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ABSTRACT

Both an "idecalized" and a "detailed" approach are
employed to calculate the pre-main seqguence evolutionary
behavior and main sequence structure of very low mass stars
of nearly solar composition (X = 0.739, Y = 0.240,

Z = 0.021). The "idealized" approach is based on the
assumptions that during the Hayashi contraction phasc as
well as during main sequence hydrogen burning such objects
are in convective equilibrium throughout and that the
interiors are composed of a completely ionized, partially
degenerate ideal gas. Under these assumptions the interior
structure may be represented by a polytrope of index

n = 1.5. Using a simple interpolation formula to represent
the nuclear energy generation rate due to the He3 termi-
nated proton-proton chain and a set of model atmospheres
calculations, a semi-analytic formulation for calculating
the evolutionary behavior of these "idealized" polytropic
models is derived and employed to calculate the pre-main
sequence evolutionary behavior of objects in the mass range
0.14-0.02 MO. From these calculations it is found that the
lower limiting mass below which objects fail to achieve
suffiéiently high interior temperatures to produce enough
nuclear energy release to stabilize on the main sequence

is 0.085 M This value for the main sequence limitling

0"
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mass is in good agreement with values determined theoreti-
cally by previous investigators.

The validity of the assumptions entering into the
polytropic representation of very low mass objecls is
tested through the calculation of "detailed" evolutionary

sequences at 0.1 and 0.07 M The "detailed" models are

o
constructed explicitly through numerical solution of the
equations of stellar structure. An improved calculation of
tﬁe nuclear energy genecration rate is undertaken in these
models and the condition for convective eqguilibrium is
tested at each point within the interior. The hydrogen-
helium ionization-dissociation zone is treated in detail
through application of approximate treatments for the
pressure ionization of hydrogen and helium and the pressure
dissociation of molecular hydrogen. In addition the effect
on the overall structure due to departures from ideal gas
behavior arising from the electrostatic interactions
between charged particles within the ionized interior are
explored. TFrom the results of these model calculations it
is concluded that the polytropic models should provide a
rcasonable approximation to the structure and evolution of
very low mass main secquence objects. The 0.07 MO object
fails to reach the main scecquence and the electrostatic
interaction effects begin to influence significantly the
evolutionary track in the H-R diagram shortly after the

central temperature rcaches jits maximum value.



xii

The same set of atmospheric models is used in
conjunction with both the "idealized" and "detailed"
models. In constructing these atmospheric models the
Eddington graybody approximation is used to treat the
outermost radiative region while a simple version of the
mixing length theory is used to treat the underlying
superadiabatic convective zone. Water vapor is included
as a source of atmospheric opacity.

The currently available data regarding the masses,
radii, luminosities, and effective temperatures for the low
mass stars are reviewed. From these data a set of mean
empirical main sequence properties of the low mass stars of
presumed solar composition is adopted and compared with the
main sequence propertics defined by the theoretical models.
It is found that while the models appear to reproduce
satisfactorily the adopted empirical mass-luminosity
relation, there is a considerable lack of agreecment between
the theoretical and empirical mass-radius relations and
therefore between the respective main sequence locii in the
H-R diagram as well. Several possible inadequacies of the
models as well as the empirical data are discussed but no
completely satisfactory explanation for the apparent dis-

crepancy between theory and observation is found.



"CHAPTER 1
INTRODUCTION

Because of the observed existence of massive highly
luminous stars whose ages are very much less than that of
the galaxy, we conclude that star formation is a continuing
process and that stars form out of the interstellar medium.
While our understanding of the instabilities which lead to
the formation of objects of stellar mass is far from
compléte (cf. Spitzer 1968), we have reason to believe
(ﬁayashi 1966) that once a proto-star is formed it will
undergo rapid dynamical collapse until the dissociation of
molecular hydrogen as well as the ionization of atomic
hydrogen and helium are complete throughout the bulk of the
interior and the interior opacity has risen to such values
as to inhibit the outward flow of the thermal energy. At
this point essentially stellar conditions obtain, the
central temperature will be of the order of lO5 °K and the
radius of an object of mass M will be of the order of

50 (M/MO ) R (Hayashi 1966). At this point the object

(0]
will enter into a period of relatively slow Helmholtz-Kelvin
contraction. The characteristic feature of this phase of

stellar evolution is that at any instant of time the object

may be regarded as being in a state of guasi-hydrostatic
O O 1



equilibrium with the rate of contraction being determined
by the condition that the rate of gravitational energy
release be Jjust sufficient to maintain the stellar
luminosity.

As the contréction proceeds, the interior values of
temperature and density rise, and for normal stars a point
will be reached at which the temperature in the central
regions becomes high enough to initiate thermonuclecar
hydrogen burning. With a portion of the star's energy
demands being met by nuclear energy generation, the con-
traction will slow, and when the nuclear energy relecase
becomes sufficient to maintain the luminosity, the contrac-
tion will cease altogether. At this instant the star will
be in steady-state thermal and mechanical equilibrium and
will have arrived at its position on the zero-age main
sequence.

While it dis true that in most instances continued
gravitational contraction will be accompanied by a rise in
the interior temperature, indefinitely high values of
temperature can in fact never be obtained. This is a
consequence of the onset of electron degeneracy which will
occur for an object of any given mass should the interior
density become sufficiently high. By electron degeneracy
we refc:g* to the condition prevailing at high electron
densities under which the electrons must be treated

explicitly as PFermi-Dirac particles obeying the Pauli



exclusion principle. In this circumstance the compression

of the free electrons into ever shrinking geometric volumes

as a result of continued contractien can be accomplished,
according to the exclusion principle, only by making state
of higher (kinetic) energy available to the electrons.
When the degree of degeneracy becomes sufficiently high, a
point will be reached beyond which further contraction can
occur only at the expense of the thermal energy of the non
degenerate ions. At this point the temperature, which is
measure of the thermal (kinetic) energy of the ions, will
reach a maximum value and will decrcase with further con-
traction. We anticipate that there exists some limiting
stellar mass below which a sufficiently high degree of
electron degeneracy is achieved during the course of the
gravitational contraction that the interior temperature
never reaches a sufficiently high value to produce enough
thermonuclear hydrogen burning to stabilize the object on
the main sequence (Kumar 1963; Hayashi and Nakano 1963;
Ezer and Cameron 1966). Objects less massive than this
limiting mass never reach the main sequence butl are
doomed to undergo continued slow contraction towards
completely degenerate configurations, thus prematurely
entering into the final white dwarf stage of stellar
evolution.

It is our intention to investigate this aspect of

stellar evolution and to attempt a determination of the

S

S
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limiting mass below which objects fail to reach the main
sequence. To accomplish this we shall construct evolution-
ary sequences of stellar models for objects of various
masses undergoing pre-main sequence gravitational contrac-
tion. We shall follow the evolution of objects more
massive than the hypothesized limiting mass to the point
at which it is certain that the main sequence stage is
reached; while for objects less massive than the limiting
mass, we shall continue to follow their evolutionary course
until their radii have approached the nearly constant
values appropriate to completely degenerate configurations.
A further consequence of the high densities and
relatively low temperatures expected in the interiors of
low mass stars is that, in determining the thermodynamic
properties of the gasecous interior, the ideal gas approxi-
mation of non-interacting particles breaks down and the
interactions between particles must be taken explicitly
into account. In a gas consisting of a mixture of ions and
electrons, we expect that the eclectrostatic interactions
between the charged particles will provide the major contri-
bution to departures from ideal gas behavior. We shall, in
an admittedly very approximate way, attempt to incérporate
corrections to the ideal gas thermodynamic functions to
account for the electrostatic interactions and shall
further endecavor to assess the extent to which these affect

the overall structure of the models for low mass stars.
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We also expect that in high density gases neighbor-
ing particles will so perturb the potential field in which
the outer bound electrons of a given ion move as to result
in an effective lowering of the energy required to remove
these electrons from the ion. This leads to the phenomenon
éf pressure induced ionization which is expected to affect
greatly the ionization equilibrium within the deeper
regions of the steliar interior. We shall develop a
simplified treatment of pressure ionization which will be
employed in determining the ionization equilibrium of
hydrogen and helium throughout the stellar interior. We
shall also employ an approximate theory to account for the
analogous effect of the pressure dissociation of molecular
hydrogen.

From the computation of an evolutionary sequence of
stellar models for an object of given mass and chemical
.composition, we obtain predicted values of the radius,
luminosity, and the effective temperature as functions of
time. We can display the evolutionary path described by
the models in the theoretical H-R diagram, that is, in a
plot of luminosity vefsus the effective temperature. It is
our hope that such predicted behevior will, in fact,
represent the evolutionary behavior of real stars. To test
the adequacy with which the theoretical models do represent
real stars, we require observaticnally determined values

of the masses, radii, luminosities and chemical



compositions. Ideally we would also like information
regarding the evolutionary behavior, but, of course, most
stages of stellar evolution are prohibitively long to be

followed directly by observational means.

In the following chapter we review the historical
developments associated with the construction of stellar
models for low mass stars and in Chapter 3 we discuss the
observational data concerning the masses, luminosities and
effective temperatures for such stars. In Chapter 4 we
consider the thermodynamic properties of an interacting
hydrogen-helium plasma while in Chépter 5 we present the
results of model atmosphere integrations appropriate to‘low
mass stars. We utilize the latter to obtain the surface
boundary condition needed in the integration of the
equationé of stellar structure. Finally in Chapter 6 we
describe the model calculations of both an idealized and a
detailed approach to the problem. In this last chapter we
also compare the theoretical results with the available
observational data and attempt an assessment of the
possible observatiénal consequences resulting from the

existence of a lower limiting mass for main sequence stars.



CHAPTER 2
HISTORICAL BACKGROUND

The construction of a stellar model involves the
simultancous solution of a set of four first order, non-
lincar differential equations. These equations must be
solved numerically and to do so by hand computation is,
indeed, a formidable task; although technigques have been
devised to reduce the required labor (sece Schwarzschild
1958). Prior to the development of high-speed computers,
emphasis in stellar model calculations was placed on the
construction of static equilibrium models of main sequence
stars. An initial reconnaisance of the problem of com-
puting such models for red dwarf stars is undertaken by
Williamson and Duff (1949a, b) who attempt to fit models to
the observational values of mass, radius and luminosity
given by Chandrasekhar (1939) for the stars Kriiger 60A
(M3), 0% Eridani C (M5e) and YY Geminorum (MO). It is
assumed that these stars can be represented by spherically
symmetric models consisting of central cores in convective
equilibrium surrounded by outer radiative envelopes. It is
further assumed that the carbon cycle is the précess of

energy gencration. It is found, however, that the resultis



obtained are unsatisfactory in that they are not entirely
consistent with the initial assumptions.

Aller (1950) attempts to assess the relative
contributions of the carbon cycle and the proton-proton
chain in providing the luminosities of low mass stars.
Using models taken to be homologous to Schwarzschild's
(1946) model of the sun, he secks values of the abundances
of hydrogen and helium for which the computed luminosity is
equal to that observed and for which the models satisfy the
mass-luminosity relation. Kuiper's (1938) values of the
masses, radii and luminosities of the stars Kriiger 60A and
02 Eridani C are employed and it is found that consistent
models can be obtained only for rather low hydrogen
abundances. It is acknowledged, however, that assuming
these stars to be homologous to the sun may be a poor
assumption and that little confidence can be placed in the
results predicted by such models.

Employing the results of Salpeter's (1952) calcula-
tion of the energy generation rate for the proton-proton
chain, Aller et al. (1952) construct a model for the star
Kriiger 60A under the assumption that it is homologous to
the sun and that the proton-proton chain provides the
energy output. The mass, radius and luminosity are taken
from Kuiper (1938)‘and the chemical compositions are taken

to be X = 0.34 and Y = 0.64, where X and Y are the

fractional abundances by mass of hydrogen and helium,



respectively. No satisfactory solution is obtained'as the
model predicts an appreciably higher Juminosity than
observed.

Basic to the models proposed by Williamson and Duff
(1949a, b) and by Aller and his associates (Aller 1950;
Aller EE gl. 1952) is the assumption that these stars can
be represented by models consisting of convective cores
overlaid by radiative envelopes. Naur and Osterbrock
(1953) show that stars of later type than the sun, and the
sun as well, are expected to be in radiative equilibrium in
their central regions. Furthermore Stromgren (1952)
suggests that the zone in the outer regions of the star in
which hydrogen is undergoing ionization will be expected to
be in convective equilibrium and will, further, be expected
to extend deep into the interiors of the late type stars.

Osterbrock (1953) undertakes the task of computing
new models for red dwarf stars incorporating these features.
His models consist of central radiative cores surrounded by
convective envelopes overlaid in turn by thin radiative
atmospheres. He further assumes that the proton-proton
chain is the only sourcebof energy generation. The calcula-
tions are particularized to the values of the mass, radius
and luminosity given by Kuiper (1938) for the average
component of the binary system YY Gem. Models are con-
structed by fitting together at the outer boundary of the

radiative corec inward integrations from the surface with
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outward intogratiéns from the center. A family of models
is obtained which depends upon the hydrogen and helium
abundance paramecters, X and Y. It is found that satis-
factory models for YY Gem as well as the K1 dwarfl «
Centauri B can be obtained using values of X and Y typical
of the sun. However, it is further found that such models
will not adequately represent stars of lJater spectral type
than MO for any reasonable values of the abundances. It
thus appears that further revision of the models is required
to extend the model calculations to stars of later type.

In two papers Limber (1958a, b) continues the
attack on the problem of the internal structure of M dwarf
stars. In the first of these papers Limber (1958a)
reassesses the observational data regarding the masses,
radii, and luminosities of low mass stars. In view of
revisions in these data as well as Osterbrock's (1953)
work, he concludes that the envelope convective zones in
middle and late M dwarfs will be expected to extend to the
centers of these stars and, thus, that these stars must be
regarded as wholly convective structures.

In the second paper Limber (1958b) attempts to
construct models for completely convective stars. He in-
cludes electron degeneracy inasmuch as it affects the
interior equation of state and shows that the interior can
be represented by a polytrcepe of index 1.5 throughout the

bulk of the star in which hydrogen and helium are completely
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ionized. The polytrope, and thus, the interior, solution
is completely determined upon specification of the mass,
radius, and chemical composition of the configuration. The
luminosity of the model is obtained through a subsidiary
integration of the equation of thermal equilibrium. For
this purpose Limbef (1958b) represents the nuclear genera-
tion rate by interpolation formulae based upon Salpecter's
(1952) work on the proton-proton chain. Limbenr (1958b)
tabulates luminosities and effective temperature as a
function of the radii for models in the mass range from

1.0 MO to 0.091 M

0"
From the polytropc solutions alone one obtains a
mass, radius and luminosity relation for a given set of
chemical composition parameters X and Y, for which Limber
(1958b) chooses the values X = 0.75 and Y = 0.23. Con-
sidering the composition as fixed, we see that associated
with a given mass there will be a continuous sequence of
models of differing radii and luminosities. Hence, a model
of given mass will define a line in the H-R diagram. If
the theory is adequate, the observational values of
luminosity and effective temperature for a star of given
mass should fall along the corresponding theoretical line
within the expected probable errors in the theory and the
observation. Limber compares his results with the
observational data for the stars Kriiger 60A and 60B and

finds that the discrepancies between the theory and the



12
observations are larger than the expected errors. He con-
cludes, however, that the models can be described as being
at least consistent with the observations.

One difficulty encountered with the polytrope
models, as mentioned above, is that they alone do not
permit a determination of both the radius and luminosity
upon specification of the mass and chemical composition, a
result which we expect from the Russell-Vogt theorem. The
reason for this is that in obtaining the polytrope solution
only one of two outer boundary conditions is actually in-
voked. The second boundary condition can be expressed
through the relation between the pressure and the tempera-
ture as the surface of the star is approached. In the
completely ionized interior the pressure, P, and tempera-
ture, T, satisfy the adiabatic relation, P = KT2°5, where
K is a constant. To satisfy the seccond boundary condition
we perform an inward integration through the outer radia-
tive atmosphere and the ionization zone to the point in the
interior‘at which ionization is complete and demand the
value of the constant, K, obtained at this point be egual
to that at the center. Limber undertakes such a calcula-
tion using the observational data for the mass, radius,
and luminosity of Kriiger 60A. An approximéte atmospheric
integration is performed using the graybody relation
between temperature and optical depth and assuming the

atmosphere to be composed entirely of atomic hydrogen with



the H dion being the only source of opacity. The atmos-
pheric integration is halted once convection sets in, and
the values of pressurece and temperature appropriate to the
bottom of the ionization zone are obtained by requiring
that the entropy computed at the base of the atmosphere be
equal to that at the bottom of the ionization zone. From
this condition the value of the adiabatic constant, K,
appropriate to the atmosphere-envelope integration is
evaluated. It is found that in using the observational
data for Kriiger 60A the agreement between the interior and
the atmosphere-envelope solutions is quite poor. Limber
(l958b) emphasizes the approximate nature of the atmospheric
integration and points out several possible sources of un-
certainty. He also attempts to determine the effect of the
hydrogen ionization zone on the radius. In this calculation
he includes a very approximate correction for the effect of
pressure ionization of hydrogen and concludes that the
inclusion of the ionization zone will result in an increase
in the radius of the model by less than one per cent.
Limber (1958b) also delineates in the mass-radius
plane the domain appropriate to the completely convective
models. The physical effects restricting the applicability
of the models include the occurrence of energy transport by
electron conduction and radiation as well as the occurrence
of complete degeneracy within the interior. From his plot

it is apparent that as one proceeds along the main secquence
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from early to late M dwarfs the radiative cores will
disappecar, and the stars become wholly convective. Electron
conduction may become an importaent energy transport
mechanism in the central regions of those stars of lowest
mass. The circumstance of nearly complete electron de-
generacy in the interiors of these stars will probably not
occur in objects undergoing steady-state hydrogen burning,
but would determine the limiting radii of those objectls
having exhausted their store of hydrogen or in those not
passing through the hydrogen burning stagec.

Recognizing that the polytrope models of fixed mass
and composition but with decreasing radii can be used to
simulate the stage of gravitational contraction, Kumar
(1963) attempts to determine the limiting mass below which
hydrogen burning will not be expected to occur. The pro-
cedure involved is essentially that of extending Limber's
(1958b) calculations to objects of lower mass. Kumar
considers two possible chemical compositions which he takes
to be representative of Population I and ITI objects,
respectively. It is found that as a given objecct
approaches the limiting radius appropriate to a completely
degenerate configuration, the central temperature passecs
through a maximum value and begins to decrease. Kumar
concludes that the maximum value of the central temperature
recached by Population I objects less massive than 0.07 M

o

and Population IL objects less massive than 0.09 MO will be



insufficiently high to produce enough hydrogen burning to
meetl the energy demands of these objects. These values of
the limiting mass must be regarded as being rather
tentative, however, as Kumar does not obfain complete
stellar models in which both of the outer boundary con-
ditions are satisfied. To accomplish this it would be
necessary to attach appropriate stellar atmospheric models
to the interior solutions.

Hayashi and Nakano (1963) have investigated
specifically the pre-main sequence contraction phase for
stars of low mass. Historically the first attempt to
depict in the H-R diagram the evolutionary tracks followed
by contracting stars was undertaken by Henyey, LeLevier,
and Levée (1955). Under the assumption that suchvobjocts
were wholly in radiative equilibrium, they found that the
contracting stars move towards the main sequence along
upwardly inclined tracks originating in the lower right
hand portion of the H-R diagram, that is, the region of low

)

Juminosities and effective temperatures. However, Hayashi
and Hoshi (1961) point out that the outer regions of con-
tracting stars are expected to be in convective equilibrium
as a result of the lowered adiabatic gradient prevailing in
the region in which hydrogen and helium are undergoing
dionization. By employing the outer boundary condition
appropriate to stars with convective envelopes, Hayashi

(1961) obtains pre-main sequence tracks which differ
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considerably from those of Henyey et al. (1955). Subse-
quent work by several authors, e.g., Hayashi, Hoshi, and
Sugimoto (1962), Weymann and Moore (1963), Iben (1965) and
M. Hayashi (1965), have confirmed Hayashi's (1961) results.

According to Hayashi (1961) the initial collapse of
a pre-stellar object will carry it to a position of high
Iuminosity in the H-R diagram. At this point the object
will be wholly convective and will enter the phase of slow
luminosity-controlled Helmholtz-Kelvin contraction. As the
contraction proceeds the object will descend vertically in
the H-R diagram, moving towards the main sequence at almost
constant effective temperature. For stars more massive

than 0.26 M according to Hayashi and Nakano (1963), a

@’
radiative core will develop and expand radially outward
during the course of the contraction. If the radiative
core achieves appreciable extent, the track will turn
abruptly to the left and subsequent evolution will occur in
accordance with that predicted by Henyey et al. (1955).
The track will terminate on the main sequence when the
temperature in the interior achieves sufficiently high
values to initiate hydrogen burning.

Applying these results to low mass stars, Hayashi
and Nakano (1963) compute a series of contracting models
for stars in the mass range 0.6 M

to 0.05 M in which they

0] (0]

include the effects of electron degeneracy within the

interiors as well as the presence of molecular hydrogen 1n
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the envelopes. Objects less massive than 0.26 Mo are found
to remain wholly convective throughout the contraction
phase, and the interior regions of these objects in which
ionization is complete are represented by a polytrope of
index 1.5. The outer boundary condition for the models is
obtained in a manner very similar to that described by
Limber (1958b) by noting that within the interior the
pressure, P, and the temperature, T, satisfy the adiabatic

ralabion P = Xpo"o

, where K is a constant. This relation
will hold for a specific value of K throughout the region
in which ionization is complete. A complete model is
obtained by requiring that the value of K obtained from an
integration through the atmosphere and envelope to the
point at which ionization is complete agree with that
obtained from the interior. For the purpose of this
calculation it is assumed that above the photosphere,
defined as that point in the star at which the optical
depth 7 = 2/3, the atmosphcrc‘is isothermal. It is further
assumed that the temperature gradient in the envelope
region underlying the photosphere, in which molecular
hydrogen is undergoing dissociation and hydrogen and helium
are undergoing ionization, is equal to the adiabatic
gradient. To perform the integration through the envelope,
Hayashi and Nakano (1963) resort to the expediency of
simply calculating the entropy at the photosphere and

requiring that the value so obtained be equal to that in
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the interior in which ionization is complete. From this
result the value of X appropriate to the atmosphere-
envelope integration is obtained, and by fitting this to
the interior value, the appropriate radius and luminosity
of each model is determined.

For objects of low mass, the energy generation is
provided by the proton-proton chain which, at the low
temperatures prevailing in the interiors of these objects,
will terminate with the production of I-Ie.3 rather than going
to completion with the production of Hea. In this case the
rate of energy generation will be about half that of the
complete chain. Expressing the energy generation rate as
an interpolation formula in powers of the temperature and
the density, Hayashi and Nakano (1963) find that the
limiting mass below which objects will fail to enter the
main sequence phase of steady state hydrogen burning is

0.08 M0 for Population I objects and 0.12 M for Population

0
IT objects. Because of the increasing effects of electron
degeneracy in less massive objects, the evolutionary tracks
turn away from the main scequence, and such objects continue
to contract towards completely degenerate configurations.
It should be noted that this result is in quite good
agreement with that found by Kumar (1963).

Hayashi and Nakano (1963) also compare their models

with the observational data given by Limber (1958a) for the

stars Kriiger 60A and 60B and Ross 614B. A plot in the H-R
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diagram of the predicted luminosities and effective temper-
atures against the observed values shows the models and the
observation to be discrepant in that for Kriger 60A and B
the models have higher effective temperatures than the
observed values, while the model for Ross 614B has both a
higher effective temperature and luminosity. It is deemed
likely that these discrepancies resulted from the very
approximate treatment accorded the determination of the
outer boundary condition for the model calculations. 1In
the first place the atmosphere will not be isothermal, and
the effects of non-grayness of the atmosphere should be
taken into account as well. Also Hayashi and Nakano (1963)
consider absorption due to the II' ion to be the only source
of atmospheric opacity, and in so doing they may have
severely underestimated the total opacity. Indeed, it is
found that by arbitrarily multiplying their opacity values
by a factor of five, they can significantly reduce the
discrepancy between their models and the observations.

Below the point in the atmosphere at which convec-
tion sets in there will lie a transition region in which
the outward flux of energy will be transported both by
convection and radiation. In this region the adiabatic
gradient may be a poor approximation to the actual tempera-
ture gradient and it is necessary to resort to some
approximate technigue, such as the mixing length theory,

in order to estimate the true temperature gradient.
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Hayashi and Nakano (1963) neglect the effect of this region
on the models but calculate that the true and adiabatic
gradient differ by about 10% in their models for stars of
0.26 MO and 0.1 MO. They estimate however, that the
inclusion of this effect in the models will lead to an
inappreciable reduction of the effective temperatures.

The method employed to determine the appropriate
value of the parameter K from the atmosphere calculation
wﬁich matches that of the interior, that is, of requiring
the entropy at the top of the coanvective region be equal to
that at the point at which ionization is complete, neglects
the effect of the thickness of this region on the radius.
Hayashi and Nakano (1963) estimate that for a star of
0.26 MG the neglect of this effect will be insignificant.
In computing the éntropy in the region of complete ioniza-
tion, they include the effects of electron degeneracy and
assume that hydrogen is completely ionized; however, they
completely neglecct the ionization of helium. In so doing
they maf have underestimated the electron density and,
thus, the entropy, to which the electrons make an increas-
ingly greater contribution as they become increasingly
degenerate. Nakano (1966) asserts, ﬁowevcr, that the
neglect of the electrons contributed by the ionization of
helium will have little effect on the overall models.

More recently Ezer and Cameron (1966) have reported

the results of the computation of evolutionary sequences of
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models for stars in the mass range 0.4 MO to 0.1 MO' They

0.739 and Y = 0.240

‘ 1

use the Population 1 composition X
and find that the evolutionary behavior of their models
during the phase of gravitational contraction is essen-
tially the same as that predicted by Hayashi and Nakano
(1963). However, they find that the limiting mass below
which objects fail to reach the main seguence is 0.1 MO’ a
value somewhat higher than that found by Hayashi and
Nakano (1953) and Kumar (1963) for Population I objects.

It is our purpose in the present work to expand and
improve upon the theoretical calculations of Kumar (1963),
Hayashi and Nakano (1963), and Ezer and Cameron (1966)
regarding the structure and evolution of very low mass
stars. Specifically, we construct a set of evolutionary
stellar models in which we dgtermine the outer boundary
condition through the construction of approximate model
atmospheres in which we provide for the effects of water
vapor opacity.A In these atmospheric calculations we also
include a treatment, based on a simple version of the
mixing length theory, of the convective transition region
immediately underlying the outermost radiative layers. We
incorporate approximate treatments of the pressure dis-
sociation of molecular hydrogen and the pressure ionization
6f hydrogen and helium in treating the structure of the
hydrogen-helium ionization-dissogiation zone. In addition

we investligate the effects of non-ideal gas behavior
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within the stellar interior on the overall structure and
evolution of thesc stars. Finally we review the currently
best avaiiable empirical data for the main sequence
properties of the low mass stars and attempt an assessment
of the adequacy of the model calculations through compari-

son of the thecoretical results with these empirical data.



CHAPTER 3

OBSERVATIONAL DATA FOR LOW MASS STARS

It is to gain an understanding of the physical
state of the interior regions of stars as well as of their
evolutionary behavior and the processes governing this
behavior that we attempt the construction of time
dependent stellar models. In order to judge the adequacy
with which the theoretical models represent the structure
and evolution of real stars, we must compare the theoretical
predictions with the observed properties cof real stars.
Because of the prohibitively long time scales associated
with most evolutionary changes, the evolutionary behavior
of individual stars is inaccessible to direct observation.
However, we can determine observationally the masses,
radii, luminosities, and effective temperatures of indi-
vidual stars. Our empirical knowledge of stellar evolution
consists largely of inferences derived from the color-
magnitude diagrams of star clusters and the observed
distribution of field stars in the H-R diagram.

In Section 6.2 we calculate the pre-main sequence
evolutionary behavior as well as the initial main sequence
properties of stars having masses in the range 0.14 to

0.085 M and it is these results which we desire to

O)
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compare with observational data. Because of the very long
main sequence lifetimes associated with stars of low mass,
we expect that by far the majority of the M dwarf stars in
the solar neighborhood are main sequence objects. Further-
more because of the slowness with which such observable
properties as the luminosity and radius change during main
sequence nydrogen burning, we expect that currently
observed values depart inappreciably from the initial main
sequence values. Consequently we presume that the mean
properties of any observed sample of M dwarf stars in the
solar vicinity define those properties associated with the
zero-age main sequence.

We must anticipate, of course, some departures by
individual stars from such mean relations due, for example,
to differences in evolutionary ages, since any arbitrarily
chosen sample of M dwarf stars may contain some possibly
young objects still undergoing pre-main sequence contrac-
tion. A far more likely source of intrinsic scatter, how-
ever, may be due to the presence within the sample of
different population types having different initial chemical
compositions. As an example Eggen (1963) finds that the
dwarf stars of the Hyades and Pleiades clusters populate a
distinctly different mass-luminosity relation from that
defined by the sun and the members of the Sirius common
motion group. The Hyades-Pleiades stars are considerably

]

younger than the sun and Eggen (1963) suggestis that this



observational difference is explicable in terms of the
Hyades stars' having a greater helium abundance than the
sun-Sirius stars. In addifion to these possible sources

of intrinsic scatter, we must expect some accidental
scatter about any observationally defined mean relation due
to the limitations on the accuracy with which observational
measures can be made.

In the present study we are concerned with stars
having a chemical composition appropriate to that of the
sun and we would prefer to define all means over a sample
of stars having nearly this same composition. It is not
possible in general, to determine M dwarf compositions
directly through observation. We can, however, distinguish
population types for these stars as above or, for example,
by their kinetic properties. From subsidiary considera-
tions we may be able to associate differences in chemical
compositions with the different population types, and thus,
determine or at least estimate, the gquantitative effects of
compositional differences on the observable stellar
properties. As a consequence we should exercise some
caution in applying the observationally derived mecan rela-
tions defined over an arbitrary sample of stars to stars
having a specific, but perhaps unknown, composition or in
utilizing such mean relations with which to compare the
results of theoretical calculations employing a fixed

compogsition.
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In Table la we list the masses, luminosities,

effective temperatures, and radii for those K and M dwarf
stars which are members of binary pairs for which reliable
masses have been determined. In Table la we list the data
for the low mass components of visual binaries from the
compilations of Eggen (1965, 1967). 1In addition we give
the values of the photometrically determined B-V and (R—I)E
color indices for those stars for which these data are
a&ailablo. Here we adopt the convention of using the
subscript E to designate the R-1 index as measured by Eggen
(1968) on the 1,R system defined by Kron; Gascoigne, and
White (1957). The quantity R-1 without a subscript desig-
nates the R-1 index measured on the photometric system
defined by Johnson (1964). 1In Table 1b we list the cor-
responding quantities for the components of the eclipsing
system YY Gem. Here the mass and radii are taken from
Popper (1967), (R—I)E and B-V from Eggen (1968), and M

\%

from Johnson (1964). The value of Mbol and Te is based on
the bolometric correction of -1.31 adopted for YY Gem by
Johnson (1966).

The bolometric corrections and effective tempera-
tures were obtained for the stars of Table la from the main
sequence bolomelric correction and effective temperature
calibration proposed by Johuson (1966, Table I1). Regarding

these data as functions of the R-I index, we transform them

to functions of the (R—I)F index using the correlation



Table 1.

Observational Data for Low Mass Binary Pairs

ADS

Name Sp My m(0) B-V (R-T)y . Log T, Log (R/RO)
Data for visual binary components
1729AB K8 +7.0 0.7 — +0.42 e —
1865AB dM2 8.5 0.45 +1.39 0.66 +7 .4 3.578 -0.14
UV Ceti AB M5e 15.5 5.0% - (1.66)* 113 3.43 =0 .62
Ross 614A dMlie 12.9 0.14 — +1.38 10.1 3.471 ~0.47
B M8 16.4 0.08 - {1.72] 12.0 3.43 -~ 75
6554AB dK2 6.2 0.75 0.85 0.28 —-— s o
6664AB daMo 8.5 0.50 1.49 0.66 7l 3.578 ~0.14
7114BC dM1 6.1 0.35 - (0.28) - - --
7284AB dKLh 6.7 0.70 1.02 0.36 - == —
3048BC MOV 9.0 0«19 1.38 0+75 Fow'T 3.558 -0.16
8166AB KO v, B 0.35 0.75 0.28 — —_— —
8635AB K8 6.9 0.60 1.08 0.405 — E _—
8680AB K5 6.8 0.6 1 =502 0.385 - - -
8901AB K5 5.9 0.85 0. 72 0.+.27 — s _—
9031AB dK6 7:0 0.6 1.12 0.425 S s s
9352AB dMo 8.0 0.6 1.8 0:+57 7+2 3.604 o T % )
9716AB dK 5.9 0.7 0.92 0.275 = - S
10075AB dK2 - 6.4 0.65 0.86 0.315 - - —
10158AB dK6 6.7 0.38 1.00 0.37 e s .
10188AB dK6 6.7 0.77 1.04 0.38 - - --
-8° 4352AB dM3e 107 037 1.60 1.08 8.7 3.511 027
+45° 2505AB aM4 10.9 0as31 1.49 1.08 8.9 3.511 ~0.31
10585AB dMOo 7olt 0.70 1.14 0.48 - i =
+27° 2853AB K5 72 0.60 1.16 0.47 —= — -
10786BC ami 10.9 0.3 1.50 1.10 8.9 3.509 =0 .30
11046A KOV 5.7 0.90 0.76 (0.20) - - -
B dK6 7«5 0.65 1.15 (0.52) 6.8 3.620 -0:10




Table 1.--Continued

15972A ML 10.7 0.29 e (1.06) 8.7 3.514 == OF
B M6 12.4 o I e -— (1.31) 9.8 3.484 -0.43
b. Data for eclipsing binary svstems
YY Gem AB MO.5V +9.11 0.58 +1.50 +0.78 +7.80 3.578 -0.222

*Values of R-I contained within parentheses are obtained from measured

MV and Figure 3.

**Data on Mbol’ Log Te’ and R/RO given only for objects with
(R-I), > 0.50.

8¢c
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shown in INigure 1 between the R-T and (R—I)E indices. This
correlation is based on the individual measures of 17 stars
observed in common by Johnson (1965, Table 1) and Eggen
(1968, Table 1) and is substantially in agreement with the
transformation between Johnson's R-I index and that of Kron
et al. (1957) as determined by Johnson et al. (1966). The
resulting relations between the bolometric corrections and
the effective temperatures and (R—I)E are shown in
Figure 2.

The bolometric corrections and effective tempera-
tur?s for the stars of Table la which have direct (R—I)E
measures available were obtained from Figure 2. Values of
(R—I)E for those stars not having direct measures were
obtained from their observed MV and the relation between
MV and (R—I)E shown in Figure 3. This relation was adapted
from the data of Eggen (1968) and the stars of Table 1 for
which direct (R~I)E measures are available. In Figure 3
these stars are shown by filled circles except for YY Gem
which is shown by a cross) For comparison we show in

Figure 3 by a dashed line the M (R-I)E relation we obtain

v?

from transforming the M R-1 relation adopted by Johnson

V,
(1965, 1966) for the main sequence M dwarf stars. The
(R~I)E values listed in Table la which were obtained from
Figure 3 are shown in parentheses and were used with

Figure 2 to obtain the bolometric corrections and effective

temperatures. We assume that the (va)F measure listed by
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Fig. 1. Adopted transformation between R-1 and
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Egegen (1967, Table 15) for the system Ross 614AB applies to
the A component alone.

The radii given in Table la were computed from the
defining relation for the effective temperature, Te, that
is, L = 4lo R2ch, where L is the luminosity, R is the
radius, and ¢ is the Stefan-Boltzmann constant. From this
relation we obtain, taking M_ . = 4,84 for the sun

i
(Johnson 1964),

Log (R/Ro) = 8.495 - 0.2 M - 2 log T _ (3.1)

bol
In Figure 4 we show the placement of the stars of
Table 1 in the log m, MV plane, where m denotes the mass in
MG and MV is, of course, the absolute visual magnitude.
The widely discrepant objects ADS 7114BC, 8048BC, 8165AB,
10158AB, and UV Ceti all appear to obey the Hyades mass-
luminosity relation defined by Eggen (1963, 1965). The
remaining objects in the sample of Table la define the low
mass limit of the sun-Sirius mass-luminosity relation of
Eggen (1963, 1965). We represent this relation by the
following linear relation, which we show plotted by the

solid linc in Figure 4:

M, = -11.91 log m + 4.84 (3.2)

From Figure 4 we see that equation (3.2) fits the plotted
points reasonably well although the object YY Gem, shown by

the cross in Figure 4, may be somewhat discrepant. Because
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of the lack of data below 0.3 M we must regard equation

0°
(3.2) to be a somewhat provisional extrapolation in this
region of mass.

We assume that the sample of sun-Sirius stars as
defined by Eggen is a representative sample of main
sequence objects of solar composition. In all further
discussion we employ the term "sun-Sirius" to designate
such a sample of stars. We additionally assume for the
present that equation (3.2) is valid over the range of mass
appropriate to the main sequence M dwarf stars of solar
composition.

Using equation (3.2) we derive a set of mean rela-
tions between the masses, bolometric magnitudes, radii, and
effective temperatures for our sample of sun-Sirius stars.

For a given mass we obtain M, from equation (3.2), the

Y
corresponding (R—I)E index from Figure 3, and the bolometric
correction and effective temperatufe from Figure 2. Ve
calculate the radii from equation (3.1). In Table 2 we
present the resulting relations for objects having masses

in the range from 0.63 to 0.12 M In addition we give

0"
the corresponding approximate spectral types from the
spectral type, effective temperature calibration for the
main sequence M dwarfs givén by Johnson (1966). 1In Figure
5 we show the resulting locus of the empirical main

sequence in the H-R diagram. For comparison we show the

positions of the stars of Table 1 (by filled circles except
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Table 2. Adopted Mean Empirical Main Sequence
' Properties of the Low Mass Stars

Log m(0) My, (R-1)p, M, . Log T Log (R/R;) Sp
- 7+22 0.47 6.63 3.637 =0.105 K5
-0.3 8.41 0.65 7:+37 3.582 -0.143 MO
-0.4 9.60 0.87 8.03 3.536 -0.183 M2
-0.5 10.80 1.08 8.80 3.518 -0.289 M3
-0.6 11.99 1.26 9.53 3.492 -0.395 M5
-0.7 13.18 1.41 10.21 3.466 -0.479 M6
—o;8 14,37 1.54 10.82 3.447 -0.563 M7
-0.9 15.56 1.65 11.46 3.435 -0.667 M8
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Figs 5. Empirical main sequence locus in the
H-R diagram.
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for YY Gem which we show by a cross) and the mean relation
(dashed line) adopted by Johnson (1966). The discrepancy
between our adopted main sequence locus and that proposed
by Johnson reflects the small discrepancy shown in Figure 3

between our adopted M (R—l)E relation and that which we

V'$
derive from Johnson's data. We display the resulting mass-
luminosity relation and mass-radius relation in Figures 16

and 17, respectively, in which we comparc our theoretically

predicted relations with these empirically based relations.

It is also of interest to determine the mass
function, that is, the distribution of stars with mass, in
the solar neighborhood. If there is in fact a lower
limiting mass for main sequence objects, we would expect
to observe a sharp decreasc in the numbers of stars having
masses less than this limiting mass. Using the results of
his partially completed proper motion survey, Luyten (1968)
tabulates the numbers of stars per one magnitude interval
in Mpg observed within 10 parsecs of the sun. From a plot
of 201 red dwarf stars having B-V > 1.30 (extracted from
the data of Eggen 1968, Table 1), we obtain the mecan My
B-V relation for the M dwarf stars shown in Figure 6 (solid
line). For comparison we show the positions in this
diagram of the stars of Table 1 (filled circles) having B-V
measures available as well as the mean relation (dashed

line) adopted by Johnson (1966). Adopting the zero-point
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difference between Mpg and the absolute B magnitude quoted

by Allen (1963, p. 197), we obtain

M = M. # (B-V) - 0.11
Pg \

Using this relation together with Figure 6 we convert
Luyten's luminosity function to a function of MV. Assuming
that the faint component of Luyten's sample is composed
entirely of M dwarf stars of solar composition, we use
equation (3.2) to obtain the empirical mass function shown
in Figure 7. Here we plot the actual number of stars
observed within ten parsecs of the sun as a function of
stellar mass. The dashed portion of the curve in Figure 7
indicates that region over which Luyten (1968) suggests the
data to be observationally incomplete.

Luyten (1968) finds the luminosity function to peak
at Mpg = 15.7 which leads to the occurrence of a rather
sharp maximum in the mass function at a mass of about
0.16 MO. As may be seen in Figure 7 there is a quite rapid
decline in the numbers of stars as we proceed to lower
masses. It is tempting to attribute this behavior of the
mass function to the existence of a lower limiting mass for
main sequence objects. However, as we shall see in Chapter
6, the main sequence limiting mass appears to occur at a
somewhat lower mass than the maximum observed in the mass
function. Considering that equation (3.2) may not be

accurate for very

low mass objects as well as the
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assumptions involved in deriving the original luminosity
function (Luyten 1968) and the considerable scatter
exhibited in the plot of MV versus B-V for the M dwarf
stars, we are certainly justified in questioning the
accuracy with which the above mass of 0.16 MO has been
determined. For example, Luyten (1968) estimates that the
peak in the luminosity function is determined within a
magnitude (photographic) which would imply that the
maximum in the mass function, under the assumed validity
of equation (3.2), lies between 0.21 and 0.12 MO' We with-
hold further comment on the implications of Figure 7 as
well as the rest of the empirical data presented in this
chapter until Section 6.3—6;5 at which point we consider
these data in light of the theoretical calculations of the

structure of low mass main sequence stars.



CHAPTER 4

THERMODYNAMIC, OPACITY, AND NUCLEAR ENERGY GENERATION
DATA FOR THE STELLAR INTERIOR

Supplementing the equations of stellar structure
are the constitutive data by which we refer to those
quantities entering into the equations of structure which
depend upon the chemical composition. Included among these
quantities are the equation of state; the opacity, the
nuclear energy generation rate, the internal energy per
gram, if the star is undergoing gravitational contraction,
and the adiabatic temperature gradient, if convection is a
possible mode of energy transport within the stellar
interior. These data must be supplied for each value of
the pressure and temperature encountered in the numerical
solution of the equations of structure.

To compute the thermodynamic quantities, that is,
the equation of state, the internal energy and the
adiabatic gradient, we consider in Section 4.1 the thermo-
dynamic properties of a mixture of hydrogen and helium
including an approximate treatment for the departures from
perfect gas behavior arising from the Coulomb interactions
between ionized particles. In computing the equilibrium

abundances of the particles (neutral atoms, ions, free

7

electrons, and moleccules) composing such a mixture, we

113
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desire to take into account the phenomena of pressure
ionization and dissociation. 1In Section 4.2 we derive an
approximate model for the pressure ionization of hydrogen
and helium and in Section 4.3 we describe a provision for
including the pressure dissociation of molecular hydrogen
following Vardya (1965). We approach the problem of
pressure ionization from the standpoint that the micro-
fields established by free ions and electrons in the
neighborhood of the incompletely ionized particles will so
perturb the bound state energy levels as to lower the
effective ionization energies as well as to render the
internal partition functions dependent upon the free
electron number density. We develop a procedure by which
the partition functions as well as the lowering of the
ionization potentials may be evaluated for inclusion in
the Saha ionization equation.

In Section 4.4 we discuss the procedures for
computing the opacity and in Section 4.5 the nuclear energy
generation rate. We conclude this chapter with a descrip-
tion in Section 4.6 of the numerical procedures employed in
supplying the constitutive data to the computer program
which is used in computing the stellar models.

k.1 Thermodynamic Properties of an Interacting
Hydrogen-Helium Plasma

Historically the first successful attempt to

account, in an approximate way, for the effects of
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electrostatic interactions between the charged particles in
ionic systems was the treatment of strong electrolyte solu-
tions developed by Debye and Hickel (1923). The Debye-
Hiickel (DH) thecory has been carried over to the domain of
high temperature plasmas where it has been utilized to
estimate the departures from the ideal gas thermodymnamic
functions resuiting from Coulomb interaction effects.
Because of the approximations employed in the DH theory,
however, it is applicable only at sufficiently low densities
that the interactions remain small; at higher densities the
DH treatment tends to overcorrect for these effects.

A completely general treatment of systems of inter-
acting particles entails the solution of the quantum
mechanical manybody problem. Although the complexity of
this problem as yet prohibits the obtaining of general
solutions applicable to any system of interest, it has been
subject to attack at several points along its periphery.
One of the more promising analytic methods is that which
has evolved from Mayer's (see Mayer and Mayer 1940 and
Brout and Carruthers 1963) expansion of the thermodynamic
functions of a system of interacting particles as a power
series in the density (the virial expansion). The coef-
ficients of the powers of the density appearing in this
expansion are expressed in terms of the so-called cluster
integrals, the evaluation of which proceeds from the

properties of the canonical ensemble. In its original form
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this approach is applicable only to classical systems for
which the potential between a pair of particles decrecascs
more rapidly than the cube of the particle separation.
Montroll and Ward (1958) and Glassgold, Hechrothe, and
Watson (1959) have generalized Mayer's treatment through
the grand canonical ensemble aud the techniques of quantum
field theory for application to quantized systems of
particles interacting through inverse-square forces. While
if is possiblé to extend these developments to more
complicated systems (DeWitt 1961, 1965), they have yet to
yield results by which the thermodynamic functions for real
systems may be casily evaluated.

A number of investigations of the practical conse-
quences of the Coulomb interaction effects in plasmas
beyond the DH l1limit have adopted what we may designate a
model approach. We refer to the approximate procedure by
which the system under consideration is replaced by an
idealized but representative model, which, for example, the
system may approach as a limiting case and for which the
thermodynamic propertiés are readily derivable. Examples
include the equation of state determinations based on the
Thomas-Fermi theory (cf. Feynman, Metropolis, and Teller
1949); the cellular models, which include the ion-sphere
approximation (cf. Salpeter ldGl) and the Wigner-Seitlz
method for solids (cf. Seitz 1940); and the Monte-Carlo

calculations (cf. Brush, Sahlin, and Teller 1966).



117

Within the stellar interior we deal with a gascous
configuration existing at temperatures from a few thousand
degrees near the surface to a few million degrees at the
center. The interior densities are sufficiently high that
pressure ionization is complete near 5 x 10~ °K. In addi-
tion the free electrons are partially degenerate in both
regions of complete and partial ionization. In so far as
the thermodynamic properties of the stellar interior are
concerned, we may regard the interior as consisting of an
equilibrium mixture of hydrogen and helium, that is, we may
neglect the small abundance of the heavier elements.
Specifically we consider helium to be present in all of its
ionization states and hydrogen to be present in Poth
ionization states as well as combined as molecular hydrogen.
We neglect the less abundant ionic species H and H2+. In
this case we confront a physical situation for which none
of the approximate theories for imperfect gases provides a
completely satisfactory representation. As the basis for
incorporating the interaction effects in the computation of
the thermodynamic functions, however, we employ the DH

theory together with the results of the Monte-Carlo (MC)

calculations performed by Brush et al. (1966). At tempera-

5 ;
tures below 107 °K we introduce a rather artificial
modification into the DI and MC treatments in order to
prevent the occurrence of erroneously large electrostatic

corrections. In piroceeding in this manner we must
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acknowledge that quantitatively our estimation of the
interaction effects may be substantially in error. How-
ever, since we expect that we tend to overestimate these
effects rather than underestimate them, our resulis should
serve to indicate the magnitude of such effects on the
overall structure and evolution of low mass stars.

We consider a gascous mixture of hydrogen and
helium at a temperature T and confined within a volume V.
We suppose that the Helmholtz function, I'y for the system,
which may contain neutral atoms, molecules, ions, and free
electrons, may be written as the sum of a perfect gas
arising from

contribution, F and a correction term, I

O’ ?C7

the effects of particle interactions. That is, we write

F =F_ + F (4.1)

Upon determining F, we may calculate the total gas pres-

"sure, P, and the entropy, S, from the thermodynamic

relations
F
P - - (g‘\f (h.2)
T, Nl’ Nz, e
and
ar
S = - (ET) (4.3)
Vy Nl, Nz, .w
where Nl,iNz, ... o, denote the total numbers of the various

species of particles present in the mixture. The total
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thermodynamic internal energy, U, of the system is oblain-
able directly from the definition of the Helmholtz

function, that is
U=F + TS (h.h)

We note that we may regard ecach of these thermodynamic
functions as consisting of the sum of a perfect gas term
and a correction term to account for the interaction
effects. Specifically we write P = P_ + P
I By W 0 c’ 0 c?

and U = UO + UC.

4.1.1 Debye-Hiickel Region

In Appendix A we derive the correction to the
Helmholtz function, FC’ for an ionized gas on the Debye-
Hickel model modified to take into account the effects of

electron degeneracy. The basic result is given by equation

(A.L40) and is

r 3
kTV K
Fo = = 1w el

where k is the Boltzmann constant and kK is the inverse

Debye length defined as

.2
K = =~ (z"n. + n 0 ) (4.6)
B i e e

Here e is the electronic charge, z is the mean charge
number per ion (cf. equation A.17), and n, and n_ are the

mecan ion and frece electron number densities, respectively.
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The quantity Qe enters as a rqsult of electron degencracy
and is defined in terms of the Feirrmi-Dirac integrals,
Fa(n), where

oo

XO(.
7 - , 1
Foc(n) E f exp(x-1n) + 1 o (4.7)
0

The parameter 1 is defined such that in terms of the free
electron number density and the temperature we have (Tolman

1938)

S 1 = h2 3/2 )
b1/2(n) "y \[h 1‘le (Eimekf) (4.8)

where h is Planck's constant and me is the mass of an

electron. In terms of these quantities we define (equation

A.26)

B = Fi/z(n)/p (n) (4.9)

178

where the prime denotes differentiation with respect to 1.
From equation (4.5) and equations (4.2)-(4.4) we
determine the following corrections to the pressure,

entropy, and internal energy:

= F (L + 3 2k L
B = <Folg + £ o) (4.10)
- _p (L . 3 2x L
.Sc = —FC(T = aT) (4.11)
and
kKT2V 2 K
U K= 2= (4.12)
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The quantities 2k/dV and 9&k/3T are obtained by straight-
forward partial differentiation of equation (4.6) in which
we note that ny and n, are)dofinod such that if Ni'and Ne
are, respectively, the total numbers of ions and electrons
in the gas, then n, = Ni/V and n, = Ne/\". Thermodynamically
K is to be regarded as a function of V, T, Ni’ and Ne.
Thus the quantity ok/aV is evaluated holding T, Ni’ and NC
fixed and, similarly, 9«x/3T is evaluated holding V, Ni, and
Ne fixed.

Over that region of density and temperature for
which the DH criterion, equation (A.11), is satisfied, we
may add these formulae, equations (4.10)-(4.12) to the
perfect gas expressions in order to obtain the total
thermodynamic functions including the interaction effects.
At higher densities, that is, beyond the DH limit, these
results tend to overcorrect for the interaction effects and

we must resort to other procedures.

4.1.2 Monte-Carlo Region

Following Brush et al. (1966) we define the

parameter r1such that

2
r': i‘; (11/371111)1/3 (4.13)

In terms of this parameter the DH criterion, equation

(A.11), may be written as

P<< .1z (4.14)



where this condition is satisfied we may apply the DH
results. Over the region 0.05 < rji 6.1 we it the DH
results to the results of the MC calculation of Brush
EL al. (1966) and above r1> 0.1 we take over the MC
results directly. The MC calculations were performed,
however, for a onc-component system consisting of positive
point ions of charge number z immersed in a uniform nega-
tive charge background. Such a model corresponds, for
example, to a physical system at sufficiently high
densities that pressure ionization is complete and the
free electrons are sufficiently degenerate that they are
distributed nearly uniformly, independently of the ions.
We regard this as being a reasonable approximation to the
physical conditions existing within the interiors of low
mass stars at temperatures above ].O5 °K. Below this
temperature, at the densities we consider, this model is
no longer adequate.

In essence a single Monte-Carlo chain consists of
the determination of the equilibrium configuration of a
system composed of a specified number of particles through
consideration of the random motion of the constituent
particles. Brush et al. (1966) construct 50 such chains
on the model described above for systems containing from
32 to 500 particles. They calculate the total configura-
tional potential energy as well as the pair distiribution

functions and from the former they obtain additionally the
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overall thermodynamic properties of the system. These
latter data are tabulated as functions of the parameter rﬂ
over the range 0.05 5_[ﬁ5_125. Near rjz 125 they find the

occurrence of a solid-fluid phase transition.

4.,1.3 ITIon-Pair Model
5

Below 10° °K we introduce an artifice into the DH
and MC theories in order to extend their applicability
beyond the DH limit. That the DH theory fails at high
densities is a consequence of its representing the inter-
action effects through consideration of only two particle
interactions. At low densities this suffices, but at high
densities ternary and higher order interactions tend to
yield more uniform particle distiributions than predicted by
the DH theory. These effects are the most serious at the
lowest temperatures for which ionization is complete.

Under these conditions we cannot disregard the ion-electron
interactions; hence the above MC model is also inadequate.
In order to compensate for these effects we adopt a
procedure based on Bjerrun's (cf. Fowler 1936, p. 552)
treatment of ion association.

We consider a volume V containing Ni and Ne free
ions and electrons; respectively, and assume that the mean
charge per ion is unilty so that Ni = Ne' We consider an
associated jion pair to be formed within the system when an

electron is located within the radius ap of an ion. For
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the valuec of ap we take that distance from the ion at which
the maximum average relative kinetic energy between an ion
and an electron (neglecting degeneracy) is equal in magni-
tude to the potential energy of the ion-electron pair, that

is
—— = 3KkT (4.15)

We let Np be the total number of such pairs and let Ni and
Ne be the total number of free ions and electrons, respec-
tively, which are not associated as ion pairs. Letting

Q _, Qi, and Qé denote the respective partition functions we

P

have

(4.16)

We regard the partition functions as products of a transla-
tional term ﬂ and a configurational term u. TIor the ion
pairs we have [p = /;[;. Regarding the ions as point
particles and neglecting any interactions between them we
have u, = V, the total volume of the system. Letting

up = 4/3Hap3, the spherical volume associated with the
radial distance ap about an ion, we have that u, is Jjust

the volume available to the free, unassociated electrons

regarded as classical particles, that is u_ =V - N v_.
2 e e p
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For the configurational partition function of the ion pairs

we have

a
P
u = 2TV /ﬂ exp[— ~£-~(—l—ﬁ--)--:|r2d1‘ (4.17)
P ' <
0

where €(r) is the interaction energy between the ion and
the elecctron composing an ion-pair at the separation r
where 0 < r < ap. To expedite matters we set €(r) = 0 for
all r and obtain u, = 1/2va. We let P denote the ratio
Né/Ne and write equation (4.16) as

1
1-B_ Zp_p 2 'p ,
2 " 4./ u.u ~V - N v (4.18)
B Ne i%e i e e p

We define the ion-pairs equilibrium constant Kp such that

1
5 v.n_ =q
K = i_npvc = ?_ (4.19)
P e p -—q

where n_ is the total mean free electron number density and

q = nevp. We then obtain the equilibrium relation

BzKp +B-1=0 (4.20)

which may be solved explicitly for [ given n, and T. When
B = 1.0 we have no ion-pairs existing within the system
while B = 0.0 implies that all of the free electrons and
ions are associated into ion-pairs. Physically we inter-

pret ion-pair formation as a transient phenomenon whereby



an electron found within the radial distance ap of an ion
results in the momentary existence of a neutlral particle.
As such we assume that those free electrons and ions which
are associated as ion-pairs make no contribution to the DH
or MC corrections; hence we include only the unassociated
free ions and electrons, thus employing the modified frece
electron number density né = Bnc, in computing these
corrections.

Although we can compute the parameter [ for each
n, and T encountered, we find it more convenient to repre-
sent it by an analytic function of the parameter q. The

function

2
plq) = —BLlazl) (4.21)
[1—2(q—1)]
has the desired properties in as much as B(0) = 1.0 (no
ion-pairs), B(1.0) = 0.0 (complete ion-pair formation), and

(dB/dq)q:O = (dB/dq)q:l = 0,

In order to be thermodynamically consistent, the
thermodynamic functions for the system should go smoothly
over to those for the systém of associatcd(ion—pairs as
B -» 0. However, for computational convenience, we assume
that, with the exception of the‘pressure, all of the
thermodynamic quantities go over to those values appro-

priate to a perfect gas mixture of ions and electrons as



v
-

B —- 0.0. For the total gas pressurc we take

=P + BP, + P. (Bn , T) (h.22)
e i €

l)
total C

where Pe and Pi are the ideal gas electron pressure
(including degenecracy) and ion pressure, respectively, and
PC is the DH or MC correction term regarded as a function
of the modified free electron number density Bne and the
temperature, T. We note that‘in the limit of complete ion-
pair formation Ptotal becomes, in the absence of degeneracy,

just half the total pressure that would obtain for an ideal

gas mixture of free ions and electrons.

4.2 Pressurec lonization of Hydrogen and Helium

We wish to consider the ionization equilibrium in a
gaseous mixture of ﬁydrogen and helium which is at a
temperature T and confined within a volume V. Thermo-
dynamically ionization may be regarded as a special case

of a chemical reaction of the type

Ar+l + e @ A (4.23)

where Ar+l and Ar denote the upper and lower stages of
ionization, respectively, and e denotes an electron (cf.
Landau and Lifscﬁitz 1958). In order that a mixture of
elements be in equilibrium at constant volume and tempera-

ture, we require that the Helmholtz function for the

system, F = F(T, V, N], N,, ...) be minimized with respect



to the concentrations, N N «es 4 of the ionic species

1* Tgt

present. Let Ni " be the total number of particles of the
)Y

ith element in the rt stage of jonization. We then require

that
- S or : aF :
ar = > % (aNi r) N, (-——-aNe) aN_
i r >TT,V,N_. ,N T,V,N,
J,r’e s

- ) i, B8 h.24
ZS zz p'i,rdl\'i,r ¥ I“Ledl\e 0 (4 )
i ¥

where pi,r are the respective chemical potentials and Ne
and pe are the total number and the chemical potential,
respectively, of the free electrons. Since the total
number of particles of a particular element is fixed, we

have, supposing the gas to be a mixture of m clements, the

following m conditions of constraint

-_ J - S C » 1 — l
72: Ni,r N, constant i 1y sow 5 I (4.25)
3
which gives
= i = /
zz dNi,r 0 - s wws g B (4.26)

Furthermore we require that the system be electrically

neutral so that

¥ o= 7 N L. o7
1\e 2: /rkj,r (h.27)



where Zr is the charge number of an ion in the rt stage of

ionization. This leads to the condition that

= N #] AW . [ic
an L Z AN (4.28)
i.r

Using equations (4.26) and (4.27) we may eliminate dNe and

m of the dN;, in equation (4.24). Since the resulting

™

equation must be true for arbitrary variation of the

remaining dNi ro we must require that the coefficients of
)

these dNi o vanish. We are then left with the following
’

set of equilibrium equations

v T U U = 0§ (4.29)

ig.r+l e 5 (%

for all elements i in all stages of ionization r. If we
now assume that the ions may be treated as a classical,
ideal Maxwell-Boltzmann gas we have (Mayer and Mayer 1940,

p. 126)

2TUnika 3/2

5 - ani’r (4.30)

Hi,r = kT { [n ni,r - In|( "

where n, is the number density and Qi r the internal
2 b
partition function for the i% element in the rt stage of

ionization and mi is the mass of the it element. In

general the partition function is given by

(@'e] ‘q
Q = X g exp(- -1?1:) (4.31)



where the summation is performed over all bound states s

>
~

energy fs and statisticel weight 8 It is conventional

IS

measure the energies € with respect to the ground state

=

energy of the particular ion in question. 1In evaluating

the partition functions, Qj - and Qi for an element

" yr+1?

two succesgsive stages of ionization, we must refer the
bound state energies to a common zero of energy. If we
choose the ground state of the lower ionization stage as
the zero point, then we must add to the energies of the
upper stage the amount Xi,r’ which is just the ionization

energy of the lower stage. Letting n = pe/kT we obtain

from equations (4.29) and (4.30)

i.1r+1 i.1r+1 xi r
G141l _a,rHl o _1.¥Y
: = =5 exp ( R n). (4.3
i,r 1490

If we further assume that the electrons may be treated as
Maxwell-Boltzmann gas and employ equation (4.30) to obtai
ko> we find that equation (4.32) reduces to the usual for
of the Saha equation. In general we are to be concerned
with a gas in which the electrons may be degenerate in
which case M must be evaluated from the Fermi-Dirac
statistics.

That the summation involved in the evaluation of
the partition function of the ions extends over an infini
number of bound states is a-consequence of the Coulomb

field in which the bound electrons move and the assumptio
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that a particular ion can be regarded as being isolated.
In a real gas, however, no ion is completely isolated since
it will be subjeclt to the perturbing effects of neighboring
particles. The electrostatic field about an ion will not
be due to the Coulomb field of the ion alone but will be
modified by the presence of the other particles, especially
by other ions and the free electrons, such that it will
vanish at some finite distance from the ion. Thus there
will be in reality only a finite number of bound states, a
consequence which provides a natural cutoff to the parti-
tion function summation. Furthermore the modified poten-
tial distribution about the ion will result in an upwards
displacement of the bound state energies which will give
rise to an effective lowering of the ionization energy. At
a fixed temperature we then find that both the total number
of bound states and the bound state energies become
dependent on the density in such a manner as to shift the
ionization equilibrium to higher stages of ionization with
increasing density. This is the phenomenon of pressure
ionization and is responsible for insuring that plasmas
will tend towards complete ionization at very high den-
sities. The effects of the particle interactions will also
be to broaden the respective energy levels, an effect which
we neglect in the present treatment.

In considering pressure ionization we are, of

course, concerned with the time averaged effects of the
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perturbations arising from the particle interactions. In
principle one should trecat these effects through statisti-
cal mechanical considerations but, because of the very
complicated nature of the problem, it is more convenient
to attempt to represent these effects by means of simple
models. In a gas consisting of a mixture of charged and
neutral particles we expecﬁ that the microfields estab-
lished by the charged particles will provide the major
perturbing influence on the bound states of any particular
ion. Mayer (1947) and Armstrong et al. (1961) have
utilized the ion-sphere model in order to estimate the
lowering of the ionization energies in a plasma. In this
model each ion is considered to be surrounded by a uniform
spherical cloud of free electrons in which the number of
electrons is equal to the charge number Z on the ion. The
size of ecach ion sphere is chosen to be that of the mean
volunme per ion corresponding to the mean ion number density.
It is assumed that the outermost bound electron moves in a
potential field arising from the ion (including the screen-
ing effects of the inner bound electrons) and the outer
free electrons composing the ion sphere. If Ze is the
charge on the ion and a is the ion-spherec radius, where
a = (3/4Rn)1/3 and n is the mean ion number density, then
it is found that the ionization energy of the ion in
question is lowered by the amount 32@2/2a. This model is,

strictly speaking, applicable only to ions at high stages
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of ionization and should be applied only under the condi-
tion that the ion-sphere radius is much greater than the
radius associated with the orbit of the outermost bound
electron.

Ecker and Kr51ll (1963) employ the simple Debye-
Huckel model in order to estimate the lowering of the
ionization energy of a given ion arising from the screening
effects of mneighboring ions and free electrons. They find
that in the regions of density and temperature in which
the Debye-Huckel approximation islvalid, the lowering of

the ionization energy in a classical plasma is given by

1 2 52 2 ; :
- gy K = T e - ~ A ro -

5C (1 + Lr+l Zr), where k is the inverse Debye length
and Zr+l and Zr are the charge numbers of the upper and

lower ionization stages, respectively, of the ion in
question.

Stewart and Pyatt (1966) develop a theory for the
lowering of the ionization energy in a plasma which yields
the Debye-Hickel result in the low density, high tempera-
ture limit and the ion-sphere result in the limit of very
high densities. They proceed by solving Poisson's equation
for the time-averaged potential distribution about an ion
arising from the assumed spherically symmetric distribution
of ions and free electrons about the given ion. They
assume that the bound electron distribution about the ion
can be described by the Thomas-Fermi model and that,

effectively, the distribution of ions and free electrons
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can both be described by the Maxwell-Boltzmann distribu-
tion. The lowering of the ionization energy then appears
as the work doite in removing an electron from the origin to
infinity agains£ the potential field of the screening cloud
of ions and free electrons.

While the procedure of Stewart and Pyatt yields an
estimate of the lowering of the ionization potlential over a
wide range of density and temperature, it provides no
information on the accompanying effect on the partition
functions. To accomplish this, one would have to solve
Schrodinger's equation for the array of bound states
utilizing the total screened potential distribution about
the ion. Once the associated energy eigenvalues were
found, the partition functions can be computed from the
summation indicated in equation (4.31). Harris and Trulio
(1961) approximate the effect of particle interactions on
the bound states in a pure hydrogen plasma by considering
each atom to be confined within a box of dimensions equal
to the mean volume per atom. The perturbed energy eigen-
values arec obtained from the solution of Schrddinger's
equation and it is found that this procedure leads to a
qualitatively correct thermodynamic behavior of the gas.

A more realistic approach than this so-called box
model is to consider the outermost bound electron to move
in a Coulomb field which has been appropriately modified to

account for the screening effects of neighboring charged



particles. In treating a pure hydrogen plasma, Harris
(1962) adopts the Debye-Huckel potential distribution,
which for a hydrogen-like atom of nuclear charge Z can be

written as (cf. equation A.31)

Ze

plFE) = s exp(- kr) (4.33)

where @(r) is the potential at the distance r from the
nucleus and K is inverse Debye length. Approximate solu-

tions to Schrddinger's equation,

h2 2 702
=V - = exp(- k1) ¢n,1 = (nwlwh,ﬂ

are obtained using the variational technique in which
unperturbed hydrogen atom wave funciions are used as a
basis set of functions for minimizing the energy. These
calculations are made for the hydrogen atom ground state
and 44 excited states up through n = 9 and f = 8. The
resulting bound state energies are tabulated as functions
of the parameter & = Kao/Z where a is the radius of the
first Bohr orbit. It is found that the bound state
energies are shifted upwards towards the continuum with
increasing & with the consequence that at values of 6
greater than 6 = 1.15 no more bound states exist and the
atom is completely pressure ionized.

We shall utilize Harris' results in order to obtain

the thermodynamic functions for a gaseous mixture of
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hydrogen and helium. TIor the hydrogen-like species HI and
Hell we can employ Harris' data directly although for ease
in computlation we shall introduce several simplifications.
In computing the partition functions we shall not include
the nine bound levels considered by Harris but shall sum
explicitly only over all the states up through the n = 4
level. We consider all of the remaining upper states
through the n = 9 level to lie at a common energy equal to
tﬁat of the n = 5 level with which we associate the statis-
tical weight g = 510. We further assume that all states of
common n lie at the same energy; although use of the
potential given in equation (4.33) removes the nﬁf degen-
eracy peculiar to the pure Coulomb field. We assume that
the states vanish sequentially with those of highest n and
£ vanishing first. Below we tabulate the values of & at
which the various states we consider vanish and the statis-

tical weight gnﬂ associated with each state:

State 6 Sny
5s 0.05 510
4t 0.06 14
4q 0.06 10
Lp 0.08 6
3d 0.09 10
3p 0.110 6
4g 0120 2
3s 0.20 2
2p 0.21 6
2s 0.30 2
ls 1.15 2
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In this model the partition function can be repre-

sented by
n' 2'-1 4
" cn(- Pkt

Q=2 2 &, g s =)

n=1 f=0
€ ' 1
xp (= B L L. 3!

h gn',ﬁ'(ﬁ) LA)XP( k7T (1'3”

where n' and /' are the quantum numbers associated with the
uppermost state existing for a given value of & and (n,ﬂ
are the bound state energies. The partition function for
the uppermost bound state is regarded as a function of b
and is computed such that it vanishes smoothly with & as
the excitation energy approaches zero, thereby insuring
that the contribution of the uppermost state to the total
partition function will, in fact, vanish. Specifically,
taking the st level of unperturbed statistical weight gso
to be the uppermost 1evel existing at a value of & such
that 0 < 6 < SS, where 65 is the value of & at which the
sth level vanishes, we repfesent the 6 dependent statistical
weight, gs(6), by

AS(6—6s)2

g L85y = (4.35)
. 1 % Bs(o_as)2 ]

o
The constants A and Bq are chosen such that g = g as
5 s s s

~

o
- E =¥ as H — b5 T = p v ==
& — 0, g 0O as 6 65, and g, ]_/2{;S when © 6s+l’

that is, we take the statistical weight of the st level to
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have one-half its unperturbed value at that value of
& = 65+l alt which the preceding level vanishes.

We note that in representing the partition function
for the bound states in this way it becomes implicitly
dependent upon the free electron number density and addi-
tionally dependent upon the temperature through the explicit
dependence of the fn,i and the gn7£ on the parameter
b = 6(ne,T). The dependence of the gnwﬂ on 6 has been
introduced in a highly artificial way, however. Because of
this, we neglect this implicit dependence of the partition
function on n, and T. Consequently, we continue to regard
the subsystems containing bound electrons as constituting
an assembly of ideal Boltzmann particles for which, how-
ever, the partition function vanishes with the disap-
pearance of the bound states.

In applying Harris' data to neutral helium, we
consider only one excited state whose dependence on & we
take to be the same as that of the 2s state of hydrogen.
The partition function is computed in a manner completely
analogous to equation (4.34) for HI and HellI. We assume
that the dependence of the Hel ground state energy, and,
thus, the ionization energy, is the same as that for a
hydrogen-like atom having an effective nuclear charge
number Z = 1.344653.

The total Helmholtz function for the system con-

sists of the sum of the contributions arising from the



69
translational degrees of frecedom of the ions and molecules
and a correction term arising from the Coulomb interactions
between the charged particles. If we let Ni be the total
number of ions of the it ionic species (we herein regard
neutral atoms as ions having an ionic charge number Zi = 0)
and let Qi and m, be the associated internal partition
function and particle mass, respectively, then the contribu-
tion to the Helmholtz function due to the it species treated

as a Maxwell-Boltzmann gas is

2Tm . kT 3/2

1
h_é___) - fnQ -1 (h.36)

F, = N.kT| /n N, - fnV - /[n(

where h is Planck's constant and k is the Boltzmann

constant. The total contribution from the ions, Fions’ is,

of course,

F = EPHJ (4.37)

ions

The contribution made by the free electrons, Fe, treated as

an ideal I'ermi-Dirac gas is

1 - N - 1

F_ = N_KI [n D(n)] (4.38)
where Ne is the total number of electrons present and

n = peo/kT where peo is the chemical potential of the free

electrons corresponding to the mean free electron density

n, = Ne/V. The function D(7) is defined in terms of the
Fermi-Dirac integrals by D(1) = 2/3 F3/2(ﬁ)/pl/2(ﬂ)- The
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contribution to the Helmholtz function, FC, arising from
the electrostatic interactions between the ions and the
free electrons on the Debye-Ilickel model is given by
equation (4.5).

We now establish through the set of equilibrium
conditions contained in equation (4.29) the equations
governing the equilibrium concentrations of the various
ionic species present. The chemical potential of the ith
iénic species, pi, is obtained from the thermodynamic

relation

2T
TLV,N N

where the subscript Nj indicates that all of the ionic
species other than the i% are to be held constant in
performing the differentiation. From equation (4.36) we
have

27m kKT 3/2

by, = kT In n, - jn(m—;; ~) - In Qi (4.40)

where n, is the mean number density of the it species.
The chemical potential of the frce clectrons, pe,

is given by
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from which we obtain
V)
S o= 4. h2)
kT i nc (
where
it
T e“x Z 4+ L (h.43)
c 2 kT Fr, (1)
1/8
The primes denote differentiation with respect to the
parameter 1.

From these results and the discussion preceding
equation (4.32), it follows that the ratio of the number
densities, n. and n, s of the it element in the

= P o 1,r+1
successive stages of ionization, r and r+l, is given by
i, r+l i,r+1
) R 3. ¢ S A" = - b Ll
2 . exp ( Qi,r n nc) ( )
i,r i,r
where we let @, = X, /kT. In the treatment of pressure
igrxr 5 1

ionization which we

energy, Xi’r

fa.r%]?

tron density and the temperature.

s and the partition functions, Q.

employ here, both the ionization

and
. 0P

are to be regarded as functions of the mean elec-

Equation (4.44) repre-

sents the final form of the ionization equation which we

shall utilize in computing the icnization equilibrium in

the gas.

For the hydrogen-helium plasma which we consider

here,

we have the following equilibrium relations:
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n

H* 2
—_— = == exp(-P,0 - M - N.),
)

]]HO (~“_o H C
;S Qe i

}IC = Q]i(’-*‘ CX})(—q’)I’IeO n - Tlc) (ll‘[‘lsa)c)
PHeo HeoO

and

n

Het* 1 )
n, + Q. . ekp(—mﬂe+ e B nC)’
He He

where the n n n 1 : and n + are, respectivel
HO?® Ht? He©? Het s Hatt 9 P Y
the number densities of neutral and ionized hydrogen and

neutral, singly and doubly ionized helium.

4.3 Pressure Dissociation of Molecular Hydrogen

In the low temperature regions of a star we must
also allow for the presence of molecular hydrogen, which
we consider to be in equilibrium with neutral atomic

hydrogen through the reaction

H+ H =2 HZ'

In this case the equilibrium relation for molecular

hydrogen is given by

nH2 QH02 ﬂmHkT 3/2
= ( ) exp(-D /kT) (4.h6)
Ny U 1" .
2 2
where nH is the number density, QH the partition function
2 2

and De the dissociation energy for molecular hydrogen and
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m,, the mass of a hydrogen atom. We neglect the possibility

H
of electronic excitation and, assuming a normal mixture of

the ortho and para modifications, write the H2 partition

function in the form

DO
I

. . Z: | Z (2J+1) exp{—[(v + ‘J(V)]/I{T}

v
even

(4.47)

¥

3 25 25 (2J+1) CXP{-_PV'+ €J(v)]/kT}
v

Jodd

where €, and GJ are, respectively, the energies of the

vibrational energy level with vibrational quantum number

v and the rotational energy level with rotational quantum

number J. From Herzberg (1950) we have

€ 2 3

i i 1 1
e = = - = ’ = " L.l
s (v + 2)we (v + 2) w x o+ (v + 2) w. Y, (4.48)

I

€
Ei J(J+1)B - J2(J+1)D + J3(J+1)3u. (4.49)
C Vv Vv

where h is Planck's constant and ¢ is the velocity of

light. We take the following molecular constants from

Herzberg (1950)
P =
o, = 1395.2

w X, = 117
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wy = 0.29
e” e
1 1.2
B = 60.8 - 2.993(v + =) - 0.025(v + =)
v 2 2
D = 0.0465 - 0.00134(v + )
v 2
H = 0.0000518
v

The summation in equation (4.47) is terminated when
fv + fJ(V) = De.
We provide for the effects of pressurec dissociation
following Vardya (1965) who estimates the lowering of the
dissociation energy of a hydrogen molecule arising from its
interaction with the nearest neutral hydrogen atom. He

finds that the dissociation energy is depressed by an

amount AD given by

AD

I

[[1-205) - 0.6utm]] (4.50)

where

u(é) = - 7.605 x 10712 (1.0 + 2.04¢) exp (-2.04¢&)

(4.51)

and ¢ = r/re‘— 1. Here ¥, 0.7414 A and is the equilib-
rium separation of the two protons in the nucleus of a
hydrogen molecule. For r we choose the mean volume per
particle in the gas rather than the mean volume per neutral

hydrogen atom as was originally done by Vardya (1965).
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In performing the partition function summation of
equation (4.47) as well as in evaluating equation (4.46) we
take the effective dissociation energy De = DO - AD, where
we denote by Do the unperturbed value. It is this parti-
tion function and dissociation energy which we employ in

the subsequent evaluation of the thermodynamic functions of

molecular hydrogen.

4,4 Interior Opacity

The computation of Rosseland mean opacities
appropriate to stellar matter requires a knowledge of the
total monochromatic opacity Ky at every frequency v. 1In
general the monochromatic opacity at a particular frequency
is the sum of contributions arising from a large number of
absorption processes involving many elements in various
stages of ionization. We shall employ the extensive
opacity data compiled by Cox and Stewart (1965) who have
computed tables of opacities, including the effects of
electron conduction, in a number of different chemical
compositions. In computing the Rosseland mean they have
included both discrete and continuous absorbing processes
and have computed the contribution to the total opacity
made by conduction on the basis of the Mestel (1950)
treatment of electron conduction. The data are presented
as tables of the logarithm of the total opacity versus the

logarithms of the temperature and mass density.
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In particular we shall utilize the opacity tables
for the composition which Cox and Stewart designate as the
Cameron Mixture I. We shall find, however, that in
applying these tables we shall require data at densities
greater than those included in the tabulated data. To
extend these tables to higher densities we resort to the
following expediency: 1In this range of density and tempera-
ture the effective opacity is principally determined by
electron conduction. We therefore assume that the radia-
tive contribution to the opacity remains constant with
increasing density and equal to the last tabular entry, and
we compute the conductive contribution from the Mestel
theory following Cox (1965). It should be noted, however,
that in this region of density and temperature, the
conductivity as computed from the Mestel theory may be in

error by as much as an order of magnitude (Hubbard, 1966).

4.5 Nuclear Energy Generation Rate

In the region of density and temperature appro-
priate to the deep interior regions of low mass stars the
proton-proton chain is the principal source of nuclear

energy generation. At temperatures less than about

6

6 x 10 °K the proton-proton chain will terminate with the

3

production of He”. At higher temperatures the recactions

3

proceed at sufficiently high rates that He” will obtain an

equilibrium abundance, and the proton-proton chain will
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4 g e
terminate with the production of He . We anticipate that
the central temperatures of the stars under investigation
here will, in fact, be less than 6 x 106 °K in which case
the proton-proton chain will involve only the following two

reactions:
 (p, B¥wyu®

H2(p, Y He"

We obtain the reaction rates and, hence, the rate of energy
generation from the data given by Parker, Bahcall, and
Fowler (1964). For temperatures greater than about

5 x ]_O5

°K we can assume that the rates of production and
destruction of Hz are equal. In this case the rate of

energy generation per gram for the proton-proton chain,

€ can be written as
P-pP

[ -—
(p—p = (2.803931 x 102L)PX2fS72e d erg/gm (4.52)

where p is the mass density and X is the fractional
abundance by mass of hydrogen. Letting T6 be the tempera-
. :

ture in units of 10  °K, the cross-section factor S is

given by

s 5 1 ,dSy [, BB
5(1,6) = So{l + aE ¥ ’s”;"(dE)o[_Eo(%) + 3“6“6] }
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where
S, = 3.36 x yTC P
1 ,ds B -3
=55 = 8.036 x 10
O (@]
" = A Ty
EO(16) = 0.968315 Te

and k is the Boltzmann constant. The factor r is given by

The screening factor f is computed according to the treat-
ment of Salpeter (1954). We find, however, that we will be
concerned with a region of density and temperature inter-
mediate between Salpeter's cases of weak and strong
screening. To obtain an estimate of the appropriate
screening factor in this region we compute a weighted mean
of £ such that f reduces to the factor for weak screening
at low densities and to the factor for strong screening at

high densities.

4.6 Constitutive Data Table

In the preceding sections we have established the
formulae by which the constitutive data are to be computed.
Because of the rather complicated numerical procedure
involved in evaluating the thermodynamic quantities, we
find it most convenient to provide these data in tabular

form over the range of temperature and pressure encountered
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within the stellar interior. In constructing such a table
we consider specifically the problem of computing the total
mass density, P, the internal energy per gram, u, the
adiabatic gradient, Vad’ as well as the opacity and the
nuclear energy generation rate for a fixed chemical
composition specified by the values of X, Y, 7Z, and for
given values of the temperature, T, and the total pressure,
P. We choose the Population I composition X = 0.739,

Y': 0.240, and Z = 0.021. We now reformulate and summarize
the results of Sections 4.1 and 4.2 so as to render them

more suitable for use in the numerical procedures.

b.6.1 T > 5000 °K

At temperatures above 5000 °K we consider a plasima
undergoing ionization or in which ijonization is complete.
We let n denote the mean free electron number density and
let n, and n. be the mean number densities of atomic nuclei
and ions, respectively. We let @ be the fractional
abundance by number of helium nuclei where o = (l—X)/(l+3X).
We define the mean charge number per ion, z such that
n = zn;. Because z does not vary sensibly from 1.0 even
under the condition of complete ionization for the assumed
hydrogen-helium abundance, we expediently set z = constant

= 1.0 for all P and T considered.

We define the following quantities:

o = ﬂ1/2n1/2e3/(kT)3/2, (4.53)
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H = 0 = P /i " (4.54)
= Yo Yo
C = Fn /l“' 5 (4.55)
Yo Yo
and
G =C - H (4.56)

where the primes denote differentiation with respect to the
degeneracy parameter, N, which is defined in terms of the
mean free electron number density, n. The inverse Debye
length, K, may be expressed in terms of the above quanti-

ties as

x3 = 8mny(1+m)3/2 (4.57)

Defining w = no/n and letting n, (k = 1,6) be the number

k

densities of HO, He©, He™, H,, H*, and He**, respectively,

we define the ionization parameters, x, (k = 1,4), and the

k
abundance parameters, ¥i (k = 1,6), as follows:
. S . - 3.
1 (1-o n, 3 o,
n n
_ 5 O
*2 (1-a)n Xy T on (b 5By L)
0 0O
and
1 , e
¥y = (l—&)xl I = E(]»&)(l*xl—kz)
Yo = a(l—xB»xq) Y = (]_—Oc)x2

Yq = ox Yo = 0xy (h.59a,1)
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We let Qk (k = 1,;4) and Xk (k = 1,4) be, respectively, the
internal partition functions and the ionization and dis-

sociation energies for H®, He©, Het, and H computed in

27
accordance with the results of Section 4.2. We define @k
(k = 1,4) such that ¢ = Xk/kT. We may now write the
ionization-dissociation equilibrium relations, ecquations
(k.45a,c) and equation (4.46), so as to define the respec-

tive equilibrium constants K, (k = 1,4) as follows:

k

2 2
—= = =— exp(-¢, - n*) = K.
Xy Ql 1 1
x Q
3 2
e 5w gxpl-p, ~ M%) = K
(4.60a,d)
%
4 1
— = = exp(-0, - n*) =K
= .
3 Q3 3 3
2 2
=y Q" ap3/2 Ky
1—xl—x2 - Ql& wn exp(—(pq) T Wwn
where we have set M* =1 - nc. The pressure ionization

parameter, n_, is, from equation (4.43),
n_ = -Y(1+c) (1em)/? (4.61)

The quantity A appearing in equation (4.60d) is

3/2

2 1-a
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We may solve equations (4.60a,d) directly for the respec-

tive x, @
k
N | 172 ]
= =5 [KO K, (14K, )
By B Ry%y
(4.62a,d)
x, = Kz/[1+K2(l+k3)]
x; = K. %
b 373
where
“ 9 N o .
KO = K[l (1+Rl) + 8hq

Noting that the parameter w defined above and appearing in

equation (4.60d) is given by

w o= [(l—a)xz + o(x +2xq)]_l, (4.63)

3

we may evaluate equétions (4.62a,d) directly. In the
absence of H2 (that is, under the conditions of complete
pressure dissociation), we have X, = 1 - X, and X, =
Kl(l - Kl) in which case these relations assume a particu-
larly simple form. We note that, in the instance of
complete ionization and dissociation of all particle
species, we have Xy = X5 = 0 and x3 T 1.0.

We may now write down explicit expressions for the

total pressure, P (we neglect radiation pressure), the

internal energy per gram, u, and the dimensionless entropy
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per gram O = pomns/k, where Ho is the mean molecular weight

per nucleon, By = I + 30, m, is the mass of a hydrogen

H
atom, s is the total entropy per gram, and k is Boltzmann's
constant. We regard these quantities as consisting of the
sum of an ideal gas contribution plus a correction term to

account for the electrostatic interactions; that is, we

write

P = Po } PC,
u = ou o+ oug (4.64a,c)
o = O'o + GC
In the notation of the present section we have
6
P, = (Bw Z Vi * D) nkT,
k=1
3InQ
_ 3 . K 3 D | _kT !
oy = 25 yk(2 " 2/nT )+ 2 w il m (4.65a,c)

k=1

+ -‘%/ZnT - Zn(ykwn) + ,Zan

o\

8, = 2 yk[

k=1

+ AnQ,_ + iffgk— + L (2.5 - n)
k ' aLnT W : M

where [ is the ion-pair abundance parameter given in equa-

tion (4.21), D is as defined previously, D = 2/3F3/2/Fl/2,
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and the constants C, (k = 1,6) appcaring in equation
(L.65c) are given by .

27Tm, k 3/2

C = (—2X) (h.66)

o

=

h

where the m,_ are the masses of the respective particles,

k is Boltzmann's constant, and h is Planck's constant.
Where the Monte-Carlo corrections are applicable,

we compute the parameter r1: (ez/kT)(lj./B’ﬂn)l/3 and inter-

polate directly in the tabular data of Brush et al. (1966).

In the DH region the respective correction terms, including
the additional correction for ion-pair formation, are

determined from equations (4.10), (&.11), (4.12), and

(4.57)
Pc = ,-BB/ZY(HH)]m[%(lﬂﬂ-ﬂj\ nkT
_ 3/2 1/2 kT
u, = -B Y(1+H) (L+1+G E—o—nﬂ-i-‘—; (4.67a,c)
3/2 |
. _YB sy 120 1 3
q o= - (1+H) [3(1+H) 5 1

The total mass density is given by
= - L
p K mywn (4.68)

and the adiabatic gradient is given by
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= (2408 &
Vad a (a log T
a ”mn
- I (iﬂ) _ (22) fiff.ii& (4.69)
P 2T ” on " (BG/an)T

In the above formulation the thermodynamic
quantities, including the DI and MC corrections, as well
as the ionization-dissociation equilibrium relations have
been regarded explicitly as functions of n and T. Upon
specification of a P and T, we compute these quantities by
first computing the corresponding value of n. We employ
a Newton-Raphson iterative procedure whereby corrections,
An, to trial values, n*, of the clectron density are

computed from

P-p*
e O 7T - o)

where P* P (n*,T). The iteration on n is continued until
the clectron density converges to within a specified
tolerance.

The prescription proceeds as follows: For a trial
value of n and the given T we compute the degeneracy

parameter I from equation (4.8) and obtain the other

178
degeneracy parameters m, 2/3 Fﬂ/z, and the derivatives of
2

Fl/2 either by direct interpolation in the tables of

McDougall and Stoner (1938) or by using the appropriate
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extrapolation formulae for &alues of Fl/2 outside the range
of these tables. We compute k and, thus, 6 = Ka and
evaluate the atomic partition functions and ionization
energies. For the trial n, we know the total particle
number density from which we evaluate the dissociation
energy and the partition function for molecular hydrogen.
We then compute the respective x's from equations (4.62a,d)
and the y's from equations (4.59a-f). We then compute P*
from equations (4.65a) and (4.67a) and determine An from
equation (4.70). Once the convergence of n has been
obtained, the remaining thermodynamic quantities may be
evaluated directly. The derivatives required in the
iteration procedure as well as in the computation of Vad
are obtained through straightforward differention of the
respective quantities P (n,T) and ¢ (n,T). In keeping with
the discussion of Section 4.2 we neglect any implicit
dependence of the atbmic partition functions and ionization

energies on n and T.

4h.6.2 T < 5000 °K

At temperatures below 5000 °K both hydrogen and
helium remain neutral at all relevant pressures so that we
need only consider a mixture of neutral atomic helium and
neutral atomic hydrogen in equilibrium with molecular
hydrogen. We let the subscripts k = 1, 2, 3 denote those

quantities pertaining to H, H2’ and He, respectively. The
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respective partial pressures are Pk (k = 1,3) and the total
3
pressure is 3 PP' The H~H2 dissociation equilibrium
k=1 )
relation is
P 2/P = K (4.71)
1 2
where
Ql e ‘lImHkT 3/2
K =5 {memigonna) kT
2 h

Here the Q's denote the respective partition functions. If
we let x be the ratio of the number of atomic hydrogen
nuclei to the total number of H nuclei present and intro-
duce the abundance parameter O as defined previously,

equation (4.71) may be rewritten in the form

(l—a)(K*+4)x2 + 20K*x - (1-0)K* = 0 (h.72)

where K* = K/P. Upon specification of P and T, this equa-
tion may be solved for x in terms of which we calculate the
partial pressures of atomic and molecular hydrogen, that

is,

P, = x(1-a)P, (4.73)

and

P, = -;—(].—x)(l—oc)PO. | (4.74)
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In terms of & the partial pressure of helium is

P3 = OP, (4.75)

where

PO = Pl + 2P2“+ P3 = 2P/[(l—a)x + (1+a)].

From the perfect gas law we obtain the total mass

density, P,

Km

IR < N o 1
p = e (4.76)

where the mean molecular weight per particle, P, is

— D Ly L
Bo= (11+2P2+1P3)/P (k.77)

The dimensionless entropy per gram, which we now define as

c = myy s/k, where s is the total entropy per gram, is given
by
. 5,
o 25 S\ (4.78)
k=1
where

Pk 24nQ ]

= e— .5_ s b }i
o, = Pp [2(1.,511’1) + [n(Cka/Pk) + STAT

(L.79)

The C, are as defined in equation (4.66) and the Q_ are the
respective partition functions (we note that aZan/afnT

= a[nQB/QZnT = 0). The adiabatic gradient is given by
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V _ (.9 l()g 2)

ad log T
ad o log ”

" (® c/aT)P

SR RCr7EIm . 4500

the derivatives of ¢ with respect to T and P are evaluated
by differation of equation (4.78). Finally, the expression

for the internal energy per gram, u, is given by
S A 1
u =55 (4.81)

Having determined the thérmodynamic quantities for
a given P and T, we may now compute the opacity, kK, and the
nuclear energy gencration rate, ¢, both of which, according
to the developments of Sections 4;4 and 4.5, are functions

5

of the density and‘the temperature. Below 107 °K we set
€ = 0, and below lOll °K we fit the Cox and Stewart opacities
to the atmospheric opacity table constructed as described
in Section 5.1.

We construct a table (the "constitutive data
table'") of the constitutive data with log T and log P as
arguments over the temperature range 3.1 < log t < 7.0 with
a spacing in log T of A log T = 0.1. For each temporatufe
entry, we compute the constitutive quantities, P, u, Vad’
€, and K, for 56 values of log P such that the total span

in log P is equal to 5.0. The low pressure boundary of the

table at a given value of log T is defined by the relation
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(log P), .. = 2.94118 + log T - 4.58825 (h.82)

By defining the constitutive data table in this way, we
intend to encompass the entire range of temperature and
pressure that we expect to encounter in the interior
structﬁre of low mass stars, at least over that segment of
their evolution Qith which we are to be concerned. It is
these data which we later utilize in the comnstruction of
what we designate the "detailed" stellar models.

In Figures 8 and 9 we summarize some of the
quantitative results we find relating to the thermodynamic
properties of the actual hydrogen-helium mixture we con-
sider in constructing the constitutive data table. In
Figure 8 we plot the loci in the log P, log T plane of
several relevant boundary lines. The shaded boundary
delimits the region above log T = 4.0 within which the
constitutive data table is defined. The lines labeled Il
and 12 demarcate the regions of complete pressure ioniza-
tion of hydrogen and helium. To the left of I_. both

1

hydrogen and helium are partially ionized; between Il and

12 hydrogen is completely, but helium partially, ionized;

and to the right of 12 both hydrogen and helium are
completely ionized. Below log T = 4.3 the pressure ioniza-
tion effects we consider cease to be important and the gas

remains inappreciably ionized over the entire range of

densities encountered in constructing the constitutive data
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Fig. 8. Domain of the constitlutive data table in
the log P, log T plane.
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Fig. 9. The magnitude of the pressure correction as a function of the
pressure and temperature in a hydrogen-helium plasma.
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table. We therecfore take log T = 4.3 to be the low temper-
ature limit in Figure 8 at which we terminate the plotted
loci of those quantities dependent upon the degree of
ionization.

The line r1 in Figure 8 is defined by the condition
rjz 0.1, where rjis as defined in equation (4.13). This
line is just the DH criterion, equation (4.14); conse-
quently to the left of this line we apply the DH results
while to the right we employ the MC results. We obsecrve
that the MC data are used almostl exclusively in estimating
the thermodynamic corrections due to the interaction
effects. The line r; is defined by the condition [j: 1.0
and serves to indicate the degree to which we penetrate the

5

MC region. At temperatures below 107 °K we employ the ion-
pair artifice and in the region below and to the right of
the line labeled B we find on this model that all of the
charged particles are associated as jion-pairs. The dashed
lines labeled by values of the parameter F indicate the
degree of electron degeneracy encountered. In terms of the

Fermi-Dirac integral F (n) we have from equation (4.8)

1/2
that the degeneracy criterion, equation (A.3), may be

expressed as

1.1
Fl/z(n) ~$- -II\[TL
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We define F = %Wfﬁ/a/gﬂﬂ) and plot the resulting lines for
F = 0.1, 1.0, 10, and 100 appropriate, however, to the
condition of complete ionization. We observe that the
electrons are to be regarded as being partially degenerate
throughout the region within the constitutive data table in
which the gas is appreciably ionized.

In Figure 9 we plot for several temperatures the
ratio of the magnitude of the pressure correction term,
IPCl, to the total gas pressure, P, against the total
pressure. Instead of the actual values of the pressure (or
log P), however, we employ as abscissa in Figure 9 the
running numbers 0-55 with which we label the pressure grid
points at a fixed log T in the constitutive data table.

The grid spacing in log P is 0.090909 and the pressurc at a
given temperature corresponding to the point O is deter-
mined from equation (4.82). 1In Figure 9-we plot data for
log T = %5y 5.0, 5.5, 6.05 6.5, and 7:0.

We see from Figure 9, as we should expect, that the
magnitude of the pressure correction decreascs with
increasing temperature; that is, the gas becomes increas-
ingly ideal with increasing temperature. In addition we
see that at a fixed temperature |PCI/P is an increcasing
function of the pressure at low pressures but at a suf-
ficiently high pressure it reaches a maximum and thereafter

decreases with increasing pressure. Although PC‘ is a

monotonically increasing function of the pressure {(at fixed
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T), we find that at high pressures it increases much less
rapidly than the (perfect gas) contribution to the total
pressure due to the degencrate electrons. Conscquently
when the degree éf degeneracy becomes sufficiently high the
gas is driven towards perfection. This accounts for the
behavior of ‘PC‘/P shown in I'igure 9 for log T 2 540 At
log T = 4.5 we are well within the region within which none
of our approximate treatments of gas imperfection are
adequate. Here we resort to the ion-pair artifice and we
find, but do not show in I'igure 9, that chl/P approaches
a constant value of nearly 0.50.

Our approach to the computation of the thermo-
dynamic quantities has been at best very approximate and at
worst very crude. We have neglected entirely the effects
of interactions between neutral atoms and molecules and,

in ignoring the presence of H_ T and H_, have certainly not

2
considered all of the possible particle species. We have
made provision for pressure ionization and dissociation,
but our approach has caused us to ascribe rather artificial
properties to the partition functions in order to insure
that the Saha equation will yield completely ionized
species at high pressures. In this approach we have
incorporated, in the form of the modified Coloumb potential
of equation (4.33), the effects of interactions on the

atomic bound states, but have ignored these interactions

inasmuch as we have employed the usual idcal gas
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expressions for the thermodynamic functions. Furthermore,
the physical significance of ion-pair formation and its
consequences are highly suspect. What is required is a
theory allowing for interactions of any order occurring
between both neutral and charged particles. At low
densities such a theory must yield the usual ideal gas
relations; while at very high densities it must encounter
a fluid-sclid phase transition. While we may not feel
secure that our results accurately represent the physical
state of the stellar interior, we, nevertheless, gain some
insight into the complications introduced by extending

thermodynamic theory beyond the ideal gas approximation.
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CHAPTER 5
ATMOSPHERIC MODELS FOR LOW MASS STARS

The overall structure of stars which are either
wholly in convective equilibriuwn or which possess deep
outer convection zones is very sensitive to the surface
boundary conditions (cf. Henyey, Vardya, and Bodenheimer
1965). Consequently it is necessary to have a knowledge of
the structure of the outer atmospheric layers of such
stars. For the purposes of this investigation we consider
the atmospheric layers to consist of two distinct regions,
an outermost region which is in strict radiative equilibrium
and an underlying transition zone which is convectively
unstable and in which convection and radiation act simul-
tanecusly to transport energy outward. We shall treat the
radiative region by means of the gray atmosphere approxima-
tion and the transition zone by means of a simple version
of the mixing length theory. We acknowledge that the
approximate treatments accorded these regions may well
constitute the greatest source of uncertainty in the model
calculations. For example, preliminary calculations by
Gingerich et al. (1967) indicaté considerable departures
from grayness in a stellar atmosphere having an effective

2500 °K. JTt is well known (Henyey et al.

I

temperature ’1‘e
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1965) that the mixing length thecory is, at best, a rather
rough approximation for treating the convective transition
zone. Because of the current lack of a completely rigorous
theory by which we may treat these regions, we adopt these
very approximate methods of trecatment with the hopeful
expectation that such will suffice for providing physically
realistic boundary conditions for the interior models.

5.1 Equation of State, Adiabatic Gradient,
and Radiative Opacity

Although each of the two atmospheric regions
requires a considerably different method of attack, the
equation of state, adiabatic gradient, and radiative opacity
are treated in the same way in both regions. In computing
the equation of state and the adiabatic gradient we follow
the procedures described by Weymann and Moore (1963). We

consider hydrogen in four states, 1! H, H , and H+, and

12,
helium in all of its ionization states. In computing the
electron pressure we include the first ionization of the
metals K, Na, Mg, Si, C, and (Ca+Al) with the abundances
adjusted so as to account for the presence of the other
metals of low ionization energies which are not specifically
included. The partial pressure of atomic hydrogen and the
electron pressure are computed as functions of the total
pressure and the temperature by a procedure based on the

Newton-Raphson method. The adiabatic gradient is computed

in a manner similar to that employed by Vardya (1960) in
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which the thermodynamic functions for molecular hydrogen
are computed so as to account for the effects of pressure
dissociation following Vardya (1965).

We héve computed a table of Rosseland mean opacities
for use in the region of temperature and pressure appro-
priate to the atmospheres of M dwarf stars. The sources of
opacity considered in these calculations include the
continuous absorption due to the photoionization of neutral
hydrogen, bound-free and free-frece absorption by H , free-
free absorption by Hé as well as Rayleigh scattering by
atomic and molecular hydrogen. We also include the effects
of the band absorption by water vapor in an approximate way.

For the absorption coefficient due to the photo-
ionization of neutral hydrogen, we employ the expression

quoted by Allen (1963),

W

14) = g (™)

n

o, = (1.045 x 10~

1

where ¢, is the ionization cross-section at the frequency
v, A is the wavelength in microns, n is the principal
quantum number, and g is the Gaunt factor which we set
equal to unity. We specifically include the absorption
érising from the states up through n = 3.

We use Chandraseckhar's (1958) values of the absorp-

tion coefficient for the bound-frece I absorption.



100
Following Gaustad (1963), we multiply the tabulated values

by the factor

-, &
¢ = 4.158 x 10 18 3/ exp(1.726 0)

where @ = 5040.39/T and T is the teméerature, to obtain the
cross-secction per neutral hydrogen atom and unit electron
pressure. We employ Geltman's (1965) tabulations for the
H  free-free absorption coefficient. For temperatures
below and wavelengths longer than those considered by
Geltman, we use Gingerich's (1961) polynomial approxima-
tions. More recently John (1966) has extended the calcula-
tion of H free-free absorption coefficients into the far
infrared but, since his calculations do not extend beyond

© = 2.0, we have, for the sake of expediency, continued to
use the polynomial approximation for all regions outside

of Geltman's data. We follow Vardya (1966) and take the

H; free-free absorption coefficient to be twice that due to
H™ free-free. The Rayleigh scattering cross-sections are

taken from Vardya (1962) who gives

' _ ol
Oy = 7.3693 x 10 e Alp) : (sz)

for the cross-section per neutral H atom and

= "
Oy = 8.4909 x 10 29 Alp) ! fem®)
2

for that per H2 molecule.
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It is now rather firmly established that water
vapor will be an important source of opacity in the atmos-
pheres of cool stars. Strong absorption features due to
water vapor have been found in the spectra of M type giants
by several investigators (Kuiper 1963; Woolf, Schwarzschild,
and Rose 1964; Danielson, Woolf, and Gaustad 1965; Spinrad
and Newburn 1965; Spinrad et al. 1966; McCammon, Minch, and
Neugebauer 1966). Trom detailed calculations of water
vapor opacities, Auman (1966) has found that water vapor is
expected to be an important source of opacity at tempera-
tures less than 3400 °K and the dominant source at tempera-
tures less than 2500 °K. We include the effects of water
vapor absorption by employing the experimentally based
absorption coefficients for the vibration-rotation bands
and the pure rotation band of water vapor obtained by
Ferriso, Ludwig, and Thomson (1966). These data were
obtained from the measurement of water vapor emissivity
over the temperature range from 300 °K to 3000 °K and at
one atmosphere pressure. The monochromatic absorption
coefficient is obtained from the emissivity data through an
averaging process over finite wavenumber intervals. In
proceeding in this manner we smear out the intrinsic line
absorption and replace it by a pscudo-continuous absorp-
tion. Such a procedure is justified if the mcanvlino
spacing in the bands is less than the mean widths of the

individual lines. We find that in the temperature range
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from 1500 °K to 3000 °K and at pressures greater than one
atmosphere the combined effects of thermal smearing,
arising rrom the increased number of lines at elevated
temperatures, and pressure broadening are sufficient to
satisfy the above requirement. At lower pressures this
procedure becomes somewhat questionable and may result in
an over estimation of the contribution made by water vapor
to the total opacity, since it neglects the possibility of
radiation leaking out through the spaces between the lines.
We have neglected this latter effect in applying the data
of Ferriso et al. (1966), and have used their data as
presented over the entire range of pressures encountered in
the atmospheric models.

Having obtained the absorption cross-section,
ai(V), due to the it absorbing species at the frequency v,
we may obtain the total monochromatic opacity per gram, KV’

from the relation

1 Pi
Ky = }Lmﬂl Z Oci(l/) P
i

where [l is the mean molecular weight, my is the mass of the

hydrogen atom and Pi/P is the ratio of the partial pressure
of the ith absorbing species, Pi’ to the total pressure P.

We calculate the Rosseland mean, K from

R?
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a N
.O/ Ky, oT
0O T T
aT

ok

where BV(T) is the Planck function evaluated at the temper-
ature T and frequency v. In Table 3 we present the calcu-
lated Rosseland mean opacities as functions of the
tgmperature and the total pressure over the range

3.0 £ 1log T < 4.0 and 1.0 < log P < l0.0. At temperatures
greater than 10,000 °K we use the opacity tables of Cox and
Stewart (1965).

In computing the partial pressure of water vapor we
resort to the expediency of assuming that all of the carbon
present is in the form of CO. VWe then assume that water
vapor will be in equilibrium with OH with the initial
oxygen abundance being reduced in amount by that of carbon.
From Vardya's (1966) calculations of the run of molecular
abundances in the atmospheres of late-type stars, it
appears that this is a quite reasonable procedure; although

one should, perhaps, also account for the presence of SiO.

5.2 Radiative Region

In the outermost radiative region of the atmosphere
we shall adopt the temperature distribution appropriate to
the Eddington approximation for a gray atmosphere. If we

let T be the temperature at optical depth r in a star



Table 3. Rosseland Mean Atmospheric Opacities
(Log ER)
Log P

Log T 1.0 2.0 3.0 L.o 5.0 6.0 7.0 8.0 9.0 1040

3.00 -2.978 -2.978 -2.978 -2.978 -2.978 -2.978 -2.978 -2.978 -2.978 -2.977
3.10 -3.519 -3.519 -3.519 -3.519 -3.519 -3.518 -3.516 -3.510 -3.492 -3.441
3.20 -3.869 -3.870 -3.869 -3.866 -3.856 -3.827 -3.749 -3.580 -3.302 -2.937
3.30 -3.797 -3.757 -3.710 -3.627 -3.501 -3.298 -2.993 -2.606 -2.176 -1.738
3.40 -3.986 -2.997 -2.410 -2.174 -2.075 -1.982 -1.835 -1.592 -1.247 -0.8%40
3.50 -4.541 -3.987 -3.339 -2.577 -1.825 -1.293 -0.964 -0.690 -0.385 -0.039
3.60 -4.178 -3.409 -2.633 -1.919 -1.248 -0.626 -0.104 0.229 0.459 0.684
3.70 =-3.236 -2.792 -2.273 -1.607 -0.830 -0.103 0.497 0.898 1.156 1.334
3.80 -2.035 -1.616 -1.154 -0.681 -0.190 0.350 0.943 1.482 1.788 1.932
3.90 -1.136 -0.476 -0.052 0.373 0.816 1.271 1.737 2.207 2.533 2.605
4,00 -2.412 -0.552 0.732 1.333 1.755 2.176 2.601 3.038 3.430 3.550

FOT
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having an effective temperature To’ we have
L 3 b 2
& ‘ T+ =) 5.1
= 2l (re D) (5.1)

The optical depth at the radial distance r from the center

of the star is defined such that

where Kk is the opacity per gram and p is the mass density.

The condition of hydrostatic equilibrium in this region can

be written as dP/dr :—grp which, with dr = -kpdr, gives
g
dP  “r
dr =~ K (5.3

where P is the total pressure. Here S, is the acceleration
due to gravity, g, = GMr/r2 where G is the constant of
gravitation and Nr is the total mass interior to a sphere

of radius r. Combining equations (5.1) and (5.3) we obtain

T

. K

d log T - 3 e P (5 L)
d log P~ 16 g ;'II :

Let us now define the quantities x and q such that
x = /R and g = Mr/M where R and M are, respectively, the
radius and total mass of the star. From equation (5.3) and
the condition for the conservation of mass, er = Qnrzpdr,

we obtain
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(5.5)
and
3 3
d_log g _ RZ hnx d log x (5.6)
d log P = M g d log P

We must now numerically integrate equations (5.4),
(5.5), and (5.6) in order to obtain the structure of the
radiative zone. To obtain starting values of P, T, x, and
g, we estimate the pressure at a very shallow optical
depth, say, ro = 0.005. We assume that the total pressure
at this point can be approximated by the sum of the partial
pressures of atomic and molecular hydrogen and that the
total opacity is due to H  and H; alone. We obtain the
temperature at this optical depth from equation (5.1) and

use the approximate expression for the H opacity, KH_’

given by Demarque (1960),

- g © (8.87 x 107 3) ¢7/2 107476

where X is the fractional abundance of hydrogen by mass and

P Pe’ and P are the partial pressure of atomic hydrogen,

H’

the electron pressure, and the total pressuro,‘respectively.

For this calculation we assume that Pe = 10_5p. For K=
2
we take
p./P
KII— = ZKH—(*é*:‘?;{“/'fp').
2 H
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Writing equation (5.3) as a difference equation and

eliminating P through the ideal gas law, we can write at

20 1/2
p = surf .
o (T F ) o
O o

where B is the surface gravity and f(TO,PO) is a

rf
function of the temperature, TO, and pressure, PO, at

T = ro. We solve for PO through an iterative procedure and
use the resultant values of TO and Po for initializing the
numerical integration of equations (5.4) through (5.6),
assuming that 4, = 1.0 and X, = To/poKO. The actual
numerical integration is performed using the Heun method
and we continue the integration through the radiative
region until the point is reached at which the local
adiabatic gradient is less steep than the prevailing
radiative gradient given by the inverse of equation (5.4).
At this point convective motions will break out and we
encounter the transition zone.

We must emphasize the very approximate nature of
this treatment of the radiative region. A more thorough
treatment would involve the construction of non-gray
atmospheric models which ﬁould take into account the
effects of molecular line blanketing in a more adequate
way than that attempted here. It is not yet clear that

all of the possible important sources of opacity present
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in very cool stars are known. Vardya and Béhm (1965) have
investigated the possible existence of unknown sources of
opacity in the atmosphere of the M2V star Lal 21185 by
comparing the total pressure obtained from a model atmos-
phere calculation with the observed pressure broadening of
the A 4227 line of Cal. They find that for an effective
temperature of 3400 °K, which is in good agreement with the
value (3500 °K) given by Johnson (1965) for this star, the
pressures as determined from the model and the observations
are in quite reasonable agreement. We cannot, however, be
assured that this will be the case in much cooler atmos-
pheres. In cool atmospheres we would expect that the band
absorption due to molecular species other than water vapor,
such as CO, for ecxample, will also contribute to the
infrared opacity. Free-free transitions of electrons in
the fields of atomic and molecular species other than
neutral and molecular hydrogen will also contribute to the
opacity in the infrared (Dalgarno and Lane 1966). Since
the opacities used in this work were computed, extensive
data on the absorption coefficient due to free-free transi-
tions by neutral helium have become available (Somerville
1965; McDowell, Williamson, and Myerscough 1966). Further-
more, Linsky and Gingerich (Linsky 1966) have found that
the pseudo-continuous absorption arising from pressure
induced dipole transitions in molecular hydrogen may

contribute to the opacity in the infrared at temperatures



109
less than 2500 °K. It should be borne in mind, however,
that at these low temperatures, water vapor will be over-
whelmingly the dominant source of opacity in atmospheres

having a normal oxygen abundance.

5.3 Convective Transition Region

To continue the integration of equations (5.4)
through (5.6) through the convective transition region we
employ the simple form of the mixing length theory described
by Schwarzschild (1958, p. 44). 1In this region the pre-
vailing temperature gradient will be superadiabatic but
will be less steep than the local radiative gradient. Both
radiation and convection will be responsible for the out-
ward transport of energy and the total outward flux F can

be written as the sum of a radiative contribution, F

rad’
and a convective contribution, Fconv' The radiative flux
is given by
. _ ]_GGix;ﬁ d log T (5.5
rad © 3 K P d log P’ )

According to the mixing length theory, the convective flux

can be approximated by

1/2

2
- hie S y3/2 -
Fconv = Epd T1/2 L (AVT) (5.8)

where Cp is the ratio of specific heats of the material at

constant pressure, P is the mass density, Z is the mixing
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length, which is essentially a mecasure of the distance over
which an individual convective element exists, and AVT
denotes the difference between the prevailing ("True'") and

the local adiabatic gradient, that is,

T - T | d log T _ (4 1log T
AVT = g p % [(d Toe P)T (d - =) }. (5.9)
'rue d

Letting ¢ = (d log T/d log P) and { = (d log T/d log Pg

True d

and employing the perfect gas law to eliminate P, we

obtain from equation (5.9)

Hm

k

AVT = =2 g (£ - (). (5.10)

Let us now set [ = aHP where a is a constant and HP is the

pressure scale height defined by

1 1 dP &P
ﬁ; =P das - "~ Tp (5.11)

The total flux can then be written as

F=og+ g - )3/ (5.12)
where we let
166 S 7t g k172 1
©o= T T T P o T 5 1/2
p My a“pPT"

Solving for the true gradient ¢ we obtain a cubic equation

of the form

g3« ag% + BE+ C =0 (5.13)
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where the coefficients are given by

A=~ (3~ aZBZ)

os}
1

(3{2 + 2&B2F)
and

C

2.2

- (&7 + BEF®).

For a star having an effective temperature Te the flux at
any radial distance r from the center (assuming r to be

above the region in which energy generation occurs) is

given by

'
OTéR2
F(I‘) - .._._-2 (5.]_11')

¥

where R is the total radiusf We can compute F at any point
r and solve equation (5.13) for the superadiabatic gradient.
Knowing the gradient we can continue the numerical integra-
tion of equations (5.4) through (5.6) through the convective
transition region. A point will be reached at which the
prevailing temperature gradient becomes effectively equal

to the adiabatic gradient and energy may be assumed to be
wholly transported by convection. It is the values of the
pressure and temperature at this point, the base of the
mixing length region, that we employ as a boundary condi-

tion for the integration of the interior model.
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In order to employ the mixing length theory we must
specify the appropriate value of the mixing length, 2.
Considerable attention has been paid to obtaining
physically realistic values for j using constant values
of the parameter a as well as values which vary with depth
(see Henyey et al. 1965). We simply adopt the value of
unity for a and, thus, take Z to be equal to the pressure
scale height. In M dwarf stars near the main sequence we
expect that the atmospheric densities will be sufficiently
high that convection will rapidly become an efficient mode
of energy transport as one proceeds inward from the radia-
tive zone. In such cases the convective transition region
will be relatively shallow and the values of the pressure
and temperature at the base of the mixing length region

will be rather insensitive to the precise value of La

5.4 Computation of Atmospheric Data Table

Because of the excessive computer time that would
be involved in directly computing the atmospheric structure
for each stellar model, we find it most convenient to pro-
vide the atmospheric data required for the solution of the
equations of stellar structure in tabular form. These data

include the fractional radius, the pressure, P

s 2 .
mx1’ mx1’

and the temperature, T evaluated at the base of the

mx1’

mixing length region. We find from the atmospheric models

that for the low mass stars the atmospheric region is



113
sufficiently shallow that we may neglect its mass compared
to the total mass of the star. Consequently we find it
convenient to provide the atmospheric data as functions of
the effective temperature, Te’ and the logarithm of the

surface gravity, g . In terms of the total mass, M, and

srf

radius, R, we have

We have constructed a grid of model atmospheres

over the range 1500 °K < Te < 3500 °K and 3.0 < log 8 <

6.0 with a spacing ATe = 200 °K and Alog Cepp = 0:2-
Interpolation in this table of 176 model atmosphere

integrations provides the outer boundary condition for the

stellar model calculations. In Figures 10 and 11 we show

o

the resulting relations between log T and log Pm

x1 x1°?

respectively, and log Serr with Te as parameter. At low

Te and high Serf the convective transition region dis-
appears and the star becomes adiabatic immediately below
the radiative region. This accounts for the distinctly
linear portions of the relations shown in Figures 10 and 11
and especially noticeable in Figure 11. Over the entire

grid of atmospheres we find that x remains sufficiently

mx1
close to unity that we may, to very good approximation,

completely neglect the geometric thickness of the atmos-

phere.
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In addition to these data we have also constructed
a table of the entropy at the basge of the mixing length

region, which we designate s over the grid of atmos-

mx1?
pheres. The entropy values were computed under the
assumption that all of the particle species present,
including the free electrons, at the given value of T

mx1

and Pm behaved as ideal Boltzmann particles. In this

x1
case the entropy may be computed in a very straightforward
manner from equation (4.65c¢). These data provide the outer
boundary condition for the determination of the simple

polytrope evolutionary sequences which we construct in

Section 6.1.



CHAPTER 6

CONSTRUCTION OF THE THEORETICAL
EVOLUTIONARY STELLAR MODELS

We assume at the outset that we may neglect the
effects of rotation, magnetic fields, and pulsation in so
far as they affect overall stellar structure and evolution.
Iﬁ neglecting these effects we may additionally assume that
stars are spherically symmetric. We assume that the
objects we consider are chemically homogeneous, a condition
which is rigorously true as long as the interior is in a
state of convective equilibrium throughout. Lastly, we
assume that at any point in time a star may be regarded as
existing in a state of essentially strict mechanical and
thermal equilibrium. That this is a reasonable assumption
is borne out by noting that the time scale over which
dynamical readjustment of the interior structure would.
occur following a perturbation from equilibrium is very
much shorter than that associated with the usually slow
evolutionary changes (Schwarzschild 1958, p. 32).

It is from the conditions of mechanical and thermal
equilibrium that we derive the equations of stellar
structure (see Schwarzschild 1958, Chapter 2). The condi-
tion of hydrostatic ecquilibrium requires that the inward

directed gravitational force acting on an element of matter

117
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al any radial distance r from the center must be exactly

balanced by the outward directed pressure force to give

L &
= - =X p (6.1)

where P and p are, respectively, the total pressure and the
mass density at r, m_ is the total mass interior to the
spherical volume of radius r, and G is the constant of
gravitation. The conservation of mass requires

om

- Lnrp (6.2)
T

The condition of thermal equilibrium requires that the net
outward flux of energy per gram from an element of matter
be equal to the rate of nuclear energy generation per gram
within the element, €, minus the time rate of change of
internal energy per gram within the element, u, plus the
work done on the element due to contraction. In terms of

the luminosity at r, Lr’ we have

oL
r

or

P_
p2

Y

{) (6.3)

2 au
= “ € = c——
Lhyr©p ( 31 +

oY

Finally we have that the temperature gradient is given by,

in the case of convective transpcrt of energy,

aT 1 T 9P
Do - WU T /
or ¥ ar (6. %a)



119
where Vad is the adiabatic gradient defined as Vad =

or in the case of radiative transport

(d 1log P/d log l)ad,

]J
i) 2 BE K (6.4b)

where kK is the opacity per gram of material and o is the
Stefan-Boltzmann constant. The condition that a region be
unstable against convection is that the adiabatic gradient
be less steep than the radiative gradient, both being

evaluated at the same point, thus

(—;-} (g—g 6.5)

ad rad

These four first order non-linear differential
equations together with the appropriate boundary conditions
at the center and at the surface of the star determine the
equilibrium structure. At the center we have Lr - 0,

m_ - O as r = 0; while at the surface we have P = 0O as

r - R, the total radius. In addition we must specify the
dependence of the temperature on, for example, the pressure
as the surface is approached. We express this dependence
through the values of the radius, temperature, and pressure
at the base of the mixing length region which we provide as
described in Chapter 5. Upon providing the required
constitutive data, that is the values of P, u, Vad’ €, and

K, these equations may be solved numerically to give the
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run of mass, temperature, pressure, and luminosity with
radius. In addition we obtain the total radius and
luminosity appropriate to the equilibrium structure. By
further including the dependence upon the time, we may
construct a succession of equilibrium models to represent
the evolutionary course of the object.

In the following two sections we describe the
tgchniques by which we calculate the structure and evolu-
tion of stars having masses in the vicinity of 0.1 MO' In
Section 6.1 we perform a reconnaissance of the problem by
considering the simplifications resulting from the assump-
tion that the interior structure may be represented by a
polytrope of index n = 1.5. In Section 6.2 we construct
evolutionary sequences of models for objects of 0.1 M0 and
0.07 MO using the tables of the constitutive data computed
as described in Chapter 4. In Section 6.3 we analyze the

results of these model calculations and compare them with

the observational data presented in Chapter 3.

6.1 Polytropic Evolutionary Models

It has been shown by Hayashi and Nakano (1963) and
Ezer and Cameron (1966) that objects less massive than
0.26 MO remain in convective equilibrium throughout the
Hayashi phase of pre-main sequence contraction. By
assuming that the thermocdynamic properties of the interiors

of such objects can be represented by a completely ionized,
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partially degenecrate ideal gas, we may, following Limber
(l958b), represent the interior structure over the region
of complete ionization by a polytrope of index n = 1.5.
Under these assumptions the calculation of the evolutionary
behavior, as we shall now show, assumes an especially
simple form.

We assume that the thermodynamic properties within
the deep interior may be adequately represented by those of
a completely ionized, partially degenerate hydrogen-helium
plasma. We let n, be the number density of ions and define
the parameter ® such that the number densities of Il+ and
He++ ions are given by (1 - o) n. and ani, respectively.
The free electron number density n_ is, then, n_ =
(1 + o) n; . We let pi be the mean molecular weight per ion

such that in terms of the mass density p

n, = =— (6.7)
1 }limhl
in which case, pi = 1 + 3. Here My is the mass of the

hydrogen atom. In terms of the fractional abundance by

mass of hydrogen, X, we have
a = (1 - X)/(1 + 3X) (6.8)

We write the equation of state, including the

effects of electron degeneracy, in the form

P = _Wl.',(‘._. PO (69)
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where P is the mean molecular weight per particle,
L o o (6.10)

P is the pressure, k is Boltzmann's constant, and O is
defined in terms of the temperature T as 0 =/\T. The
parameter /\ is introduced to account for degeneracy and is

given by

n. + n D
i e 1 + (1 + a) D
N\ = n, v, s (6.11)

where D = 2/3 F /F

372”11 /2 and the F's are defined by equation
(4.27). We mnote that /\is a constant with respect to the
radius r (cf. Limber 1958b).

Assuming the interior structure to be represented
by an n = 1.5 polytrope, we obtain (Chandrasekhar 1939,
pp. 95-100) the folloﬁing expressions relating the total
radius, R, the central pressure, PC’ and the central

density, PC, to the mass of the object, M, and the value

of © at the center, QC :/\TC:

M
B = K, & (6.12)
C
chl
P. = K, —— (6.13)
c 2 52
d
an 5 3
. 1)
Pe = 1&3 - (6.14



The constants K K and K, are given by

1* 72? 3

_ L ’
K, = (1npmHGwn)/(3ka),

li
i 23 Y g F
K, = GW /K,

and

K3 = 3a/(QRK13)

where we have from Chandrasekhar (1939, p. 96) that
W = 0.77014 and a = P /p = 5.99071.

Since from these results it is apparent that the
interior structure for an object of given mass and chemical
composition is determined upon specification of QC, it
follows that the evolutionary behavior is obtainable from a

determination of the time dependence of QC. Using equation

(6.2), we may rewrite equation (6.3) in the following form:

opP aLr

2t ~ om = ¥ (6.15)

\Y]
e

|

\J)
:
Ok

The internal energy per gram at any point is

_3F _ 3 _k_
A )

cO
pmyy C

where we have employed equation (6.9) and defined the time
independent quantity o = Q/OC. Whereas © = 0(r,t), we have
that QC = Gc(t) onlyz where t dbnotes the time. The

quantity o = o(r) is obtainable directly from the polytrope

solution. For the nuclecar energy generation rate we



employ the interpolation formula of Hayashi and Nakano
(1963), which is based on the encrgy release for the He

terminated proton-proton chain,

€ = ¢ pT¥ (6.16)
(e}

where € _ = (2.5515 x 10—8) g and v = 6.6. We may now

write equation (6.15) as

3 k- ' 63 o ¥ v+ 3/2
2 fimyg Cc = zm * o te  ®

where we have used equation (6.14) for Pe and to find

bC/pC = BéC/QC. Here we simplify our notation by using

dots to denote differentiation with respect to the time.
We integrate this result over the total mass of the star
to obtain

_ , Y 3
Oc = Cl(M)L - Cz(M)TC ¢ (6.17)

where L is the total luminosity and

2 1
C. (M) = & —=
1 3 Mk,
and
_ 2 Sot3 K
CZ(M) = = ...._2.._- ==
3 M 1

Here the constant kl is obtained from the relation



M
I{QC 61 — i !:.Q P ..2.. 9-}-/1.-2_'
By, = 3 7 &®’°?
o

where §) is the total gravitational potential energy (cf.
Chandrasekhar 1939, p. 100). Using equation (6.12) we

obtain kl = 2/7 G/Kl. We define the constant k2 to be

M
k :fo’v+3/2 dm

o

which, with v = 6.6, has been evaluated using Simpson's
rule and tables of the m = 1.5 polytrope solution to give
k2 = 0,.58927.

We may solve equation (6.17) numerically for a
specified mass and chemical composition provided that we
can determine TC and L for given QC.
(4.31), noting that m, 1/2(1 + X) PC/mH and using

Using equation

equation (6.14), we obtain the relation

Py g - kN3 3/% - o, (6.18)
where the constant K is
(Y + XIE
K = (9.1752 = 10 +2) ——-——7——1
mHM

For a given value of © we regard equation (6.18) as a

C?
transcendental equation in F]/2 which we solve by means of

a Newton-Raphson iterative technique using the tables of
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and 2/3 F compiled by McDougall and Stoner (1938)

F1/2 3/2

together with the definition of the parameter D and equa-
tion (6.11) for/\. Obtaining the value of /\ corresponding

c» we calculate TC from the defining

relation for O, that is, T, = QCéAv

to a given value of ©

We obtain the total luminosity L corresponding to

given ©,. from the atmospheric data of Chapter 5. From the

C
assumption that the interior be in complete convective
eéuilibrium, and, hence, adiabatic, it follows that the
entropy per gram of material must be constant with radius
out to the base of the mixing length region. We regard
the atmospheric solution appropriate to a model of given
mass and OC to be that for which the entropy per gram
computed at the base of the mixing length region be equal
to the entropy per gram computed at the center of the
object. Employing the notation and results of Section 4.1,
the dimensionless entropy per gram, Y, for an ideal gas
mixture of hydrogen and helium nuclei, regarded as
Boltzmann particles, and partially degenerate electrons at

a pressure, P, and temperature, T, is (cf. equation 4.65c)

p. X = % InT - [nP + (1+a)(% D-1)

1

+ fIn [1 + (].+oc)D] + C (6.19)

where “i is as defined in equation (6.7), the degeneracy

parameters D and n are computed using the free electron
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density corresponding to the given P and T and the constant

C is

O
1
ofun

+ (1-a)Cy + aC - (1-o)fn(1-a) - oy (6.20)

He

where CI and CHe are computed from

1

(Zij)B/ZKS/z

+ an.
3 J

where m:j and Qj are the respective masses and partition
functions. For the assumed polytrope configuration, we may

utilize the adiabatic relation between the pressure and the

05/2

paramecter O, that is, P = K. _ (with K, = constant),
int in

t

and equation (6.13) to give at the center of an object

= © Je
P, = Ixzint/\)/zi‘c)/‘a (6.21)
with
K_©o 3/2
Kint = __g___%____ (6.22)
M

Substituting for PC in equation (6.19) and using equation

(6.11), we obtain for X at the center of the object,

C,

1
EC = ——-{Xo - [nKin

T a %,Zn[l 3 (1+or.)D]
s 18

t
+ (1+a>(§ D-n)} | (6.23)

where Eo = % In(2+a) + C.
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The prescription which we now employ to obtain L

for a given M, QC combination is as follows: We calculate

int from equation (6.22) and, using the values of_/\ and D
obtained from the auxiliary solution for TC from equation

(6.18), we compute EC' From equation (6.12) we calculate
the polytrope radius R and, hence, the surface gravity

g, - GM/RZ. By requiring that EC =X

o the entropy at

mx1’

the base of the mixing length region, we interpolate within

the table of effective temperature versus log - and 3,

18 mx1
(constructed as described in Section 5.4) to obtain the

effective temperature corresponding to the calculated EC

4

~ 2'\
and A We then compute L from the relation L = L4T6R le s

£
where here, of course, o denotes the Stefan-Boltzmann
constant. In this procedurc, we should note, we have
neglected the thickness of the relatively shallow zone necar
the surface within which hydrogen and helium are incom-
pletely ionized.

Using the Runge-Kutta technique, we have integrated
equation (6.17) numerically to obtain the evolutionary
behavior during the Hayashi contraction phase for a number
of masses. We present the results for objects of 0.1,

0.08, 0.06, 0.04, and 0.02 M_ in Figure 12 in which we show

(0
the resulting tracks in the H-R diagram. In performing
these calculations we have chosen, quite arbitrarily, the

A 4
starting time to be 10  years and, for each mass, picked a

sufficiently low value for the initial value of the central
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Fig. 12. Polytropic evolution in the H-R diagram.

Evolutionary tracks labeled by mass in MO (solid
line), main sequence locus (heavy solid line), main sequence
locus of Hayashi and Nakano (1963) (heavy dashed line),
lines of constant time (light dashed lines labeled by time
in millions of years), loci of completely degenerate
configurations of .02 and .04 M_ (dot-dash lines labeled
by mass), and observed positions of Ross 614B (cross) and
UV Ceti (circled cross).
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temperature such that we can be sure that the object is
initially well up on the Hayashi track. We observe that of

‘the masses considered only the 0.1 M object stabilizes on

(0]
the main sequence, while the less massive objects remain in
a state of continued slow contraction toward completely

degenerate configurations. In Figure 12 we show by the

straight lines labeled .04 M_ and .02 M

o 0° respectively, the

lines of constant radius which correspond to the limiting
rédii appropriate to completely degenerate configurations
of 0.04 and 0.02 MO' We also show the lines of constant
time in Figure 12 corresponding to the evolutionary ages of
106, 107, 108, and lO9 years. Because of the arbitrary
specification of the initial time at which the integration
of equation (6.17) is begun, the absolute values of the
time indicated in Figure 12 are not physically meaningful.
However we can attach meaning to the time differences
between different points in the evolutionary track at a
specific mass.

Upon setting éC = 0 in equation (6.17) we may solve

the resulting transcendental equation for © given the

C?
mass, and obtain thereby the corresponding main sequence

configurations as a function of stellar mass. In Table 4
we present the resulting main sequence configurations for

objects having masses in the range 0.14 to 0.085 M In

0"
Figure 12 we show by the heavy solid line the resulting

main sequence line in the H-R diagram. The filled circles



Table 4. Theoretical Main Sequence Properties of
the Polytropic Models

M, Log T, Log P,  Log P, F1 /o Log R/R; Log L/L; LogT_ M .

0.085 6.482 17777 2.841 12,502 -0.995 ~3:431 3.403 13.42
0.09 6.547 17.584 2.684 6.966 -0.934 -%3.138 3.446 12.68
0.10 6.598 17.441 2.554 L, 325 -0.876 -2.,883 3.480 12.04
0:13% 6.630 17.356 2.469 3.184 _0.834 e I 3.502 1162
0.12 6.654 17.291 2.402 2.509 -0.799 -2 .585 3.516 11,30
8.13% 6.674 17.238  2.345 2.059 -0.768 -2.479 3.528 11.04
0.14 6.690 17.193 2.295 1.736 -0.741 -2.390 3.536 10.81

T€T
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along this line indicate, from left to right, the main
sequence positions of objects having masses of G.1%, 9.18,

0.10, 0.09, and 0.085 M respectively. For masses below

O’

0.085 MO we find that equation (6.17) (with éC = 0) has no

solution and we conclude that, to the extent that these
essentially polytropic models represent real stars,

0.085 M_ is the lower limiting mass for main sequence

o

objects of solar composition.

In Figure 13 we plot log T,. versus log Pe for these

C
objects. 1In this diagram we see that the central tempera-
ture does in fact pass through a maximum value and begin to
decrease for those objects insufficiently massive to reach
the main sequence. This turn-over in the central tempera-
ture will actually occur for a contracting object of any
mass once the interior density, and hence the degree of
electron degeneracy, becomes sufficiently high. For
objects more massive than the limiting mass, however, a
combination of T, and PC will be encountered on the rising

C

limb of the log T log PC curve such that the nuclear

C

energy generation rate will be sufficiently high to halt
the contraction and, thus, stabilize the object on the main
sequence. For these objects, however, we hypothesize that

there exists two combinations of T, and PC, one on the

C

rising side and one which would occur on the falling side

of the log T. - log Pc curve, for which we may achieve

C

stable configurations. Only the first will ahtually be
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Pig. 13. Behavior of central values of the temperature and the density
for the polytropic evolutionary models.
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encountered in nature but such a result implies, at least
theoretically, the existence of two main sequence solutions
at any mass above the limiting mass. Presumably, the locus
of the second set of solutions in the H-R diagram will fall
below the usual zero-age main sequence with the two solu-
tions becoming coincident at the limiting mass. Of course,
the second set of main sequence solutions is only of
academic interest but its existence does pose an interesting
counter example to the uniqueness of the solution of the
stellar structure problem implied by the Russell-Vogt
theorem. We have made no attempt to obtain these solutions
explicitly, however.

In addition to the present results we also show in
Figure 12 by a dashed line the theoretical main sequence
solution obtained by Hayashi and Nakano (1963). The filled
circles along this line, again from left to right, indicate
the main sequence positions Hayashi and Nakano determine
for objects of 0.14, 0.12, 0.10, 0.09, and 0.08 My, respec-
tively (they find the main sequence limiting mass to be at
0.08 MO)' We observe that their results are in quite
reasonably good agreement with those we have obtained. The
small discrepancy is readily explained in terms of the dif-
ferent composition used by Hayashi and Nakano (they take
X =0.61, Y = 0.37) and, more significantly, the difference
by which the outer atmospheric boundary condition was

obtained. Hayashi and Nakano approximate the atmosphere as
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an isothermal region extending above the photosphere which
was defined to lie at an optical depth of 2/3. We, on the
other hand, have utilized complete, albeit crude, atmos-
pheric models which include an explicit treatment of the
convective transition region. Since we have assumed in
these models that the interior structure may be represented
by a polytrope with n = 1.5, as did Hayashi and Nakano, our
treatment of the atmospheric regions is the major improve-
ment over their work as well as that of Kumar (1963) whose
original investigation of the limiting mass problem
included no treatment of the atmospheric boundary condition
whatsoever.

In an attempt to further improve the theory we now
consider the problem of constructing detailed evolutionary

models at 0.10 and 0.07 M_ utilizing the computations of

(O]
the thermodynamic data described in Chapter 4 as well as
including the effect of the hydrogen-helium ionization zone
on the structure.

6.2 Calculation of the Detailed
Evolutionary Models

In order to construct the detailed stellar models
for low mass stars, that is models utilizing the constitu-
tive data computations of Chapter 4 and constructed without
benefit of the simplifications introduced in the preceding
section, we employ the so-called . '"Titting method" of model

construction as described by Schwarzschild (1958),
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Haselgrove and Hoyle (1956), and Secars and Brownlee (1965) .
In this procedure we separate the evolutionary calculation
into a "space part" and a "time part.'" In the space part
of the problem we are concerned with the expliéit solution
of the equations of stellar structure to obtain a single
stellar model at a specific point in time. The time part
considers the evolutionary time change resulting from, for
example, the work done through gravitational contraction
aﬁd provides the input data by which a new (static) stellar
model is computed at some forward step in time. By
proceeding in this way we treat the time dependence
implicitly in order to construct a time ordered sequence of
static, equilibrium stellar models. The use of this
"fitting method," rather than the implicit difference
method developed by Henyey and his co-workers (cf. Henyey,
Forbes, and Gould 1964) for stellar evolution problems, was
necessitated by the severe storage limitations of the IBM
7072 computer used in the initial stages of this work. The
final calculations were performed on a CDC 6400 computer,
however.

Regarding m, which we now designate to be the mass
interior to r, as the independent variable, we rewrite the
equations of structure, equations (6.1) through (6.4), as

follows:

— = - 3= Pp (6.24)
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In the actual numerical calculations we replace the time

derivatives in equation (6.27) by the difference relation
1 1 1
T At [(uz =) % Pz(pz } Pl)}

where the subscripts 2 and 1 designate those quantitiecs
appropriate to the present and previous models, respec-
tively, and At is the time step separating these two
models. At any point within a model we choose between
equations (6.26a) and (6.26b) by means of the criterion
expressed through equation (6.6). It is the solution of
these equations which constitutes the space part of the
problem.

Because of the presence of singularities at the
center and surface, we cannot solve these equations

directly from either the center to the surface or from the
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surface to the center. We choose therefore a convenient
point within the star, which we designate the fitting
point, and develop solutions outward from the center and
inward from the surface. For an object of total mass M, we
regard the outward solution to be a function of the central
and the

temperature, T and the central pressure, P

c? c?

inward solution to be a function of the total radius, R,
and the luminosity, L. The equilibrium structure of a
specific model, as well as the corresponding values of TC’

P R, and L, are determined by that pair of solutions

c®
which join smoothly at the fitting point with all of the

physical variables, r, T, P, and L being continuous across
the fitting point boundary. In the present application we

have chosen the fitting point to be at that mass, m for

f’
which mf/M = 0.6.

Because of the complicating effects arising from
the release of gravitational and internal thermal energy,
we must modify, to some extent, the usual numerical methods
by which this problem is treated (a review of the usual
methods is given by Sears and Brownlee 1965). As input
data to begin the construction of a specific model we
P

require initial trial values for T R, and L. These

6? “g"

may be obtained, for example, by extrapolation from
preceding models in the evolutionary sequence or, in the
case of the first moedel, from the properties of the

corresponding polytrope solution. Holding the trial value
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of TC fixed, we first determine through variation of the

parameters P R, and L that configuration for which r, P,

c’
and T are continuous across the fitting point. We accom-
plish this iteratively through the usual Newton-Raphson
technique (cf. Sears and Brownlee 1965). We then employ an
auxiliary iterative procedure, again based on the Newton-
Raphson technique, in order to determine that value of TC
fqr which the luminosity, Lr’ as well as the other physical
variables, are continuous across the fitting point. For
each iteration on TC we must perform the subsidiary itera-
tion on the paramefors PC’ R, and L to determine that
structure for which r, P, and T are continuous across the
fitting point.

Upon specification of M, L, and R the starting
values of r, T, and P for the inward solution were obtained
by direct interpolation within the atmosphere data table
constructed as described in Chapter 5. The starting values
for the outward integration were obtained from the simple
expansions given by Schwarzschild (1958, p. 114). The
constitutive data, P, u, Vaar O and Kk, for each value of
T and P encountered in the numerical solutions were
obtained from a four-point Lagrangian interpolation.schemc
within the constitutive data table. Both the atmospheric
and the constitutive data tables were stored on magncti@

tape and read into the computer prior to execution of the

evolutionary program. Because of its size, the
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constitutive data table was divided into two equal parts,
only one of which was stored in the computer's central
memory at a time: The numerical integrations of equations
(6.24) through (6.27) were performed using the Heun method
of numerical integration.

In Tables 5 and 6 we present the results of the
detailed evolutionary calculations for objects of 0.1 and

0.07 M respectively. In Figure 14 we show the cor-

0°
responding tracks in the H-R diagram along with those
computed according to the simple scheme of Section 6.1. As
was found for the simple polytrope models, the 0.1 MO
object stabilizes on the main sequence while the 0.07 MO
object does not. A more significant conclusion to be

drawn from Figure 14, however, is that the complications
introduced into the computation of the interior thermo-
dynamic properties for the detailed models appear to have
little effect on the evolutionary behavior in the H-R
diagram. Quantitatively, however, we find that the main
sequence values of the radius, luminosity, central tempera-
Vture, and central density of the detailed model differ by
-9%, -27%, +11%, and +6.5%, respectively, over the cor-
reséonding values for the polytropic model. The physical
differences between the models include the corrections for
non-ideal gas effects, a revised form of the energy

generation law, and the inclusion of the hydrogen-helium

ionization zone. To the extent that the non-ideal gas



Table 5.

Detailed Evolution at

Log t (yrs) Log T Log PC Log Pe Log R/R Log L/L Log" T
L,324 5.958 14.258 0.164 -0.091 -1.102 3.533
5.344 5.985 14.372 0.249 -0.119 -1.154 3.534
5.624 6.009 14.470 0.324 -0.144 -1.200 3.535
5.793 6.029 14.558 0.389 -0.166 ~1.241 3.536
5.898 6.046 14.626 0.441 -0.183 -1.272 3.537
5.994 6.062 14.697 0.494 -0.200 -1.316 3.537
6.173 6.093 14.827 0.592 -0.233 -1.367 3.538
6.496 6.150 15.065 0.771 - 291 -1.482 3.539
6.607 6.181 18 . 800 0.872 -0.325 -1.548 %+ 5%9
6.903 - 6.196 15.263 0.919 -0.340 -1.580 3.538
7.153 6.309 15.757 1.290 -0.463 -1 ..841 3.535
7.403 6.368 16,027 1.495 -0.531 -1.994 3.530
7.653 6.428 16.310 1.705 ~0.601 -2.143 3.528
7.903 6.486 16.599 1.922 -0.673 -2.306 3.523
8.153 6.539 16.887 2.138 -0.745 2. 485 3.515
8.403 6.582 17:16% 2.345 -0.812 -2.663 3.504
8.778 6631 17.520 2.612 -0.903 =2.924 3.484
8.828 6.624 17.565 2.646 -0.914 -2.961 3.480
8.878 6.625 17.599 2671 -0.923 -2.988 3.478

nt



Table 6. Detailed Evolution at

Log (yrs) Log TC Log PC Log P Log R/RQ Log L/L Log T
4,206 5.849 14.130 0.145 -0.141 -1.258 3.519
5.335 5.881 15.265 0.246 -0.174 =1..319 3.520
5.619 5.908 14.380 0.333 =) . 202 =1+ 378" 3.521
5.790 5.931 14.480 0.409 -0.227 -1.430 3.522
5.895 5.950 14.558 0.467 -0.246 =1 .457 3.522
5.998 5.969 14.641 0.529 -0.267 -1.496 3.522
6.248 6.012 14,827 0.669 -0.312 -1.589 3 .522
6.498 6.062 15.042 0.830 -0.366 = 701 ¥ s DI
6.748 6.115 15.280 1.009 -0.425 -1.830 3.518
6.998 bal71 15.534 1.200 -0.488 -1.975 3.514
7« 348 6.229 15.807 1.404 -0.556 ~2.116 3.512
7.498 6.285 16.088 1.616 -0.625 =32 .975 3.508
2« 748 6.337 16.373 1.829 -0.697 -2.448 3.500
7.998 6.382 16.655 2.040 -0.767 =2.693 3.488
8.248 6.414 16.928 2.245 -0.836 -2.829 3.474
8.253 6.418 16.994 2.295 -0.861 -2.874 3.475
8.268 6.422 17.119 2.388 -0.914 -2.:992 3.472
8.342 6.417 17.284 2.512 -0.973 -3.153 3.462
8.394 6.412 17345 2.558 -0.991 =30 287 3.454

AR
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behavior of the interior is represented by the developments
of Chapter 4, we conclude that we may feel relatively
secure in neglecting these effects in considering the
structure of main sequence objects. |

For the 0.07 MO object we find that the departure
of the detailed track in Figure 14 from that corresponding
to the polytrope models increases as evolution proceeds.
This is to be expected inasmuch as the non-ideal gas effects
will become more important once the central temperature
passes through its maximum value and the interior begins to
cool. At the point where the central temperature reaches
its maximum value the differences between the central
temperature, radius, luminosity, and central density of the
detailed model over the polytrope model amount to +4%, -6%,
+18%, and -10%.

In Figure 14 we also show the evolutionary track
computed for a 0.1 M0 star by Ezer and Cameron (1966).
Using the same composition as that employed in the present
work, they find that this object fails to produce enough
nuclear burning to stabilize on the main sequence. In
Figure 15 we compare our results (shown by a solid line)
for the radius, luminosity, and central density regarded as
functions of the central temperature with theirs (shown by
dashed lines). The turn-overs in Ezer and Cameron's
results occur because of the passage of their central

temperature through a maximum. That our results, other
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Fig. 15. Comparison of the evolutionary behavior
of detailed 0.1 MO model with that calculated by Ezer and
Cameron (1966).
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than for the behavior of the central temperature, agree so
well with theirs suggests that the basic difference lies
in the calculated energy generation rate. Apparently they
find that the He3 terminated proton-proton chain produces
less energy than do we. The only apparent difference
between the two formulations of the energy gencration rate
lies in the use of different methods of treating the
screening function. For these stars we deal with a situa-
tion lying between Salpeter's (1954) cases of weak and
strong screening. We have used a mean screening function
taken between these two extremes while Ezer and Cameron
have employed whichever approximation, weak or strong,
gives the larger value. The principal source for the dif-
ference between the tracks in the H-R diagram can readily
be explained by the difference in the way which the outer
atmospheric beoundary condition has been treated. Our
boundary condition is based on model atmosphere integra-
tions; while they employ a somewhat more approximate
procedure (Ezer and Cameron 1963). The difference between
our results for the central density regarded as a function
of the central temperature and those of Ezer and Cameron is
an indication of the magnitude of the effects of including

particle interactions in the equation of state.
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6.3 Comparison and Discussion of the Theoretical
and Empirical Main Scequence Properties

In Figures 16 through 18 we summarize graphically
the theoretical results obtained in the preceding sections
for main sequence objects and compare them with the adopted
mean empirical data for the main sequence given in Table 2.
In Figures 16 and 17 we cbmpare the theoretical and
empirical mass-luminosity and mass-radius relations,
respectively. In these diagrams we show by solid lines
labeled MS and ZAMS, respectively, the polytropic main
sequéncc from Table 4 and the enpirical relations from
Table 2. For comparison we show the theoretical results of
Hayashi and Nakano (1963) and Ezer and Cameron (1966) by
dashed lines labeled HN and EC, respectively. In addition
we show the main sequence position of the detailed 0.1 MO
object from Table 5 by a circled cross, the position of
YY Gem by a cross and that of the sun by the symbol 0.

Examination of these figures reveals that while the
theoretical and empirical mass-luminosity relations appear
to be in quite reasonable agreement, there is an appreciable
lack of agreement between the theoretical and empirical
mass-radius relations. This discrepancy between theory and
observation is also apparent in the H-R diagram as may be
seen in Figure 18. Here, using the same notation as in
Figures 16 and 17, we plot the main sequence loci in tﬁe

H-R diagram, that is, the plot of Nbo] versus the effective
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temperature. Along cach of these loci we show the posi-
tions of objects of various masses by filled circles which
we label by the corresponding value of the mass in M@' We
see that not only are the theéretical and empirical main
sequences displaced by as much as 700° in effective
temperature but they also exhibit quite differcnt slopes
as well.

The difficulties presented by Figures 17 and 18,
that is, the lack of agreement between the main sequence
mass-radius relations and the loci in the H-R diagram, are
significant and oblige us to re-examine the adequacy of the
theoretical models as well as the adopted mean empirical
relations. Although we must acknowledge the possibility
that the apparent good agreement between the theoretical
and empirical mass-luminosity relations indicated in
Figure 16 may be fortuitous, we assume for the moment that
our theoretical models do in fact provide a satisfactory
representation of the low mass, main sequence mass-
luminosity relation for stars of solar composition. It is
within the context of this assumption that we now undertake
a reassessment of the assumptions and approximations
entering into the model calculations and the derivation of

the mean empirical relations.



6.3.1 Theoretical Models

In deriving the theoretical main sequence proper-
ties for the very low mass objects listed in Table by we
have assumed that the internal structure of these objects
may be represented by polytropes of index n = 1.5. For
this to be the case, as discussed in Section 6.1, objects
must be in complete convective equilibrium throughout,
composed of an ideal, completely ionized gas and the
thickness of the outer layers in which hydrogen and helium
are incompletely ionized must be very small compared to the
total radius. This in fact appears to be the case along
the very low mass main sequence. Hayashi and Nakano (1963)
and Ezer and Cameron (1966) find that below about 0.25 MO
stars arrive and remain on the main sequence as wholly
convective objects. From the results of the detailed
3 9 | M0 model considered in Section 6.2, we find that not
only is it wholly convective on the main sequence bul also
that the atmospheric regions as well as the hydrogen-helium
ionization-dissociation zone involve only a few per cent of
the total radius. We also explored in this detailed model
the effect on the overall structure of electrostatic
particle interactions within the ijionized interior. We find
that, at least on the main sequence, thesec effects may be
ignored and that the bulk of the interior may be safely
regarded as composed of a completely ionized ideal gas.

Thus a polytropic representation of very low mass main
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sequence objects should be quite adequatej; although we did

find that the radius of the detailed 0.1 M_ main sequence

0]
model to be 9% smaller than that of the corresponding
simple polytropic model (cf. Tables 4 and 5), which worsens
the existing discrepancy between the theoretical and
empirical mass-radius relations.

The primary effect of the stelliar atmosphere on the
completely convective models is to determine the luminosity.
Although the main sequence position in the H-R diagram, as
well as that of the pre-main sequence evolutionary tracks,
will be sensitive to the atmospheric opacity, we expect the
main sequence radii to be little affected by changes in the
opacity. Consequently, we expect that the errors to be
associated with the computed values of the atmospheric
opacity, Table 3, will not greatly affect the existing
discrepancy between the theoretical and empirical mass-
radius relations. Similar remarks apply to the determina-
tion of the outer boundary condition for the interior
structure through the calculation of detailed non-gray
atmospheric models which is, perhaps, the major improvement
to be made on the present low mass models. Because these
regions are so extremely shallow, it seems unlikely that
improvements on the simple mixing length theory employed
in Section 5.3 or on our treatﬁont of pressure ionization

and dissociation in the hydrogen-helium



ionization-dissociation zone will greatly affect the
theoretical results.

The pre-main sequence contraction of a star is
halted when the rate of nuclear energy release becomes
sufficient to supply completely the total luminosity. We
therefore consider the possibility that we have under-
estimated the nuclear energy generation rate in the
present models to the extent that, for a given mass,
gravitational contraction actually will be halted at that
radius appropriate to the adopted empirical mass-radius
relation. For a 0.1%4 MG object we find, roughly, that this

would increase the main sequence luminosity by nearly one

magnitude in M and would require the energy generation

bol
rate to be increased by a factor of about 25. Not only
does it seem unlikely that our nuclear energy formulae
could admit of so large an error, but we would also then be
faced with having to account for the resulting discrepancy
between the theoretical and empirical mass-luminosity
relations.

We conclude from the above discussion that neither
the approximations nor the obvious improvements to be made
in the models can be expected to explain the discrepancy
between theory and ocbservation. If this discrepancy is due
to inherent inadequacy of the models, we suggest that it is
due to the omission of some major. physical effect which

results in large scale departures from polytropic structure.
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Before pursuing such possibilities, however, we should
first be certain that we possess a completely adequate set
of empirical data with which to compare the theoretical
models and, thus, that the discrepancy exhibited in Figures

17 and 18 really exists.

6.3.2 Empirical Data

In Chapter 3 we derived on the basis of the
currently available observational data a set of mean rela-
tions between the masses, radii, luminosities, and effec-
tive temperatures for the M dwarf stars. We summarize
these adopted relations in Table 2 and take them to define
the mean empirical properties of low mass stars of solar
composition. The adopted mass-luminosity relation is based
on the data taken from Eggen (1965, 1967) for the masses,
m, and the absolute visual magnitudes, MV’ of the visual
binary pairs listed in Table la and plotted in Figure 4.
Disregarding the objects ADS 7114BC, 8048BC, 8166AB,
10158AB, and UV Ceti, we represented the correlation
between log m and MV for these stars by the linear relation
given in equation (3.2). From Figure 4, we suggested that
equation (3.2) adequately represents the available data for

masses above 0.5 M and, perhaps, to masses as low as

(0]
0.3 Mo. (The rather large departures, indicated in Figure

4, of Ross 614 AB from the adopted mass luminosity relation

may be due to the fact that these are young objects which
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have not yet reached the main sequence, a point to which we
return in Section 6.4.)

The bolometric corrections given by Johnson (1966)
for the M dwarfs were obtained essentially by integrating
under the spectral energy distributions derived from the
results of broad band infrared photometry of a selected
sample of M dwarf stars (Johnson 1965, 1966). We take
these bolometric corrections to be quite reliable. Thus
except for having to use equation (3.2) to extrapolate to

masses below 0.3 M we derive our adopted mass-luminosity

0’
relation, that is the log m, Mbol relation, directly from
observation. Below 0.3 MO we lack sufficient data to
determine empirically the mass-luminosity relation with any

confidence. However from Figure 16 we observe that the

theoretical results of Ezer and Cameron (1966) and Hayashi

and Nakano (1963) over the range of mass 0.1 to 0.4 M, show
no abrupt change of slope in the log m, Mbol plane. This
suggests that there is some validity for the linear extra-
polation based on equation (3.2) of the adopted mass-
luminosity relation down to masses of about 0.1 MO.
We cannot determine the empirical mass-radius
relation for the M dwarf stars directly by observation,
however. It has thus far been possible to determine
directly the mass and radius of only a sjngle M dwarf, the

MO.5 components of the eclipsing system YY Gem. To deter-

mine our adopted empirical mass-radius relation we have
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resorted to the indirect procedure of using our adopted
mass-luminosity relation together with equation (3.1) and
the effective tcmperaturc,.R—I calibration of Johnson
(1966). 1In Figure 19 we compare the mass-radius relation
obtained in this way with the data given by Popper (1967)
for the masses and radii of those eclipsing binary systems
consisting of main sequence components. We plot the data
for the individual objects as filled circles and show by a
dashed line our adopted empirical relation. In addition we
show the theoretical mass-radius relation from Table 4 by a
solid line, the position of YY Gem by a cross, and that of
the sun by the symbol 0. FIrom this diagram we sce that the
eclipsing systems define a distinct mass-radius relation
but only for masses above one solar mass.

It is to be emphasized that our adopted mass-radius
relation below 0.6 M, rests entirely on Johnson's (1966)
calibration between the R-I index and the effective temper-
ature and the adopted mass-luminosity relation. For stars
later than solar type and with the exception of YY Gem,
this calibration rests ultimately on the interferometric
measures of the angular diameters of seven stars, all of
which are giants or supergiants. The fact that there
appears to be fair agreement between the effective tempera-
ture and the color temperatures derived from the I-L index
for these objects was utilized by- Johnson (1966) to extend

the original effective temperature, I-L calibration to
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objects of spectral fype later than MO. The validity of
the extension of the .effective temperature, R-I relation to
the dwarfs, however, rests on the assumption that this same
relation applies equally well to dwarfs as to giants. The
only direct evidence for this assumption is that the
observed data for YY Gem fits Johnson's (1966) original
relation rather well. Nevertheless, since the value of the
surface gravity ranges over perhaps four or even five
orders of magnitude between the supergiants and dwarfs of
late spectral types, one must be somewhat cautious about
the validity of this assumption for dwarfs appreciably
cooler than YY Gem. Not only might the dominant sources
of opacity and the resultant nature of the departure from
grayness be quite different in the dwarf atmospheres, but
also the role of sub-photospheric convection will be quite
different and may influence the spectral energy distribu-
tion. In order to bring the theoretical models into
agreement with the mean empirical data, tﬁe value of the

effective temperature for a 0.14 M_ object of spectral

(0]
type M7 and R-I = +2.08 would have to be increased by 700
degrecs. Whether or not we can reasonably expect this
large a difference between the effective temperature of the
very late M dwarfs and giants is open to question. Unless

low mass eclipsing systems are discovered which yield

reliable radii, the only way to attack this problem would
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seem to be to construct detailed theoretical non-gray model
atmospheres for both giants and dwarfs.

Since at the present time YY Gem plays a critical
role in establishing the effective temperature scale for
the late type dwarfs, it is interesting to mnote that YY Gem
falls distinctly off the mean empirical mass-radius rela-
tion as well as the mean empirical mass-luminosity relation.
These discrepancies seem significantly larger than can be
accounted for by the probable errors in the determination
of the mass, radius, and luminosity of this object. This
need not necessarily invalidate the use of YY Gem as a
means of calibrating the effective temperature with the
R-T index, since there is no indication that YY Gem is
photometrically anomalous. Nevertheless, this anomaly (and
the curious fact that the values of the mass and radius of
YY Gem do place it on what appears to be a simple extension
of the mass-radius relation defined by the more massive
eclipsing systems, cf. Figure i9) suggesls that considerably
more work, both observational and theoretical, needs to be
done before we can claim a good understanding of the
structure of the very low mass stars.

6.4 Stars Below the Main Sequence
Limiting Mass

There are two stars, Ross 614B and the components
of UV Ceti, whose masses of 0.08 and 0.03 MO’ respectively,

lie below the main sequence limiting mass as determined in
g
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Section 6.1. We have shown by a cross and a circled cross,
respectively, the observed positions of these stars in the
vtheoretical H-R diagram shown in Figure 12. It is diffi-
cult to reach many conclusions regarding thp evolutionary
state of these objects. UV Ceti is a member of the Hyades
common motion group (Eggen 1963) and, since it presumably
shares any abundance differences that may exist between
the Hyades stars and the sun, we cannot necessarily expect

our 0.03 M evolutionary track to represent this object.

(0}
Ross 614B, however, seemingly falls along Eggen's sun-
Sirius mass-luminosity relation (cf. Figure 4) and we
conclude that it is likely to be a solar composition
object. We note from Figure 12, however, that Ross 614B

is discrepant relative to our computed evolutionary track
for a 0.08 MO object. This simply reflects the discrepancy
between the theoretical and empirical main sequence
properties discussed in the preceding section.

Because its observed mass is so near to the main
sequence limiting mass and its observed luminosity places
it so near to the theoretical main sequence line, we may
speculate that Ross 614B is in fact on the main sequence.
Should this be the case, it would seemingly indicate a
lower value for the main sequence limiting mass than the
value of 0.1 M, determined by Ezer and Cameron (1966). Our

value of 0.085 MO may be more nearly correct; however we

cannot attach much significance to any theoretical
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determination of a main sequence limiting mass until we
satisfactorily remove the discrepancy between the theoret-
ical and empirical main sequence mass-radius relations.

In connection with the discussion of Figure 4 in
the previous scction, we pointed out that the objects
Ross G614AB depart appreciably from our adopted empirical
mass-luminosity relation. Should it be that Ross 614B is
insufficiently massive to reach the main sequence, the dis-
placement of both components may be intrinsic, since we
could not expect the B component to obey a main sequence
mass-luminosity relation and the A component, while massive
enough (0.14 MQ) to reach the main sequence, may be suf-
ficiently young as not yet to have completely contracted to
its main sequence configuration. If this is the case, then
the A component should appear overly luminous for its mass
which is, in fact, consistent with its plotted position in

Figure 4.

6.5 The Shape of the Mass Function

From the luminosity function data of Luyten (1968)
and the sun-Sirius mass-Jluminosity relation of Eggen
(1965) we have obtained the mass function for the solar
neighborhood shown in Figure 7. This curve indicates the
occurrence of a sharp peak in the mass function at about
0.16 M with a rapid decline in the numbers of oﬁserved

(0]

stars as we proceced to lower masses. Assuming the
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observational data pertaining to the luminosity function to
be complete at lecast through the maximum of the mass
function, we find the mass at which the maximum occurs to
be somewhat greater than that which we find for the main
sequence limiting mass. Nevertheless it is tempting to
associate the observed behavior of the mass function with
the existence of the limiting mass. For example, should it
be the case that as a consequence of star formation, the
initial mass function increases monotomnically with decreas-
ing stelliar mass down to masses below the limiting mass,
then we would expect to observe a form for the mass
function shown in Figure 7. There would be a piling up of
stars on the main sequence with the maximum number occurring
at the limiting mass. Below the limiting mass there would
be a paucity of observable objects, since all that could be
seen would be those stars young enough to be observably
high on the Hayashi contraction tracks. This would have
the interesting consequence that the galaxy may contain a
large component of very low mass, dark objects.

Gaustad (1963) suggests, however, that if frag-
mentation in massive clouds of gas and dust determines the
initial mass function, we might well expect the majority of
stellar objects formed to have masses of a few tenths of a
solar mass. This too would lead to a mass function having
the shape shown in Figure 7 and would have nothing at all

to do with the existence of a main sequence limiting mass.
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This interpretation of the mass function would be favored
should it be that the maximum in the mass function occurs
at an appreciably higher mass than the limiting mass. We
must, therefore, be convinced that both the mass function
and the limiting mass are determined sufficiently accu-
rately. Again, we cannot trust our value for the limiting
mass so long as there remains a discrepancy between our

theoretical models and the empirical data.



APPENDIX A

DEBYE-HUCKEL THEORY FOR AN JONIZED,
PARTIALLY DEGENERATE PLASMA

We consider a fully ionized plasma at a temperature
T and confined within a volume V. We regard the ions and
electrons as point charges and consider each charged
particle in the gas to be surrounded by an inhomogencously
charged but spherically symmetric distribution of ions and
electrons. We assume that the total potential energy of
the system, W, may be written as the sum of two-particle

electrostatic interactions, that is

zZ Z e2
2: a b
b rab
a,b

where the summation is performed over all pairs of

particles a, b of charges z_e and z e, respectively, and
a

b

separation r (cf. Fowler and Guggenheim 1956, pp. 283-

b
393). Let us choose a particular charged particle, say
particle a, to be at the origin of a system of spherical
coordinates. At any instant the electrostatic potential

@a(r) at a distance r from particle a is related to the

charge density pa(r) at r through Poisson's equation,

vie_(r) = - 4np (r). (A.1)

165
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We shall be concerned with time averages of the potential
and charge density which we assume to be equivalent to
averages taken over all possible spatial configurations of
the particles. We then assert that the average potential

at r is related to the average charge density at r through
- !
V<o (r) > = -4n< p (r) > (A.2)
a a a a

where < @a(r) >a and < pa(r) >a are the potential and
charge density, respectively, at r averaged over all
possible spatial distributions of the other charged
particles in the gas with particle a held fixed.

Let us now assume that all of the particles in the
gas, both the ions and the electrons, obey the Maxwell-
Boltzmann statistics. While this is always a good approxi-
mation for the ions, it is valid for the electrons only if
the electron number density n_ satisfies the condition

(2HmekT)3/2

n, €% 3 (A.3)

where h is Planck's constant, m is the mass of an electron
and k is Boltzmann's constant. Upon assuming this condi-
tion to be satisfied, we may write down the probability,

¥ . (r . ), that any particle b of charge z, e, where e is the

Vab ab b

charge of the electron, be found at a distance r b from

particle a of charge z_e, that is

Y . lr .) = & exp[— B(ab(rab)]
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where A is a constant, B = (k’]‘)—l, and €  (r . ) is the
ab " ab
interaction energy between particles a and b in the
presence of all the other particles in the gas. The

average probability that particle b be found at a distance

r from a is
ab

< V¥

ab

- - _ /i
# oy = A < exp[ Bfab(rab)] > b (A.4h)

where the average is taken over all configurations of
pérticles holding particles a and b fixed. In their study
of the effects of ionic interactions in solutions of strong
electrolytes, Debye and Hiickel (1923) (see also Fowler and
Guggenheim 1956) introduced the following approximations,

which we label the DH approximations,
< exp[— B(ab(rab)] > p = exp[— B < (ab(rab) >ab] (A.5)
and

< ‘ab(rab) Dogy = Zp® S @a(rab) >, (A.6)

As in equation (A.2), < @a(rab) >, is the electrostatic
potential at the distance r b from particle a averaged over
all configurations of particles with a held fixed. We sece

that the first DH approximation can be strictly valid only

if
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2 _ R 2
< fab(lab) >ab = X (ab(lab) >ab
3 (. _ . 3
< (ab(lab) - 3 % € o (e " >2b
n n
% (ab(rab) *ab = < (ab(lab) Zab"
i - ad € - i Forme -
The averaging to obtain < ab(lab) >ab is performed overx

all particles except a and b, which are held fixed, while
the averaging to obtain < @a(rab) >a is performed over all
particles except a, which is held fixed, but including
particle b. We see that the second DH approximation will
be best when particle b does not contribute appreciably to
< @a(rab) > - This conditon will be met if z is small and
if the density of the other charged particles is high.

The quantity < (ab(rab) >ab can be interpreted as

the work necessary to bring particle b from infinity to the

distance rab from particle a averaged over all possible
configurations of the other particles. By symmetry we must

h that € = € > i ri -
ave that < ab(rab) >.b < ba(rba) ba Which, with the

second DIl approximation leads tc the condition

< Qa(r) > ) < @b(r) s B

z Z
a b
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for all pairs of charged particles within the system. It
can also be shown from general principles (Fowler and
Guggenheim 1956) that the instantanecous electrostatic
potentials at particles a and b, say @a(O) and @b(O), due
only to the presence of the other charged particles in the
system, that is, excluding the self-potentials of the two

particles, must obey the relation

acpa(o) a@b(o)

- (A.8)
aéb a/Ja

Equations (A.7) and (A.8) can be used to test the self-
consistency of any approximate solutions to the problem.
Employing the second DH approximation we may write

equation (A.L) as
<YW, p >ap = A exP[zbe < @a(rab) >a]. (A.9)

For simplicity of notation let Qa(r) now denote the
potential at the distance r from particle a averaged over
all particles excluding a. If we now let n_ denote the
mean number density of the st species of charged particle
in the absence of any electrostatic interactions, it
follows from equation (A.9) that we may approximate the
distribution of the st species of particles about particle

a by

nas(r) = n_ exp{— zse$a(r)]. (A.10)
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In what follows we shall assume that the gas
deviaies only slightly from a perfect gas which implies
that the Coulomb interactiou‘betwcen the particles must be
small compared to the mean thermal energy per particle. 1If
we let ze be the mean charge per particle and ry be the

mean particle separation, we require that
c
e L KT

which gives the condition on the mean charged particle

number density n that

n << %% (

(A.11)

This is equivalent to assuming that zsewa(r) << kT which
allows us to expand the exponential in equation (A.10) to

give, retaining only the first order term in ¢,

nas(r) = nso[l - zSeBwa(r)]. (A.12)

At this point we have introduced the further approximation

of considering a linearized treatment of the DH problem.

In so doing we shall see that the conditions contained in
equations (A.7) and (A.8) will be automatically satisfied.
In general any attempt to improve the results through the
retention of higher order terms in the expansion of equa-
tion (A.10) will not be consistent with respect to these

symmetry conditions. The criterion on the density and
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temperature contained in equation (A.11) defines the region
over which these considerations will remain valid. At the
lowest densities we have a perfect gas while at suffi-
ciently high densities that equation (A.11) is not
satisfied, we shall find it necessary to introduce a new
model by which we may estimate the non-ideal behavior of
the system.

In arriving at equation (A.10) we have assumed that
all of the particles in the gas may be treated by the
Maxwell-Boltzmann statistics. We now wish to generalize to
the case in which we explicitly consider the electrons to
obey the Fermi-Dirac statistics. To accomplish this we
employ what is essentially the Thomas-Fermi approximation
and assume that any given electron moving in the vicinity
of any particular charged particle moves in a potential
field arising from the superposition of that of the given
particle and that of all of the other charged particles in
the gas such that the fractional change in the potential
is negligibly small over a distance corresponding to the
mean thermal de Broglie wavelength of an electron. This is
equivalent to treating the electron as if it were moving in
the presence of a static, uniform external field. Let
pa(r) be the chemical potential of the electrons at a

distance r from particle a. We may express ua(r) as

pa(r) = pae(r) + fae(r) (A.13)
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where uae is the chemical potential appropriate to the
electron density at r and (ae is the interaction energy
between particle a and an elecctron at r. We employ the
second DH approximation and assume that

<€  Kr) > = - ep (r) (A.14)
ae ae a
where < (ae >ac is the electrostatic interaction energy

between particle a and an electron at r averaged over all
configurations of particles with particle a and the
electron held fixed. Under the conditions of equilibrium
the chemical potential of the electrons must be constant
with r otherwise the electrons would migrate to those
regions of space in which the chemical potential were

minimum. Hence we may write equation (A.13) in the form

L e(r) - e@a(r) = b, = constant. (A.15)

a

We now consider a gaseous mixture of ions and

electrons. Let z, and n o be the charge number and the

mean number densily of the kt* species of ion, respectively.

3

We can define a total mean ion number density, n., , and a

io
mean ionic charge number z such that
Mo 7 ZL ko (A.16)
k

and

A . L
z 5 == 2; RN (A.17)
e k
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We may thus treat the gas as consisting of a mixture of
N. = Vn, ions of charge ze and N = Vn electrons of
i io e eo
charge -e. Requiring that the system be electrically

neutral as a whole gives

n & FN. & (A.18)

The mean charge density Pi(r) at a distance r from

the ith ion can be written as
P.(r) = ezn..(r) - en. (r) (A.19)
i i s ie
where nii(r) and nie(r) are, respectively, the mean ion and
electron number densities at the distance r from the ith

ion. We may use the Boltzmann formula, equation (A.10),

for mn, . (r),
3.3,
nii(r) = n,  exp [— Be$i(r)] (A.20)
where Qi(r) is the mean potential at the distance r from

the ith jion. From the Fermi-Dirac distribution (seec Tolman

1938) we may write

_ hm

ni (r) = 5 (2m k1)3/% ¥ (n)) (A.21)
where from equation (A.15) we have
ny = By = Bl () - o, ()] (A.22)
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and the Fermi-Dirac integrals are defined by
cO xa
' = - Ko A.2
Fa(n) ‘/‘exp(x—n)+L . ( 3)

o

Expanding the exponential in equation (A.20) we have to

first order

nli(r) = nio[l - zeBmi(r)} (A.24)

while expanding nie(r) in a Taylor's series about Ho’ the
chemical potential of the electrons in the absence of

particle interactions, we obtain to first order in @i(r)

n, {xr} = neo[l + eBwi(r)Qe] (A.25)

ie

where Qe is defined by

(n )
i 3/2 Fo - _lZEnﬁuﬁ
6 = (2nmekT) (n ) = (n j (A.26)

1/2 1/2

since from Tolman (1938) it may be shown that

5  3/2

neo h
M) = 3 Gy (A.27)

Fy/0

In equations (A.21) and (A.22) we have 1let Ny = Bpo, and
the prime denotes differentiation with respect to no'
We may now write down Poisson's equation for the

potential field about the ith ion, that is

Vi (r) = - 4up (r) (A.28)
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which upon substituting equations (A.24) and (A.25) for

Pi(r) gives, approximately,
2 N 2n¢. 2 ~
Y, @i(l) = 4ne“B(=z n, o+ neoee)@i(l). (A.29)

Letting k be the inverse Debye length, where

K= s 4ﬂe2B(22n, + n_ 0 ) {A:30)
io eo e

and noting that wi(r) must satisfy the following two

boundary conditions

Lim [(p.(r)] = 0
1r—+CO =
and
Lim [r@i(r)] = ze
r—0
we obtain the solution
wi(r) = %9 exp (- xr). (A.31)

We proceed in a completely analogous manner to
obtain the potential distribution about a particular

electron in the gas. We write down Poisson's equation
V2q> (r) = - 4mp_(r)
e e

where @e(r) and Pe(r) are the mean potential and charge
densities, respectively, about the given electron, and

Pe(r) can be written as
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Pe(r) = zcnei(r) - enee(r) (A.32)

where n i(r) and nce(r) denote, respectively, the mean ion
e =)

and electron number density distributions about the given

electron. To obtain nei(r) we invoke the symmetry argument

of Cowan and Kirkwood (1958) and assert that

znei(r) = nie(r). (A.33)

That is, that the form of the distribution of the ions
about an electron is the same as that of the electrons

about an ion. Thus

znei(r) = neo[l + eBQe@i(r)]. (A.34)

We take He = pec - e@e = constant and ne = Bpe to give to

first order in @e(r)

e

n__(r) = neo[l . eBGewe(r)]. (A.35)
Poisson's equation now becomes
Vzwe(r) 2 QﬂezBQeneo[@e(r) - @i(r)]. (A.36)

From the symmetry requirement of equation (A.7) it is
apparent that @e(r) = C@i(r) where C is a constant.
Substituting this into the above equation we find that

C = - Qe/z and we obtain the solution

e
@e(r) = - re exp (- kr). (A.37)
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The solutions Py and P represent the mean electro-

static potential distributions about any particular ion or
electron, respectively. Expanding the exponentials in

equations (A.31) and (A.37) we have

Z e 2
wi(r) = fg (1 - kr + %K?r M m R @
and
e
@e(r) = - —;E-(l - Kr + %ﬂng - e e W)

We now subtract off the self-potentials of the ion and the
electron, ze/r and —eQe/r, respectively, from these equa-
tions and let r -» O to obtain the residual electrostatic
potential at the positions of each of the two particles
arising from all of the other particles in the gas.
Denoting these potentials as ¢i(0) and ®e(0) we have,

respectively,

ze K (A.38)

I
|

¢. (0)

and

¢, (0) = co_x. (A.39)

We observe that these solutions satisfy the symmetry
requirements expressed by equations (A.7) and (A.8) in
which the degeneracy parameter Qe appears as the effective

charge number of the electrons.
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The contribution to the Helmholtz function of the
gas resulting from the interactions between the particles

‘is just the work done in charging up the particles of the

gas at constant volume and temperature. For the ions we
have
F e
;C = B ‘[ (ze'k * z)de'
o
o = B, ZZQB(QHB)l/z(zzn. + n_ O )1/2
3 Tio io eo e

and for the electrons we have

5!

e
= - n Jr e'® kde'
ec eo e
o

& = B 5 e30 (4HB)1/2(zn. + n_ @ )1/2.
3 eo e io eo e

The total electrostatic correction to the Helmholtz

function FC = Pic + Fed’ is, then,
3
_ Vi
F = = Tonp" (A.40)

This result is in agreement with a similar result obtained

by Kidder and DeWitt (1961).
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