mechanism's only free parameter is increased. 

3.2.1 Game Form 

Given the decentralized messages of all participants, the Groves-Ledyard mechanism 

specifies the level of pubUc good production as well as each participant's share of the 

public good's production cost. Each individual i  G {1.2,.../} submits a message 

x ,  € R. the desired increment (or decrement) to the level of pubhc good production: 

X =  ̂ Xi-  Each person's preference for the public good is expressed with a quadratic 
i 

value function. This function tells us how much transferable utility person i  will 

receive if the level of the public good is X and person i incurs none of the production 

costs. We write person rs value function as 

K (X) = A.X - BiX- + Di. 

The mechanism determines the cost of the public good incurred by each par

ticipant as follows. For each participant i we say that x_, is the set of all mes

sages excluding person i's message. Further, we write = ^Xj/{I — 1) and 

a~_i = — IJ—i)'/{I — 2) for the mean and variance, respectively, of all messages, 

excluding individual i. We let c denote the constant cost of production of the public 

good. Finally, the mechanism's one free parameter is 7 > 0. We can now write 
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individual i's Groves-Ledyard cost function as 

c.(x„ x_.) = jc + ^ ~ ~ • 

Thus, after participating in the mechanism, the payoff to person i is expressed as 

7r,(xi,x_.) = Vi (X) - Ci(x.,x_,). 

3.2.2 Pareto optimal provision level 

Given quadratic valuation functions, a Pareto optimal provision level can be charac

terized by: (1) the marginal social value of a public good being equal to its marginal 

cost, and (2) no wasted resources. VVe can express this as 

^  V ( X ]  =  c .  

lei 

Since the valuation functions are quadratic, the Pareto optimal condition can be 

e.xpressed as 

- -2BiX) = c. 
iei 

Solving for the provision level in the above condition, we see that the Pareto optimal 

provision level is 

V. E.6/ A - C 

• 

3.2.3 Nash equilibrium 

To solve for the Nash equihbrium of the mechanism, we first must determine person 

i's best-response correspondence. Given person fs payoff function TT,, straightforward 
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maximization (given in Appendix A) shows person fs best-response function, x , .  as 

x.(x_.) = ai + 

where 

.4;/ - c 

2B./ + 7(/-1) 

and 

7 - 2BJ 
•' 2 B . /  +  7 ( / - I ) '  

To determine the Nash equiHbrium, we require all iigents to be simultaneously 

best responding to one another. Thus, we take the I best response functions and 

construct the following system of equations 

1 

1 1 

I 

Xi 

. 

1 1 Xo 
— 

ao 

—/?/ —3i ••• I 
. . . . 

Assuming the coefficient matrix is non-singular, this system of equations has a unique 

solution, and thus the mechanism has a unique Nash equihbrium. Appendix C dis

cusses how strictly concave value functions ensure this system of equations has a 

unique solution. 

We next determine the provision level of the unique Nash equilibrium by summing 

all I best-response functions. Letting X = Appendix B shows us 

Eiei ^ 

It is clearly seen that the provision level of the unique Nash equilibrium is equal to the 

Pareto optimal provision level. Thus, the unique Nash equilibrium is Pareto optimal. 
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3.2.4 Nash equilibrium as 7  increases 

The initial theoretical work on the Groves-Ledyard mechanism was not at all con

cerned with how different values of 7 affect Nash equilibrium. Indeed, so long as 

7 > 0. all resulting equilibria are Pareto optimal when message spaces are continu

ous. In contrast, we will see in the next section that discrete message spaces coupled 

with large values of 7 will result in non-Pareto-optimal equilibria. However, we will 

first look at the effect of increasing 7 when strategy spaces are continuous. 

As discussed by Muench and Walker [22], a sufficiently large 7  will lead to all mech

anism participants submitting essentially identical messages. The Groves-Ledyard 

cost function is structured such that as 7 increases, an individual faces higher tax 

punishments for deviating from the mean of the others' messages. To be precise, 

we wi l l  analyze  what  happens  to  the  bes t - response  funct ion as  the  f ree  parameter  7  

increases. We write the hmit of the best-response function as 7 goes to infinity as 

_ Ail -c + {2BiI 
hm Ti = lim —— ——_ . 

7—oc 7—00 25;/ + 7(/ — 1) 

By applying L'Hospital's rule, we see that 

,. ^ 
= fT 

7—00 — 1) 

Thus, as 7  increases, each person's best response approaches the mean of everyone 

else's messages. Thus, sufficiently large values of 7 will lead to all participants disre

garding their own preferences and simply striving to match one another's messages, 

in order to avoid the large taxation due to deviation. Indeed, large enough values 

of 7 highlight the consequence of the mechanism not being individually rational: the 
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slightest 'wrong" message by an agent could result in a nearly infinite loss of the 

agent's welfare. 

3.3 GL Equilibria with Discrete Strategies 

The previous section shows the Nash equihbrium of the Groves-Ledyard mechanism 

is unique and Pareto optimal, given quasi-linear preferences. Recall that one of 

the premises was each agent's strategy set was the set of all real numbers. To 

better understand the consequences of discretizing the mechanism's strategy- space, 

we will now calculate the Nash equilibria of several Groves-Ledyard implementations 

that have utilized discrete strategy spaces and have been previously reported in the 

literature. 

Since the implementations under consideration did not have continuous strategy-

spaces. we can not use the calculus reviewed in the previous section to determine 

Nash equilibria. Instead, more than one thousand computing hours were utilized on 

the University of Arizona's supercomputer to numerically solve the results reported 

in this section. Software was developed to consider every possible discrete strategy-

profile and determine whether the profile was indeed a Nash equilibrium. Specifically, 

given a set of agents, each agent's quasi-linear preferences, the considered discrete set 

of messages, the constant cost of production, and the value of 7, we determine each 

agent's payoff for each message profile. If no agent's payoff can be increased by 

changing its own message, then the message profile is a Nash equilibrium. 

Two recent publications that report the implementation of the Groves-Ledyard 

mechanism with discrete message spaces are Chen and Plott [4] (hereafter CP) as 
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well as Chen and Tang [5] (hereafter CT). Both CP and CT report experiments that 

were designed, in part, to study the consequences of using different values of 7 with 

the Groves-Ledyard mechanism. Both used five agents (/ = 5). The constant cost of 

production in CP was 5. while in CT it was 100. Also, each subject had a different 

quadratic value function for the public good, as reported in Table 3.1. 

The strateg}' spaces used by each of these implementations were as follows. Each 

agent in CP each had a strategy set consisting of 9 different messages, namely 

{—2. —1..... 6}. Thus, CP had 9'" = 59,049 distinct strategy profiles. Each agent in 

CT had a strategy'set consisting of 51 different messages, specifically {—4, —3.8 6}.^ 

This yields 51^ = 345.025,251 different strategy profiles in the CT implementations. 

Both CP and CT used the value of 7  as a treatment variable, and allowed 7  to be 

either 1 or 100. In contrast, we will allow 7 to assume an entire range of values while 

holding all other parameters constant, so that we can better observe the properties of 

the Nash equilibria as the value of 7 is changed. Therefore, within the CP framework 

we will use 7  G {0.01,0.02 250.00}, while within the CT framework we will use 

7  6 {0.01.0.02,..., 50.00} and 7  6 {51,52,.... 5500}." Thus, given the quasi-hnear 

preferences, discrete strategy sets, and constant production costs used by both CP and 

CT. we will vary 7  and calculate every Nash equilibrium associated with each stated 

'In the CT implementations, agents actually selected from a message set where each message 

was multiplied by 5. namely (—20,—19 30}, and all formulas were appropriately scaled. This 

was done to avoid the use of fractional messages. We will ignore this transformation and work only 

with the message set that corresponds to the published formulas and parameters by CT. 
"A larger 7  interval was used for larger values of 7  within the CT implementations because of 

two reasons: (1) the Nash equilibria began to adhere to a regular pattern as 7 increased, and (2) 

calculation of the Nash equilibria requires about si.x minutes for each value of 7. and thus to continue 

using an interval of 0.01 would have required an inordinate amount of time. 
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value of the parameter, as well as the surplus generated by each Nash equilibrium. 

In general, the values of 7  under consideration do not result in a specification of 

the Groves-Ledyard mechanism with a unique Nash equihbrium. Figures 3.1 and 

3.2 graph the number of Nash equilibria as the CP and CT implementations^ assume 

all values of 7 under consideration, respectively. Logarithmic axes allow us to better 

distinguish the number of equihbria as gamma changes value. Both figures exhibit 

the same pattern of the number of Nash equilibria as 7 is increased from zero. We see 

that the number of Nash equilibria spike upward when 7 is initially increased from 

zero. Then, as 7 continues to be increased, the number of Nash equihbria decrease to 

zero. Note that the two apparent discontinuities in Figure 3.1 are due to the inability 

to graph zero Nash equilibria on a logarithmic-scaled axis. Finally, as 7 is increased 

even more, the number of Nash equilibria begin to steadily increase, although not 

surpassing the number of equilibria associated with the initial spike. 

To more clearly understand this pattern, we break it into two phases. The two 

phases are partitioned by 7", where 7* is defined as the lowest value of 7 such that all 

greater values of 7 result in at least one Nash equilibrium. Phase one corresponds to 

all 7 less than 7*, and phase two corresponds to all 7 greater than or equal to 7*. The 

value of 7* associated with the CP implementations is 5.00, while the 7' associated 

with the CT implementations is 46.67. 

Phase one is characterized by both the Pareto optimality of all Nash equilibria 

and the sheer number of these equilibria. As 7  is increased from zero, the number of 

^For the remainder of this section, we will use the term 'CP implementations' to refer not only 

to the two experimental implementations used by Chen and Plott where -> = 1 and 7 = 100. but 

also to all implementations using the previously mentioned values of 7 for which we solve the Nash 

equilibria. The same also holds for the term 'CT implementations'. 
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Nash equilibria rapidly increases. Indeed, this initial increase in the number of Nash 

equilibria results in a maximum of 29 equiUbria in the CP implementation (at 7 = 0.59 

and 7  = 0.60) ,  and 1955 equihbr ia  in  the  CT implementa t ion (a t  7  = 0.85) .  As  7  

cont inues  to  be  increased,  the  number  of  Nash equi l ibr ia  decreases  to  zero .  When 7  €  

(3.34.3.35 4.99} for the CP implementations and 7  € {35.01.35.02 46.66} 

for the CT implementations, no Nash equilibria exist. Thus, the number of Nash 

equilibria in phase one varies from 0 to 29 in the CP implementation, and more 

dramatically, from 0 to 1955 in the CT implementations. 

In Phase two, all Nash equilibrium profiles consist of all agents submitting the 

same message. When 7 is sufficiently large and messages are discrete, an agent's 

only utihty-maximizing message is the mean of the other agents' messages, and the 

only equihbrium profiles are therefore the ones in which every agent chooses the 

same message. Further, since all phase two Nash equilibria are profiles containing 

identical messages from all agents, the Nash equilibria are no longer generally Pareto 

optimal. In fact, every phase two implementation has exactly one Pareto-optimal 

Nash equilibrium. Namely, the profile where all five agents are submitting a message 

equal to one-fifth of the Pareto-optimal provision level. 

The phase two Nash equihbria follow a very regular pattern, in contrast to the 

seemingly erratic behavior observed in phase one. Initially (i.e., for small values of 

7), phase two has only one Nash equilibrium, and it is Pareto optimal. As 7 is 

increased, additional equilibria appear: each additional Nash equilibrium provides a 

non-increasing level of surplus. Further, once a specific value of 7 results in a specific 

Nash equilibrium, all larger values of 7 will also result in the same Nash equihbrium. 
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Tables 3.2 and 3.3 display the specific Nash equilibria observed in phase two. We 

see that the common message associated each non-Pareto-optimal Nash equilibrium 

progresses steadilj' away from the common message associated with the single Pareto 

optimal Nash equilibrium as 7 is increased. Likewise, the surplus generated by the 

additional Nash equilibria is steadily decreased as 7 is increased. Indeed, large enough 

values of 7 result in negative surplus levels. Eventually, a level of 7 is reached such 

that the set of Nash equihbria consists of every strategy profile in which all agents 

are submitting an identical message, with the number of Nash equihbria determined 

by the number of discrete messages contained in the message set. 

3.4 Discussion 

Given these seeming general results, care must be taken when selecting the Groves-

Ledyard parameter value to be used with discrete strategies. Indeed, an arbitrary 

parameter value could yield a multitude of Nash equilibria (including non-pareto-

optimal ones), or even no Nash equilibrium. 

Problems that may arise when one does not account for the effects of discrete 

strategy' spaces can be seen by the results of past Groves-Ledyard experiments. Both 

CP and CT report that the Groves-Ledyard mechanism performs better with a 7 of 

1 as opposed to a 7 of 100."* CT proposes that this better performance is due to 

supermodularity: when 7 is 100 in the CT setting the game is supermodular. while 

the game is not supermodular when 7  is 1 .  While this may be true, it is also true 

'Better performance was measured in various ways, such as realized efficiency and frequency of 

obtaining "the" Nash equiHbrium. 
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that in the CT sessions when 7  is 1 there are 1445 Nash equilibria, and when 7  is 

100 there is only 1 Nash equilibrium. Further, in the CP sessions a 7 of 1 results 

in 9 Nash equilibria, while a 7 of 100 results in 5 Nash equihbria. In the context of 

both the CP and CT experiments, the higher value of 7 is associated with fewer Nash 

equilibria. The better performance associated with 7 equal to 100 may not at all be 

due to supermodularity, but instead may well be due to the difference in the number 

of Nash equilibria. 

Clearly, it is imperative that we understand the implications of deviating from 

theoretical premises when implementing a model that has previously existed only in 

theory. In the case of the Groves-Ledyard mechanism, we see that discrete strate

gies can result in both a multitude of Pcireto-optimal Nash equilibria, as well as the 

presence of non-Pareto-optimal Nash equilibria. Neither of these results are to be ex

pected given casual acceptance of the theoretical results, yet nonetheless the problems 

exist. 
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V i { X )  =  -  B i X -  +  D .  

CP CT 

Subject i >1. B. Di Bi D. 

I -1 0.0 55 26 1 200 

2 5 0.5 35 104 8 10 

3 10 0.9 20 38 2 160 

4 20 1.8 0 82 6 40 

5 15 1.2 5 60 4 100 

TABLE 3.1. Value functions used in the CP and CT implementations. 
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Minimum integer value of y New profile Resulting 

needed for profile to be a NE (common message) surplus 

5 1 225 

32 2 115 

44 0 115 

83 3 -215 

88 -1 -215 

128 4 -765 

133 -2 -765 

173 5 -1535 

218 6 -2525 

TABLE 3.2. CP phase two Nash equUibria. 
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Minimum integer value of Y New profile Resutting 
needed for profite to be a NE (common message) surplus 

47 1 1035 

130 1.2 1014 

230 0.8 1014 

330 1.4 951 

430 0.6 951 

530 1.6 846 

630 0.4 846 
731 1.8 699 
830 0.2 699 
930 2 510 
1030 0 510 
1130 ZJZ 279 
1230 -0.2 279 
1331 Z4 6 
1430 •0.4 6 
1530 2.B -309 
1631 -0.6 -309 
1730 2.8 -666 
1831 -0.8 -666 
1930 3 -1065 
2031 •1 -1065 
2130 3.2 •1506 
2231 -1.2 -1506 
2331 3.4 -1989 
2431 -1.4 -1989 
2531 3.6 -2514 
2631 -1.6 -2514 
2730 3.8 -3081 
2830 -1.8 •3081 
2931 4 -3690 
3030 -2 -3690 
3131 4.2 -4341 
3231 -2.2 -4341 
3330 4.4 -5034 

343t -2.4 -5034 
3531 4.6 -5769 
3630 -2.6 -5769 
3730 4.8 -6546 
3830 •2.8 -6546 
3931 5 -7365 
4030 -3 -7365 
4130 5.2 -8226 
4231 -3.2 •6226 
4330 5.4 -9129 
4431 -3.4 -9129 
4531 5.6 -10074 

4630 -3.6 -10074 
4730 5.8 -11061 
4831 -3.8 -11061 
4930 6 -12090 
5031 •4 -12090 

TABLE 3.3. CT phase two Nash equilibria. 
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FIGURE 3.1. Number of Nash equilibria in the CP implementations. 
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FIGURE 3.2. Number of Nash equihbria in the CT implementations. 
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Appendix A 

BEST-RESPONSE CORRESPONDENCE 

Given person i's quadratic value function, we can express his Groves-Ledyard payoff 

maximization problem as 

max - B.X" + a, - yc - ^ . 

Taking the derivative of person i's payoff function and setting it equal to zero, we see 

that the maximization condition is given by the hnear equation 

.4; - 2 B i X  - J  -  ~  = 0. 

Denote the best response for person i as Xi. Thus, to determine i's best response. 

we will change Xi in the above equation to x; and solve for this term. First we will 

isolate all terms containing x,, noting that X also contains Xi'. 

r . o x r  / — 1 ^  ,  1 — 1  c  
2B,X -I- 7 J .  Xt  =  .4, + "i—j—fJ-i - J-

Next, separate x, from X to get 

+ 2Bi ̂  Xj + y^-j-^x, = /li + - J. 

Now. isolate x , and gather its terms: 

( ^ 2 B i  +  ' y — j — )  - j - 2 B i ^  X j .  

Note that /x_, = — 1), so that we can write 

\ 2 B i  + 7^^-^ ) ^ i  =  +  - J -  25i ̂  X j .  
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Collect the terms of Yljjtt 

(2B, + 7^) ?, = -4, + (J - 2B.) X, - ̂  

By dividing both sides by 2Bi + we see that i ' s  best response is 

.4i + 0 - 2Bi) Xj - J 
X i  =  

1 
2Bi + 7-

/ 

Multiplying through by /// gives a slightly reduced form of 

Xi — 

2BiI  +- f  { I  -  I)  
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Appendix B 

NASH EQUILIBRIUM PROVISION LEVEL 

To determine the provision level of the unique Nash equihbrium. we will simply sum 

the best response functions as defined in Appendix A. In order to sum all I best 

responses, we first rearrange the form of the best response function. Recall that 

person fs best response function is: 

2Bi + 7 -
- / _ 1 

Multiplying both sides of Equation B.l by 25; + 7^ ^ ^ we now have 

(2B, + S. = .-l, + (2 - 2B,) - 5 

Moving all terms with a message to the left side we see 

By collecting the 2B, terms on the left side we get 

2B,  (?. + E j ^ i  ̂ j )  + -4. - F 

Note that /x_, = 7^ and gather the 7-^ terms so that we can rewrite the 

expression as 

IBi T "J (^t A'-i) — -^I y-
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Assume that we axe in Nash equilibrium and aJl persons are simultaneously best 

responding. Further, let — 1). The expression can now be rewritten as 

2Bi  (^X,  +  ^ j )  + -  M-.)  =  -4,  -  y.  

Recall that X = We now write 

2BiX + = .4, - J. 

We now aggregate over all participants. Taking the above expression for person i. 

and summing over aJl I people, we get 

Y .  [ w S + ( X ,  -  ? _ . ) )  =  E  ( ' t .  -  7 )  •  

Rearranging this expression, we see 

E  S ' + f  E  -  E  ? - . ]  =  E  t .  -
•€/ \iel <6/ / <6/ 

Since this expression drops out, leaving us with 

2 X Y , B ,  =  Y , A . - c ^  
iei iei 

Thus, we see that the unique Nash equilibrium provision level. X. can be expressed 

as 

O E.e/ - c 
2E,e,B. • 
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Appendix C 

EXISTENCE AND UNIQUENESS OF NASH EQUILIBRIUM 

This appendix will show that if 3i = dj for all i and j. then a unique Nash equilibrium 

exists. To prove this, we first show in a lemma that 3i has absolute bounds. These 

bounds are based on: (1) the definition of the Groves-Ledyard mechanism which 

specifies that 7 is positive and I is an integer greater than 2, and (2) the assumption 

of strictly concave quadratic value functions which implies the quadratic term. Bi. is 

always positive. Then, using the lemma, we will see that a unique Nash equilibrium 

always exists. 

Lemma 1. //7 > 0. / € {3,4,...}, and Bi > 0 for all i £  {1 ,2  / } .  then 

- 1  <  A  <  

Proof. By substituting for 3i, we can write the expression as 

- K .  . <  '  
2B,/ + 7(/-1) I-I 

Since the restrictions on 7, Bi ,  and I  imply 2Bi  4- 7(/ — 1) is greater than 0 for all 

7. Bi. and I. we can multiply the expression by 2Bi + "/{I — 1) and see that 

-2B. - 7(/ - I) < 7 - 2BJ < 

We now express this compound inequality as two separate inequalities 

-2Bi  - 7(/ - 1) < 7 - 2Bi/ and 7 - 2BiI  < ~ • 
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Considering the first inequality, we see that adding 2Bi — 7  to both sides results in 

—7/ < 0. It is obvious that this is always true, as 7 and / are both always positive. 

Moving to consider the second inequality, we see that multiplying both sides by / - 1 

yields 

7(/ - 1) - 2BJ{I  - 1) < 2BJ + j{I  -  1). 

Subtracting ~f{I — 1) from both sides simplifies the expression to 

- 1) < 2BJ.  

Since both Bi and I are always positive, the above expression is always true. • 

Assuming /3i = 3 for all i. The determinant of the Ixl Nash equihbrium coefficient 

matrix is expressed as 

The Nash equihbrium system of equations has a unique solution if and only if the 

determinant of the coefficient matrix is nonzero. It is clear from the expression above 

that the determinant is zero only if /3 = — 1 or /? = ^ ^ ^. However, Lemma 1 proved 

that 3 is never equal to either of these values. Thus, strictly concave value functions 

result in the existence of a unique Nash equilibrium. 
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