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ABSTRACT 

It is shown that, if the usual assumption of synchronous rota

tion (infinitely effective tidal coupling) in semi-detached "binary sys

tems is replaced "by that of detailed conservation of angular momentum 

with negligible tidal torques, the system is predicted to evolve in a 

qualitatively different manner after the onset of mass loss. For a wide 

range of mass ratios, initial mass transfer proceeds on a nuclear rather 

than a Kelvin time scale and can last for an appreciable fraction of the 

main sequence lifetime. It is suggested that the actual evolution of 

the system is determined by the time scale of tidal interaction and that 

the mass transfer rate probably lies between the classical values and 

those found here. Possible implications of the present results for 

X-ray sources such as HZ Her are discussed briefly. 

viii 



CHAPTER 1 

INTRODUCTION 

Binary star observations have been essential to theoretical 

stellar structure calculations of single stars, because fundamental 

parameters, such as mass and radius, are most accurately determined 

from binary stars. As the understanding of stellar structure and 

evolution progressed rapidly in the last two decades with the advent of 

extremely rapid electronic computers, it became apparent that binary 

star evolution is an important field of its own for several reasons. 

First, binary stars are much more common than was formerly 

supposed. Estimates suggest that about half of all main sequence stars 

(jaschek and Gtfmez 1970) and blue giants (Batten 1967) are binary. 

Clearly, any theory of stellar evolution should account for this large 

fraction as well as describe their evolution. 

Secondly, many peculiar types of stars began to be identified 

as binaries. These included metallic-line stars (Abt 1961, 19̂ 5» Abt 

and Bidelman 1969), U Gem variables (dwarf novae) and novae (Kraft 

1962, 1963» 196̂ )> Wolf-Rayet stars (Underhill 1968), blue stragglers 

(Hoyle 196̂ , Cannon 1968, and Strom and Strom 1970) and galactic X-ray 

sources (Shklovsky 1967, Tananbaum et al. 1972). 

Finally, and by far the most influential factor stimulating 

binary star evolution studies, it was realized that as either component 

1 
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expanded with evolution, it could transfer its outer layers to its com

panion, greatly modifying the subsequent evolution of "both stars. 

Moreover, some apparent paradoxes could be explained by such mass 

transfer. Because this dissertation treats theoretical mass transfer 

rates, a brief historical survey of the discovery of mass transfer will 

now be given. A more thorough review is given by Plavec (1968). 

Historical Review 

The Roche Lobe 

Roche equipotential surfaces (Roche 18̂ 9, 1851» 1873) are loci 

of points of equal effective gravitational potential around a simpli

fied model of a binary star. The detailed assumptions and equations 

used in calculating the shapes and sizes of these surfaces will be 

discussed in Chapter 2. The critical Roche equipotential, or Roche 

lobe, is the surface enclosing both stars, shaped like the symbol 00, 

that joins them at a point (the 1̂  point) of zero effective gravity. 

Thus, any matter situated at the L1 point is equally attracted to both 

stars. 

Kuiper (19̂ 1) first noted the importance of the Roche lobe to 

binary star evolution. In this classic paper he was the first to point 

out that most stars are so centrally condensed that the Roche model 

assumption of point masses is a good approximation. Thus, surfaces of 

binary components should be approximated by Roche equipotentials. This 

means that widely separated binaries will have nearly spherical 

components, a binary pair that just fills both Roche lobes would be 



hourglass-shaped, and a pair any closer would assume the peanut-shaped 

equipotential surfaces that enclose both stars. These latter two 

cases Kuiper named "contact binaries." 

The Roche lobe is a critical factor in binary star evolution 

because it represents an upper limit to the size of either component. 

If a star tries to expand to become larger than its Roche lobe, it will 

transfer all excess matter through the inner conical point to its 

companion. This process will hereinafter be referred to simply as 

"mass transfer." If a contact binary tries to expand, it can lose 

matter from the entire system, because both lobes are already filled. 

Kuiper concluded that the spectrum of 3 Lyr showed evidence of both 

mass transfer and mass loss. 

The rate of mass transfer, effect on mass ratios, and expected 

frequency in binaries remained subjects of future investigations. The 

dramatic effect of mass transfer on binary star evolution was still 

unsuspected. 

Observational Data 

Observational evidence for mass transfer began to accumulate. 

Joy (19̂ 2, 19̂ 7) discovered a gaseous ring around RV Tauri. Spectro

grapĥ  evidence of gas flows in the form of rings, streams and shells 

was found (Struve 1950> Sahade i960), generally in systems of a main 

sequence star accompanied by a larger, less massive, cooler companion. 

These systems will be referred to as "Algol systems" after J3 Per, the 

best known example. 
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Photometric evidence for mass transfer included erratic period 

changes (Wood 1950) and perturbations in the light curve (Wood 1957). 

Wood used the Roche limit to estimate the dimensions of such systems 

and found that the secondaries must nearly fill their Roche lobes. 

Parenago (1950) showed that the secondary components were sub-

giants, i.e., overluminous and oversized compared to main sequence 

stars of the same spectral type. Moreover, if one assumed a normal 

mass for the primary, the secondary in all cases has a much smaller 

mass, often less than the sun's mass. 

Crawford (1955) plotted the subgiant radii determined by Paren

ago against the Roche limit and found that eighteen subgiants actually 

fill their lobes. Kopal (1955) also calculated dimensions of many 

eclipsing binaries and divided them into three classifications: 

detached systems, wherein neither star fills its Roche lobe, semi

detached systems, with only one component filling its Roche lobe, and 

contact binaries (using Kuiper's term) where both components fill their 

respective lobes. Kopal also found that in all cases the semi-detached 

systems were Algol systems, that is, the less massive component filled 

the Roche lobe. The evidence for mass transfer was mounting and by 

1956 it was generally accepted as occurring in these systems (Huang 

and Struve 1956). 

Algol Paradox 

Algol systems presented an apparent paradox which lay in 

explaining the past history of the secondary with current theoretical 
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stellar evolution models. Subgiants were understood to have been main 

sequence stars that had expanded with central hydrogen depletion. Per

haps the best established tenet of stellar evolution was that more 

massive stars burn their hydrogen more rapidly and hence evolve faster 

than those of lesser mass. Thus, in a binary pair, the more massive 

star should be the more evolved. But in all of the forty known Algol 

systems, the apparently more evolved subgiant was the less massive com

ponent. This paradox was serious because a secondary less massive than 

the sun should not have evolved appreciably in the entire main sequence 

lifetime of the primary. 

Crawford (1955) suggested that the present subgiant secondaries 

were originally the more massive primaries that had evolved rapidly as 

expected. After filling their Roche lobes, they transferred so much 

matter to the companion that they became the less massive. The compan

ion became a Population I main sequence star, having received a thick 

hydrogen-rich envelope, and the new secondary was left still filling 

its Roche lobe and continuing its mass transfer to its companion. 

This ingenious theory accounted for all the major features of 

the paradox, such as the reversed mass ratio and the overluminous, un-

dermassive secondary. However, it was not without opposition, because 

several important questions remained to be answered. 

Algol, with present components of about one and five solar 

masses, would have had to have transferred about seventy per cent of 

the original primary. Is such dramatic exchange physically possible? 

Could the star survive? With only a small isothermal core left, what 
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energy source would lift matter all the way to the Roche lobe? And, 

perhaps most important, why were no systems seen with a more massive 

primary either just before or during this process? Such questions led 

to alternate hypotheses (Masevic 1957> Kopal 1959> P« 536; Wood 196̂ ). 

Only actual model calculations could settle the controversy. 

Early Calculations 

Morton (i960) did the first mass transfer stability model cal

culations. First, however, he pointed out that if mass transfer occurs 

on a Kelvin (thermal) time scale, one would not expect to find even one 

Algol system in the process, because the time is shorter than the nu

clear time on the main sequence by a factor of about 103. He then 

showed that most primaries would expand enough to fill their Roche 

lobes only when crossing the Hertzsprung gap, which, in any case, oc

curs on a Kelvin time scale, thus explaining why none of these are seen 

in the process. 

There remained the non-negligible number of primaries that 

would overflow their Roche lobes while still in core hydrogen burning. 

To determine the time scale in which they would transfer mass, Morton 

used linear perturbations on the recent stellar models of Schwarzschild 

and Harm (1958). He found that on a dynamical time scale (hours) an 

inhomogeneous upper main sequence star is stable to mass transfer. 

That is, if it fills its Roche lobe and transfers some mass, that al

though the Roche lobe would contract, the star would contract much more 

and temporarily prevent further mass transfer. However, the star of 
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increased inhomogeneity would seek thermal equilibrium by expanding 

back to approximately its former radius in a Kelvin time. Because the 

Roche lobe had contracted with mass transfer, the star would again 

overflow and hence be unstable to mass transfer on a Kelvin time scale. 

This rapid mass transfer would continue until the thermal equi

librium radius was less than the equivalent radius of the Roche lobe, 

which Morton reasoned would only occur after most of the primary's 

hydrogen-rich envelope had transferred, and the star again approached 

homogeneity. The mass ratio would then be approximately reversed. 

Thus, Morton's investigation fully supported Crawford's hypothesis. 

The mass transfer would be very rapid whether it occurred on the main 

sequence or in the Hertzsprung gap. 

Smak (1962) extended the calculations to cover the primaries 

actually crossing the Hertzsprung gap, using helium core burning models, 

and arrived at the same conclusion as Morton. He also made an impor

tant correction. Morton had assumed for simplicity that the separation 

between components remained unchanged. Smak reinvoked the assumption 

of conservation of orbital angular momentum that Kuiper had suggested. 

As will be shown in Chapter 2, this assumption implies that the separa

tion decreases as mass is transferred from the more massive star, and 

then increases after the masses are equal. Thus, the size of the Roche 

lobe becomes even smaller than in Morton's calculation, causing the 

primary to be even more unstable to mass transfer. This correction 

strengthened, rather than invalidated, Morton's result. Moreover, Smak 

pointed out that after the rapid mass transfer had ceased, the helium 
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burning subgiant would continue to expand on a nuclear time scale and 

thus continue to overflow its Roche lobe. Because the mass ratio would 

now be reversed, the separation would increase with mass transfer, caus

ing the lobe to expand rather than contract. Hence, the mass transfer 

would proceed on a nuclear time scale. This process of slow mass trans

fer is presumably that presently occurring in Algol systems. 

Later Techniques 

New methods of computing stellar evolution (Henyey et al. 1959» 

Henyey, Forbes and Gould 1964) were introduced that greatly facilitated 

model calculations. By 1966 it was evident that these techniques could 

also be used to study binary star evolution. Three major groups under

took detailed calculations: that of Kippenhahn and Weigert at Gb'ttin-

gen, of Paczynski at Warsaw, and of Plavec at Ondrejov. Reviews of 

their results are given by Plavec (1968, 19?0) and Paczynski (1971). 

Briefly, they found the following. If the Roche lobe is filled 

during core hydrogen burning (case A), an Algol system is usually pro

duced after the rapid mass transfer stage (Paczyfiski 1966, Kippenhahn 

and Weigert 196?). If the Roche lobe is filled in crossing the Hertz-

sprung gap after core hydrogen exhaustion (case B), the system evolves 

differently for high and low mass primaries. For high mass ( > 2.8 M0), 

the primary, after transferring most of its envelope, ignites core hel

ium burning and returns to the helium main sequence as a detached sys

tem (Kippenhahn and Weigert 1967). 
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Case B for a low mass primary ( <2.8 M0) was perhaps the most 

interesting, in that it could produce a white dwarf (Kippenhahn, Kohl 

and Weigert 1967)- They considered initial masses of 1 M@ and 2 M0, 

separated by 6.6 Rg. The primary overflowed its Roche lobe after ini

tiating hydrogen shell burning, with an inert helium core of .23 M0, 

being too small for helium ignition. Rapid mass transfer occurred un

til the Roche lobe began to expand more rapidly than the primary, after 

g 
which slow mass transfer occurred for some 10 years. The primary then 

had mass .26 M0 and was a red subgiant of radius 10 Rq. This large ra

dius was allowed by the wide separation of 47 R@. However, the helium 

core (now 96 per cent of the mass) had a radius of only .03 RQ. Degen

eracy prevented the core from contracting further, the core cooled, and 

7 the envelope collapsed in 10 years, leaving a white dwarf. 

These calculations all confirm Crawford's original hypothesis 

(1955)» Morton's Kelvin time instability (I960), and his suggestion 

that mass exchange ends only when the primary is essentially homogene

ous and contracts. The Algol paradox is resolved (Plavec 1970), al

though some special cases are not fully understood (Kopal 1971). The 

motivation for the present research, however, was the apparent failure 

of this classical mass transfer model to satisfactorily explain certain 

recent observations, as will now be described. 
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Motivation for the Present Research 

X-ray Binaries 

Ten of the X-ray sources in the third Uhuru catalog (Giaconni 

et al. 197̂ ) are known to be "binary stars, most of them eclipsing bi

naries. Their characteristics have been reviewed by Blumenthal and 

Tucker (197̂ )« These binaries can be divided into two distinct groups, 

the Cyg X-1 group and the Sco X-1 group (van den Heuvel 1975)• 

Five members in the first group (Cyg X-1, Cen X-3> Vela XR-1, 

SMC X-1 and 3U 1700-37) have BO supergiant or Of primaries of about 

20-30 solar masses, which cannot be coincidental because of the extreme 

rarity of such massive stars. Another probable member, Cir X-1, has 

eclipses of one day duration and rapid variations similar to Cyg X-1, 

suggesting that it may have a similar primary although none has been 

identified. The second group consists of Sco X-1, Her X-1, Cyg X-2, 

and Cyg X-3« These systems have primaries of at most one or two solar 

masses. 

The most obvious source of X-rays for both groups is brems-

strahlung from an optically thin plasma heated by falling onto a degen

erate companion from Roche lobe overflow. Such a model for Sco X-1 was 

proposed by Shklovsky (1967)j with an estimated rate of mass transfer 

of 10~9 M0/yr. Because this rate corresponded to a nuclear time scale, 

he proposed that the neutron star was the more massive component, mak

ing it similar to an Algol system in the state of slow mass transfer. 

The time scale of mass transfer is crucial, because a rate in excess of 
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—8 
about 10" M0/yr would make the plasma optically thick, implying that 

escaping radiation must originate so far from the neutron star (assum

ing a spherically symmetric infall) that the temperature would be too 

low for observable X-ray emission (cf. Shakura and Sunyaev 1973)• 

The Problem 

The problem arose when the precise data from the Uhuru X-ray 

satellite, combined with optical identifications, established that the 

nondegenerate optical components were the more massive primaries. As 

discussed above, the Roche model predicts that the more massive compo

nent will transfer mass on a Kelvin time scale, which for a mass of 20 

M0 would be a rate of about 10"̂  M0//yr (van den Heuvel 1975)• Such a 

drastically high rate would obscure virtually all X-ray emission, as 

described above. 

This paradox led to a model in which a stellar wind from an 

early type primary is partially accreted onto a degenerate companion 

(Davidson and Ostriker 1973)* This model has been successful in ex

plaining the Cyg X—1 type of X-ray binaries (van den Heuvel 1975)> but 

provides no explanation of the Sco X-l group, whose primaries are far 

below the lower mass limit for strong stellar winds. No solution has 

been proposed for the Sco X-l group—the puzzle remains. 

By far the best studied member of the Sco X-l group is Her X-l. 

This source was found to be an eclipsing binary (Tananbaum et al. 1972) 

and identified with the optical companion HZ Her (Liller 1972). A model 

was proposed of a mass 1.6 M0 F subgiant primary with a .5 M0 neutron 
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star secondary (Forraan, Jones and Liller 1972), with the plasma being 

heated by Roche lobe overflow. There is evidence that HZ Her does in

deed fill its Roche lobe. Jones, Forman and Liller (1973) have shown 

that HZ Her exhibits optical variations at twice the normal frequency 

and of reduced amplitude. These variations are usually ascribed to ge

ometrical distortion, which must be substantial (Whelan 1973), thus 

supporting the hypothesis that the Roche lobe is filled. This classi

cal mass transfer model is generally accepted (cf. Cameron and Mock 

1967, Prendergast and Burbidge 1968, Strittmatter et al. 1973> van den 

Heuvel 1975> Anderson 1975)> usually skirting or ignoring the large 

discrepancy between predicted mass transfer rates and the maximum al

lowed for low X-ray opacity. 

Proposal 

This dissertation proposes a model of mass transfer in an evolv

ing binary, in which some of the previous simplifying assumptions of 

the Roche model have been omitted. This generalization of the Roche 

model can, in principle, be applied to most evolving binaries, but will 

prove most fruitful in resolving the above discrepancy in mass transfer 

rates. 

The assumptions and equations used in the classical Roche model 

and its usual application will be described in Chapter 2, the proposed 

model in Chapter 3> calculations employing it in Chapters b and 5> a*id 

the possible application to both X-ray and optical binaries discussed 

in Chapter 6. 



CHAPTER 2 

CLASSICAL CALCULATIONS 

It was argued in Chapter 1 that the classical Roche model fails 

to predict correctly mass transfer rates in X-ray binaries of low mass. 

In order to determine the cause of this apparent failure, a basic un

derstanding of the Roche model is required. This chapter will briefly 

describe the assumptions, equations and solutions used in the Roche 

model and its usual application in stellar evolution computer programs. 

The Roche Model 

Assumptions 

The following assumptions are made in the classical Roche model. 

1. Circular Orbit. This assumption is essential because equipoten-

tial surfaces can only be defined for circular orbits (Paczynski 1970). 

It appears well justified, however, because no semi-detached binary is 

known with a non-circular orbit (Paczyfiski 1971)> and calculations in

dicate that mass exchange should diminish initial minor ellipticity 

(Piotrowski 1965)• If at least one component has a convective enve

lope, as in Algol systems, the orbit should be rapidly circularized 

(Zahn 1966). 

2. Roche Assumption. The gravitational field is approximated by 

assuming each star has all of its mass concentrated at a point located 

13 



at its center of mass. This would "be exact for perfectly spherical 

stars, "but because this model predicts that the stellar surfaces become 

distorted, this assumption is essentially that the components are so 

centrally condensed that surface deformations contribute negligibly to 

the gravitational field. The error made in this assumption should be 

only about one per cent in linear dimensions of the equipotential sur

faces (Kopal 1959)« If greater precision is desired, a non-point-mass 

generalization has been discussed by Plavec (1958) an(l in more detail 

by Kopal (1972a). 

3. Uniform Rotation. For simplicity, both components are assumed 

to rotate as rigid bodies. Although this assumption is not well justi

fied, knowledge of angular momentum distribution in stellar interiors 

is not sufficiently precise to have stimulated the proposal of alterna

tive models. 

4. Parallel Rotation. For simplicity, the spin angular momentum 

vector of each component is assumed parallel to the orbital angular 

momentum vector. The general case is much more complicated and must 

be solved with a different technique (Plavec 1958). 

5. Synchronism. The axial rotation periods are both assumed equal 

to the orbital rotation period. The usual physical justification for 

synchronous rotation is that tidal forces acting over the long main se

quence lifetime should bring both components into synchronism with the 

orbit (cf. Jeans 1929). Non-synchronous effects have been studied by 

Kopal (1956), Plavec (1958), Kruszewski (1963*1964) and Limber (1963)J 

and will be discussed in Chapter 3« The general consensus, however, 
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was that the effects of non-synchronism do not greatly alter the evolu

tion (Paczyflski 1971). A theory of "tidal lobes" formed by a non-

rotating primary is developed by Kopal (1972a). 

Assumptions (3) - (5) imply that the system has "no moving 

parts," that is, the whole system rotates as a solid body. This greatly 

simplifies the problem. 

j 
Equations 

Consider a rectangular coordinate system with origin at the 

center of the primary (either) component and rotating at the orbital 

angular velocity H*. The secondary is always located on the X-axis and 

the angular momentum vectors point in the positive Z-direction. Let 

subscripts 1 and 2 refer to the original primary and secondary, respec

tively (even if their roles subsequently interchange), where the pri

mary will be chosen as the lobe-filling component in the present re

search. Let MJ and M2 be their masses, let A be their separation, and 

let and Rg be the distances from a general point (X,Y, Z) to their 

respective mass centers. The total centrifugal and gravitational po

tential V at (X,Y, Z) is then expressible as 

v = G^/I^ + GM2/R2 + [ |(X2+Y2) - M2AX/(M1+M2)], (2-1) 

where G is the gravitational constant. Using the convention that lower 

case letters refer to dimensionless ratios, let x = X/A, y = Y/A, z = 

Z/A, rx = Ri/A> r2 = Rg/A, and q = M2/Mlt Simplified by Kepler's third 

law, A30| = G(MX+M2), a more useful dimensionless potential v is 
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v = AV/GM-L = l/rx + q/r2 + i(l+q)(x2+y2) - qx. (2-2) 

By symmetry, the critical Lx point of zero effective gravity must lie 

on the X-axis at a point such that dv/dx = 0. Denote this point by 

x = Xj_ so that rx = x1? r2 = l-x1, and y = 0, implying that 

dv/dx = 0 = -1/x2 + q/(l-x1)2 + (l+q)x1 - q. (2-3) 

Solving (2-3) for xa yields the position of the La point at 

= XjA. With the point determined, the critical Roche potential 

vi = v(xi»0,0) is constant over the entire Roche equipotential surface, 

and hence the Roche lobe surface is determined by v(x,y,z) = v1. 

The usual way to determine when the star overflows its Roche 

lobe is to calculate when the volume of the spherical model star exceeds 

the volume of the Roche lobe, i.e., when the radius of the star exceeds 

the "equivalent radius" Rc of the Roche lobe, being the radius of a 

sphere of equal volume. Kopal (1959) lists tables of rc = Rc/A for 

various values of q, but for many purposes the simple formula 

rc = .38 - .2 log q (2-4) 

(Plavec 1968) suffices, being accurate to 2% for .1 < q < 3« A similar 

formula will be given in Chapter 3 as a special case of the proposed 

model. 

An important consequence of equation (2-3)> which is also clear 

from (2-4), is that as q increases (with mass transfer to Ms) rc de

creases, It is principally this contraction of the Roche lobe that 
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leads to rapid mass transfer. To understand physically why this occurs, 

rearrange equation (2-3) as follows: 

1/xf ~ q/Cl-̂ )2 =  ̂- q(l-xx). (2-5) 

Clearly, rc must vary monotonically with Xj, which, from equation (2-5), 

is a function of q only. The left-hand side of (2-5) represents the 

two opposing gravitational forces, the right-hand side the centrifugal 

force around the center of mass. As mass is transferred from the pri

mary, increasing q, the large gravitational terms tend to decrease 

while the smaller centrifugal terms tend to increase it. This is clear 

both from physical considerations and mathematically by equating the 

left- and right-hand sides of (2-5) to zero separately, implying that 

= (1 + q2) ̂ and Xj_ = (1 + q-"1")""1", respectively. Synchronous rota

tion was assumed in deriving equation (2-5) and insures that for all 

q > 0, that dx̂ /dq < 0; that is, the gravitational forces always domi

nate so that Xj_ decreases with mass transfer. Accordingly, rc always 

decreases with increasing q. However, mass transfer is unstable when 

Rc, not rc, decreases; other assumptions are required to determine A. 

Use of the Roche Model 

Assumptions 

The Roche model is generally employed in binary star evolution 

calculations with the addition of several simplifying assumptions. 

Those listed here apply only to detached and semi-detached systems. 
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6. Mass Conservation. As mass is transferred between components, 

it is assumed to remain in the system, perhaps forming an accretion 

disk around the secondary. Although there is observational evidence 

for mass loss from close binaries (Kruszewski 1966, Huang 1966, Batten 

1970)» there is no quantitative estimate available. Moreover, theoret

ical arguments suggest that no mass should be lost in Roche lobe over

flow in semi-detached binaries (Kruszewski 196?, Lubow and Shu 1975)* 

7. Angular Momentum Conservation. The total angular momentum of 

the system, which can be divided into the orbital angular momentum and 

the spin angular momenta, is assumed constant. This must be true if 

assumption (6) obtains and if there are no external torques. Computa

tions of arbitrary mass and angular momentum loss have indicated that 

the overall character of evolution is not appreciably altered (Paczyn-

ski and Ziolkowski 1967). 

8. Orbital Angular Momentum Conservation. This assumption is equiv

alent to that of negligible spin angular momenta, from which conserva

tion of orbital angular momentum follows from assumption (7). The spin 

angular momentum of most main sequence stars in synchronous rotation 

would be at most 2-$% of the orbital angular momentum (assuming uniform 

rotation), and hence the required rotational adjustments to maintain 

synchronism are considered negligible. 

9. Spherical Primaries. Non-rotating, non-deformed spherically 

symmetric star models are assumed adequate for the structure of the 

primary. Various studies using models that include tidal and rotational 

distortion verify that this is an adequate approximation for the primary 
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component (Dziembowski 1963» Kippenhahn and Thomas 1970, Jackson 1970, 

and Benson 1970). 

10. Primary Models Only. It is generally assumed necessary only 

to follow the evolution of the primary. Neglecting the secondary is 

justified on the grounds that the nuclear time scale of the secondary 

is in general much longer than that of the primary. Care must be exer

cised that this is true in the particular case in question. 

11. Hydrostatic Equilibrium. It is assumed that any mass transfer 

does not interfere with hydrostatic equilibrium, which is, in fact, vi

olated only very near the surface. All details of the mass flow are 

assumed ignorable to the primary's structure. The case of a deep con-

vective primary envelope, however, may disrupt hydrostatic equilibrium 

if the envelope expands with mass transfer on a dynamic time scale, 

leading to dynamic mass transfer (Paczynski 1970). 

12. Roche Limit. It is assumed that the primary radius R cannot 

exceed the Roche lobe equivalent radius Rc. If it does, enough mass is 

removed from and added to M3 so that R < Rc obtains. Of course, as

sumption (10), which implies that the system is semi-detached (and not 

contact), as well as assumption (ll), is required to insure that mass 

transfer will make R < Rc possible. 

Implications 

That rc decreases with increasing q was shown above. The insta

bility of the primary to rapid mass transfer, however, is dependent on 

Rc decreasing, and decreasing fast enough that the volume of the Roche 
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lobe "becomes less than the subsequent volume of the primary in thermal 

equilibrium. Assumption (8) is that the orbital angular momentum p,A2fl̂  

is constant, where fj. = M1M2/(M1+M2) is "the reduced mass. Using assump

tion (6) and Kepler's third law (A= constant) to remove the depend

ence on yields 

|l2A = constant. (2-6) 

This dependence of A on ji is extremely important because (j. will 

increase until M2 = Mx and afterwards decrease; hence, A will be mini

mum when q = 1. This means that Rc = rcA initially decreases (assuming 

a more massive primary) because both A and rc decrease separately. As 

Morton (i960) showed, the thermal equilibrium radius of core hydrogen 

burning models decreases much less rapidly (if at all) than Rc, and 

hence, rapid mass transfer is initiated. When q = 1 the separation A 

begins to increase, but rc is still decreasing fast enough that the 

minimum for Rc is reached only when q ~ 1.26. Thereafter, the absolute 

size of the Roche lobe increases, but generally rapid mass transfer 

continues for some time because the primary is so inhomogeneous that 

the outer layers expand with mass transfer. Only when the thermal 

equilibrium radius expands less with mass loss than the Roche lobe, does 

the rate change to the nuclear time scale. 

As Kuiper (19̂ -1) noted, if the spin angular momentum were in

cluded, then as increases, some of the orbital angular momentum goes 

to increase the rotational speed of the components to maintain synchro

nism, and hence, A would decrease even faster than if negligible spin 
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angular momentum had "been assumed. Thus, the argument for rapid mass 

transfer depends heavily on the assumptions of synchronism, conserva

tion of mass, and conservation of angular momentum. 

The assumptions described above have been employed in two dif

ferent methods. Because Chapters 4 and 5 describe generalizations of 

these two methods, they will now be briefly described. 

Thermal Equilibrium Method 

A very useful approximation of the configuration at the end of 

the rapid mass transfer can be made if the beginning and end phase are 

both approximately in thermal equilibrium, that is, if the gravitational 

energy terms are negligible compared to nuclear. Such is the case on 

the main sequence, as noted by Morton (i960), who suggested this method. 

The model initiating mass transfer occurs when R = Rc. From 

this model one simply constructs a series of thermal equilibrium models 

with constant composition, but with increasing amounts of the envelope 

removed, As the star begins to transfer mass, Rc will decrease much 

more rapidly than the thermal equilibrium radius R̂ , as described above, 

so the correct model will theoretically maintain R = Rc and depart sig

nificantly from thermal equilibrium. Thus, detailed models during mass 

transfer are not known, but the final model after rapid mass transfer 

should be the first thermal equilibrium model with R̂  = Rc (as well as 

dRt/dq < dRc/dq). 
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Detailed Method 

The rapid mass transfer stage can he successfully followed with 

the detailed method (Kippenhahn and Weigert 1967)• The primary evolves 

normally, using the Henyey method, until R > Rc. A mass AM is then re

moved from the envelope, determined "by 

AM = bM log(R/Rc), (2-7) 

where initially b « .3> and is occasionally adjusted so that the radius 

of the primary of mass M - AM is nearly equal to Rc. For simplicity, 

the notation M, rather than Mj_, will henceforth be used for the primary 

mass. The mass AM must not exceed about .03 M or the Henyey method may 

not converge; in this case the time step is decreased and the process 

repeated. Mass fraction mesh points are recalculated to compensate for 

the mass removed, so that parameters are evaluated at the same physical 

points within the interior. Thus, the next model is produced with mass 

M - AM and radius Rc, and the process is then repeated. 

In all cases examined, both of these methods have supported 

Morton's original conclusion that a more massive primary must transfer 

mass on a Kelvin time scale. However, as described in Chapter 1, low 

mass X-ray binaries have rates of transfer consistent with a nuclear 

time scale. The high theoretical rate is due principally to Roche lobe 

contraction, which, as described earlier in this chapter, is highly de

pendent on the assumptions of conservation of mass and angular momentum, 

and of synchronism. To reconcile this apparent inconsistency, a model 

will now be proposed which relaxes the assumption of synchronism. 



CHAPTER 3 

THE NON-SYNCHRONOUS MODEL 

In Chapter 2 it was suggested that much of the calculated con

traction of the Roche lobe with mass transfer that causes rapid mass 

transfer is a result of the assumptions of synchronism and conservation 

of mass. Although there is some observational evidence that the latter 

assumption can be violated, it is justified by theoretical calculations 

and will not be challenged in the present research. In many cases, 

however, the assumption of synchronism has neither an observational nor 

theoretical basis. After the evidence for non-synchronism is reviewed, 

the specific proposed model omitting this assumption will be described. 

Evidence for Non-synchronism 

Observational 

Spectroscopic line width analyses indicate that, in general, 

close binaries of periods less than four days rotate synchronously 

(Plaut 1959, Huang 1966). However, some Algol systems are clearly not 

in synchronous rotation, U Cep being a notable example. Using Hardie's 

(1950) orbital elements, Huang (1966) estimates that the subgiant sec

ondary rotates at only 75 km/sec rather than the 100 km/sec required 

for synchronous rotation. Moreover, the main sequence primary rotates 

at 300 km/sec (Struve 1963) rather than the expected 60 km/sec. RZ Set 

and 3 Lyr are other examples. 
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Huang (1966) explains this inconsistency with simple angular 

momentum transfer from the original primary to the new primary, as would 

"be expected with little tidal coupling. He concludes non-synchronism 

entails an unsteady state that can only be maintained for times of as-

tronomical significance by a mechanism such as Roche lobe overflow. 

HZ Her, the only eclipsing X-ray binary of the low mass group 

with well determined orbital parameters, shows evidence that primary 

rotation may well be less than synchronous (Bopp et al. 1973)* Because 

this is the very group of binaries that inspired the present research, 

the consideration of a non-synchronous model seems justified from ob

servational evidence alone. 

Theoretical 

The time for a star to adjust its shape to an external gravita

tional field should be on the time scale of free adiabatic oscillations, 

which is generally much smaller than the orbital period. Hence, the 

star distorts almost instantaneously to its companion so that the long 

axes of-both components should lie on their line of centers. 

Zahn (1966) did the first extensive study of the effects of 

tidal coupling on binary star evolution. He found that the high vis

cosity of turbulent convective envelopes was much more effective than 

radiative damping in radiative envelopes for producing synchronism. 

Using his formulae, Ritter (1975) estimated the synchronization time 

3 4 for components with deep outer convection zones to be 10 - 10 years, 

and for radiative components to be 103 - 103 Kelvin times. 
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Kopal (I968) treated only the radiative case and also concluded 

that synchronization could only be achieved on nuclear time scales (cf. 

Kopal 1972b). Such evidence, both observational and theoretical, for 

non-synchronous rotation has led to several theoretical investigations 

of the non-synchronous case. 

Early Non-synchronous Models 

Kopal (1956) noted that tidal coupling would be ineffective on 

Kelvin time scales. He considered non-synchronous systems originating 

from former synchronous main sequence primaries rapidly expanding to 

red giants and slowing in rotational velocity from conservation of pri

mary spin angular momentum, with essentially no tidal coupling. 

Plavec (1958) first correctly derived a generalized form of 

equation (2-2) for the non-synchronous case: 

v = l/â  + q/r2 + (l+q)(x2+y2) - qx, (3-1) 

where f> = Qs and being the spin and orbital angular veloci

ties, respectively. Accordingly, the 1̂  point at Xx = is deter

mined by 

dv/dx = 0 = -1/x̂  + q/(l-x1)3 + n3(l+q)x1 - q. (3-2) 

Plavec noted that high values of Q would imply that the critical Roche 

surface could be significantly smaller than the classical case and 

cause rapid mass transfer to begin earlier than formerly calculated. 
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Kruszewski (1963) noticed that Plavec's equation ignores radial 

accelerations felt "by particles rotating uniformly with the primary as 

they approach the L1 point. Such acceleration should facilitate parti

cle escape and hence reduce the equivalent radius. However, his results 

show that the error made "by using equation (3-2) is only on the order 

of 1% near synchronous values. He also suggested (196̂ -) that particles 

falling "back onto the primary tend to keep it rotating synchronously, 

but Lubow and Shu (1975) have pointed out the inadequacy of applying 

particle trajectory analysis to those particles and have replaced it 

with hydrodynamic analysis. However, they assume synchronism through

out and defer comment on the non-synchronous case to a future study. 

Limber (1963) considered also Coriolis forces, which were im

plicitly omitted from equation (3-1) with the assumption of uniform ro

tation. He found equation (3-1) adequate as long as Q was near unity. 

Of course, the Coriolis force vanishes for both 0=0 (because Qg = 0) 

and n = 1 (because the surface point has zero velocity in the rotating 

frame). That intermediate values of Q yield negligible Coriolis forces 

will be argued in the equations section of the proposed model below. 

It is interesting to note that the thrust of these investiga

tions was toward the case of fi > 1, whereas U Cep and HZ Her apparently 

have n < 1 for the component filling the Roche lobe, as would be expec

ted from an initially synchronous primary transferring mass. Because 

none of these models has predicted significant departure from the stand

ard synchronous Roche model, none has been employed in detailed binary 

star evolution investigations. However, the following simple physical 
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considerations imply that a non-synchronous model could perhaps explain 

the low mass X-ray binary mass transfer rate inconsistency. 

The Rcoposed Model 

The qualitative argument suggesting that a non-synchronous model 

could possibly predict slow mass transfer from the more massive compo

nent is the following. As the primary begins to transfer matter it 

should lose a large amount of angular momentum per unit mass transferred, 

thus helping the centrifugal terms of (3-2) to move the Lx point away 

from the primary, without changing the gravitational terms appreciably. 

Even if this effect alone could not overcome the gravitational terms' 

tendency to bring the L1 point closer, the transferred angular momentum 

can conceivably go into either the rotation of the secondary (or its 

accretion disk) or into the orbit, depending on the precise manner of 

transfer. The fraction which goes into the orbit will tend to increase 

the orbit in size and thus counteract some of the orbital contraction 

that occurs before mass equalization due to conservation of angular 

momentum. Note that the effect of assuming the rotational angular mo

mentum to be non-negligible has the reverse effect when synchronism is 

abandoned than it did otherwise; that is, it pushes the 1̂  point out

ward because the primary is decreasing rather than increasing its rota

tional velocity. Although the total rotational angular momentum in the 

primary is often only a few per cent of the orbital, still its tendency 

to increase both A and rc could increase Rc = Arc enough to keep the 

Roche lobe larger than the thermal equilibrium volume of the primary, 

I 
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and hence lead to mass transfer on a nuclear time scale. In order to 

investigate this plausibility argument, a model will now "be proposed in 

which the following assumptions are made. 

Assumptions 

The following numbered assumptions will replace those having 

the same number in the classical model described in Chapter 2. All 

other assumptions of that model will be retained. 

5. Non-synchronism. It is assumed that prior to initiation of mass 

transfer, the system has evolved on a nuclear time scale long enough 

that it is synchronous. Thereafter, it is assumed that no external 

torques act on the primary. This latter assumption of negligible tides 

cannot be entirely justified; it was chosen both as the extreme opposite 

of perfect tidal coupling and for simplicity. However, only main se

quence primaries with radiative envelopes are treated in this research, 

and calculations indicate that about 103 - 103 Kelvin times are required 

for re-synchronization (Ritter 1975)* But, as has been indicated, if 

synchronism were assumed to continue during mass transfer, it would 

have to be maintained on a Kelvin time scale. Accordingly, the assump

tion of synchronism is abandoned after the onset of mass transfer. 

8. Angular Momentum Transfer. A fraction S of the spin angular mo

mentum of the primary is transferred to the spin angular momentum of 

the secondary, which is assumed capable of receiving it, perhaps in the 

form of a surrounding disk. The remaining fraction 1-S is assumed to 

go into the orbit. All mass is assumed transferred at the Î  point, 

with angular momentum from the uniform rotation of the primary. 
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12. Roche limit. RQ of the Roche model will now "be replaced by the 

equivalent radius Rc of the non-synchronous Roche model derived below. 

13. Instantaneous Lobe Shape. The rotational and orbital periods 

are assumed long compared to the primary free-fall time t̂ . It is 

clear that as soon as the primary rotates non-synchronously, the primary 

star configuration varies on a time scale t̂  = 2Tf/(0̂ -0s). As long as 

t̂  » t̂ , however, Reynolds stress terms in the equation of motion 

will remain small, so that the instantaneous shape of the primary will 

be that of the Roche lobe. 

Equations 

Non-synchronous Roche Lobe Equivalent Radius. Consider the 

frame of classical calculations described in Chapter 2, rotating with 

angular velocity Q*, with cylindrical coordinates r = -J x3 + y*, 0 = 

tan "'"(y/x) and z = z; unit vectors r, §, and k respectively, and other 

/ \ vectors denoted by an arrow Let rOTn be the vector to the center 
OIT1 

of mass, and F be the gravitational force per unit mass at a general 

surface point of the primary at r. If d/dt = *, da/dt2 = and X the 

vector cross product, then 

F = r + 2(0* xr) + 4x(n,xr)+̂  rcm, (3-3) 

which can be simplified to 

F = (r - rqj) r + 2x nj + Cl% rcm. (3-4) 

To estimate the relative sizes of the terms r (radial accelera

tion), 2rOs (Coriolis acceleration), and rfl® (centrifugal acceleration), 
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let Ar = r(r,0,0) - r(r,rr,0), that is, the maximum change in radius. 

Average values of r = Ar (Og - n*)/rr and r = 2Ar (f)s - Q#)2/rr3 can "be 

estimted with Ar = .2 and r = ,5» The three terms then become propor

tional to .Ô (n-l)2, .12n( fi-l), and .503, respectively. Clearly for 

O ~ 1 (nearly synchronous) the first two terms are negligible. For 

fi » 1 the terms approach . 0̂ Q2< ,120s< .502; the first two terms are 

still small compared to the third. For O < .5, the third term becomes 

less significant than the others, but in that case all three are negli

gible compared to the gravitational forces F, which are generally 

greater than unity. 

Accordingly, consistent with assumption (3), the Coriolis and 

radial accelerations are neglected, implying that 

F = -xcfsT + (3-5) 

which leads to the potential (3-1)• Equation (3-2) is used to evaluate 

vx = v(x1,0,0) from (3-l)> and rc can then be found either by nu

merical integration of v(x,y,z) = vx or by the following approximation 

outlined by Kopal (1959* 1972a) for the synchronous case, and employed 

in the present research. 

In terms of Legendre polynomials Pn = Pn(x/r), r(v) can be ex

pressed (with r now redefined as r = -/ x2 + y2 + z2 ) as 

(v - q.)r = 1 + q. H r̂ 1"1 P- + nr3 (1 - z2/r2), (3-6) 
j=3 J 

where n = •§• fi2(l+q.) is a generalization of Kopal's definition. A first 

approximation rQ of r is 
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r0 = V(v - 0« (3-7) 

Defining B = qP2 + n(l - z2/r3), an expression for r, correct to order 

xx>S' is 

r/ro = 1 + r3B + qr*P3 + qr̂ P4 + r̂  [qP5 + 3B2] 

+ r? [qP6 + 7qBP3] + r® [qP? + 8qBP4 + 4q2Pf] 

+ ro ̂ P8 + 9qBP5 + 9q3P3P4 + 12B3] (3-8) 

+ rl°[qP9 + 10qBP6 + 10qsP3P5 + 5q2Pf + ̂ 5qB2P3] 

+ r̂ [qP10 + llqBP? + llq2(P3P6+P4P5) + 55q2BP| + 55qB2P4], 

which includes a minor correction to Kopal's (1972a) equation 2.18 in 

the last term of r̂ . Integrating (3-8) over the entire volume yields 

rg = r3 [l + 12q2r̂ /5 + 15q2r®/7 + 2q2r£° + Z2q_3r̂ /7 

+ 156q3î 1/7 + 2nr3 + 32n2r̂ /5 + 176n3r̂ /? (3-9) 

+ 8qnr̂ /5 + 88qn(2q+n)r̂ /7 + 26qn(46q+3n)rJ)1/35], 

where now rQ = l/(v1-q), "because it is the volume of the equipotential 

v-L that defines rc> Equation (3-9) is essentially the same as Kopal's 

(1972a) equation 2.25> with minor corrections. Table 1 gives values 

of xx(q,o) determined by (3-2) and Table 2 presents rc(q,n) calculated 

from equation (3-9) for various values of q and fi. Approximate values 

of Xĵ  and rc, accurate to at least 3% for ,05 < q < 10 and 0 < Q < 1, 

are given by 

3̂  » (.53 - .03O3 )(1 - | log q), (3-10) 
7 

and rc a* (.41 - .03ff )(l - log q). (3~H) 



Table 1. The Function ̂ (qjfi). 

q 0. .5 .7 .9 
0 
1. 1.5 2. 3. 5. 

.02 .8?? .867 .856 .837 .825 .724 . 6l6 .476 .339 

.05 .820 .809 .797 .780 .769 .690 .600 .469 .336 

.10 .765 .75̂  .743 .727 .718 .653 • 577 .458 .330 

.15 .728 .718 .707 .693 .684 .627 • 559 .448 .324 

.20 .701 .691 .681 .667 .659 . 606 .54̂ - .439 .319 

.30 • 660 . 650 .641 .628 .621 .574 .520 .424 .310 

.40 .630 .621 .612 .600 .593 .550 .500 .411 .302 

.60 .586 .578 .569 .559 .552 .514 .469 • 389 .288 

.80 .555 .5̂ 7 .539 .529 .523 .487 .446 .372 .276 

1.0 .531 .523 .515 • 506 .500 .466 .428 .357 .266 

1.5 .487 .480 .473 .464 .458 .427 .393 .329 .246 

2.0 .457 .450 .443 .434 .429 .400 .367 .308 .231 

3.0 .416 .409 .402 .394 .389 .362 .332 • 279 .210 

5-0 • 366 .360 .35̂  . 346 .341 .317 .290 .243 .183 

10. .305 .299 .293 .286 .282 .261 .238 .199 .149 

20. .252 .246 .241 .235 .231 .212 .193 .161 .120 

50. .193 .188 .184 .178 .175 .160 .145 .120 .090 



.Table 2. The Function rc(q,n). 

0. • 5 .7 .9 

n 
1. 1.5 2. 3. 5-

.02 .790 .763 .735 .698 .677 .563 .473 . 364 .260 

.05 .711 .690 . 669 .642 . 626 .539 .461 .359 .257 

.10 .643 . 626 .610 • 590 • 578 .510 .444 .350 .252 

.15 .601 .587 .573 • 556 • 546 .488 .430 .343 .248 

.20 

1—1 O- •
 .558 . 546 .530 .522 .471 .418 .336 .244 

.30 .528 .517 .507 .494 .486 .̂ 3 .398 .324 .237 

.40 .497 .488 .479 .467 .461 .423 .382 .313 .231 

.60 .455 .447 .439 .430 .424 .392 .357 .296 .220 

.80 .426 .419 .412 .403 .398 .370 .338 .282 .210 

1.0 .404 .398 .391 .383 .379 .352 .323 .271 .203 

1.5 . 366 .360 .355 .34 7 .344 .320 .295 .249 .187 

2.0 .340 .335 .330 .323 .319 .298 .275 .233 .176 

3.0 .306 .301 .296 .290 .287 .268 .248 .210 .159 

5-0 . 266 .262 .258 .252 .250 .233 .215 .183 .139 

10. .219 .215 .211 .207 .204 .190 .175 .149 .113 

20. .179 .175 .172 .168 .166 .154 .142 .120 .091 

50. .135 .132 .130 .127 .125 .116 .106 .089 .068 
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Angular Momentum Transfer. When a mass AM is transferred, it 

is assumed to remove an amount of angular momentum 

AJ = ^ X® AM, (3-12) 

that is, all the mass AM is assumed to have the same angular velocity 

and to he transferred at the same 1̂  point. This is equivalent to as

suming AM is transferred on a dynamic time scale and that no further 

transfer occurs until at least a Kelvin time when the star can readjust 

thermally. Hence, AM must he kept small enough that the rate of angular 

momentum loss is not overestimated. 

By assumption (8), the amount of angular momentum Atrans

ferred to the orbit is AJ# = (l-S)AJ, which is added to the orbital an

gular momentum J#, and the new separation A is calculated from 

|i2A/J^ = constant. (3-13) 

The new value of O is determined by s 

A(IC^) = A J, (3-1*0 

where the moment of inertia I is assumed known both before and after 

the transfer of AM. Finally, fi = is found from A3fî  = constant. 

Chapters 4 and 5 will describe variations of the detailed and 

thermal equilibrium methods of binary star evolution mentioned in Chap

ter 2, employing both the non-synchronous Roche lobe equivalent radii 

and method of angular momentum transfer described above. 



CHAPTER 4 

DETAILED METHOD 

The non-synchronous mass transfer model described in Chapter 3 

has been employed in conjunction with a modified version of the Kippen-

hahn and Weigert (1967) binary stellar evolution computer program to 

follow the evolution of a 1.5 primary. This chapter will describe 

the specific program modifications made, the model calculations, and 

the results. 

The Computer Program 

Basic Program 

The single star computer program used as a starting point was 

a copy of the Kippenhahn-Weigert-Hofmeister routine which they have de

scribed in detail (Hofmeister, Kippenhahn and Weigert 1964} Kippenhahn, 

Weigert and Hofmeister 1967! and Baker and Kippenhahn 1962). They also 

describe the modifications used to convert this program into a binary 

star routine (Kippenhahn and Weigert 1967). Unless otherwise described 

in this chapter, the program was left intact with those modifications 

added. Both general modifications that apply to all mass transfer, as 

well as specific modifications to adapt it to non-synchronous mass 

transfer will now be described. 

35 
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General Modifications 

last Pre-transfer Time Interval. As the primary evolved, each 

primary radius R was compared to R„, the non-synchronous Roche lobe c 

equivalent radius. When R first exceeded Rc, it generally did so "by so 

much that subsequent removal of mass entailed many needless iterations 

to insure that R w Rc. Thus, the model was recalculated with a smaller 

time step, chosen to make Rc < R < Rc(l+€), where generally € ~ .005. 

Such precision was generally accomplished in one iteration by the lin

ear interpolation formula in log R of 

At - Af l0S ̂ /R'\ , 
log (H /B'J 

where At is the time interval and the prime refers to the previous mod

el. Logarithmic variables were used in this equation principally for 

convenience. The reason for insisting that R ~ Rc so accurately was 

& 7 
that for M = 1.5 M0 the time step was often « 10 - 10 years, whereas 

for classical rapid mass transfer the initial time step needs to be 

li
near 10 years. Thus, if R w R0 then a simple switch in time scales 

can be made. If the last radius R' < Rc were used, it would take many 

l\, . . 
models with At r; 10 years to insure that R > Rc, and if R > Rc(l+€; 

is used, then so much mass will have to be removed to insure that R ~ Rc 

that several iterations would be required. Hence, it was only for rea

sons of economy that this modification was made. 

Calculation of AM. Basically the same algorithm was used to 

remove mass as is described by Kippenhahn and Weigert (1967)> that is, 
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when R > Rc, a trial amount of mass AM = bM log (R'/R̂ ) is removed, 

with b initially about .5» and then new values for R and Rc are cal

culated. Kippenhahn and Weigert made no attempt to adjust b carefully 

so that R « Rc, but rather left it slightly high so that if too much 

mass was removed, AM= 0 would be used until once again R > Rc« 

Though this procedure produced an irregular track in the HR di

agram, the average direction and position was essentially correct. In 

the present research it was necessary to keep R = Rc(l±€) because the 

non-synchronous models are very sensitive to the amount of angular mo

mentum initially transferred. The following method was found to modify 

b with each model so that the subsequent model generally satisfied R = 

R (1 ± €). If not, one iteration generally succeeded in so doing. 
c 

After the new values for R and Rq were calculated, b was modi

fied by linear interpolation between log (R/Rc) and log (R'/R̂ ) for the 

value that should give log (R/Rc) = 0. The formula used was 

b = b« log(^y ĉ) 
log (R'/R£) - log (R/Rc) 

or b = 2b', whichever was smaller. A new AM was calculated using this 

value of b. If |R-RC| < €, the model was accepted; if not, the new AM 

was applied to the original model and generally gave the desired accu

racy in one iteration. Even when the model was acceptable, a new AM 

was calculated to apply to the next model. In this manner the radius 

of every model was kept very nearly equal to that of the Roche lobe. 
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Modifications for Non-synchronism 

Equivalent Radii. The Roche lobe equivalent radius was calcu

lated by linear interpolation in tables constructed from equation (3~9) 

for O = »0, .2, .6, .8, 1.0, and q — .01, .02, .05, • 1> *15' »2, 

• 3» .6, .8, l., 1.25, l.5» 2., 3., 5., 10., 20., 50., 100. 

Such interpolation, or linear interpolation in the same range in Table 

2, gives an accuracy of one per cent, which is approximately the accu

racy of the non-synchronous (or synchronous) model. Hence, higher 

order interpolation was not deemed necessary. 

Initial Mass Transfer Time Step. The purpose of considering 

the non-synchronous model was to investigate the possibility of initial 

mass transfer on a nuclear time scale. If this occurred, the initial 

switch described to At = 10̂  years would underestimate At by a factor 

3 
of about 10 for the AM employed. The program would reject the model, 

reduce AM, and double At repeatedly until R & Rc, requiring about ten 

extra models. Of course, those models would be unnecessary if At were 

not reduced at the onset of mass transfer. 

The time scale is determined by the changes with mass transfer 

in both the Roche lobe radius and the primary radius: if the lobe ex

pands more than the primary (or contracts less) then the nuclear time 

scale is required. The expansion or contraction of the primary depends 

on mass, composition and inhomogeneity. The response of the envelope 

is known only after the calculation of the next model, which requires 

knowledge of the time step that is to be determined. The results of 

past investigations (Paczynski 1966, Plavec 1968), however, indicate 



that the stellar radius tends to remain approximately constant—the rap

id mass transfer occurs because of the contraction of the Roche lobe. 

For this reason, it was decided to use only the change in the Roche lobe 

radius as a criterion for choosing between an initial time step of At = 

II n 
10 years and At = 10 years. This was accomplished by removing a test 

7 mass of AM = .001 Mq and recalculating Rc. If it increased, At = 10 

years was used; otherwise At = 10 years. This method always chose the 

better time step, but this is not to be expected in general because the 

models considered contracted and the Roche lobe expanded in every case. 

If the wrong step were chosen, it would entail several extra models 

that doubled (or halved) At successively, but would not change the rate. 

Switch to Kelvin Time Scale. When the Roche lobe began to con-

5 tract, the time scale was arbitrarily set equal to At = 10̂  years, as

suming the rapid mass transfer stage was imminent. This procedure was 

less successful than that choosing the initial time step because in gen

eral the primary was contracting more than the lobe, so a nuclear time 

scale would have been more appropriate. Thus, At was doubled several 

times and just when it was back to a nuclear time scale, the lobe began 

contracting faster than the primary and At was halved several times to 

achieve a Kelvin time scale. Either a new procedure for switching to a 

Kelvin time scale should be found or this one removed, leaving At to be 

repeatedly halved. 

Angular Momentum Transfer. Another restriction necessary in 

non-synchronous mass transfer wag. that not more than about five per 

cent of the spin angular momentum could be transferred in one time step. 
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Because equation (3-12) assumes all the mass AM is transferred at the 

same spin angular velocity and at the same Lx point, the removal of too 

much mass AM per time interval would cause the primary to spin down too 

rapidly and the Roche lobe to expand deceptively fast. The condition 

was imposed by insisting that AM X̂ /I < Min(.06/Q2, .15)« This formula 

emphasizes that it is at the initiation of mass transfer when O ~ 1 

that it is most important to keep angular momentum transfer small. 

Orbit Parameters. In accordance with assumptions (3) and (9)> 

the moment of inertia I of each prospective model was calculated by 

I = FSAHJHJHJ.! 

where AM.? and R- refer to the mass and radius of mass shell j, and the 
«J C/ 

summation extends over both the envelope and the interior. Cl and A 

were then calculated from equations (3-13) and (3-1̂ ), and then Rc = 

Arc(q,fi) was interpolated from the tables described above. This value 

of R was then compared to the primary radius R to confirm that the 

model was acceptable. 

Flow Chart 

Figure 1 is a flow chart of the entire program. The standard 

usage employed is a parallelogram for decisions, with emergent paths 

marked T (true) and F (false), and flow lines proceeding downward or 

to the right unles's otherwise indicated by an arrow. Besides the basic 

logic of the single star model, Figure 1 includes the mass transfer 
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routine, the recalculation of mesh points, the choice of the initial 

time step for mass transfer, calculation of AM, and. the method of re

calculation after a model is rejected. The variable MDFY is used only 

in the method described in Chapter 5» for the present purposes MDFY = 0 

A parameter ML (mass loss) was defined to note the current 

stage of mass transfer: ML = 0 before mass transfer, ML = 1 on the 

first model to transfer mass, ML = 2 for the Roche lobe contracting 

(Kelvin time scale) and ML = 3 for Roche lobe expanding (nuclear time 

scale). 

The decision logic to determine whether a model is close enough 

to Rc is represented by a dashed box in Figure 1 and portrayed in de

tail in Figure 2. A flag N, noting why a model is rejected, is defined 

(a) N = -1 means it was the first model to overflow the Roche lobe. 

(b) N = 0 means the Henyey method failed to converge, 

(c) N = 1 means that the model ra,dius R is not within £ of Rc< (€ 

in Figure 2 is equal to log (l+€) in the text,) 

(d) N = 2 means that the correction to AM caused the primary to 

overflow even more, generally implying that At is too large. 

(e) N = 3 means that AM is so large that convergence is doubtful. 

(f) N = 4 means that too much angular momentum was lost in At. 

(g) N = 5 means to switch from the nuclear to the Kelvin time scale 

because the Roche lobe has begun contraction. 
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The Calculations 

The Models 

A series of five non-synchronous models was computed, with 

corresponding synchronous models for comparison. All had M = 1.5 M@, 

taken as a typical value for a low mass X-ray binary primary, such as 

HZ Her (Strittmatter et al. 1973)• Such a star has a radiative enve

lope as required by the assumption of no tidal coupling. An age zero 

abundance of X = .602 and Y = .35̂ " was used. Other prescribed parame

ters, namely, the initial mass ratio qQ, the initial separation in solar 

radii AQ, and the fraction of transferred angular momentum to be re

ceived by the secondary S, are listed in Table J. Also listed are the 

values of the following derived quantities: t and XQ, the age and core 

hydrogen abundance at the onset of mass transfer, respectively; Hmax/Î ), 

the ratio of the maximum size of the Roche lobe to the size at mass 

transfer initiation; ts, the duration of the slow mass transfer phase; 

< dM/dt >, the average mass transfer rate during this stage; and Xf and 

the core hydrogen abundance and spin to orbital angular velocity 

ratio, respectively, at the end of the slow mass transfer epoch. 

Models with various values of XQ were calculated because the 

expansion (or contraction) of the envelope with mass transfer should 

depend on the degree of inhomogeneity (Plavec 1968). XQ = .2 was taken 

as most interesting because it constitutes an inhomogeneous model that 

is relatively far from core hydrogen exhaustion. Similarly, S = 0 was 

generally chosen to maximize the possibility of slow mass transfer. 



Table 3. Parameters of the Detailed Models with M1 = 1.5 M0. 

Parameter A B 

Model 

C D E 

1o 0.33 0.33 0.33 0.33 0.67 
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S 0. 0. 1. 0. 0. 
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10.3 8.5 8.5 5.0 8.5 

Xo 0.10 0.22 0.22 0.41 0.22 

m̂ax/̂ o 1.022 1.029 1.008 1.026 1.042 
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0.83 0.91 0.28 1.03 1.84 

<dM/dt> 

(10-10 MQ/yr) 
1.2 3.1 5-7 2.1 3.9 

Xf 0.02 0.16 0.20 0.36 O.09 

% 0.?4 0.57 0.58 0.58 0.10 



However, because S = 0 assumes all transferred angular momentum goes 

into the orbit and none into the spin of the secondary, it is only to 

"be regarded as an extreme case. The fact that many accreting companions 

rotate much more rapidly than the synchronous rate (e.g., U Gep) indi

cates that S may approach unity. For this reason, Model C had S = 1, 

to determine whether the Roche lobe could expand even if the separation 

were decreasing as fast as in the synchronous case. A comparison of 

Model C to Model B should contrast the effects of primary spin down and 

deposition of spin angular momentum into the orbit. Similarly, a com

parison of Model E to Model B would indicate the dependence on q . 

Models A and D compared to B should show the effects of various initial 

core hydrogen contents. Mass transfer was only followed until the Roche 

lobe began to contract fast enough to require a Kelvin time scale. 

The Results 

Rrom Table 3 it is clear that in each of the five cases mass 

transfer occurred initially on a nuclear rather than a Kelvin time 

scale. This slow mass transfer was possible because although the sepa

ration A decreased nearly as rapidly as in the synchronous case, rc in

creased fast enough that Rc = rcA actually increased slightly in every 

case (see Rmax/RQ in Table 3). The primary contracted with mass loss 

even for XQ = . 1, and hence mass was only transferred as the primary 

expanded on a nuclear time scale to again fill its Roche lobe. For 
O 

example, in Model E the Roche lobe expanded for 1.6 x 10 years and 

8 
slow mass transfer continued for another .24 x 10 years before the 
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lobe "began contracting faster than the primary. The expansion of the 

lobe, then, was principally due to the rapid increase in rc, which, in 

turn, was caused by the relatively large amount of angular momentum per 

unit mass lost at a radius substantially in excess of the primary 

radius of gyration. The dependence of rc on a rapidly decreasing D can 

readily be seen from the approximate relation of equation (3-ll). 

As is evident from Table 3> mass transfer rates of less than 

-O 
10 7 M0/yr are predicted for a wide range of input parameters and can 

g 
be maintained for times of 10 years. This time scale is sufficiently 

long compared to the main sequence lifetime to render observation of 

this phase reasonably probable. The slow transfer phase was limited 

by the availability of primary spin angular momentum in every case but 

Model A, in which slow mass transfer is halted by core hydrogen exhaus

tion and consequent overall contraction. The duration of the slow mass 

transfer phase was greatest for the higher value of q0 (Model E) and 

would presumably increase with increasing qQ. Of course, near q = 1.26 

the Roche lobe would expand even assuming synchronous rotation, and 

hence, mass transfer should occur on a nuclear time scale in any case 

for such high qQ. For qQ « .3 "the decrease in orbital separation per 

unit mass transferred relative to the increase in rc becomes so large 

that slow mass transfer cannot be achieved along the present lines. 

The corresponding evolutionary tracks in the HR diagram are 

shown in Figure 3« The effect of the present assumptions is to permit 

continued evolution away from the main sequence, albeit at steadily 

decreasing luminosity until the stabilizing potential is lost. From 
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then on the star evolves down a line parallel to the main sequence, as 

in the classical models; this line is merely displaced towards lower 

temperatures. 

Thus it has been shown that initial slow mass transfer from a 

more massive primary is possible for selected models, given certain 

assumptions. It is desirable to know more precisely the range of the 

parameters M, qQ, S, and XQ for which this slow transfer phase is pos

sible. Unfortunately, the computer time required to analyze each of 

the desired combinations of these parameters is prohibitive. Over 

an hour of central processing time on the University of Arizona CDG 

6400 computer was required for the five cases studied in this chapter. 

A shorter method is highly desirable, and is developed in the next 

chapter. 



CHAPTER 5 

SHORT METHOD 

A method will be described in this chapter to study the effects 

of varying the parameters qQ, XQ, and S for a given initial primary 

mass MQ, without recourse to calculating detailed stellar models at 

each iteration of the mass transfer process, as was required in the 

method of Chapter After preliminary detailed calculations, the rate 

and duration of slow mass transfer can be approximated for any given 

values of the above parameters with about one second of computer time, 

rather than consuming over ten minutes as was required in the detailed 

method. 

The Method 

The detailed method required an entire stellar model at each 

mass transfer iteration only to calculate the primary radius R, the 

moment of inertia I, and the age t. If these quantities could be ex

pressed as functions R(M,X), l(M,X), and t(M,X) of the instantaneous 

primary mass M and some measure of the inhomogeneity, such as the core 

hydrogen abundance X, then the rate of slow mass transfer could be ap

proximated for any particular values of qQ, X0, and S without calculat

ing any detailed stellar models. 

The expression of stellar parameters as functions only of M and 

X, rather than M and the entire hydrogen profile is an approximation 

50 
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that may only "be good, for very similar profiles (i.e., very little mass 

transfer) and for convective cores (M > 1.2 M@). Moreover, such ex

pressions for R, I, and t are only possible assuming thermal equilibri

um, i.e., that the rate of nuclear energy release is equal to the lumi

nosity, Otherwise, these parameters become functions also of the en

tropy changes, which complicates matters enough to require the detailed 

stellar models. Thus, the method described in this chapter is appli

cable only to calculating case A (hydrogen core burning) slow mass 

transfer from primaries that approximate thermal equilibrium. The der

ivation of the necessary equations for R, I, and t is described below, 

followed by the method employed to calculate the slow transfer rate. 

Replacement of Detailed Stellar Models 

Not only the functions R(M,X), l(M,X), and t(M,X), but also the 

luminosity L(M,X) and the effective temperature Te(M,X) were calculated. 

All of these functions were determined by the same process, which will 

now be described using the notation F(M,X) to represent all of these 

functions. Although the functions F will depend on other parameters, 

such as initial mass MQ and initial composition, the dependence is im

plicit; a new function F will be calculated for any change in either of 

these parameters. 

A polynomial functional form, 

m n i a  
F(M,X) = S E a- X , (5-1) 

i=o j=o J 

was chosen after verifying that the variation in the required parameters 
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was monotonic in both M and X, and that log M and/or log X were not bet

ter independent variables. For values of X < , 05, overall contraction 

is approached, reversing the trends in both radius and moment of inertia 

and requiring m and n to be about ten rather than about three. However, 

X > .05 was sufficient, because only expanding primaries were required. 

The coefficients â j in equation (5-1) were determined by a 

least squares fit in both variables to twenty five points, representing 

five values of both M and X over the desired range. The number twenty-

five was adopted when one hundred points failed to improve the fit sig

nificantly. The values at these points were calculated by detailed 

stellar models; thus, some initial recourse to detailed models was nec

essary. The parameters m and n in equation (5-1) were independently 

varied from 1 to 4, fitting a polynomial to each combination, and the 

values of m and n were chosen that minimized the standard deviation. 

An alternative to using a function F(M,X) would have been to 

interpolate in a table of these twenty-five points. The principal rea

son for choosing the functional representation was that a least squares 

polynomial fitting program was already available and should provide 

more accuracy than the simpler forms of interpolation. 

The twenty-five required models could either be calculated by 

beginning with five different masses and evolving through decreasing 

values of X or by creating only one evolutionary sequence of the origi

nal mass and then calculating five fixed composition models with de

creasing mass at each of five values of X in the sequence. The former 

method would entail calculating about sixty unnecessary detailed models 
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in order to cover the entire hydrogen burning phase; moreover, it makes 

the unnecessary assumption that an evolved star that loses mass has the 

same structure as an evolved star with initially lower mass (both hav

ing the same M and X at the point in question). The initial mass MQ 

must'be considered as an implicit independent variable, separate from 

M, because the mass of the convective core and the subsequent hydrogen 

profile depend critically on the initial mass. Thus, the latter method 

was chosen, which entailed modifying the evolution program to be able 

to calculate static models with fixed composition. Although the imme

diate purpose is to vary M, the same program can artificially vary any 

other parameters, such as the opacity or energy generation rates. In 

adopting this approach, t(M,X) must be approximated by t(x) because on

ly one evolutionary sequence is calculated. This approximation should 

be adequate because only a few per cent of the mass is removed in the 

slow transfer process, which, being from the outer envelope, should not 

alter energy generation rates appreciably. 

Modification of the Stellar Evolution Program 

The basic stellar evolution program described in Chapter 4 was 

modified to produce static models by fixing the age and chemical compo

sition and setting the entropy change terms to zero. With the real 

time fixed, the same variable, At, can be employed as a "pseudo-time" 

to gradually modify any desired parameter—in this case M. The flow 

chart in Figure 1 includes all the required modifications. If the pa

rameter MDFY equals zero, then At is the real time interval; if MDFY 
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equals one, then At is a pseudo-time interval which is used in conjunc

tion with an appropriately chosen mass loss rate to calculate a conven

ient AM to remove. The first value of AM must "be small enough that the 

Henyey method will converge using the original model as a first approx

imation. Thereafter, each new model uses a projection from past models 

as a first estimate. In any case, AM was kept less than the entire 

mass of the stellar envelope, taken in all cases to he ,03 M. 

Calculation of the Slow Mass Transfer 

Initially MQ, qQ, XQ, and S are given, the functions F(M,X) 

having been previously determined as described above for the initial 

primary mass MQ and composition. The initial radius R = R(M,X) is cal

culated and the separation A is chosen equal to R/rc(q0,l), using 

equation (3-11), so that the primary just fills its Roche lobe prepara

tory to the initiation of mass transfer. Mass is transferred in con

stant amounts per iteration, generally taken as AM= .001M, with an 

associated angular momentum of AMX̂  Og. The former values X', q', p,', 

I', and A' are stored and the new values of M = M' - AM, q, |i, and I 

are calculated. The new A is then determined from equation (3~13)> the 

new fi from (3-14), the new rc(q,o) from (3-11), and finally RQ = Arc. 

R is set equal to Rc, i.e., the primary is assumed to always contract 

or expand to fill its Roche lobe. The question is how long does this 

take, because that will be the time scale of transferring AM. 

The new thermal equilibrium radius R̂  = R(M,X) is now calcu

lated, being the radius the star would reach in a Kelvin time. If 
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Rt>R, then the mass transfer must proceed on a Kelvin time scale and 

the detailed method of Chapter 4 is required. If R̂  < R, however, then 

the primary, on a Kelvin time scale, is smaller than its Roche lo~be. 

It will therefore evolve on a nuclear time scale to fill its Roche lobe, 

as has already been assumed with R = Rc, "before transferring more mass. 

The decrease in X required to evolve the star enough to fill its Roche 

lobe is next determined by solving R = R(M,X) for X, with this new low

er value of X replacing the former value X'. An estimate of the time 

involved is now possible from At = t(X) - t(X'), which assumes that a 

star of mass M evolves as rapidly as one of mass MQ, which should be ac

curate to a. few per cent because little mass is removed and the core is 

somewhat insensitive to the removal of outer layers. 

Because this value of R implies a new I and hence new O for the 

primary, rc(q,n) will change, which in turn may alter the value of Rc = 

R. Hence, X and o are iterated to give consistent values of X and Q, 

so that R = R(M, X) = Arc(q,ft). 

The entire process is then repeated by again removing another 

mass increment AM, until X < .05, in which case overall contraction is 

assumed to halt mass transfer, or until a Kelvin time scale is required 

because R̂  > R. The total time in the slow transfer phase is then sim

ply ts= t(Xf) - t(XQ), and the average mass transfer rate is taken as 

< dM/dt > = (M0 - %)/ts. 



The Calculations 

The Models 

Slow mass transfer rates and durations were calculated as de

scribed above for initial primary masses of M0 = 1.5> 3, 5> an(l 9 M0, 

with XQ varying from .1 to . 6, qQ from . 05 to 1.2, and S from 0 to 1. 

First, one series of detailed evolutionary models was calculated for 

each fixed MQ from homogeneous initial composition of X = .602, Y = 

.35̂  until X < .05. Of this series of about twenty models for each MQ, 

the five models with X ~ .6, .̂ , .2, .1, and .05 were retained on mag

netic tape. Each of these became an initial model with a given M0 and 

X and was used to produce a series of five models with fixed composi

tion but with each successively having about the upper one per cent of 

its mass removed. Thus, the last of each such series had about five 

per cent of its original mass lost, which was more than any of the slow 

mass transfer models of Chapter 4. 

Polynomials F(M,X) were successfully fit to the parameters R, 

It log L, log Tg, and t. Both the polynomial coefficients and the 

standard deviations are listed in Table With these functions, the 

short method described above was used to calculate models for each M0 

with XQ — .1, .2, .3, .^, .5, .65 = .05, .1, «15> «2» .25, «3> 

• 5> •?» «8, .9, 1«» 1.1, 1.2; and S= 0., .5, and 1. Thus, 270 

models for each MQ were calculated. Also, the five models A, B, C, D, 

and E of Chapter 4 were recalculated with this method for comparison. 

These 1085 models only required ten minutes of computer time; the 

models of Chapter k required ten minutes each. 



Table 4. Coefficients for the Function F(M,X). 

F(M, X) = £ Z â  .sM̂ X̂ ; C is standard deviation; M, R, and L are in 
i=o j=o J 

solar units, I in M0R̂ , Te in °K, and tn is t in units of 10 years. 

F aoo aoi a02 ao 3 aio ai2 ai 3 0 

R .634 -2.202 9.945 -10.12 .973 1.039 -7.742 7.879 .002 

s I -.137 -.627 1.797 -1.361 .248 .333 -1.359 1.126 .001 

II 7 

sflog L 

1.138 -1.102 -.610 -1.158 0. 0. 0. 0. .002 
II 7 

sflog L -.838 .044 -.384 1 •
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ON
 

1.161 -.140 .474 -.038 .002 

log Te 3.574 .184 -.836 .722 .169 -.105 .744 -.679 .001 

R 3.788 -9.169 10.116 -4.829 -.139 2.387 -3.697 2.135 .006 

1 -.576 -3.425 8.206 -5.734 .641 .788 -2.965 2.332 .004 

t 
n 8 

1.720 -2.210 1.245 -3.867 0. 0. 0. 0. .002 

sPlog L .489 .021 -. 606 -.267 .545 -.086 .355 -.108 .001 

log Te 3.594 

0
 

CO •
 -.473 .058 .145 -.172 .235 -.109 .001 

R 5.714 -17.34 26.66 -17.09 -.186 2.771 -5.520 3.916 .010 

s0 1 -1.832 -17.70 48.64 -38.99 1.344 2.606 -9.994 8.647 .019 

 ̂t 
ii 7 4.956 -5.062 -1.351 -6.491 0. 0. 0. 0. .003 

ŝ log L 1.642 -.602 .249 -.642 .271 .068 -.020 .065 .001 

log Te 3.791 .607 -.714 .323 .076 -.104 .180 -.113 .001 

R 11.65 -37.23 48.35 -23.13 -.442 3.202 -4.997 2.690 .023 

S® 1 -2.691 -55.56 65.49 0. 2.751 2.692 -5.141 0. .116 

^ t 
ii 7 

1.706 -2.158 1.202 -3.868 0. 0. 0. 0. .003 

£?log L 2.938 -1.025 .456 -1.145 .113 .075 -.046 .101 .001 

!°g Te 3.941 .705 -.484 -.207 .041 -.062 .063 .002 .001 
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Results 

Table 5 summarizes the final values of selected parameters at 

the end of the slow mass transfer stage for the models A, B, C» D, and 

E from both methods. The parameters for model A for the short method 

were chosen at X = . 03, rather than X = . 05, to be roughly at the same 

point as the detailed model A. The general agreement is as good as can 

be expected with all the approximations of the short method. A compar

ison of ts for the two methods is shown graphically in Figure 4. The 

open circles represent the location predicted by the short method; the 

solid circles are the calculations of the detailed method. 

The objective of the short method was principally to calculate 

tg> the duration of the slow phase. Figures 4- to 7 show the results 

for ts as a function of the initial mass ratio qQ. The solid lines in

dicate S = 0 models and short dashes indicate S = 1, for each of the X0 

values of .1, .2, .4, and .6. In every case, the S = 0 and S = 1 lines 

converge to a single horizontal line marked by short and long dashes 

which represents both cases together. These horizontal lines represent 

slow mass transfer continuing to the onset of overall contraction, that 

is, for the entire remaining main sequence lifetime. 

Several contours in Figures 4 to 7 show a discontinuous increase 

in ts at some critical value qoc (unlabeled) of q0. This parameter qQC 

is the non-synchronous counterpart of the parameter qc, the critical 

mass ratio above which slow mass transfer occurs even in the synchronous 

case. The calculation of qc is now possible with the functions R(M,X) 

and will be beneficial in understanding the lower values of qoC. 
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Table 5« Comparison of Detailed Method to Short Method. 

Detailed method entry is first, short method entry second. 

Parameter 
A B 

Model 

C D E 

I
n
p
u
t
 

X
 

.p
 

o
 

o
 0.33 

0.10 

0.33 

0.22 

0.33 

0.22 

0.33 

0.41 

0.67 

0.22 

S 0. 0. 1. 0. 0. 

8s 
(10 yrs) 

0.83 

0.78 

0.91 

0.82 

0.28 

0.26 

1.03 

0.84 

1.84 

2.03 

Mq - Mf 

(V 

0.009 

0.010 

0.028 

0.020 

0.016 

0.010 

0.022 

0.019 

0.070 

O.O58 

< dM/dt > 

t (10-10 M0/yr) 
-p 
3 
o 

% 

1.2 

1.3 

0.74 

0.73 

3.1 

2.4 

0.57 

0.54 

5.7 

3.9 

0.58 

0.72 

2.1 

2.3 

0.58 

O.58 

3-9 

2.9 

0.10 

0.17 

Xf 
0.02 

0.03 

0.16 

0.17 

0.20 

0.21 

0.36 

0.37 

0.09 

0.07 

If o
 
o
 

0.36 

0.35 

0.35 

0.34 

0.35 

0.35 

0.75 

0.73 
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Calculation of qc. Returning briefly to the classical model, 

qc is that mass ratio for which the rate of change of the equivalent 

Roche lobe radius with mass transfer dRc/dq is equal to the rate of 

change .in the thermal equilibrium radius dR.(./dq. The criterion for 

slow mass transfer will then be q > qc. The value of qc is easily de

termined, once having the functions R(M,x). From equations (2-6) and 

(3-11), and noting that JJ, is proportional to q/(l+q)2> one has 

Rc = C (l+q)4 (1-| log q)/q2» (5-2) 

where C = RQ q2/[(l+qQ)4 rc(qQ,l)] is a constant, and RQ is the pri

mary radius at the onset of mass transfer. Equation (5-2) implies 

a log Rc = *Kl 2 log e (c. O) 
d log q l+q 2 - log q 

Solving (5~3) for the value where dRC//dq - 0 yields qc = 1.26, i.e., 

if the primary kept a constant radius with mass transfer, then slow 

mass transfer would occur only for q > 1.26. Note that to the accuracy 

of the approximation of equation (3-11) qc is independent of O, as long 

as O is constant. 

The function R(M,X) ̂  + aQ (â  = Z aijXJ> aij from Table 4), 
J 

where ax and aQ are constants for X constant, Implies that dR̂ /dq = 

- a1M/(l+q). The values of qc, determined by dR̂ /dq = dRc/dq, are plot

ted in Figure 8 for the primary masses used. The dotted line is qc = 

1.26, the value for which dRc/dq = 0. The accuracy of these values of 

qc is only about ± .1 because of the inaccuracy of the determination of 
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the coefficient This probable error of ± .1 was determined by us

ing another approximate function R(M,X) for MQ = 1.5 M@. 

An example of the application of Figure 8 is the following. A 

close synchronous binary with components of equal mass of 1.5 M0 and 

XQ < .4 should initially transfer mass on a slow time scale because 

qc < q, whereas if their masses were each 3 M0, it would initially 

transfer on a Kelvin time scale because qc > q. In either case, the 

duration should not be estimated from Figure 8 because the values of qc 

were determined by removing only the uppermost layers. 

The Relation of qoc to qc and ft. These results for qc can be 

applied directly to the non-synchronous case after the spin angular mo

mentum has been entirely transferred so that ft ~ 0, because then ft ~ 

constant as was assumed in the derivation of qc. If the original mass 

ratio q_ has been increased by mass transfer enough to make q > q be-o o 

fore ft ~ 0, then, in all models calculated, the condition q > qc con

tinues to hold thereafter, and the mass transfer proceeds on a slow 

time scale until core hydrogen exhaustion. The lowest value of qQ for 

which q > qc occurs before ft = 0 is the value of qoc. 

To determine how small ft. must be to fail to transfer signifi

cant angular momentum, the model with the lowest value of q0 to trans

fer entirely on the slow time scale (so that qQ « qoc) was analyzed by 

choosing a point in time when dR-j./dq x dRc/dq, so that it almost changed 

to a Kelvin time scale. The value of qr was then calculated for each of 

these models and the results are summarized in Table 6. As before, the 

subscript o denotes values at the initiation of mass transfer; no 
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Table 6. Non-synchronous Values of q. and qc for O. ~ 0. 

Mo Xo s qo M X n 
*? 

q > 1c 

1.5 .4 0. .8 1.42 .26 .09 .90 .82 

1.5 A 1. .8 1A2 .30 .09 .90 •
 

00
 

t\3
 

1.5 .6 0. .8 1A2 .46 .11 .90 00
 

-0
 

1.5 .6 1. .8 1A2 .50 .11 .90 .89 

3. .4 0. .9 2.80 .29 .08 1.04 1.06 

3. A 1. .9 2.80 • 32 .08 1.04 1.05 

3. .6 0. .8 2.80 .48 .10 .93 .98 

3. .6 1. .9 2.80 .50 .10 1.04 .97 

5. .4 0. .9 4.60 .30 .07 I.07 1.06 

5. A 1. .9 4.60 .33 .07 1.07 1.04 

5. .6 0. .8 4.60 .48 .09 .96 .99 

5. .6 1. .9 4.60 .50 .09 1.07 .98 

9. 0. .9 8.30 .32 .09 1.06 1.10 

9. .4 1. .9 8.30 .34 .09 1.06 1.07 

9. .6 0. .8 8.20 .49 .09 .98 .99 

9. .6 1. .8 8.20 .53 .10 .98 .97 



subscript denotes the present value. Note that the cases where q < qc, 

and yet the transfer is on the slow scale, imply that angular momentum 

transfer is still important, invalidating the CI ~ constant approximation 

in the calculation of qc. The case of MQ = 3 M , XQ = and S = 0 con

tinued to have q < q_ down to Cl = .0̂ )-, indicating that angular momentum 

transfer was important down to that value. It also means that the value 

of qQ used was probably very close to the critical value q.0c» I"*1 

suggested that if the exact value of qoC were used as q0, that even 

lower values of Cl would be produced with q < qc; hence the conclusion 

that O can be important down to Cl « 0. 

Thus, for q0 > qoc there is no time in the slow transfer when 

the lobe contracts faster than the primary; by the time that Cl ~ 0, the 

mass ratio has changed enough that q > qc. If qD = qoc then when O = 0, 

it is still true that q < qc and the spin angular momentum is too small 

to maintain transfer on a slow time scale. If q < q . then a Kelvin o ôc 

time scale is required even before Cl ~ 0; as qQ decreases, the switch 

to rapid transfer is made at ever increasing values of Q, until for 

small q0 rapid mass transfer is required even for O = 1. 

Finally, a comparison of qQ ~ qQC to qc in Table 6 indicates 

that qQC is generally about ,1 less than qc. This means that angular 

momentum transfer can change the mass ratio by about a tenth, after 

which q > qc and even a synchronous system would proceed on the slow 

scale. The values of qoc shown in Figures 4 to 7 are only estimates 

accurate to ± .1 both because the intervals of qQ used to construct 

the graph were ,1 and because the value of qoc depends of the deriva

tive of the function R(M,X). 
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Slow Mass Transfer Duration. The motivation for calculating 

the duration of the initial slow mass transfer phase was to get an es

timate of the probability of a binary system being in that phase. That 

probability should be proportional to the fraction of time spent in 

slow transfer, as well as proportional to other factors, such as the 

probability that the system have the required separation and mass ratio. 

For a given set of initial parameters, the fraction f of the 

main sequence lifetime tn spent in the slow phase can be readily ap

proximated from the appropriate graph of Figures 4 to 7« Values of 

log ts are plotted and log t is approximately equal to ts for XQ = .6 

and qQ = 1.2, i.e., the uppermost horizontal line. Thus, log f is the 

difference between the two values. 

An approximate formula for f for typical values is useful. 

Probably S = 1 is more physically reasonable than S = 0, that is, that 

essentially all transferred angular momentum goes into an accretion disk 

(or otherwise into the secondary) rather than into the orbit. The most 

likely value of XQ is probably between .1 and .3 because for smaller 

values the phase is terminated by the onset of overall contraction, and 

for larger values the primary is so near to its zero age radius that it 

would rarely have overflowed its fioche lobe. If XQ « .2 and S ~ 1, f 

can be approximated by 

1 

f  *  A  M ~ ' 6  (.6)q°"*2 (5-4) 

on the range .2 < qQ < 1,,. and 1.5 M0 < Mq < 10 MQ. This equation was 

fit to the appropriate curves in' Figures 4 to 7 and reflects some 
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physical implications. First, the asymptotic minimum value of qQ of .2 

(for S = l) is nearly independent of the initial primary mass. For 

smaller q0, the constraint |i2A « constant causes A to decrease so ra

pidly with increasing (j, that slow mass transfer is not possible. Sec

ondly, the weak dependence on M0 reflects the tendency of the outer en

velope of more massive stars to expand with mass loss and thus shorten 

the slow transfer phase. 

For MQ = 2 M0, equation (5~*0 yields for qQ = .8, f = .11} for 

qQ = .5, f = .05» and for qQ = .3> f = .002. If MQ = 10 M@, the values 

of f are decreased by a factor of about three. Thus even given the in

itial mass ratio of .5 and the correct initial separation, there would 

only be a .05 chance of finding the system in the slow transfer phase 

(for MO=2M0). 

Slow Mass Transfer Rates. Figure 9 is a graph of the average 

mass transfer rates for the extreme models. As before, the solid lines 

represent S = 0, the dashed line is S = 1. Only the values of XQ = .1 

and XQ = .6 are graphed because the intermediate values of XQ lie be

tween them on the graph and because there is so little variation. As 

with ts, the graph is only to indicate approximate values and trends. 

The point is simply that initial slow mass transfer would occur at a 

strictly nuclear rate if there were negligible tidal coupling. Fur

ther implications and suggestions for future research are discussed in 

Chapter 6. 
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CHAPTER 6 

CONCLUSION 

Classical theoretical models of mass transfer in semi-detached 

binaries have predicted that a more massive primary must transfer mass 

on a Kelvin time scale, whereas transfer rates in X-ray binaries are 

consistent with a nuclear time scale. In an attempt to resolve this 

inconsistency, a model replacing the assumption of synchronism with 

that of detailed angular momentum conservation is proposed. The re

sults and their applicability will be briefly summarized in this chap

ter, as well as suggestions for future research. 

Summary of Results 

The principal result of Chapter 4 was to show that, when angular 

momentum transfer is included, an initially synchronous semi-detached 

binary with negligible tidal coupling may transfer mass on a nuclear 

time scale, even if the lobe-filling component is the more massive. 

The switch to the slow time scale occurred principally because the 

high amount of angular momentum per unit mass transferred at the Lx 

point caused the non-synchronous Roche lobe to increase in absolute 

size. In the classical calculations, it was the lobe's contraction 

that caused the Kelvin time instability leading to rapid mass transfer. 

Moreover, it was found that in some cases this slow mass transfer could 

continue for an appreciable fraction of the main sequence lifetime 

72 
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before it was terminated by either the onset of overall contraction or 

the exhaustion of primary spin angular momentum. 

The purpose of the research presented in Chapter 5 was "t° deter

mine the dependence of the existence and duration ts of the initial 

slow mass transfer phase on the initial primary mass MQ, the initial 

mass ratio qQ> the core hydrogen abundance at the onset of mass trans

fer XQ, and the fraction of primary spin angular momentum transferred 

to the secondary, S. It was found that the most important such param

eter is qQ. For qQ < there is no initial slow mass transfer 

phase because the orbit contracts so rapidly with mass transfer. The 

value of qmin depends principally on S, ranging between about .2 for 

S = 0 to about .3 for S = 1. For <lmin < qQ < qQC> ts increases with qQ 

to a maximum of about one tenth of the entire main sequence lifetime. 

For qQ > qQC, t increases by a factor of as much as three and equals 

the remaining core hydrogen nuclear burning time. The value of qoc is 

approximately .1 less than the corresponding value of qc,. the critical 

mass ratio above which even the classical synchronous model will trans

fer on the slow time scale. 

The dependence of t on the parameters MQ, XQ, and S is less 

pronounced than on qQ. For a given value of qQ between qmj_n and qQC 

the duration was about half as long for S = 1 as for S = 0. For a 

given qQ and S, the duration was up to three times as long for XQ = .6 

as for XQ = .2 in the higher mass models because of their tendency to 

expand in a Kelvin time upon the removal of their outer layers; for 

= 1.5 there was very little dependence of t on X̂ ,. The principal o @ so 



dependence of t on MQ was the rapid decrease in the main sequence life

time with increasing MQ; otherwise, the only dependence on M0 was the 

mentioned tendency of the higher mass stars to expand with mass loss, 

decreasing ts. 

Discussion 

Stated Problem 

It has been shown that the classical results on mass transfer 

rates in evolving semi-detached binaries depend crucially on the syn

chronous rotation hypothesis, i.e., on highly effective tidal coupling. 

For negligibly effective tidal coupling, the mass transfer rate is re

duced from the classical value by about three orders of magnitude, 

namely, from a Kelvin to nuclear time scale. 

Of course, it is not asserted that initial mass transfer nec

essarily occurs on a strict nuclear time scale. The assumption of . 

negligible tidal torques in the proposed model was made both for sim

plicity and as the extreme opposite of synchronism. Rather, it is sug

gested that initial mass transfer occurs on the time scale tc deter

mined by the efficiency of tidal coupling and satisfying t̂ - < t < tn. 

In the case of deep convective envelopes, the coupling is probably 

very efficient and tc « t̂ j however, for radiative envelopes, the syn

chronization time is probably 102 - 103 Kelvin times (Ritter 1975)» 

and hence t is perhaps 10 - 102 Kelvin times. 

.This conclusion is consistent with rates for X-ray binaries 

calculated from their observed X-ray emission: the Kelvin rate is about 
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10"7 M@/yr (for Mx « 1.5 M0) and the nuclear rate found in this re

search is about 10~"̂  M0/yr, whereas the rate that best fits the ob

servations is about 10"9 M0/yr (van den Heuvel 1975)• The mass of HZ 

Her in particular is about ~ 1.5 M0 and Mg ~ .5 M0 (Strittmatter et 

al. 1973)« However, even an evolved core hydrogen burning model does 

not fit Mj_ as it would be smaller than its Roche lobe by a factor of 

about two. It probably has a complicated history of mass transfer; nev

ertheless, HZ Her has a surface temperature indicative of a radiative 

envelope and a mass ratio such that the results of this research should 

apply to it. 

In view of these results, and especially the wide range of mass 

ratio q.Q for which very low initial mass transfer rates are predicted, 

it seems entirely premature to claim that initial mass transfer must 

occur at a Kelvin rate. Therefore, despite the low mass transfer rates, 

it is possible that low mass X-ray sources such as HZ Her are powered 

by Roche lobe overflow. 

Other Implications 

Besides offering a possible solution to the apparent inconsis

tency of observational and theoretical X-ray mass transfer rates, the 

present research has other interesting implications. Non-synchronous 

mass transfer can apply to optical as well as X-ray binaries. The 

results imply that any semi-detached binary with qQ > .3 and a radia

tive primary expanding on a nuclear time scale should have an initial 

slow mass transfer stage. An approximate formula (5-4) was given for 
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the fraction of the main sequence lifetime spent in the initial slow 

transfer stage. One important implication is that at least some opti

cal semi-detached binaries with .5 < q < 1 should be in that phase long 

enough to perhaps render observation possible. Of course, the probabil

ity of observation must also be considered. 

The classical synchronous model, which probably approximates 

primaries with deep convective envelopes, also has s-low mass transfer 

provided q > qc. Another result of this research is an approximate de

termination of qQ. One implication of the values is that for HQ s 1,5 

M , it is possible to have qc < 1, meaning that even in the synchronous 

case a (slightly) more massive primary may transfer on a slow time 

scale. 

The value of qc is also relevant to a question posed by Kopal 

(1971) concerning contact binaries. He reasoned that a close detached 

binary with mass ratio unity, such as is observationally common, should 

have both components fill the lobes simultaneously and, by symmetry, 

form a contact binary with q = 1, independent of the time scale needed. 

But no contact binaries are observed with a mass ratio near unity, al

though supposedly many should have been formed from such main sequence 

forerunners. He felt this inconsistency important enough to be a seri

ous objection to the entire theory of mass transfer. 

The calculations of qc in the present research can resolve the 

inconsistency in many cases, even using the classical synchronous model, 

because whenever qc exceeds unity the symmetry between the components 

is broken for the following reason. One of the components (the primary) 



will overflow its lobe slightly before the other and transfer some mass 

to the secondary. The lobe of the secondary will expand both because 

the separation will begin to increase and because the secondary is gain

ing mass. If the secondary lobe expands more than the secondary itself, 

then the symmetry is broken and the secondary will not overflow its 

lobe back onto the primary. If the secondary lobe continues to expand 

rapidly enough, then a binary of mass ratio different from unity will 

result, whether the time scale is nuclear or Kelvin. Of course, if it 

is nuclear, observation in the near unity phase is probable. 

The condition for which the secondary lobe expands fast enough 

for unidirectional mass transfer is simply that dRc//dM2 > dR̂ /dMz where 

both RQ and Rj. refer to the secondary. Interchanging the notation of 

primary and secondary, one sees that the critical value of q for which 

the two derivatives are equal is simply qc, by definition. Returning 

to the original notation, the conclusion is that the transfer is uni

directional as long as q > l/qc» Thus, the inconsistency is resolved 

for the (synchronous) cases in which qc > 1 because that condition is 

satisfied for q near unity. Moreover, qc > 1 also means that the 

transfer will occur on the rapid time scale, since q < qc, and hence 

probably escape detection. 

For qQ < 1 the inconsistency remains and should probably be 

analyzed with contact models. The present results indicated that qc < 1 

is more probable for lower mass stars, perhaps even those with deep con-

vective envelopes. In those cases, the synchronous model used in cal

culating q. is especially appropriate, but it is possible that dynamic 
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mass transfer occurs (Paczyfiski 1970). This case definitely merits 

further investigation. 

Future Research 

Several interesting topics for future research are suggested 

by the foregoing results. The conclusion above that both X-ray and 

optical non-synchronous binaries can have an initial slow mass transfer 

phase suggests that the probability of observation of this phase be cal

culated. This would entail estimating not only the probabilities that 

binaries have the required initial parameters, but also calculating all 

of the observational selection effects. It is the proposal of this 

dissertation that the low mass X-ray binaries are probably in such a 

phase, so the number now observed should be compared to that expected 

from probability arguments. Moreover, since no optical binaries in 

initial slow mass transfer are known, a search for such should be con

ducted if the probability of discovery is sufficiently high. 

If the probability of observation is to be taken very seriously, 

then some refinements should perhaps be made in the proposed model. 

In particular, some tidal coupling could be introduced, which would 

shorten the duration and increase the rate of slow mass transfer in all 

cases. Moreover, some estimate of mass and angular momentum loss from 

the entire system could be included. The possibility that some orbital 

angular momentum could be transferred to the spin of the secondary could 

also be considered. None of these modifications, however, is expected 

to decrease the duration of the initial slow phase by as much as an or

der of magnitude. 
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Another area of future research is to consider primaries ini

tially rotating more rapidly than the synchronous rate. Preliminary 

results are obtainable from the equations as described in this disser

tation, but more precision would perhaps entail the inclusion of the 

radial and Coriolis accelerations that were negligible in the present 

research. 

The functions F(M,X) should be extended to lower mass stars 

with deep convective envelopes. These stars were omitted from the pres

ent research because the non-synchronous model would not be applicable. 

Nevertheless, these functions would be useful to calculate qc. If it 

turns out that qc > 1 for most such cases, then the absence of low mass 

contact binaries with unity mass ratio is readily understandable, as 

described above. 

A  final suggestion for research comes from the critical core 

hydrogen abundance XQ, below which the primary expanded with mass loss, 

because it increased with increasing mass, as indicated by the inter

sections of the dashed and solid lines in Figure 8. The question arises 

whether Xc continues to increase with mass, so that for some initial 

mass, even a homogeneous zero age main sequence star would expand on a 

thermal time scale with mass loss. This question may be relevant to 

instabilities in high mass stars, and the ease of answering it with the 

methods of this dissertation certainly make it worth doing. 

These are some of the areas of future research in the growing 

field of binary star evolution that should be investigated immediately. 

The possible relevance of the non-synchronous model to other types of 



"binaries, such as cataclysmic variables and contact "binaries, should 

also "be considered. Hopefully, the next few years will be fruitful in 

broadening the understanding of the many types of binary systems and 

their various stages of evolution. 
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