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In my thesis I present a study of the dynamics and observational characteristics 

of massive circumstellar disks in two dimensions (r. <t>) using two complimentary 

hydrodynamic codes: a "Smoothed Particle Hydrodynamic' (SPH) code and a 

•Piecewise Parabolic Method' (PPM) code. I also study the detection limits 

available to radial velocity searches for low mass companions to main sequence 

stars. This thesis is organized as a series of published or submitted papers, 

connected by introductory and concluding material. I strongly recommend that 

readers of this abstract obtain the published versions of each of these papers. 

I first outline the progress which has been made in the modeling of the 

structure and origins of the solar system, then in chapter 2 ( The Astrophysical 

Journal v502, p342, with VV. Benz, F. .A.dams and D. .A.rnett), I proceed with 

numerical simulations of circumstellar disks using both hydrodynamic codes 

assuming a 'locally isothermal' equation of state. The disks studied range in mass 

from 0.05M. to LOM. and in initial minimum Toomre Q value from 1.1 to 3.0. 

Massive disks {Mq > 0.2.'V/.) tend to form grand design spiral structure with 1-3 

arms, while low mass disks {Mq < 0.2M.) tend to form filamentary. >4 armed 

spiral structures. Disks with minimum Toomre stability Q ^ 2.0 are dynamically 

active and structures within each disk become distorted, break apart and reform 

on orbital time scales. Spiral arms in disks with ^ 1.5 frequently collapse into 

clumps. I perform a detailed comparison of the two numerical techniques employed 

and conclude that SPH is unable to follow the linear instability regime of the disk 

systems due to noise inherent in the method. 
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In chapter 4 (submitted to The Astrophysical Journal with W. Benz and T. 

Ruzmaikina), I relax the assumption the locally isothermal evolution assumption 

and instead include simple heating and cooling prescriptions for the system. Under 

these physical conditions, the spiral arm growth is suppressed in the inner 1/3 

of the disks relative to the isothermal evolution and in the remainder, changes 

character to more diffuse spiral structures. I synthesize spectral energy distributions 

(SEDs) from the simulations and compare them to fiducial SEDs derived from 

observed systems. The size distribution of grains in the inner disk can have marked 

consequences on the near infrared portion of the SED. After being vaporized in a 

hot midplane region, the grains do not reform quickly into the size distribution 

on which most opacity calculations are based. With the original opacities, near 

infrared emission suppressed relative to observations, with a plausible modification 

to the opacity, a more realistic SED is obtained. .\t long wavelengths, insufficient 

flux is produced and we conclude that the internal heating processes included in 

our model (due e.g. to gravitational torques) do not provide a large fraction of the 

thermal energy present in the outer portions of accretion disks. 

In chapter 6 ( The Astrophysical Journal v500, p940 with Roger .•X.ngel). I 

examine the limits which may be placed upon the detection of planets, brown dwarfs 

and low mass stellar companions using radial velocity measurements. I derive 

an analytic expression describing the amplitude limits for periodic signals which 

may be obtained from a set of data of known duration, number of measurements 

and precision. I have verified the formalism with Monte Carlo experiments and 

outlined the regions of its validity. I have used the technique to suggest a strategy 

for continuing large radial velocity searches for low mass companions. 

In chapter 7, I outline several problems which may be profitably addressed by 

building on this work. 
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CHAPTER 1 

How WE GOT TO THIS POINT AND WHERE WE'RE 

GOING 

Understanding the character and origin of our solar system and, more generally, of 

other stars and planetary systems is a problem which has been under study for a 

large portion of human history. In this introductory chapter I will outline some of 

the important steps in the development of our understanding of our solar system 

ajid of the origin of solar systems in general. I hope that you as a reader finds this 

as amusing to read as it was amusing for me to write. 

Modern records show Greek, Babylonian and Chinese scholars as some of 

the earliest to make a systematic study of the subject. Due to limited access to 

their work, similar studies in other parts of the world (e.g. Central America) have 

contributed to a lesser extent to the current paradigms. ^ 

Some of the earliest to put forth a model for the solar system were the 

Pythagoreans, a school founded by the man whose name it bears. The work of 

' In the spirit of referencing original source matericil, I have done so where possible throughout 
much of this introduction. In the spirit of obtaining a good historical background of ancient 
astronomy, I'd recommend Dreyer's History of Astronomy or Heath's Aristarchus of Samos as 
excellent introductions to the subject. 
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this school is unfortunately laxgely available only through secondhand sources, 

since they did not generally widely publish their work. They hypothesized a model 

of a central fire with a spherical earth, the sun, the moon and the stars orbiting 

around it on circular trajectories. Later Pythagoreans theorized that the earth 

instead rotated in space (Heraclides, ca. 340 BC). The circumference of the earth 

was later determined from observations of shadow lengths at different latitudes by 

Eratosthenes (Eratosthenes ca. 220BC). Also following up the heliocentric theory 

of the heavens, Aristarchus (ca. 260 BC) determined the size of and distance to the 

sun and moon. 

Eudoxus of Cnidus (ca. 365 BC) proposed what, after a number of 

modifications, became one of two standard models of the motion of stars through 

the heavens. In this model, celestial objects orbited the earth on spheres of greater 

or lesser distance from the earth. Most objects ('the fixed stars') were fixed to an 

imaginary celestial sphere which rotated around the earth once a day. Five 'stars' 

which behaved peculiarly were given the special designation 'planets' and were fixed 

to separate imaginary spheres. The sun and moon were similarly distinguished and 

given their own spheres. 

Due primarily to the efforts of Ptolemy in his landmark treatise on the subject 

(Ptolemy ca. 150AD), the geocentric model gained favor over the heliocentric 

models and remained the standard for fifteen centuries. He summarizes and extends 

the work of many previous astronomers (notably Hipparchus ca. 160 BC, whose 

work and that of most of his predecessors is largely unavailable), and describes a 

cosmology in which the earth occupied the center of the universe, celestial objects 

moved in uniform circular motion around the center, each at a different distance. 

Smaller circles ('epicycles') were invoked to fix discrepancies between the model 
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and the observations. 

A formalism called 'cilgebra' (al-Khowaxizmi ca. 820 AD), suitable for rigorous 

mathematical models of astronomicaJ observations, wajs developed and put on a 

level footing with the geometric mathematics of the Greeks. Many of the geometric 

constructs of earlier workers (e.g. the Tables of Chords, calculated by various 

authors) were transformed into the new algebraic form as tables of sines and 

cosines. In spite of the concurrent studies of astronomy, by the same workers, 

algebra was not incorporated into the physical models for many more centuries. 

Precise observations of the heavens and the redevelopment of the heliocentric 

model of Aristarchus by Copernicus (Copernicus ca. 1530, 1543) began to overturn 

the geocentric universe with a heliocentric model in which the earth was one 

member of a system of objects traveling in circular orbits around the sun. Circular 

epicycles were still required to reproduce the observed motion but were of smaller 

size and fewer were required to reproduce the observations. 

Developments in instrumentation (Braiie 1598), and observational techniques 

(Brahe Kepler 1602) soon resulted in published catalogues (Kepler, BraJie 

Eckebrecht 1627) of new, precise astronomical observations of the motions of 

celestial objects in the solar system over the course of several decades of time. 

Building on this voluminous database, Kepler (1609, 1619) fit the observations 

into an empirical framework of laws governing the motion of the planets around 

the sun. This framework in fact forms the basis of most orbital motion problems 

today and the 'Keplerian' motion noted throughout this thesis (minus the many 

astrological implications) is identical to that outlined in Kepler's original works. 

Parallel developments in instrumentation (Digges 1571, Lippershey 1608) 

enabled, by means of a 'telescope', many revolutionary discoveries and observations 
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to be made of the Jovian moons, phases of Venus eind Mercury, motmtains on the 

moon (Galilei 1610) and sxinspots (Fabricius 1611) which rebutted neaxly ail of 

the original criticisms of the Copemican model. Only three criticisms (absence 

of stellar parallajc mezisurements, the possible presence of an 'aether' and the 

precession of the orbit of the planet Mercury) remained much longer, being laid 

to rest only in 1838 (Bessel 1838,1840), 1887 (Michelson and Morley 1887) ajid 

1917 (Einstein 1917), respectively. A review article (Galilei 1632) summarized 

and compared the so called 'Ptolemaic' and 'Copemican' models and many of the 

outstanding problems with each ajid, over the next several decades the Copemican 

model became the standard. 

In the years which followed, Newton (Newton 1687) provided a confirmation 

of Kepler's empirically derived frajnework on an entirely theoretical basis. The 

epicyclic frequency discussed at many points in the following chapters (see esp. ch. 

2 and 4) is based upon a solution to orbital motion of celestial bodies made within 

Newton's theoretical framework. Based upon this same solution, we may now 

note that had Ptolemaic system allowed for the possibility of elliptical epicycles 

(specifically with an axis ratio of 2:1) the discrepancies between observations and 

the Ptolemaic theory would have been much less pronounced and the Copemican 

model may therefore have been much less readily accepted. 

Most of the scientific efforts made until the late 1700's and early 1800's went 

into describing the physiccJ inventory of the solax system and the character of the 

motion of the bodies within it. Within the past 200 years, observations have been 

both precise enough and of a sufficiently diverse nature that a reasonable effort to 

understand the origin of the solar system and of stars like the sun has been made. 

With this mathematical and cosmologicai framework, the development of a theory 



of the origin of the solax system began to take the shape it holds til this day. Kant 

(1755) proposed a 'solar nebula hypothesis' wherein the sun zuid the planets in the 

solax system began as a cloud of gas which then proceeded to collapse. Laplace 

(1796) placed the study of the solar system as a whole onto a solid mathematical 

framework ajid outlined a possible theory of how the collapse might taJce place. 

Physical conditions under which coUapse could occur were outlined by Jeans (Jeans 

1902) in which he relates the balance between the self gravity (characterized by the 

mass density) and internal pressure (characterized by the sound speed) of a cloud. 

Observations of stars outside the solar system (Hertzsprung 1911 and 

independently Russell 1914) showed that a number of differences exist in the 

apparent color and luminosity of between various stars in the heavens. These 

differences could be attributed on the one hand, to a 'main series' of stars with 

similar radii but widely differing colors and luminosities, and on the other hand, 

to other sequences of giant stars with widely ranging radii. Once the sizes and 

luminosities of stars became known it was apparent that they were emitting 

prodigious amounts of energy, but the source of the energy was unclear (see e.g. 

the review of Jeans 1929). Perrin (1919) and later Eddington (1920) proposed that 

the source of the energy radiating from stars was derived from transmutation of the 

elements, a theory which over the next severai decades was shown to be correct (see 

e.g. Bethe Critchfield 1938, Bethe 1939, and the review of Burbidge et al.l957). 

Regardless of their source of energy, stars had to evolve from some other form 

of matter before they started to undergo any nuclear fusion, and therefore we might 

hope to observe some stars which are quite young if the evolutionary process is 

ongoing. Joy (1945, 1949) discovered a new cleiss of stars, which he naxned 'T Tauri' 

stars after one of the brightest objects in the new class, which were variable in 
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their brightness over time but which were not at all periodic. They also did not 

fit well into the Hertzsprung/Russell picture of dwarf and gieint stars, since they 

lay some 1-3 magnitudes above the mciin sequence (Herbig 1952, Walker 1956), 

which is consistent with a star undergoing gravitational collapse prior to ignition 

of nuclear fusion. The staxs in the class were neaxly always associated with dense 

nebulosity and molecular clouds, leading to the belief that these stars were very 

young. Further evidence in favor of this hypothesis includes the discoveries that on 

the one hand the photospheres of this class of stars axe very active photospheres 

(Herbig 1970) and on the other hand that they emit energy fax in excess of stellar 

blackbody emission in the infrared (Mendoza 1966, 1968). Taken together these 

observations suggest a model of a cool disk slowly losing its orbital energy (the IR 

emission) and accreting onto the central star (the photospheric activity). 

The solar nebula hypothesis and the development of mathematical models of 

the collapse itself provided a strong impetus for the study of accretion disks, since 

with the collapse of any realistic cloud of gas there will be some component of 

angular momentum. Among the first to maJie a systematic study of disks were 

the Lindblads, who studied mainly galactic disk systems and developed the theory 

of spiral structure in a nearly annual series of papers (e.g. Lindblad 1960, 1963) 

and showed that spiral structure could be explained as a quasi-static phenomenon 

by the fact that the quantity, fl(r) — K(r)/2, where ^(r) and «:(r) are the aiigulax 

and epicyclic frequencies of matter in the disk, is approximately constant over a 

large range of radii. This implies that resonant effects may build up the disk into 

a stable pattern as matter in part of the disk orbiting the stax at one radius acts 

upon matter orbiting at a much different location. 

If in fact such accretion disks exist around some stars (and it is now quite 
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evident both from direct and indirect observations that they do-see discussion 

throughout this work), they must be transient objects, since we see few or no signs 

of disks around most stars. Lynden-Bell & Pringle (1973) showed that a viscous 

disk will transport mass radially inwaxd through the disk while angulaj momentum 

will be transported radially outward, idtimately ending with neaxly ail of the disk 

mass transported into the stax and all of the angular momentum transported to 

infinity. Molecular viscosity however had long since been shown to be far too small 

to evolve the disk in the available 10®-10' yr (von VVeizacker 1943). 

Work by Shakura and Sunyaev (1974) used dimensional arguments to 

parameterize the magnitude of the viscosity as a function of the sound speed and 

the scale height of the disk, but this paxcimeterization has little physical basis 

and has primarily been used as a black box dissipation source. A free parameter, 

'a', combines all of the unknown physical dissipation into a single dimensionless 

number. In practice, and in the absence of a better model, tuning a to the value 

which best fits the model to the observations has become the method of choice for 

many disk models. 

For some disks a viscous model is inadequate for a correct understanding of the 

morphology of the system. Galactic disks, for example, show large spiral shaped 

density variations. On smaller scales, a similar physical picture may apply to the 

collapse of the molecular clouds during the star formation process, though direct 

evidence for such structure is not yet available. Lin & Shu (1964, 1966) theorized 

that spiral structure coidd in fact be characterized as density waves and so the 

formidable mathematical apparatus developed to describe waves could be applied. 

The development of this density wave theory led at the same time (Toomre 1964) 

to an extension of the Jean's criterion for cloud collapse to centrifugally supported 
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disk systems. This condition defines the relationship between the local gas or 

particle pressure (chaxacterized as a local velocity dispersion of particles or as a 

sound speed), rotational shear and local self gravity (chaxacterized by the local 

surface density of meiss) under which a disk will become unstable to ring formation 

and eventuai local collapse. In chapter's 2 and 4, we will study disk systems which 

are maxginally stable according to this criterion and which develop spirzJ structure 

which we will compare to theoretical predictions made based on developments of 

the spiral density wave model of accretion disks. 

Without advances in computationai hardware (Atanasoff 1940, Eckert 

et ai.l945, von Neumann 1945) and aJgorithms for the numerical solution 

of differential equations (Kutta 1901, Courant, Friedrichs &: Lewy 1928, for 

hydrodynamic equations in particular see e.g. von Neumann &: Richtmyer 1950, 

Godunov 1959, Lucy 1977, Gingold &: Monaghan 1977) the loss of one or two 

dimensional symmetry (ie. planar, spherical or cylindrical symmetry) may have 

proven insurmountable in attempts to model the behavior of astrophysical systems 

in general and forming stars or the solar system in particular. The data were 

becoming precise enough that physical models had to account for more phenomena 

than could be included in purely analytic (mathematical) methods. However, with 

these new algorithms and hardware tools and the rate of increase in the density 

and complexity of electronic components (Moore 1965), the consequent increase in 

the speed, size and complexity of computational models has been able to keep pace 

with observed systems (at least somewhat!). The work presented everywhere in this 

thesis could not have proceeded without the development of such computationai 

resources. 

The state of the study of stax formation as of about ten years ago is 
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summaxized in the review axticle of Shu, Adcims &: Lizano (1987). They describe 

four stages during the formation of stars. The first stage is characterized by the 

formation of dense cores of gas and dust within molecular clouds. At some point, a 

core collapses to form a protostar with a disk surrounding it. Later, the star/disk 

system begins to eject matter via bipolar outflows and continues to accrete matter 

from the cloud. Finaily, accretion and outflow cease, the disk decays and the star 

evolves onto the main sequence. While this paradigm provides a qualitative picture 

of the star formation process, many important questions remain. 

One example is that this paradigm only models the formation of single staxs. 

Unfortunately, we know that there are lots of stars which axe observed to be 

in binary or even higher order multiples. A survey of one class of such objects 

('spectroscopic binaries', or binaxies whose observed spectral lines axe observed to 

vary periodically and whose motions caxi be fit to Keplerian orbits) by Duquennoy 

and Mayor (1991) showed that in fact most staxs near the sun axe in multiples. 

Somehow the theory has to account for these staxs as well. More recent observations 

(Simon et al.l995, Ghez et al.l993, Leinert et cil.1993, Reipurth Zinnecker 1993) 

have also shown that very young staxs axe often found in multiple systems. In fact, 

those observations showed that a higher fraction of young staxs are in multiple 

systems than exist in older staxs like those studied by Duquennoy and Mayor. 

Another axea where understanding is limited is in the evolution of circumstellax 

disks. How do they form? What is their morphology at different times during 

the evolution? Do they form spiral density wave structures similax to those seen 

in galaxies, axid do such structures collapse to form binary companions? What 

mass do such companions have: axe they low mass objects like plajiets or brown 

dwarfs, or higher mass objects like binary star? The predictions of the Q model 
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for the temperature structure of disks during their evolution do not agree with 

observations. It is also completely inapplicable to a meissive disk where spiral 

structures may develop. Better models must be developed in order to understand 

these properties of disks. 

Still another ajrea of limited understanding is in the formation and evolution of 

low mass compajiions like the terrestrial planets and gas giants in the solar system, 

or of the low mass companions and brown dwarfs recently discovered around other 

nearby stars. How do these low mass companions form ajid/or move within the 

star/disk system? 

This thesis continues and builds upon work outlined above ("standing upon 

the shoulders of giants"—Newton 1675/1676). It is primarily an attempt to better 

understand the physical processes important during the origin and evolution of 

solar type stars and of the solar system, the observational consequences of those 

processes and the limits which caji be placed upon detecting certain signatures 

of already formed systems. This work is organized as a series of published or 

publishable papers connected by short interludes which describe a little of the 

background behind the work which follows. The finai chapter is an attempt to 

outline of few of the directions which will be profitable avenues for further research. 

In the paragraphs below I outline, in a short abstract form, chapter 2 in terms of 

the improvements beyond previous work and the results which were obtained from 

this study. 

Previous studies of circumstellar disks have provided analyses based on two 

strategies: (1) analj^ic or perturbative techniques and (2) numerical simulations of 

either cloud collapse resulting in a coarsely resolved disk or of already formed, but 

spatially narrow, tori. Working in collaboration with my advisors Willy Benz and 
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Dave Amett, as well as Fred Adams at the University of Michigem, I have studied 

the dynamical evolution of massive circumstellar disks that may form early in the 

history of young stellar systems using numerical simulations. 

In chapter 2, we present a series of two dimensioned hydrodynamic simulations 

of massive disks around protostaxs. We have used two complementary numerical 

hydrodynamic methods (the 'Piecewise Parabolic Method' and the 'Smoothed 

Peirticle Hydrodynamic' method) to simulate the growth and evolution of spiral 

arms within the disks. The simulations using each code are compared to discover 

differences due to error in the methods used. For this problem, the strengths of the 

codes overlap only in a limited fashion, but similarities exist in their predictions, 

including spiral arm pattern speeds and morphological features. 

In these calculations, we have studied the evolution of massive circumstellar 

disks with larger radial extent and over a wider range of parameter space than has 

been possible before. From the earliest times, their evolution is a strongly dynamic 

process rather than a smooth progression toward eventual nonlinear behavior. 

Processes that occur in both the extreme inner and outer radial regions affect 

the growth of instabilities over the entire disk. Effects important for the global 

morphology of the system can originate at quite small distances from the star. 

Therefore, analyses which neglect the inner disk will not model the evolution of the 

system correctly. 

The disks studied here range in mass from 0.05A/, to 1.0Af. and in initial 

minimum Toomre Q value from 1.1 to 3.0. We adopt simple power laws for the 

initial density and temperature in the disk with an isothermal (7 = 1) equation of 

state. The disks are locally isothermal. We allow the central star to move freely in 

response to growing perturbations. The simulations using each code are compared 
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to discover differences due to limitations in the methods used. For this problem, 

the strengths of the codes overlap only in a limited fashion, but similcirities exist in 

their predictions, including spiral arm pattern speeds and morphological features. 

Our results represent limiting cases (i.e. systems evolved isothermally) rather than 

true physical systems. 

We show that disks with minimum Toomre stability Q 1.5 (recall that Q < \ 

implies instability to the growth of ring-like structures) are dynamically active 

and spiral structures growing within each disk become distorted, break apart and 

reform on orbital time scales. A maxked chajige in the character of spiral structure 

occurs in simulations with differing disk mass. Low mass disks [Md < 0.2A/.) 

form filamentary spiral structures with ;^5 arms. High mciss disks form grand 

design spiral structures with 1-3 arms. Eventual collapse of such structures in 

more physically realistic models may be responsible for producing some stellar or 

brown dwarf companions. A detailed picture of their evolution is therefore required 

to understand the formation of such companions. 

In our SPH simulations, disks with initial minimum Q = 1.5 or lower break up 

into proto-binary or proto-planetary clumps. However, these simulations cannot 

follow the physics important for the flow and must be terminated before the system 

has completely evolved. At their termination, PPM simulations with similar initial 

conditions show uneven mass distributions within spiral arms, suggesting that 

clumping behavior might result if they were carried further. Simulations of tori, 

for which SPH and PPM are directly comparable, do show clumping in both 

codes. Concern that the point-like nature of SPH exaggerates clumping, that 

our representation of the gravitational potential in PPM is too coarse, and that 

our physics assumptions are too simple, suggest caution in interpretation of the 
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clumping in both the disk and torus simulations. 

We calculate approximate growth rates for the spiral patterns and compared 

the results of our simulations to the predictions of linearized analyses. We examine 

in particular the SLING mechanism proposed by Adams, Ruden and Shu (1989). 

They show that a resonance between the motion of the star and a one armed spiraJ 

pattern may stimulate growth of the one armed pattern in the outer disk even if 

other spiral patterns axe suppressed. Our simulations show that the one-armed 

(m = 1) spiral arm is not the fastest growing pattern of most disks. Also, due to 

the dynamic nature of the growth, a resonant growth mechanism such as SLING 

may be of limited value because pattern speeds and amplitudes display wide, short 

term variations. 

Several qualitative features of the SLING mechanism are reproduced in our 

simulations. The changeover in behavior between filamentary spiral structures eind 

grand design structures occurs at the disk mass for which the SLING instability is 

predicted to become active. Approximate growth rates fitted to the spiraJ patterns 

present show that the one armed pattern growth rates axe similar to those predicted 

by Adams et al., though they are neither the largest amplitude nor the fastest 

growing patterns for most systems. 
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CHAPTER 2 

DYNAMICS OF CIRCUMSTELLAR DISKS 

Over the past several yeaxs a broad paradigm of star formation hcis been developed 

(see Shu, Adams & Lizano 1987). First, a cloud of gas and dust collapses ajid forms 

a protostar with a surrounding disk. Later the star/disk system ejects matter in 

outflows as well as continuing to accrete matter from the cloud. Finally, accretion 

and outflow cease and the star gradually loses its disk and evolves onto the main 

sequence. While this paradigm provides for a good qualitative picture of the star 

formation process, many important issues require further work. For example, 

observations by several groups (Simon et al. 1995, Ghez et al. 1993, Leinert tt al. 

1993, Reipurth Sz Zinnecker 1993) show that young stars in many different star 

forming regions are commonly found in binary or higher order multiple systems, 

with a broad peak in separation distance at around 30 AU. In addition, many of 

the higher order multiples show hierarchical characteristics: a distant companion 

orbiting a close binary for example. In what manner are multiple systems such as 

these formed? 

A variety of studies have been undertaken to model the processes leading to 

the observed systems. One class of models begins with the collapse of a cloud of 
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matter. These results (Bate et al. 1995, Foster & Boss 1996, Boss 1995, Burkert & 

Bodenheimer 1993, BonneU k. Bastien 1992, Myhill h Kaula 1992) show that both 

single stars and multiple systems can be formed from the collapse and subsequent 

fragmentation of rotating, spherical or elongated molecular cloud cores. This class 

of simulations focus on the collapse phase, but do aot follow in detail the dynamics 

of disks formed from the material with initizJly higher aagular momentum. 

In addition, a number of models extended beyond the initial collapse (Bonnell 

1994, Pickett et al. 1996, Woodward et al. 1994) have shown that post-collapse 

objects can be driven into fragmentation, or into spiral arm and bar formation 

prior to the development of a Keplerian disk. Laughlin &c Bodenheimer (1994) have 

simulated the evolution of a collapsing cloud in 2D and then followed its late time 

behavior with a 3D disk simulation. They have found that such a collapse leads 

to a core plus a long lived, broad torus. The development of m = 1 and m = 2 

spiral patterns may lead to late time fragmentation of the torus (m is the number 

of arms in the spiral pattern). 

As a star-disk or multiple-star-disk system evolves, the dynamics of the disk 

itself as well as its interaction with the star or binaxy becomes important in 

determining the final configuration of the system. Depending on its mass and 

temperature, a disk may develop spiral density waves and viscous phenomena of 

varying importance. Each may be capable of processing matter through the disk 

as well as influencing how the disk eventually decays away as the star evolves onto 

the main sequence. 

A variety of mechanisms for producing of spiral instabilities in disks around 

single stars have been suggested. An incomplete list includes the linear perturbation 

results of Adams, Ruden &: Shu (1989; hereafter ARS) who suggest a mechanism 
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('SLING'- see Shu et al. 1990; hereafter STAR) by which a resonance between the 

star and a one armed (m=I) spiral mode may become globally unstable. Both 

perturbation theory (Papaloizou & Lin 1989) and numerical calculation (Papaloizou 

& Savonjie 1991, Heemskirk et al. 1992) have shown zinother instability mechajiism 

based on the distribution of specific vorticity (termed "vortensity") which can 

influence evolution in disks and tori. It is driven primarily by wave interactions 

at corotation and can act either to suppress or amplify spiral waves in the disk, 

depending on the vortensity gradient there. Another fajnily of instabilities is based 

upon vortensity gradients at the boundaries of the disk or torus. The SWING 

amplifier (Goldreich & Lynden-Bell 1965, Juliaji & Toomre 1966, Goldreich &: 

Tremaine 1978) provides an instability chajinel whereby low amplitude leading 

spiral arms unwind and axe transformed into much larger amplitude trailing waves. 

A feedback cycle then creates additional leading waves and the instability grows. 

This paper is a continuation of work by two of us (Adams & Benz 1992, 

hereafter AB92), who began modeling of disks of mass Mq ^ 0.5M. and observed 

formation of spiral arms and clumps. We present a series of two dimensional 

numerical simulations of circumstellar disks with masses between 0.05A/. and 

l.OM.. We attempt to characterize the growth of instabilities and pay particular 

attention to the existence and effect of the SLING instability. In section 2.1, we 

outline the numerical methods used and discuss the limitations of each code and 

their effects on our simulations. In section 2.2, we outline the initial conditions 

adopted for the disks studied and in section 2.3, we first describe qualitatively 

the results of our simulations and then begin a quantitative analysis of the 

pattern growth, the correspondence between two hydrodynamic codes, and the 

correspondence between linear analyses and hydrodynamic simulations. In Section 

2.4, we summarize the results and their significance in the evolution of stars and 
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star systems. 

2.1. The Codes 

2.1.1. Solving the Hydrodynamic Equations 

In order to understand the properties of protostellax disks we have adapted two 

complementary hydrodynamic codes to the task of simulating such evolution: the 

Smoothed Particle Hydrodynamic (SPH) method cind the Piecewise Parabolic 

Method (PPM). These codes use very different techniques for solving the equations 

of hydrodynamics, and it is hoped that, by the use of such widely different 

techniques, numerical artifacts can be sorted out from true physical evolution. 

Each code has unique features that allow the simulation of these systems in some 

regimes not accessible to the other. 

The SPH method (see reviews by Benz 1990, Monaghan 1992) uses a procedure 

by which hydrodynamic quantities and their derivatives are calculated from an 

interpolation technique over neighboring particles. The interpolation kernel used 

in our simulations is the standard B-spline kernel with compact support. The 

smoothing length h is varied over time in a majiner such that the number of 

neighbors is approximately conserved, subject to the condition that a minimum 

value of /i ~ /2£)/1700 (where Rq is the disk radius) is set to ensure time steps 

do not become too small. A second order Runge-Kutta-Fehlberg integrator which 

includes time step control is used to evolve the system in time. Being gridless, 

the main advantage of the SPH method in our context lies in its ability to follow 

structure formation anywhere in the disk without the limitations associated with 

a prescribed grid. The two main disadvantages of the SPH technique are (1) the 

inherent random noise level associated with the discrete representation of the 
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fluid and (2) the high shear component of the dissipation connected with the 

mathematical formulation of the artificial viscosity. 

We also have adapted the PROMETHEUS hydrodynamic code (Fryxell, 

Muller Amett 1989, 1991) to the problem of evolving disks around protostars. 

PROMETHEUS is based on the 'Piecewise Parabolic Method' (PPM) of Colella 

Woodward (1984) in which a high order polynomial interpolation is used to 

determine cell edge values used in calculating a second order solution to the 

Riemann shock tube problem at each cell boundary. The interpolation is modified 

in regions of sharp discontinuities to track shocks and contact discontinuities more 

closely and retain their sharpness, while a monotonizing condition smoothes out 

unphysical oscillations. The solution to the one-dimensionaJ Riemann problem is 

then used to calculate fluxes and advance the solution in time. This code was 

selected because of its low numerical dissipation and its excellent resolution of 

discontinuities and shocks. 

Both codes incorporate self-gravity using modified versions of the binary 

tree described in Benz et al. (1990) which approximates the gravity of groups of 

distant particles in a multipole expansion while calculating interactions of nearby 

particles explicitly. Gravitational forces due to neighbor particles are softened to 

avoid divergences as particles pass near each other. Due to the organization of the 

grid, the tree construction can be considerably simplified in the PPM version by 

substituting a procedure by which adjacent grid cells (modeled as point masses for 

the purpose of the gravity calculation) or groups of grid cells become progressively 

higher nodes in the tree. Two simulations run at higher resolution (simulations 

pch£ and pch6 in table 2.2 below) implemented an FFT based solution to Poisson's 

equation (Binney & Tremaine 1987, pp. 96ff). Results for a disk simulation at 
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identical resolution showed that the tree and the FFT solutions gave identical 

dynamiccil results. However the FFT version proved to be substantially faster. 

The torus simulations of section 2.3.3, which are more sensitive to resolution, axe 

also more sensitive to the implementation of the Poisson solver. In these cases the 

simulations using the tree code gave slower pattern growth rates than simulations 

using the FFT. 

It is important to make a distinction between the resolution of the 

hydrodynamics and that of the representation of the gravitational potential. Just 

as PPM is well adapted for discontinuities, SPH is well adapted for gravitational 

clumping. The density reconstruction procedure utilized by PPM contains more 

structure than is available from the N grid point algorithm used here. Better 

resolution of the gravitation«J potential may be possible using densities defined at 

both the cell centers and at cell interfaces. Further, this grid effectively implies a 

gravitational softening which is about one cell in size. This algorithm uses only the 

cell center information, and references below to grid resolution in PPM simulations 

will imply this fact. 

2.1.2. Viscosity in the Codes 

Because disk evolution is pajtially driven by viscosity in the disk, we must look 

carefully at issues related to numerical viscosity. Except for codes based on a 

local solution of the Riemann shock problem such as PPM, most methods require 

implementation of an artificial viscosity to enforce stability and/or improve the 

shock treatment by the code. In this regard SPH is no exception and our version 

of the code implements the standard form discussed in Benz (1990). We use bulk 

and von Neumann-Richtmyer (so called 'a' and '/?') viscosities to simulate viscous 

pressures which are linear and quadratic in the velocity divergence. We use the 
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standcLrd values for each of the coeflficients, with a = 1 and 0 = 2. We incorporate 

a switch (see Balsaxa 1995) which acts to reduce substantially the large undesirable 

shear component associated with the standard form. 

The bulk component of the artificial viscosity d in the SPH code can be 

identified with a kinematic viscosity u (see Murray 1995) using the relation 

to 1 ^ 

where c, is the sound speed and h is the smoothing length of a particle. It is 

possible to relate the coefficient of bulk artificial viscosity a to the Q-parameter 

of the standard viscous prescription of accretion disks. We equate the artificial 

viscosity to the Shakura & Sunyaev (1973) viscosity (defined by i/ = ac^H and the 

scale height, H, is defined as H = Ca/Cl, the local sound speed over the angular 

rotation rate. Solving for a yields 

cc = (2.2) 

where / is the shear reduction factor discussed in Benz 1990 suitably averaged over 

particles axid time. We caution the reader that the identification of the SPH form 

of the viscosity is not necessajily equivalent to that of the Shakura and Sunyaev 

form, especially because of the approximate manner in which the Balsara switch 

must be taicen into account. We estimate equation [2.2] may be valid to a factor of 

a few but should not be taken as exact. 

For a neaxly Keplerian disk with a temperature T oc ajid a roughly linezir 

variation of the smoothing length, h, with radius, we obtain a oc Depending 

on the temperature constant describing each disk (To, see section 2.2.1), a is of 

order ~ 10"^. Only at small radii (r ^ 2AU) and low disk mass (for which To 

becomes correspondingly small for a specified value of ^min) does a rise to values 
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in the range Q ~ 0.1 — 1. These values of a imply that the viscous time scale, 

T = li/^ remains significantly longer than the few orbital time scales we simulate. 

For most of the disk, the SPH viscosity is smail enough not to aifect the evolution 

of the disk significantly. The von Neumann (/?) term in the viscosity does not 

mirror the alpha prescription as the bulk term does. Derived from the assumption 

that the viscosity is proportional to square of the velocity divergence, its effect is 

limited to portions of the flow in which shocks occur. 

The numericcd viscosity inherent to the PPM code is difficult to quantify. The 

nonlinear nature of the Riemann solver (with the associated PPM 'switches' to 

sharpen discontinuities and enforce monotonicity) renders an artificial viscosity 

term unnecessary. However, a small numerical viscosity still appears in the code. 

Porter h Woodward (1994) derive fits for numerical dissipation proportional to 

the third and fourth powers of SxjX where Sx is a cell dimension and A is the 

wavelength of a disturbance. Thus, large scale disturbances like the spiral arms 

will experience little dissipation, but small scale motions will be damped more. 

2.2. Physical Assumptions and Constraints 

Because our simulations involve dimensionless quantities such as the disk/star mass 

ratio and the Toomre stability parameter Q, the physics itself is scalable to systems 

of different size. We shall express all quantities in units with values typical of the 

early stages of protostellar evolution. These units are also comparable (for the most 

massive disk simulations) to the final dimensions of our own solar system. The star 

mass will be assumed M. = O.SM© and the disk radius Rq = 50 AU. Time units 

are given in either years or the disk orbit period defined by 7/j = 27r^i2^/GM, 

which, with the mass and radius given above, is equal to 500 years. 
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2.2.1. Circumstellar Disk Initial Conditions 

The initial conditions for prototype low and high mass disks axe summarized 

graphically in figures 2.1 and 2.2 for our PPM and SPH simulations respectively. 

We assume that the disks are vertically thin so that two dimensional (r,<p) 

simulations are justified. The variables of interest (density, pressure, etc.) are 

taken to be vertically integrated quantities. Magnetic fields are neglected in our 

simulations. 

In functional form, the disk mass is initially distributed according to a density 

power law 

where the power law exponent p is set to 3/2. As we shall discuss in the following 

section we found that our PPM simulations implementing the initial density profile 

of eq. [2.3] became violently dynamic near the inner grid edge and we could not 

simulate the evolution of the system. Instead, we have chosen to remove matter 

completely at small radii in our PPM runs by adopting an initial density law which 

ensures that little matter remains at small radii or interacts with the boundary. 

This density law takes the form 

where RQ is set to the radius of the innermost boundary cell and RC is set arbitrarily 

to 6 AU. With this choice, the surface density is substantially reduced near the 

(2.3) 

(2.4) 

inner boundary while retaining a nearly pure r distribution for radii greater 

than about 10 AU. The temperature is given by a similar power law as 

(2.5) 
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with the exponent q set to 1/2. The softening radius TC for both power laws is set 

We choose the value of the temperature power law index beised on observed 

temperature profiles in T Tauri disks (see Beckwith et al. 1990; Adams et al. 1990). 

The density power law is much less well constrained, and our choice of p = 3/2 

is roughly consistent with the infaJl collapse calculations of Cassen Moosman 

(1981). As an additional motivation, this choice of exponents matches the one 

adopted by ARS and allows a direct comparison with their work. 

So and To are determined from the disk m£iss and a choice of the minimum 

value over the disk of the Toomre stability parameter defined as 

where K is the local epicyclic frequency. For an ideal gas with an isothermal 

equation of state (see section 2.2.3), the sound speed is defined as 

where the mean molecular weight is and we assume the gas is of solar composition. 

By definition, the Toomre Q parameter divides the region of phase space for 

which axisymmetric disturbances (rings) grow exponentially from that in which 

they are damped. It is derived from the dispersion relation for waves in a disk 

given by (see Binney Tremaine 1987) 

where u; is the complex pattern frequency and k is the wavenumber. Mathematically 

speaking, if > 0 the wave equation from which the dispersion relation is derived 

will have exponentially decaying solutions, while if < 0 it will have exponentially 

to Tc = /2D/50(=1 AU). 

(2.6) 

u;2 = - 27rGS|Ar| + (2.8) 
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growing solutions. The line of neutral stability at u; = 0 defines Q. Equation 

2.8 then becomes quadratic in the wavenumber k and whose solution yields the 

condition defined by eq. 2.6. 

The temperature and density laws above produce a profile for the instability 

parameter Q that is nearly flat over the largest portion of the disk, with a steep 

rise at small radii and a shallow increase towards the outer edge of the disk. The 

minimum value of Q in the disk is therefore located at ~ 30 — 40 AU, depending 

upon the mass and temperature of a specific disk. 

Another conamon criterion of instability in disks is the X parameter, which is 

important for so called SWING amplification and is defined by 

X = —— , (•? 9) 
27rmGS' ^ ^ 

with m the number of spiral axms (the azimuthaJ wave number). In this instability 

'leading' spiral waves (i.e. those for which the spiral winds up in the same direction 

as the orbitai motion) unwind and become 'trailing' spiral waves, which then axe 

reflected through the origin and the process repeats. Ordinarily, in Keplerian 

systems where an inner Lindblad resonance exists, the SWING instability is 

suppressed because the trailing waves reflection instead off of the Lindblad 

resonance. Nevertheless, we shail examine the value of the X parameter to maice 

certain that contributions to the instability growth from SWING may be neglected. 

In order for a system to be unstable to SWING amplification, the value of X must 

be ^3 in the region of interest. 

The X parameter shows a similar pattern to that seen for Q, but with a 

steeper increase at large radii. For most of the disks we study, X is larger than 

that required to keep the disk stable for the lowest order spiral modes, so that we 

expect SWING not to contribute to the growth of instabilities. Like the Q and X 
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profiles, the vortensity profile shows a steep increase at small radii. In this case, 

such an increase may serve to stimulate growth due to the family of instabilities 

discussed by Papaioizou ajid Lin (1989). We will discuss this possibility in more 

detail below. 

The star is represented as a point mass, free to move in response to 

gravitational forces from the surrounding disk. Initially, disk matter is placed 

on circular orbits around the star, with rotationcil equilibrium in the disk and 

radial velocities set to zero. Gravitational and pressure forces axe balanced with 

centrifugal forces such that the rotation ciurve is given by 

= ^ + + (-2.10) 
7^ r or r L 

where the symbols have their usual meanings and 'J'o, the gravitational potential 

of the disk, is calculated numerically with the same potential solver utilized in the 

full hydrodynamic code. The magnitudes of the pressure and gravitational forces 

are small compared to the stellar term, therefore the disk is nearly Keplerian in 

character. 

2.2.2. The Construction of Circumstellar Accretion Disks, Boundary 

Conditions and Numerical Resolution 

To complete the specification of the initiai state of the systems, we must define 

the conditions at the boundaries of each simulation. The linearized analyses of 

ARS suggest that the dynamics of an accretion disk will be relatively insensitive 

to the implementation of the inner boundary condition, becoming active only at 

distances far from the star. On the other hand, the shape of outer edge of the 

disk is predicted to be critical for the eventual growth of the SLING instability. In 

order to search for evidence of the SLING instability we shall implement boundary 
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conditions which may be favorable to its growth. 

To e<ise time step constraints, we set the inner boundary at a greater distajice 

thaji that which is physically the case for a star/disk boundary. With a grid 

code, we can define the inner boundary by modeling the inner regions in some 

steady state approximation or by modifying the density law at small radii (in 

effect modeling tori) to reduce interactions with the inner boundary. Since ARS 

predict that the inner regions of the disk will be relatively stable, instabilities are 

not expected to grow there, given a disk initially in rotational equilibrium. Any 

boundary condition which does not perturb this equilibriiun should be sufficient to 

describe the inner disk. Since by assumption, the inner disk begins in rotational 

equilibrium (i.e. with Vr = 0), no matter will cross the boundary and a simple 

reflecting boundaxy condition will suflBce. The reflecting boundary will also serve 

a second function. The four wave cycle (STAR) importeint for the amplification 

of SLING requires a corotation or (^-barrier from which waves can be reflected or 

refracted during part of the cycle. Until such resonances may develop on their own 

further out in the disk, the reflecting boundary serves as a surrogate for the actual 

resonances. 

Our PPM simulations showed that for a pure power law for the density 

(omitting the core radius of eq. [2.3]), the inner regions of the disk are quite 

dynamic and unstable. After a few orbits, matter in the inner disk moved off its 

initial circular orbit and began interacting with the boimdary. The effect of these 

interactions is to give a "kick" to the system center of mass as matter reflects off 

the boundary. In the worst cases, serious computational problems occurred after 

20-50 orbits of the inner disk edge and the calculations had to be stopped. 

Several prescriptions for avoiding this behavior were attempted without real 
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success. These prescriptions included allowing matter to accrete through the 

boundary onto the star, attaching the inner disk matter to the star itself, treating 

the inner disk as a softened point mass at the origin with varying degrees of 

softening or by treating the inner disk matter as an additional point mass free 

to move in response to the star and the rest of the disk. In each case results 

obtained were strongly dependent on the prescription followed. We conclude that 

the dynamics important for the global behavior of the physical system extend to 

quite small radii. 

With this degree of activity in the inner disk it becomes reasonable to eissimie 

that a portion of the inner disk matter becomes depleted by accretion onto the 

star or ejected in an outflow on short time scales. The inner disk may expand in 

the 2 direction and become truly three dimensional as the dynaxnicaJ effects create 

dissipation and heating. In light of these ideas, and in order to concentrate our 

efforts on the laxge scale features, we have chosen to implement the density law of 

eq. [2.4] and study a system for which little mass exists close to the star but which 

retains a power law profile further out. Due to the already artificial nature of the 

mass distribution at small radii, little physical meaning can be attached to mass 

accretion rates through the inner boundary, therefore for simplicity we implement 

reflecting boundary conditions to complete the specification of the inner grid edge. 

For our SPH simulations, we define the inner boundary by establishing 

an accretion radius at a distance from the current position of the star of 

/?o/110(=0-4 AU). This distance is set to be slightly smaller than the initial 

position of the innermost ring of particles in the disk. The gravitational softening 

radius for the star is set to the same value. As a particle's trajectory takes it 

inside the accretion/softening radius, its mass and momentum axe added to the 
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star eind it is removed from the caJcvdation. This inner boundary condition does 

not prove to be as difficult to manage as in our PPM simulations. Even though 

a great de«d of activity occurs in the inner portion of the disk, no paxticular 

computational difficulties were experienced. We believe this activity is largely 

due to crude boundary conditions which obscure the true physical behavior of the 

system. Particles near the boundzury have no neighbor pcirticles further inward 

to provide pressure support, while accretion of a particle through the boundary 

implies a sudden loss of pressure support to its neighbors further out. Also, the 

stellar gravitational softening reduces the effect of the star on the orbit of each 

SPH particle there. A small number of particles near the boundary axe strongly 

affected. 

Because of our interest in characterizing disk instabilities, especially SLING, 

we have experimented with severai outer boundary conditions as well. In 

the PPM simulations we have implemented both a reflecting boundary and a 

boundary condition in which matter falls onto the outer edge of the disk (an 

"infall" boundary). With the pure reflecting conditions, we imitate the boundary 

conditions implemented by ARS which have been identified as critical for the 

SLING instability. With the infaJl boundary condition, we relax this assumption 

slightly to allow the disk edge to begin outward expansion or begin to breaJc up if 

conditions require. 

With the infall boundary, the outer disk edge is defined to be initially located 

at a cell interface several cells inward from the outermost computational cell. We 

define the disk boundary assuming an isothermal shock, so that the density and 

radial component of the velocity are determined directly from the shock jump 

conditions. Since by definition a shock implies that the tangential velocity across 
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the shock is continuous, we know that at the disk edge, /?£), the 0 component of 

the infall velocity is the same as the orbit velocity, RdO.{Rd)- If we then specify 

the temperature of the infalling gas as T = 10 K, conservation laws for mass, 

momentimi and energy determine the flow from the shock to the outer grid radius. 

The infall is kept constant throughout the simulation at the values which initially 

define it. We note in passing that a flow constructed in this manner is quite 

artificial and may have little relation to flows in real systems. For our simulations, 

infall provides a mechanism by which the outer edge of the disk can be reasonably 

well defined. 

In our SPH simulations, we adopt a free outer boundary. This choice has the 

advantage of simplicity in implementation, but suffers because quantities such as 

the density or pressure are less well defined within about two smoothing lengths 

of the boundary (see fig 2.2). The result is that over time the surface density at 

the disk edge spreads radially to a width of ~5 AU. The disk edge is no longer 

defined by a sharp discontinuity, but does remain distinct except for very high 

Qmin simulations, for which the mass at the outer disk edge is nearly unbound. The 

sharp outer boundajy condition required for SLING to become active is satisfied 

under these conditions. 

At time zero in our SPH simulations we set approximately 8000 equal mass 

particles on a series of concentric rings with the innermost ring at a radius of 

/2D/100. For our PPM simulations we use an inner to outer radius ratio of 50 

and several grid resolutions. Our main series of simulations, with reflecting outer 

boundary conditions, have a 64 x 102 cell cylindrical polar {r,<f>) grid. Two higher 

resolution simulations are performed with a 100 x 152 grid, and we have explored 

the use of an infall boundary at two resolutions of 44 x 64 and 64 x 96. Grid 



47 

cells axe defined to be 'squares' in the sense that Sr = CrS<i) over the entire grid, 

with C a constant ~1. With the resolution used for our simulations, SPH paxticle 

smoothing lengths axe less than a few tenths of one AU in the inner portion of the 

disk up to ~1 AU in the outer disk. Grid resolution in the PPM simulations is of 

order 0.1 AU at the inner grid edge and ~2 AU at the outer edge. 

The relatively low resolution of our simulations results in part from the laxge 

radial extent of the systems we study. Many of the important dynamical processes 

in a disk occur on orbital time sccJes in the outer regions of the disk, but the size 

of a time step (the Courant condition) is derived from the cell size at the inner 

grid edge, where the cells are the smallest and the velocities are largest. Assuming 

nearly Keplerian rotation around the star, an inner grid radius at 1 AU, and a 

moderate resolution of order 150 azimuth cells, the time step is a few days, while 

the dynamical time scale of the disk is a few To =500 yr. In order to evolve a 

given simulation to completion, we must integrate over a half a million or more 

time steps. For 'high' resolution simulations of say, 300 or more azimuthai cells, 

the number is correspondingly increased. With the workstations available, it is not 

computationally feasible to run a large number of models to explore the relevant 

parameter space. A similar problem exists for our SPH simulations. 

2.2.3. The Equation of State and Energy Considerations 

In each code, a vertically integrated gas pressure is implemented using a single 

component, 'isothermal' (7 = 1) gas equation of state given by 

P = Sc^ (2.11) 

In PROMETHEUS (our version of the PPM algorithm), a truly isothermal 

equation of state with 7 = 1 is not easily obtained, therefore we use an 'almost 
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isothermal' ideal gas with 7 = 1.01 for these simulations. 

Each simulation is evolved isothermaily, by which we mean that the 

temperature of each cell, once defined at time zero (by eq. [2.5] and an input value 

of Qmin), is fixed thereafter. Loss processes such as radiative cooling are assumed 

to bailance local heating processes in the disk. Under this assumption, a packet of 

matter which moves radially inward or outward, heats or cools according to the 

prescribed temperature law. Matter which expands or is compressed is heated or 

cooled according to the same law. 

With SPH comes the ability to choose the manner in which one incorporates the 

isothermal evolution. We may set the temperature of each particle as a function of 

its distance to the star (Eulerian implementation), or we may keep its temperature 

fixed no matter where the particle moves (Lagrangian implementation). In most 

of our simulations, we have chosen to use the Eulerian version. This choice is 

dictated by consistency, since the isothermal assumption implies that the star must 

contribute the bulk of the heating, and by the desire to match as closely as possible 

the PPM calculations. 

2.3. Results of Simulations 

With the initial conditions outlined above, we have run a series of simulations with 

both codes in which we vary disk mass but keep a constant minimum Toomre 

parameter Qmin = 1.5. A free outer boimdaxy condition was implemented for each 

SPH simulation, while one series of PPM simulations was run with a reflecting 

outer boundary. A second series of PPM simulations used an infall through the 

outer few cells onto the outer disk edge, which was assumed to be an initially stable 

isothermal shock. To explore varying stability, we also ran two SPH and one PPM 
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series varying Qmin between 1.1 and a majcimum value defined by the condition 

that the outer edge of the disk remained boimd (for disks with high Qmim pressure 

forces begin to dominate over gravity). Each simulation was evolved for periods 

ranging between a small fraction of an orbital period To (in the case of very low 

Qmia runs in which rapid clumping was seen), to several complete orbital periods 

for nms in which cltmiping was not observed. 

Unless otherwise specified, no explicit initial perturbations have been assumed 

beyond computational roundoff error. Due to the discrete representation of the 

fluid variables, this perturbation translates to a noise level of order 10"^ in the 

hydrodynamic quantities for the SPH calculations. The relatively large amplitude 

of the noise originates from the fact that the hydrodynamic quajitities are smoothed 

using a fixed number of neighbors (see Herant &: Woosley 1994). An increase in the 

number of particles does not necessarily decrease the noise unless the smoothing 

extends over a larger number of neighbors. Because of its similarity to Monte Carlo 

methods, the decrease in noise goes as the square root of the number of neighbors, 

and so decreases slowly with a large increase in computational cost. 

For PPM, the noise level can be made as small as machine precision (while 

double precision is used internal to the code, single precision is used in initialization 

and dumps, so we obtain ~ lO"'^). The PPM simulations axe terminated at a 

perturbation amplitude of (JS/S ~ 20% because matter on elliptical orbits begins 

to interact strongly with the inner and outer boundaries. SPH simulations on the 

other hand, are carried out until clumps begin to form (clumping causes the time 

step to drop drastically and halt the evolution). Highly stable disks, for which 

clumps do not form, are terminated when no significant additional evolution is 

anticipated. Each of the SPH simulations nm for much of their duration with high 
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amplitude (^E/S ~ 100%) perturbations. Comparison simulations on a simple 

test problem (see section 2.3.3 below) were nm to high perturbation amplitude 

using both SPH and PPM in order to confirm the late time behavior of the SPH 

simulations. 

We did not formally introduce a perturbation in our initial conditions, however 

two conditions provide indirect seeds for perturbations. First, the disk is cut off 

at an inner radius which, while small, is nonetheless large compared to the stellar 

radius. This cut off creates a gravitational potential hump at the center, and is 

equivalent to a strong seed for the m — I disturbances. As the star moves away 

from the origin, it is further accelerated by the hump, effectively sliding down 

the incline. We show in figure 2.3 the gravitational potential near the origin 

for the disks with the characteristics described above as well as the tori used in 

our comparison calculations below (section 2.3.3). By following the procedure of 

Heemskirk et al. (1992), who derive an equation of motion for the star including 

the zeroth order hump term plus first order perturbations, we note that initiaily 

the growth rate for a m = 1 pattern will be 

Computing numerically the curvature of the hump, we derive a m = 1 growth 

rate due to the hump of 71/nD ~ 5. Indeed during the very earliest stages of our 

simulations {t ^ O.ITD), we find a growth rate of this (quite large) magnitude. 

After the initial transient, growth rates quickly fall to more sedate levels. The 

contribution to the long term global growth of instability due to this initial 

perturbation is thought to be a small component of the total. 

A second indirect seed of dynamical instability is connected to the fact that 

the density law has been softened (eq. [2.3]) or modified (eq. [2.4]) in the innermost 

(2.12) 
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regions of the disk in order to avoid a singularity at small radii. This density 

decrease creates a region of high vortensity gradient which excites wave growth 

(see PapaJoizou ajid Lin 1989). This instability channel also requires a seed, but its 

proximity to the inner edge, where orbit times are small, coupled with the hump 

perturbations, make the time scale for its initial excitation quite short. 

Features of our simulations are tabulated in Tables 2.1 and 2.2. The first 

column of each table represents the name of the simulation for identification. 

The second column defines the resolution (in number of particles or grid size). 

Initial disk/star mass ratio and minimum Q are given in columns 3 and 4. while 

total simulation time and spiral features of each simulation fill out the remaining 

columns. 

We illustrate the phenomena seen in our simulations by presenting two 

representative cases; mass ratios MD/M. = 1.0 axid Mo/M. = 0.2. Both use 

initial values of Qmin = 1-5. These disks represent points near either end of a 

spectrum of behavior. In section 2.3.2, we show additional models which vary Qmin-, 

demonstrating behavior along another axis in parameter space. We first exaxnine 

the qualitative nature of the simulations, then examine in detail the structures 

which form. A comparison of the results of SPH and PPM and limitations imposed 

by numerical features is discussed in section 2.3.3. 

2.3.1. General Observations and Morphology 

Spiral axm growth occurs with vaxying rates and amplitudes. Growth is not smooth 

or continuous. Frequently arms change shape, stretch, or break off and drift until 

hit by another passing disturbance. Well developed spiral arms, while subject to 

irregular change on short time scales, do survive. In figure 2.4, we show a series of 
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snapshots of particle positions in simulation scv6, chciracterized by Md/M. = 1.0 

and an initial minimum Qmin = 1-5- Instability first develops in the central regions 

of the disk, and propagates outwcird in radius. Even early (0.57D) in the simulation, 

variations of density SH/Y, approach 10-50%; at late times they reach unity. 

The dominajit patterns are two and three-axmed spirals with significant 

components having other symmetries. At late times we see multiple tails on a single 

arm, arms unevenly spaced in azimuth, ajid patterns which have one arm which is 

significantly stronger thaji its counterparts. Often such spacing and asymmetry is 

preceded by the breakup of an arm at its base, zind subsequent drift through the 

disk or capture by another arm. For example, between the 0.94TD and the 1.417D 

images, an m = 2 structure breaks up, and reforms as an asymmetric m = 3 spiral 

pattern. It then returns to its previous two armed structure by l.lZTo-

A comparable series of plots for a PPM simulation {pch6) with analogous 

initial conditions is shown in figure 2.5. The variable plotted is density variation 

defined by 

where i and j refer to the grid indices of the r and <t> coordinates respectively, and 

S, is the azimuth average of the surface density at radial grid index i. Only positive 

variation contours are shown. The lineax spacing between one contour and the next 

higher contour is noted in the upper right hand comer of each plot. The dotted 

line denotes the disk edge at 50 AU. As in the SPH simulation, instability begins in 

the inner regions of the disk. Complex structures follow at midtime epochs. Later 

behavior shows well defined regular spiral patterns, with a mix of several patterns 

dominated by m = 2 and m = 3 which dynamically reorganize themselves with 

time. 
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The simulations above display a number of similar chaxacteristics, though 

on a different spatial scale and meiss distribution, to the protostellcir core/inner 

disk simulations presented in Pickett et al. (1998). In each case, large scale spiral 

structures grow from marginally stable systems. The instabilities begin their 

growth in the innermost regions of the system and proceed to involve the entire 

disk as the simulation proceeds. At late times in both sets of simulations, the spiral 

arms become azimuthally condensed. A notable difference between our results 

and theirs, which will be discussed in section 2.3.3 below, is the fact that our 

simulations exhibit a pattern speed which increcises toward the center of the disk. 

In contrast, Pickett et al. report constant pattern speeds. 

Initial behavior of our low disk mass runs is similar to those of high mass, with 

instabilities first becoming apparent in the inner regions of the disk. Evolution at 

later times differs from that for high mass disks. We see the rapid development of 

patterns with large numbers of spiral arms, which display a tenuous, filamentary 

structure not present in higher mass disks. The disk shown in figure 2.6 (simulation 

scv2) has a five armed pattern which predominates, and at late times fragments 

into multiple clumps from each arm. A region of apparent stability against spiral 

arm formation becomes apparent in the extreme innermost regions (see also section 

2.3.2). Such regions are present to some extent in all of our SPH disks except 

those which form clumps immediately and are defined by a value of Toomre's Q 

parameter greater than ~2. 

In a low disk mass PPM simulation (pchS), shown in figure 2.7, we also find 

a change in character and an increased nimiber of spired axms. As in figure 2.5, 

the instability begins to form its first spiral structures at amplitudes of 0.01-0.1%. 

Although the precise number of arms seen does not correspond to that in the SPH 
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run (showing instead the 2-4 armed patterns dominant), the degree of small scale 

fragmentation in the region around 5-25 AU is similar. We believe that the partial 

suppression of the high m-number patterns can be attributed to the wavelengths 

of those patterns approaching the gravitational softening length implied by the 

grid. This statement is supported by the fact that for the low mass disks (pcA5 and 

pcm2), the amplitude of the perturbations <JS/S, is larger in the higher resolution 

simulation. These simulations do not resolve the small scale structure. Note that 

the PPM run with MQ/M. = 0.1 (pcml) developed only minimal spiral structure 

after nearly six full disk orbit periods. 

Structures observed in the moderate resolution PPM simulations (runs 

pcml-pcm6) were qualitatively similar to those observed for our highest resolution 

runs {pch2, pch6), although the growth of the low mass/low resolution structures 

was slower. Growth rates are similar for the low and moderate resolution high mass 

disks. The simulations may have reached a level of convergence sufficient to resolve 

the large scale features of the evolution, but further improvement is desirable. 

2.3.2. The Effects of Temperature 

Two series of SPH simulations were run varying the minimum stability parameter 

Q, with mass ratios MD/M. = 0.8 and 0.4. Other things being equal, high Q 

implies high temperature in the disk (eq. [2.6]). We vary Q for different simulations 

between a minimum value of Q = 1.1, at which the disk is only marginally stable to 

ring formation, and a maximum value such that the outer edge of the disk remains 

bound. For the high mass series, this limit was found at Qmin = 2.3, while for the 

lower mjiss disks up to Qmin = 3.0 were available. 

In figure 2.8 we show 'late time' behavior of each of the disks in the 
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Md/M. = 0.8 series (sqhl-sqhS). Below an initial value of Qmin ~ 1-4, strong 

instability and clump formation occurs during a few orbit periods of the inner 

portion of the disk. The outer disk remains largely unaffected during the simulation 

(which suffers drastic decrceises in time step size once clumps form). .A.t moderate 

Qmin (1-4 to somewhat less than 1.7), instability in the iimer regions is slowed 

to the extent that spiral instabilities involving the entire disk have time to grow. 

These spiral arms then become fUamentary aaid clump on time scales of one or 

two To. The last few frames in figures 2.4 and 2.6 show such behavior for a disk 

with Qmin = 1.5 and M/j/M. = 1.0 and 0.2. The portions of the spiral arms at 

large distances from the central stax remain thicker and more diffuse, while the 

inner regions evolve toward more sharply defined features. As Qmin increases the 

character of the spiral instabilities changes from narrow, filamentary structures and 

clumps in the inner disk to thicker arms which develop on disk orbital time scales 

at higher initial Qmin-

Above initial Qmin ~ 2-0, we see only limited asymmetry and spiral structure. 

However, there is a strong transient epoch in which the centers of mass of the star 

and the disk orbit each other at large distances (relative to their late time behavior 

or to other, less stable (lower Qmin) simulations). Simulations have been carried out 

to more than 4Td for these cases. This resonance gains in strength with increasing 

Qmin up to the maximum values simulated, .\ccretion of disk matter onto the star 

occurs at higher rates in these runs as well. The star makes a hole in which little 

disk matter remains. 

Figure 2.9 shows an example of this transient for simulation sqh6. The orbit of 

the star begins with a slow transient to relatively large distances from the system 

center of mass (as large as ~ 0.05/?D in the disk shown). In the first ~ 2TD, the 
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star accretes a large fraction initially located in the inner part of the disk. After 

this time the star settles to a smaller orbit, with occasional fluctuations as it 

moves in response to disk perturbations, and continues to accrete from the inner 

disk. We believe this trajisient is largely due to the high mass accretion rates with 

nonaxisymmetric flow. With such fast accretion, the flow of mass onto the star 

is rapid enough that appreciable angular momentum is swept along as well. A 

compaxable simulation, with the star fixed at the origin, shows neeirly as large an 

accretion rate. We conclude that high accretion drives the stellar migration, rather 

than the reverse process where the star moves by some other meaais (caused for 

example by a torque from the outer disk) into a region of the disk in which high 

accretion may take place. 

Although we find that the accretion rates seen in the most Q-stable disks 

are higher than low stability disks, it is not clear whether the magnitude of the 

accretion rates axe correct. In SPH the accretion of a particle implies a sudden 

unphysical loss of pressure support for the neighbors of the accreted particle. As 

the disk reorganizes itself, additional particles move inward towards the accretion 

radius. If the mass accretion for all of our disks were to be scaled up or down 

by a common factor, the transient in figiure 2.9 might increase or decrease in 

magnitude or even disappear. What we caji say with certainty is that if a star can 

accrete matter from the inner disk quickly enough that it loses its pressure support 

further out, accretion of disk material which has not lost eill of its orbitai angular 

momentum can occur, driving the star away from the system center of mass. In 

the simulations we study here, such a condition occurs when the accretion rate is 

above ~ 6 — 8 x lO~®A'/0/yr for the high mass series and ~ 2 x 10~®M0/yr for the 

lower mass series. 
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Behavior of the lower disk mass series of SPH simulations with varied Qmin is 

similar. The overall charcicteristics of the evolution miniic that of the higher mass 

runs but are 'stretched' along the Q axis to higher values of ^min- Azimuthal 

condensation of spirai arms is again seen up to initial Qmin = 1-5, but the 

Qmin = 1-7 run at this mass ratio appears to be just beyond the critical stability 

for clumping; many preliminary characteristics of clumping such as well resolved 

spiral arms and short duration over-density spikes (see below) were evident but no 

actual formation occurred at the time we stopped the run DA T = 5TD- Production 

of thick arms continues as high as Qmin = 2.3 and global star/disk resonances again 

manifest themselves all the way up to the maximum Qmin vaJues studied. Distinct 

one armed spiral waves form at Qmin = 2.0 for short periods, then lose coherency 

and fade back into a smooth, global pattern. 

One series of PPM simulations was nm with varying Qmin- The late time 

density variation contours for the series are shown in figure 2.10. Because of the 

low amplitude of the initial noise, these simulations were continued to ~ 2Td even 

for the lowest minimum Q values. In the highest stability (Qmin = 2) simulation, 

we find that the strength of the instabilities neax the inner boundary dominate the 

instabilities over the disk as a whole. This instability does not seem to be the same 

as the transient seen in the SPH runs: it is limited to small radii inside the density 

maximum, and does not enter the outer disk at all. Because of the boundary 

behavior noted above, simulation of the disks into epochs having large amplitude 

variations was possible for only short times. We could not determine if a large 

transient in the orbits of the centers of mass of the stzir and the disk developed at 

late times for these simulations. 

At low and moderate Qmin (^ 1-7), there is a great deal of correspondence 
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between the qualitative results of our SPH ajid PPM runs. For simulations with 

moderate initial Qmin (~ 1-4 — 1-7) multiple spiral cirm structures develop with 

the m = 2 and m = 3 patterns most prominent. The m = 1 pattern is present at 

varying levels as an asymmetric component of the dominant m = 2 or 3 patterns. 

For the lowest stability simulation, run at Qmin = l-l- density variations up to 

~40% are present in the disk and variations within a single spiral arm produce local 

density maxima within that arm. Continued collapse from large amplitude spiral 

structure into one or more clumps is not observed, probably because we have not 

resolved the gravitational potential or the rotational motion of the matter about a 

collapsing core to the necessary scale. The evolution of these lowest stability disks 

(i.e. simulation pqml and pqmS) at early times in the simulations are dominated by 

the growth of the m = 1 pattern which, unlike their more stable cousins, is distinct 

even at the 10~® — I0~® level. Later, these patterns tend to break up and reform as 

m = 2 and m = 3 patterns. 

An important connection of numerical simulations to linear perturbation analyses 

is to define, if possible, the linearly growing spiral patterns of a system. To do so 

requires a specification of the growth rates and pattern speeds of the dominant 

spiral patterns in each system. 

We compute the growth rates by first computing the ajnplitude of spiral 

patterns by Fourier transforming a set of annuli spanning the disk in the 

a^imuthai coordinate. The amplitude of each Fourier component is then defined as 

2.3.3. Spiral Pattern Growth 

= ln(|Em|/|So|), where is 

kC e""^S(r, (f))rd<t)dr. (2.14) 
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for m > 0 and the inner and outer radii of the disk are defined by Hi and RQ. The 

m = 0 term is defined with a normalization of l/27r. With this normalization, 

the Eo term is the mass of the disk and the amplitudes. Am-, are dimensionless 

quantities. The phase angle is then defined from the real and imaginary components 

of the amplitude 

= tan ' 
Im{Y.m) 

(2.15) 
Re{y.m) 

Local amplitudes for each component can also be derived for annuli by neglecting 

the integration over radius in eq. [2.14]. Each Fourier component is computed 

about the center of mass of the system. 

Assuming strictly linear growth for each Fourier component, we can use least 

squares techniques to fit a growth rate, 7m, to each amplitude as a function of time 

with the equation 

Am.=lmt-^Cm,  (2 .16)  

where Cm is an constant defining the initial amplitude of the component. If we 

keep track of the number of times, /V, a pattern has wound past a phase angle of 

27r and add IvN to the derived phase at each time, we can derive a pattern speed 

by a similar fit as 

4>m —  ̂ + 0m,O- (2-1") 
m 

This definition effectively averages over aJl short term vaxiations (if any) in the 

pattern speed. A periodogram analysis gives similar results to this fit technique. 

The frequency with which we produce dumps of the simulation is suflBcient to 

produce accurate pattern speeds over all but the inner ~ 3 — 5 AU of our disks 

(limited by aliasing), and over the full radial extent of the tori (see section 2.3.3). 

We may independently derive an additional global growth rate for the m = 1 

component by noting that it is the only component which can contribute to the 
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motion of the star. All higher order components are symmetric under a rotation 

smaller than 27r radians (i.e. 27r/m respectively for each Fourier component) and 

therefore do not contribute to the motion of the disk center of mass. By fitting the 

distance between the centers of mass of the star and disk as a function of time, we 

find a growth rate independent of the precise geometry of the spiral arms in the 

disk. In general we find good agreement between this growth rate and the vaiue 

derived from the above procedure. 

The analysis of the pattern growth in disks and tori can proceed at either a 

local or a global level by either including or excluding the integration over radius 

in eq. [2.14]. If we derive a growth rate and pattern speed in a succession of 

narrow rings in the system and compare the values over the entire system, we caji 

readily identify structures which are coherently growing and moving over large 

temporai and spatial scales. This feature is limited in a global analysis because the 

integration effectively averages the amplitude and speed of a given pattern over the 

entire system. 

On the other hand, a local analysis can be quite misleading. If we consider 

a series of concentric narrow rings making up a disk, we must account not only 

for the growth of instability within any given ring, but also for the transport of 

already formed instabilities from one ring to another. For example; if some 'lump' 

of matter grows in one ring in the disk, then moves by some process to a second, 

the amplitude of the Fourier components in each of those rings will be affected: 

one will exhibit a net loss in ajnplitude, while the other a net gain. A growth rate 

based upon amplitudes affected by such processes would no longer represent the 

physical instability mechanisms present in the disk. 

In the analysis that follows, we shall use a local analysis to identify patterns 
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which axe growing coherently over large spatial scales, but in order to compare our 

results to the global analyses of ARS and STAR, we shall utilize globeJly integrated 

quantities. 

SPH and PPM: A Direct Comparison of Results and Numerics 

Each code does well with different aspects of the evolution of disks. For 

the example of the disks discussed here, the low noise in the PPM calculations 

ailows an accurate growth rate calculation, but with our treatment of boundaries, 

problems develop as a simulation becomes nonlinear. Matter reflected from the 

boundaries changes the total momentum of the system to such aji extent that its 

center of mass (exhibited particularly in the position of the star) attempts to move 

to infinity. Because of its ability to dynamically adapt the available resolution to 

the interesting parts of the flow and relative sensitivity to boundaries, SPH is able 

to follow the nonlineax evolution much further. These same features however, forbid 

simulating a disk with a low density central hole because the steep density gradient 

neeir the inner disk edge cannot be adequately resolved at a computationally 

affordable level. Even for disks without a hole (for which the gravitationaJ softening 

at the inner boundary blurs the physics and allows the simulation to proceed), the 

initial noise in SPH (of order 10"^) leaves very little time for random perturbations 

to organize themselves into ordered global spiral structures while remaining in the 

linear regime. 

Fitting growth rates to the SPH simulations requires much more caution than 

is required for the PPM runs. The initial noise level is such that only a very short 

time baseline is available prior to saturation. Typically, we observe a period during 

which Fourier components grow linearly until reaching a saturation level. This 
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period of lineax growth lasts for about one disk orbit To ox less for SPH and 2-3 

TD for the PPM simulations. 

The SPH disk simulations often reach high perturbation amplitudes close to 

the star before more distant regions of the disk have become active. To compare the 

two numerical methods and minimize this time scale problem, we have simulated 

relatively narrow tori. Such tori have a much more restricted dynamic range than 

a disk, so that the entire system becomes active at once. We use a torus with an 

outer to inner radius ratio of Hi f Ro = 5 and a 7 = 1 equation of state given by eq. 

[2.11] with temperature, density and individual particle mass given by a Gaussian 

function of radius 

/(r)=/oe-('^)', (2.18) 

where ro is defined at the midpoint, tq = (ft, + Ro)l% of the torus and 

Rui = {TQ — Ri)/2, so that the torus extends about three 'standard deviations' in 

either direction from the highest density point (figure 2.11). Each simulation is 

then evolved isothermally in the same way as is done with our simulations of disks. 

With a 7 = 1 equation of state, it is diflScult to find toroidal configurations 

which are initially stable to axisymmetric perturbations (i.e. Q > I everywhere), 

except for relatively low mass tori. For a variety of temperature or density laws, 

either the high density central region will collapse (i.e. the initial Qmin will be less 

than unity), or the outer edge will be unbound. For our test problem, a ratio of 

Mr/M. = 0.2 yields a minimum Q of about 1.05 near the center of the torus. As 

before, the star mass is M. = 0.5MQ, the outer torus radius of /?o=50 AU, and 

thus the outer edge of the torus orbit period is TV = To =500 yr. 

Table 2.3 summarizes the chaxacteristics of the simulations. The lineax and 

nonlinear regimes are divided by the condition that the ajnplitudes of Fourier 
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components other than the dominant pattern (or patterns) reach compcirable 

ajiiplitudes to that domineint pattern. «uid total perturbations reach ~10%. 

One SPH and two PPM simulations were run with this toroidal configuration 

at a resolution of 40 x 150 cells for the PPM runs and 6998 particles in the SPH 

run. One PPM simulation with initial random noise amplitude 10"^ (comparable 

to the initial noise in SPH) and one with noise of amplitude I0~® were run. The 

10"^ noise is input as a random density perturbation in each cell as 

S., = (l + 10-^(2/2 - 1)) S.J (2.19) 

where i and j refer to the radial and a2imuthal grid indices and /2 is a pseudo

random number between zero and one. The 10~® amplitude noise is derived from 

truncation error in the initial state, as is done in the disk PPM simulations. 

Boundary conditions are identical to those used in our disk simulations. 

The relatively large amplitude of the noise in the SPH simulations is caused 

by smoothing over a finite number of neighbors (see Herant and Woosley 1994). 

Increasing the number of neighbors used in the interpolation has a small effect in 

decreasing the noise amplitude but at a high computational cost. We have used 

a varying number of neighbors (depending on locaJ conditions of the run) with a 

distribution centered near 15-20 neighbors per particle, a number which is standard 

for two dimensional simulations. 

The resolution of features within the torus or disk must inevitably be less 

accurate in a finitely resolved system than in a physical system. PPM spreads 

shocks over at least two cells, for example, while further loss of resolution may 

come from the representation of the gravitational potential. In SPH, resolution is 

limited by the smoothing length of the particles and the artificial viscosity required 

to adequately reproduce shocks. 
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Two additional PPM and two additional SPH simulations of tori have been 

run to test resolution. One PPM run has 1.5 times the resolution in each dimension 

(60x225-roughly doubling the number of cells) and the second twice the resolution 

(80x300-quadnipling the number of cells). The SPH simulations increase by a 

factor of two and a factor of four the number of particles in each simulation. 

Comparing runs of different resolution is difficult, however, because the power 

spectrum of the initial perturbations may not be controlled to the limit required. 

In an attempt to duplicate the perturbation at low and high resolution, but remain 

above the uncontrollable level imposed by the grid itself, we have input an initial 

random noise amplitude of I0~^ in each 2x2 block of cells in each of the two higher 

resolution PPM runs. 

We show the evolved configuration of each run in figure 2.12. The time at 

which each is shown is near the linear regime cut off discussed below. The SPH runs 

are mapped onto a grid ajid plotted in the same manner as the PPM runs in order 

to maice the visual comparison as direct as possible. In each of the runs, instability 

growth is dominated by m = 2 — 4 spiral patterns with the higher resolution runs 

tending to show progressively less of the m = 4 pattern and more of the m = 2 

pattern. The m = 3 pattern predominates in each simulation except for the two 

low resolution PPM runs. The change in morphology in different simulations is 

probably an artifact of the resolution. As we show for the growth rates below, the 

lowest resolution simulations are apparently not converged. 

In comparison, the results of Laughlin &: Rozyczka (1996) show a dominance 

of an m = 2 component without a large presence of other patterns. The origin of 

instabilities in their systems is attributed to the family of vortensity instabilities 

with corotation exterior to the torus. Different initicd conditions seem to be 
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responsible for the m = 2 rather than m = 3 dominance. Our test simulations use 

a narrower torus than theirs, with an isothermal rather than adiabatic equation 

of state. A simulation with aja identical initial condition ajid equation of state 

compares favorably to their results. 

The amplitudes and fits for growth rates for the m = 3 spiral pattern at the 

center of the torus (at R = 30 AU) are shown for each simulation in figure 2.13. 

The fit pajameters are derived from only the portion of the curve in which the 

patterns are growing and little disruption of the large scale structure of the tori has 

begun. This disruption is characterized by an onset of fragmentation at the inner 

and outer edges of the torus (SPH) or significant radial distortions in the torus 

(PPM). We also allow a short period (~ O.lTo) prior to the first fitted time point, 

for some initial transients (e.g. the unphysical 'ringed' structure in the SPH initial 

state) to settle. 

The pattern speeds and growth rates for the m = 1 — 4 patterns are shown in 

figure 2.14 for each of the PPM simulations and in figure 2.15 for each of the SPH 

simulations. The pattern speeds for the m > 2 patterns for each of the runs agree 

for both codes over the range of resolution and initial perturbation amplitude. The 

growth rates from the SPH simulations differ by as much as 50% between runs. For 

the SPH simulations obtaining a constant rate across each ring in the torus was 

not possible. For the PPM simulations, the growth rates near the inner and outer 

boundaries of the tori are reduced due to the fact that perturbations there do not 

begin to grow until after the denser regions of the torus have been disturbed. A 

similar effect is found for the pattern speed near the inner edge. 

The growth rates for the SPH runs are affected by the high amplitude of 

perturbations in the initial state and the short time span over which the fit must 
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be derived. Longer lived initial treinsients caused by the excitation of multiple 

eigenmodes of the system or by small inhomogeneities in the initial state can cause 

the amplitude curves to become quite nonlineax in form. The PPM simulations 

have longer time baselines so such transient effects are less important. 

The growth rates for the m = 4 pattern in the PPM simulations decrease 

with increasing resolution, while the m = 2 and 3 growth rates axe less affected. 

This fact and the trend towards m = 2 and 3 spiral patterns for higher resolution 

runs suggest that they may be true linearly growing patterns for the system. The 

change in character with increasing resolution may be due to the fact that the 

torus begins its life very close to the stability limit, Qn»in = 1-0. Any inaccuracies 

in the resolution of the gravitational potential or the mass distribution (hence 

the pressure) will have their greatest effect in such a circumstajice. The SPH 

simulations show no comparable effect, but reliable local growth rates can not be 

obtained for those simulations. 

Late in each simulation the tori collapse into several condensed objects, but 

the details of the collapse vary. Not all of the spiral arms present during the 

growth of structure condense into separate objects. In many cases the spiral cirms 

breaJc up and/or merge as clumps begin to form. Figure 2.16 shows snapshots 

of each of the runs at the time at which the spiral arms begin to collapse. Each 

simulation is halted at this point because of the influence of the boundaxies on the 

simulation and because we did not properly simulate the physics important in the 

collapsed objects. The structures which develop resemble the simulations discussed 

by Christodoulou & Narayan (1993) because the tori tend to deform radially as 

instabilities grow. With both codes the torus becomes so distorted radially that a 

line of condensations forms from the torus matter which has moved outwaxds. 
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We now summaxize the similcirities and differences between the results of each 

code. 

Each code produces instabilities which grow in the tori as they evolve forward 

in time. The instabilities produced are multi-armed spirals structures which, at the 

end of each simulation, have begun to radially distort the torus and collapse into 

clumps. In both codes predominantly 2-4 armed spiral structures are produced. 

The high resolution simulations each produce 2 and 3 axmed structures while low 

resolution simulations (apparently incompletely converged), produce predominantly 

3 and 4 axmed structures. 

The initial state of an SPH simulation begins with random noise of amplitude 

~ I0~^ above or below an 'ideal' initial value. Near the boundaries, where particles 

are not distributed evenly with respect to each other, additional differences from 

an ideal initial state axe present. PPM caji begin with noise in the initial state as 

small as machine precision for any given simulation. 

The differences between one code and the other can be attributed to several 

effects. First, perturbations in the initial state may trigger more than one true 

eigenmode of the system which, taken together, cause more or less observed 

growth in a given simulation with respect to another. Because the noise input for 

each code arises from such different sources, the stimulated pattern growth may 

therefore initially have a much different chaxacter. This growth rate variation is 

exhibited predominantly by the amplitude of a given pattern 'waving' above and 

below its true lineax growth curve and, in essence, constitutes an error estimate for 

a calculated growth rate. The PPM simulations, for which the growth rates are 

calculated over longer time baselines and with a smaller initial noise amplitude per 

Fourier component axe not nearly as strongly alfected by such effects. We estimate 
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errors of 10-20% in the growth rates due to this effect in the PPM simulations and 

perhaps em additional 20-40% in the SPH runs because of their very short time 

baseline. Pattern speeds do not seem to be as strongly affected by these transient 

effects. 

The adaptive nature of the resolution cind high noise in SPH causes smedl 

scale filamentajy structures to become active and develop more quickly than in 

our counterpart PPM simulations, which are limited to the resolution of the fixed 

grid. SPH will tend toward developing grainy and filamentary structures quickly, 

perhaps to a larger extent thaa is physically the case. 

Because the grid boundaries are far away from the main concentration of mass 

in the torus, they have only a small effect until late in any given simulation. Such 

is not true for the disk simulations using the PPM code so those simulations cannot 

be carried out fax into the nonlinear regime due to the growing influence of the 

boundaries at late times. The physics important for the global dynamical evolution 

of the disk ranges over a dynamic range larger thaa we are able to simulate. The 

state at which the PPM runs must be terminated (with 10-20% perturbations) are 

qualitatively quite similax to those of the SPH runs over most of their duration. It 

may be that for the disks we discuss below, the PPM runs are representative of the 

linear regime, while the SPH simulations axe our only representation of the late 

time nonlinear behavior of the system. 

Pattern Growth in Disks 

With a clearer understanding of the numerical properties of our codes on 

a test problem, we return now to the study of disks. Due to the high initial 
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noise of the SPH runs and large radial extent of the disks we study, saturation 

at small radii often occurs well before the entire disk hcis become involved in 

the instability. Because of this noise we do not believe growth rates calculated 

from these simulations are reliable for any Fourier component except the globally 

integrated m = 1 pattern (for which we have the behavior of the centers of mass of 

star and disk), and we limit discussion of the growth rates in this and the following 

sections to the PPM simulations. 

The qualitative observations of sections 2.3.1 and 2.3.2 have shown that there 

is rarely a single spiral pattern present in a disk. More quajititative measurements 

show that growth is present in all Fourier components up to very high order. Such 

growth does not necessarily imply that actual spiral arms of that order are present 

in the simulation, but rather that the arms that do exist become more filaraentary 

than pure sinusoids, creating power in higher order Fourier components (a Dirac 

<J-function will yield power at all wave numbers for example). In order to be more 

definitive regarding the true morphology of each disk we visually examine each 

simulation and tabulate the dominant spiral patterns in Tables 2.1 and 2.2. 

Which patterns represent linear growth in each of the systems? To begin to 

answer this question we must fit growth rates and pattern speeds to the various 

spiral patterns present in each disk and determine which patterns exhibit rates 

which axe constant at differing resolution, across a large portion of the system and 

over a large time period. In figure 2.17 we show the amplitude of the m = 2 and 

m = 3 patterns as a function of time near the middle of the power law portion of 

the disk and integrated over all radii for our prototype massive disk shown in figure 

2.5. Over long periods the growth is essentially linear in character. Over shorter 

periods it is punctuated by transients which can change the amplitude by up to 
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an order of magnitude. The amplitude variations apparently arise as short-lived 

structures successively grow and fragment throughout the disk. Time dependence 

of pattern speeds within the disk will be discussed in section 2.3.3 below. 

Radius dependent growth rates and pattern speeds for the m = I — 4 axe 

shown in figure 2.18 for two different grid resolutions. The growth rates and pattern 

speeds are similar at both resolutions, suggesting that the simulations may have 

resolved the physical processes important in this disk. The growth rates for the 

m > 2 patterns are nearly constant with radius but the pattern speeds derived axe 

not at all constant with radius; they decrease as a steep function of the distance 

from the central star. 

Low mass disks show a marked absence of the dominant low order (m = 1 — 3) 

spiral patterns so common among higher mass disks. Typically, the amplitudes 

and growth rates of all Fourier components are comparable. We plot the growth 

rates and pattern speeds for the same patterns (m = 1 — 4) as above for our 

prototype low mass disk in figure 2.19. We again find that the pattern speeds axe 

steeply decreasing functions of the radius. We also find that the growth rates do 

not exhibit the same values for different grid resolutions. This fact suggests that 

the low mass disks have not fully converged at the grid resolution used in our 

simulations. The systematic trend towards faster growth in the higher resolution 

simulation indicates that the small scale features which dominate the morphology 

of this system may be somewhat inhibited by the resolution of the gravitational 

potential axid the hydrodynamic quantities on the grid. Much higher resolution 

simulations are required to be able to fully resolve the features important for disks 

of mass less than ~ 0.2A/, than axe required for more massive systems. 

With simulations of varying stability we would ordinarily expect larger Q 
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values to lead to slower instability growth. Similarly, we expect that smaller Q 

values should imply more rapid growth of instability. In fact, as discussed in section 

2.3.2, both extremes lead to rapid instability growth, but of different character. 

Although it begins with an extreme initial condition, the simulation pmq5 

(with Qmin = 2.0, MofM. = 0.8) shows an interesting example of the limiting 

behavior displayed in a highly stable disk (Q >> 1 everywhere) with a turnover in 

its density profile near the central star. We show the m = 1 and m = 2 pattern 

amplitudes at two locations in the disk and integrated globally in figure 2.20. In 

this simulation, rather thaji being suppressed, the amplitude of the instabilities 

begins to grow quickly in a region limited to the innermost portion of the disk. 

Further out in the disk much slower growth occurs. The development of such 

instabilities in disk systems cannot be attributed to a global, linearly growing 

phenomenon; its localized character and the different behaviors of the ajnplitude 

growth at different locations in the system argue against that. It remains unclear to 

what extent this type of growth happens in real systems, but it seems that with a 

turn-over in the density law at small radii or the less severe case where the density 

law flattens (as in our SPH simulations) can lead to increased local instabilities. 

It is interesting to note that Pickett et al. (1996) report similar behavior (which 

they refer to as 'surge' growth) in several of their more Q-stable simulations. In 

their work however, the initial mass distribution and rotation curve are somewhat 

different than in our own work. The fact that similar behavior is observed in 

simulations of such different character suggests a similar mechanism may be driving 

the evolution of both sets of simulations. 

The lowest stability simulations also show rapid growth of spiral instabilities. 

In these simulations there are no growth features similar to the 'hump,' or sudden 
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rise in amplitude shown in figure 2.20. In genercil, the qualitative features of the 

growth are similar to those seen in figures 2.17 cind 2.18 but with as much as 

50-100% larger growth rates in the case of the lowest stability run {pmql). 

The results of our analysis in this section show that in spite of its large 

amplitude at early times and its continued presence for the duration of the run, 

our simulations do not show evidence of a pure m = 1 pattern. In no case is the 

m = I growth rate or pattern speed constant across a large portion of the disk. In 

contrast to several higher m patterns, the wide variation is true of both the growth 

rate as well as the pattern speed. Because of the variation of the growth rate and 

pattern speed we must conclude that a direct connection to the SLING mechanism 

is not possible. At the high amplitude (late time) phase of evolution shown in the 

SPH simulations, the m = 2 and 3 patterns have become dominant for disks more 

massive than MD/M. W 0.2, while at the lower amplitudes typical of our PPM 

runs, m = 1 has the largest amplitude, though the pattern itself is ordinarily seen 

only as asymmetries in higher m structures. 

None of the disk simulations we have performed produce pattern speeds 

for any m pattern which aje constant across the entire disk. The growth rates, 

while ordinarily stable at a single value over the whole system for at least some 

patterns (see e.g. fig. 2.18), do not reflect the short term behavior of the system 

as structures fragment or deform over time. In this case the 'linear growth modes' 

of the system, defined as the complex eigenvalue of a system of equations, become 

difficult to define or to interpret. 
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Suggestions for the Mechanisms of Instability Growth 

In each of our simulations, instabilities are generated in the innermost portions 

of the disk, eventually impacting the entire system. Such growth occurs in spite 

of the fact that the inner regions are the most stable as measured by two of the 

classic stability indicators, namely the Toomre Q criterion and the SWING X 

parameter. If we are to suggest a mechanism for the instability growth we are 

limited to mechanisms which can produce instabilities in what are ostensibly highly 

stable regions. 

We have already discussed the possibility that in some cases instabilities may 

be due to nonaxisyxnmetric accretion of disk matter onto the star or by accretion 

of infalling material onto the disk, rather than to dynamical instabilities in the disk 

itself. In other cases, the vortensity bcised instabilities of Papaloizou &: Lin 1989 

(see aiso Adams &c Lin 1993) may provide an answer because they can grow in 

highly 'stable' regions and their growth can be local in nature. They discuss three 

classes of vortensity instabilities which can exist in a disk: those dependent on 

vortensity extrema within the disk or at its edge ('edge modes'), those dependent 

on resonances ('resonance modes'), and those which have corotation exterior to 

the disk (dubbed 'slow modes' and studied extensively by Laughlin & Rozyczka 

1996). Because we find corotation within the disk for most times (though at 

varying position), we can eliminate the last of these classes from consideration. 

The remaining two, we believe, are both active at different times and to a greater 

or lesser extent in the disks we model. At early times, our initial condition 

(the softened power law or density turn-over at small radii) implies a vortensity 

extremum near the irmer boundary of the disk. This condition may excite an edge 

mode which over time propagates outward over the density maximum in our PPM 
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simulations via a resonance mode into the disk, exciting global instability channels 

such as SLING as it propagates into the main disk. We have not established a 

definite connection between the instabilities in our simulations and the vortensity 

based instabilities however. 

We cannot definitely connect the SLING instability directly to phenomena 

present in our simulations; see section 2.3.3. We may still perhaps be able to make 

qualitative connections between phenomena predicted to be important via lineax 

analyses and our results. One example of such phenomena would be growth rates 

which depend upon the outer boundary condition imposed. .Another might be a 

growth rate which, as a function of disk mass, increases for disks more massive than 

some critical value, as suggested by the 'mziximum solar nebular mass' discussed in 

STAR. Such characteristics would not necessarily be limited to the m = 1 pattern 

but may also exist in m > 1 patterns as well. 

We do see such characteristics in the variation of the growth rates with respect 

to the disk/star mass ratio. For each series of PPM simulations varying disk mass, 

figure 2.21 shows the value of the globally integrated growth rates for the m = 2 

patterns. Growth rates for other m patterns appear qualitatively similar to those 

shown. As one expects, growth rates of the highest mass disks are the largest, while 

instabilities in low mass disks grow much more slowly. In the reflecting boundary 

runs, a distinct 'turn on' mass is evident between 0.2 < M/j/M. < 0.4, a value 

which corresponds to the 'maximum mass solar nebula' predicted by the results 

of STAR. The infail series does not exhibit such a distinct onset, but rather a 

continuous rise to a plateau which does not flatten out until the mass ratio reaches 

MD/M. « 0.5. 

For low disk masses, the growth rates for each pattern are of order 
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li/^D = 0.15 — 0.2. These rates axe comparable to the rate attributable to 

numerical effects. The numerical effects have their origin primarily in the fact that 

mass interacting with the grid boundaries gives aji impulse to the system center 

of mass, which must be stable in order to determine the amplitude of the m = I 

spirai pattern. Higher m patterns axe also affected as spiral waves reflect off the 

grid boundaries back into the simulation. 

For higher mass disks, the outer boundary has a marked influence. As 

ARS predict, details of the outer radial boundary axe an important factor in the 

growth pattern. The simulations with matter infalling onto the outer disk edge 

develop spiral structure with growth rates as much as 2-3 times faster than with 

a purely reflecting boundary. Simulations at two resolutions were run with an 

infall boundary to test the degree to which numerical effects of the boundary were 

affecting the growth. Both series show similax growth rates (fig. 2.21). 

Importance of Phenomena not Included in Linear Analyses 

On short time scaies the pattern speeds in our disks can vary by as much 

as 100%. One example, shown in figure 2.22, is taJcen from the high mass disk 

simulation pch6. There we show the instantaneous pattern speed for the m = 2 

pattern near the middle of the disk, as calculated by numerically differencing the 

pattern phase 0^, at successive output dumps of the simulation. Such variations 

in time are typical of each pattern in each disk simulation we have performed, 

and appear in both local and globally integrated pattern speeds. Pattern speeds 

calculated this way for the torus simulations of section 2.3.3 show much slower 

variations. 
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In the case of the m = 1 pattern, whose global pattern speed is reflected in 

the motion of the star, we find that the star occasionally loops back upon its own 

trajectory and counter-rotates with the disk for a short period. Such a condition 

is not aji uncommon occurrence in systems with disturbances with different orbital 

(pattern) periods. In our own solar system, for example, the sun's motion about 

the solar system barycenter was retrograde most recently in 1990, when Jupiter 

was on the opposite side of the sun from the other three major planets. 

The variations seem to arise because of the growth, fragmentation and 

reformation processes undergone by the spiral arm structures over the course of 

their evolution. Because the pattern speeds vjiry, an averaged pattern speed at any 

location in the disk (via eq. [2.17]) loses meaning cind the location of the corotation 

and Lindblad resonajices for each pattern also vary in time. When such variations 

are occurring, wave analyses, which typically assume stable resonances, may be of 

limited utility (wave analysis is of course useful in less chaotic circumstances-see, 

e.g., STAR and Laughlin, Korchagin, Adams 1996). 

The growth of instabilities is not always suppressed as Q increases, but the 

instabilities do change character; this change is due to the increasing importance 

of effects not modeled in semi-analytic treatments of disks. For the high Qmin SPH 

runs, these effects are dominated by the nonaxisymmetric accretion of disk matter 

onto the star. As the star begins to move from the center of mass of the system 

(due to ordinary disk processes or the potential hump at the origin), some portion 

of the accretion becomes nonaxisymmetric. In the warmest disks, as much as 10% 

or more of the disk is accreted over the life of the simulation. Disk matter accreting 

onto the star sweeps along some residual angular momentum which is transferred 

to the star either as spin (an effect we neglect here) or as net angular momentum of 
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the star about the system center of mass. In these cases, the star may gain enough 

momentum to be driven frnther away from the center of mass and create power in 

the m = 1 pattern. 

In the PPM runs with infall, the instability growth can include a component 

due to the outer disk edge perturbations. These may be due to infail itself, or to 

fragmentation of the disk at the botmdary. Although the linear ajialyses of ARS 

and STAR showed that the conditions at the outer boundary were important for 

the evolution of the system, they were unable to fully model the effects that the 

boimdary can have on the system (see however Ostriker, Shu, & Adams 1992). 

Returning now to our SPH simulations, in this section we describe several 

qualitative features of clump formation and evolution in the disks. Due to the 

unsteady nature of the spiral instability growth and the presence of multiple 

spiral patterns in the system, each disk sequentially approaches and moves away 

from conditions in which clump formation is likely. These conditions are most 

readily apparent in plots of the minimum Q value in the disk and in the maximum 

over-density in the disk (defined as S(r, 0, f)/S(r, i = 0)) with respect to time. 

The value of Q is defined rigorously only for an azimuthally symmetric disk. 

Nevertheless, as an indicator of the most unstable locations in the disk, we examine 

its value in nonaxisymmetric systems. To calculate its value locally we must first 

determine the epicyclic frequency at each point in the disk. We use the same 

procedure by which SPH obtains derivatives of all other hydrodynamic quantities. 

By definition 

2.3.4. Clump Formation and Characteristics 

(2.20) 
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so the value c/[(r^il)^]/</r, taJcen pairwise over each neighbor, is weighted using the 

SPH kernel. The result is summed to form a local value of the epicyclic frequency. 

Plots of maximum over-density and minimum Q are shown in figure 2.23 for 

our two prototype SPH Qmin = 1-5 disks. Each variable is a global extremum. .A.s 

such, the value of one could be determined from a completely different portion of 

the disk than the other. However, after only a relatively small fraction of an orbit 

time TDI the locations of minimum Q and majcimum over-density are close, at a 

position between about 10 and 30 AU. 

After a few orbit periods of the inner disk regions, the over-density rises to 

about twice its initial value (of unity). A slow secular trend towards stronger 

spiral arms over the course of the run follows, punctuated by one or more sharp, 

short-duration episodes of very strong activity in which density locally increases to 

5-10 times. Over-density spikes become more and more frequent as the simulations 

progress, finally leading to clump formation. With the one exception MQ/M. = 0.4, 

Qmin =1.7 which, as noted in section 2.3.2, appears to lie on the 'boundary' 

between clumping and non-climiping disks, simulations which do not eventually 

form clumps also do not show these large over-density events. We attribute 

the origin of the over-density events in our simulations to the growth of spiral 

instabilities into a high amplitude nonlinear regime. In this regime spiral patterns 

present constructively interfere with each other or collide with other arms and 

orphaned arm fragments. 

The results of Adams & Watkins (1995; hereafter AW) show that a density 

enhancement within a disk will lead to collapse if the condition 

^ «»> 
is met, where Q is the local value (azimuth average) of the Toomre parameter 
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at the location of the density enhancement. For the disks in our study, this 

expression implies that an over-density factor of 3 or higher must be present in the 

disk, depending on where in a disk the collapse event occurs. This prediction is 

supported by our numerical results, which show that disks can survive (i.e. not 

exhibit collapse) for long periods with over-densities of 2-4, but collapse when 

over-density spikes of magnitude 6-10 occur. 

For all disk masses, the minimum value of Q rapidly falls below its initial 

value to well below unity. After the initial steep decline, a slower decrease occurs 

until clumping begins and minimimi Q fails to zero. The initial decline occurs 

most quickly in the highest mass disks, in which instabilities of any type are most 

strongly felt. With Q below unity, the disk becomes unstable not only to spirai 

instabilities but also to ring formation or, in the case of isolated patches, collapse. 

The collapse is slowed by the effects of rotation within the forming clump. 

We can verify that it is rotation which slows the collapse by noting that the 

effects of the over-density spikes majiifest themselves at only the 20-30% level in 

Q. We also know that the sound speed is constant in the proto-clump (due to our 

assumption that the disk evolves isothermally), from the definition of Q we know 

that the rotation of an individual proto-clump (really the shear across the clump, 

measured by the local value of the epicyclic frequency K) is the mechanism which 

inhibits further collapse. Only after spiral arm amplitude has reached sufficient 

levels to overcome rotation can an irreversible collapse begin. 

Clumps condense out of the spiral arms on quite short time scales in even the 

least massive disks. During and after the initial stages of their formation, we find 

that the clumps show prograde rotation. No clumps were seen to form in any disk 

studied whose initial Qmin was greater than 1.5. Clump formation is most common 
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at radii less than ~ Q.bRo and usually severed clumps will form from the same disk 

(and even within the same spiral arm). Less massive disks form many low mass 

clumps and higher mass disks form 2-4 higher mass clumps. The mass inside the 

clumps is of order 1% of the star mass at the time each simulation is ended. It is 

clear, however, that from the amount of remaining disk that no finai mass has been 

determined. 

The clumps form with such vigor in each of these disks because of the strong 

cooling implied by the isothermal assumption. Any density enhajicements like those 

seen in figure 2.23 instantly lose their pressure support and collapse rather than 

dispersing. With more realistic cooling, the clumping behavior seen in our results 

may change. Thus our results are most useful cis an indication of the behavior of 

disk clumping and as indicator of where clumps may be most likely to form in more 

physically realistic disks. 

Figure 2.24 shows a plot of the radius at which each clump formed for each 

disk in the series. Only in the case of the MQ/M, = 0.2 disk, in which clump 

formation is prolific in nearly all regions, were any clumps formed at radii greater 

than 0.5 RQ. With this exception, we believe the variation in the locations of clump 

formation in disks of diffierent mass in figure 2.24 to be due more to stochastic 

effects rather thaji any physical process. To test this idea we ran a comparison 

series of simulations (x's), utilizing the Lagrangian version of the equation of state. 

When such an assumption is made, the background noise inherent in the code 

changes character. No overall structural changes are evident in figure 2.24, but 

differences in detail are present. Also, for the disk with MD/M. = 0.2, clumps were 

not formed at the largest radii. We believe this lack of clumps is due in part to the 

radial motion of some warmer particles into the outer disk, causing clumping to be 
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suppressed. 

The prior results of AB92, in which clumps <ire seen to form at much larger 

radii, correspond to a somewhat different initial configuration. In particular, our 

present results use a much smaller 'core radius', r<., for the density and temperature 

power laws. The gravitational softening pcirajneter for the stax is correspondingly 

smaller, and no initial perturbations axe assumed. These differences conspire 

to push collapse instabilities to larger radii in the AB92 results, since in their 

simulations more mass is concentrated at laxge distances from the stax. We believe 

the present conditions to be more realistic and thus to represent an improvement 

over the AB92 results. 

Initial Orbital Characteristics 

Out of the entire sample of newly formed clumps, none have an initial 

eccentricity much higher than e = 0.2, and most are between zero and 0.1. The 

low mass companions now being discovered around nearby solar type stars show 

both small and large values of eccentricity (Mayor et al. 1997; Maxcy &: Butler 

1996; Butler & Maxcy 1996). Although the clumps in our simulations form only 

in relatively low eccentricity orbits and axe therefore dissimilar to many of those 

being discovered, considerable evolution of eccentricity can talce place between the 

times corresponding to the end of our simulations and the final morphology of the 

system (see e.g., Artymowicz 1993, 1994; Goldreich h Tremaine 1980). 
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2.4. Conclusions 

By using two conceptually different hydrodynamic methods (SPH and PPM), we 

are able to simulate a broader range of problems, but gain a sobering insight into 

the limitations of these tools. It is striking that PPM indicates violent behavior 

near the inner boundary (weakly supported by SPH), and that SPH indicates 

pronounced clumping (weakly supported by PPM). Both methods indicate 

that instability growth is not a steady progression from low to high amplitude 

perturbations with a single dominant pattern present throughout. Both methods 

indicate a marked change in the character of instabilities with disk mass. Low mass 

disks form many armed filamentary spiral structures while high mass disks form 

few armed grand design spiral structures. 

In this study of the evolution of circumstellar accretion disks, we have found 

simultaneous growth of global spiral instabilities with multiple Fourier components. 

Growth of each of the components occurs over the course of a few orbit periods 

of the disk and a single component rarely dominates the evolution of a disk. 

As expected, the massive disks are found to be the most unstable, due to self-

gravitating instabilities within the disk. .Accretion of matter onto the star itself can, 

in warm disks (i.e. those with high Qmin values), significantly drain matter from the 

disk time scales similar to the self-gravitating instabilities. Short-term variations in 

the amplitude of a given component, and strong constructive interference behavior 

between different components, can produce 'spikes' in the surface density. These 

spikes can eventually grow to such amplitude that gravitational collapse occurs 

resulting in the production of one or more clumps. 

Pattern growth is stimulated at early times by the rapid growth of instabilities 

at small radii which eventually engulf the entire disk. Steady spiral axm structures 
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are not generally present. Instead, spiral arms progressively grow, fragment 

and reform as time progresses. In cases where accretion is rapid, power caji be 

produced in an m = 1 spiral pattern due to nonaxisymmetric accretion of mziss 

and momentum onto the star. Understanding the dynamics of the inner region is 

of primaxy importance for understanding the global morphology of the system. 

The gross structure of low and high mass disks are markedly different from 

each other. High mass disks form large, grand design spiral arms with few arms, 

while low mass disks form predominantly thin, filajnentaxy multi-armed structures. 

In almost no ceise is the m = I spiral pattern the fastest growing pattern in the 

disk. Typically a combination of m = 2 — 4 patterns in high mass disks or very 

high order patterns (m 5) in low mass disks dominate the morphology. The 

transition between these behaviors comes at approximately MQ/M. = 0.2 — 0.4. 

This transition corresponds to the 'maximum solax nebula' mass discussed in 

STAR, above which m = 1 modes due to SLING are expected to grow strongly. 

It is intriguing to speculate that the collapse processes seen here are 

responsible for the production of brown dwarf-like companions such as that 

seen by Nakajima et al. (1995) and/or of planetary companions similar to those 

recently discovered around several nearby stars (Mayor Queloz 1995, Marcy &c 

Butler 1996, Gatewood 1996). However, we must emphasize that clump formation 

in self-gravitating circumstellar disks depends on the ability of the gas to cool 

efficiently. Our simulations here use a simple isothermal equation of state which 

favors clump formation. Additional simulations with realistic cooling functions, 

including radiative transfer effects, must be done in order to clarify this important 

issue. 

We wish to thank the referee, Richard Durisen, for a thorough referee report 
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Table 2.1. Disk Parameters For SPH Simulatioas 

Name No. of MD/M. Qmin End Time Dominant® Number 
Particles 

MD/M. Qmin 
(^0=1) Spiral Patterns Clumps 

scvO 7997 .05 1.5 3.5 12 6 
scvl 7997 .1 1.5 1.6 ~10 14 
scv2 7997 .2 1.5 1.6 5-6 33 
scv3 7997 .4 1.5 1.7 3-4 7 
scv4 7997 .6 1.5 1.7 2-4 6 
scv5 7997 .8 1.5 2.4 1-3 3 
scv6 7997 1. 1.5 1.8 1-3 3 
sqhl 7997 .8 1.1 0.1 NR 18 
sqh2 7997 .8 1.3 .25 NR 11 
sqh3 7997 .8 1.4 .35 NR 1 
sqh4 7997 .8 1.7 4.2 1-2 0 
sqh5 7997 .8 2.0 4.2 1 0 
sqh6 7997 .8 2.3 4.2 1 0 
sqll 7997 .4 1.1 .15 NR 28 
sql2 7997 .4 1.3 0.3 NR 7 
sql3 7997 .4 1.4 0.4 4 1 
sql4 7997 .4 1.7 5.0 1-3 0 
sql5 7997 .4 2.0 4.2 1-2 0 
sql6 7997 .4 2.3 4.2 1 0 
sql7 7997 .4 2.7 4.2 1 0 
sqlS 7997 .4 3.0 4.2 1 0 

^When only m=l patterns are indicated, actual evolution is apparently an 
accretion induced transient star/disk oscillation (see figure 2.9) rather than a spiral 
arm. NR (not resolved): for low stability disks, assignment of specific spiral arm 
patterns loses meaning due to their rapid breakup. 

Three series of runs are represented in this table. The first letter in each najne 
is 's', signifying an SPH simulation. The second, is either 'c' or 'q', signifying 
constant or varying Qmin, aJid the third letter signifies that the simulation is a 
member of a high (h), low (1) or varying (v) disk mass series. Ascending numerical 
order in each series refers to successive values of either disk mass or Qminj for each 
series. 
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Table 2.2. Disk Parameters for PPM Simulations 

Name Grid M D/M.  ^min End Time Dominant^ Outer 
Res. 

M D/M.  
{TD =1)  Spiral Patterns Bndry 

pcml 64x102 0.1 1.5 5.8 NR Refl. 
pcm2 64x102 0.2 1.5 5.0 2-4 Refl. 
pcm3 64x102 0.4 1.5 4.0 1-3 Refl. 
pcm4 64x102 0.6 1.5 3.75 1-3 Refl. 
pcm5 64x102 0.8 1.5 3.0 1-3 Refl. 
pcm6 64x102 1.0 1.5 3.0 1-3 Refl. 
pch2 100x152 0.2 1.5 5.0 2-4 Refl. 
pch6 100x152 1.0 1.5 3.6 1-3 Refl. 
pqml 64x102 0.8 1.1 1.8 1-2 Refl. 
pqm2 64x102 0.8 1.3 2.6 1-2 Refl. 
pqm3 64x102 0.8 1.4 3-0 1-2 Refl-
pqm4 64x102 0.8 1.7 3.0 1-2 Refl. 
pqm5 64x102 0.8 2.0 2.0 1 Refl. 
pci2 64x96 0.2 1.5 3-8 3-4 Infall 
pci3 64x96 0.5 1.5 2.1 1-3 Infall 
pci4 64x96 0.6 1.5 2.0 1,3 

1-3 
Infall 

pci6 64x96 1.0 1.5 1-6 
1,3 
1-3 Infall 

pell 44x64 0.1 1.5 5.6 NR Infall 
pcl2 44x64 0.3 1.5 4.2 1-3 Infall 
pcl3 44x64 0.4 1.5 4.2 1-3 Infall 
pcl4 44x64 0.5 1.5 2-8 1-2 Infall 
pels 44x64 0.7 1.5 2-8 1-2 Infall 
pcl6 44x64 1.0 1.5 2-0 1-2 Infall 

^NR: not resolved. For some low mass disks, distinct spiral patterns are not 
possible to distinguish. 

Each of these PPM runs begins with 'p' to distinguish it from SPH series. 
The second letter is 'c' or 'q' signifying a constant or varying Qmin vaJue for each 
disk in the series. The third letter implies a ibw, moderate or ftigh resolution 
simulation. Moderate resolution infall boundary simulations are distinquished 
from reflecting boundary simulations using axi 'i' in place of'm'. Numbers are 
successive values of disk mass or Qminin each series of runs. 
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Table 2.3. Tori and Disk Results in SPH and PPM 

Initial Hydro Linear Reason/ Non-linear Reason/ 
Density Method Regime Result Regime Result 

Structure 
Regime Regime 

Disk PPM fails inner not 
(eq. 2.3) boundary accessible (eq. 2.3) 

SPH not short time succeeds spiral arm 
accessible baseline formation 

and collapse 

Disk w/Central PPM succeeds spiral arm short boundary 
Hole growth duration influence 
(eq. 2.4) 

growth 
only (eq. 2.4) 

SPH not short time 
accessible baseline 

Torus PPM succeeds spiral arm succeeds spiral arm 
(eq. 2.18) 

SPH 
growth collapse 

SPH partial spiral arm succeeds spiral arm 
success growth collapse 
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Figure 2.1 A summary of the initial conditions for low (dashed) and high (solid) disk mass 
PPM simulations (simulations pchS and pch6). The six panels show surface density S, Toomre Q, 
temperature T, the ratio of the rotation period at radius r with the Keplerian value. We define 
n.(r) in the middle right panel as J2,(r) = y/GM.Ir^. In the lower left panel, we show the value 
of the SWING X parameter for the m = 1 pattern. Higher order patterns (m > 1) are smaller by 
a factor I/m than the value shown. In the lower right panel, we show the value of the vortensity 
at each radius. 
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Figure 2.2 A summeury of the initial conditions for low (dashed) and high (solid) disk mass SPH 
simulations (simulations scv2 and scv6). This figure shows the same parameters as shown in figure 
2.1. 
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Figure 2.3 The initicil gravitational potential due to the disks and tori we study. We show a slice 
through the origin where the star is initially located. The solid curve represents the gravitational 
potential due to the pure power law EIS given by eq. [2.3]. The dashed curve is that due to the 
modified power law of eq. [2.4], while the dotted curve is that due to a torus as defined in section 
2.3.3. The mass in each disk or torus is MDIM, =0.2. Each system produces a gravitational 
potential hump at the origin which seeds the growth of m = 1 disturbances in the disk or torus. 
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Figure 2.4 A time series mosaic of SPH particle positions for a disk of mass MD/ M* = 1.0 and 
Qmin = 1.5 (simulation scv6). Note the strong variation of spiral structure over time. Length units 
are defined as 1=10 AU and time in units of the disk orbit period TD. The large , solid dot is the 
angular position of the star projected out to a distance of 55 AU, just outside the outer disk edge. 
The final image in this mosaic shows the beginning stages of clump formation as a clump begins 
to form in the disk at about an azimuth angle of 5 o'clock and radius of r = 20 AU. A second 
clump which initially formed in the other spiral arm is present but difficult to distinguish in the 
image at 3 o'clock and r,....., 7 AU. 



Figure 2.5 Time series of density vjiriation in the disk for a PPM simulation (simulation pchG\. 
with the same initial conditions as figure 2.4. Only positive density variations are plotted and 
the maximum contour is derived only from deviations at radii larger than ~7 AU. Contours are 
linearly spaced eind set to a minimum of .01% variation per contour line. Larger vsiriations are 
implemented as the instability grows. The contour spacing is denoted in the upper right comer of 
eeich frzmie. 
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Figure 2.6 Evolution of a disk with MD/ M* = 0.2 and with initial Qmin = 1.5 (simulation scv2). 
Note the production of long filamentary spiral arms and the production of multiple clumps at later 
times . 
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Figure 2.7 The same initicil conditions as figure 2.6 with the PPM code (simulation pchS). A 
much longer evolution than figure 2.6 is possible here due to the low initisd noise of PPM. 
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Figure 2.8 Late time snapshots of a series of disk simulations using our SPH code. Each disk has 
the same disk mass of MD/ M* = 0.8 but varying Qmin (simulations sqh1, -3, -4, -5, and -6, as well 
as scv5 are shown). 
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Figure 2.9 The distance between the steir and the disk center of mass is shown as a function 
of time in the top panel here, while the mass ficcreted by the star is shown in the second. The 
simulation these data are tziken from is sqh6, which begins with MDIM, = 0.8 emd an initial 
minimum Q value of 2.3. With the units assumed for our systems, the mass accretion rate is near 
8 X lO~®M0/yr at its maximum. When accretion begins to drain the inner disk matter zind the 
rate falls sufficiently (in this simulation, to ~ 3 x 10~®Mo/yr), the star falls to the center of the 
system and returns much of its temporary increase in angular momentum to the disk. 
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Figure 2.10 Late time snapshots of a series of disk simulations using our PPM code. Each disk 
heis the same disk mass of Mo/A/. = 0.8 but varying Q^in(simulations pqml-5 as well as pcm5 
are shown). 
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Figure 2.11 Initial conditions for torus simulations. Each freune contains the same vjiriable as in 
the corresponding frsmries in figures 2.1 and 2.2. 



99 

ConiourSpaonQ: 
M I I M I M I I M I I M 1 M IJ 

(d)' : 

Figure 2.12 Late time snapshots of a torus with identical initizil conditions using (a-c) SPH with 
~7000, 14000, and 28000 particles respectively, (d-f) PPM with 10""^ amplitude random initial 
noise at three grid resolutions: 40x150, 60x225 and 80x300 zuid (g) PPM simulation with low 
initial noise (10~®) at 40 x 150 grid resolution. For comparison purposes, the SPH nms are mapped 
onto a grid identical to that used for the corresponding PPM runs. 



100 

2 

0 

•2 

-4 (L5 0 

Time (Tj,) 
2 

0 

•2 

n 
< 

O 00 

-6 

•8 
0 2 

Time (To) 

Figure 2.13 Amplitudes and linear best fits for the m = 3 pattern at the center of the torus {R =30 
AU) for different resolution SPH and PPM simulations. The top panel shows SPH simulations. 
The lowest resolution (~ 7000 particles) is denoted with a solid curve while double resolution 
(~ 14000 particles) is denoted with a short dashed curve and the highest resolution (~ 28000 
particles) is shown with a long dashed curve. Each of the fits cire shown as solid lines. Bottom 
panel: PPM simulations with the two lowest resolution runs denoted by a solid and dotted line 
for the 10"^ and 10~® amplitude initial noise runs respectively. The short dashed curve represents 
the middle resolution and the long dashed line represents the highest resolution run. Solid lines 
denote the best fit curves for each of the runs and displayed only for the times for which the fit 
was derived. Each of the SPH nms emd the PPM runs with 10"^ noise are artificially multiplied 
by a factor of 1, 10 or 100 in order to distinguish between the different runs on the plots. 
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Figure 2.14 Growth rates cind pattern speeds for the m = 1 — 4 patterns derived from PPM 
simulations. The increase in the pattern speed at the inner torus edge probably represents 
a boundary influence £ind we do not consider it to be significant. Each curve uses the same 
representation as in figure 2.13 to denote low, moderate and high resolution runs. 
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Figure 2.15 Growth rates and pattern speeds for the m = 1 — 4 patterns derived from the SPH 
simulations. Each curve uses the same representation as in figure 2.13 to denote low moderate and 
high resolution runs. 
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Figure 2.16 Late time snap shots of the same simulations as figure 2.12 above. Here we plot 
density rather than density variation to accentuate collapse behavior. Contours units are gm/cm-
and are linearly spaced from 0 gm/cm- (not shown) upward with spacing between contours as 
noted at the upper right of each frame. Because the collapse behavior occurs at a somewhat 
different time for e£u:h of the runs, the plots are not shown at the szime time as any other plot. 
Rather, we show the morphology shortly after collapse begins in each simulation, at whatever time 
during the simulation that occurred. Each of the SPH runs are mapped onto a grid identical to 
that used by the corresponding PPM simulation. The dashed curves denoting the inner suid outer 
grid radii therefore have no meaning for these rtms. 



104 

R=32 AU (xio; 

- 2  

at < o 
Qfl 
o -4 

- 6  

- 8  
0 3 1 2 

Time (Tq) 

R=32 AU (xlO) 

Global 
- 2  

- 6  

- 8  
0 3 1 2 

Time (T^) 

Figiire 2.17 The amplitudes and fits for the m = 2 (top frame) and m = 3 (bottom frame) 
patterns derived from the simulation shown in figure 2.5. The eimplitude (x 10) near the middle 
of the power law portion of the disk as well as the globedly integrated amplitudes for each pattern 
are shown. 
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Figure 2.18 The growth rates and pattern speeds for the m = 1-4 spir£il arm patterns. The 
simulation from which these are derived is the same as is shown in figure 2.5. The solid lines 
represent the moderate resolution simulation pch6 while the dotted lines represent results from the 
lower resolution simulation pcm6. 
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Figure 2.19 The growth rates and pattern speeds for the m = 1-4 spiral arm patterns. The 
simulation from which these are derived Ls the same as is shown in figure 2.7. The solid lines 
represent the moderate resolution simulation pch2 while the dotted lines represent results from the 
lower resolution simulation pcm2. 
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Figure 2.20 Amplitude of the m = 1 and m = 2 spired patterns at various locations in the 
disk simulation pqm5. The outer portion of this disk is initicilly quiescent. The amplitude of the 
m = I pattern does begin growing immediately, however near To ~ 1 it experiences a 'hump' in 
its amplitude as instability propagates towards larger radii. The region near the density maximum 
(/2 ^^12 AU) experiences little initial growth in m > 1 patterns, but once instabilities enter that 
region (cf. the lower right panel of figure 2.10) they quickly grow to dominate the instability 
amplitude over the entire system. 
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Mass Ratio Mq/M, 

Figure 2.21 Growth rates for the m = 2 pattern for PPM simulations using a reflecting outer 
boundary condition at moderate resolution (solid squares) and at higher resolution (x). A second 
series of simulations with an infall boundary condition are shown with solid triangles suid at higher 
resolution with open triangles. 



Time (Tq) 

Figure 2.22 Pattern speeds for the m = 2 pattern as a function of time for the disk shown in 
figure 2.5. The pattern speed is for the pattern at a rjidius R «32 AU from the star, which is near 
the middle of the region where the density is a power law in form. 
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Figure 2.23 Msudmum over-density in SPH disks of low (a) and high (b) disk/star mass ratio 
plotted vs. time (simulations scv2 sind scv6). Each disk begins with an initial Qmin = 1-5. Upon 
clumping the over-density assumes Vcilues 2-3 orders of magnitude larger than are plotted here and 
are omitted from these graphs, (c) and (d) show the minimum Q value for the same disks as shown 
in (a) and (b) with both minimum cizimuth average values (dotted line) and local minimum (solid 
line) values shown. 
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Figure 2.24 Formation radius (in units of 10 AU) for each clump vs. disk mass. Each disk 
in the series scvO-scvd begins with an initial minimum Q of 1.5. Clumps form predominantly in 
the inner half of the disk, with only the MQ /M. = 0.2 disk showing clump formation over the 
entire range in radius. In the simulations in which more than ~10 clumps formed an exact number 
becomes difficult to determine. Collisions between clumps juid fission of a single clump into two 
(due to accretion of a large amount of angular momentum over a short time) make long term 
identification of any clump which has undergone a collision or fission event ambiguous and we do 
not include them here. Filled triangles represent simulations evolved under an Euleriein isothermal 
assumption (see section 2.2.3) while the crosses (offset from their disk meisses slightly to avoid 
confusion) represent disks with the Lagrangian isothermal assimtiption. 
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CHAPTER 3 

INTERLUDE ONE 

The simulations described in chapter 2 impose a radius dependent temperature 

profile on the disk which does not vaxy in time. Other simulations (Boss 1997, 

Pickett et al. 1998) have implemented a similar prescription for both locally 

isothermal (7 = 1) and locally adiabatic (7 > 1) equations of state. In severai 

instances the simulations done here or in their work have resulted in the collapse of 

part of the disk into one or more clumps, which some have interpreted as forming 

planetary or stellax companions in the limit of rather strong cooling. 

Interpreting the formation of a clump as similar to the formation of a reai 

physical object is premature. The dynamical character of a given simulation caji 

be called into question based on the same grounds. The reason for such strong 

statements as these are that maJcing the assumption that the temperature structure 

of the disk is predefined is quite restrictive. It implies that heating and cooling are 

instantaneous, but act only when the disk varies from its predefined steady state. 

Any packet of matter moving radially inwaxd or outward heats or cools according 

to the predefined temperature law, even if no other processes act upon it. 

In the following chapter, which is being prepared for publication with W. 
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Benz and T. Ruzmaikina, we have relaxed this temperature law assimiption by 

implementing simple heating ajid cooling prescriptions. At each time zind at each 

location in the disk, we assume that the disk is locally plajie parallel and that 

the gas is locally adiabatic in its z coordinate. We then calculate the vertical 

density and temperature structure of the disk and (using opacity tables in the 

literature) determine the temperature, Tefji at the disk 'photosphere' and cool 

each packet of matter cis a blackbody of that temperature. Heating is provided by 

PdV work, viscous dissipation and shocks which are modeled through the artificial 

viscosity terms incorporated into the numerical solution of the hydrodynamics. 

This prescription does not require that any gain or loss in internal energy be 

immediately restored to the system. Packets of matter are free to radiate their 

internal energy immediately, travel from one place to another through the disk 

then radiate, or gain additional energy by further interaction with the disk. 

We present a series of 2-dimensional hydrodynamic simulations of marginally 

self gravitating (MD/Af.=0.2) disks around protostajs using a Smoothed Particle 

Hydrodynamic (SPH) code. We implement simple and approximate prescriptions 

for heating via dynamical processes in the disk. Cooling is implemented with a 

similarly simple radiative cooling prescription which does not assume that locai 

heat dissipation exactly balances local heat generation, however. We find that 

these simulations produce less distinct spiral structiure than isothermally evolved 

systems, especially in approximately the inner radial third of the disk. These 

simulations also do not generally produce collapsed objects. 

We synthesize spectral energy distributions (SED's) for our simulations and 

compare them to fiducial SED's derived from observed systems. The distribution 

of grains within the disk and their size distribution can have drastic consequences 
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on the observed SED of a given disk. When grziins are vaporized in the midplane 

of a hot region of the disk, we show that they do not reform quickly into a size 

distribution similar to that from which most opacity calculations cire based. The 

consequences on the synthesized SED are dramatic. With rapid grain reformation 

into the original size distribution, the synthesized spectrum of the disk does not 

contain nearly enough near infrared and opticai energy to reproduce observations. 

With a plausible modification of the opacity, it is possible to reproduce observed 

SED's at these wavelengths. 

Known internal heating processes {PdV work and shocks) are not responsible 

for generating a large fraction of the thermal energy in the outer part of the 

disk, though they produce large fraction of the thermal energy at smaller radii. 

Therefore, gravitational torques, which are responsible for such shocks, cannot 

transport mass and angular momentum eflBciently through the outer disk. Without 

external heating processes (eg. radiation from a surrounding cloud or from the 

star) or unspecified internal heating source (e.g. turbulence), the temperatures in 

the outer part of the disk are very low (only a few degrees Kelvin), resulting in 

a radial temperature power law fit with axi index of <7 ~ 1.5 in the disk midplane 

and an SED with only a small luminosity at long wavelengths (> 30 — 50/im). 

The temperature law derived for the disk photosphere is much shallower {q ~ 1.0) 

due to the fact that the disk is optically thick over the inner half of the disk. At 

distances ;^10 AU of the central stax, the disk matter becomes heated to such an 

extent that it expands 'upward' in the z-coordinate, shading the outer part of the 

disk. 
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CHAPTER 4 

HEATING AND COOLING IN CIRCUMSTELLAR DISKS: 

DYNAMICS OF CIRCUMSTELLAR DISKS II 

In the eaxly stages of the formation of a star (see the review paper of Shu, Adajns 

Sz Lizano 1987), a cloud of gas and dust collapses and forms a protostar with a 

disk surrounding it. Later on, while the accretion from the cloud continues, the 

star/disk system also begins to eject matter into outflows whose strength varies 

in time. Finally, accretion and outflow cease and over the ne.xt million or so years 

the star loses its disk and evolves onto the main sequence. A major refinement 

of this paradigm over the past decade has been to account for the formation 

of multiple objects from a single collapse. While this picture provides a good 

qualitative picture of the star formation process, many important issues remain 

poorly understood. 

Once a well developed star/disk system evolves, whether as a single star or 

a multiple star system, the dynamics of the disk itself as well as its interaction 

with the star or a possible binary companion become important in determining the 

system's final configuration. Depending on the mass and temperature of a disk, 

one may expect spiral density waves and viscous eflFects to develop and play roles 
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of varying importance. Each may be capable of processing matter through the disk 

as well as influencing how the disk eventually decays away cis the star evolves onto 

the main sequence. 

Until recently the primeiry observationaJ evidence for circumstellax accretion 

disks has been the existence of sources with strong infrared excesses which extend 

from the near infrared to submillimeter and millimeter wavelengths. A number of 

papers (Adams, Lada &: Shu 1987, 1988, Adams, Emerson Sc Fuller 1990, Beckwith 

et al. 1990—hereafter BSCG, Osterloh &: Beckwith 1995) have successfully modeled 

these excesses eissuming a geometrically thin accretion disk with or without 

add.itionai circumstellax material. Other recent observations (Roddier et al. 1996, 

Close et al. 1997) have used adaptive optics to image the disks of several young 

star systems. Other disk systems (so called 'proplyds') have been observed in 

the Orion molecular cloud (O'Dell & Wen 1994, McCaughrean O'Dell 1996) in 

silhouette against the bright cloud background or through interactions with winds 

from nearby massive stars. 

With these direct and indirect observations it has become clear that disk 

systems are quite common around young stars. Many efforts to model the 

dynamical processes involved in their formation (Laughlin Sz Rozyczka 1996, 

Bonnell & Bate 1997) and evolution (Nelson et al. 1998, hereafter Paper I, Boss 

1997, Artymowicz ic Lubow 1996, Pickett, Durisen &: Link 1997) have so far 

resulted only in a summary of what is possible rather thein strong limits on what 

types of evolution are impossible. Many gaps remain in the understanding of the 

physical processes important in different regimes and even in the configurations of 

systems at various points in their history. 

Other efforts have been applied to modeling the spectral energy distributions 
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(SED's) of young stellax systems. The SED's of passive disks (i.e. those disks which 

only reprocess radiation from the central star) have been successfully modeled in 

recent work by Chiang & Goldreich (1997). Axisyrametric models of a disk and a 

mixing length approximation for the vertical structure (Bell Lin 1994, Bell et al. 

1995, Bell et al. 1997) have been used to model the most dynamic properties of 

disks seen in FU Orionis stars. Time dependent radiative transport caiculations 

(Simonelli, Pollack &: McKay 1997, Chick, Pollack &: Cassen 1996) have also been 

incorporated into calculations of the structure of infalling gas and dust. They 

model the destruction of grains in material falling onto the stax/disk system from 

the surrounding circumstellar cloud and find that under many conditions grains 

can be partially or totally destroyed prior to their accretion into the star/disk 

system: heating mechanisms in the cloud and infalling envelope are of comparable 

effectiveness in heating the grains as in the accretion shock itself. 

Paper I showed that in the limit of a disk modeled with a locally isothermal 

equation of state, spiral arm formation and later collapse into clumps totaling at 

least a few percent of the disk mass was prevalent in all disks whose minimum initial 

Toomre stability was Qmin^ 1-5 — 1.7. Boss (1997) has concluded that a locally 

adiabatic equation of state will also produce spiral arm collapse as instabilities 

grow. Each of these works are limited in the sense that a predefined temperature 

law is assumed: the gas is locally isothermal or locally adiabatic, but is not globally 

isothermal or globally adiabatic. In this approximation, any radial motion of gcis 

within the disk causes the parcel of gas to heat or cool, even if no other processes 

occur to change its state. Compression and shock events are likewise artificially 

managed. Heating and cooling are instantaneous, but only act when the state of 

the gas deviates from a predefined 'steady state' value. 
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We present a series of numerical simulations using Smoothed Particle 

Hydrodyntimics (SPH) modeled under the assumption that the disk is able to heat 

or cool depending only on local conditions within the disk. Our goai for this work is 

to understand the d5niamicaJ growth characteristics of instabilities in systems with 

heating and cooling incorporated into the models and to understajid which heating 

and cooling mechanisms are likely to be responsible for which features in the 

spectral energy distributions of observed systems. In section 4.1, we summarize the 

initial conditions adopted for the disks studied. In section 4.2, we outline heating 

and cooling mechanisms included in our study and the numerical method used to 

determine their magnitude at each point and time in the disk. In section 4.3, we 

describe the results obtained from our simulations and in sections 4.4 and 4.5, we 

compare our results to work in the literature and summarize their significance in 

the context of the evolution of stars and star systems. 

4.1. Physical Assumptions 

4.1.1. Initial Conditions 

The initial conditions used in this work are quite similar to those used in Paper I. 

We refer the reader to that work for a more complete discussion only summarize 

them here. At time zero we set equal mass particles on a series of concentric rings 

extending from the innermost ring at a radius of 0.5 AU to either 50 or 100 AU 

depending upon the simulation (see table 4.1 below). With the number of particles 

used, smoothing lengths axe less than a few tenths of one AU in the inner portion 

of the disk and up to ~1 AU in the outer disk. The star is modeled as a point 

mass free to move in response to gravitational forces from the surrounding disk. 

The gravitational force due to the star is softened with a softening radius of 0.4 AU 
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and particles whose trajectories peiss through this radius axe absorbed by the star. 

Magnetic fields are neglected in our simulations. 

The disk mziss is initially distributed according to a power law: 

= + (4.1) 

while the temperature is given according to a similar law: 

T(r) = r„[l + (^)^] (4.2) 

where the exponents p and q are 3/2 ajid 1/2, respectively, and So and To are 

determined from the disk mass and a choice of the minimum value of Toomre's 

stability parameter Q over the disk. Q is defined as: 

where K is the local epicyclic frequency and c, is the sound speed. The core radius 

Tc for the power laws is set to rc=lAU. 

Matter is set up on initially circular orbits assuming rotational equilibrium in 

the disk. Radial velocities are set to zero. Gravitational and pressure forces are 

balanced by centrifugal forces by setting 

= (4.4, 

where is the gravitational potential of the disk and the other symbols have 

their usual meanings. The magnitudes of the pressure and self gravitational forces 

are small compared to the stellar term, therefore the disk is neaxly Keplerian in 

character. 



120 

4.1.2. The Equation of State 

The hydrodynamic equations are solved assuming a vertically integrated gas 

pressure and a single component, ideal g«is equation of state given by; 

P = (7 -  l)Su (4.5) 

where 7 is the ratio of specific heats, P is the vertically integrated pressure and u 

is the specific internal energy of the gas. Since we limit the motion of our particles 

to two dimensions, the effective value of 7 is different from that derived from a true 

three dimensional calculation (see e.g. the discussion of the equations of motion 

derived for a vertically integrated torus in Goldreich, Goodman & Narayan 1986). 

For the systems we study, we have taken a simpler approach by assuming that only 

two translational degrees of freedom exist for each molecule. Helium is included 

as a monatomic ideal gas and metals are neglected. Coupled with the assumption 

that the geis is of solar composition, this means the effective value of 7 is no longer 

the well known 7 = 5/3, but rather 

7 w 1.53. (4.6) 

This value includes the contribution of hydrogen with its rotational degrees of 

freedom active but its vibrational degrees of freedom inactive. This value will 

be most representative of moderate temperature regions of the disk. In three 

dimensions, 7 « 1.42. 

4.2. Thermal Energy Generation and Dissipation 

In this work we relax the common practice (see e.g. Paper I, Pickett et al. 

1998, Boss 1997) of predefining the temperature or adiabatic constajit, /v, at 

each location in the disk. Instead, we allow thermal energy to be generated by 
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internai processes eind we allow the disk to cool radiatively at a temperature solely 

dependent upon local conditions at a given time. Thermal energy may be generated 

in one location in the disk but be dissipated somewhere else if matter moves there, 

or the disk may heat up or cool down over time in a single location. The disk may 

therefore equilibrate to the internal energy state that the physical evolution of the 

system requires. 

In our simulations, we only require that the disk be in instantaneous vertical 

thermal balance in order to determine the vertical structure. We do not require 

it to be in long term vertical thermal balance. With the latter assumption, the 

radiative cooling rate at each point is defined to be equal to the local heating 

rate from internal processes (see e.g. Frank, King &c Raine 1992 section 5.4). In 

some cases, the assumption also includes energy flux radiating onto the disk from 

outside, so that the radiative cooling rate includes terms due to both internally 

generated energy and passive reprocessing. Accurate quantification of the relative 

contributions of each of these terms is critical because by working backwards from 

observed spectral characteristics of the disk an observer can derive an evolutionary 

picture of the mass and angular momentum transfer through the system. For 

example, if radiation emitted by a disk comes entirely from passive reradiation, then 

no mass or ajigulax momentum transport can occur, since such transport is due to 

internal dissipation of kinetic energy in the disk. Therefore, if the contributions 

due to one or more sources of the emitted radiation axe incorrectly determined, an 

evolutionary picture derived from them will be flawed. In the following discussion 

we outline the physical basis for the heating and cooling processes incorporated 

into our simulations. 
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4.2.1. Thermal Energy Generation 

Thermal energy in the disk is generated in our simulations from bulk mechanical 

energy via viscous processes and shocks. In order to concentrate on the physics 

internal to the disk itself, no contributions to the heating from (for example) either 

the surrounding molecular cloud or from the central star axe included. 

We model the energy generation using an artificial viscosity common in 

many implementations of hydrodynamic codes. Because the balance between 

thermal energy generation and dissipation are importsmt for both the observed 

character of the systems as well as their morphology and dynamics, we outline our 

implementation here. We refer the reader to one of the many discussions already 

in the literature (e.g. Benz 1990, Monaghan 1992) for a complete treatment. 

Most hydrodynamic methods require implementation of an artificial viscosity 

to enforce stability and/or improve the treatment of shocks by the code. In our 

simulations we implement viscous pressures which axe linear and quadratic in the 

velocity divergence (the so called 'bulk' or 'a' ^ and the 'von Neumann-Richtmyer' 

or '/?' viscosities) to simulate an energy dissipation due to the presence of a viscous 

pressure of a sum of particle's j on particle i as 

where Vi and vj axe the velocities of each paxticle, m,- is the mass of the ith particle 

and Wij is the value of the SPH kernel calculated between the two particles. The 

factor 1/2 in eq. 4.7 accounts for half of the kinetic energy dissipation being added 

^Note that we have used the symbol a to denote the bulk component of artificial viscosity in 
order to  dist inguish i t  from the Shakura and Sunyaev (1973)  turbulent  v iscos i ty  parameter ,  ass-

dui 1 
(4.7) 

J 
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to each particle. The viscous pressure, IIij, is given by 

{ 

-ac · · JJ. · ·+ {3 " 2 
t) t-"t) f""tj 

II . . - ~ij 
~J -

0 

if (v· - v·) · (r· - r·) < O· 
1 J 1 J - ' (4.8) 

otherwise, 

where ri and rj are the positions of each particle, Cij is the sound speed and ~ij is 

the mean surface density. The velocity divergence f-lij is defined by 

(4 .9) 

where E is a small value to prevent numerically infinite divergence as particles come 

very close and h is the particle's smoothing length. 

The fi and fj terms are due to Balsara (1995) and are defined by 

I(V ·vi) l 
f i = -l(\7-. v-i)_I_+_I(_V_x_v_i)-1 +-0.-00-01-c~--/-hi (4.10) 

Equations 4. 7-4.9 are little more than a restatement of the standard form of 

artificial viscosity for SPH as discussed in Benz (1990). As improvements to the 

standard formulation, we also incorporate two adaptations which act to minimize 

the unphysically large shear viscosity present in the standard formulation when 

used in disk simulations (which arises because the divergence is calculated pairwise 

between particles rather than as an average over some region in order to more 

closely model the physical effects of shocks with the code. 

First, we modify the velocity divergence from it's usual form by t he inclusion 

of the factors fi and fj in eq. 4.9. This factor acts to reduce substantially t he 

large, undesirable shear viscosity which develops in numerical simulations of disks. 

It is near unity when the flow is strongly compressive, but near zero in shear flows 

such as are found in disk simulations. For the simulations we have performed we 

find that typically the reduction due to this term is a factor of three or better. 



124 

The second improvement is due to Morris and Monaghan (1997). They implement 

a time dependence to the coefl&cient d which allows it to decay within a few 

smoothing lengths behind a shock to an equilibrium vcdue much smaller than 

the normally utilized Q = 1, and grow to larger values in regions where strong 

compression exists and dissipation is physically appropriate. In our formulation, 

which includes both the a and (3 terms, we define the ratio alfS = 0.5, but allow 

their magnitudes to vary in time and space according to the Morris A: Monaghan 

formulation. Thus, except in strongly compressing regions (shocks) where it is 

required to stabilize the flow, axtificizd viscosity is minimized. 

The origin of the two artificial viscosity terms comes first from the fact 

that dissipation must be introduced to the system in order to reproduce the 

hydrodynamic quantities in shocked regions. The /3 term provides a functional 

dependence of the viscous coefficient (usually denoted u) itself on the velocity 

divergence present in the flow. In this way, the magnitude of the dissipation 

becomes dependent upon a low order approximation of the discontinuity present in 

a shock. Without additional correction unphysical oscillations caji still develop in 

the flow, due to the finite differencing in the numerical solution of the hydrodynaxnic 

equations. The a term is introduced to damp out such phenomena, however in 

many cases also provides a quite large component of unwanted and unphysical 

shear viscosity in other regions of the flow. With this in mind we note that, while 

the von Neumann-Richtmyer term may have some approximate physical basis, its 

counterpart bulk term can only be considered a necessary nuisance. 

Although we must ultimately regard it as a nuisajice, since it does not directly 

model any physical process, with caution we can turn the artificial viscosity into 

a useful nuisance. We have already identified the von Neumaim-Richtmyer term 
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as a low order representative of shock dissipation, and we can make a similar 

identification of the bulk viscosity as a 'black box' source of dissipation in the 

system in the same manner as is done for the ad hoc 'ass' model of Shakura &: 

Sunyaev. As we noted in Paper I, there exists a correspondence (Murray 1995, 

1996) between the standard otss form of dissipation and the bulk artificial viscosity 

implemented in our simulations. In two dimensional simulations the correspondence 

can be expressed for particle j as 

4^ = (4.11) 

where f j  is the BaJsaxa shear reduction coefficient, ot j  is the bulk viscosity 

coefficient, is the orbit frequency and cj is the sound speed of the particle. 

Defined in this way, ass is a time and space dependent quantity, in contrast to 

the usuai form in which QSS is constant everywhere or (in a few cases), varies 

between an 'on' and 'off' state. This conversion neglects the contribution due to the 

von Neumann-Richtmyer term and so represents only an incomplete approximation 

of the magnitude of the dissipation present. It also neglects the time dependence 

of the viscous coefficients noted above. In the context of attempting to identify 

the source of the dissipation, this means that if a region experiences repeated 

compression events or shocks on short time scales, the dissipation would be 

accounted for as turbulent process rather than as a shock process. Nevertheless, 

it proves useful as an illustration of where and to what extent thermal energy 

generation processes are active. 

4.2.2. Thermal Energy Dissipation and the Vertical Structure of 

Accretion Disks 

The cooling experienced by a given particle is determined first by caJculating the 

approximate vertical density and temperature (p, T) structure of the disk. Then, 
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using these qucintities we determine the altitude of the disk photosphere zind cool 

the paxticie <is a blackbody using the calculated photosphere temperature. 

In order to calculate p { z )  and T { z )  without a full three dimensional 

hydrodynamic calculation we make two cissumptions about the disk structure. We 

assume that at each location the disk has some degree of turbulence or convection 

so that it becomes very nearly adiabatic in the z direction (i.e. that p = Kp'' with 

K and 7 constant). We also assume that it is locally plane parallel. In this limit, 

Fukue & Saicamoto (1992) have shown that p{z) and T{z) at a known distance from 

the star are determined by the solution of the second order, ordinary difFerentiai 

equation 

A known midplane density, pmidi the distance from the stax, r, the adiabatic 

constant, AT, and the ratio of specific heats, 7, define the conditions which 

completely specify the solution in the absence of external heating of the disk 

surface. 

In our two dimensional simulations, each SPH particle is uniquely defined at 

some time by a particular value of internal energy, surface density and distance 

from the star. These three quantities correspond to the three conditions Pmid-, ^ 

and r which specify the structure in s. The distance from the star is, of course, the 

same for both the SPH and Fukue & Sakamoto specifications. Derivation of the 

quantities pj^id and K from the surface density and internal energy must be done 

by iteration to convergence. 

We supply an initial guess for pmid aJid K and solve the differential equation 

numerically for p{z). The z coordinate is discretized with 500 zones and the 

differential equation is solved numerically to second order accuracy. Once a 

(4.12) 



tentative solution is reached, we integrate the density p over r using the trapezoid 

rule to derive the surface density of matter defined by the solution. Specific internal 

energy is obtained by a similar integration over the vertical extent of the disk. 

The guesses of pmid and K are then revised using the downhill simplex method 

to converge to a self consistent solution. Plots of the density and temperature 

structure as a function of the altitude, are shown for several conditions typical 

of the disks in our simulations tire shown in fig. 4.1. 

Implicit in this calculation is the eissumption that the gas is adiabatic, i.e. that 

the gas pressure and density are related by p = Kp'' and that the heat capacity 

of the gas, Cv, (and by extension, the ratio of specific heats, 7) is a constant. In 

fact, this will not be the case in general because, in various temperature regimes, 

molecular hydrogen will have active rotational or vibrational modes, it may 

dissociate into atomic form or it may become ionized. As a matter of expediency 

and in order to retain our prescription for the structure calculation, we have 

assumed that the rotational states of hydrogen are active, but that the vibrational 

states are not. Under this assumption and including the contribution due to 

helium, the effective value for the three dimensional adiabatic exponent of the gas 

is 7 Rs 1.42. 

From the now known (/?, T) structure we derive the temperature of the disk 

photosphere by a numerical integration of the optical depth, r, from r = 00 to the 

altitude at which the optical depth becomes r = 2/3 

In optically thin regions, for which r < 2/3 at the midplane, we assume the 

photosphere temperature is that of the midplane. The photosphere temperature is 

then tabulated as a function of the three input variables radius, surface density and 

(4.13) 
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specific internal energy. At each time we determine the photosphere temperature 

for each particle from this table and cool the particle cis a blackbody at that 

temperature. The cooling of any particular particle proceeds as 

where is the Stefan-Boltzmann constant, u,- and S, are the specific internal 

energy and surface density of particle i and Te/j is it's photospheric temperature. 

The factor of two accounts for the two surfaces of the disk. On every particle, we 

enforce the condition that the temperature (both midplane and photosphere) never 

falls below the 3 K cosmic background temperature. 

We use Rosseland mean opacities from tables of Pollack, McKay &c 

ChristofFerson (1985 hereafter PMC). Opacities for packets of matter above the 

grain destruction temperature axe taJcen from Alexander &c Ferguson (1994). We 

have chosen not to use the updated opacity models of Pollack et al. (1994) in this 

work. In part this is due to the fact that opacity tables including both p and T 

variation ba^ed on this work do not exist (D. Hollenbach, personal communication). 

As the authors note however, the opacity is only a weak function of density 

(entering primarily through the change in vaporization temperatures of various 

volatiles at different densities) and they do produce a figure comparing the new 

opacity with that of the old for a single vaiue of the density. As we shall note in 

the sections ahead, it is exactly this vaporization of grains which we find to be an 

important factor in determining the character of the SED. The functional form 

derived by Henning ic Stognienko (1996) to reproduce the Pollack tt al. opacity 

suffers from the same shortcoming. Hence we have chosen to implement the old 

version of the opacities until such time as new tabulated values become available. 

In any case, the opacities derived from the new and old works (see their fig. 6) are 
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similax except in the temperature region between 200 ajid 450 K, where the PoUack 

et al. (1994) derivation exceeds the PMC value by a factor of about three. The 

effect on our calculations would be to slightly reduce the photosphere temperature 

in regions where the differences between the two versions becomes importajit. 

4.2.3. Synthesizing Observations 

In order to connect the physical properties of our simulations of accretion disks to 

observable quantities in reaJ systems we synthesize spectral energy distribution's 

(SED's) from our simulations. We calculate the SED using the derived black-body 

temperature of each SPH particle at a particular time. We assume that the disk 

is viewed pole on and then determine the luminosity of each particle at each 

frequency as 
771 ' 

Li = (4.15) 
-'1 

and of the disk by summing the contributions of all of the particles. In eq. 4.15, rrij 

is the mass of particle 7, Sj is it's surface density and Bu is the Planck function. 

The area factor is given as mj/T,j in order to avoid ambiguity in the surface area 

(i.e. the smoothing length and it's overlap with other particles) defined for each 

particle. 

Although we neglect the luminosity of the star as a source of energy input 

during the calculation, we include it in the post processed SED calculation. We 

assume the star contributes to the SED as a 1 Z/© blackbody with temperature 

Teff =4000 K, both vaJues are typical of observed T Tauri stars (see e.g. Osterloh 

Beckwith 1995, BSCG, Adams et al. 1990). The star's contribution is included 

primarily to make the visual comparison of our synthetic SED's to observed 

systems simpler and to provide a constant physically meaningful calibration to the 

disk emission on the plot. We also neglect the accretion luminosity of particles 



130 

which are removed from the simulation due to their radial migration inward beyond 

the defined accretion boundary. We expect these two sources of luminosity to 

contribute primarily to the optical and UV spectrum, while the disk will contribute 

primarily at longer wavelengths. Therefore, for our purposes, the disk luminosity 

will be well separated in frequency from the stellar and accretion luminosities. 

4.2.4. Units: The PhysiczJ Scale of the System 

The introduction of a cooling mechanism requires an introduction of a physical 

scale to the simulations. We shall assume quantities with values typical of the early 

stages of protostellax evolution. The star mass will be assumed M. = Q.oMq, ajid 

the disk radius of either RQ = 50 AU or RQ = 100 AU as noted in table 4.1. Time 

units are given in either years or the disk orbit period defined by 7Q=—7=^^== 

which, with the stellar mass and disk radii given above is equal to about 500 or 

1400 years for disk radii of RQ = 50 or 100 AU respectively. 

4.3. The Simulations 

Paper 1 showed that the character of disk evolution undergoes a marked change 

between disk masses of MQ/M. = 0.2 and MQ/M. = 0.4. In this paper, we will 

concentrate on studies of a disk at the lower edge of this mass boundary. In the 

following discussion, we present a Ccise in which we simulate the evolution of a disk 

with a mass ratio of MD/M. = 0.2 and with an assumed initial minimum Toomre 

stability of Qmin = 1-5 under varying physical assumptions. Initial parameters of 

our simulations axe tabulated in table 4.1. The first column of the table represents 

the najne of the simulation for identification. The second column defines the 

resolution (in number of particles). Initial disk/stax mass ratio and minimum Q 

are given in columns 3 and 4, the assumed opacity modification factor (see section 
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4.3.2 below) in column 5 and the total simulation time of each simulation in the 

remaining column. We examine the queilitative nature of the simulations first, then 

examine in detciil the structures which form and their characteristics. 

We have run a series of simulations under three different assumptions about 

the opacity and therefore the cooling mechanisms which dependent upon it. The 

first set of simulations proceed under the assumption that gas and grains exist 

in equilibrium everywhere in the disk and that the grain size distribution is 

well modeled by the distributions used in opacity calculations in the literature 

(e.g. PMC, Alexander &c Ferguson 1994). Vaporized material, upon entering a 

region cool enough for it to form grains, does so instantly and in such a way 

as to reproduce it's original grain size distribution, as defined by PMC. These 

simulations are denoted by a leading 'a' (100 AU disks) or 'A^ (50 AU disks) in the 

simulation name in table 4.1. 

The second set of simulations relaxes the assumption that refractory materials 

reform into their original size distribution quickly. Instead, we assume that they 

reform their original distribution more slowly than the overturn time scale for 

material to be processed through the disk midplane to high altitudes and back 

again so that their size distribution and therefore their opacities may be modified 

from their original form. These simulations axe denoted with a leading 'B' in table 

4.1. 

We have also run models of disks under the same 'isothermal evolution' 

assumption used in Paper I. These simulations are denoted with a leading 'i' or T 

in Table 4.1. In each case, a capital letter refers to a disk with outer edge at 50 

AU while a lower case letter refers to a disk with outer edge at 100 AU. In each 

case 'lo', 'me' and 'hi' refers to a simulation with low, medium or high resolution as 
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defined in column 2, and with the 'B' simulations we the number 1-5 corresponds 

to an assumed opacity modification. 

4.3.1. Morphology and Spectral Energy Distributions 

Using the physical assumptions outlined above and cooling using the 'A' prescription 

we have completed a series of simulations with initial minimum Toomre Q = 1.5. 

Snapshots of the evolution of simulation A2me are shown in figure 4.2 and of its 

derived SED in figure 4.3. As in our previous isothermally evolved simulations 

(Paper I) growth of instabilities begins in the inner regions of a disk, engulfing the 

entire system over the course of about 1 Tb. Initially, spiral structures develop in 

the inner disk, but are later suppressed by the heating which occurs there. 

The spiral structures which develop throughout the whole disk are multi-axmed 

and change their shape and character over orbital time scales. At times they 

become somewhat filamentary, but in no case do they become as filamentary as in 

the isothermally evolved simulations of Paper I. At the end of simulation aBme (at 

7b~ 2.3) a possible collapse of a spiral arm into a clump is present, however at this 

point the cooling prescription is unable to determine the vertical structure of the 

particles near the forming clump. Additional evolution of this simulation becomes 

impossible and we cannot determine whether collapse would continue or dissipate 

once again into the background flow. Over the longer time scales available to these 

simulations a substantial fraction of the matter initially located inside ~5-I0 AU 

accretes onto the star. We will discuss this in more detail in section 4.3.7, below. 

As was shown in Paper I, SPH is imable to follow low amplitude growth of 

structure in disks. As a consequence, neaxly all of the evolution is carried out in 

the regime in which the spiral patterns have quite large amplitudes. Short period 
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vaxiation of up a factor of ~3-5 occurs in the amplitudes. However, the pattern 

growth has clearly saturated to the extent that time averages of the amplitudes 

must be used rather than growth rates to characterize the system. In order to miike 

quantitative comparisons between of the spiral structure of disks evolved under 

different physical assumptions we therefore examine the saturation amplitudes of 

various patterns late in the simulation. We derive the time average of a given 

pattern as shown in figure 4.4 for the one of the largest amplitude patterns (m = 4) 

produced from an isothermaJly evolved simulation and the disk shown in figure 

4.2. The time averaged amplitudes are shown as functions of radius for the same 

simulations in figures 4.5 and 4.6. 

The averages axe taken over the time interval from TD= 0.5 to TD= L.5 for 

each simulation. These limits are used in order to ensure than most of the disk 

has in fact reached it's saturation amplitude (for the beginning limit), but has 

not evolved long enough to form clumps (in the case of the isothermaily evolved 

runs). The time intervals used for both sets of runs are identical in order to ensure 

that the comparison can be as close as possible. For example, for the outer part 

of the disks shown in figure 4.4, it is clear than the cooled simulation reaches it's 

saturation level well after the isothermaily evolved simulation forms clumps and 

cannot be evolved further. In order to make a fair comparison of the amplitudes 

we must restrict the averages to the same time window. 

Approximately the inner third of the cooled disk shows suppressed pattern 

amplitudes relative to the isothermaily evolved simulation. In Paper I we showed 

that this region was the region most likely to form collapsed objects in the 

isothermaJ evolution limit. With our new series of simulations this conclusion must 

be revised. No clumps form in this region in these simulations, as they do in the 
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isothermally evolved runs. The majcimum amplitude of each pattern is shifted to a 

larger radius in the cooled simulation vs. the isothermally evolved simulation. 

The same shift of large amplitude spiral structure to greater distances from 

the star is present in disks with outer radii at 100 AU, as shown in figure 4.7 for 

the cooled simulations a2lo, a2me and a2hi. These simulations show the same 

amplitude structure as in the RQ =50 AU disks above. Attempts to compare 

these results to isothermally evolved simulations were unsuccessful, since such 

simulations tend to develop climips on the sajne physical time scale (750-1000 yr) 

as with the RD = 50 AU isothermal runs. Evolution of the 100 AU simulations 

must be terminated before the outer disk has completed even a single orbit. 

In part the smaJler pattern amplitudes at small radii are a consequence of the 

less efficient cooling in the present simulations. This relative inefficiency leads to 

increased temperatures in the central region of the disk relative to the isothermally 

evolved runs. Higher temperatures imply higher values of the Toomre Q stability 

parameter and therefore smaller amplitude (or absent) spiral waves. This is true 

for the inner disk but only to a much smaJler degree in the outer part of the disk, 

where temperatures change from their initiai values by only a factor of 20-30% 

(see section 4.3.7 below). The higher temperatures and Toomre stability do not 

necessarily imply stability against all perturbations however, since as we shall see 

shock activity is strongest in the inner disk. 

The SED's synthesized from the simulation are shown in figure 4.3. They 

clearly do not reproduce the observed SED's of T-Tauri stars. Instead they produce 

a double pealced spectrum with one peak dominated by the assumed 4000 K stellar 

black body contribution and the other just longward of lO/jim (~3-400 K). Both 

the long wavelength end (> 30/im) and the near infrared (defined for our purposes 
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a s  wavelengths from ~ l/zm to O f u n )  portions of the SED are poorly reproduced: 

insufficient radiation is emitted relative to other wavelength bands. 

The long wavelength turnover in the SED's synthesized from our simulations 

typically occurs near 30/im (10^^ Hz) rather than the ~100-300^m (10^^ Hz) 

typical of observed systems. It is aJso a shcdlower faJl-off towards long wavelengths 

thaxi is the case for the observations. The simulations with an outer disk radius 

of 100 AU also suffer from this same deficiency of radiated energy, so we are 

certain that the effect is not due to modeling a disk of too small a radial extent. 

Examinations of the photosphere temperature of the particles (see section 4.3.7, 

below) show that only a smaJl fraction of the disk radiates at the ~20-100 K 

temperatures required to produce excess in the 30-300 wavelength regime. A 

test simulation identical to A£me, but with initial Qmin=2.5 so that the initial 

disk temperatures everywhere are higher, cools over the course of the first l-SToto 

resemble the conditions in simulation A£me. 

We do not believe the absence of near IR flux in our simulations is an artifact 

of the relatively large (0.4 AU) truncation radius of our disk (recall that particles 

are accreted by the star inside this radius). In paxt this is because the artificial hole 

region will already be partially devoid of disk matter, due to the finite size of the 

boundary region between the inner disk edge 2ind the star. We have verified that 

the hole is not responsible for flux deficit by running a simulation with a reduced 

accretion radius of 0.2 AU and found no significant difference in the derived SED. 

Primarily, this system does not radiate efficiently in the near IR because of 

the effect of the large low temperature opacities and the low temperatures implied 

by our model at high altitudes above the midplane. For any conditions at the 

midplane of the disk, our vertical structure calculation produces a region which is 
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both cold and sufficiently dense to make the column optically thick at high altitude. 

Such a condition will accurately model real systems so long as there is sufficient 

vertical processing of disk matter to retain both a vertically adiabatic structure 

and a well mixed opacity source, i.e. small grains. 

In several regions, our model will breaJc down. At small distances from^ the 

star for example, direct stellar illumination of disk material at all altitudes will 

substantially alter the temperature profile throughout. In this Ccise, the simple 

vertically adiabatic assumption will break down, perhaps leading to a more uniform 

vertical temperature structure, since the entire vertical column receives some 

illumination. This failure mode would lead to higher photosphere temperatures 

than are obtained in our model. Further, such a temperature structure may 

produce a radiative zone so that grains begin to settle to the midplane or high 

altitude corona so that they are destroyed. In each of these cases, the disk would 

be able to radiate in the near IR more efficiently. However, none of these processes 

are as yet well enough understood to constrain the present models. 

4.3.2. An Attempt to Improve the Cooling Prescription 

As is, the cooling prescription in section 4.2.2 fails to reproduce the short 

wavelength spectrum (near IR) of observed circumstellar disks. This wavelength 

regime corresponds to the portion of the disk in which the disk midplane 

temperatures axe warm enough to sublimate grains. Our cooling prescription on 

the other hand, assumes both that the opacity source (grains) is evenly mixed 

with the gaseous disk material and that the grain size distribution everywhere is 

not substantially different from that of the interstellar medium distribution used 

to calculate the Rosseland opacities. Is the failure of our simulations to correctly 

reproduce observed disk SED's due to the failure of these physical assumptions 
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about the grain physics? 

To address the first assumption we note that Weidenschilling (1984) has 

shown that grains smaller than ~0.1-1 cm will be leirgely entrained in the gas in a 

turbulent disk and will therefore not settle to the midplane. Because the smaller 

grains provide the largest contribution to the opacity, we may assiune that for the 

purposes of our model the grains are well mixed. 

The second assumption (the size distribution of grains) proves much more 

difficult to address. Contained within our assumption of a vertically adiabatic 

disk structure is the fact that the adiabatic condition arises out of a convective or 

turbulent medium, which acts to smooth any entropy gradients that develop. In 

such a case, grains entrained in the gas should be processed through the midplane 

fairly frequently and, if the midplane temperature is hot enough, destroyed. As 

refractory materials are brought to higher altitudes where temperatures are lower, 

they will begin to reform into greuns. If they reform quickly (compared to their 

vertical motion) into a similar size distribution to their original distribution, a 

narrow boundary region in which grains reform will delineate a hollowed out region 

within the disk as shown in figure 4.8a. 

On the other hand, if grain reformation is slow compared to speed of vertical 

motion then the region in which the grain size is modified from its original 

distribution becomes much wider (fig. 4.8b). In this case, calculations assuming 

one distribution of grains may not determine the true correct opacity, ajid therefore 

the cooling will also be incorrectly modeled. Using calculations based upon the 

coagulation models of Weidenschilling Ruzmaikina (1994), we demonstrate that 

in fact this scenario is the case. For a more complete description of the code, see 

Spaute et al. (1991); here we shall merely svumnarize the model presented there. 
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The disk is divided into 20 vertical layers and particle aggregates are accounted 

for as a series of 84 bins spaced logarithmically in grain diameter with each bin 2113 

larger than the previous bin. The smallest bin is assumed to contain grains of size 

1 x 10- 2 f-Lm. Grains smaller than 1 x 10-2 1--lm are not accounted for and nucleation 

of grains from the gas phase is likewise neglected. Relative velocities of grains are 

associated with the turbulence, settling of dust aggregates to the central plane, and 

radial drift due to gas drag. The turbulent velocity is set to rv 260 m/ s, equivalent 

to ass rv 10-2 (assuming VT = foSScs)· 

Using the geometric cross section of each grain size, the number density 

of grains of that size and the relative velocities between grains in different size 

bins, we compute the number of collisions between all possible pairs of size bins 

during one time step. The result of these collisions may be coagulation, erosion or 

total destruction depending upon the relative velocities of the particles and their 

assumed strength. Collisions resulting in grain coalescence remove aggregates from 

the smaller bins and change the mean mass of aggregates in the larger bins. If a 

collision leads instead to erosion or disruption, then the fragments are distributed 

into appropriate smaller size bins . Vaporization of grains in hot regions is modeled 

by lowering the grain strength so that any collision causes fragmentation. 

The vertical density and temperature structure remain constant throughout 

the calculations and are computed as outlined by the model in section 4.2.2, 

with a midplane temperature of 1350 K and a local mass surface density of 

:E = 103 gm/ em 2 at 1 AU. In the initial state, all of the grains are in the smallest 

size bin. This initial condition is equivalent to the assumption that at some point 

in the evolution of a particular column of gas all of the dust has been destroyed 

and must now reform. 
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Fig. 4.9 shows snapshots of the greiin size distribution at one AU plotted as 

a fxinction of altitude above the midplane after a short period of evolution. Time 

step constraints within the coagulation model forbid a very long time evolution of 

the size distribution, however such long term longer evolution is of limited value 

because the state of the gas (it's temperature and density) change on these same 

time scales, maJsing a grain distribution derived from a single {p,T) configuration 

irrelevant physically. 

At high altitudes, grains are unable to grow to laxge sizes in the time shown 

because of the low densities (which imply low collision cross sections ais well) 

that are found there. The largest size to which grains grow is ~0.02-0.05/im. At 

moderate altitudes, just above the temperature boundary between grain destruction 

and reformation occurs, larger grains (~ 0.2 — 0.3/im) can form over this same time 

interval. At low altitudes near the midplane, grains are unable to grow and remain 

locked in the smallest size bin available. 

The size distribution of grains is quite unlike that of the interstellar medium 

(ISM), as characterized by Mathis, Rumpl & Nordsieck (1977 hereafter MRN) or 

Kim, Martin h Hendrys (1994-hereafter KMH), whose work shows a distribution 

proportional to a~^®. Instead it is characterized a quantity of grains in the 

smallest size bin, whose origin is in the partial erosion of larger particles, and 

an increasing or near flat spectrum near the upper edge of the size distribution 

with a sharp cutoff. A flat size spectrum such as this is a characteristic feature of 

the collisional coagulation of grains where little destruction takes place. The flat 

spectrum forms because larger grains have longer stopping times, encounter more 

grains and therefore grow faster than their smzJler neighbors. A declining power 

law distribution characterizes destructive processes and is pronounced at lower 
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altitudes. Near the midplane only grains in the smallest size bin exist because the 

assumed vaporization of grains (modeled in our calculation via grain destruction, 

which moves grains from larger bins to smaller) is very efficient there. 

These differences are important because of the common use of grain 

distributions similar to those given in MRN and KMH in many opacity 

calculations. Since the opacity is a function of the size distribution, modifying 

the distribution from some canonical value will result in differences calculated 

opacity and, for our model, a difference in the photosphere temperature and cooling 

experienced by a given column of disk matter. 

For example, PMC have shown (see their fig. 5) that a narrow size distribution 

with an average grain size much less than l^m will produce Rosseland mean 

opacities which are reduced from their nominal values by a factor of ~ 10 at 

temperatures above about 150 K and an additional factor of ten above ~ .500 K 

for very small grains. Frequency dependent opacities calculated for a variety of 

grain sizes by Miyake &: Nakagawa (1993) and by Pollack et al. (1994) would seem 

to contradict this behavior however. They find that for an ensemble of grains 

of a given size, the frequency dependent opacity rises as the assumed grain size 

decreases and stays roughly the same for all grain sizes less than ~l/im. 

In fact the two pictures are not contradictory for two reasons. First, the 

absolute scale of the opacity is dependent upon the temperature due to the 

different grain species (e.g. ice or silicates) which contribute at colder or wanner 

temperatures. Miyake and Nakagawa performed their calculations assuming 

temperatures of 150 K, while Pollack et al. (1994), consider higher temperature 

(750 K) grains and find that the frequency dependent mass opacity is lower 

by a factor varying between ~10 and 100 below that at 100 K in the mid 
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infrared (their fig. 3b). More importantly however, changing the assimied 

temperature modifies the ratio of the grmn size to the wavelength of the dominant 

radiation. The wavelength/grain size ratio is important because for different 

radiation temperatures the same grains will require an opacity calculation in quite 

different limits: either a Raleigh scattering, Mie scattering or geometric opticzd 

approximation, with a consequent affect on the opacity. 

A reduced opacity implies for our cooling prescription that the photosphere 

of the disk will be found at a lower altitude and therefore ein increased effective 

radiating temperature will be obtained. Using the nominal tabulated opacities to 

obtain the location and temperature of the photosphere will therefore underestimate 

the actual cooling which taJces place. Furthermore, due to the higher effective 

radiating temperatures, the SED will be modified from its previous form as more 

radiation is emitted at short wavelengths. 

We have investigated the effect of a modified grain opacity by adapting our 

cooling prescription to include an additional assumption. In regions of the disk 

where the midplane is hot enough to vaporize grains, we assume that the grain 

opacity is temporarily reduced from its nominal value by a constant multiplicative 

factor, /?, over the entire vertical column of disk matter above and below the 

midplane. In other regions of the disk we assume the opacity remains unaffected, 

so that the effective opacity is 

where Tcrit is the grain destruction temperature and Tmid is the disk midplane 

temperature. The disk photosphere temperature and altitude are calculated in the 

same manner as before, with the modified opacity Ke// replacing k(p, T) in eq. 4.13 

above. The disk photosphere temperature therefore will increase in regions where 

R K { P ,  T )  if Tmid > Tcrit-, 

/c(/9, T) otherwise 
(4.16) 
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the midplane temperature is hot enough to destroy grains and remain unaffected 

elsewhere. 

We have performed several simulations varying the amount by which the 

opacity is modified from the PMC values over the range between R = 0.001 and 

R = 0.01. These simulations implement the same initial model as simulation ABme. 

Simulations at our lowest resolution provided inadequate resolution for the inner 

disk so that the near infrared SED would often be dominated by the contribution of 

only a few particles. We show time averaged SED's derived from these simulations 

in fig. 4.10. This figure shows clearly that the near and mid infrared emission from 

circumstellar disks can be 'turned off' or 'turned on' depending on the extent to 

which grain reprocessing in the inner disk affects the opacity. .A.t either end of two 

extremes, too small or too large an opacity, the SED fails to reproduce a flat or 

shallow spectrum. With too little reduction the SED appears similar to that shown 

above in figure 4.3 (whose time average is reproduced in the lower right panel of 

fig. 4.10), while with too much, it appears permanently in an 'outburst' phase in 

which the I-5^m band is enhanced by as much eis a factor of 5-10 over the stellar 

contribution to the flux. At later times in several of the plots shown (notably the 

R = 0.0025 and the R = 0.005) the disk again produces an 'outburst' in the same 

region of the spectrum as it does in the case with R = 0.001. In these instances, 

the true behavior is episodic and will be discussed more fully in section 4.3.4 below. 

Both a frequency dependent radiative transfer code, incorporated into the 

hydrodynamic calculation at each time step, and a recalculation of the Rosseland 

opacity for each /£>, T, and grain size distribution accessible to our simulations are 

beyond the scope of the present work. As a paxameterized factor however, we can 

bracket the difference from the nominal PMC opacities to a factor between 0.001 
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and 0.01 times the PMC vedues in regions where the midplane temperature rises 

above the grain vaporization temperature. Below, we shail implement a 'standard' 

factor of 0.0075 times the tabulated PMC values in such regions. 

It is notable that the values of R which are required to produce 1-5/im flux 

consistent with observations axe quite smail. In fact, the large modification in the 

opacity values are not inconsistent with an opacity consisting only of a contribution 

from gas rather than from both gas and grains. A 'grain free' calculation (D. 

Alexajider; personal communication) of the opacity using the model of .\lexander 

and Ferguson (1994) down to 1000 K produces opacities which are similar in 

magnitude to our modified values. Coupled with the near eind mid infrared time 

variability present in the simulations, the interpretation we are led to is that in the 

inner portion of the accretion disk, clouds of grains in small patches of the disk 

are destroyed and reform, intermittently obscuring the hottest parts of the disk 

midplane from view. Such an interpretation implies quite naturally the existence of 

intermittent variability in the near and mid infrared spectra of star/disk systems 

originating from within the disk rather than from a stellar photosphere. Skrutskie 

et al. (1996) observe such variation on time scales of a few days to a few weeks 

in the J, H and K bands for several young stellar systems and conclude that, 

particularly in K band, such variations are likely due to processes in the accretion 

disk. 

4.3.3. Morphology and SED's using modified opacities 

The results of a simulation with an identical initial condition, but with the 

modified cooling prescription 'B' (simulation B2m4), are shown in figure 4.11 and 

the derived SED corresponding to each frame is shown in figure 4.12. The gross 

morphology of the system as evolved under this modified cooling prescription is 
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quite similax to tiiat produced with the original prescription. Instabilities begin in 

the inner regions of the disk and as time progresses, engulf the entire disk, forming 

filamentary, multi-eirmed spiral structures. A quantitative mecisurement of the 

system morphology as measured by its pattern amplitudes (fig. 4.13) confirms the 

similar behavior for these simulations. There axe no significant differences in the 

pattern amplitudes apparent. 

The similajrities axe perhaps to be expected since ordy the inner regions undergo 

different cooling, however if the inner regions of the disk are truly responsible for 

dynamical behavior further out, the modifications might create a different pattern 

of evolution throughout the entire disk. Since no such differences axe evident, we 

may conclude that although the instability growth begins in the inner most regions 

of the disk, its character at large radii is not strongly dependent on the dynamics of 

the inner region, at least for the two types of cooling assumptions we have outlined. 

In both of the simulations shown in figures 4.2 and 4.11 it appeaxs that a 

substantial 'hole' forms towards the middle of the disk as time progresses. The 

resulting structure at first glance appears more torus-like thaji disk-like. As we 

show in section 4.3.7 however, the surface density only flattens out at small radii 

rather than evolving towards a true torus, in which the inner region is devoid of 

material. 

In spite of the small differences in the system morphology, the derived 

SED's show a maxked difference from those produced using the original cooling 

prescription. In the present case, the SED exhibits a rising (toward higher 

frequencies) spectrum between ~30-50^m (~ 10^^ Hz) and ~ l/zm (a few xlO^'' 

Hz), then falls off at the highest frequencies where only the star contributes 

significantly to the flux. It is also vciriable in time, with each of the panels in this 
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time mosciic of the SED's being somewhat different from the others. The variations 

are concentrated in the near IR region of the disk, for which the calculated 

midplane temperatures are high enough to invoke the modified cooling. 

As before with our 'A' cooling prescription, the disk does not emit sufficient 

flux at low frequencies (< 10^^ Hz), since the modifications in section 4.3.2 ciffect 

only the hottest portion of the disk. The temperature at the disk photosphere lies 

above the values required to produce the 30-100/im flux when grain destruction 

heis begun to aifect the radiating temperature, or below them, where the matter 

contributes only minimally to the SED. 

4.3.4. Variation of the SED's with time 

We concluded in section 4.3.2 that the time averaged SED in the near and mid IR 

is strongly dependent upon the microphysics of the dust grain size distribution and 

its effect upon the opacity, but that our model could only bracket the magnitude 

of the modification required to accurately reproduce the time averaged spectrum. 

The instantaneous emitted spectrum synthesized from our simulations is variable 

in near and mid infrared wavelengths. In fig. 4.14 v/e plot the emitted power, uFu, 

at 2, 25 and 100 as well as the total luminosity of the disk as a function of time 

for each of three resolutions for our 'A' simulations and our highest resolution 'B' 

simulation (The right hand panels will be discussed in section 4.3.6 below). With 

the 'A' cooling model only small variations in time are present: no short term 

variations larger than 10% are present at any wavelength and short term variations 

at longer wavelengths are smaller, less than 1% at lOO/^m. At 2^m, no contribution 

from the disk is present; the flux is completely dominated by the assumed constant 

4000 K black body contribution of the star. 
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At all resolutions (after ein initial transient) there is a slow systematic trend 

towards smaller emitted fluxes. This decay is due to m<iss depletion from the 

inner disk, which occurs more rapidly than it is replaced by matter migrating from 

further out. As the amount of mass present decrecises, the inner disk becomes less 

dynamicaily active ajid consequently less energy is dissipated as heat and radiation. 

A systematic difference in the disk luminosity calculated for each simulation is 

apparently due to the decrease in the amount of dissipation present at higher 

resolution. Variations in the flux also decrease with increasing resolution, indicating 

that variation that is present may be an overestimate. 

The 'B' cooling simulations show behavior identical to the 'A' simulations 

in the mid and far IR, but exhibit large variations in the near IR. At 2/fm for 

example, the variation is about a factor of two or more from peak to peak and the 

total disk luminosity shows a similar amount of variation. Larger variations are 

again present for lower resolution simulations, indicating that the variation shown 

is an upper limit. 

In order to see the shorter term structure in the flux variation, we show the 

same variables as in 4.14, but expanded to show a small slice in time in fig. 4.15. 

The time scale of the variation in the near and medium infrared is similar to the 

orbital time scales of the inner disk, which is truncated at 0.4 AU in our simulations. 

At some times, only the assumed stellar component of the flux contributes to the 

flux, while at others, the flux is dominated by the disk contribution. The variations 

have no well defined periodicity. Variations occur over periods of less than a year 

and over periods of as long as ten years. Qualitatively, we can understand the 

dynamical origin the variation by noting that heating processes such as shocks do 

not occur at regular intervals as the disk evolves, but rather occur sporadically as 
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spiral arm structures or other inhomogeneities in the disk interact and dissipate 

orbital energy as heat. 

The magnitude of the flux variations present in our simulations must be 

considered upper limits rather than a definitive prediction for two reasons. First, 

the variations are a function of the resolution of the simulations, decreasing as 

resolution increases. We caimot be certain of the amplitude at which variations 

become independent of resolution. Second, we have not quantitatively determined 

the effects of the grain vaporization, reformation and size evolution on the opacity. 

A more detailed understajiding of how these variables affect the opacity is required 

before spectral energy distributions of circumstellar disks can be self consistently 

incorporated into multi-dimensional models such as ours. 

On the other hand, the time scales of the variations will be more reliable 

because such effects axe dominated by the dynamical times of the inner disk. 

Shorter term variations than appeax in our simulations may also occur since our 

our disks were truncated at a relatively large distance from the star. 

4.3.5. Variation of the Dissipation with Resolution 

In our higher resolution runs, the temperatures are lower than in lower resolution 

runs and the SED's synthesized have a systematically smaller amount of infrared 

excess and total luminosity. This difference is due to the correspondingly lower 

numerical dissipation possible at high resolution as shown in fig 4.16. Because 

the purely compressional dissipation (i.e. shocks) is better resolved at higher 

resolution, we expect that as the resolution increases the shock dissipation term 

will more closely model the physical dissipation present in shocks and purely 

numerical dissipation wiU decrease elsewhere in the flow. Therefore until a set 
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of simulations converges to a well defined amount of dissipation which is not a 

function of resolution, the dissipation which is present will represent an upper limit 

on that present in a real system. 

Ideally, the contribution of unidentified sources of dissipation to the energy 

output of the system would be negligible. In such a Ccise, specification of known 

dissipation mechanisms and the known passive heating mechanisms in the model 

assumptions would specify the observable appearance of the system. In our models 

this ideal can only be approached, rather than definitely specified. We have 

previously identified the bulk viscosity term in eq. 4.8 with the ShaJcura Sunyaev 

ocss, which models 'black box' viscosity. Since our resolution is finite, this black 

box source of dissipation is non-zero and we approximate it's contribution to the 

dissipation (via eq. 4.11) to be of order 2 x 10"^ between 10 and 50 AU for the 

highest resolution simulations we have nm (see fig. 4.16). 

Although we cannot assign a physical origin to the bulk viscosity term, 

we still can constrain the magnitude of other, known sources of thermal energy 

generation by comparing their computed contribution to those of our bulk term. 

In our simulations, the ratio between the shock and turbulent energy dissipation 

mechanisms varies, with higher resolution producing less shock dissipation relative 

to lower resolution runs. At progressively higher resolution, both the ratio and the 

absolute magnitude of the dissipation decrease and we conclude that we have not 

fully resolved the hydrodynamics importajit for energy generation in the system. 

Including the contributions in our simulations from both the d and 0 viscous 

dissipation sources as a conservative estimate, we can conclude that gravitational 

torques produce large scale shocks which dissipate kinetic energy at a rate no 

greater thaJi an equivalent ass dissipation of ass ~ 2 — 5 x 10"^. 
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4.3.6. The Origin of Thermal Energy Generation 

With the understanding that the artificial viscosity incorporated into our 

simulations approximately models the underlying physical dissipation of kinetic 

energy present in the disk, we proceed to calculate the magnitude and origin 

of the thermal energy generated in different portions of the system. We have 

previously identified the bulk (Q) viscosity with turbulence (in eq. 4.11) and the 

von Neumann-Richtmyer {fi) viscosity as representative of shocks. We can therefore 

estimate the thermal energy generation present in our simulations in terms of 

the Shakura Sz Sunyaev viscous disk picture using eq. 4.11 and by quantifying 

the relative magnitude of the two dissipative terms. The goal for this section is 

to understand which physical processes are responsible (and just as importantly 

which are not responsible) for the luminosity produced by observed young star/disk 

systems and to understand the shape of their SED's. We attempt to minimize all 

other sources of parameterized or unknown thermal energy generation mechanisms. 

Of particular interest will be to understand the origin of so cailed 'flat' or shallow 

spectrum sources which may be representative of more massive disk systems like 

those in our study. 

The azimuth averaged value of the viscous parameter, ocss, derived from our 

simulations is shown in figure 4.16. Its value in any Sr of the disk is of order a 

few xlO~^. Both the 'A' and 'B' simulations show identical viscous dissipation 

rates, so only the 'B' results are shown. We also plot the ratio of the dissipation 

due to the turbulent and shock artificial viscosities and find that over the largest 

portion of the disk, the magnitudes of each are within a factor of two. The total 

budget of thermal energy generation from dissipation of large scale gas motions 

averaged over azimuth is therefore within a factor of a few of that provided by an 
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Qss formulation. 

In the innermost portion of the disk, the dissipation attributed to shocks 

becomes as much as a factor of 2-3 laxger than that attributed to turbulence. Also, 

the value of the viscous coefficient d itself is never able to relax to its lowest value 

in this region, which indicates repeated strongly compressive events, and leads 

(by eq. 4.11) to an artificial increzise in the derived Shakura Sunyaev viscous 

coefficient, ass, which should be attributed instead to the shock dissipation as 

noted in section 4.2.1. 

Taking these two phenomena in isolation one would initially be led to believe 

that shocks dominate the dissipation in the inner 5-10 AU of the disk. It is not 

clear that this is the case however because in this same region, and within only 

a few ten's of orbits, mass accretion onto the central star begins to reduce the 

density (see section 4.3.7 below). Since SPH resolves the flow using particles of 

finite mass, lower mass density in a given region implies fewer particles and higher 

numerical dissipation and an ambiguity in the interpretation of it's physical origin. 

Notably, higher resolution simulations produce progressively more centrally peaked 

dissipations (fig. 4.16), which means that the region in which shock dissipation may 

be important is limited to a smaller portion of the disk near the star. The derived 

value of the turbulent dissipation at all three resolutions reaches ass ^ 10"^ at 

the inner edge, suggesting that this value is fairly well resolved. At eaxly times, 

for which little mass transport has yet occurred and the structures developing in 

the inner disk are best resolved, the conclusion that shock dissipation is a strong 

contributor to the thermal energy generation remains. 

In our moderate and high resolution nins the Imninosity derived from the 

simulations (figure 4.14 and 4.15) in general xmderestimates that from observed 
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systems (e.g. BSCG), especizilly those thought to be younger systems for which 

large disk masses are more likely (Adzims et al. 1990). Simulations at all resolutions 

underestimate the flux at long wavelengths corresponding to colder regions of the 

disk distant from the star. The luminosity and the SED characteristics reflect the 

temperature profile produced by our simulations. In section 4.3.7 below we will 

show that the temperatures produced by our simulations in the outer disk are quite 

low, so that very little radiation is emitted, even at long wavelengths. In fact, the 

SED contains only very small contribution from the outer disk at all; it contributes 

chiefly in the shallow slope of the SED below 10^^ Hz. The effect on the integrated 

luminosity is that only a few percent of emitted flux in our simulations comes from 

the outer disk. 

Two additional questions remain before firm conclusions about the physical 

interpretation of our simulations can be made. First, we need to be certain that 

modeling the dissipation of kinetic energy into heat using artificial viscosities gives 

an reasonably accurate representation of the true thermal energy generation rate. 

Second, we need to be certain that the assumed disk geometry does not play a 

large role in the details of the synthesized SED. For example, if the assumed disk 

radius is doubled, so that the total disk surface area radiating at, say 10-30 K, is 

increased by a factor of approximately four, will sufficient long wavelength flux be 

produced? 

In order to investigate the first question more completely, we have performed 

a simulation similar to B2h3 with the time variation of the viscous coefficients 

discussed in section 4.2.1 turned off and the viscous coefficients set to d = 1 and 

0 = 2. This simulation is denoted H2h3 in table 4.1. Effectively, this change will 

increase the global rate of thermai energy generation because we find that the 
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time dependent viscous coefficients for each particle (a,(f)) fall well below the 

value of unity assumed in simulation H2h3. The time dependent fluxes axe shown 

in the right hand panels of figure 4.14. The total luminosity is increased by the 

viscosity modification but the increase comes only from short wavelengths regime 

representative of the inner disk. The transient in the flux at short wavelengths 

over the first 2-3 Tocomes from the initially high density in the inner disk, its 

effect on dynamical activity and therefore zilso thermal energy generation. With 

the increased heating, a single heating event will heat a given column of matter to 

higher temperatures than otherwise, leading to a correspondingly increased flux 

from that column as it cools. 

After the initial transient settles, the near and mid IR flux are increased in 

magnitude to that of the 'B' simulation by only ~ 5%-barely large enough to be 

detectable on the plot. The long wavelength flux also increases by only ~ 5% 

relative to the 'B' simulation. In both simulation B2h3 and H2h3^ little thermal 

energy is produced in the outer disk. More significantly, figure 4.17 shows that 

the long wavelength tumofl" does not shift further into the far IR or submillimeter 

region. It remains instead near 10^^ Hz (~30^m). The insufficient long wavelength 

flux in each of the simulations leads to the conclusion that indeed internal heating 

mechanisms (due to identifiable sources such as shocks) incorporated into our 

model are an upper limit to the heating from these mechanisms present in real 

systems. 

To test the second question we examined the differences in the long wavelength 

end of the SED's generated from our 50 AU disks (simulations A2lo, A2me and 

A2hi) with those generated from 100 AU disks (simulations a2lo, a2me and a2hi). 

Time averaged SED's for each of the simulations care shown in fig 4.17. Looking 
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specifically at the long wavelength flux behavior, in which dust destruction is 

unimportcint, we find no significant differences between shape of the SED seen in 

one or the other simulation. 

As we will show below, the temperatures ia the outer part of the disks are 

lower than axe determined from observations (Adams et al. 1990 for exajnple 

determine temperatures at the outer disk edge of order 15-25 K). In many paxts of 

the disk, they are in fact also lower thaji those observed for the molecular clouds 

in which the disks reside (see e.g. Walker, Adams & Lada 1990). We caji conclude 

from the low temperatures and the corresponding long wavelength flux deficit that 

heating of the disk due to identifiable internal processes (e.g. large scale shocks) in 

our simulations is insufficient to heat the outer disk to the 'right' temperature, i.e. 

temperatures warm enough to produce SED's from our models which are similar to 

observed systems. This conclusion implies an upper limit on the ajnount of mass 

and ajigulax momentum transport due to gravitational torques, since such torques 

are ultimately responsible for the growth and evolution of the spiral structures in 

which the shocks occur. In the inner disk, the picture is not as clear. At early 

times, shocks produced by gravitational torques there are capable of producing 

sufficient thermal energy to power the near infrared SED in our simulations. The 

question which remains for future consideration is whether the surface density and 

temperature initial conditions assumed in our work, especially given the immediate 

activity in the inner disk, are in fact similar to those produced by real systems. 

If additional (a^ yet unidentified) sources of internal dissipation exist for the 

part of the disk at ^ 10 AU from the stax then additional heating will occur there 

and the matter will become warmer, the radial temperature gradient will become 

shallower, and the outer disk will radiate at the higher temperatures required to 
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reproduce observed systems. These processes might come from either phenomena 

intrinsic to the disk itself, such as magnetic fields, or from three dimensional 

turbulence not modeled in our calculations. 

On the other hand, it may be the case that rather than being internally 

heated, the outer portion of accretion disks are externally heated, for example by 

accretion of additional material onto the disk or by radiative heating from the 

surrounding cloud. If in fact the mechanisms for heating the outer disk are external 

(i.e. they do not originate in an as yet unspecified internal hydrodynamic or 

magneto-hydrodynamic turbulent dissipation), then any models which reproduce 

observed SED's via internal dissipative heating alone will incorrectly model the 

mass and momentum transport which depends on such dissipation. We have not 

attempted to model such effects in this work, in part because of the radiative 

transport approximations we have implemented (i.e. Rosseland mean opacities) 

preclude a reliable determination of the magnitude of such radiative heating 

processes in optically thin regimes. 

4.3.7. Density, Temperature £ind Scsde Height Structure 

Using the structure model from section 4.2.2 we can derive physical disk parameters 

such as the gas temperature and the disk scale height, as well as the directly 

available mass density as functions of distance from the star. 

The azimuth averaged temperature profiles late in the evolution of the disks 

shown in figures 4.2 and 4.11 are shown in figure 4.18. Overall, the midplane 

temperature shows several distinct regions which individually appeax as power laws 

for suitably small radius rajiges, however a single power law for the whole range 

of radii provides only a poor fit to the temperature structure. In the innermost 
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portion (~ 1 AU) of both sets of simulations, the radial photospheric temperature 

structure is nearly a flat function of radius. Due to the increased efficiency of 

cooling when the opacity is modified, the 'B' disk midpleine temperature profile 

flattens out in the inner ~1 AU so that the temperature lies 2-300 K below 

that of the 'A' disk. Between 1 and 10 AU the midplane temperature decreases 

roughly according to an power law, but further out (between 10 and 20 AU) 

the midplane temperature becomes much steeper as the disk transitions from an 

optically thick to optically thin regime. Beyond 20 AU the disk becomes optically 

thin to it's own radiation so that the midplane and photosphere temperatures axe 

the same. 

The photosphere temperature follows a single power law much more closely 

over its radiai range, with the exception of the inner few AU where the temperature 

again becomes flatter than in rest of the disk. The 'A' and 'B' cooling prescriptions 

have profiles which are quite similar to each other. The differences which exist 

are in the azimuthal variation of the temperature. In regions where the midplane 

is hot and the modified cooling procedure comes into play, the rms photosphere 

temperature is nearly as large as the temperature itself, indicating many short 

lived opacity holes during which hot material near the midplane becomes visible to 

the surrounding space. 

We have fitted the temperature profiles to a power law whose exponent is a 

free parameter ajid plotted the resulting exponent as a function of time in figure 

4.19. After an initial transient as the disk becomes active the power law at the 

midplane of the disk is oc while the power law at the disk photosphere 

is oc r~^. Both of these coefficients compare quite imfavorably to those derived 

from the models of BSCG, who fit observed SED's with a model consisting of a 
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disk with a power law temperature profile. In their work, exponents in the range 

0.5 < <7 < 0.75 were determined. In our simulations, the both temperature profile 

and the SED are available directly. The differences axe due to the lack of heating 

in the outer disk discussed in section 4.3.6, this leads to insufficient flux at long 

wavelengths to reproduce observations like those modeled by BSCG. 

The result of the activity and increased dissipation (i.e. larger than purely 

ass model dissipation) in the inner disk noted in section 4.3.6 is that the inner 

disk becomes depleted of much of its initial complement of mass (see fig. 4.20) 

as the orbital energy of the gas is dissipated first as heat and then as radiation. 

This behavior is true of every simulation we study, both early in a simulation 

when activity is greatest and later when the density distribution in the inner disk 

becomes much flatter. Effectively, the surface density profile develops a much 

larger core radius (TC in eq. 4.1) than it initially has. Initially, the accretion rate 

onto the star occurs at a rate of a few xlO~^MQ/yr. As this inner region becomes 

evacuated, the mass accretion rate falls by a factor of ~3. The new core radius is 

approximately « 10 AU, but its exact value is dependent upon the dynamics, 

the initial condition (i.e. the initial core radius and assumed power law) and 

the magnitude of the dissipation. Due to the combined effects of the viscous and 

gravitational torques a portion of the mass is driven further from the star than in 

the initial configuration. We defer additional studies of the redistribution of mass 

and angular momentum to a future study. 

In addition to the development of the larger core radius, the density structure 

exhibits another artifact of the apparently unphysicaJ initial condition. The density 

first rises to a weaJ< local majcimum before decreasing with radius as in the initial 

power law. We believe this maximum is little more than an artifact of our initial 
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condition and should not be considered as a physiccd manifestation of the disk 

evolution. Based on each of these phenomena, we conclude that a more physical 

radial density structure for circimistellar disks will have a shallower profile than 

the profile assumed here. 

The vertical structure model outlined in section 4.2.2 caji also be used to 

calculate the vertical scaJe height at each point in the disk. For the purposes of this 

work we define the disk scale height, Ze, at some point in the disk as the altitude 

above the midplcine at which the mass density, p, decreases by a factor of 1/e from 

it's midplajie value. We find (fig. 4.21) that as our simulations evolve, the disk 

becomes quite thick at small distances from the stax. No differences axe apparent 

between the scale height produced from the different cooling prescriptions. The 

altitude of the photosphere shows an even more pronounced rise at small radii, 

extending vertically to Zphot/R ^ 0.27 near 5 AU. Depending of the details of the 

grain distribution within a vertical column, this local majcimum suggests that the 

outer disk may become shaded from stellar radiation. 

Further from the star the scale height R stays nearly constant with no 

flaring present except at the outermost edge. No doubt the vertical structure 

produced will be dependent upon the temperature profile and will change when 

a full description of the heating mechanisms are included. We therefore cannot 

regard the current scale height results as highly significant. 

4.4. Comparison to other work 

In a series of papers Bell and her collaborators (Bell k. Lin 1994, Bell et al. 1995, 

1997, Turner Bodenheimer Bell 1997) have developed ein evolutionary model for 

accretion disks based on an ass model for radial transport emd a mixing length 
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theory (MLT) based vertical structure model. In similar work D'Allesio et ai 

(1998a, 1998b) have also developed a 'l+T dimensional model. In the present 

work, we follow the evolution through a '2+1' dimensional model, including the 

evolution of matter in both radius and azimuth, but at the expense of simpler 

vertical structure and radiative transport (sec. 4.2.2). We investigate the dynamical 

evolution (and consequent thermal energy generation mechanisms) of the disk 

which can not be addressed in the I+lD work due to the input assumptions of the 

ass disk formulation. 

In an ass model, three input parameters specify the physics of the model. 

They axe the accretion rate. A/, the magnitude of the viscosity, ass and the 

radiative flux impinging upon the disk surface. Together these three parameters 

specify the amount of active and passive heating experienced by the disk. They also 

determine the temperature and density structure throughout the disk as functions 

of time and one space variable (the distance from the star). 

In deriving a vertical structure, the above works assume boundary conditions 

at the z •=• oo boundary which include radiative fluxes from the star, disk and 

molecular cloud ajid the thermal conditions of the surrounding molecular cloud. 

In contrast, we assume that the disk exists in isolation (i.e. that these external 

fluxes axe zero) in order to study the effect of dynamical processes internal to the 

disk itself. We show that known dynamical heating mechanisms such as shocks or 

PdV work do not provide enough heating by themselves to reproduce observations. 

Either additional internal heating mechanisms (e.g. dissipation via magnetic fields 

as in Gammie 1996 or via some other turbulent dissipation mechanism) or energy 

flux onto the disk from external sources (for example direct illumination of the disk 

by the star or the surrounding molecular cloud or by illumination of one part of 
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the disk by another) must be accounted for in order to correctly model the disk 

evolution. 

We find that a full multi-dimensionaJ evolution is important for a description 

of the density structure of the systems described here because the spiral structures 

typically have amplitudes, 5S/S, of order unity. The temperature structure of 

such systems does not develop such large variations in azimuth. An azimuth 

averaged temperature law will be accurate to a few percent except in the inner 

region of the disk where grain destruction becomes important ajid the hot midplajie 

intermittently becomes exposed to space. 

Bell et al. (1997) find that with the low disk masses implied by their model 

(i.e. their input values of the mass flux through the disk, M, and the magnitude 

of the viscosity, 055), the structure obtained is actually super adiabatic in r. Our 

assumption by which the vertical structure was determined was that the structure 

was vertically adiabatic and contrasts with their MLT calculation that shows a 

super adiabatic gradient. The effect that a super adiabatic gradient would have 

on our simulations would be to systematically reduce the temperature of the disk 

photosphere. In the absence of a full three dimensional calculation of the vertical 

structure, the exact nature of the gradient remains unknown. However, we believe 

that the vertically adiabatic assumption in our simulations is justified because we 

model high mass systems in which the dynamical effects present are likely create 

additional turbulence and act to additionally smooth out vertical entropy gradients. 

In spite of the differences between the modeling assumptions and procedures 

utilized in our work and those noted above, the results produced from each are 

in many cases quite similar. This should perhaps not be too unexpected since we 

find that shocks axe not the dominant source of heating in the disk ajid our only 
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other source of thermal energy generation is a viscous heating term aneiiogous to 

the steindard cess model, extended to include limited time and space dependence. 

Both methods are able to produce SED's which reproduce observed profiles to 

varying degrees. The temperature ajid density profiles on which the SED's zire 

based however are quite different. In our work, the inner disk provides nearly ail 

of the flux and is characterized by an essentially flat surface density profile and an 

r~^ temperature law. Only at distances > 10 AU does the surface density begin 

to fall off steeply. At these radii, the temperatures derived from our models are 

low enough not to contribute significeintly to the flux. As is shown for the ID case 

in Turner et al. , absorption and reradiation of infrared and microwave photons 

can heat the outer disk, flatten the temperature profile ajid provide additional far 

infraxed flux. Such a treatment in our model would require a multi-dimensional 

frequency dependent radiative transport code, which has not yet been incorporated. 

Both in our work and Bell et al. (1995), a mechanism by which the disk may 

vary it's energy output (SED) in time is explored. We consider the variation of the 

opacity due to the destruction and reformation of grains in the inner disk, while 

they consider variation in the thermal ionization state of gas within a few stellar 

radii of the star. They are able to produce very large and long term temporal 

variations typical of FU Orionis outbursts in accretion disk SED's, while we find 

much smaller variations (factors of ~2 or less) which occur over much shorter time 

scales. 

The puffed up inner disk in our work is similar to the 'volcano region' 

discussed by Turner, Bodenheimer & Bell (1997) in their simulations of the disks 

of FU Orionis objects. Their models, derived from Bell et al. (1997), assume a 

much lower mass disks than our own, produce a puffed up region which is also 
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much smaller in radial extent than in our work. Neither our model nor theirs 

depend upon the validity of the thin disk assumption and both indicate that such 

an approximation may be inappropriate in the inner regions of the disk. 

4.5. Concluding Remarks 

In this study of the evolution of circumstellar accretion disks, we have found that 

the growth of multiple ajmed spirai instabilities is suppressed relative to the growth 

found in Paper 1. In the present simulations spiral arms grow only weakly in the 

inner half of the disk. Regions more distant from the star axe less filamentary than 

with an isothermal evolution. The spiral structures also do not collapse into clumps 

as they did in Paper I. 

The spiral structures are similar in that they do not persist as stable structures 

over even a single orbit of the outer disk axound the star. The dynamics of the 

inner region axe very important for understanding not only the globai morphology 

of the system as we showed in Paper I, but also its observational appearance as 

well. Transport, growth and vaporization of dust vertically within a column of gas 

can have marked observable consequences for the spectral energy distribution of 

the system. A correct model of the dynamics and spectral energy distributions 

of circumstellar disks similar to those studied here must include an accurate 

description of the full three dimensional spatial distribution of grains and of their 

size distribution in order to accurately model the opacities and the radiative 

transfer which depends on them. 

The simulations discussed here produce temperature's in the outer disk which 

are colder those produced by models of observations. The temperature profile 

which results produces a power law exponent near qr = 1.5 at the disk midplane and 
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q = 1.0 at the disk photosphere, rather than the ass model prediction of g = 0.75 

or the observed 0.5 ^ q ^ 0.75. This steep profile produces a spectral energy 

distribution which, when compared to observed systems, emits insufficient flux at 

low frequencies 10^^ Hz or SO^xm). We attribute this primarily to the influence 

of physical phenomena present in observed systems which axe not included in our 

study. .A.S modeled, our systems do not produce sufficient thermal heating from 

well defined internal sources such as shocks. Additional heating must be supplied 

from internal sources such cis small scale hydrodynamic or magneto-hydrodynamic 

turbulence or from external heat sources such as radiative heating effects from 

the circumstellax cloud or the central star or thermal heating due to accretion of 

additional infalling matter onto the disk may provide additional thermal energy to 

the outer disk. 

We find that the heating due to large scale shocks within the disk does not 

contribute a dominant portion of the internal energy present in the disk except 

perhaps in the inner few AU, where shock dissipation provides a much larger 

fraction. Further, the magnitude of shock dissipation derived from the global spiral 

arm structures produced in our simulations is insufficient to power the luminosity 

of observed circumstellax disks. This indicates that mass ajid angular momentum 

transport, which depend on such internal dissipation, may be over estimated in 

ass models of accretion disks which assume an greater than ~ 4 — 5 x 10"^. 

This limit is derived from fig. 4.16 in which the magnitude of shock dissipation 

is roughly equivalent to the black box ass dissipation which is ~ 2 x 10"^. This 

conclusion is limited to systems in which the disk is marginally self gravitating, i.e. 

MdI=0.2. Spiral axms in these systems axe both filamentary and of high order 

symmetry (m > 3). It remains to be determined the role that gravitational torques 

will play in systems with more massive disks, where the dominant spiral patterns 
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are of low order symmetry (m < 3). Perhaps in this Ccise more efficient transport is 

present and a flatter SED profile can be realized. 

In both Paper I and in the present work, the assumed surface density 

power law quickly becomes modified in the inner part of the disk as matter either 

accretes onto the star or migrates to somewhere further out. From these results 

it seems improbable that such a steep density distribution can occur in nature 

but the true nature of the density distribution as a fimction of radius remains 

to be determined. We can suggest weak limits on the density profile by coupling 

our results with those of Laughlin & Bodenheimer (1994). In their study, initially 

toroidal initial configurations (of massive systems) evolve towards power law-like 

distributions, while our power law initial conditions evolve towards flatter profiles. 

We wish to thank Phil Pinto for valuable discussions about radiative transport, 

Sarah Maddison for valuable discussions about initial conditions for SPH disks and 

Mike Meyer for several useful conversations about SED's. .A. conversation with Jim 

Stone provided additional insight into the role of gravitational torques. This work 

was supported under the NASA Origins of the Solar System grant NAG5-4380. 
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Table 4.1. Initial Parameters For Simulations 

Name Number of MdIM.  Qmin Opacity End Time Disk 
Particles 

MdIM.  Qmin 
Factor R (TD=1) Radius (AU) 

I21o 16520 .2 1.5 • • > 1.6 50 
A21o 16520 .2 1.5 6.0 50 
I2me 33399 .2 1.5 • • • 1.8 50 
A2me 33399 .2 1.5 6.0 50 
B2ml 33399 .2 1.5 0.001 6.0 50 
B2m2 33399 .2 1.5 0.010 6.0 50 
B2m3 33399 2 1.5 0.050 6.0 50 
B2m4 33399 .2 1.5 0.075 6.0 50 
B2m5 33399 .2 1.5 0.025 6.0 50 
I2hi 101016 .2 1.5 1.8 50 
A2hi 101016 .2 1.5 6.0 50 
B2h3 101016 !2 1.5 0.050 6.0 50 
H2h3 101016 2 1.5 0.050 6.0 50 
a21o 16182 .2 1.5 3.0 100 
a2me 33134 .2 1.5 2.3 100 
a2hi 100971 .2 1.5 3.0 100 
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Figure 4.1 Density and temperature structure as a function of altitude above the midplane for 
conditions typical of our disk simulations at a 1 AU distance from the star. The location of the 
calculated disk photosphere of the disk are marked with a solid square att2u:hed to each curve. The 
solid curves on the upper frame are typical of the density derived from our simulations of 50 A.U 
disks (1000 g/cm-), while the dotted curves represent the density structure typical of our 100 AU 
disks (300 g/cm^). Eeurh of the three pairs of curves in the plot show the density structure for an 
assumed midplane temperature of ~ 2000 K, ~ 1350 K and ~ 500 K as noted. The temperatures, 
plotted in the lower frame, are in each case, well below, approximately equal to and well above the 
grain destruction temperature in the disk midplane. 
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Figure 4.2 A time series of SPH particle positions for a disk of mass Mn/M* =0.2 and initial 
minimum Qmin=l.5 (simulations A2me). Spiral structure varies strongly over time. Length units 
are defined as 1=10AU and time in units of the disk orbit period Tn= 27rJ R1/GM*. With the 
assumed mass of the star of 0.5 M0 and the radius of the disk of 100 AU , Tn~ 1400 yr . 
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Figure 4.3 Spectrcd energy distribution's for the disk shown in figure 4.2. Efich panel corresponds 
to the analogous panel in figure 4.2. The dotted line represents the contribution due to the central 
steir, which is assumed to be radiating as a Teff =4000 K black-body with 1 Lq . The horizontal 
cixes of each panel are labeled in frequency (bottom tick marks) and in wavelength (top tick 
marks). A 'reference' SED with the same assumed 4000 K star and with a disk with the same 
outer radius as assumed in our simulations, with luminosity Ld = 0.51,0 eind a temperature power 
law exponent of g = 0.5 is shown with a dotted line. The SED's produced clearly do not reproduce 
the observed luminosity spectrum eiround T Tauri stars, producing insufficient flux at both long 
and short wavelengths. 
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Figure 4.4 The amplitude of the m = 4 spiral pattern as a function of time at several distances 
from the star. The top panel show the amplitudes derived from the simulation shown in figure 
4.2 , while the bottom panel shows the isothermally evolved simulation I2me. For each curve, the 
amplitude of the pattern is offset from the origin by the amount noted in order not to confuse 
the reader. Solid horizontal lines denote the fitted average pattern amplitude and extend over the 
time span for which the average was calculated . 
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Figure 4.5 The time averaged amplitude of the m = 1 — 8 spiral patterns as a function of radius 
for the disk shown in figure 4.2 as well as it's high and low resolution counterparts. The solid line 
denotes the low resolution run [ASlo], while the dotted and dashed lines represent the moderate 
and high resolution runs, A2me and A2hi, respectively. 
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Figure 4.6 The time averaged Eunplitude of the m = 1 — 8 spiral patterns as a function of radius 
isothermally evolved simulations with the same initial conditions as those shown in figure 4.5. 
Here agaun, the solid line denotes the low resolution run (I2lo, while the dotted and dashed lines 
represent the moderate and high resolution runs, I2me and I2hi, respectively. Spike appearing in 
the plots for the moderate resolution run (at ~12 AU) and the high resolution run (neau^ the outer 
edge) are both artifacts of clumps which formed just prior to the termination of the fit. They 
should be disregarded in comparisons with figure 4.5. 
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Figure 4.7 The time averaged cimplitude of the m = 1 — 8 spiral patterns as a function of radius 
for the Rp =100 AU disks similar to those shown in figure 4.5. The solid line denotes the low 
resolution run {a2lo, while the dotted and dashed lines represent the moderate and high resolution 
runs, aSme and a2hi, respectively. The amplitudes which develop are quite similar to those of the 
50 AU disks shown in figure 4.5 
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Figure 4.8 (a) A cartoon of the physical conditions of cooling prescription 'a' Eind implemented 
for the simulation in figures 4.2 and 4.3. Under this assumption, even if the midplane temperature 
lies well above the grain destruction temperature, grains embedded in high altitude, cool gas block 
radiation from the hot midplane matter, (b) the modified condition (cooling prescription 'b') used 
for the simulation shown in figures 4.11 and 4.12 below. Under this modified assumption, grains 
are destroyed in the midplane if the temperature is hot enough but reform only slowly at high 
altitudes. This allows a particular column of gas to become less opaque so that it radiates at a 
higher effective temperature and cools more quickly. 
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Figure 4.9 The grain size distribution as a function of altitude above the disk midplane. The 
time units in the upper left of each frame are given in orbit periods at the assumed 1 AU distance 
from the star (T = 1 ~ 1.44 yr). The vertical structure is identical to that shown in figure 4.1 
with a surface density of 1000 gm/cm2

, midplane temperature of 1350 K at a distance of 1 AU 
from the central star . In the example shown, midplane temperature is above the assumed grain 
destruction temperature (T = 1200 K). 
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Figure 4.10 Synthesized SED's of simulations with varying modifications in grain opacity. The 
initial conditions of these simulations are identical to those of simulation A2me, but are each 
carried out under varying physical assumptions. To remove short period time variation, we plot a 
time averaged SED over the time from 7b=l to 7b=5. 
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Figure 4.11 A time series mosaic of SP H particle positions for the same initial condition as 
shown in figure 4.2. The cooling prescription used in this simulation has been revised to include 
dust destruction over entire vertical columns as shown in figure 4.8b with R = 0.0075 (see text). 
The gross morphology of the structures that develop is quite similar to that shown in figure 4.2 , 
even though the cooling assumptions and gas temperatures in the hottest (inner disk) regions are 
different. 
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Figure 4.12 SED's for the simulation shown in figure 4.11. Under the modified cooling assumption 
shown here, a closer correspondence to observed systems is found at near IR wavelengths. 
Substantial Vciriations in the shape are seen over time scales of a few tens of yeeirs to a few 
hundred years. At some times the contribution of the star is partially masked by emission from 
the disk, while at others the star contributes nearly all of the short wavelength flux. 
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Figure 4.13 The time averaged amplitude of the m = 1 —8 spiral patterns as a function of radius 
for the disk shown in figure 4.11 as well as it's high Jind low resolution counterpjirts. The solid line 
denotes the low resolution run {B2lo, while the dotted and dashed lines represent the moderate 
2ind high resolution runs, B2me and B2hi, respectively. 
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Figure 4.14 The luminosity and emitted power at three wavelengths: 2, 25 and 100/im. On the left 
are simulations A2lo, A2me and A2hi and in each panel the top, middle and lower tracks originate 
from the low, middle and high resolution simulations respectively. The 2/im flux consists only of 
the assumed constant contribution from the stellax photosphere, while the longer wavelengths eu-e 
dominated by the flux from the disk. The center panels show only simulation B2h3. The lower 
resolution counterparts were suppressed for clarity. The right panels show the results of simulation 
H2h3, for which a higher effective thermsd energy generation rate is present. 
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Figure 4.15 The same as figure 4.14 but expanded in time to show the details of the time 
dependence of the flux. 
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Figure 4.16 Top panel: The eizimuth averaged value of ass near the end of simulations A2lo 
(solid), A2me (dotted) Jind A2hi (dashed). Bottom pcinei; The azimuth averaged value of the ratio 
of the thermal energy generation rate due to shocks and turbulence. The outer edge of the disk 
has spread to >60 AU so that values are defined out to the edge of edge of each panel. 
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Figure 4.17 Time averaged spectral energy distributions of simulations of different resolution 
emd with assumed disk radii of 50 (top left) or 100 AU (top right). Simulations A2lo, A2me and 
A2hi are designated with dashed, dotted smd solid lines respectively. Similar designations define 
the curves for simulations a2lo, a2me and a2hi. Little additional long wavelength radiation is 
produced in the 100 AU disks in spite of the additional surface surea. The bottom left panel shows 
the differences between the SED's produced at high resolution but differing physical assumptions 
(simulations A2hi, B2h3 £ind H2h3 with solid, dotted amd dashed curves respectively). The time 
averages are tciken between 70=1 and 7b=5 except for simulation H2h3, which is taken between 
rD=2.5 and rD=6 in order to reduce the effect of the transient (see fig. 4.14 above). 
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Figure 4.18 The azimuth averaged temperature structure of the disks shown in figures 4.2 and 
4.11. The photosphere temperature (dotted), the midpleine temperature (solid) and the rms 
variation of the photosphere temperature in each radiad ring (dashed) are shown. Throughout 
most of the system, the two simulations show near identical temperature structure. In the inner 
disk, the midplane temperatures for the 'a' simulation differs from that of the 'b' run by about 
300 K ('a' is higher than 'b'). The azimuth averaged photosphere temperatures are also quite 
similar everywhere, however the variation in azimuth in regions where the opacities were modified 
is of the same magnitude as the temperature itself, suggesting that disk matter becomes transparent 
intermittently on time scales shorter than a single orbit and as local conditions dictate. The lines 
drawn in the upper right of the figure represent a power law with index q =0.5, 1.0 and 1.5 
respectively. 
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Figure 4.19 The value of the temperature power law index for the simulation shown in figures 4.2 
and 4.11 as a function of time. Indices for both the midplane (solid) and the photosphere (dotted) 
of the disk are shown. Apart from a small difference in the initial transient behavior the fitted 
exponents for each of the two simulations are identical. The indices for both the midplane and 
photosphere are far larger than the values (0 .5 ~ q ~ 0.75) observed in proto-stellar systems. We 
believe that the power law index is driven to such large values by the extreme low temperatures 
in the outer portions of the disk simulation, which are lower than those derived from models of 
observations. 
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Figure 4.20 Azimuth averaged surfcice density of the disks in figures 4.2 and 4.11 after evolving 
4TDfrom their initizil condition. In both the 'A' (solid line) and 'B' (dotted line) simulations, the 
inner disk rapidly becomes depleted of matter with respect to the initial profile, which increases 
as all the way to the inner disk edge. The initial profile is shown with a dashed line. 
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Figure 4.21 Azimuth averaged sccile height, Z^R (solid), and photosphere altitude, ZphatIR 
(dotted), of the disks in figures 4.2 and 4.11. 
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CHAPTER 5 

INTERLUDE TWO 

Up until this point in my thesis we've discussed objects which axe chronologically 

very young. Circumstellar gas ajid dust disks, almost by definition, can't exist for 

very long as steady state or equilibrium objects. As we've shown in chapters 2 and 

4, massive disk systems can change their appearance drastically on the scale of only 

a few thousand years. For lower mass disks, where the effects of self gravity are not 

significant, the magnitude of the viscosity becomes the limiting factor in how long 

the system can exist. For any realistic model of what this magnitude actually is, a 

disk can only live for a few million years or, at the very outside limit, a few tens 

of million yeaxs. As with any generalization though, there are a few cases where it 

doesn't quite hold true. Of particular interest axe the dusty disks around (3 Pictoris 

and Vega, which are young stars quite close to the sun. 

Another exajnple of where this generalization doesn't hold true is our own 

solax system. The planets, asteroids, comets and assorted other debris from the 

formation of the solax system have been in orbit axound the sun for more than 

four and a half billion yeaxs. Only a low level of evolution of the various bodies 

has occured during that time, relative to that present during the formation of the 



187 

system. There is aiso a tiny amount of matter remaining in a roughly spherical 

distribution (the so called 'zodiacal cloud'), which presumably has as its source 

various volatilized materials out gassed from comets. In this case, the disk exists 

only in 'fossil' form, or perhaps more appropriately, a circumstellar disk is an 

embryonic solax system. Over the first few million years of it's history we expect a 

disk to evolve into a more or less steady state, but not to go away completely with 

no trace that it was ever there. It might form clumps which ultimately evolve into 

planets, brown dwarfs or low mass stellar companion. 

Radial velocity measurements have proven a powerful tool for finding planets 

in short period orbits around other stars. Using such measurements a number of 

plajiets and brown dwarfs have now been discovered in orbit around other stars. 

These detections have renewed interest in the limits which caji be placed on the 

existence of companions by current and future surveys. In collaboration with Roger 

Angel (Nelson & Angel 1998), I have written the paper which follows in which we 

discuss some limits which caji be placed on one method for detecting such 'fossil' 

disks axound other stars. We have developed a simple, analytic technique to relate 

the detection limit obtained from a given set of data to its duration, precision and 

number of measurements. This technique, which is based upon least squares fitting 

and the periodogram, delineates regions of mass/period parameter space accessible 

to radial velocity observations of a given quality. We show that until a minimum 

of 15-20 measurements have been made, it is more eflBcient to make more low 

precision measurements than few high precision measurements. For periods longer 

than the surveys duration we derive an empirical correction to the sensitivity limit 

predicted by the analytic derivation. 

We explore the effects of windowing, and also the sensitivity to periods longer 
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than the total length of observations. We show that current observations are not 

yet long or accurate enough to make unambiguous detection of planets with the 

same mass cind period as Jupiter. However, if measurements axe continued at the 

current best levels of accuracy (5 m/sec) for a decade, then planets of Jovian mass 

ajid brown dwarfs will either be detected or ruled out for orbits with periods less 

than ~I5 years. 

As specific examples, we outline the performance of our technique on large 

axnplitude and large eccentricity radial velocity signals recently discussed in the 

literature and we delineate the region explored by the measurements of 14 single 

stars made over a twelve year period by Walker et al. (1995). Had any of these 

stars shown motion like that caused by the exo-planets recently detected, it would 

have been easily detected. The data set interesting limits on the presence of brown 

dwarfs at orbital radii of ;^5-10 AU. The most significant features in the WaJker et 

al. data are apparent long term velocity trends in 36 UMa and (3 Vir, consistent 

with super planets of mass of 2 Mj in a 10 yeax period, or 20-30 Mj in a 50 year 

period. If the data are free of long term systematic errors, the probability of just 

one of the 14 stars showing this signal by chance is about 15%. 

We then apply our technique to suggest an effective strategy for new and 

continuing radial velocity searches. For large surveys beginning now or proposed for 

the near future the factor most limiting detections is the finite amount of telescope 

time allocated to the search. Using this constraint, we suggest an observing 

strategy for future large radial velocity surveys which, if implemented, will allow 

coverage of the largest range of parameter space with the smallest amount of 

observing time per star. We suggest that about 10-15 measurements be made of 

each star in the first two years of the survey, then 2-3 measurements per year 
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thereafter, provided no (or slow) variation is observed. More frequent observations 

would of course be indicated if such variations were present. 
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CHAPTER 6 

THE RANGE OF MASSES AND PERIODS EXPLORED BY 

RADIAL VELOCITY SEARCHES FOR PLANETARY 

COMPANIONS 

For nearly two decades most high precision radial velocity surveys of nearby stars 

were focused on detecting radial velocity variations in stars due to companions 

with mass and period of Jupiter. The signature would consist of changes in the 

relative stellar radial velocity with a period of a decade and amplitude of a few 

tens of meters per second or less, depending on orbital inclination with respect 

to the solax system. The surprising recent result, triggered by the discovery of 

51 Peg B by Mayor Queloz (1995), has been the finding that as many as 5-10% 

of solar type stars have companions with mass < lOMj and with periods less thaji 

~3 years. No sub-steUar companions with periods longer than ~3 years have so far 

been detected by radial velocity searches. 

Are Jupiter mass compajiions at longer periods raxe, or is it simply the case 

that current observations do not have the length or sensitivity to see them? Is 

the theoretical prediction by Boss (1995) correct, that Jovian planets should form 
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preferentially at >4-5 AU separations from their primaxy? Our purpose in this 

paper is to show what we can leaxn from velocity data of a given duration and 

accuracy, to help plan continued programs. 

The best measurement errors for a series of radial velocity measurements so 

far published are those of Butler et aJ. (1996), who observe a magnitude V = 5 

star and quote an accuracy of 3 m/s for measurements taken over one yeax. 

Measurements up until this work have been limited to a lower accuracy standard 

of about 15 m/s. Severai other programs (see section 6.5 for a list of radial velocity 

search programs currently underway) are planning new or expanded searches with a 

goal of obtaining measurements with similar accuracy. In light of these efforts, and 

in expectation of their eventual success in obtaining such accuracy, we shall use 5 

m/s as a 'canonical' value for the error in many of the exeimples and the discussion 

below. Such advances in radial velocity calibration allow accuracy to be relatively 

free from systematic error. Poissonian photon noise remains as the fundamental 

limit to accuracy. In this limit, strong constraints Ccin be placed upon the existence 

of periodic radial velocity signals in a given set of data, given a suitable zinalysis 

technique. 

Many efforts have been made to determine whether a given set of data contains 

a signal. Most of those in common use are based upon the periodogram analysis 

techniques discussed by Scargle (1982). This technique is shown to be equivalent 

to a least squares fit for the signal at a given period, and he derives an exponential 

probability distribution of obtaining a false alarm from a given set of data. Home 

and Baliunas (1986 hence HB) have refined the technique by showing that this 

exponential must be normalized to the total variance of the data and derived 

an empirical expression for the number of independent frequencies available to a 
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set of data. Further refinements (Irwin et al. 1989, Walker et al. 1995) account 

for variable weighting of individual data points and correlations between fitted 

parameters. 

Our work represents a different approach in which, rather than dealing with 

least squares minimization indirectly through a periodogram analysis, we examine 

the best fits to the data directly and determine their significance. We derive an 

analytic expression for the probability that a given best fit velocity amplitude 

is non-random. We first develop analytical expressions relating sensitivity to 

planetary companions of different masses and periods, given velocity measurements 

of specified accuracy, duration and number. Motion with periods longer than the 

duration of observations is detected with reduced sensitivity, and this reduction 

is explored by Monte Carlo methods. We illustrate our analysis technique by 

application to the published set of radial velocity data from Walker et al. (1995), 

the longest time baseline survey so far published, with quoted precision of 15 m/s. 

Limiting our analysis to the subset of 14 stars which have no known visuai binary 

companion, we obtain quantitative upper limits to companions masses for orbitai 

periods of a few days to periods as long as 100 years. Finally, we suggest a strategy 

for efficiently implementing a search of a large number of stars for radial velocity 

signatures due to the presence of a companion. 

If a companion of mass Mc exists in a circular orbit with inclination i around its 

primary M,, it will perturb the radial velocity of the star as observed from earth 

6.1. Analysis Technique 

by: 

(6.1) 
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^M-p- + 4>), (6.2) 

where K is the amplitude of velocity of the companion in a circular orbit around its 

primary, P is the period of the orbiting companion, G is the gravitational constant 

and 0 is an arbitrary phase factor. If an observer caji detect the small temporzd 

changes in relative velocity due to a companion, then using fitting or periodogram 

techniques, it becomes possible to derive a mass (or mass limit) for that companion. 

Suppose that velocity data u(i,) have been obtained in observations extending 

over time interval Pq. For a given orbital period, P, we caji perform a least squares 

fit to the data with the equation: 

to produce 'best fit' values for the components of the motion u,, Vc and 7. At long 

periods and with a potential signal whose phase is unknown, the constant offset, 7, 

allows for the possibility that a companion at a radial velocity extremum (ie. near 

it's maximum or minimum) is properly modeled by the fit function. For shorter 

periods {P < Pq) its inclusion or exclusion has negligible effect so we will focus 

initially on this domain. Given fitted amplitude coefficients u, and Vc, a simple 

trigonometric identity {K = yields the amplitude of the stellar velocity 

perturbation due to the companion. From there we identify K  with the leading 

coefficient in equation 6.1 and invert to obtain a 'best fit' companion ma^s: 

Fitting higher order hcirmonics would be used to refine the fit and recover 

information about the orbital eccentricity of a companion. 

The orbital inclination remains an unknown parameter in a set of radial 

velocity data. Statistically spealcing however, the average companion mass of a set 

v{t) = U5sin(—0 + Uccos(—0 + 7, (6.3) 

(6.4) 
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of systems rcindomly oriented in space which give cunplitude A' will be: 

(6.5) 

- i-mr (6.6) 

Thus the average value for a companion mass is 7r/2 times the directly derived 

iV/c sin(t) value. Conversely, a compajiion with some mass will appear on average a 

factor of 2/7r(w 0.64) less mzissive than its true vcJue. Very large masses cannot be 

ruled out but do become increasingly improbable, with the probability that a given 

mass, M, is exceeded being given by the formula: 

For example, while values of the companion mass will be greater thaji twice 

Mc sin(i) for 13% of a large sample, the chance of a mass being greater than 

times the measured Mc sin(i) value in 50% of cases. 

6.1.1. Probability of a given velocity amplitude being exceeded by 

In the absence of an unambiguous detection of a signal at some period, we are 

faced with the question of whether a paxticularly large fitted velocity amplitude at 

some period represents a real detection. Such spikes will occur, because the data 

are noisy, and the frequency analysis must be taken over a laxge number of possible 

periods (from a few days to many yeaxs). Adjacent fitted periods may have widely 

different best fit velocity amplitudes even when the data have no embedded signal. 

What criterion can we apply to tell if a spectral peak is improbably large compared 

to these noise spikes? More generally, if the data for a star are analyzed in some 

(6.7) 

10iV/csin(/) are only 0.5%. The true compajiion mass will exceed 2/y/3{^ 1.15) 

chance 
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way, what is the probability that a given, outcome would have occurred by chance? 

In this section we obtain an anedytical expression for the velocity amplitude (and 

hence companion mass) that will be exceeded by chance, with a given probability 

and in a given frequency range. 

Suppose that in a given set of velocity measurements there is no real 

signal and that each measurement is drawn from a Gaussian distribution with 

mean zero and standard deviation CTp. The data can be fit to eqn. 6.3 to produce 

coefficients of some zimplitude With no true signal, both u, and Vc will be 

normally distributed about zero with standard deviation cTa = cTc = o- and the phase 

of the fitted curve will be uniformly distributed. For a set of no measurements, 

taJcen randomly over a time period Pq, this eissumption leads to the expression: 

where factor y^/no is derived from the least squaxes error analysis (see eg. 

Bevington and Robinson (1992) ch. 7) fitting a periodic signal to random noise. 

The probability of any data set with zero expectation value for and Vc to 

have ajiy particular fit values is: 

1 ^ ̂  
p(t;3,Uc) = r dvidvc. (6.9) 

27ro"5<7(. 

which, converted to amplitude and phase gives: 

p{K\4>) = ̂ e^K'dK'd<t>. (6.10) 

If we integrate this probability over all (j) and from zero^ to some value K, we get 

^For comparison, the integrated probability for a normal random variable is given by: 

V = -4=- r 
V^TTO- J-K 



196 

the total probability, "P, of a fit with velocity amplitude K or smaller: 

V = l -  .  (6.11) 

This probability applies to analysis of any single period. In practice we are 

interested in the probability of a velocity amplitude being exceeded by chance in 

a range of periods. If we assume that the probability of a given fit at one period 

is independent of every other period, then for N periods the probability, X, that 

no fit value exceeding a value Kx will occur is the product of the individual 

probabilities X = which to leading order gives 

Higher order terms in the right hand equation converge to zero as progressively 

higher power exponentials. We can invert this equation to to derive a limit on the 

velocity as: 

which expresses the velocity amplitude which will be exceeded by any of N fits to 

random data in a given period range with probability 1 — X. 

The appropriate number of independent periods is related to the width of 

peaks in the frequency spectrum given by df=]./Pq. TO be certain of sampling at 

a frequency that is close to the pealc, we suppose that the sampling is made at 

frequency intervals df = l/(27rPo)- The number, N, of independent frequencies (or 

periods) in a given range is then given by: 

where f\ and axe the limiting frequencies of the range bounded by periods Pi 

and P2 and /o = 1/Po-

(6.12) 

(6.13) 

(6.14) 
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Finally, combining eqns 6.8, 6.13 and 6.14 we obtain an expression in terms of 

the accuracy <Tp, duration Po, the number of measurements no and the probability 

X that a velocity amplitude K will be exceeded in a given frequency rcmge: 

The value Kx varies directly with <Tp and varies with the inverse root of uq, as we 

would expect from the central limit theorem. Its sensitivity to the other parameters 

ajid our sampling assumptions depends on the details of the survey, but in general 

we will find that the factor inside the natural logarithm is much greater than 1, so 

that a factor 2 change in any of the arguments produces only a small fractional 

change  in  the  vaJue  o f  Kx-

As an example, suppose that a high quality survey were made over a decade, 

with a total of no = 50 observations per star and with rms accuracy, ap = 5 

m/s. For a false detection in a one octave range around P = 4 days, the velocity 

amplitude Kx from eqn. 6.15 is 5.2 m/s. At 4 yeaxs, the amplitude is 3.9 m/s. If 

the star's mass is the same as the sun's, then from eqn. 6.4 we find these velocities 

for 1% false detections will correspond to companions masses Mcsin{i) of 0.04 and 

0.22 Jupiter masses respectively. In practice, if a large number of staxs are to be 

sampled, say 100, and we would want a small probability of a false detection in 

the sample, say 10%, then we would want to decrease the probability to 10"'* per 

octave per star. In this case, the mass limits increase to 0.047 and 0.28 Mj for each 

range. The small increase of only some ~25% is due to the fact that the argimient 

of the natural logarithm in eqn. 6.15 is near 20 for this case. 

(6.15) 
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6.2. Monte Carlo Analysis 

Eqn 6.15 will fail for periods longer than the span of observations P q, under 

conditions in which the data collection is periodic, or if the total number of 

observations no is too small. This is because the windowing may imprint its own 

signature upon the derived best fit parameters and the assumption that random 

data are fitted with random phcise breaks down. We devote this section to a Monte 

Carlo anaiysis of synthetic radial velocity data, in order to understand the regimes 

in which our analysis may fail and the manner of its failure. In this way we can 

eliminate false detections and establish the validity of a trend in the data consistent 

with a true periodicity. 

For our numerical experiments we assume radial velocity data are gathered 

for either 6 or 12 yeaxs. These data are spaced randomly in time subject to the 

constraints that data be 'gathered' during the same 6 month period of each year, 

that they be gathered only during 1/2 of each 29.5 day lunar cycle and that they 

be gathered only at 'night'. We run a grid of nine Monte Carlo experiments 

varying the frequency of observation over 1, 5 and 20 observations per year and the 

precision for each meeisurement over 5, 15 and 30 m/s. 

We set velocities corresponding to the time of each observation using a 

Gaussian random noise term and the input error as: 

Vsim(i.) = ftUerr(<.) (6-16) 

with R the random noise term and Uerr is the error for each point. The value for 

VcTT is assigned as noted above. We use the pseudo-random number generator 

'raai2' provided by Press et aJ. (1992) and the rejection method to create Gaussian 

random numbers. In the analysis that follows, we fit a total of 3000 data sets for 
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the amplitude components v,, and 7 for each star over period ranges from 3 

days to 100 years. The boundaxies of each period rzinge are defined in table 6.1. 

We increase each successive fitted period by aji amount such that the total number 

of orbital cycles over the full observation length decrecises by l/2n (1 radian) as in 

the analysis above or the period increases by 1/5 year, whichever gives the smaller 

interA^l. The chance of any particular outcome is given by the fraction of the 

synthetic data sets with that outcome. 

6.2.1. Confirmation of the Analytical Results 

For the subset of experiments with assumed 5 m/s precision, figure 6.1 shows the 

radiai velocity amplitude for each fitted period which is exceeded in 1% of the 

Monte Carlo trials, ie. there is a 99% probability that a specific period analyzed 

will not exceed this value. Experiments with higher or lower assumed precision 

produce limits scaled upward or downward on the plot but otherwise show the 

same qualitative features. Also included axe the iV = 1 limits provided directly by 

eqn. 6.13. In general, the Monte Carlo results confirm the validity of the analytical 

results above. The difference between AT = 1 analytic and Monte Carlo results 

varies about 2%, consistent with statistical fluctuations, except at the assumed 

windowing periods and at periods longer than Pq. The analytical prediction for 

the experiment with the most sparsely taken data (1 measurement per year for 12 

years) lies some ~ 15% below the Monte Carlo result for periods less thaji 2 yeaxs, 

but agrees to ~ 2% over the remainder of the valid period regime. 

A comparison of the limits provided by the analytical (eqn. 6.15) and Monte 

Carlo methods for each period range noted in Table 6.1 are also shown in figure 6.1. 

The assumed windowing periods are masked out of each of the Monte Carlo limits 

and the results represent limits based on the remaining portion of each range. In 
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general, the Monte Caxlo results again confirm the validity of the analytical result 

to within a few percent, with the exception of the series with only one measurement 

per year. In that case, the Monte Carlo experiment produces limits which are some 

50% or more larger than eqn. 6.15 predicts. 

We consider in turn in the sections below the differences between the ajiaJytical 

derivation and the Monte Carlo results due to the long period fall off in sensitivity, 

due to small numbers of observations, and due to the inherent windowing in the 

data. 

The results shown in figure 6.1 show that at periods longer than the 12 year window 

the sensitivity to a velocity signal drops off in very nearly power law form. In light 

of this behavior, we adapt an ad hoc prescription for the velocity limit using the 

eqn. 6.15 result at short periods and a power law at longer periods as 

We then fit for the free parameters a and (3 and thereby recover limits for periods 

much longer than that of the observing window. In this equation, we assume that 

the value of Kx used for long periods {P > (3Po) is that defined by the last period 

range prior to the onset of the fall off. This assumption ensures a smooth joining 

of the two regimes. 

We fit the Monte Carlo results for the constants a and (3 in eqn. 6.17 for each 

of the experiments and plot their values in figvire 6.2 for both the six and twelve 

year observing windows studied. The fitted values for the 12 year window are 

6.2.2. Loss of Sensitivity at Long Periods 

for P < l3Po; 

for P > PPo; 
(6.17) 

typically: 

a Rs 1.86 
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with the turn, off ia sensitivity beginning between 

I A < I 3 <  1.45 

for the 99% probability curve and similar values for the 99.9% probability curve. 

A slightly steeper power law exponent (a 1.92) is found for a 6 year window. If 

we err on the side of caution and assume that the turn-off occurs at the small end 

of the range (by setting (3 = 1.3, for both the 99% and 99.9% probabilities), then 

we provide slightly more conservative limits than the best possible based on our 

Monte Carlo analysis. Under this assumption, we have included in figure 6.1 the 

long period fits for the velocity limits placed upon the data by eqn. 6.17, and the 

shorter period limits for 11 period ranges less than 1.3x12 years. 

6.2.3. Limits of Sparse Data 

When a data set contains only a few mezisurements, a least squares analysis 

will depend strongly upon the measured value and placement in time of each 

measurement. How majiy data are needed to assure that the random data/random 

phase assumption is reliable and we are able reproduce the results of equations 

6.13 (with N set to unity) or 6.15 (for octave period ranges)? Is there a difference 

in the number of measurements that must be made if we assume a strategy of 

taking, say, one or two measurements per year over a long period or taking several 

measurements per year but over a much shorter baseline? 

Taking the first strategy, we assvune the data are gathered, over a 6 year span 

with an error in each measurement of 5 m/s. If a star is observed with a frequency 

of one observation per year, we find (figure 6.3) that the eqn. 6.13 limits with 

A/" = 1 underestimate the Monte Carlo results by more than a factor of two for 

periods shorter than 1 year, and by a smaller margin at zJl periods. The same 
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experiment with a 12 yetir span shown in figure 6.1 shows a much smaller (~15%) 

difference. Increasing to three observations per yeax for 6 years the analytic 

equation underestimates the limits by ~10%, while 5 measiurements per year 

duplicates the analytic results to 5% or better. 

For octave sized ranges, the ajialytical and Monte Carlo results converge 

somewhat more slowly. Figure 6.1 shows that a single measurement per year over 

12 years is sufficient only to provide limits a factor of two higher than would be 

predicted analytically for periods less than 2 yeaxs. When data axe gathered at the 

higher rates shown (5 and 20 obs/yr), the agreement is excellent. .'Vn experiment 

with two measurements per yeax (not shown), for a total of 24 measurements, is 

sufficient to recover the analytical form to ~10% in all period bins. With the six 

year baseline shown in figure 6.3, agreement at the ~20% level is reached if three 

measurements per year (18 total) are taken. 

Taking the second strategy, we assume data are gathered over a two year 

window. We do not believe we can rely upon octave range limits for such a 

short data gathering period because of the large effects of windowing, which we 

discuss below. The long period fall off is similarly affected. We therefore limit our 

discussion for these experiments to limits for individual periods, shorter than about 

one year. With a two year data window and a total of 6 measurements (three 

measurements per year), we again find (figure 6.4) that the Monte Carlo limits 

exceed those of eqn. 6.13 with iV = 1 by more that a factor of two. Increasing to 

6 measurements per year (12 total), we lose only 15% of the maximum sensitivity 

for iV = 1, while 12 measurements per year (24 total) recovers the analytic results 

with only a ~5-7% difference. 

In order to obtain limits which retain the benefits of a given precision to 
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within 15% at any single period, we find that at le«ist ~12 or more observations 

of a star must be made. This number of observations produces limits a factor of 

two larger than predicted over octave rcmges. To reduce the difference to ~5% for 

a single period and 15% over octave ranges requires at least 18-20 measurements. 

Barring windowing effects, these minimimi requirements do not seem to depend 

strongly upon the time span over which the data were gathered, but only upon 

their accuracy and number. 

6.2.4. Windowing 

Sensitivity loss of a factor of two or more is present in 'blind spots' for ajiy single 

period near the assumed lunar and annual windowing periods for every experiment 

performed. There are also double period counterparts and beat periods between 

the lunar and annual data windows, though lower sensitivity loss is evident there. 

Day/night windowing effects are not visible in the limits due to their extreme 

short periodicities. When the data are spaxse and the data axe gathered over a 

short period PQ, the effects are especially pronounced. Figure 6.4) shows that for a 

period Pq of two years, the lunar windowing effects are observable not only at the 

lunar orbital period, but also at the double, triple and quadruple period aliases. 

Additionally, fitting for the long period turn-off becomes of little use because the 

turn-off occurs at a period with lower sensitivity than can be modeled analytically. 

Based on these results, we suggest that the limits which can be placed on 

signals at periods corresponding to a lunar or annual windowing period cannot be 

reduced beyond a factor of two greater than that given by eqn. 6.13 with N set to 

unity at a windowing period or a factor of ~3/2 at one of its double or beat period 

counterparts. 
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6.3. Comparison to Periodogram Techniques 

To obtain definitive probability that a signal that been detected at some period is 

nonrandom, nothing less than a full Monte Carlo analysis is adequate. For a laxge 

survey which is continually updated eis more data cire gathered, such analysis is 

unfeasible because of the considerable commitment of computational facilities to 

perform a statistically mceiningful analysis. Even for the computers of today, a 

sample of 500 staxs might prove unmanageably burdensome. To reduce the effort 

required per star, either periodogram or fitting techniques such as ours may offer 

a lower cost alternative. We wiU now make a comparison of our technique to 

periodogram techniques in common use. 

Each technique is based upon a analysis of the data. Indeed, for equally 

weighted data least squares analysis and periodogremi analysis have been shown 

(Scargle 1982) to be equivalent. The main difference lies in the fact that on the one 

hand, a periodograjn utilizes a normalized measure of the power of the signal at 

some period while our technique relies directly on the value of the best fit velocity 

amplitude. Additionally, with the present analysis, we allow the data to be fit with 

unequal weights, though the amplitude limits derived are based upon only upon 

equally weighted data. 

Let us examine the least squares fitting procedure and, for purposes of 

illustration, limit ourselves to the case of fitting for only the coefficients Va and Vc 

in eqn. 6.3. In this case, the best fit coefficients derived from the minimization 

at some frequency a; = 27r/P for a set of no velocity mezisurements, u,-, are: 

(6.18) 
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and 

. ^ (T. .  ^ fTT 1=1 ,= 1 

where the subscripted C terms are the four components of the covariance matrix 

used to derive the fit (see for example Press et al. 1992 ch. 15.4 for a discussion). 

When these terms are combined to form the velocity amplitude A' as A' = \Jv1 + v'^ 

cind data axe translated in phase by a value r = tan~^(uc/^s) (derived by setting 

Ccs = C'sc = 0) then, as was shown by Lomb (1976), the squaxe of the best fit 

velocity amplitude, A'^, becomes the unnormalized power of the periodogram at 

that period. With the identification of with the periodogram power, we note 

that faJse alarm probabilities are given in each case is given as an exponential of 

A"^, with a normalization given by the variance, <7^, of the data. 

The use of the velocity amplitude rather than a normalized measure of its 

squaxe represents an improvement to existing techniques for several reasons. First, 

a physically meaningful limiting velocity amplitude (or equivalently, a companion 

mass X sin(i)) is explicitly a part of the definition of the probability. A potential 

weakness of this method is that because it utilizes amplitude as a figure of merit 

rather than power, its dynamic range is more compressed on a given plot. .A. 

single dominant peak will not stand out to nearly the extent that occurs in a 

periodogram. In spite of this somewhat minor defect, we submit that a best fit 

amplitude is a fax more useful quantity to an observer than is the power. 

In sections 6.2.3-6.2.4 we have outlined the regimes for which our analysis is 

valid and the manner in which it fails for sparse or windowed data and for very long 

periods. Because of the similar origins of our analysis and periodograms we expect 

that similar failure modes also apply to periodograms. Hence probabilities derived 

from sparse data (no ^ 10 — 15) and at 'windowed' periods such as the annual 
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cycle using a periodograxn will yield erroneous results. Extensions to standard 

periodogram techniques (Irwin et al. 1989 eind Walker et al. 1995) which explicitly 

account for unequal statistical weights and correlations between fit parameters may 

provide more accurate limits than our eqn. 6.15 in such regimes. 

Our extensions to long periods explicitly provide limits on the amplitude of 

the signal (and therefore Msin(j)) possible at any given period at least 10 times as 

long as the data window. The limits account for the fact that a long period signal 

may in fact be near an extremum during the time over which most or all of the 

data were gathered. 

Both techniques may be used to determine the probability of a signal being 

nonrandom for a single period, for a period range or over ail independent periods. 

The Scargle (1982) and HB false alarm probability generates the probabilities, 

in the ideal case, by requiring a Monte Caxlo analysis to specify the number of 

independent periods, N. Their analysis to determine N is limited to sampling 

frequencies below the Nyquist limit however. With unevenly sampled data, it is 

well known that higher frequencies are accessible without aliasing. How far above 

the Nyquist limit a signal can be detected and how many additional independent 

frequencies (if any) are required remains unknown. 

We also require a specification of the number of independent periods, however 

our analysis uses a definition of the number of independent periods (not equivalent 

to the HB definition) based only upon the width of a spectral peak. We make no 

distinction between potentially aliased spectral peaJcs at high frequencies and those 

found at lower frequencies. The excellent correspondence between our analytical 

formalism and our Monte Carlo analysis for each period range shows that the 

definition of N made in eqn. 6.14 is reasonable. The functional dependence of 
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the amplitude limit on N is quite weaJc, going only as \/ln N. When N is laxge, 

as is the case for the shortest period bins, our definition will yield slightly more 

conservative (higher) limits than the comparable HB limits, while for longer periods 

when N ^ 100, our limits may be somewhat lower. 

In this section we apply our analysis technique to data for two stars obtained by 

Mayor and his collaborators at the Geneva Observatory, data obtained by Marcy et 

al. (1997) for the star 51 Pegasi, and to the data obtained by Walker et al. (1995) 

in their 12 year search for extra-solar planets. The Walker et al. radial velocity data 

are for a set of 21 stars with data taken over a 12 year period from 1980-1992. The 

data used in our analysis were originally archived at the Astronomical Data Center 

(URL http://hypatia.gsfc.nasa.gov/adc.html) by Walker et al. upon publication 

of their work. We limit our analysis to the subset of 14 stars for which no visual 

binary companion is known, shown in Table 6.2. For these stars, no other periodic 

radial velocity signatures which could obscure a planetary signature are present, 

and no significant periodicities attributable to plcinetary companions were found 

by the Walker et al. search. 

Using equations 6.4 and 6.15 we can derive for any period (or period range) of 

interest the limit below which random data is fit with probability X to be: 

where we assume the orbital period, P, is at the midpoint of some range of periods 

shorter than (3Po or that P > /?Po- This mass limit depends upon both the velocity 

amplitude limit Kxi which changes slowly, and also the period for which we fit 

the data. The minimum mass detectable by a set of measurements increases only 

6.4. Application to Real Data 

(6.20) 

http://hypatia.gsfc.nasa.gov/adc.html
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as the cube root of the period at short periods, but for P > 0Po, this dependence 

becomes much steeper, increasing faster than P^. 

Once we have mass or velocity amplitude limits for a set of data, we can define 

quantities A/gg and Mggs via eqn. 6.20 as the mass exceeded by chance by a fit at 

the 1% and .1% level of probability in each period range. For a sample of radial 

velocity measurements of say 10 stars observed for 10 years divided up into 10 

period ranges, these values are of interest because if there are no true periodicities 

in the data, we would expect to find by chance one apparent planet with best fit 

mass M > Mgg, but to find a mass greater than A/ggg with only ~10% probability. 

6.4.1. Determining the Measurement Uncertainty 

In order to obtain a value of ap for use in eqn. 6.15 or 6.20, we assume that no 

strong periodic signals are present in the data and that each datum is drawn from 

the same statistical distribution. Then we may use the rms scatter of ail the data 

for a star as an empirical measure of the error, <Tp, for each measurement of that 

stax. For data in which no clear signal is observable, this measurement of the error 

will give a more reliable estimate of the true value than from internal estimates. In 

Table 6.2, we show both tXp as derived directly from the data as well as the average 

of the internal errors for each star (<r,) quoted by Walker et aJ. 

6.4.2. Detecting Large Amplitude and Large Eccentricity Signals 

In this section we show that our analytic technique is capable of detecting large 

amplitude signals and signals with high eccentricity. As an initial test we obtained 

the data for the original discovery of the companion to 51 Pegasi, taken by Mayor 

and his collaborators at the Geneva Observatory. These data consist of the 

original 35 measurements as published by Mayor and Queloz (1995) as well as 
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their observations of the star since that time. The total number of observations 

used in our analysis was 89 radiaJ velocity mezisurements made over 2.4 years with 

internal errors of 15 m/s. The value for Cp was obtained from the rms scatter of 

all of the velocity measurements and was a-p = 44.5 m/s. An independent set of 

meeisurements (Marcy et cil. 1997) was also used to compare the technique using 

higher precision data. A totaJ of 116 meeisurements are characterized by an rms 

scatter of crp=40.6 m/s and were gathered over a toteil time span of 325 days with 

internal errors of 5 m/s. 

We show the results of these two tests in figure 6.5. For each set of 

measurements, we detect a clear peak in the best fit velocity amplitude at a period 

P = 4.23 days, as expected. For the Mayor and Queioz data, we also detect a 

number of side lobes peaJcs which represent the radiaJ velocity signal 'beating' 

against other periodicities in the data such as the 29.5 day lunar cycle (the data 

were talcen predominantly during the same half of each lunar cycle). The Marcy 

et aJ. data show one 99% significant peak just shortward of one year. We consider 

this peak to be aji artifact of the short time baseline of their data (less than one 

yeax) and do not consider it very significant. 

A second 99% significant period is detected at 23.84 days in the Mayor and 

Queioz data. We have re-analyzed the residuals of the measurements (with the 

4.23 day periodicity removed) and found that the peaJc remains and so cannot be 

attributed to an alias of 4.23 day periodicity. Is it an artifact of the rotational 

period of the star itself? We note that the period is roughly in a 2:3 ratio to the 

observed 37 day rotation period for 51 Peg (Baliunas, Sokoloff & Soon 1996). We 

suspect that with the incomplete phase coverage for periods near 24 and 37 days, 

the stellar rotation period may be ali<ised to the observed 23.84 day period. Only 
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complete phase coverage may be able to determine the origin of this signal. 

The independent radial velocity observations of Marcy et al. do not show a 

similar periodicity and the precision of their measurements is only half the best fit 

amplitude from the Geneva data. In their work more than 3/4 of the data were 

gathered in less than two rotation periods of the star. In such a Ccise, it is unclear 

whether a rotation signature would be observable in Doppler spectroscopy data. 

As a second test, we obtained another set of radiai velocity data from Mayor. 

In this case the data were obtained under the condition that the identity of the 

data and whether they contained a signed not be disclosed until the conclusion 

of the test. These data consisted of 45 measurements taken with the CORAVEL 

spectrometer with internal errors of 300 m/s. The data were gathered over 

~15 years and the vedue for <7p obtained from the rms scatter in the velocity 

measurements and was cfp = 800 m/s. 

The best fit velocities and the corresponding 99 and 99.9% probability limits 

for the fits are shown in figure 6.6. In this case, we were unable to detect a 

significant periodicity in the data except a possible long term signal near 15 yr. 

The data show no obvious periodicity in the velocities for orbits of ~15 yr, but do 

show that several measurements axe some 3-5 a away from the mean of any other 

velocity measurements of the star. These data were gathered within 6 days of each 

other in the fall of 1996. 

To test the effect of these data we deleted them from the sample and reapplied 

our analysis. In this case, the rms scatter was reduced to <Tp = 480 m/s and no 

to 40 while the duration of the measurements Pq remained the same. Figure 6.7 

shows the results of this reanalysis. In this case a peak in the best fits for a circxilax 

orbit, well above the 99.9% probability curve, becomes visible at 275 days. With 
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the detection of this peak, we concluded our test and obtained the identity of 

the stax from which the observations were taJcen. The stax from which the data 

were obtained was HD 110833, for which Mayor et aJ. (1996) published an orbital 

solution with a best fit companion mass A/sin(i) = 17 Mj, a period of P = 270 

days and an orbital eccentricity e = 0.7 using data from both the CORAVEL and 

ELODIE spectrometers. The difference in the period derived from our analysis and 

the Mayor et al. fit is due to the inconsistency between the high eccentricity of the 

companion and assumption made in our analysis that the orbit is circular. 

In discussions with M. Mayor and D. Queioz, several issues were brought 

forwaxd. First, the data from the fail 1996 run may have been faulty due to a 

combination of several factors, including a slight misfocusing of the telescope or a 

temperature instability in the spectrometer itself. However, while the measurements 

in question are unusually distant from the mean of the other measurements for 

that star, they were gathered during a single periastron passage of the companion 

and therefore may not contribute as strongly to the detection of the periodicity 

as they would otherwise. A fit for the set of orbital elements would then yield a 

higher eccentricity than is truly the case. 

This case may therefore expose a degeneracy between results using data 

derived from a companion which is truly in a highly eccentric orbit and data with 

possible systematic biases. Our technique is based upon only the lowest order 

Fourier components of the signal (i.e. a circulax orbit) and does not account for 

eccentric motion. The fact that so many data (5 of 45 measurements) were so 

far from the mean ajid that they were from the same observing run suggests that 

removing the data from that run from our analysis is justified. Omitting them, 

we axe able to recover a strong periodicity near the best fit period for the orbital 
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solution. 

With the results from this section we can be confident that our analytic 

technique is capable of detecting signals with leirge amplitude zind/or large 

eccentricity. 

6.4.3. Masses from Best Fit Velocities of the Walker at al. Sample, 

and Analysis of Significance 

We have shown that our cinalytic technique is capable of detecting large amplitude 

periodicities in radiai velocity data. In this section we move to lower amplitude 

signals and upper limits to companion signatures. For each star in the Walker 

et ai. sample, best fit velocities for periods between 3 days and 100 years were 

determined by the least squares method using eqn. 6.3. Statistical weights for each 

datum were taken to be l/o"f, where <r,- is the quoted internal error for each point 

as given by Walker et al. Plotted in figure 6.8 axe the corresponding companion 

masses Mc sin(z) obtained from eqn. 6.4 using the stellar masses from table 6.2. In 

order to determine the significance of any particular best fit value we compare the 

best fit mass for some period to the limit provided by our analytical analysis and 

to Monte Carlo experiments similar to those described in section 6.2 for synthetic 

data. Each of these limits are shown in figure 6.8. 

While as expected from the results of the original analysis of Waiker et al., 

there are no clear cut companion signatures, in several cases the data produce 

statistically significant fits. We tabulate each of these periods in table 6.3. Are any 

of these signatures due to the existence of a companion? Stellar processes such as 

pulsation, rotation or magnetic cycles can affect the measured radial velocity for a 

star and in many cases it is quite possible to fit such signals with orbital solutions. 
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Early in this century for example (see eg. Jacobsen 1925, 1929), the radial velocity 

variations of Cepheid variable stcurs were fit with Keplerian orbits. Although today 

no one would attribute Cepheid radial velocity variations to a companion, the 

principle that processes intrinsic to the stax must be eliminated from consideration 

remains if we are to be certain that a given radial velocity detection is definitely 

due to a companion. 

Many of the signals in table 6.3 do in fact correlate with known periodicities 

due to stellar rotation or magnetic cycles in the star. For exaanple, we find a 

>99.9% significant ~10 yr period in e Eri and two short period signals (at 11.9 

and 52.5 days) with >99% probability. Walker et al. establish that the 10 year 

and 52 day peaks are aliases of each other and McMillan et ai. 1996 have definitely 

connected this periodicity to a stellcir magnetic cycle. Gray and Baiiunas (1995) 

have observed an 11.1 day periodicity in the Ca H&K S-index with an extensive 

data set. They comment that subsets of their data taken during different observing 

seasons produce peaks varying in period from 11 to 20 days. We conclude that we 

are seeing a comparable effect in the Walker et al. radiai velocity data and are in 

fact detecting the rotational signature of the star. 

Further work by the same group (Gray et al. 1996) on the star (3 Com provides 

evidence of a magnetic cycle. However their measurements have sufficient duration 

only to have observed a minimum, and a period is not known. Figure 6.8 shows 

that for /? Com the probability that the best fit velocity amplitude is not random 

exceeds 99% for periods near 10 years. Assuming a 10 year period, we calculate 

that the best fit radial velocity curve went through its minimum in 1988/1989, 

which is coincident with the photometric and Ca H&K minimum observed by Gray 

et al. (1996). Significantly, the radiaJ velocity minimum is not coincident with the 
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velocity span minimum derived from their line bisector cinalysis. 

The star 77 Cep shows >99% significant periodicities at P =164 days and ~10 

yrs. Walker et al. have speculated that the 164 day periodicity weis due to stellar 

rotation. No periodicities are detected in line eisymmetry to ~19 m/s by Gray 

(1994) with measurements spaiming four years. However we find the best fit radial 

velocity amplitude at each of these periods is only 16 and 13 m/s respectively. 

If a direct correlation between a radiaJ velocity measurement and a line bisector 

measurement exists, such signals would be below his detection limit. By ajiaJogy 

to t Eri, we speculate that the 10 year periodicity in rj Cep might be linked to a 

magnetic cycle, but we cannot be certain of its origin. 

Other margined periodicities appeax in the data for HR 8832 and 6 UMa. 

Again by analogy to other stars, in this case e Eri and t] Cep, we might speculate 

that these shorter periodicities are due to stellar rotation, however no certainty can 

be attached to their origin. 

We also find that two staxs in the subset (36 UMa and /3 Vir) show best fit 

minimum masses which, for fitted periods longer than ~12 years, rise above the 

curve for which the best fits are random with 99% and 99.9% probability. Walker 

et al. find similar trends in these stars but make no firm conclusions based upon 

their analysis. Are these signals indications of long period companions, or are they 

also due to stellar effects? We show the data for these staxs in figure 6.10, both raw 

and binned by year. While the raw data show no obvious signals, the binned data, 

particularly for 36 UMa, show some indication of a partially complete sinusoid. 

We note that in both cases, the cxurvature in the velocity trends is of the same sign 

and the portion of the sinusoid is similar, which suggests a long term calibration 

error. However, the binned data for aJl stars taken together shows no such trend so 
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a systematic explanation seems less likely. 

6.4.4. A Check by Monte Carlo Analysis 

Each of the stars in the Walker et al. sample average 3-5 measurements per year 

over the 12 year period and, according to the results of section 6.2.3, this number 

should be suflScient for application of our ajialytic apparatus. We note however, 

that implicit in our analytical derivation of mass limits is the assumption that 

the measurements be at least somewhat regularly distributed. In the case of the 

Walker et al. data, this is not always the case. The data are irregular on both 

short time scales (ie. 3 night runs consisting of 1-3 velocity measurements per star 

per run) and longer time sccdes, for which more data may be loosely clustered on 

several year time scales due to chajiges in observing procedures etc. Because of 

these irregular sampling patterns fits may be less tightly constrained than a more 

evenly spaced data set, and the limits provided by our analytic apparatus may 

become misleading. 

Since the Walker et al. data are rather irregular, we examine the effect on 

our analysis technique by performing a Monte Carlo experiment and comparing 

the result to our analytic formalism. We create synthetic data sets using a 

constant value of the error, <7p, equal to the rms scatter of the observed velocity 

measurements for each star. This value is input into eqn. 6.16 to derive individual 

simulated velocity measurements. We use the observation times given by the 

data itself. We fit the measurements and derive best fit velocity amplitudes (and 

corresponding Mcsin(i) values) for periods between 3 days and 100 years Each 

synthetic datum used in the fit is weighted with the internal error in that point 

(quoted by Walker et al.) as l/<r,(f,)^. 
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The results of these experiments are shown as the solid histograms in figure 

6.8. In general, the agreement between the analytic limits and the Monte Caxlo 

experiments is good. However a small systematic trend towards larger limits for 

the Monte Caxlo experiments is foimd. Typically the difference is 10% or less, 

however, in the most extreme case {6 UMa), the limits produced are about 20-30% 

higher than with the analytic method. This star has the shortest time baseline of 

any in the sample as well as one of the largest degrees of clumping of any star in 

the sample, as measured by the ratio of the number of data to the number of runs. 

A test in which we replace in eqn. 6.17 the number of data, no with the number 

of runs recovers the Monte Carlo results for this star quite well. The star e Eri, 

for which the data are the most highly clumped of ajiy star in the sample, also 

produces analytic limits lower than reproduced with the Monte Carlo experiment. 

In this case, replacing no with the number of runs produces limits much larger than 

the Monte Caxlo result, so we cannot recommend such a procedure for general use. 

In the case of one star (HR 8832), two measurements were made with a 3-1/2 

yeax separation from any other measurement for that star. This case provides an 

interesting test in the limit of very irregularly spaced data. We find that the limits 

derived from the Monte Carlo experiment are quite similar to the analytic result 

except in the range between about 8 and 12 years, where limits some 20% laxger 

than those derived via eqn. 6.20 axe found. The longer period fall-off characteristics 

are unaffected by the irregularity. 

The sensitivity fall off at long periods for each star is similar to that produced 

in the synthetic data. We show the derived fit values for the power law exponent 

and the long period turn off in figure 6.9 for the sample of 14 staxs. The sharp 

upturn in limiting velocity at long periods produces a power law exponent which 
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is best fit with values neax a = 1.86, while the turn-ofF period, (3, is best fit with 

values near (3 = 1.45, but with a larger scatter than is present in the synthetic 

data. Because the scatter is by its nature rather unpredictable from star to star, 

we retain the low /? = 1.3 value found for synthetic data when determining l imits  

via eqn. 6.17 or 6.20. 

The limits provided by our analytic expression produce upper bounds which 

are ordinarily ^10% different than those produced via Monte Carlo experiments. 

In the most irregularly spaced data, a difference of up to 20-30% can occasionally 

be produced. In several cases, the difference results in possibly spurious 'detections' 

of marginal signals by the ajialytic technique where the Monte Carlo limits do not 

show that the periodicities are significant. In some of these cases we are able to 

attribute the detections to physical processes discussed in the literature. In no case 

do the analytic limits exceed the 99.9% level of probability where the Monte Carlo 

result did not also show at least a 99% probability. Despite this level of difference, 

our conclusions about the significance or lack of it for any periods and companion 

masses for each star in the Walker et al. data remain unchanged. We are confident 

that this method can be relied upon to obtain probabilities that a given set of data 

contains a periodic signal. 

6.4.5. Sensitivity to Short Period Planets 

For the star with the lowest companion mass limits (e Eri), we have also plotted 

in figure 6.8 several recent planet detections (Mayor and QueIoz 1995, Marcy 

and Butler 1996, Butler and Marcy 1996, Lathajii et al. 1989, Gatewood 1996, 

Noyes et al. 1997) and Jupiter. Extra solar planets with combinations of period 

and mass like those shown would have been readily detected by Walker's radial 

velocity measurements. These stars do not have such compzinions. For most 
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of the stars in the sample, the data are too noisy to have reliably detected a 

radial velocity signature such as would be predicted for the companion to LcJande 

21185, announced by Gatewood (1996) but which remains unconfirmed. Planets 

such as Jupiter, which would appeax at P = 12 years with a typical value of 

A/csin(i)=0.64Mj would not have been reliably detected. The best fit values 

exceed this period/mass combination in 40% of the sample. 

The analysis of Walker et aJ. sets upper limits to the mass of companions in 

their sample (x sin(i)) of < IMj and < 3Mj in periods of less than 1 year and 

15 years respectively. In general, our cmzJysis provides limits which are somewhat 

lower than theirs in both long and short period orbits. For one year periods, we can 

limit companion M sin(i) vaiues to < 0.7Mj for all but three stars in our subset 

and < l.OMj for the rest. In 15 year orbits, our analysis limits possible Msin(i) 

values to < l.5Mj for every star except 9 UMa, for which only 6 years of data were 

gathered. For this star, the limit is < A.OMj. We have also extended range over 

which companion signatures are constrained to shorter periods than were analyzed 

in Walker et al. The limits for these extreme short period orbits (P < 40 days) 

correspond to companion masses (x sin(i)) below 0.4 Mjsin(i). 

Under either our own analysis or the original analysis of Walker et al., the 

companion mass limits derived from the data essentially eliminate brown dwaxfs 

and large Jovian planets with periods ^ 15 years, barring very unfortunate 

inclinations. Given the detections of significant periodicities by either our analytic 

treatment or Monte Carlo experiments, we find more signals present than can be 

attributed to purely random data. In some cases, such detections may be due to 

physical mechanisms other than a companion, and we have compaxed these to 

known periodicities due to stellar rotation or magnetic cycles, where they have 
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been identified in the literature. In no case do the limits eliminate the possibility 

of gas giants such as exist in our solar system or low mass brown dwarfs, especially 

in the period/radius range >12 yr/5 AU where theory predicts such companions. 

6.5. Strategies for Large Radial Velocity Surveys 

There are currently six active groups with programs for radial velocity searches at 

the <10-20 m/s level. Three groups began searches at this precision in 1987-88 

(Cochran & Hatzes 1994 (Texas), McMillan et al. 1994 (Arizona), Marcy &: 

Butler 1992 (Lick)), while one (Duquennoy & Mayor 1991 (Geneva)) have used 

lower precision measurements with the CORAVEL spectrometer (~ 300 m/s) to 

investigate stellar binary companions and have recently built a new spectrometer 

(ELODIE) to allow ^^15 m/s precision measurements to be made. The latest high 

precision searches (Kurstner et al. 1994 (ESO), Brown et al. 1994 (CfA)) began 

in 1992 and 1995 with quoted precision of ~4-7 m/s and ~10 m/s respectively. 

Another group (Walker et al. 1995 (UBC)) concluded a 12 year search in 1992. 

Two others (Ma^eh et al. 1996 (CfA), Murdoch et al. 1993 (Mt John NZ)) obtain 

precision of ~500 m/s and ~60 m/s respectively. 

The recent discoveries of sub-stellar mass companions around other stars have 

stirred new interest in very large radial velocity surveys. The Geneva group for 

example, intends to expand their search to ~500 stars in the northern hemisphere 

(ELODIE) and another ~800 in the southern hemisphere (CORALIE), and other 

groups have similar expansions underway. In order to observe as many stars as 

possible with a finite telescope allocation, such large surveys must necessarily aim 

toward the most efficient use of the available observing time. The goaJ of such large 

surveys might be properly stated as '^What fraction of stars have a companion (or 
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a system of companions) and what is the distribution of the masses, periods and 

eccentricities of those companions?". 

In order to answer this question three criteria must be met. First, an observer 

must first detect a variation in the radicd velocities measured for a star about which 

a prospective companion orbits. Second, the observer must determine the origin of 

such variations by fitting a Keplerian orbit and by making additional photometric 

or spectroscopic observations to constrain effects due to the stellax photosphere. 

Finally the observer must determine the extent to which the survey is complete: 

what fraction of stars which were observed may have companion signatures which 

went undetected over the course of the survey? Based on the analysis in this paper, 

we can suggest strategies for the most efficient methods of detecting radial velocity 

signatures and which also provide meaningful upper limits on the amplitudes of 

undetected signatures. 

Let us suppose that the random error for each measurement is dominated by 

photon noise, ie. that a-p oc where t is the length of a single observation. 

This should be the case provided detector read noise is not significant. It follows 

from eqn. 6.15 that the limiting amplitude, K, is proportional to 1/v^, ie. K 

depends on the total integration time devoted to a stax, tn, independent of number 

of observations making up that time. In other words, as long as eqn. 6.15 holds and 

the total integration time is the same, maicing many lower precision measurements 

is equivalent to making fewer high precision measurements. Since constraining 

additional orbit paxameters such as eccentricity is at its most simplistic level an 

exercise in detecting higher order Fourier components of the signal, this equivalence 

holds for orbit determinations as well as for detection of a periodic signal. We 

caution, however that with lower precision data, larger amplitude systematic errors 
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may go undetected. With 15 m/s precision for example, the signal of Jupiter could 

be completely obscured by a hidden systematic error of amplitude ~10 m/s. 

From section 6.2, to insure thcin eqn. 6.15 holds, the number of observations, 

no, must be at least ~12 and preferably as high as 20 in order to constrain octave 

period ranges. The limits are degraded most severely for periods less than 1-2 

years. Longer periods limits axe nearly identical to the analytic prediction even 

for very sparse data (see figures 6.1 and 6.3). This is because with only a few 

observations of each star, a companion signature could stiU slip through undetected 

if by some unfortunate coincidence its radiai velocity "zero crossings" corresponded 

to the times at which the stax was observed. For P ^ 1 year, there are very many 

independent periods, so that the possibility of any one of them coincidentally 

undergoing such a zero crossing event is very high. For P ^ I year, where there are 

relatively few independent periods, such a condition becomes much more unlikely. 

The cost in observing time to obtain useful limits if there axe few observations 

is great. When the data are sparse and eqn. 6.15 breaks down, for exaxnple with a 

total of either no = 6 or no = 12 observations and the same total integration time, 

our Monte Carlo simulations show that the limiting amplitude is in fact twice as 

big for any single period, and ten times as big for octave period ranges. Because 

12 much lower precision measurements would identically constrain short period 

signals as 6 high precision measurements, the increase in sensitivity translates to a 

reduction factor of 4 or 100 in the amount of observing time required to identically 

constrain the existence of companion for any single period or over octave ranges in 

orbits of ^ 2 years. 

As an example of a strategy which addresses this concern, suppose a survey 

is to observe 500 stars and is to last at least 12 years. Let us also suppose that 



1/4 of the use of a telescope is dedicated to the radial velocity measurements, 

yielding about 400 hours of integration per year to be divided among the steirs in 

the survey. The total number of observations to obtain 12 for each stax is 6000. A 

good "quick look" could be obtained after the first two years if each observations 

taJces 2x400/6000 hours = 8 minutes. 

Butler et al. (1996) report that precision of ~3 m/s can be obtained in a 10 

minute exposure of a magnitude K = 5 star on a 3 meter class telescope. However, 

in a laxge survey most stars will be dimmer thcin V = 5, with a practical limiting 

magnitude between V = 7 and K = 8, depending on the size of the survey. If the 

average star is of magnitude V = 7, a meeisurement with 3 m/s precision would 

nominally require about 60 minutes. With such long duration measurements each 

star in the program would average less than one observation per year and would 

maJce a large, high precision survey unfeasible. In order to complete a large survey 

at <5 m/s precision a large allocation of time on an 8-10 m class telescope would 

be required. If instead we allow reduced precision measurements of ±10 m/s, using 

our assumption that the precision is proportional to 1 /\/F, a single measurement 

would require only about 6 minutes on a 3 meter telescope, which would be feasible 

for a large survey. 

For this to be practical without poor observing efficiency, the time from the 

end of an observation to the beginning of the next on a new star must be short, 

ideally a minute or less. During this time, the telescope must be slewed to the new 

star, while the CCD with the exposed spectrum is read out. Automatic slewing 

and acquisition would make this quite practical. Also, for a typical spectroscopic 

CCD with around 3 million pixels, the required read rate of 100 kpixel/sec should 

be readily achievable at negligible read noise with current devices. A 8 minute 
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cycle time with 6 minutes data acquisition would thus be a reasonable target, and 

yield 72 minutes of integration for each stax, spread through the first two observing 

seasons. 

With this strategy, an observing program should be able to sustain 6 

measurements of every star every year that the program is continued. If after 

two years, variations are detected in some stars, additional measurements of those 

stars would be possible if constant velocity stars were observed only 1-3 times 

per year. This compromise has the advantage that limits on companion masses 

are well constrained by such density of points and orbital solutions, should a 

star's velocity later be observed to vary, would also be well constrained. A second 

advantage is that after the first two years, strong limits on the existence of a 

companion signal are available for short periods and these limits extend to longer 

periods incrementally as long as the program is maintained. In contrast, a high 

precision/sparse observation strategy with say 1-2 measurements per year, will 

strongly limit short period signatures only after 6 or more years of the program has 

passed. 

As a second example of observing strategy, we consider a search for a Jupiter 

mass planet with the same 12 year period as Jupiter, around a star with the same 

mass as the sun, what accuracy measurements are needed over what period to 

ensure only 1% probability of a false detection for any given star? For sets of 

observations spanning 6 and 12 years figure 6.11 shows the limiting mass above 

which a companion would be detected with 99% probability in a given set of data 

at any single period. A 1 Mj companion in a 12 year orbit around a solar twin 

will have a best fit mass of ~ 0.64Afj assuming a random inclination. We require 

via eqn. 6.20, that data be taken with precision ±5 m/s for 12 years with a single 
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observation per yeax in order to detect such a companion. Increasing to 5 or 

20 observations per year, only 15 or 30 m/s axe required, respectively, with the 

requirement that no hidden systematic errors are also present in the data. For 

an identical number of measurements per year, a 6 year baseline requires more 

than 6 times the precision in each measurement to similarly constrain a long 

period companion, or 36 times the observing time each yeax. Clearly the cost of 

impatience is very high. 
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signals and Bob McMillan, Adam Burrows, Paul Harding and Heather Morrison 
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Grants NAGW-34Q6 and NAS7-1260. 
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Table 6.1 
Period 
Ranges 

3-6d 
6-12d 

12-24d 
24-48d 
48-96d 

96d-0.5yr 
0.5-lyr 
1-2 yr 
2-4 yr 
4-8 yr 

8-12 yr 
>12 yr 



HR 

509 
937 
996 

1084 
1325 
3775 
4112 
4540 
4983 
5019 
7462 
7602 
7957 
8832 
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Table 6.2. The Subset of 14 Staxs Included in our Analysis 

HD Name M/Me No. No. Duration M/Me 
(m^) (m/s) Obs. Runs (yr) 

10700 T Cet 0.87 13 17 68 39 11.7 
19373 L Per 1.15 15 18 46 29 10.8 
20630 Cet 0.98 13 20 34 22 10.0 
22049 € Eri 0.82 14 16 65 34 11.1 
26965 o^ Eri 0.84 14 19 42 28 11.0 
82328 e UMa 1.45 24 21 43 23 6.0 
90839 36 UMa 1.08 16 21 56 36 10.7 

102870 (3 Vir 1.22 14 26 74 48 11.7 
114710 0 Com 1.09 16 18 57 40 11.4 
115617 61 Vir 0.98 13 18 53 35 11.4 
185144 a Dra 0.85 13 19 56 37 11.5 
188512 (3 Aql 1.30 12 14 59 39 11.4 
198149 Tj Cep 1.36 12 19 58 39 11.2 
219134 0.79 11 15 32 23 10.6 
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Table 6.3. Detection of Significant Periodicities 

Period range Stax Period® Companion'* 
Mass (Mj) 

Probability of Chemce 
Detection in Period Range 
Analytic Monte Carlo 

3-6d 
6-12d e Eri 11.9d 0.14 <1% 

r2-24d 
24-48d 
48-96d e Eri 52.5d 0.24 <1% 

96d-0.5yr Tj Cep 164d 0.54 <0.1% <1% 96d-0.5yr 
HR 8832 165d 0.35 <1% 

e UMa 179d 0.63 <1% 
0.5-lyr 
1-2 yr • - • 

2-4 yr 
<1% 4-8 yr e Eri >7 yr 0.7 <1% <1% 

8-12 yr e Eri 10 yr 0.95 <0.1% <1% 8-12 yr 
7 Cep 10 yr 1.2 <1% <1% 

(3 Com 10 yr 1.05 <1% 
36 UMa 10 yr 1.1 <0.1% <0.1% 

>12 yr 36 UMa 15 yr 2.0 <0.1% <0.1% >12 yr 
25 yr 5.3 <0.1% <0.1% 
50 yr 24 <0.1% <0.1% 

(3 Vir 15 yr 1.9 <0.1% <0.1% (3 Vir 
25 yr 5.0 <0.1% <1% 
50 yr 23 <1% <1% 

^We exclude 'significant' periods which coincide with known einnual or lunar 
windowing periods 

''Best fit mass assuming that the periodicity is actually due to a companion. 
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Figure 6.1 Monte Carlo (solid line) and analytic results (dashed line) for the velocity amplitude 
which, for a given fitted period, is exceeded by chance in 1% of analyses of simulated random 
data. A second solid line (histogram) shows the Monte Carlo results for the amplitude which is 
exceeded at any period within a range of approximately one octave, while the dotted histogram 
line shows the result from our analytic expression, eqn 6.15. For each of the experiments in the 
bottom two frames (5 and 20 obs./yr) , the analytic and Monte Carlo results are indistinguishable. 
Assumed windowing at the lunar and annual periods as well as their double period counterparts 
are excluded from the Monte Carlo limits in their respective ranges. 
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Figure 6.2 Best fit values for the long period sensitivity fall off parcimeters a and 0 for the nine 
Monte Carlo experiments run for both 6 and 12 year baselines. 
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Figure 6.3 Velocity limits given by Monte Carlo simulations (solid) , single period (N= l) analytic 
limits (dashed) . The histograms represent the Monte Carlo (solid) and analytic (dotted) limits for 
octave sized ranges. Each of the histogram limits ignore the periods affected by the assumed lunar 
and annual windowing of the data. A 6 year window is assumed with 1 (top) , 3 (middle) and 5 
(lower) observations per year. 
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Figure 6.4 Velocity limits given by Monte Carlo simulations (solid) , single period (N= l) analytic 
limits (dashed) . A 2 year window is assumed with 3 (top), 6 (middle) and 12 (lower) observations 
per year . As before, histograms represent the Monte Carlo (solid) and analytic (dotted) limits for 
octave sized ranges and each of the histogram limits ignore the periods affected by the assumed 
lunar and annual windowing of the data. In this plot however, for periods longer than 1 year the 
Monte Carlo histogram limits are suppressed. 
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Figure 6.5 Best fit velocities for the star 51 Pegasi. The solid and dotted histograms denote 
respectively, the limits below which random data would occur with 99 and 99.9% probability. 
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Figure 6.6 Best fit velocities for the data derived from star HD 110833. A 15 year periodicity is 
apparent in the best fits with >99% probability that it is nonrandom. 
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Figure 6.7 Best fit velocities for the the subset of the data from HD 110833 with 5 measurements 
removed. In this case, a periodicity is present at 275 days with probabability >99.9% that it is 
non-random. 
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Figure 6.8 Best fit companion mcisses (x sin(t)) for each star over a range of periods corresponding 
to the most sensitive range of the data. The histograms represent the 99% mass limits for each 
specified period range as given by our analytic formulation (dotted histogram) cind based on a 
Monte Carlo experiment (solid histogram) consisting of 3000 simulated data sets. Also plotted 
(squares) are the measured Mcsm(i) values of recent planet detections (see text). Jupiter and the 
astrometrically detected (but unconfirmed) compamion to Lalande 21185, Jire shown omitting a 
sin(i) correction (circles). 
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Figure 6.8-continued 
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Figure 6.9 Best fit values for the long period sensitivity fall off parameters a and /i derived from 
the data. Values for both 99% (triangles) and 99.9% (x's) fall-off are shown. The two points lying 
to the right of the meun group originate from the star 6 UMa and are consistent with the Monte 
Carlo results for a 6 year data span. 
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Figure 6.10 Rcidial velocity data for the stars (a) 36 UMa and (b) 0 Vir, for which long term 
trends are observed using both our analysis technique sind the Walker et al. analysis. Both the 
published velocity data and the weighted mean of the velocities for each year are shown. The 
binned data for the sample of 14 stars taken together is shown offset by —50 m/s. No trend similar 
to that found in either 36 UMa or 0 Vir is present, indicating that a systematic error common to 
all stars is unlikely. Errors are tz^cen from Walker et al. 1995, while the errors in the binned points 
are derived from the central limit theorem l/y/n improvement in the error of a multiply saunpled 
mean. 
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Figure 6.11 Limits above which data of a given quality and duration constrain the mass of 
companions at the 99% level for any single period. Solid lines represent a 12 year span of data 
taken with 5, 15 and 30 m/s precision while dotted lines represent a comparable 6 year span. 
Limits for the 6 year baseline with one only measurement per year are omitted here because they 
do not correspond to results from Monte Carlo experiments (see section 6.2.3) . 
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CHAPTER 7 

CONCLUDING REMARKS AND WHERE WE OUGHT TO GO 

FROM HERE 

Over the past few hundred years, we've developed an extremely detailed 

understanding of the mechajiics ajid characteristics of objects in our own solar 

system. Over the past few decades we've staxted to unravel a few of the problems 

associated with it's formation and origin. The kinds of questions now under study 

for our own system are not of the type 'what objects are in the solar system and 

how do they move?' but rather 'what is the internal structure of this or that 

object, how did it get that way and what is it likely to do in the future?'. 

The two thrusts of star formation research: first, to acquire a more complete 

inventory of the types of solax systems which exist and second, to more completely 

understaxid how those systems came to be the way they axe now, have each been 

addressed in this thesis. Our focus has been primarily on understanding the 

physical processes important during the formation of solax type stars, but we've 

also focused on the observable signatures of such systems and limits which caxi 

be placed on their detection by observers here in our solax system. Working with 

Willy Benz, Dave Amett, Fred Adams and Tamaxa Ruzmaikina, I have numerically 
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simulated the evolution of meissive circumstellar disks and anzJyzed the results 

for their dynamical and observable spectral characteristics. With Roger Angel, I 

have outlined the detection limits available to radial velocity searches for low mass 

(ie. planet or brown dwarf) companions. We then used these limits to suggest an 

efficient strategy for new or continuing large radial velocity surveys. 

Many of the problems which remain reqtiire a considerable allocation of 

resources in numerical computation or telescope instrumentation, so it is important 

that we address the questions which most efficiently provide answers to our 

remaining questions. On the theoretical side for example, many of the uncertainties 

which remain require that no symmetries be assumed which reduce a problem 

from three to two, or from two to one spatial dimensions. A complete treatment 

of all three spatial dimensions is required. On the observational side, developing 

an inventory and understanding of the kinds of systems which exist requires both 

very high spatial resolution of the sky and very high contrast resolution, in order 

to detect very faint objects (planets and brown dwarfs) near very bright objects 

(stars). 

The past decade or two has seen a great deal of work attempting to understand 

the origin of various morphologies of stellar systems. Not much attention has yet 

been paid to what the systems simulated would actually look like to an observer 

attempting to detect such objects in some wavelength band. It is not too much 

of an exaggeration to say that the current state of affairs is one in which we can 

now make stellar systems of nearly any morphological type (single, binary, multiple 

etc.) through either cloud collapse or disk evolution. However, several questions 

about the formation morphology of disk systems and the formation of planetary 

systems do remain. Also, the field is nearly wide open in terms of understanding 
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the observational characteristics of simulations of the newly formed systems of all 

morphologies. 

Several of the areas requiring further development which build on the work 

presented here are (1) to characterize the full inventory of low meiss objects which 

exist in the solar neighborhood and in the galaxy as a whole and similarly, to 

understand the characteristics of forming systems. Just as importantly, we also 

require reliable limits on what types of objects and systems are not detected and 

limits on our sensitivity to detect various classes of objects (2) to understand 

in detail the initial formation processes of circumstellax disks, from small scales 

outward, (3) to understand the transport and evolution of ice and dust within the 

nebula in order to better understand both radiative transfer processes (and the 

consequent observational characteristics) and the formation of low mass companion 

objects through agglomeration and (4) to understand the early stages of growth 

and migration of Jovian companions within disks. 

7.1. Taking Inventory: What is Possible Using Various Detection 

Techniques 

In chapter 6, we discussed limits on the detection of low mass companions to nearby 

stars via a single technique: radial velocity measurements. There are also a variety 

of other possible techniques which are in various stages of study or implementation, 

including micro-lensing, astrometry, occultation cind direct imaging. 

Of the many different techniques that are now or soon will be available, which 

provides the best chance of detecting companions of other staxs, or of detecting 

low mass objects not orbiting a star? What kind of objects should we expect to 

detect with one technique or another and what kinds of systematic biases exist for 
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each? How can we know how complete the sample of detected objects is and what 

kinds of objects are likely to be missed? A study which compares the sensitivities 

of the various techniques and their systematic 'blind spots' would be of great use 

in establishing the true distribution of low mass objects. 

Some of these other techniques have in fact begun to bear fruit, with a variety 

of low mass objects floating in free space (Hillenbrand 1997, Reid et al. 1998, 

Luhman et al. 1998), bound to stellar primaries (Nakajima et al. 1996) or even 

bound to each other (Basri &: Martin 1998). Others, such as micro-lensing (Peale 

1997) and occultation surveys (Borucki et al. 1998), are not yet underway. 

Of all of the techniques mentioned, only direct imaging is capable of detecting 

free floating low mass objects. As marvelous as it is to have a picture of the object 

you're looking for, it is also true that direct detection suffers from some systematic 

biases. Among them axe the fact that a substellar mass compajiion will be orders 

of magnitude dimmer than it's primary. Detection will therefore require quite 

high angular resolution on the sky in order to make sure that the point spread 

function of the star on the focal plane of the telescope is small enough to enable 

the detection of the slight additional flux from the companion. 

Other techniques also have biases. For example, it is well known that radial 

velocity techniques are biased towards detecting companions close to their primary 

because of the larger reflex velocities imposed on the motion of the star by a close 

companion. For a similax reason, astrometry is biased toward large companions at 

large distances from their primary, since a planet in a distant orbit has a larger 

'lever arm' to perturb the motion of the primary. Both have a systematic bias 

against detecting companions in large orbits due to the attention span (and in 

some cases life span) of the observer and/or the apparatus used to maJce the 
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measurements. 

Micro-lensing and occultation searches also suffer from systematic biases. 

In the case of these two methods, the biases arise because of the large axea of 

sky which must be seaxched at a very high rate of observation. For example, 

occultations of a star by a companion will occur in only a smedl fraction of stars 

which have compajiions (of order a few percent) and will last for only a few hours. 

Micro-lensing events will undoubtedly prove to be quite limited for detecting 

individual objects since an event can only be observed once. On the other hand, 

it may prove to be of great use in establishing larger statistical distributions of 

objects than can be obtained by any other means. 

Given these data on the possibilities of various detection techniques, what is 

the best strategy for getting a Icirge enough sample of low mass companions of 

every type (planets, brown dwarfs or low mass stars) around stars near the sun, 

floating freely in space and in the galajcy as a whole? 

7.2. Disk Formation 

Circumstellar disks extend over a very large range of radii: from a few Rq to 

several hundred AU. They form from the inside out, as higher and higher anguleir 

momentum material falls into the system. As we found in the work discussed in 

chapters 2 and 4, they axe notoriously difficult to model due to the vastly disparate 

time scales involved in their evolution. Because of this problem, numerical 

simulations of star formation have generally fallen into two general categories: 

simulations of collapse and simulations of already formed, narrow tori or disks. 

Only a few collapse calculations have been done which also follow the evolution 

until a disk forms (eg. Laughlin and Bodenheimer 1994; Boss 1993, 1996). Each of 
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these works resolves the innermost regions on a scale of several AU, which implies 

that the spatially small, inner disk regions are not important for the evolution of 

the gross structure of the system. They sacrifice the resolution of the small scale 

features of the forming disk in favor of understanding the large sccile morphology 

of the system. 

We have shown (chapters 2, 4) that the inner regions of already formed disks 

are in fact very dynamically active and do affect the gross structure of the system. 

If a spatially large disk (> 50 AU) is to form we must understand how the dynamic 

inner region can sustain itself while more distant regions form. The small scale 

features of the collapse from the star outward must be resolved. I suggest a series 

of numerical simulations modeling the formation of circumsteUar disks from this 

perspective. 

Stabler et al. (1994) has extended the work of Cassen and Moosman (1981) 

to show that as the infall proceeds and the infalling material no longer intersects 

the stellar surface, three distinct regions form. Each region expands radially as 

Innermost is a Keplerian disk, while in the outer regions the disk is characterized 

by infalling matter with comparable radial and azimuthai velocities. In between 

lies a transition region (modeled in their work as a discontinuity) in which the 

matter loses much of its radial velocity and moves into the Keplerian inner region. 

I propose that numerical hydrodynamic techniques like the PPM code 

discussed in chapter 2 be used to simulate the early evolution of the systems like 

those studied by Stabler et al. Such a study should investigate several questions 

not possible to address in their work. In particular, they study only axisymmetric 

and inviscid systems; each fluid element conserves jz-, the ^-component of specific 

angular momentum. Transport through the disk is provided by accretion of 
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additional low angulcir momentum material onto the surface of the disk from above 

and below. They also posit a meissive 'fly-wheel' ring in their transition region, 

which is modeled only cis a discontinuity. Such assumptions axe unsatisfactory 

because the forming disk will develop shocks and turbulence and therefore 

become dynaxnically unstable. Shock dissipation and the eventual formation of 

non-axisynunetric structures will play a crucial role in determining the structure 

and subsequent evolution of this region and of the disk as a whole. 

In order to model the dynamics of the forming disk it is likely that three 

dimensional simulations will be required, at high computational cost. A useful first 

step can be made if we assume that the collapse originates from a cloud in solid 

body rotation (see Stabler et al. figure 2). Then at any given instant the highest 

angular momentum material falling onto the disk will come from the equatorial 

regions of the collapsing cloud. With this assumption, material falling onto the disk 

from above and below can be neglected and the system can be modeled in only two 

dimensions (r and (f>) but still preserve many of the important physical phenomena. 

Such a study is a natural outgrowth of this thesis because the dynamically 

important effects we have described require only small modifications of existing 

code to address. For example, a number of the simulations performed in chapter 2 

assumed an infall onto the outer edge of the disk, so implementation of the infalling 

cloud matter will be a trivial adaptation of already existing code. Also, because 

the collapse and disk growth are self similar, modeling the disk formation for the 

relatively short time scale allowed by a mvdti-dimensional hydrodynamic scheme 

will give a good picture of the disk even at much later times. 

This study will provide a wealth of information on the properties of a 

previously unexplored region of parzimeter space. Several important questions 
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which become accessible with this work cire: What is the initial naass distribution 

in the disk? Is it a power law like that given by the results of Stabler et al. and 

others, or is it flatter/steeper? To what extent can it be fit to a power law at all? 

What is the form of the trainsition region and how does it vary in time? What is 

the character of the boundaxy layer between the disk and star? 

Ultimately, when high resolution three dimensional simulations become 

computationally feasible, another set of questions can be addressed. For example, 

what is the origin of the bipolar jets observed to be coming from forming stax/disk 

systems? Undoubtedly magnetic field effects are importajit in this same region. 

Some work has already been done (Stone et al. 1996, Shu et al. 1994a, 1994b, 

Najita & Shu 1994, Ostriker & Shu 1995, Ouyed &: Pudritz I997a,b) to try and 

understand what their effects are on the system, but more work is required. .A.n 

interesting question that bears on both the star/disk boundary layer and the effect 

of magnetic fields is the question (proposed by Shu et al. ) of how and whether 

mass is accreted onto the star through magnetic flux tubes at the interface. 

7.3. The Transport and Evolution of Dust in the Disk: Effects on 

Energy Trsuisport 

We have shown (chapter 4) that a correct model of the spectral energy distributions 

(SED's) of observed systems requires a detailed understanding of the processing of 

dust within the disk. In the regions of the disk within a few AU from the stax, gas 

may be heated to temperatures above the destruction temperature of dust grains 

contained in the nebula. We have shown that if dust which is destroyed in the hot 

midplane of the disk reforms quickly as it is processed to high altitudes, the SED's 

synthesized from our numerical simulations produce insufficient flux in the near IR 
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(~l-5 /iin) to reproduce observed systems. On the other hand, if dust reforms on 

a longer time scale, comparable or longer than the convective overturn time scale 

so that most of the refractory material is found in the g«is phcise or in a grain size 

distribution strongly modified from its originzd distribution, then we may be able 

reproduce the SED's of observed systems in the near infrared. 

The cissimiptions underlying our models are that the disk is locally plane 

parallel and vertically adiabatic at each location in the disk. No true three 

dimensional calculation of the vertical structure, no self consistent modeling of the 

transport of dust from low to high altitudes is done and no evolution of the grain 

size distribution is incorporated into the hydrodynamic calculation. For a complete 

picture of the evolution all of these effects must be included in the calculation. 

Work to study the evolution of turbulence in disks (Cabot 1996, Balbus, Hawley Sz 

Stone 1996) for some conditions. However they have not studied its effect on the 

grains swept along with the gas. 

Rather than studying its origin I propose a study of the observational 

consequences of turbulence. More specifically I propose a study of the processing 

of disk gas and dust in the vertical coordinate of the disk. Cabot (1996) has 

shown that full three dimensional simulations may not be required to obtain some 

information from such a study because the large Keplerian shear quickly removes 

azimuthal variations. A two dimensional study in r and z may therefore provide 

many of the physical properties of the disk necessary to model the evolution of the 

dust and ice present. 

This work will require that several species of dust and ice be evolved separately 

through each simulation. The 'PROMETHEUS' code, which utilizes the PPM 

hydrodynamic method and which is used in chapter 2, can be easily adapted 
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to this task. In its original implementation, it is used to study the evolution 

of nuclear species inside supemovae (see eg. Bazcin & Amett 1997). Much of 

the machinery for multi-species evolution has already been thoroughly tested. 

Remaining tasks involve adaptation of the code specifically to the problem of ice 

and dust vaporization and reformation reactions ajid the specification of the initial 

state of the system. 

The specific simulations I propose should concentrate on modeling the vertical 

structure of the inner disk where it is warm enough that ice and dust can be 

vaporized. This region extends outwards from the steUax surface to perhaps 1-2 AU 

from the star. The outcome of these simulations will lead to a better understanding 

of the influence of solid material on the transport of energy through the disk and 

its dissipation into space. It is possible that these simulations of the inner disk 

may also provide insight into the mechanisms involved in forming a bipolar outflow 

from the system. 

Grain and plajietesimai growth processes have been studies for many years, 

both on small scales and larger scales (Safronov 1969, Weidenschilling 1980, 

Greenberg et al. 1978, Wetherill & Cox 1984, 1985, Greenberg et al. 1991, Spaute 

et al. 1992, Tanaica & Ida 1996). The studies outlined in section 7.3 will certainly 

be able to incorporate many of the results of this work (for example the reaction 

network physics required to couple grains of different species and size to each 

other). Most of the work done so fax has been in a celestial mechanical framework, 

with the gas modeled as a 'black box' turbulent fluid with some characteristic 

velocity. Grains axe more or less entrained in the fluid, depending upon their size 

and collide with each other, break apart or stick at relative velocities defined by 

the input turbulence assumption. 
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The calculations I suggest may be able to extend the previous work by 

relaxing two of the most important of these asstimptions. First, the mixing in 

the previous calculations is assumed to be rather uniform in space: any migration 

of different sized particles from one place to another is assumed to be mixed 

instantaneously into the surrounding medium. If instead the grains do not mix 

well, so that some regions retain grains of whose size distribution is quite different 

than nearby regions, drastically different grain evolution may result. Secondly, with 

a hydrodynamic code, the turbulence may be resolved to some e.xtent (depending 

upon the available computing power), so that relative velocities of grains becomes 

much better constrained and the dependent collisionai properties become more 

narrowly defined. A solution to these questions wiU lead to a better understanding 

of not only the radiative transport processes in disks (through grain absorption and 

scattering of light), but also of planet formation, through grain growth to larger 

and larger sizes. 

7.4. Migration of Jovian Planets 

The classical models for Jovian planet formation (ie. that gaseous disk matter 

collapses onto a 10-15 rock/ice core), predict that Jovian planets will form 

at distances of ~5 AU or more from the central star (Boss 1995) due to the 

condensation of ices at that distance. The detection of low ma^s companions in 

orbits very close to their primary (as small as 0.05 AU) has forced theorists to 

postulate that a companion can form fax from its primary, then migrate to its 

present location. The migration models proposed (see Takeuchi et al. 1996 and 

references therein), have shown that gravitational torques upon the companion by 

a circumstellar disk axe sufficient to change its orbit drastically on a time scale of 

only a few thousand years. Migration is so efficient that under normal assumptions 
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about the character of a disk, it is far too easy for a companion to continue its 

migration and simply fall into the star. 

The migration models proposed have been limited in the sense that they are 

linear anaiyses and are one dimensional. They omit effects such as accretion onto 

the companion, do not taice full account of shock dissipation of waves excited in 

the disk and assume a zero eccentricity orbit. 

In (so fax) unpublished calculations, I have performed a set of numerical 

simulations incorporating aji already formed companion into a two dimensional 

(r, 4>) disk. These calculations show that an already formed Jovian mass compajiion 

can form a wide gap in the disk in only a few x 10^ years. In so doing, it moves 

inward to nearly half its original orbit radius and then proceeds for the remainder of 

the simulation on a slow, secular inward evolution. Time step constraints forbid us 

from following the evolution of the system for the long periods (;^ iCyr) necessary 

to follow the orbital evolution to it's conclusion. 

The simulations I have performed, although providing interesting results in 

themselves, begin with aji initial condition which is quite artificial. A ~l-2 Mj 

companion would certainly have formed a gap or otherwise modified the mass 

distribution in the disk. Instead of concentrating on the evolution of the disk once 

a companion has grown to appreciable size, I suggest simulations modeling the 

evolution of a low mass core (~ 10-30 M^) as it begins to accrete large amounts of 

gas from the disk and perhaps carve out a gap. 

Three dimensional calculations of Bondi-Hoyle accretion have been done 

(Ruffert 1997 and references therein) and have shown that accretion proceeds 

at a rate not unlike the Bondi-Hoyle rate even in flows with transverse velocity 

gradients. No calculations have been performed in which the accretor lies in a 
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medium undergoing Keplerian shear however. I suggest extending the previous 

caiculations to the problem of an accreting proto-planet. As a first step, these 

calculations will implement initial conditions including a transverse Keplerian 

shear but excluding density variations in the r or s directions. This condition is 

equivalent to simulating the earliest stages of growth, when the proto-planet is only 

able to aifect regions of the disk close to the midpleine. 

The outcome of these simulations will be to determine the mass and angular 

momentum accretion rates of the proto-planet as it begins to grow quickly. 

Comparison of these rates to the rate at which gaps form by gravitational torque 

processes will provide insight into the eventual finai state of the system as a whole. 

Depending on the outcome of this first round of simulations, it may become of 

interest to include density gradients in two dimensions. In this case, the question 

of how large the accretor must be before it first begins to deplete mass from an 

entire vertical column of the disk. For an accretor of that size, accretion may be 

reduced due to the loss of material accreting onto the poles of the proto-planet and 

a gap may form, slowing additional migration through the disk. 
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