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ABSTRACT 

The existence of solar granulation is indicative of horizontal 

variations of the physical conditions in the photosphere. The main 

purpose of this dissertation is to take account of this inhomogeneous 

structure in constructing a non-gray blanketed model photosphere which 

is in radiative equilibrium throughout its upper layers. The goal is to 

achieve better agreement between the predicted and observed emergent 

continuum radiation fields of the sun than has been exhibited by previous 

theoretical model photospheres. 

Previous efforts by other authors to construct inhomogeneous 

model photospheres are recounted. The major characteristics of each 

model are described, and the resultant fit between the predicted and 

observed emergent continuum radiation fields is discussed in the cases 

for which the necessary data were available. Most of the earlier models 

were unsatisfactory in that they neglected the blanketing effect. Other 

shortcomings were the failure to conserve the integrated radiative flux 

with depth and the requirement of pressure equality between the elements 

of the inhomogeneous structure at the same geometrical depth in all 

cases. This pressure-equality requirement leads directly to a contra

diction in that either the equation of state or that of hydrostatic 

ix 
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equilibrium is not satisfied or the inhomogeneous structure itself must be 

neglected. Relaxation of the pressure-equality requirement is an 

essential characteristic of the inhomogeneous models constructed here. 

The procedure followed in the construction of a homogeneous 

non-gray blanketed model photosphere in radiative equilibrium is 

thoroughly discussed. The details of calculating the radiation field are 

also outlined. The necessary data and formulae for carrying out such 

calculations are given, since the same basic technique is used for the 

inhomogeneous models. 

The method adopted here for incorporating inhomogeneities into 

a > odel photosphere is the two-column approach in which the photo

sphere is assumed to consist of numerous vertical columns of two differ

ent types. The hot columns represent the granules and the cold columns 

represent the intergranular regions. The combined integrated radiative 

flux from the two types of columns is kept constant at each geometrical 

depth to within ±1 per cent throughout the upper radiative part of the 

photosphere. In addition, each column is assumed to be optically thick 

in the horizontal direction. This assumption along with the neglect of 

radiative coupling between adjacent columns greatly simplifies the 

problem. 

A wide choice of parameters is available for obtaining a model 

in satisfactory agreement with the observed solar continuum radiation 



field. The details of the blanketing effect—such as its strength and 

wavelength dependence—as well as the integrated flux distributions in 

the two columns are found to be the most effective parameters. The final 

model embodies variable blanketing with depth in both columns by 

assuming that the lines are due mainly to the neutral metals. It also 

has integrated fluxes which decrease with depth in the cold column and 

increase with depth in the hot column. This behavior compensates in a 

crude way for the neglect of radiative coupling between columns. 

The final model fits the observed central continuum intensities 

of the sun to within 5 per cent for 5000 A 10,000 A and agrees with 

the observed solar continuum limb darkening to a general accuracy of 0.2 

per cent at JJL = 0.85, 0.5 per cent atyW =0.50, and 0.8 per cent at 

JA = 0.30 over the spectral range 4000 10,000 A. The final model 

has a blanketing coefficient of approximately 0.16 and an rms relative 

continuum intensity fluctuation of ±0.15 at a wavelength of 5000 A. 

Although these values are somewhat high, they are not considered 

unacceptable because of the large spread in the published values. 



CHAPTER I 

INTRODUCTION 

The purpose of this dissertation is to construct a theoretical 

non-gray model solar photosphere which is in radiative equilibrium and 

which includes the effects of blanketing due to absorption lines and of 

inhomogeneities in its physical structure due to solar granulation. The 

goal is to secure better agreement between the predicted and observed 

continuum radiation fields of the sun than previous theoretical models 

have achieved. 

Previous studies of model photospheres incorporating tempera

ture inhomogeneities to simulate the solar granulation are reviewed in 

Chapter II. The details of constructing a theoretical homogeneous model 

of the solar photosphere are outlined in Chapter III. The inclusion of 

the horizontal inhomogeneities caused by solar granulation is taken up 

in Chapter IV, where the final two-column model solar photospherp 

arrived at after a long series of trial models is presented. The sensi

tivity of the predicted radiation field to the particular, choice of fitting 

parameter^ is discussed. Comparison of the predicted emergent con

tinuum radiation field of the final model to that observed for the sun 

reveals distinctly better agreement than that obtained by previous 

1 



theoretical models of the solar photosphere. The physical structure of 

the final model is also considered in detail. 

The final section gives a brief summary of the entire dissertation, 

along with suggestions for future work on inhomogeneous models of the 

solar photosphere. 



CHAPTER II 

REVIEW OF INHOMOGENEOUS MODELS OF 

THE SOLAR PHOTOSPHERE 

The purpose of this chapter is to recount the efforts which have 

been made to construct inhomogeneous models of the solar photosphere— 

inhomogeneous in the sense that the structure of the photosphere varies 

horizontally as well as vertically. It is clear that inhomogeneities exist 

in the solar photosphere, for the differing surface brightnesses of the 

solar granules and the intergranular regions imply horizontal differences 

of physical conditions between the respective parts of the photosphere. 

In the 1930's and 1940's theoretical studies of the solar granu

lation were carried out as part of the overall investigation of the hydrogen 

convective zone in the sun. These studies were based on the pheno-

menological mixing-length theory and were mainly concerned with estab

lishing a connection between the observed granulation characteristics 

and physical conditions in the convection zone. * No inhomogeneous 

models of the photosphere were constructed during this early period, 

1. See, for example, H. Siedentopf, 1935, Mltteilunqen der 
Universltat-Sternwarte zu Tena, No. 5 (also published as Siedentopf, 
1935, Astronomlsche Nachrlchten. 255. 157). 

3 
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although C. de Jager did introduce his bubble-theory of the convection 

2 zone. This model depicted the granules as rising spherical blobs of hot 

gas surrounded by the sinking intergranular material. De Jager made an 

attempt to explain the observed granule contrast in terms of the excess 

3 temperature of the bubbles over their surroundings. Temperature inhomo-

geneities were not an integral feature of his basic model, whose tempera -

ture-depth relation was identical to that of D. Barbier's empirical model 

for optical depth 1 and was extrapolated from this model for the range 

1 £ f £ 2, where the optical depth was referred to wavelength 

*\ 4 5 A = 5010 A. ' De Jager was later to generalize his bubble-theory model 

into a columnar model, as will be seen shortly. 

A more modern treatment of the hydrogen convection zone by the 

0 
mixing-length theory was carried out in 1953 by E. Vitense. Among other 

things, she demonstrated that convective elements rising from deeper in 

the photosphere could maintain temperature excesses over their sur

roundings up to =0.3, where TT is the optical depth based upon the 

2. C. de Jager, 1948, Konlnkliike Nederlandsche Akademie van 
Wetenschappen. 51. 735. 

3. Ibid., p. 739. 

4. Ibid., p. 732. 

5. Ibid., p. 738, Figure 3. 

6. E. Vitense, 1953, Zeitschrift fur Astrophvsik. 32. 135. 
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7  
Rosseland mean absorption coefficient. Average temperature differences 

between the granules and their surroundings at the same geometrical 

depth were about 500 °K at log P = 5.0, where P is the gas pressure, and 

increased to a maximum of 1200 °K at log P = 5.1. Above the level where 

log P = 4.9, the granules were actually slightly cooler than their sur-

8 —' roundings. The temperature differences vanished at "C = 0.3, or 

g 
log P = 4.79. At equal optical depths of TT = 2/3, or log P = 5.0, the 

average temperature difference was found to be 310 °K. Vitense noted 

that the absorption coefficient was greater in the hot elements than in the 

surrounding material.1^ This fact caused the apparent temperature differ

ences (equal optical depths) to be smaller than the actual differences 

(equal geometrical depths). Pressure equilibrium was assumed to exist 

between the hot elements and their surroundings at equal geometrical 

depths.11 

The simplest way of taking the horizontal variation of photo-

spheric structure into account is to construct a so-called columnar model, 

which represents the photosphere as being composed of two or more types 

7. Ibid., pp. 152-158. 

8. Ibid.. p. 154, Figure 9. 

9. Ibid., p. 154. 

10. Ibid, p. 157. 

11. Ibid, p. 152, Figure 8. 



6 

of vertical columns differing from one another in their temperature-versus -

depth relations. A summary of this type of work done prior to 1960 is 

12  contained in H. Hubenet's thesis. 

The first columnar model of the solar photosphere was constructed 

13 
in 1954 by C. de Jager. This model arose from a discussion of the 

profiles of hydrogen lines in the solar spectrum. De Jager pointed out 

that the Balmer, Paschen, and Brackett lines were much wider than was 

expected from calculations of the statistical Stark broadening, the pri

mary source of broadening for these lines. He attributed this abnormal 

widening to microturbulence in the solar photosphere, following a sug-

ii  ]4  
gestion by Unsold. De Jager later concluded that the widths of the 

Paschen and Brackett lines could be explained by the classical Stark 

broadening without the introduction of temperature inhomogeneities. ̂  

De Jager's proposed model pictured the solar photosphere as 

composed of numerous thin vertical columns of equal base areas. These 

were distributed uniformly over the solar surface, with half the columns 

having high temperatures and the other half low temperatures. Each 

emergent ray of light was assumed to pass through only one column. The 

12. H. Hubenet, 1960. Recherches Astronomiques de l'Observa-
toire d'Utrecht. 16. 59-64. 

13. de Jager, 1954, Nature, 173. 680. 

14. Ibid., p. 681. 

15. de Jager, 1955, Transactions of the IAU. 9., 729-



temperature-depth relations for the two types of columns were given as 

follows: 

&  ( r ) =  &  ( r )  +  A © - ,  
1 o 

&2 (r) = &o (f) -, 

where & = 5040 °K/T, in which T is the temperature in °K, subscript 1 

refers to the cold column, subscript 2 to the hot column, and subscript o 

to the homogeneous model VII derived previously by de Jager. Model VII 

was an empirical model whose T(tT) relation was derived separately for 

16 the upper and lower regions of the photosphere. For f < 0.40, the 

observed profiles of the cores of the first four Balmer lines at various 

positions on the disk were used to find the-source functions of the res

pective lines. The source functions were then equated to the Planck 

function at the wavelength of each line to yield four separate T(f) 

relations, which were averaged to give the adopted T(tr) relation for 

f < 0.40. For 0.40 < t< 2.8, the differences between theoretical and 

observed intensities in the wings of the Hy line were used to correct 

the T(f) relation of an earlier empirical model. This earlier model, 

which was based upon the observations of continuum limb darkening and 

intensity at the center of the disk, was valid over the wavelength range 

of 5000 A to 6000 A.17 

16. de Jager, 1952, Rech. Astr. Obs. Utrecht. 13. 36-51. 

17. Ibid.. p. 34. 



De Jager computed the limb darkening and central intensity of 

18 
Model VII as functions of wavelength. The continuous absorption coef

ficients calculated by Chandrasekhar and Breen for the negative hydrogen 

ion were used, but no account was taken of the blanketing effect on the 

continuum. As is clear from the recent work of T. L. Swihart, inclusion 

of the blanketing effect causes a decrease in contrast of the computed 

limb darkening and a general increase of the emergent continuum intensity 

19 in the visual spectral region at the center of the disk. The central 

intensity versus wavelength relation for Model VII agreed to within ±5 

per cent with the observations of Peyturaux in the spectral range of 

20 
4000 A to 22,000 A. The limb darkening for Model VII was calculated 

X2 1  —  = 5000 A. The resultant values have about 2 per cent less con

trast at JU = 0.8, 2.9 per cent less at JUL = 0.6, and 4.7 per cent less at 

=0.313 compared to the observed values given by A. K. Pierce and 

72 
J. H. Waddell. 

De Jager next determined the value of &&, which was assumed 

to be constant with depth, by comparison of the computed and observed 

18. Ibid., pp. 64-66. 

19. T. L. Swihart, 1966. Astro physical Tournal. 143. 360-
361. 

20. de Jager, p. 64 of ref. in n. 16. 

21. Ibid., p. 65, Table 63. 

22. A. K. Pierce and J. H. Waddell, 1961, Memoirs of the Royal 
Astronomical Society, 68. 92. 
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profiles at the center of the disk for the wings of four Balmer lines, 

seven Paschen lines, and six Brackett lines. Values of A& ranging from 

0.05 to 0.15 were found. There was some indication that A& decreased 

slightly with increasing depth. De Jager took A& = 0.1 in the range 

1 <f < 2.5, giving a temperature difference, 2AT, between the cool and 

hot columns of 1700°K at = 1 and 2000°K at C = 2.5.^ In his calcu

lations, de Jager made no use of any relative motion between hot and cool 

columns. His method of deriving was based both upon the tempera

ture dependence of the hydrogen line absorption coefficient in the wings 

and upon the fact that the resultant wing profile was a composite of the 

profiles produced by the hot and cool columns. 

In 1959, this approach was generalized somewhat by de Jager 

with the introduction of a distribution of possible values of A& , where 

&&= ^column ^mean model 

The distribution function was rectangular for A& > 0 (cool columns) and 

9 4 exponential for £ &< 0 (hot columns). In this way, some allowance 

was made for the diversity of granule brightnesses actually observed. The 

areas of the solar surface occupied by cold and hot elements were assumed 

to be equal. A mean value, 4©* , was determined from comparison of cal

culated and observed wing profiles for the Balmer lines Hor , Hy? , Hy , 

23. de Jager, p. 681 of ref. in n. 13. 

24. de Jager, 1959, Handbuch der Physik. ed. S. Flugge 
(Berlin: Springer-Verlag), 52, 86-87. 
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and H«T , the Paschen line , and the Brackett line B«v . Different 

values of && were found from analysis of different parts of the wings. 

This behavior indicated that^ && depends upon depth. Temperature differ

ences were very small at small optical depths ( a = ^ut 

increased to a maximum of about 500°K near f0 = 1, decreasing at greater 

depths to AT = 150°K at In this context, ^T refers to the tem

perature difference between the mean of the temperatures of the hot 

columns and the mean of the temperatures of the cold columns at equal 

optical depths.2^ 

Various arguments were marshalled by de Jager in support of 

2 6 
vanishing temperature differences at "V = 0 . One of the most interest

ing was based on the agreement between the observed continuum flux for 

X 2 7  - 2000 A and that predicted by a homogeneous photosphere. De Jager 

reasoned that most of the emergent continuum radiation at wavelengths 

near 2000 A arises from optical depths (at 5000 A) near 0.005. Due to 

the steep gradient in the Planck curve at these wavelengths, only small 

temperature inhomogeneities near "f = 0.005 would be necessary to pro

duce noticeable discrepancies between the predicted and observed 

II 
emergent continuum intensities. Using Bohm-Vitense's empirical Model II, 

25. Ibid., p. 87. 

26. Ibid., p. 88. 

27. de Jager, 1957, Bulletin of the Astronomical Institutes of 
the Netherlands. 13. 277. 
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de Jager computed the emergent continuum fluxes at X = 2000 A and 

X = 2250 A,respectively. These values were compared with the results 

from rocket observations. The agreement was good enough to cause 

de Jager to conclude that the very upper portions of the photosphere are 

28 homogeneous as far as the temperature is concerned. 

An interesting sidelight to this question is the fact that the 

ultraviolet excesses which temperature inhomogeneities would cause in 

the emergent continuum intensity from the photosphere were quantitatively 

29 discussed as early as 1939 by P. C. Keenan. On the basis of some sim

plifying assumptions, he showed that an excess intensity of 0.8 per cent 

at X = 3000 A and 24 per cent at X = 900 A would be produced by tempera-

30 ture inhomogeneities of the order of 400 °K. The vanishing of tem

perature differences at T = 0 implies that the temperature fluctuations 

will increase as one moves downward in the photosphere. However, 

C. A. Whitney, for example, has argued on theoretical grounds related 

to the propagation of acoustic waves and radiative cooling in the upper 

photosphere that the temperature fluctuations should increase as one moves 

31 upward from some depth in the photosphere. Unfortunately, unanimous 

28. Ibid.. p. 278. 

29. P. C. Keenan, 1939, Ap.I., 89. 609-610. 

30. Ibid., p. 610. 

31. C. A. Whitney, 1959, Communications de rObservatoire 
Roval de Belqique. No. 157, pp. 82-83. 



agreement on this very essential aspect concerning the temperature 

fluctuations has not yet been reached. 

The continuum radiation field of de Jager's 1959 three-column 

model photosphere apparently was not calculated. De Jager argued, 

though, that the emergent continuum radiation field would be the same 

as for the mean model, due to the equal areas occupied by hot and cold 

32 
elements and the applicability of Wien's law. According to this law, 

I = 2hc2 . e~c2/* T 

X5 
whence 

AI _ -c2 A©-
I 5040 X ' 

where AI is the change produced in the intensity I due to the temperature 

difference A & (=5040 AT/T2), \ is the wavelength, and c2 = hc/k, 

h being Planck's constant, k Boltzmann's constant, and c the velocity of 

light. 

This formula is applicable, strictly speaking, only when 

AI/I « 1. Assuming that he used a mean model which agreed perfectly 

with the observed continuum, de Jager's argument would appear to yield a 

quite definitive model except for his neglect of the blanketing effect. 

However, such ad hoc considerations are no substitute for the explicit 

demonstration that the inhomogeneous model does indeed yield agreement 

32. de Jager, p. 87 of ref. in n. 24. 
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with the observed continuum radiation field. Furthermore, the use of 

Wien's law is restricted to the range X T « 1.438 cm-deg, and since a 

considerable amount of the emergent radiation originates at wavelengths 

and from regions of the photosphere not satisfying this restriction, a 

simple linear dependence of the intensity perturbation, A I, upon the 

thermal perturbation, A & , is not, in general, to be expected. As will 

be seen in Chapter IV, the thermal inhomogeneities due to the granulation 

may produce a noticeable effect upon the calculated limb darkening. 

In 1959, de Jager also constructed a two-column model which 

ii M 
was a composite of the models of K.-H. Bohm, H. Voigt, and E. Schroter, 

33 which will be discussed later. De Jager's two-column model assumed 

pressure equality between columns at each geometrical depth. ̂  The tem

perature differences at the same geometrical depth between hot and cool 

columns increased from 0 °K at log P = 4.2 to 1300 °K at log P = 5.05. 

The latter figure corresponds to optical depths at 5000 A of 2.15 in the 

hot column and 1.50 in cold column. The temperature differences fell off 

to 730 °K at log P = 5.175 CChot = 9.1, 'E'cold = 8.1).^ The computed 

granule contrast at X = 5000 A was (IH - lQ)/Iavg = 0-2# where Iavg = 

° .5  d H  + y . 3 6  

—-————_ 

33. Ibid., p. 104. 

34. Ibid., p. 105. 

35. Ibid., Table 4. 

36. Ibid., p. 105. 
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In 1962, de Jager conducted another investigation of inhomo-

37 geneous models of the solar photosphere. Attempting mainly to recon

cile an apparent contradiction between different observed values of the 

granule contrast, he also derived values for the temperature differences 

between hot and cold elements in the photosphere. From Rosch's peak-

to-peak intensity ratio of 1.23 between granules and intergranular regions, 

de Jager derived AT = Tjj - Tq = 390 °K at T = 1 (equal optical depths) 

and AT = 935 °K at log P = 4.98 (equal geometrical depths).^® From 

Bahng and Schwarzchild's observed rms relative intensity fluctuation of 

±0.072, he derived AT = 520 °K at f = 1 and AT = 1200 °K at log P = 

39 >i 
4 .98 .  The basic model used by de Jager was Bohm's theoretical non-

gray model but corrected to bring its emergent central intensity at 

\  40  
A = 5000 A into agreement with the observed value of Labs. Later in 

this chapter, Bohm's model will be encountered again in connection with 

his own three-column model of the photosphere. One final point in con

nection with de Jager's investigation was his discussion of the compara

tive transparency of hot and cold columns in the photosphere. He agrees 

with Vitense's earlier comments when he states that a hot column is more 

37. de Jager, 1962, Vriie Universiteit te Brussel Sterrekundig 
Institut. SerieA, No. 4, p. 3. 

38. Ibid.. p. 11. 

39. Ibid. 

40. Ibid.. pp. 8-9. 
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opaque than a cold column. This fact leads to a reduction in the observed 

contrast (produced by a temperature difference at equal optical depths) 

with respect to the actual contrast (temperature difference at equal geo

metrical depths). ̂  

In 1954, K.-H. Bohm considered a three-column model of the 

photosphere in an effort to explain the center-limb variation of several 

42 Fraunhofer lines. In particular, these observations revealed a tendency 

for the wings of lines studied nearer the limb to be depressed relative 

to their values at the center of the disk. This tendency was reversed at 

JA. = cos & = 0. 3 for the lines of an Fe I multiplet and at  ̂= 0. 6 for the 

Na D lines. In each case, the wings became less depressed beyond the 

reversal points and approached their values for the center of the disk, 

43 even exceeding those values in the case of the Na D lines. Obser

vations for another group of weak Fe I lines gave equivalent widths which 

were an average of 23 per cent larger at yU-= 0.3 than at the center of the 

d i sk .^  

Using Unsold's weighting-function theory, and assuming the 

lines to be formed by pure absorption, Bohm deduced the center-limb 

41. Ibid., p. 3. 

42. K.-H. Bohm, 1954, Z.f.Ap.. 35, 179. 

43. Ibid.. p. 185, Figure 1. 

44. Ibid., p.. 186, Table 2. 



behavior of the lines in question for three different homogeneous models 

45 of the solar photosphere. These models were his own theoretical non-

46 11 
gray blanketed model, which was in radiative equilibrium, Bohm-

Vitense's empirical model II derived from the continuum limb-darkening 

measures,^ and another empirical model derived by Bohm directly from 

4ft 
the center-limb variation of the Fe I line at 4045. 8 A. 

II 
Bohm took the absorption lines into account in his theoretical 

homogeneous blanketed model by the same procedure which D. Labs had 

used. This procedure involved classification of the lines according to 

their ionization and excitation potentials, and thus according to their 

49 level of formation. Line absorption coefficients were calculated as 

functions of optical depth for each of the 56 spectral regions into which 

the solar spectrum was partitioned. ̂  The fraction of the emergent con

tinuum flux subtracted by the absorption lines was calculated to be 

0.109.51 

45. Ibid., p. 181 f. 

46. Bohm, 1954, Z.f.Ap.. 34. 205. 

47. E. Bohm-Vitense, 1954, Z.f .Ap.. 34. 213. 

48. Bohm, p. ~IF1 of ref. in n. 42. 

49. Bohm, p. 197 of ref. inn. 46. 

50. Ibid., pp. 198-200. 



Bohm's theoretical model failed to explain the observed center-

52 .. 
limb variation of any of the lines studied. Bohm-Vitense's empirical 

model II produced good agreement for the center-limb variation of the Na D 

CO 
lines but failed in the case of the Fe I multiplet. The other empirical 

model derived by Bohm gave by definition a good fit with the center-

limb curve for the lines of the Fe I multiplet but differed considerably 

from the observations of the Na D lines. ̂  Thus Bfthm concluded that it 

was not possible to construct a homogeneous model photosphere in LTE 

(local thermodynamic equilibrium) which could explain the center-limb 

55 behavior of both the Na D lines and the lines of the Fe I multiplet. 

Consequently, Bohm turned to the possibility of reconciling 

theory and observation by means of an inhomogeneous model photosphere 

56 which would take the solar granulation into account. He assumed that 

the photosphere consisted of three different types of vertical columns. 

The first type, an average column, comprised 50 per cent of the solar 

surface area and had Bohm's theoretical homogeneous blanketed model 

as its basis. The other two types of columns were a cold column and a 

52. Bohm, Figure 1 on p. 185 of ref. in n. 42. 

53. Ibid. 

54. Ibid. 

55. Ibid.. p. 184. 

56. Ibid., p. 189. 



hot column. In the former, the integrated Planck function was taken to be 

0.4 times its value in the mean column, while in the hot column it was 

taken as 1.6 times the mean-column value. Both the cold and hot 

57 columns were assigned 25 per cent of the solar surface area. The tem

peratures at equal geometrical depths in the cold and hot columns were 

simply taken as (0.4)and d.6)1/^, respectively, times those at the 

CO 
same geometrical depth in the mean column. ° This procedure would 

definitely not insure preservation of radiative equilibrium in the hot and 

cold columns, even if the mean column were in radiative equilibrium. The 

model for the mean column was probably far from being in strict radiative 

equilibrium, since it was derived from an initial model with a radiative 

flux which varied considerably with depth. The flux of this initial model 

exceeded the solar value by about 2 per cent at T = 0.2, after which it 

59 decreased to about 10 per cent below the required flux at f = 1.5. The 

optical depth was based on the Rosseland mean absorption coefficient 

60 
including line absorption. Thus the model for the mean column 

probably violated what is considered by some authors to be one of the 

primary requisites of any model of the upper photosphere, namely, radi

ative equilibrium, since convection accounts for practically none of the 

57. Ibid.., p. 190. 

58. Ibid., Table 3b. 

59. Bohm, Figure 5 on p. 202 of ref. in n. 46. 

60. Ibid., p. 195. 
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61 energy flux in this region of the photosphere, as Vitense has shown. 
•I 

Regarding this question, de Jager has remarked that Bohm's mean column 

was in perfect radiative equilibrium. One does not receive quite this 

strong an impression when reading Bohm's original description of the deri

vation of the model which he later used for the mean column of his three-

column model.63 De Jager has also remarked that Bohm's model for the 

mean column gave an emergent continuum intensity less than that required 

64 by modern observations, in particular those of Labs. Unfortunately, 

information about the net integrated flux as a function of depth was not 

presented for the mean model nor for the three-column model, but Bohm 

did point out that the radiative flux should be held constant at every 

65 geometrical depth in a multi-column model of the photosphere. 

II 
An additional assumption made by Bohm was that the gas pressure 

gC II 
was equal in all three columns at the same geometrical depth. Unsold 

was the first to argue the necessity of this assumption. His reason was 

the small velocities of the granules (v~l km/sec), whereby the resultant 

61. Vitense, Figure 5 on p. 147 of ref. in n. 6. 

62. de Jager, p. 730 of ref. in n. 15. 

63. Bohm, p. 200f of ref. in n. 46. 

1?4. de Jager, p. 9 of ref. in n. 37. 

65. Bohm, p. 190 of ref. inn. 42. 

66. Ibid. 



2 hydrodynamic pressure, 1/2^ov , where jO is the gas density, would be 

much smaller than the gas pressure, P, at each point in the photosphere.67 

It can be shown that the assumption of pressure equality between 

columns at equal geometrical depths leads to a contradiction. Letting z 

denote the geometrical depth, the equality of pressure at equal geo

metrical depths is expressed as 

pl(z) = P2(z) = • • • = Pn(z), 

where n denotes the total number of different types of columns used in 

the model. By letting n approach infinity, it is obvious that the argu

ments to be given apply equally well to models containing a continuous 

variation of physical conditions in the horizontal direction. It follows 

from the condition of pressure equality that 

££l = ££2 = _ = d^ ^ 
dz dz dz 

Assuming that hydrostatic equilibrium prevails in each column—a likely 

II 
assumption in view of Unsold's argument, one then can write that 

/^(z) g = 9= - /Vz) 

where y°n(z) is the density in the n-th column and g is the gravitational 

acceleration at the solar surface. Consequently, it follows from the 

perfect gas law that 

Tj(z) =T2(Z) = •• =Tn(z), 

67. A. Unsold, 1955, Phvsik der Sternatmospharen (2nd ed.; 
Berlin; Springer-Verlag), p. 557. 
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since the mean molecular weight is essentially constant with depth in 

the upper photosphere. In other words, the assumption of pressure equali

ty at equal geometrical depth automatically negates the very basis of an 

inhomogeneous model photosphere, namely, temperature differences at 

each geometrical depth. If such temperature differences are to be main

tained, then one must relax the assumption of pressure equality at each 

geometrical depth. As will be discussed later, J. Lefevre and J.-C. 

Pecker have made a passing reference to this same difficulty. Failure to 

relax the pressure-equality assumption will result in either the perfect 

gas law or the equation of hydrostatic equilibrium being satisfied to an 

accuracy no better than of the order of the relative temperature fluctu

ations present. 

Bohm's resultant three-column model was characterized by tem

perature differences between the hot and cold columns at equal optical 

\ 68 
depths (referred to the continuum at A = 4045 A) of 1182 °K at 

T =0.001, increasing to 1329 °K at f = 0.05, and decreasing to 1305 °K 

at t = 0.5, 785 °K at f = 1.0, and 253 °K at f = 1.5. For equal geo

metrical depths, the differences at various values of the optical depth in 

the mean column, t*0, were 1304 °K at fQ = 0.001, increasing to 1614 °K 

at ro = 0.05, 1952 °K at ro = 0.5, 2166 °K at f0 = 1.0, and 2334 °K 

69 at ro = 1.5. The temperature differences at equal geometrical depth 

68. Bohm, footnote 2 at bottom of p. 190 of ref. in n. 42. 

69. Ibid., p. 190, Table 3. 
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were larger than those at equal optical depth due to the fact that the 

absorption coefficient was greater in the hot column than in the cold 

column at each geometrical depth. Consequently, when considering equal 

geometrical depths, one sees to a smaller optical depth in a cold column 

than in a hot column. This effect increases the actual temperature differ-

70 ences observed at equal geometrical depths. 

II 
For this three-column model, Bohm calculated the center-limb 

variation of the Fraunhofer lines mentioned earlier. The agreement was 

much better for the lines of the Fe I multiplet and somewhat better for the 

Na D lines than in the case of the homogeneous models.''1 Bohm also 

took into account the effect of departures from LTE in the very upper 

72 regions ( T< 0.05) of the photosphere. The changes introduced in the 
I 

center-limb curves were not large but worsened the fit between theory and 

observation for the Fe I multiplet while marginally improving the fit for 

the Na D lines.^ 

The agreement of the calculated continuum with observations for 

the homogeneous model was only slightly altered for the three-column 

model. The maximum deviation from the results for the homogeneous 

70. Ibid., p. 189. 

71. Ibid., p. 193, Figure 5. 

72. Ibid., p. 193 f. 

73. Ibid.. p. 193, Figure 5. 



model occurred at the solar limb; it amounted to 3 per cent at yu = 0.14 

v 74 
and A = 4000 A. A detailed comparison of the predicted and observed 

II 
continuum radiation fields was unfortunately not given by Bohm, but 

H.-H. Voigt presented a plot of limb-darkening curves at X = 7770 A for 

Bohm's three-column model in comparing his own three-column model to 

11 75 Bohm's. From these curves it was possible to read off fairly accurate 

values for the limb darkening of the three respective columns. Since all 

three curves were in units of the central intensity of the mean column, it 

II 
was possible to calculate the composite limb darkening for Bohm's three-

column model. Comparison of these calculated results with the obser-

76 
vations of Pierce, which were given by W. E. Mitchell, revealed that 

they lay below the observed values by 1.5 per cent at ytt = 0.8, 2.7 per 

cent at yM = 0. 6, 2.4 per cent at JJL = 0.4, and 3.4 per cent at JUL =0.2. 

II 
The limb darkening for the mean column, which was Bohm's theoretical 

blanketed model, was practically identical to that for the composite model, 

II 
as Bohm had pointed out. The maximum deviation occurred at JJl = 0.2, 

where the mean column gave a value which was an additional 2.5 per cent 

II 
below the observed value. Thus Bohm's work would lead one to the con

clusion that the inclusion of thermal inhomogeneities in a model of the 

74. Ibid.. p. 192. 

75. H.-H. Voigt, 1956, Z.f.Ap.. 40, 174, Figure 5. 

76. W. E. Mitchell, Jr., 1959, Ap.T. . 129. 97. 
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photosphere improves somewhat the agreement between predicted and cal

culated limb darkening; however, it will be seen in Chapter IV that inhomo-

geneous blanketed models can give greater center-limb contrast in the 

continuum than homogeneous blanketed models exhibit. This tendency is 

» II 
the reverse of that found by Bohm. Bohm also did not discuss the apparent 

granule contrast of his three-column model nor the variation of this con

trast with position on the solar disk. 

Further work with a three-column model was done in 1956 by 

H.-H. Voigt, who, with such a model, attempted to explain the center-

limb variation of the infrared oxygen triplet at 7772/74/75 A.^ Voigt's 

observations of this triplet revealed the following behavior for all three 

lines: first, the residual intensity at the line center decreased from the 

center of the disk to the limb; second, at the center of the disk, the line 

half-width on the violet side of the line center was about 9 per cent 

greater, on the average, than the half-width on the red side of the line 

center; and third, this asymmetry in half-widths vanished as the limb was 

78 approached. 

Voigt's three-column model was based upon the same assumptions 

as Bohm's inhomogeneous model. In addition, Voigt assumed that the 

cold columns contained material descending in the photosphere, while the 

77. Voigt, p. 157. 

78. Ibid.. p. 163, Table 1. 



25 

hot columns contained rising material. The mean column was assumed to 

7Q 
be at rest. Voigt reasoned that the hot-element contribution to the 

composite profile of the oxygen lines studied would be greater than the 

80 cold-column contribution. Thus the violet-shift due to the assumed 

upward motion of hot elements combined with the red-shift due to the 

assumed downward motion of the cold elements would result in an asym

metric line profile having a larger violet half-width. 

For log f (mean column) >-0.4, Voigt's model was identical to 

II Q1 
Bohm's. Above this level, the temperature differences between columns 

gradually diminished and reached zero at log T (mean column) = -1.6. 

The optical depth was referred to wavelength X = 7770 Several 

reasons for this approach were advanced. They included Waldmeier's 

observation that the granulation disappears near the solar limb 

a* 83 ( jA. = 0.34). Voigt also assumed that the velocities of the hot and cold 

columns increased from zero in the upper photosphere to -3 km/sec and 

84 +2 km/sec, respectively, deeper in the photosphere. 

79. Ibid., p. 169. 

80. Ibid., p. 159. 

81. Ibid., p. 172. 

82. Ibid.. Table 2. 

83. Ibid., p. 170. 

84. Ibid., p. 171, Figure 4. 
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Voigt was able to obtain a good fit between his observations 

and the calculated asymmetry of the oxygen lines as a function of position 

q c 
on the disk. More recent observations by L. Delbouille, C. de Jager, 

and L. Neven have failed, though, to confirm the asymmetries observed 

ftfi by Voigt for the O I lines. As these authors indicated, this disagree

ment would require modification of the convective velocities assumed by 

87 Voigt to achieve his fit. The continuum limb darkening was calculated 

for each of the three columns, presumably at a wavelength X = 7770 A. 

The diminishing temperature differences between hot and cold columns 

in the upper part of the photosphere resulted in a decrease in the differ

ence in intensity between hot and cold columns as the limb was 

88 approached. No detailed comparison with the observed solar continuum 

radiation field was made, but by reading values off Voigt's plot of limb 

darkening for the separate columns, it was possible to calculate the com

posite limb darkening of his three-column model. Since it agreed almost 

exactly with that of Bohm's three-column model, the deviations from the 

observed values were about the same. 

85. Ibid.. p. 179, Figure 7. 

86. L. Delbouille, C. de Jager, and L. Neven, 1960, Annates 
d'astrophvsigue. 23. 949. 

87. Ibid., p. 956. 

88. Voigt, Figure 5 on p. 174 of ref. in n. 75. 
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In 1956, E. H. Schroter carried out a study of the red shift and 

center-limb variation of the Fraunhofer lines. In this study he calcu-

89 lated a two-column model of the solar photosphere. He used two 

different types of columns to represent the granules and intergranular 

regions, respectively. Each column was to have a homogeneous struc

ture, and the photosphere was pictured as being composed of a large 

90 number of such adjacent columns. 

As Schroter pointed out, the general theory of relativity pre

dicts a constant redshift of aA/A = 2.12 x 10 ^ for all solar spectrum 

lines, independent of line strength or position at which they are observed 

on the disk. However, observations have shown that the redshifts for 

the Fraunhofer lines actually do vary with line strength and position on 

91 the disk. For lines of average strength, the observed redshift increases 

from A A/A = 0.80 x 10 ^ at the center of the disk to the predicted rela-

— C Q O I I  

tivistic value of 2.12 x 10 at the limb. According to Schroter, the 

role of solar granulation in explaining the "limb-effect" of the observed 

redshifts of absorption lines had been proposed earlier by C. St. John in 

89. E. H. Schroter, 1957, Z.f.Ap.. 41. 141. 

90. Ibid., p. 147. 

91. Ibid.. p. 142. 

92. Ibid.. p. 178, Figure 9. 
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93 1928 and by M. G. Adam in 1948. The basic idea was that the granu

lation would produce a violet shift which reached a maximum at the center 

of the disk and decreased as cos & across the disk. Thus the wavelength 

of a line observed at any heliocentric angle & on the disk was expressed 

as 

X = \G + &Xrel " Aeff cos<9- , 

where X 0 is the wavelength of the line center at & = 0, the center of 

the disk, AX rej is the relativistic redshift, independent of. <9-, and 

a 94 Aeff is the effective violet shift at cr = 0 due to granulation. 

Preparatory to his construction of a two-column model of the 

photosphere, Schroter briefly reviewed observations of granulation for 

Q C 
the period 1936 to 1956. He assumed that the areas of the solar 

Q C 
surface occupied by granules and intergranular regions were equal. ° For 

the granule contrast at the center of the disk he used a value of 

(Ir - Iq)/Iq = 0.45, where IH is the emergent intensity from the hot 

97 column and Iq is the emergent intensity from the cold column. This 

figure is equivalent to a value of 0.18 for K = (IH - I^)/(IH + Iq) , which 

93. Ibid.. p. 142. 

94. Ibid.. p. 176. 

95. Ibid.. pp. 147-150. 

96. Ibid.. p. 149. 

97. Ibid. 
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is the form used for the granule contrast function in this dissertation. 

Schroter assumed that the granule contrast varied across the solar disk 

in accordance with his own observations, which showed an increase in 

the contrast to yU. = 0.4, after which it decreased rapidly toward the limb. 

He also gave strong weight to observations which have revealed a 

98 measurable granule contrast for JA< 0.3. 

Schroter derived the variation with optical depth of the tempera

ture differences between the hot and cold columns of his model from his 

observed center-limb variation of the granule contrast. The Eddington-

Barbier relation, l^(0,^u) = S^(fy=yU), was employed, along with the 

LTE assumption that , where is the Planck function. The 

resultant equation was 

AT (r0=/c)_ i , 
T(RQ =/<-) TTOC^/OJTT 

, v Itt(°,/£) - Ir(0,yU) 
where H (u) = ——A ——J-— , c0 = hc/k, and 

' ic (o yfc) 2 

T( f0) is the temperature-optical depth (at \ =5010 A) relation for 

the basic homogeneous model from which the inhomogeneous model was 

derived. For this purpose, Schroter used the homogeneous model 

98. Ibid. 

99. Ibid., p. 150. 



Vitense II. This model was an empirical model derived from limb-

darkening observations. 

It should be noted that the above equation employed by Schroter 

to derive the run of the temperature differences between hot and cold 

columns with optical depth is actually incorrect, as the following deri

vation will show. 

Assumption of the Eddington-Barbier relation allows the emer

gent intensities from hot and cold columns to be written as follows: 

T H/n .. \ _ 2hc2 1 
* 'h \5 exp (c2/XTh) " 1 

and IvC(0,/t) =Tir 1 k t \—T * * r \ 5 exp (c2/X Tq) - 1 

Thus 

_ exp (c2/XTc) ~ exp (c2/XTh) 
H A exp (c2/Xth) - 1 

Since c2/\T > 2.5 for X = 5010 A and 5000 °K< T< 11,400 °K, the 

following approximation gives an accuracy of 9 per cent or better: 

exp (c2/XT) - 1 = exp (c2/X T). 

Consequently, 

H ( /T)SEXP[^^—) ]  - 1 .  

100. Ibid., footnote at bottom of p. 150. 

101. Bohm-Vitense, p. 209 of ref. inn. 47. 
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= exp (c2  AT/XT2) - 1, 

where AT = TH - Tq at V =jjc , and the approximation TH Tq - T2 was 

used. Thus 

Al = -^Iln [«(yu) + l] 

is a more correct expression than that given by Schroter. 

In order to determine what effect Schroter's use of an incorrect 

expression for AT/T had on the calculated values,the two expressions 

were evaluated for f0 = 1. The temperature at this point was found from 

model Vitense II to be 6405 °K. The results were AT/T = 0.092 using 

Schroter's formula and AT/T = 0.083 using the formula just derived, 

whereby AT( t0 = 1) would take the respective values 588 °K and 530 °K. 

o 11 
Thus a negligible difference of 58 K would result. However, Schroter 

stated that he had calculated AT = 700 °K at fQ= 1, with the difference 

103 increasing to 800 °K at T0 = 0.3, and dropping to zero for f0< 0.1. 

Clearly, then, Schroter either made an error in his calculations or based 

them on numerical data other than that presented in his paper. Another 

possible explanation discussed later on in more detail is that the itera

tive process used by Schroter to derive his model was not convergent. 

Further confusion results from reference to Schroter's tabulation of his 

102. Ibid., p. 213, Table 1. 

103. Schroter, p. 150. 



two-column model. Here one finds AT = TH - Tq = 795 °K at 

r 0 = i . o . 1 0 4  

II II 
Schroter also called attention, as Bohm had earlier, to the fact 

that the temperature differences between hot and cold Columns at equal 

geometrical depths were greater than those at equal optical depths, 

because of the higher opacity in the hot column. 

Pressure equality was assumed to exist between hot and cold 

columns at each geometrical depth. Schroter pointed out that this 

assumption implied neglect of the hydrodynamical pressure due to granule 

motions and the difference in electron pressure caused by the tempera-

1 AC 

ture difference. As was shown earlier in this chapter, the pressure-

equality assumption is inconsistent with the existence of temperature 

differences between hot and cold columns at equal geometrical depths, 

unless one is willing to abandon the perfect gas law or the assumption of 

hydrostatic equilibrium in each column. 

Furthermore, Schroter required that the combined effective radi

ative flux at each geometrical depth be equal to that of the Vitense II 

model, namely, 

0.5 TFJJ + 0.5 FQ = TVIT JJ, 

104. Ibid., p. 153, Table 2. 

105. Ibid.. p. 150. 

106. Ibid., p. 151. 
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where the equal weighting factors arose from the assumption of equal 

areas for the hot and cold columns. In terms of temperatures, this 

relation became 

0,5 + 0. 5 =  ̂  TYIT JJ» 

107 where a is the Stefan-Boltzmann constant. The imposition of such a 

condition probably avails little in effecting the constancy of the true 

radiative flux with depth. It would seem that Schroter invoked this con

dition more out of the mathematical convenience which it provided in the 

solution for and T^, as functions of geometrical depth rather than out 

of any inherent physical significance. 

One final assumption made by Schroter involved the conservation 

108 of mass at each geometrical depth. The rate of flow of matter stream

ing upward in the hot column was assumed to be equal to that of matter 

streaming downward in the cold column. Due to the equal areas of the 

hot and cold columns, this condition took the form 

yOc(z) Vc(z) = ^jj(z) VH(z), 

where Vq and VH are the descending and ascending velocities of the cold 

and hot columns, respectively. Due to the assumption of pressure equali

ty, the perfect gas law gave 

107. Ibid. 

108. Ibid. 
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PH (Z)_ ! = /°H (Z> TH (Z)  

PQ(Z) YOc(z) TC(Z)' 

or PqS7^ _ TH^z) 
Tc(z) 

whence VH^ fic^ 

vc(z) Tc<z> 

An additional relation was required between the columnar veloci

ties, VH (z) and Vc(z), and the temperature differences between the 

columns and the mean model, ATjj(z) and A ^(z), where ATjj(z) = 

TH(Z) - TVIT JJ(Z) and ATc(z) = TVLT JJ(Z) - T^(z), in order that a solution 

for ATJJ(Z) and ATQ(Z) could be found. For this purpose, Schroter 

invoked Newton's law of fluid resistance in the form given it by Unsold, 

namely, 

U2 =  G I' 

where U is the fluid velocity, i.e., Vjj or Vq and is the distance 

travelled by a fluid element from its starting point. According to de Jager, 

this formula is derived by equating the upward acceleration on a rising 

110 
column of gas to the frictional resistance which it encounters. The 

average value of was taken as one-half the diameter of a fluid element.111 

109. Ibid., p. 152. 

110. de Jager, p. 736 of ref. in n. 2. 

111. Schroter, p. 152. 
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Schroter took a value of about 300 kilometers for the average granule 

diameter.112 This estimate, based on a proposal that the photosphere 

is completely turbulent, is too small. 

The solution of the above equations was carried out by trial-and-

error in order to satisfy the apparent temperature differences at equal opti

cal depths determined from the run of granule contrast versus disk 

position. li:* Schroter actually used the total pressure P as his depth 

114 coordinate in place of the geometrical depth. 

Schroter's procedure in calculating his inhomogeneous model 

appears to have been as follows:115 1) he determined TH<*o> and Tc ( t'Q) 

from the granule contrast versus cos &; 2) he found AT^(log P) and 

A Tq(log P) by the procedure outlined earlier; 3) he applied these tempera

ture corrections to the T(log P) relation for the Vitense II model to yield 

TH(log P) and Tc(log P); 4) he found Pe
H(log P) and Pe

C(log P) from the 

appropriate tables of Pe(T,P); 5) he looked up the values of the absorption 

coefficients, /f H(log P) and (log P) in tables giving K (T,Pe); 

6) he calculated fH (log P) and T^(log P), so that TR( , PH( T"H), 

and Tq( Ty, Pc( Vq) became known; 7) he tabulated TH, PH, Tq, and 

112. Ibid.. p. 148. 

113. Ibid., p. 153. 

114. Ibid.. p. 152. Caption to Figure 1. 
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Pq at equal optical depths; and 8) he compared TH( Tq) and Tc( f0) with 

the results of the first step. He then repeated steps two through seven 

if improved agreement was required. Thus the lack of agreement alluded 

to earlier between the value of ^T( V = 1) calculated from the granule 

contrast and that calculated from the final model was probably due to a 

II 
lack of convergence by Schroter's method. A much simpler procedure for 

deriving the AT-values would involve retaining his first, second, and 

third steps and then, for the fourth step, knowing TH( fQ) and Tq( "t^), 

interpolating from T^Qog P) and T^Uog P) to get Pjj(T0) and Pc( and, 

as the last step, finding P H(f,J and P from tables of PQ(P, T). e u e o e 

This shortened method, which would eliminate any need for iteration, 

seems considerably more straightforward; however, it has not been 

attempted to carry out the calculations in this fashion, so no relative 

judgement between the two methods can be given here. 

II 
Schroter's final model exhibited temperature differences at equal 

optical depth of 0 °K at tQ = 0.002, 400 °K at = 0.1, 900 °K at 

f = 0.5, 795 °K at ? = 1.0, and 240 °K at VQ = 2.0, the largest 

1 1 fi depth for which results were tabulated. Conditions at greater optical 

117 depths were found by extrapolation. The emergent intensity was cal

culated as a weighted average of the cold-column and hot-column 

116. Ibid., p. 153, Table 2. 
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intensities. The weighting factors were the relative areas of the solar 

surface occupied by the two columns. The computed limb-darkening 

curve at X = 5010 A was compared with the observations, and Schroter 

concluded that the agreement was within the limits of observational error, 

even though the inhomogeneous model gave 2 to 3 per cent less contrast 

l i p  
in the range 0.2 < JJL < 0.4 that the empirical model Vitense II. The 

II 
scatter in the observations shown on Schroter's plot was at least as great 

as the differences between the homogeneous and inhomogeneous models. 

In order to compare Schroter's results with more recent observations, 

values of I \ )/I^(0,l) were read off his curve and were as 

follows: 0.670 at yM = 0. 5, 0.598 at fA. = 0.4, 0. 520 atyU = 0.30, and 

0.422 at ytt = 0.20. The curve did not extend closer than /A =0.50 to 

the center of the disk. These results are in error by a maximum 

amount of -2.5 per cent when compared to the limb-darkening obser

vations compiled by A. K. Pierce and J. H. Waddell.*^ Thus Schroter's 

model predicts a slightly greater contrast in the continuum limb darkening 

than is observed. It should be kept in mind, however, that his model 

was derived from an empirical model constructed specifically to fit the 

limb-darkening observations, although not those of Pierce and Waddell. 

118. Ibid., Figure 2. 

119. Ibid. -

120. Pierce and Waddell, p. 92 of ref. inn. 22. 
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tl 
For this reason, the agreement of Schroter's results with the later obser

vations may be regarded as somewhat fortuitous. Furthermore, it is 

doubtful if Schroter's model was in radiative equilibrium. The net inte

grated flux of the model was apparently not computed. Schroter also 

implied that satisfactory agreement with limb-darkening observations 

would occur for other wavelengths, although no data in support of this 

1 2 1  claim was provided. 

The predicted variation of the quantity [l^(0,JJL )/IQ(0,jA. )J /  

£ LJJ(0, 1)/Iq(0, 1)J , a measure of the relative granule contrast, showed 

an increase to a maximum value of 1.26 at JA- - 0.25 and a steep decrease 

1 2 2  for JJ-< 0.25. This behavior is not surprising since the granule con

trast was one of the inputs to the model. Schroter noted that the predicted 

contrast curve could not be compared directly with observations, since he 

had assumed an average granule to be 300 kilometers, or 0'.'4, in.diameter, 

whereas the observations referred to larger granules. *^3 He also reported 

that he had calculated the granule contrast for Bohm's three-column model. 

It showed a noticeably steeper rise as jA. approached smaller values and 

did not decrease as the limb was approached. *^4 

121. Schroter, p. 154. 

122. Ibid.. Figure 3. 

123. Ibid., p. 155. 

124. Ibid. 



Following a procedure analogous to that used by Bohm, Schroter 

calculated the center-limb variation of the wing intensities in the Na D 

lines and lines of an Fe I multiplet and found better agreement with the 

observations than had Bohm, particularly for the Na D lines.125 The 

center-limb variation of the equivalent widths of weak Fe I-like lines 

( X = 4100 A, excitation potential of 2.7 electron volts) was also com-

126 puted, and a reasonably good agreement with the observations resulted. 

Finally, a satisfactory explanation of the center-limb variation of the 

redshift of medium-strength Fraunhofer lines was provided by the two-

127 column model. 

It should perhaps be mentioned here that R. N. Thomas and 

R. G. Athay attribute little significance to inhomogeneous models of 

the solar photosphere derived from considerations of the behavior of 

Fraunhofer lines. They have pointed out the inconsistencies which exist 

between these models as evidence of their uselessness. For example, in 

II 
Bohm's model the temperature differences at equal optical depth between 

the hot and cold columns and the mean column increase from about 

+500 °K at tr = 1 to ±700 °K at f = 0.1, whereas Voigt adopted a model 

in which these differences decrease from about ±500 °K at f = 1 to 

125. Ibid., p. 163, Figure 5. 

126. Ibid.. p. 157, Figure 4. 

127. Ibid.. p. 178, Figure 9. 



±100 °K at X = 0.1 and finally disappear altogether for f ̂  0.03. 

Thomas and Athay deduced from continuum observations of the granulation 

that 4T ^ 50°K near T ~ 1, 50°^ AT 150° near 0.3, and 

^T^ 150° for 0.1% 0.01. They assumed a granule contrast 

of 5 per cent at the center of the disk as being a reasonable estimate. 

Edmond's analysis of the Stratoscope photographs points to a considerably 

higher value for the contrast, as will be seen in Chapter IV. Never

theless, the criticism by Thomas and Athay of the inhomogeneous models 

II 
of Bohm, de Jager, and Voigt is well-founded. On the other hand, although 

Schroter's model should be looked upon as a first approximation to the 

inhomogeneous model of the photosphere, still it was based upon con

tinuum rather than line observations. The fact that it was also able to 

explain the center-limb behavior of certain Fraunhofer lines may or may 

not add to its acceptability, depending on one's point of view. 

In 1960, H. Hubenet considered the effect caused by tempera

ture inhomogeneities upon the determination of solar abundances from the 

131 measured equivalent widths of absorption lines. For most of the types 

of lines which he studied, the effect of the temperature inhomogeneities 

128. R. N. Thomas and R. G. Athay, 1961, Physics of the Solar 
Chromosphere (New York: Interscience Publishers), p. 192. 

129. Ibid.. p. 191. 

130. Ibid.. p. 189. 

131. Hubenet, p. 1. of ref. inn. 12. 
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132 on the equivalent widths was negligible. He constructed a three-

column model analogous in many ways to that of Bohm. Hubenet used an 

133 empirical model of his own construction for the mean column. He 

reviewed the various arguments employed by earlier investigators, with 

fl 
the exception of Bohm, to justify the assumption of vanishing temperature 

differences at very small optical depths, and in fact his three-column 

model embodied this same assumption. Nevertheless, he expressed doubt 

that such an assumption corresponded to the actual situation, since tem

perature differences exist above the region in question in the form of 

chromospheric spicules and below the region in the form of photospheric 

granulation. 

Hubenet's model had the following temperature differences at 

equal geometrical depths: AT = Tjj - Tq = 8 °K at log P = 3.44 

(f = 0.001), 64 °K at log P = 3.99 ( f = 0.01), 317 °K at log P = 4.54 

( f = 0.1), 1106 °K at log P = 4.87 (T = 0.4), 1859 °K at log P = 5.03 

(f = 1.0), and 2392 °K at log P = 5.12 ( f = 2.2).135 The optical depth 

T refers to the mean column. He noted that the temperature differences 

132. Ibid.. p. 64. 

133. Ibid.. p. 60. 

134. Ibid. 

135. Ibid.. p. 61, Table 27. 
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In his model for larger f were somewhat greater than those encountered 

1 
in other models. 

The emergent continuum intensities at \ = 5000 A from the hot, 

mean, and cold columns of Hubenet's model were in the ratio 13.43 : 11.01 

1 ^7 : 6.23. The relative areas for the three columns were 0.25, 0.50, and 

0.25, respectively.1^® Hubenet concluded that his model gave inten- ~ 

sity fluctuations which were too large to be reconciled with an rms rela

tive intensity fluctuation of ±0.08. This value was chosen as the probable 

maximum value and was based on Schwarzchild's Stratoscope obser

vations.1^ 

In 1961, J. Lefevre and J.-C. Pecker used Bohm's three-column 

model in their study of the center-limb variation of the central intensities 

of some Ti I and Fe I lines. ̂ 0 They made the interesting remark that the 

requirement of pressure equality between the three types of columns at 

equal geometrical depth was not, in general, compatible with the con

dition of hydrostatic equilibrium.1 ̂ 1 This point is relevant to the 

136. Ibid., p. 62. 

137. Ibid., p. 60. 

138. Ibid., p. 61. 

139. Ibid., p. 62. 

140. J. Lefevre and J.-C. Pecker, 1961, Ann.d'ap. . 24, 238. 

141. Ibid., p. 246. 
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discussion earlier in this chapter concerning the self-contradictory 

nature of the pressure-equality assumption, but Lefevre and Pecker 

apparently did not pursue this aspect of inhomogeneous models any further. 

Neither did they discuss the effect of photospheric inhomogeneities on 

the continuum radiation field. 

Also in 1961, K.-H. David investigated the center-limb behavior 

142 of the Balmer lines Hof , Hy0 , Hy , and H<T . In particular, he con

structed a three-column model based on Bohm's approach. The only 

difference was that David assumed smaller temperature differences 

between columns. He chose TH/Tmean = 1.05 at all geometrical depths. 

In order to keep constant at each geometrical depth the total Planck 

function made up of contributions from each of the three columns, David 

took Tc/Tmean = 0.94.14^ According to David, these temperature differ

ences resulted in a contrast of 8 per cent in the emergent continuum 

intensity at X = 5000 A.David used G. Elste's homogeneous model 

for the structure of the mean column of his three-column model. 

Elste's model was reported to agree with the limb-darkening observations 

for 4500 A < X < 8000 A and with the central intensity measures of 

142. K.-H. David, 1961. Z.f.Ap.. 53, 37. 

143. Ibid., p. 62. 

144. Ibid. 

145. Ibid. 
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Labs, G. Sitnik, and E. Makarova for X > 4500 A. The emergent 

continuum radiation field of the three-column model was not calculated. 

No significant difference in the theoretical profiles for the Balmer lines 

was caused by using the inhomogeneous model instead of a homogeneous 

model. 

In 1962, F. N. Edmonds derived the run of temperature fluctu

ations in the photosphere as part of his analysis of Stratoscope photo-

148 graphs for the center-limb variation of the granule contrast. Edmonds 

found a maximum value for the rms temperature fluctuation, (AT)rms, of 

±290 °K at X0 - 0.65, where the optical depth V refers to the wave

length X = 5450 A. *49 The run of (AT)rms with depth could only be 

directly established for 0.45 "f Q ^ 1.0. The lower limit was imposed 

by the uncertainty in the contrast near the limb, where a large-scale 

pattern becomes important, while the upper limit was inherent in the use 

of the Eddington-Barbier relation. *50 Above and below "VQ *= 0.65, the 

^^rms vs- f o curve fell to smaller values of about ±215 °K. 

146. Ibid., pp. 54-55. 

147. Ibid.. p. 63. 

148. F. N. Edmonds, Jr., 1962, Astrophvsical Tournal Supple
ment. J5, 357. 

149. Ibid.. p. 402. 

150. Ibid.. p. 401. 

151. Ibid., Figure 11. 
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Edmonds extrapolated the curve to larger and smaller values of f0. The 

extrapolation to smaller f0-values neglected the large-scale granu

l a t i o n  p a t t e r n  n e a r  t h e  l i m b  a n d  r e s u l t e d  i n  ( A T ) r m s  =  0  f o r  0 . 1  <  f Q  

< 0.2. por larger T^-values, the curve passed through a minimum 

of ±215 °K at =0.9 and was extrapolated to another maximum of 

±400 °K at f0 - 1. 5, after which it decreased again. ̂ 3 The extra

polation to larger "CQ-values was carried out with the help of de Jager's 

1959 inhomogeneous model.1**4 

Edmonds used his (^iT)rms vs. f0 curve to convert the empiri

cal model photosphere of L. Aller and A. Pierce, as modified by L. Gold

berg, E. Muller, and L. Aller, into an inhomogeneous model. *^5 He did 

not calculate the emergent continuum radiation intensity from his inhomo

geneous model. Thus, although Edmond's model would presumably 

explain the center-limb variation of the granule contrast, one is unable 

to reach any decision as to how well it fits the observed limb darkening 

and central intensity of the sun. The fact that it was derived from an 

empirical model derived from these observations is not sufficient. The 

radiation field must be recomputed when temperature differences as large 

152. IWd., P. 401. 

153. Ibid.. Figure 11. 

154. Ibid., p. 402. 

155. Ibid. 
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as ±400 °K are present at V0 - 1.5. Furthermore, Edmonds' model 

probably did not conserve radiative flux. 

In 1964, Edmonds did a more detailed statistical analysis to 

extract information about the variation of temperature inhomogenelties 

with depth in the solar photosphere from the observed dependence of 

granule contrast upon position on the solar disk.1*'® His method consisted 

of using the formal solution to the equation of transfer to relate the rms 

emergent intensity fluctuations caused by granulation to the rms fluctu

ations in the source function. Under the assumption of local thermo

dynamic equilibrium, the source function was taken as the Planck 

function. *^7 a question arose concerning the correlation of source-

function fluctuations between points along the path of the emergent radi

ation. 15® Edmonds argued that the correlation was probably quite large 

because of the small thickness of the continuum-forming layers (200 

kilometers) compared to the horizontal extent of most granule cells (1500 

kilometers).1 

Once the rms source-function fluctuations had been derived, 

they were used to calculate the run of rms temperature fluctuations with 

156. Edmonds, 1964. A p . T .  .  139, 1358. 

157. Ibid., p. 1362. 

158. Ibid. , p. 1363. 

159. Ibid. , pp. 1364-1365. 
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depth. The use of Wien's approximation resulted in the following 

e q u a t i o n  f o r  t h e r m s  t e m p e r a t u r e  f l u c t u a t i o n ,  A T  _ ( f ) :  
1  ^  i  I I I  5  

where is the rms source-function fluctuation. The wavelength 

used throughout was X = 5000 A, and the optical depth was referred to 
o 

this wavelength. The quantity T /B^(T) was calculated from the empi

rical model photosphere of Pierce and Waddell. This model was selected 

to represent the mean conditions in the photosphere.1*5® 

Before discussing Edmond's results, it is interesting to briefly 

recount the mathematical technique which he employed to derive the rms 

source-function fluctuations, AB^(f). Edmonds fitted a polynomial in 

= cos & ) to the observed run of rms intensity fluctuations withja. , 

i . e . ,  

<*»rms=e"a//\40 V' 

where a is an adjustable parameter and d^ are coefficients determined 

through the fitting process. The purpose of the factor e~a^"" was to per

mit AB^(f) to vanish for f< a. The resultant solution by the Laplace-

transform method gave 

160. Ibid., p. 1367. 
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A (f) = d l  ̂ f o r  f  >  a ,  
i^"0 i! 

= 0 , for ** < a.161 

This result also involved the assumption that the amplitude distributions 

of the intensity and source-function fluctuations were Gaussian.1®2 

The arguments of Bohm1®^ concerning the restriction on the amount of 

information which it is possible to extract about source-function depth 

dependence from limb-darkening observations were applied by Edmonds in 

-—«• - his assessment of how detailed a description of the depth dependence of 

rms temperature fluctuations could be realized from the observed variation 

of the rms intensity fluctuation with jA. . He concluded that it was pos

sible to determine only the linear dependence of AB^f) over the range 

0.175 <f< 4.0. *64 Consequently, Edmonds indicated that even a 

feature as apparently important as the maximum in the (^I/I)rms versus 

yU. relation at ju.- 0.64 could not be accurately reflected in the result

ant A B^ (f). Hence, he questioned the reality of the maximum previ

ously found in the temperature fluctuation versus depth relation by 

Schroter and earlier by himself. 

161. Ibid., p. 1366. 

162. Ibid.. p. 1363. 

163. Bohm, 1961. AP.T. . 134. 264. 

164. Edmonds, p. 1366 of ref. inn. 156. 

165. Ibid., p. 1367. 
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The conversion from rms temperature fluctuations at the same 

optical depth to those at the same geometrical depth was assumed by 

Edmonds to be direct for f< 0.50. For 0.50^rf^: 2.5, the optical depth 

in the hotter part of the photosphere, t*, corresponding to the same geo

metrical depth as the optical depth 1? in the average model of the photo

sphere, was corrected to account for the higher opacity in the hotter part. 

Edmonds apparently assumed his inhomogeneous model to be a two-column 

model. An average column was represented by the Pierce-Wadde 11 empirical 

model of the photosphere. At equal optical depths, the other type of 

column was hotter than the average model by the amount 

It would have been more correct to take a cold column in place 

of the average column, since this procedure permits the composite inte

grated flux of the model to equal the solar value. The composite inte

grated radiative flux of a two-column model may be written 

TTF = <XlTTF1 + (1 -

where the subscript "1" refers in this case to Edmonds' mean column and 

"2" refers to his hot column. He used an empirical model for the mean 

column, so TTF j will be approximately equal to the solar integrated sur

face flux, ITFq. Since the composite integrated flux, TTF, should also 

equal the solar value, it follows from the above equation that the hot 

column should also carry a flux equal to the solar value; however, the 

166. Ibid.. pp. 1367-1368. 
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higher temperatures in the hot column will produce an integrated flux 

greater than the solar value. This fact alone forces the conclusion that 

the composite integrated flux of Edmonds1 two-column model is greater 

than the solar value, regardless of the value of used. The average 

temperature differences between granules and intergranular regions at the 

same optical depth are probably at least as large as 2 jATj^gfT) |. 

Edmonds found that the most accurate fit of the (A l)rms obser

vations by the polynomial in JJ- presented earlier was achieved for a = 0. 

This result implies that Edmonds allowed the temperature fluctuations to 

persist close to the surface, X = 0. Actually, (^T)rms at f = 0 was 

taken as zero. Edmonds found temperature differences at equal optical 

depths of 88 °K at X = 0.32, 203 °K at T= 0.64, 341 °K at f = 0.96, 

491 °K at X - 1.44, and 639 °K at X = 2.56.'1®® As mentioned earlier, 

the temperature fluctuations at equal geometrical depths were simply 

assumed to be the same as those at equal optical depths for f < 0.50. 

However, f = 1.00 in the average column corresponded to X* = 1.19 in 

the hot column, and, in the same manner, X= 1.50 to X* = 2.13, and 

X = 2.00 to X* = 3.43. The temperature differences at equal geometri

cal depths were 140 °K at f = 0.50, 563 °K at X = 1.00, 863 °K at 

X = 1.50, and 3200 °K at X= 2.0.169 

167. Ibid.. p. 1371. 

168. Ibid.. p. 1369, Table 3. 

169. Ibid., p. 1370, Table 4. 
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Edmonds did not calculate the emergent intensities of his two-

column model, nor did he determine the variation of the net integrated 

radiative flux with geometrical depth. The Pierce-Waddell model photo

sphere used by Edmonds conserves radiative flux to within 10 per cent to 

optical depths as large as 10, according to J. H. Waddell. The author 

of this dissertation has also calculated the net integrated radiative flux 

of the Pierce-Waddell model and found that it was too low by 7 per cent 

at f = 0.0, by 12 per cent at f = 1.0, and by 19 per cent at T* = 3.2, 

but too high by 37 per cent at = 10.0. The optical depth f is referred 

to a wavelength of 5000 A. Thus it is reasonably certain that Edmonds' 

inhomogeneous model did not conserve radiative flux with an accuracy 

greater than this. Aside from the question of flux constancy, Edmonds' 

model would give a flux greater than the solar value simply because it 

was composed of an average column and a hot column. Convection is not 

responsible for the radiative flux deficiencies, which probably stem from 

uncertainties in the empirical T(f) relation for f > 1.0. In addition, 

Edmonds neglected the blanketing effect in constructing his model. The 

different temperatures in the hot and cold columns cause related differ

ences in the strength of the blanketing effect in the two columns. The 

physical structure of the upper layers of the photosphere is modified by 

170. Waddell, 1961, IAU Symposium No. 12: Aerodynamic 
Phenomena in Stellar Atmospheres, ed. R. N. Thomas (Bologna: N. Zani-
chelli), p. 369. 
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the inclusion of the blanketing effect to a noticeably different extent in 

each of the two columns. 

In 1962, E. C. Olson conducted a study of the infrared oxygen 

171 triplet at 7772/7774 A. Olson observed the asymmetry of these and a 

number of other lines both photographically and photoelectrically near the 

center of the solar disk.1 ̂  He sought to explain the observed asymmetries 

in terms of a columnar model of the photosphere, which was pictured as 

consisting of hot ascending elements and cold descending elements . 1 7 ** 

Applying the Bohm-Vitense theory of convection in the sun, he derived 

inhomogeneous models in which the elements were a few hundred kilo

meters in size.174 The input parameters to his models were the depth 

dependences of the temperature inhomogeneities and of the convective 

velocities of the rising and falling elements. The empirical model of 

Aller, Pierce, and Elste served as the basis from which Olson derived his 

own inhomogeneous model. 17^ 

Satisfactory agreement between the predicted and observed line 

profiles was attained in the case of the 0 I 7774 and Fe I 5930 lines.17® 

171. E. C. Olson, 1962. Ap.T. . 136. 946. 

172. Ibid.. pp. 946-952. 

173. Ibid., pp. 952-953. 

174. Ibid.. p. 953. 

175. Ibid. 

176. Ibid.. p. 954, Figure 10. 
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For the oxygen line, temperature excesses of the hot elements over the 

mean photospheric model were of the order of 10 °K at f = 0.1 and 170 °K 

at f = 0.32, below which they began to level off.177 Although Olson 

did not so indicate, these differences probably referred to equal optical 

depths. Slightly greater convective velocities and temperature excesses 

were required to fit the observed asymmetry of the Fe I 5930 line, but 

these differences might not have been significant, according to Olson.17® 

He calculated the rms relative intensity fluctuations at X = 5930 A in 

the continuum for both the oxygen and iron models, finding ±0.14 and 

±0.18, respectively. These values pertain to the center of the solar disk. 

Olson noted that the oxygen model gave a value in good agreement with 

that which Edmonds derived from the Stratoscope photographs.179 

Additional work on two-column models of the photosphere was 

carried out by Olson in 1965. Again he was mainly concerned with the 

problem of asymmetries of weak to medium-strong solar lines. He 

used Edmonds' rms temperature fluctuations to construct some two-column 

models. This procedure was followed in order to eliminate some of the 

indeterminacy arising from the large variety of possible temperature and 

177. Ibid., p. 953, Figure 8. 

178. Ibid.. p. 954. 

179. Ibid., p. 955. 

180. Olson, 1966. Ap.T.. 143. 904. 



velocity distributions with depth.One of the assumptions which 

Olson made in constructing his models was that the continuum radiation 

field be left unperturbed. Consequently, no information about the 

effect of granulation on the solar continuum was forthcoming from these 

II 
models. In view of Bohm's finding that the continuum limb darkening of 

his three-column model was insignificantly different from that of the cor

responding homogeneous model, Olson's assumption would not appear to 

be out of place. It will be seen in Chapter IV, though, that the combi

nation of temperature inhomogeneities with the blanketing effect may in 

fact produce significantly different continuum limb darkening than that 

which is calculated for a homogeneous blanketed model. 

The interesting thing about Olson's models is that he was able 

to explain the asymmetries of several solar absorption lines by means of 

183 a two-column model based on Edmonds' rms temperature differences. 

The fact that Olson assumed pressure equality between columns at equal 

geometrical depths-1®^ and used an empirical model as the basis for his 

two-column models*®** does raise some doubts concerning their validity. 

181. Ibid., p. 907. 

182. Ibid.. p. 908. 

183. Ibid.. p. 9^0. 

184. Ibid., p. 908. 

185. Ibid., pp. 908-909. 



In 1964, J. Heintze, H. Hubenet, and C. de Jager published 

the Utrecht three-column reference model of the solar photosphere. 

The average column of this model was based on empirical model photo-

187 spheres previously calculated by Hubenet and by de Jager. The hot 

and cold columns were essentially the same as those in de Jager's 1959 

three-column model photosphere, which was discussed earlier in this 

chapter. Pressure equality between columns at equal geometrical depths 

1 fifl was assumed. The temperature differences between hot and cold 

columns at equal optical depth were 8 °K at T"0 = 0.10, 335 °Kat 

f 0 = 1.0, and about 438 °K at fQ = 2.85. The optical depth fQ 

referred to a wavelength of 5000 A. ̂ 0 At equal geometrical depths, the 

temperature differences between hot and cold columns was 8 °K at 

log P = 4.81, 338 °K at log P = 5.105, 740 °K at log P = 5.198, 1178 °K 

at log P = 5.280, and 1285 °K at log P = 5.356. *91 No estimates were 

given for the relative areas occupied by the three types of columns, and 

in fact Heintze et al were even uncertain about the choice between a 

186. J. R. Heintze, H. Hubenet, and C. de Jager, 1964, BAN. 
17, 442. 

187. Ibid., p. 444. 

188. Ibid. 

189. Ibid.. p. 443, Table 1. 

190. Ibid., p. 444. 

191. Ibid.. p. 443, Table 1. 



56 

1 92 two-column or a three-column model for the photosphere. Regarding 

this point, in 1964 de Jager and L. Neven concluded from a study of the 

center-limb variation of the C I multiplet near 10,700 A that a two-column 

193 model was more suitable, but a more recent investigation by these 

same authors of the same multiplet has lent support to a three-column 

model in which the hot and cold columns each provisionally occupy three-

eighths and the average column one-fourth of the solar surface area. 1S*4 

Heintze et al calculated the emergent continuum intensities of 

their model at several different wavelengths but gave the numerical 

results for only a single wavelength. At X = 5000 A, the computed 

intensities were 4.69 x 10*^, 3.79 x 10^, and 4.37 x 10^ ergs cm ^ 

sec-1 ster _1 (AX = 1 cm)-1 for the hot, cold, and average columns, 

respectively. If the relative areas determined by de Jager and Neven 

are used, the resultant intensity at \ = 5000 A becomes 4.27 x lO1^ 

in cgs units. Heintze et al_ took 4.71 x 10^ in cgs units as the observed 

value at X = 5000 A, presumably from the work of M. S. Murasheva and 

196 G. F. Sitnik. Thus the computed intensity is about 9.3 per cent below 

192. Ibid.. p. 442. 

193. C. de Jager, and L. Neven, 1964, Mempires de la Societe 
Rovale des Sciences de Li^ge, 9, 213. 

194. de Jager and Neven, 1967, Solar Physics. 1., 45. 

195. Heintze et al, p. 444 of ref. inn. 186. 

196. Ibid. 
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the observed value, but other values of the observed continuum intensi

ty at X = 5000 A are 4.16 x lO1^ and 4.85 x 10^ in cgs units, according 

to M. Minnaert1®? and D. Labs1®®, respectively. Thus the predicted 

intensity of the Utrecht model agrees best with Minnaert's value. The 

ratio of the intensity of the hot column to that of the cold column is 1.23. 

Heintze et al showed that this value agreed satisfactorily with the observed 

granule contrasts of J. Rosch and of J. Bahng and M. Schwarzchild. ̂ 9 

P. R. Wilson has attacked the problem of constructing an inhomo-

geneous model photosphere with a different method than that used by 

previous investigators. ̂ 0® instead of adopting the standard columnar 

approach, he has attempted to calculate the emergent intensity from a 

medium containing horizontal inhomogeneities which are permitted to vary 

smoothly rather than discontinuously over each horizontal level in the 

photosphere. 201 The method involves the introduction of a quantity 

called the emission function, which describes the amount of energy 

emitted at each point in the photosphere by the liberation of convected 

197. M. Minnaert, 1953, The Sun, ed. G. P. Kuiper (Chicago: 
University of Chicago Press), p. 95, Table 2. 

198. D. Labs, 1957, Z.f.Ap., 44, 37. 

199. Heintze etal, p. 444 of ref. inn. 186. 

200. P. R. Wilson, 1963, AP.T.. 137. 606. 

201. Ibid.. pp. 606-607. 
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heat.2®2 More explicitly, Wilson contended that the appropriate 

equation to be used in discussing radiative transfer in an inhomogeneous 

medium is that derived by R. G. Giovanelli, namely, 

V(VJ/K) = -127r e . ,  

where K is the attenuation coefficient, defined as the product of the 

mass absorption coefficient and the density, £ is the emission function, 

and J is the total intensity, defined as J = f I dio by Wilson, where I 
* 47T 

is the integrated specific intens i ty .2®^ Giovanelli's equation is not 

exact, since it was derived from the equation of transfer by expanding the 

intensity in a series of spherical harmonics and making an approximation 

similar to that of Eddington.2®^ The emission function is also related to 

the source function, S, by the following equation: 

E, = K (S - J/41T).205 

Of course, it can be easily shown by a single integration of the ordinary 

equation of transfer over all solid angles that in order to have an integrated 

radiative flux which is constant with depth, the relation S = J/4fT must 

hold, if Wilson's definition of the total intensity is used. Thus it follows 

that the emission function must be identically equal to zero if radiative 

202. Ibid.. p. 606. 

203. Wilson, 1964, Ap.T.. 139. 930. 

204. Ibid. 

205. Ibid. 
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equilibrium is to prevail. If one reverses this argument, it is apparent 

that Wilson's approach to constructing an inhomogeneous model of the 

photosphere will automatically cause the condition of radiative equili

brium to be violated. 

By means of a suitable choice of two-dimensional functional 

dependences for J and £ , Wilson was able to solve for Jc and S, and thus 

for the emergent intensity, I (xQ> & ), which is given by the following 

equation: 

oO S 

I (xQ , & ) = J exp r - JfC(x,t) dtj S (x,z) . I( (x,z) ds, 
^o o 

where (xQ , & ) are the coordinates of the surface point at which the 

emergent intensity is desired, x is the horizontal coordinate, z is the 

depth coordinate, s is the inclined path-length which the emergent intensi

ty follows, and t is a dummy variable.2®® Wilson carried out the above 

integration by Gaussian quadrature.2®7 The equation for the emergent 

intensity takes explicit account of the variation of the attenuation coef

ficient along the path traversed by the emergent radiation. Wilson pointed 

out that Edmonds had neglected this factor in his calculation of the rms 

fluctuations of the source function as a function of depth from the center-

208 limb variation of granule contrast. 

206. Wilson, pp. 606-607 of ref. inn. 200. 

207. Wilson, 1964. Ap.T.. 140. 1151. 

208. Wilson, p. 932 of ref. inn. 203. 
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The explicit forms used by Wilson for J and £. were as follows: 

J (x,z) = 1.23 e"0*0125 z + 4.27 + 5.5 ePz cos kjX, 

&(x,z) = -6.51 x 10"® z e®*®12 z (1 + y cos kjx), 

, 2 0 9  
where J is dimensionless and £» is in units of (km)"1. The constants 

in these two equations were chosen so that the mean values for J and £, 

gave solutions for K and S which were consistent, upon averaging out 

the horizontal variations, with the empirical solar model of J. B. Sykes 

_ 210 
and H. H. Plaskett in the range 0.3 < f < 1.7. This model is 

based on the average of the limb-darkening observations by a number of 

X 2 1 1  = 5485 A. Wilson's intensities were mono

chromatic and referred to this same wavelength. The parameter adjusts 

the magnitude of the emergent intensity fluctuations, while p regulates 

the depth dependence of these fluctuations. The mean emission function 

is zero at the surface (z = 0) but positive below the surface (z < 0), 

where it first increases to a maximum (at z = -1/0.012 km"1 = -83.5 km), 

then decreases to zero with increasing depth.212 In terms of the optical 

depth at X = 5485 A, the maximum value of the mean emission function 

209. Wilson, p. 607 of ref. in n. 200. 

210. Ibid. 

211. H. H. Plaskett, 1955, Vistas in Astronomy, ed. A. Beer 
(New York: Pergamon Press), 1., 640. 

212. Wilson, pp. 607-608 of ref. inn. 200. 
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occurs at f =0.30, since Wilson took the origin of his geometrical 

213 214 
depth coordinate at f= 0.11. ' This action amounted to complete 

neglect of the part of the photosphere above f = 0.11. The parameter ^ 

controls the magnitude of the horizontal variation of the emission function. 

For Y > 1, an alternation in sign occurs for 6 as the horizontal coordi

nate is varied continuously. The wave number kj is simply 2TT/xj, 

where Xj is the characteristic horizontal length, taken as the mean dis-

215 tance between the centers of adjacent granules. 

Several objections may be lodged against Wilson's choice of 

equations for J and g.. In the first place, it does not seem reasonable 

to assume that the fluctuation of the total intensity decreases as the depth 

is increased. As was mentioned earlier in this chapter, the theoretical 

analysis by Vitense of the solar convection zone gave evidence that the 

temperature fluctuations increase with depth. As a result, one might 

expect that the fluctuation of the mean intensity would also increase with 

depth. A second objection is that the emission function reaches a maxi

mum value at a level in the photosphere where one ordinarily would expect 

the condition of radiative equilibrium to be satisfied exactly. 

213. Plaskett, p. 640, Table 1. 

214. Wilson, p. 607 of ref. inn. 200. 

215. Ibid., p. 608. 
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Wilson compared the predicted limb darkening of two of his 

models with the observed values and found good agreement for 

216  yw.  ̂ 0.5. The predicted variation of the rms relative intensity 

fluctuation with position on the solar disk most closely resembled 

Edmond's curve for the set of parameters /# = 0.2, y = 1.5, p = 

0.00264 km"*, and k^ = 0.00448 km-1. The value of the calculated rms 

217 relative intensity fluctuation at yW = 1 was ±0.137 for this model. 

Wilson noted that models with y < 1 (tending toward radiative equili

brium) were characterized by decreasing granule contrast across the disk. 

He stated that this was typical of models which were in radiative equi

librium.^1® C. A. Whitney has arrived at essentially the same con

clusion from an idealized study of the response of a gray atmosphere in 

radiative equilibrium to periodic radiative perturbations.^1^ He found 

that the predicted relative intensity fluctuation decreased from the center 

220 of the disk to the limb. Certain blanketed inhomogeneous models 

among those calculated in the course of the research for this dissertation 

exhibited a decrease in contrast from the center of the disk to the limb. 

This point will be touched upon in Chapter IV. 

216. Ibid., Figure 2. 

217. Ibid.. p. 608, Figure 4. 

218. Ibid., p. 609. 

219. C. A. Whitney, 1963, Ap.I.. 138, 537. 

220. Ibid., p. 551. 
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Wilson did not present any results for the emergent intensity 

versus wavelength nor for the integrated radiative flux as a function of 

depth in his model. Consequently, there was no way to estimate the 

relative importance of the convective energy transport introduced via the 

emission function. He also made no mention of the blanketing effect. 

Furthermore, the use of an equation of transfer based upon an Eddington-

like approximation raises additional doubts about Wilson's results. 

Hence, his model for an inhomogeneous photosphere should be looked 

upon as rather uncertain. 

Wilson has subsequently approached the problem of constructing 

an inhomogeneous photosphere in a slightly different manner. This time 

he eliminated the total intensity J from the problem completely. In this 

way, the basic equation for the emission function became 

V V (S - &/«• )] = -3£ , 

where knowledge of the source function and the attenuation coefficient 

enables one to solve for the emission function. 221 Wilson assumed a 

source function of the form 

S (x,z) = SQ(z) + Sj(z) cos lx, 

where SQ(z) is the mean source function, (z) is the source-function 

fluctuation, and 1 is the horizontal wavenumber.^^2 Wilson mentioned 

221. Wilson, p. 931 of ref. in n. 203. 

222. Wilson, p. 1148 of ref. inn. 207. 
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that this particular form for the source-function fluctuation implied a 

columnar model, which he considered to be the most likely type of model 

for the photosphere.22 ̂  

The source function SQ(z) was written as 

224 
S (z) = 0.004946 e"0-01795 z + 0.446. 
o 

This equation was derived by fitting a formula of the form (A e^z + C) to the 

empirically-determined source function of J. B. Sykes.22** 

The source-function fluctuation was assumed to have the form 

Sj(z) = (A - Bz) epz, 

where A, B, and p are disposable parameters. The function S^z) is non

zero at the surface, reaches a maximum at z = -1/p + A/B, and goes to 

ooc 
zero as z increases indefinitely. Both SQ(z) and Sj(z) were norma

lized with respect to the emergent monochromatic intensity at the center 

of the disk.227 

Assuming that his model was in LTE, Wilson calculated the tem-

228 perature distribution from the assumed source function. He also 

223. Ibid., P. 1149. 

224. Ibid. , P. 1150. 

225. Ibid., P. 1148. 

226. Ibid., P. 1151. 

227. Ibid., P. 1149. 

228. Ibid. 
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determined the pressure-depth relation by fitting a three-parameter 

equation to the run of P(z) in Plaskett's model. The pressure was assumed 

to vary with the depth alone. Thus no horizontal pressure differences 

between columns were permitted. This assumption causes the same basic 

contradictions in Wilson's model as it did in the earlier discontinuous 

columnar models. Once the temperature and the total gas pressure were 

known as functions of depth, Wilson was able to calculate the electron 

pressure at any point in his model photosphere. He computed the mass 

229 density from the perfect gas law. This fact plus his assumption of 

pressure equality at each geometrical depth implies that his model did 

not satisfy the condition of hydrostatic equilibrium to an accuracy better 

than the relative temperature fluctuations present. 

The opacity sources considered by Wilson were the neutral 

hydrogen atom and the negative hydrogen ion. Plaskett's formula for the 

neutral hydrogen atomic absorption coefficient was used, while a three-

parameter fit was made of the Chandrasekhar-Breen tables for the nega

tive hydrogen ion absorption coefficient. Again no account was taken of 

the blanketing effect. ̂ 30 

Knowledge of K (z,x) and S(z,x) permitted Wilson to compute the 

emergent intensity I(xQ, & ). The advantage of his second approach over 

229. Ibid. 

230. Ibid.. p. 1150. 



66 

the one discussed earlier was the elimination of the need to assume two 

independent functions, namely, the total intensity and the emission 

function. The new method was also placed on a somewhat more reliable 

basis by the explicit use of an empirically-determined source function 

and by taking into account the main sources of continuous absorption in 

the photosphere. 

Wilson was unable to achieve an exact fit between his calcu

lated rms relative intensity fluctuations and the observed values of 

Edmonds. He did reproduce to a large extent the characteristic shape of 

Edmonds' plot of contrast versus disk position but could not simultane

ously shift the maximum of his curve to &= 53° and maintain the numeri-

231 cal value of the maximum equal to the observed value of ±0.205. 

Wilson's best model (#7) gave (Al/I)rms = ±0.139 at & = 0° and a maxi

mum value of ±0.180 at &= 53°. The parameters for this model had the 

following values: A = 0.281, B = 0.0, p = 0.0001 km"*, and 1 = 

0.0055 km-1. The value for 1 corresponds to an average distance of 1140 

232 
kilometers between the centers of adjacent granules. Variation of the 

horizontal scale produced a large effect upon the run of the rms relative 

intensity fluctuation with disk position. A decrease in the characteristic 

231. Ibid.. pp. 1153-1155. 

232. Ibid., p. 1154, Table 1. 
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horizontal length depressed the maximum contrast and shifted it in the 

233 direction of the center of the disk. 

Wilson also computed a model in which horizontal pressure dif

ferences of the order of ±4 per cent were included. The purpose of this 

model was to take into account the hydrodynamic pressure differences 

between columns at the same geometrical depth. These differences arise 

from the relative upward and downward motions (of the order of 2 km/sec) 

of adjacent columns. The new model did not give any significant improve

ment in matching the calculated contrast curve to the observed curve over 

234 the fit obtained with the other model discussed above. 

Wilson presented no information on the calculated limb darkening 

of his models at the time they were published. In a later discussion, 

though, Wilson did mention that he had computed the average limb darken

ing for his models at X = 5485 A and found agreement with the observed 

235 values. The calculations were not made at any other wavelengths. 

It would seem that he should have computed the limb darkening for the 

inhomogeneous model, rather than simply for the mean model upon which 

it was based. After all, one is interested in determining what effect the 

incorporation of inhomogeneities into a model photosphere has upon its 

233. Ibid., p. 1155, Figure 5. 

234. Ibid.. p. 1157. 

235. Wilson, 1965. Ap.T.. 142. 1196. 



emergent radiation field. This question was not answered by Wilson's 

work. As was the case with the models derived by his earlier approach, 

he provided no information about the variation of the integrated radiative 

flux with depth. Consequently, one is left with the impression that 

Wilson's approach, although quite novel, did not really establish a com

pletely satisfactory inhomogeneous model of the photosphere. 

Wilson's best model, for which A = 0.281 and B = 0, had the 

maximum source-function fluctuation occurring at the top of the photo

sphere, z = 0, which actually corresponded to f = 0.11, as mentioned 

earlier. The resultant maximum temperature difference turns out to be 

approximately 1570 °K. At a depth of z = -318 kilometers (or V = 3.0, 

236 the limiting depth of Plaskett's model), the difference is approxi

mately 670 0K.^37 Thus the temperature difference decreases from the 

surface downward in Wilson's model. The opposite behavior is 

encountered in most of the other inhomogeneous models which have been 

discussed in this chapter. 

Wilson later discovered that those of his models which had 

sizable source-function fluctuations also had normalized values for the 

average central intensity less than the required value of unity. He inter

preted this failure as indicating that the magnitude of the source-function 

236. Plaskett, p. 640 of ref. inn. 211. 

237. Wilson, p. 1150 of ref. inn. 207. 
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fluctuations in the horizontal direction must be taken into account when 

238 average models of the photosphere are calculated. 

He recomputed some of his previous models, using a modified 

form of the mean source function: 

SQ(z) = 0.446o< + 0.004946^ e"0-01795 z - 0.091or e0*0162 z, 

where of and j3 are disposable parameters which permit the normalized 

average intensity to be adjusted to unity while still satisfying the observed 

limb darkening. By means of an iterative process, Wilson was able to 

derive a model which had a normalized average intensity at the center of 

the disk of unity, satisfied the limb-darkening data, and gave rms rela

tive intensity fluctuations which were of the right order of magnitude. 2 ^ 

This new model (#6) has the following set of parameters: 1 = 0.0055 km-*, 

— A = 0.203, B = 0.00076, p = 0.0001 km-1, = 1.07, and /3 = 1.12.240 

Its computed limb darkening differs from the average observed values com

piled by Sykes by+0.002 at &= 30°, +0.009 at &= 60°, and +0.014 at 

241 
0* = 65°. The agreement is about the same with the more recent data 

of Pierce. The maximum temperature differences, calculated in the same 

manner as for the other model, were approximately 1080 °K at z = 0 and 

238. Wilson, p. 1196 of ref. in n. 235. 

239. Ibid. 

240. Ibid.. p. 1197, Table 1. 

241. Ibid.. p. 1197, Table 2. 
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860 °K at z = -318 kilometers. Since Wilson required that the perfect 

gas law be satisfied by his models, it follows from his other assumption 

of no horizontal pressure differences that his models do not satisfy the 

equation of hydrostatic equilibrium. The resultant deviations are 20 to 

30 per cent at z = 0 and 8 to 10 per cent at z = -318 kilometers. These 

errors imply the presence of accelerations of the same size relative to 

the surface solar gravity. Such accelerations would, if actually present, 

lead to extremely large velocities in the upper photosphere. Failure to 

satisfy the equation of hydrostatic equilibrium would appear to be a seri

ous defect of Wilson's models. 

A more general attack upon the problem of devising an inhomo-

geneous model of the solar photosphere has been made by G. Rybicki. 

He has obtained an analytic solution to the equation of transfer in a 

medium characterized by small stochastically defined opacity and energy 

fluctuations. In order to facilitate the solution, the opacity was assumed 

to be independent of both wavelength and depth. Rybicki's method requires 

that a mean model photosphere be specified in advance. He did not pre-

242 
sent any calculations of an inhomogeneous model photosphere. 

The conclusion to be drawn from the preceding survey of previ

ous efforts to construct inhomogeneous model photospheres is that there 

is a definite need for a theoretical model which 1) conserves the 

242. G. B. Rybicki, 1965, Smithsonian Astrophysical Observa
tory Special Report, No. 180. 
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integrated radiative flux to within ±1 per cent down to at least T = 3.0, 

2) takes full account of the blanketing effect, 3) obeys both the perfect 

gas law and the equation of hydrostatic equilibrium, 4) utilizes the most 

up-to-date values of the absorption coefficients of the negative hydrogen 

ion, 5) predicts the observed average continuum radiation field of the sun, 

6) reproduces the observed variation of granule contrast across the disk, 

and 7) is consistent with the other well-known properties of solar granu

lation . 

It is the task of this dissertation to construct a theoretical 

inhomogeneous model of the solar photosphere which satisfies as many 

of the above criteria as possible. The details involved in carrying out 

this task are discussed in the next two chapters, III and IV. 



CHAPTER III 

CONSTRUCTION OF THEORETICAL HOMOGENEOUS 

MODEL PHOTOSPHERES 

In this chapter the discussion will center on the problem of 

constructing a theoretical homogeneous model of the solar photosphere. 

The question of the inclusion of the temperature inhomogeneities caused 

by the solar granulation will be left to Chapter IV, where the best inhomo-

geneous model photosphere calculated during this present research will 

be presented. The basic assumptions usually made in constructing theo

retical model photospheres are briefly reviewed in this chapter. Particu

lar emphasis is placed on an explanation of the manner in which the 

blanketing effect is taken into account here. The essential data neces

sary for constructing a model, such as the absorption coefficients, are 

also discussed. In addition, the procedure followed in calculating the 

radiation field of a model is described, along with reference to the iter

ative temperature-correction procedure used for obtaining the desired 

distribution of integrated radiative flux with depth. In homogeneous 

blanketed models, one generally strives for constant integrated flux, at 

least in the upper radiative part of the photosphere. Finally, mention is 

made of the solar observations used for evaluating how good the predicted 

72 
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continuum radiation field of a model photosphere is. The calculational 

techniques presented in this chapter are those developed or adapted by 

T. L. Swihart in the course of his study of model atmospheres. In addition, 

many of the formulae and numerical data used here were taken directly 

from his work. 

Thorough accounts of the basic assumptions and governing 

equations employed in constructing theoretical model photospheres have 

been given in many other places.1 With no pretensions as to profundity 

or uniqueness, the following brief discussion is given. 

The starting point for a theoretical model photosphere is the 

assumption that it is stratified in parallel superincumbent layers. This 

assumption arises from the fact that the thickness of the photosphere is 

very small in comparison to the radius of the sun, and consequently 

curvature can be neglected in the layers of the photosphere. This 

assumption is quite good, except for those portions of the photosphere 

seen near the limb. J. B. Sykes estimated that the error due to the plane-

parallel assumption was less than 1 per cent for yt* > 0.173, or positions 

on the disk no closer than about 144 to the limb. ̂  Since no compari

sons of predicted and observed limb darkening will be made closer to the 

1. For example, see J.-C. Pecker, 1965. Annual Review of 
Astronomy and Astrophysics, ed. L. Goldberg (Palo Alto, Calif.: Annual 
Reviews, Inc.), 3, 135. 

2. J. B. Sykes, 1953, Monthly Notices. 113. 199. 
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limb than JJL =0.20, no difficulty is encountered with the assumption of 

plane-parallel geometry. 

Two additional basic assumptions which are normally made are, 

first, that the photosphere itself is static, and therefore devoid of macro

scopic motions, and, second, that the structure of the photosphere and 

its radiation field are stationary, or constant as a function of the time. 

High-resolution spectroscopic studies have definitely established the 

presence of macroscopic motions in the very upper layers of the photo-

3 sphere where the Fraunhofer lines are formed. These observations miti

gate against the assumption of a static photosphere, at least as far as 

the upper layers are concerned. Since it is difficult to conceive of 

motions in the line-forming layers of the photosphere without corres

ponding motions in the deeper continuum-forming layers, one is forced to 

reject the idea of a static photosphere, but more will be said about this 

problem shortly insofar as its effect on the assumption of hydrostatic 

equilibrium is concerned. 

A corollary of the assumption of a static photosphere is that of 

hydrostatic equilibrium. This condition simply expresses the fact that 

the downward force on each mass element due to gravitational attraction 

is exactly balanced by an upward force due to the pressure gradient across 

the element, or, in mathematical form, 

3. J. W. Evans and R. Michard, 1962, Astrophysical Journal, 135, 
812. 



75 

S = V 9 -

where P is the gas pressure, p is the density of matter, g is the gravi

tational acceleration, and z is the geometrical depth, measured positive 

in the downward direction from the surface of the photosphere at z = 0. 

Radiation pressure has been neglected here, since it produces an 

effective acceleration only about 10"^ as large as the gravitational 

4 acceleration. In the solar photosphere, the equation of state relating 

the pressure, density, and temperature is always taken as the perfect 

gas law, 

'•-A 
kT 

/ltaH 

where T denotes the kinetic temperature, JUL the mean molecular weight, 

k Boltzmann's constant, and m„ the mass of the hydrogen atom. In this 
ri 

study, the mean molecular weight was set equal to 

~ X(1 + xR) + Y/4' 

where X and Y are the hydrogen and helium mass fractions, respectively, 

and xH is the degree of ionization of hydrogen. In solving for the density, 

the perfect gas law may be written 

mTT ,, r, mt 
a "H . 

/ k T 5040 k / 

4. L. Goldberg and A. K. Pierce, 1959, Handbuch der Phvsik. 
ed. S. Flugge (Berlin: Springer-Verlag), 52, 27. 
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= 2.3864 x 10~12 , 

where & = 5040/T. 

In spite of the macroscopic motions present in the photosphere, 

hydrostatic equilibrium is still essentially preserved. The reason for 

this situation is that the observed motions are probably of the order of 

2 km see"* for the granules, which have an average lifetime of eight 

minutes. Thus an acceleration of about 2 x 10^/480 = 4.17 x 10+^ cm 

- 2  sec is responsible for these motions, if one assumes that they are 

steadily acquired over the average granule lifetime. This acceleration 

is approximately 1.5 per cent of the gravitational acceleration at the 

4 -2 surface of the sun, which was taken as 2.75 x 10 cm sec in this 

study. The assumption of hydrostatic equilibrium in the photosphere has 

5 ,6  
been justified by other authors as well. The macroscopic motions are 

of primary importance in discussions of the effect of solar granulation on 

line profiles, since these motions introduce relative Doppler shifts which 

affect the lines but are not important for the continuum. 

A further assumption made in constructing a model photosphere 

is that of homogeneity, in the sense that all physical properties depend 

upon the depth but not on horizontal position. It is clear, however, from 

5. Goldberg and Pierce, pp. 26-27. 

6. A. K. Pierce and J. H. Waddell, 1961, Memoirs of the Roval 
Astronomical Society, 68. 101. 



the existence of solar granulation that the assumption of homogeneity is 

of limited accuracy. The question of how serious it is to neglect the 

inhomogeneities present in the photosphere will be discussed in the next 

chapter, but no further mention will be made of them in this chapter. 

Convection can be neglected as a mode of energy transport in 

the photosphere, at least in the continuum-forming layers, as has been 

7 shown by a number of authors. Swihart has investigated the effect of an 

adiabatic zone in the deeper photospheric regions upon the emergent con

tinuum radiation field of a non-gray blanketed model whose upper layers 

were in radiative equilibrium. He found that the adiabatic zone had a 

very small effect upon the emergent radiation of the model.® Thus, 

although the photosphere becomes unstable to the onset of convection 

in the vicinity of optical depth unity, the actual inclusion of convection 

in the model affects the emergent radiation very little. Also, the fact 

that the fraction of the total energy being carried outward through the 

photosphere by convection is quite small until much deeper regions are 

reached, as E. Vitense has shown,® indicates that radiative transfer is 

the chief mode of energy transport in the continuum-forming region of the 

photosphere. One may also assume that conductive energy transport is 

7 .  K . -H.  Bohm,  1964 ,  Smithsonian Astrophvsical Observatory 
Special Report. No. 167, pp. 160-164. 

8. T. L. Swihart, 1966. Ap . I . .  143. 358. 

9. E. Vitense, 1953, Zeitschrift fur Astrophvsik. 32.  135 .  



negligible, which, due to the extreme smallness of the coefficient of 

thermal conductivity under photospheric conditions, is a foregone con

clusion, as L. H. Aller has pointed out.*® Then, in order to conserve 

energy in the photosphere, the integrated radiative flux must be constant 

with depth. This requirement is known as the condition of radiative equi

librium . 

The theory of radiative transfer must be applied to determine the 

character of the radiation field at each depth within the photosphere. The 

basic equation of this theory is the equation of transfer, which is derived 

by summing up the energy added to and subtracted from a beam of radi

ation as it traverses a material medium. The equation of transfer for a 

stationary plane-parallel medium is written 

cos £ dk_= /fx p ( i x - s x ) ,  
dz ' 

where Ix denotes the monochromatic specific intensity of radiation, Sx 

the source function, Ax the mass absorption coefficient, and & the 

angle between the direction of travel of the radiation and the outward 

normal to the medium. 

The optical depth, defined by the relation dfx = f* dz, 

with fx = 0 at z = 0, is a convenient measure of depth in an atmos

phere. The optical depth is also a measure of the mean free path, .A, 

10. L. H. Aller, 1963, Astrophysics! The Atmospheres of the 
Sun and the Stars (2nd ed.; New York: The Ronald Press Company), 
pp. 202-203. 



of photons. Since A = \/Kyf> , it follows that dt* = dz/_A.. Thus 

it is apparent that the optical depth is simply the geometrical depth 

measured in units of the local mean free path of photons. 

If the geometrical depth is replaced by the optical depth, the 

equation of transfer for a stationary plane-parallel atmosphere becomes 

A:?*—= - s. , t dr x  *  x  

where JA = cos (9*. The formal solution to this equation permits one to 

write the emergent monochromatic intensity as 

I
x

(0yU)= J Sxe~ ^^drx^tc, 

for the case of a semi-infinite atmosphere, which is the case of interest 

here.11 Thus the source function plays a very important role in deter

mining the emergent radiation field from an atmosphere. The usual pro

cedure consists of assuming that the photosphere is in local thermody

namic equilibrium (LTE). This assumption implies that the matter within 

the immediate neighborhood of each point behaves as though it were in 

thermodynamic equilibrium, which is the case if collisional processes 

predominate over radiative processes. When this situation occurs, the 

thermodynamic state of the matter at each point can be characterized by a 

single parameter—the local kinetic temperature, T. A recent summary of 

11. S. Chandrasekhar, 1960. Radiative Transfer (New York: 
Dover Publications, Inc.), p. 57. 



the arguments for the acceptability of the LTE assumption in the con

tinuum-forming layers of the photosphere has been given by K.-H.Bohm.1 

In the upper layers of the photosphere where the lines are formed, the 

question becomes a bit stickier, since here radiative processes begin to 

produce significantly different effects than collisional ones. The 

assumption of LTE will be made for the line radiation as well, however, 

since Swihart has pointed out that any non-LTE effects in the line-

forming regions will have practically no effect on the continuum-forming 

1 ̂  layers via the blanketing mechanism. The result of the assumption of 

LTE is that the source function may be equated to the Planck function, 

whereby 

Q  D f rp \  2hc 1 • 
X x \ 5 exp(hc/A kT) - 1 

The next step is to determine the temperature stratification in 

the model, for then the entire structure of the photosphere can be deter

mined. Knowledge of the run of physical properties with depth then 

permits the evaluation of the emergent radiation field as a function of 

wavelength. A simple solution is to assume that the material of the 

photosphere is gray, which means that the continuous absorption by the 

photospheric material does not depend on wavelength. This assumption 

permits one to solve separately for the physical structure and radiation 

12. Bohm, pp. 156-159 of ref. inn. 7. 

13. Swihart, p. 361 of ref. inn. 8. 
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field of the photosphere. The temperature stratification in such a model 

which is in strict radiative equilibrium is well known. Unfortunately, 

the continuous opacity of the photospheric material does depend on the 

wavelength of radiation considered. This situation makes it necessary 

to deal with the problem of the non-gray photosphere. This problem is 

considerably more difficult to handle, since the matter and radiation 

fields are inextricably coupled and a simultaneous solution is necessary. 

In order to be able to evaluate numerically the continuous mass 

absorption coefficient in the photosphere, it is necessary to know the 

chemical composition of the photosphere. In this study, the following 

composition was assumed to be typical of published values for the photo

sphere: 

X = 0.8 

Y = 0.2 

A = 1.9 x 104. 

Here X and Y are the mass fractions of hydrogen and helium, respectively, 

and A is the ratio of hydrogen to metal atoms by number. Since the degree 

of ionization of hydrogen, XJJ, is practically zero in the photosphere, the 

mean molecular weight is found to be 1.18 for the above chemical compo

sition . 

The specific sources of continuous absorption included in the 

present models were the neutral hydrogen atom, the negative hydrogen ion, 

the neutral metals, and Rayleigh scattering by the neutral hydrogen atom. 
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To be more explicit, the continuous mass absorption coefficient for 

neutral hydrogen was written as 

/^(H) - 6.21 x 106 (1 - xH) XX'3 a"31'304®" . (i _ e~28.540 ^/X'j. 

D cm2 gm~*, 

where X' is the wavelength in units of 103 A, & = 5040/T, X is the 

hydrogen mass fraction, Xjj is the degree of ionization of hydrogen, and 

„0 .870& + 0 . l a  5  
D" 62.608 & i&i 

where S = e31-304 &/n2 • (i#070 - 0.286 X'/n2-4), n q 
n0 

with i = 1 for X' < 0.9118, 

i = 2 for 0.9118 ^ X' ^3.647, 

i = 3 for 3.647 ^ X'£ 8.206, 

i = 4 for 8.206 ^ X1  ^ 14.588, 

and i = 5 for 14.588 < X ' ^ 22.795. 

5 
The fact that Sn = 0 for X' ^ 22.795 is implicit in the above for-

n=~i 

mulation. 

For the negative hydrogen ion, the continuous mass absorption 

coefficient may be written 

= Pe (1 - xH)»X*(af£/mH + abf/mH) cm2 gm"1, 



where Pe is the electron pressure and aff and a^f are the free-free and 

bound-free absorption coefficients of the H" ion per H atom and per unit 

electron pressure. The two quantities a^f and aj-^ can themselves be 

expressed as functions "of temperature and wavelength as follows: 

-2ft = 3.175 x 10~5 \,2&, 
mH 

= 2.50 x 10"3 0 2-5 e1'726^ • (1 - e"28-540 ^/V) f(X'),  
mH 

where f(A ') = 0 for X' < 0.50, 

= 0.6275 X'- 0.30 for 0.5 £ X5.0, 

= 3.94 - 0.09( X ' - 8.5)2 for 5.0 $ X ' ̂  12.0, 

= 11.20 - 0.697 X' for 12.0 ^ X' < 16.0, 

= 0 for X' > 16.0. 

14 The free-free formula was fitted by Swihart to the data of T. Ohmura 

with an accuracy of 3 per cent or better for the wavelength and tempera

ture range of importance in the photosphere. The bound-free formula, 

also derived by Swihart, fits the data of S. Geltman1^ to an accuracy of 

1 per cent in the range of importance. 

The continuous mass absorption coefficient for the metals was 

simulated by Swihart using the hydrogen-like approximation for an 

14. T. Ohmura, 1964, Ap.I., 140. 282. 

15. S. Geltman, 1962, AP .T. . 136. 935. 
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"average" metal. The resultant formula is 

^v(Metals) = 6.0 x 1(T4 ^M*e
28-540 ' pe £.1.5^ .3 cm2 ^-1^ 

x A 

where x^j is the degree of ionization of the "average" metal. 

The final source of continuous opacity considered is Rayleigh 

scattering by neutral hydrogen atoms. The formula used is 

,-4 2 -1 /C^(Ray. Sc.) = 0.346 X (1 - xH) \ ' cm gm 

The resultant total continuous mass absorption coefficient, K, is then 

written 

f<Cy = /fx (H) + /fx(H*) + (Metals) + (Ray. Sc.). 

In order to carry out the numerical evaluation of • one must 

have available values for x^, x^, Pe, and & . Assuming that a & ( fy) 

relation is given, the problem reduces to finding Xjj, x^, and Pe at each 

point where the value of is required. 
X 

The electron pressure is related to the gas pressure in the same 

ratio as the total number of electrons per unit volume to the total number 

of particles per unit volume. This ratio is expressed as .follows: 

— = XH + XM/A =H(xh, Xm, A, X, Y). 
P 1 + xH + Y/4X 

In order to determine the physical structure of the photosphere, 

one proceeds as follows. Starting off at the top of the photosphere, 

taken here at f0 = 10~4, one assumes a reasonable value for the gas 

pressure P. Then one makes an initial guess for the electron pressure Pe, 
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say P ^ = 10-2 P. Knowledge of & and P0^ enables one to calculate 

xH and xM from Saha's equation for hydrogen and the metals. The use of 

Saha's equation follows from the assumption of LTE. The appropriate 

relations are 

XH 6.01 x 108 

1 - xu Pe 02.5 e31. 304 & 
H e 

XM 4.0 x 108 

and 1~^ = Pe 02.5 e17.27(9-' 

where an ionization potential of 7.5 electron volts has been assumed for 

the average metal. The ratio of partition functions, Bion/Batom» has been 

taken as 1/2 for hydrogen and 1/3 for the average metal. 

Having estimates for x^ and x^ at = 10"^, one can then 

evaluate the function H(xpj, x^, A, X, Y) at this point. An improved 

approximation to the true value of Pe at this point is provided by 

p
e ^  =  ° - 5  [ P

e ^  +  P ]  * 

This process is continued until the fractional change in Pg is less than 

0.001 between successive iterations. The values of xTT> x.., and /(V H M 

can then be found, while yO follows directly from the perfect gas law and 

z is taken as zero at this first point of the atmospheric integration. The 

wavelength X = 5050 A is used as the reference wavelength throughout, 

and fl and ^C_ are referred to it. O Cv 
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At succeeding points in the photosphere, there is a modification 

to the procedure just outlined. Instead of simply guessing a value for P, 

one determines its value directly from the equation of hydrostatic equi

librium , which can be written 

dP _ 
d<ro 

= g/*\ , 

where /fx is taken as a weighted average of and the line absorption 

coefficient, > which will be discussed later. The optical depth, of 

course, is defined in terms of the composite absorption coefficient. 

One can think of the photosphere as being composed of a large 

number of superimposed layers. The conditions at the upper boundary of 

the J-th layer are designated & (J), P(J), and so on. The J = 1 

layer corresponds to = 10"^. For J 2, the procedure used to 

determine the physical structure involves first assuming a value for 

say, /<^(J) = 1.1 ^(J-l). The equation of hydrostatic equi

librium can then be written in difference form to give 

P(J) = P(J-1) + 0.5g ro(J) - T (J-l)l • ^5nfo+ 

L ° ° J ^°)(J) • (J-l) 

where it has been assumed that between £^(J-1) and T^(J) a good esti

mate fbr the average value of ( is 

(/Cxf1 = 0.5 ̂ i//cx
(0)(J) + i//cx0-i)] , 
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Provided the points ^(J) and f^(J-l) are sufficiently close, the error 

involved in this approximation to the equation of hydrostatic equilibrium 

is negligible. 

Then, knowing <9"(J) and P(J), one can find (J), xM (J), and 

?e (J) by the iterative process described earlier. Knowledge of these 

three quantities permits the evaluation of a better approximation to the 

true value of /<^(J), namely If the fractional difference 

between this value and the initial value is greater than 0.002, as it 

usually will be, the entire procedure is repeated with 

as a better estimate of the true value of /C^G") • The calculations are 

continued in this fashion until the fractional-error criterion is satisfied. 

Knowing P(J) and & (J), one obtains p (J) from the perfect gas 

law. Finally, the geometrical depth to the point in question, z(j), is 

calculated from its defining equation, 

d *x / f X / 0  

which in difference form becomes 

_/T\ _ _/R .  N C F/T\ /R I\"J .  ttxfr) * jP{S) + (T-l) *P (T~L) , 
z(j) z(j 1) + 0.5 \ro (J) ro (J-DJ (J). /r^a-1) (J-1) 
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-4 where z(l) = 0 at f = f (1) = 10 .A total of 100 layers was used to 
o o 

represent the solar photosphere between log f = -4 and log f = 

+1.3333. The spacing used was A log V - 0.2 for -4 £ log ̂ ^T-3,0.1 

for-3^1ogfo^ -2, 0.0667 for -2 £ log f ^ -1, and 0.0333 for-1^ 

log T ^ +1.3333. 

In addition to continuous absorption, the material of the photo

sphere also absorbs selectively at a large number of different wavelengths 

to produce the absorption lines. Since observational estimates of the 

fraction of the emergent solar continuum flux absorbed by these lines 

16 run as high as 0.15, it is obvious that some provision must be made for 

taking this so-called blanketing effect into account when constructing a 

theoretical model of the photosphere. The approach adopted for handling 

17 
blanketing in the present work follows the method employed by Swihart. 

This method, known as the modified picket-fence method, consists of 

approximating the actual lines by hypothetical lines having rectangular 

profiles. These hypothetical lines are distributed throughout the spectrum 

with a probability wx of occurring at a particular wavelength X . Swihart 

found the following form for w^ to be suitable in the solar case: 

w^ = 0 for X > c, 

16. O. J. Gingerich, 1966, Tournal of Quantitative Spectroscopy 
and Radiative Transfer. 6., 610. 

17. Swihart, p. 358 ofref. inn. 8. 
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w. = smaller of / „ I for X ̂  c, 
U < c - X > 2 /  

where a and c are disposable parameters to be determined from the fitting 

of the calculated emergent radiation field of the blanketed photospheric 

model to solar observations. Their range can be somewhat restricted, 

1 ft though, by reference to the actual line spectrum of the sun. ° 

The actual strength of the line absorption is set by the line 

absorption coefficient, which is assumed to be 

= b(l ~ xm) cm2 gm"l, 
L A 

where b is an adjustable parameter. The inclusion of the factor (1 - x^) 

is designed to take into account the fact that a great deal of the blanket

ing effect is produced by the neutral metals. By varying the value of b, 

one can adjust the strength of the simulated lines, while by varying a 

and c, one can shift the wavelengths where blanketing becomes total and 

where it ceases altogether. Blanketing is total for X £ X , where X = s s 

c - \/JT, while blanketing is absent for X ̂ X0/ where XQ = c. Thus 

for X £ XS, only line radiation is assumed to emerge from the photosphere. 

As the wavelength is increased from X e to X , a decreasing amount of s o 

line radiation is emitted, until for X ̂ X0# the emergent radiation con

tains no line contribution whatsoever. 

18. Ibid.. p. 359. 
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Although in principle both and should be depth-depen-

dent, calculations are usually not carried out in such generality. Swihart 

has considered several forms of depth dependence for in his work 

with homogeneous model photospheres but found that no significant gain 

in fitting the observations resulted. He did not include the factor 

(1 - Xj^) in his definition of the line absorption coefficient.19 The fact 

that blanketing is produced to a large extent by the neutral metal atoms 

in the upper layers of the photosphere seems to make the inclusion of 

20 this factor desirable. As shall be seen in the next chapter, this 

factor automatically takes into account the difference in the strength of 

the blanketing effect in the hot and cold columns of an inhomogeneous 

model photosphere. 

The procedure for calculating the radiation field when both con

tinuous and selective absorption are being considered is now discussed. 

When calculating the continuous contribution to any radiative quantity, 

one uses the continuous absorption coefficient, , while if the line 

contribution is to be found, one uses the combined continuous and line 

absorption coefficients, ^ + /fT . The resultant radiative quantity is 
Ox 

then taken as the weighted average of the continuous and line contri

butions. For example, the combined monochromatic radiative flux would be 

19. Ibid. 

20. Gingerich, p. 611. 
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7TFy = (1 - wA )irFc + W7TFl .21 

Thus, when one speaks of radiative equilibrium in a blanketed model 

photosphere, it is the combined integrated radiative flux which must 

remain constant with depth. 

In order to compute the emergent radiation field from a model 

photosphere, the source function must be known for both the continuum 

and the line radiation. As mentioned earlier, it is assumed here that the 

Planck function is applicable in both cases, whereby 

s c x = B >. [ T <fc k »]  .  

and = Bx [T< rCx + rL)] . 

Then the continuum and line emergent intensities are given by 

W)= X v"r°x//,d*'ox^' 

^ oo 
and ILy (0,ja) = j S^e'^cx +TL)^a d(?cx  + TL)/^c . 

The final step involved in finding the composite emergent intensity is 

to take the weighted average of and I in the same way shown earlier 

in connection with the monochromatic fluxes. 

The a priori specification of the T( trQ) relation in a non-gray 

blanketed model photosphere is not possible. Instead, one starts with 

21. Swihart, p. 359 of ref. in n. 8. 
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an approximate relation which is refined by successive iterative calcu

lations of the entire structure and radiation field of the model until the 

condition of radiative equilibrium is satisfied. 

The approach followed for the models discussed here was to 

simply assume as an initial approximation to the correct T( f ) relation 

the well-known Eddington solution to the gray constant-flux problem, 

namely 

T4 -$TJ, (T0 + 2/3), 

where is the effective temperature and f q is the reference optical 

depth, which has been defined in terms of a combined continuous and 

line absorption coefficient, K „ + w. If T , at the reference wavelength, 
Cx a L 

X = 5050 A. The value of T0^ was taken as 5780.6 °K, whereby the 

total net surface flux is 

7TF = O" T % = 6.33 x 101® ergs cm~^ sec _1, 
O 611 

_ o _ ] 
which corresponds to a solar constant of 1.96 cal cm min . 

Given this initial approximation to the actual T( T0) distri

bution, one can calculate the physical conditions at every depth in the 

model photosphere by means of the steps which have already been outlined. 

Then one can calculate the emergent continuum and line intensities, 

since the source functions can be computed from the assumed temperature 

distribution. But before this step is taken, one must first calculate the 

integrated radiative flux as a function of depth in order to determine 
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whether or not the condition of radiative equilibrium is satisfied to the 

accuracy desired down to roughly "C - 3. The onset of convective 

equilibrium at deeper levels in the photosphere makes the requirement of 

radiative equilibrium progressively more unreasonable as these depths 

are approached. After the first iteration, one invariably finds that the 

condition of flux constancy has not been satisfied. This fact necessi

tates a correction to the initial T( fQ) relation. This correction was 

carried out for the models discussed here by a fairly fast-converging 

iterative process to be mentioned later on. 

fluxes will be described. As is well known, the radiative flux may be 

calculated directly from the source function without first having to evalu

ate the intensity. The relevant formula is 

LTE, which is assumed throughout the present work, the source function 

is simply the Planck function. Having selected the wavelength at which 

the radiative flux is to be calculated, one must first compute a table 

which relates the optical depth "C* to the reference optical depth of the 

Next, the method of calculating the monochromatic radiative 

0 

where Eg is the second exponential integral function. 2 2 In the case of 

22. Chandrasekhar, p. 57 
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model, f0. This task is accomplished readily by noting that dt^ = 

d f , from which it follows that 
*o ° 

f tb  
W-  J o  ^ 0 dr 0 ,  

where #x *s the appropriate absorption coefficient at X and /f = o 

+ Wy /f l f°r X = 5050 A, as mentioned earlier. If one wants to determine 

the continuum flux, one uses ^> whereas for the line flux, 

^X = ^ + Kr is used, unless, of course, A c, in which case no 
Cx L 

line flux is emitted, by definition. By the same token, if X ̂  XS» the 

continuum flux need not be calculated. 

Having established a one-to-one correspondence between fy 

and T0, it is now possible to find B ^ ), since T(f0) is known, 

whereby T( Ty) can easily be found. The actual integration for the mono

chromatic flux is carried out by rewriting the defining equation slightly. 

The substitution of x = into the first integral on the right-hand 

side of the equation and x = - f1 into the second integral yields 

7TFX ( Ty) = 2ir ^ B^( Tk + x) E2(x) dx - 27f J"B^ ( Xy - x) E2(x) dx . 

The first integral was evaluated by dividing the range (0,o«) 

into eight subranges: (0.0,0.1), (0.1,0.3), (0.3,0.6), (0.6,1.2), 

(1.2,2.0), (2.0,4.0), (4.0,8.0), and (8.0,15.0). For practical reasons, 

the end-point of the last interval was taken as 15.0 instead of oo. Within 
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each subrange, it was assumed that the source function could be expressed 

as a linear function of x, namely, 

Bx( + x) =ofA + i x for xA^ x$ xi+1. 

This assumption permitted the solution of the integral to be written as 
00 

2 v Bx ( RX + x) E2(X) dx = 2ir^_ Ti# ' 

where 

Ti =0fi[ E3(xi} " E3^xi+1)] +A [ xiE3<xi> + E4<xi> - xi+lE3(xi+l) 

- E4<xi+i)] • 

The quantities Eg and E4 are the third and fourth exponential integral 

functions. The coefficients or^ and jS^ can be found by fitting the data 

of the Bx (fx ) table and by requiring continuity of the source function at 

the boundaries of the subranges. The exponential integral functions were 

calculated by the method of continuing fractions to six significant figures 

in general. The maximum error did reach three digits in the sixth place 

for E^(x) when x £ 1.5. Evaluation of at the appropriate values of 

the arguments was done by linear interpolation in the table of B^ (fx ). 

The second integral required in order to determine 7T Fx ( t\) < 

rTx 
namely 27T J Bx ( - x) E2M dx, was evaluated as the sum of N inte

grals over subranges of the interval (0, ). The parameter N was equal 

to zero when the point at which the flux was desired, , lay in the sub

range (0,10~3), while N = 1 for 10 ^"2J£0.1, 2 for 0.1^.fx<0.3, 

3 for 0.3^1^ 0.6, 4 for 0.6£ 1.2, 5 for 1.2^ trx£ 2.0, 
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6 for 2.0 £ fx£4.0, 7 for 4.0 8.0, and 8 for 8.0^?^ 15.0. The 

setting of N equal to zero in the subrange (0, 10~3) simply corresponds 

to the neglect of the inward flux contribution from this thin layer of the 

photosphere. For N > 0, the procedure for calculating the integral is 

analogous to that used in evaluating the first integral and will not be dis- , 

cussed here. 

After both the continuum and line monochromatic radiative fluxes 

have been evaluated at each of a selected set of 10 depths, given by 

fo = 0.0001, 0.100, 0.178, 0.316, 0.562, 1.000, 1.778, 3.162, 

5.623, and 10.000, and for 17 specified wavelengths ranging from 911.8 A 

to 100,000 A, the net integrated radiative flux may be calculated at each 

of the 10 depths by the method of Gaussian quadratures. For this purpose, 

the spectrum was divided into the following five regions (X ' in units of 

103 A): 

0.9118 £ X' £ 2.0000 

2.0000 £ X' $ 3.6470 

3.6470$ X' 3 8.2060 

8.2060 £ X'^ 30.0000 

30.0000 £ X 100.0000 

The boundaries of these regions were selected so as to avoid any rapid 

variations of the flux within a region. Within each spectral region, the 

integrated flux is approximated by the Gaussian quadrature formula, 
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namely, 

Jb n T7"F( \') dX' =1T2L ciF( X|), 
a i=l 

where c. are the Gaussian weighting factors and the X . are selected 
1 i 

wavelengths at which the integrand must be known. For the first spectral 

region, a 2-point quadrature is performed, while successive regions 

employ 3-, 5-, 5-, and 2-point quadratures, respectively. The aim is 

to evaluate the integrated flux to an accuracy of 0.1 per cent at all 

depths down to f =10.0. The amount of flux contributed by each 
o 

spectral region was the determining factor in selecting the number of 

points used in carrying out the quadrature for that region. 

Knowledge of the integrated radiative flux as a function of depth 

allows one to check for violations of the condition of radiative equilibri

um. If the flux is not constant with depth, the Avrett-Krook temperature-

correction procedure may be applied to the initial temperature distri

bution in an effort to bring about the desired flux distribution, whether 

23 it be a constant with depth or not. The Avrett-Krook procedure has been 

specialized to the gray case by Swihart, who pointed out that grayness 

was at least a tolerable first approximation to the real situation in the 

atmospheres of stars of moderate temperature in which H" is the major 

23. E. H. Avrett and M. Krook, 1963, Ap.T., 137. 874. 
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9 4  opacity source for the dominant regions of the spectrum. The details 

of Swihart's adaptation of the Avrett-Krook temperature-correction pro

cedure will not be given here. 

After the temperature distribution has been corrected, the entire 

model must be recomputed by the steps already outlined. This process is 

repeated until a model is obtained which gives the desired flux distri

bution to the prescribed accuracy. In the case of a homogeneous blanketed 

model, one is always seeking constancy of the integrated flux through

out the upper layers. 

Ohce a final model has been calculated, one may proceed to the 

evaluation of the emergent intensities by a technique analogous to that 

used in calculating the monochromatic fluxes. More specifically, the 

expressions for the emergent continuum and line intensities are both of 

the form 

r°° 
iA(°,/t) = ) BX ( ) E" d //a. . 

J o 

Letting x = and dividing the range (0,«*>) into nine subranges within 

each of which it is assumed that Bj = CKj + one obtains 

I x ( 0 ' / X )  = S{ e " X i [ °« ' i  +  ^ i ( x i  +  u ]  - e " X l + 1 [ °« ' i + / 5 i ( x i+ i  +  

The boundaries of the subranges are (0.0,0.2), (0.2,0.4), (0.4,0.7), 

24. Swihart, 1965, AP.T. .  141. 821. 
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(0.7,1.2), (1.2,1.8), (1.8,2.8), (2.8,4.0), (4.0,7.0), and (7.0, 15.0), 

where again the final point is taken as 15.0 for practical reasons, i.e., 

B ^ ( Ty ) is known for Vy = 15.0 but not for = «© . Layers deeper 

than = 15 make an insignificant contribution to the emergent radi

ation field. 

In order to find the emergent intensity at a given wavelength and 

for a particular disk position, one uses the B^ table found in con

nection with the monochromatic flux calculations. Interpolations are 

made in this table at the 10 values of = ju.xj required to carry out 

the integration. Then the values of or^ and jS^ may be found, and the 

integration for l^(0ytt ) may be completed. Both line and continuum 

emergent intensities are calculated at each of 25 wavelengths from 3300 A 

to 24,000 A and for nine disk positions from JUi= 1.0 tojU. = 0.20. 

The emergent continuum intensities so calculated are then com

pared with observations for the sun to determine how well the model photo

sphere predicts the emergent intensities observed from the real photo

sphere. In the present work, comparison is made to Minnaert's compi-

25 lation of data for the central continuum intensity as a function of 

wavelength and to A. K. Pierce and J. H. Waddell's summary^6 of 

limb-darkening measures at various wavelengths. In the latter case, the 

25. M. Minnaert, 1953, The Sun, ed. G. P. Kuiper (Chicago: 
The University of Chicago Press), p. 95. 

26. Pierce and Waddell, Table I on p. 92 of ref. in n. 6. 



100 

coefficients given by the authors were used to calculate the limb 

darkening by means of their empirical formula of the form cQ + c\fu- + 

°2 r 1 ~/* + °* observational error were con

servatively taken as ±5 per cent in the case of the central intensity versus 

wavelength and ±1/2 per cent in the case of the limb darkening. These 

observations are given in Tables 1 and 2, respectively. 

In addition to the observed values of the solar constant, the 

central intensities, and the limb darkening, another criterion used in 

evaluating a particular model is the blanketing coefficient. The blanketing 

coefficient, ^ , of a model was calculated by means of the definition of 

this quantity, namely, 

7 — / 
J* fx iX 
Jo 

where for \ < \ B, the value of 77"F_ was estimated as |*Cx(. 
C x  k F x J X  =  \ i  

7TF^ , in which Xj is the first wavelength to the red of \g for which the 

emergent continuum flux was calculated. Published values for ^ range 

from 0.083 by G. F. W. Mulders27 to the value of 0.15 quoted by 

Gingerich and mentioned earlier in this chapter. A model was not rejected 

unless it had a blanketing coefficient which lay outside the range of 

27. G. F. W. Mulders, 1935, Z.f ,AP . . 11, 132. 



Table 1. Central Continuum Intensity versus Wavelength 

The units of the central intensity are ergs cm"^ sec"* ster"1 

( A X = 1 cm)"1. 

H) ICx (0,1) x 10"14 

4000 4.60 ± 0.23 

5000 4.16 ± 0.21 

6000 3.31 ± 0.16 

7000 2.56 ± 0.13 

8000 1.95 ± 0. 10 

9000 1.52 =fc 0.08 

10000 1.21 ± 0.06 

12000 0.773 ± 0.039 

14000 0.516 ±0.026 

16000 0.373 ± 0.019 

18000 0.250 ± 0.012 

20000 0.169 ± 0.008 

24000 0.0855 ± 0.004 
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Table 2. Continuum Limb Darkening versus Wavelength 

ICx<° ' /*>  / f cx  (O' 1 )  

jJ = 0.50 
-A 

= 0.85 

4000 0.8723 ± 0.0043 

5000 0.9106 ± 0.0045 

6000 0.9250 ± 0.0046 

7000 0.9364 1 0.0047 

8000 0.9454 ± 0.0047 

9000 0.94951 0.0047 

10000 0.9533 1 0.0048 

12000 0.9599 1 0.0048 

14000 0.9659 + 0.0048 

16000 0.9727 ± 0.0049 

18000 0.9755 1 0.0049 

20000 0.9768 1 0.0049 

24000 0.9780 1 0.0049 

0.5732 1 0.0029 

0.6820 1 0.0034 

0.7305 1 0.0036 

0.7681 1 0.0038 

0.7980 1 0.0040 

0.8134 l 0.0041 

0.8260 1 0.0041 

0.8470 1 0.0042 

0.8648 1 0.0043 

0.8884 l 0.0044 

0.8995 1 0.0045 

0.9051 1 0.0045 

0.9112 1 0.0046 

= 0.30 

0.4005 1 0.0020 

0.5263 1 0.0026 

0.5947 l 0.0030 

0.6467 1 0.0032 

0.6885 1 0.0034 

0.7127 1 0.0036 

0.7302 1 0.0036 

0.7583 1 0.0038 

0.7800 + 0.0039 

0.8148 1 0.0041 

0.8328 1 0.0042 

0.8420 1 0.0042 

0.8537 1 0.0043 
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0.075 to 0.175. These limits may seem to be extremely generous, but 

there is not sufficient agreement between the various published values 

of ^ to permit this test of a model to be made more stringent. 

In this chapter the basic assumptions which go into the con

struction of a theoretical model of the solar photosphere were discussed. 

Details on how this end is achieved numerically were also gone into in 

some detail. Now the groundwork has been laid to carry out the 

construction of an inhomogeneous non-gray blanketed model photosphere 

which is in radiative equilibrium. This task is the subject of the next 

chapter. 



CHAPTER IV 

A NEW INHOMOGENEOUS MODEL 

OF THE SOLAR PHOTOSPHERE 

In this chapter, the discussion turns to the specific purpose of 

this dissertation: to construct a theoretical model of the solar photo

sphere which includes the effect of solar granulation and which is also 

non-gray, blanketed, and in radiative equilibrium. The motivation for 

this work stems from a suggestion by T. L. Swihart, who felt that better 

agreement could perhaps be obtained between the predicted and the 

observed radiation fields of the sun if a non-gray blanketed model photo

sphere in radiative equilibrium were also to contain temperature inhomo-

geneities. 

Since observations of solar granulation have revealed the 

existence of a reticulated pattern consisting of the bright granules sepa

rated by the narrow dark intergranular regions, it seems logical to follow 
« -

the lead of earlier authors in adopting a two-column model for the photo

sphere. The two types of columns are referred to as the hot and cold 

columns. The hot columns represent the granules and the cold columns 

the intergranular regions. In general, the temperature in the hot column 

will be greater than that at the same depth in a homogeneous blanketed 
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model photosphere, and the temperature in the cold column will be less. 

The construction of each column is carried out separately, by the method 

outlined in Chapter III, as though it were a separate model atmosphere. 

This procedure is made possible by the assumption that both columns 

are optically thick in the horizontal direction at every depth. This 

assumption is tantamount to complete radiative de-coupling of adjacent 

columns. The only joint requirement on the two separate models for the 

hot and the cold columns is that at each geometrical depth the combined 

integrated radiative flux is constant. In other words, the composite 

model must satisfy the condition of radiative equilibrium. This condition 

is expressed as 

TTF(z) = Qr"c77Tc(z) + (1 - orc)7TFH(z) =77"F0, 

where the integrated fluxes are the weighted means of the continuum and 

line fluxes in the hot (subscript H) and cold (subscript C) columns, 

denotes the relative area of the solar surface occupied by the inter-

granular regions, and 7TFq is the integrated emergent solar flux, which 

is taken as 6.33 x 10^ ergs cm~^ sec"* here. 

The assumption of complete radiative de-coupling of the two 

columns is admittedly the weak point of the columnar approach. This 

assumption can be made acceptable only if, after a complete two-column 

model is constructed, one evaluates the horizontal optical thicknesses 

of the hot and cold columns at each geometrical depth and finds them to 



106 

be much greater than unity. E. A. Spiegel has shown that thermal 

inhomogeneities dissipate themselves most rapidly in the upper layers of 

the photosphere, where the horizontal optical thickness of a typical 

granule becomes very small.1 Thus, one should expect the radiative 

de-coupling assumption to be least acceptable in these same layers. 

As was stressed in Chapter II, one feature of the inhomogene-

ous models constructed for this dissertation is the relaxation of the 

requirement for pressure equality at each geometrical depth. In addition 

to avoiding the contradiction spoken of there, this course of action also 

has the added benefit, as pointed out to the author by Swihart, of offering 

a possible explanation for granule dissolution, since horizontal pressure 

differences at each geometrical depth would give rise to horizontal 

motions tending to destroy the granular structure by mixing of granular 

and intergranular material. It is assumed, of course, that some other 

process is at work to provide a continuous supply of new granules. 

After model atmospheres have been calculated separately for the 

hot and cold columns, the emergent intensities from each column are 

computed. Then the composite intensity of the two-column model photo

sphere is taken in accordance with most previous work to be 

lx(0,yu) = Ofc 1° (0,yLc) + (1 - Ofc) l» (0 

1. E. A. Spiegel, 1957, Astrophvsical Tournal, 126, 202. 
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C H 
where I\ (OYU ) and 1^ (0,JU.) are the emergent intensities from the cold 

and hot columns, respectively. This procedure follows from the 

assumption that the hot and cold columns are optically thick in the hori

zontal direction. Essentially, one is saying that the emergent radiation 

from any column at any position on the disk originates solely within that 

particular column. The limb darkening for the composite model is simply 

obtained as )/\ (0,1) for any desired disk position denoted byJU. . 

As a measure of the granule contrast, the granule contrast function 

" lg(0,^) +!<£ (0,/<) 

was also computed for each model. De Jager's analysis gives 0.5 K^(yw) 

as the rms relative intensity fluctuation, (Al/I)rms/ of a two-dimension

al sinusoidal brightness distribution, which he assumed to be a satis-

2 factory representation of the actual granulation. 

The absolute rms intensity fluctuations given by Edmonds"* for X = 

5000 A were reduced to rms relative intensity fluctuations by means of 

Allen's^central intensity at X = 5000 A and the limb darkening of Pierce and 

2. C. de Jager, 1962, Vrile Unlversiteit te Brussel Sterrekundig 
Instltut. Serie A, No. 4, pp. 5-6. 

3. F. N. Edmonds, Jr., 1964, Ap.I., 139. 1361. 

4. C.W.Allen, 1955. Astro physical Quantities (London: The 
Athlone Press), p. 140. 
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Waddell. Edmonds had used Allen's value for the central intensity in 

his original calculation of the contrasts.^ The resultant data, interpo

lated at convenient values of JJL , are given in Table 3. The values of 

(Al/I)rms given for ^<<0.40 are more uncertain than the others, since 

the presence of a large-scale granulation pattern as the limb is approached 

makes the contrast determination quite uncertain there. The quoted 

errors for ( Al/I)rms range from about ±3 per cent at the center of the 

disk to ±10 per cent at JUL = 0.275. These values are estimates only, 

and the actual errors are probably somewhat larger. Edmonds extra

polated the contrast to zero at the limb for the normal granulation 

7 
pattern. 

The blanketing coefficient was calculated separately for each 

column by the method given in Chapter III. The blanketing coefficient 

for the composite model was taken as 

y [ - c x c ^ c  +  ( i - o r c )  

where q and ^ H are the blanketing coefficients of the cold and hot 

columns, respectively. 

The temperature differences between the hot and the cold 

columns were calculated for each model at both equal optical and equal 

5. Edmonds, 1962, Astrophvsical Tournal Supplement. J5, 365. 

6. Ibid., p. 399. 

7. Edmonds, pp. 1359-1360 of ref. inn. 3. 
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Table 3. RMS Relative Intensity Fluctuations at X = 5000 X 

(A I/I) rms 

1.00 ±0.117 

0.85 0.120 

0.70 0.166 

0.60 0.170 

0.50 0.153 

0.40 0.128 

0.30 0.101 

0.20 0.070 

0.10 0.037 

0.00 0.000 
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geometrical depths. In addition, the pressure differences between the 

hot and the cold columns at equal geometrical depths were also calcu

lated for each model. 

The input parameters for the two-column models discussed here 

consist of the blanketing parameters a, b, and c, the run of integrated 

radiative flux with depth in the cold column, 7TFQ (T'q), and the rela

tive intergranular area, Of q . 

A reasonable set of values for the blanketing parameters a and c 

was available from Swihart's work with homogeneous blanketed models. 

The value of b had to be adjusted to take account of the presence of the 

additional factor (1 - x^j) used in the definition of the line absorption 

coefficient in the present work. The parameter of Q was set equal to 0.6 

on the basis of the following argument. R. B. Leighton derived from 

Stratoscope photographs values of 640 km and 350 km for the average 

8 9 
sizes of the solar granules and intergranular regions, respectively. 

Assuming the granules are circular and are surrounded by intergranular 

rings, a value of 0.58 results for oCq. This method slightly underesti

mated the relative area of the intergranular regions, so a value of 0.6 

was used for oTq. This value is, of course, somewhat uncertain, but 

8. R. B. Leighton, 1963, Annual Review of Astronomy and 
Astrophysics, ed. L. Goldberg (Palo Alto, Calif.: Annual Reviews, Inc.), 
I. 22. 

9. Ibid., p. 29. 
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the results did not depend very sensitively upon the particular value of 

used. If the flux distribution is kept unchanged in the cold column, 

then an increase in CYq requires a greater flux at every depth in the hot 

column. A change of OCq from 0.3 to 0.7 gave in one case central 

intensities greater by 1.5 per cent at a wavelength of 4000 A and less by 

1.7 per cent at 5000 A, 4.2 per cent at 7000 A, and 3.3 per cent at 

10,000 A. The continuum limb darkening increased negligibly in con

trast at ^ = 0.85, 0.6 per cent atyu. = 0.50, and about 1 per cent at 

/l-o . 30. The granule contrast function at the center of the disk, 

K^fl), increased from 0.27 to 0.45. This increase made the model with 

of q = 0.7 (Model 5 of the models considered in this chapter) unac

ceptable, since the resultant rms relative intensity fluctuation was 

±0.225, whereas the observational value of Edmonds is ±0.117. At any 

rate, it is apparent that changes in Ofq are not very effective in altering 

the emergent radiation field. 

The models constructed at the start of this research had a 

constant integrated radiative flux as a function of depth in the cold 

column. The resultant composite models were characterized by rather 

large temperature reversals between the hot and cold columns, i.e., for 

a large range of geometrical depths, the cold column was actually con

siderably hotter than the hot column. The reason for this behavior can 

be explained in the following way. First of all, the temperature 
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gradients at large depths in the two columns can be written 

dTc(z) 
= • 4^ ' [TC(/)]3 » 

3_ Kq(z) />c(z) 

dz 

and 

where a is the radiation density constant and c is the speed of light. In 

the case of constant flux, 77Fq(z) and77"Fjj(z) are constant with depth. 

Down to a certain depth, z^, where the reversal occurs, the condition 

Th(z) > Tc(z) is satisfied. Thus from the perfect gas law it follows 

that PR(z)/ > Pq(z)/ fc(z). 

The equation of hydrostatic equilibrium applied to each column 

gives 

and 

These equations may be written in semi-logarithmic form as 

Pc(z) d logft F^(z)_ ^ 

dz 

and 
PH(Z) . d PH(Z> _ g 

dz 

Thus the fact that PH (z)/ jO H(z) is greater than Pq (z)/ JO ̂ (z) leads to 



113  

the conclusion that 

d loge Pc(z) ^ d loge PR(z) 

dz > dz 

Since PQ(Z = 0) = PH(z = 0), it follows that PQ(Z) > (zs) holds for 

certain in the range 0 < z < zR. Then y^_,(z) > ^H(z) holds as well. 

Now the absorption coefficient is inversely proportional to the tempera

ture, whereby Kq{z) > Ity(z) results. The inhomogeneous models 

under discussion here do exhibit a'q(Z) > /f jj(Z). Thus the ratio of the 

temperature gradients in the two columns becomes 

dTc /dTH _ Fc . Kg(z) . f^l 
dz I dz FR /CB( z )  pR(Z) 1_TC(Z)J 

This expression is composed of four factors, three of which are greater 

than unity. The remaining factor, F^/FJJ, is always less than unity, but 

it is outweighed by the other three factors, since &Iq/6z > dTpj/dz is 

found to be the case in the models having constant fluxes. The larger 

temperature gradient in the cold column produces the temperature 

reversal. When the ratio F^/F^ is decreased, it is found that the 

reversal depth, zR, becomes deeper, but a reversal still occurs. If Fq 

and FH are allowed to depend on depth in such a way that the ratio F^/ 

FH actually decreases with depth, the other three factors in the ratio of 
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temperature gradients are eventually overpowered. Such behavior results 

if 7TFq(z) decreases with depth and 7TFjj(z) increases. 

The variable flux distributions also compensate in a crude 

fashion for the neglect of radiative coupling between columns. Thus it 

seems likely that the hot column would radiate away some of the flux it 

carries to the adjacent cold columns. This process would presumably 

become more important the;higher one goes in the photosphere. The net 

effect would be a decrease in the integrated flux carried by the hot 

column as one moves to smaller optical depths and a corresponding 

increase in the integrated flux carried by the cold column. Although both 

the cold and hot columns are radiating away energy to adjacent columns, 

the contention here is that the hot column radiates away more energy at 

any given depth than it receives. The effect is a net loss in the inte

grated flux carried by the hot column—a loss which becomes greater as 

one moves progressively higher in the model photosphere. 

The fact that it was necessary to resort to a model with variable 

fluxes in order to obtain the best fit with the observed limb-darkening 

measures lends further support to this course of action. Models having 

constant fluxes could not be made to fit the observed limb darkening well 

and still satisfy the other observational tests, no matter what the choice 

was for the relative intergranular area or the blanketing parameters. 
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An interesting sidelight on the constant-flux models is that they 

all had granule contrast functions, K, which increased from the 

center of the disk to the limb. This behavior conflicts with that reported 

10 11 
by Wilson and by Whitney. As was discussed in Chapter II, both 

these authors found that the computed granule contrast decreased from 

the center of the disk to the limb for constant-flux models. 

Another point about the constant-flux models is that they had 

temperature differences at equal optical depths which decreased mono-

tonically all the way to zero optical depth. Using the simplified approach 

of the Eddington-Barbier relation and Wien's law as has been done by 

many authors, one would have predicted from the behavior of the calcu

lated granule contrast across the disk that the temperature differences 

would increase towards zero optical depth. Thus it is risky to apply 

oversimplified theoretical considerations to the interpretation of the 

variation of the granule contrast across the disk. 

The neglect of radiative coupling in the present work may be 

responsible for the behavior of the calculated granule contrasts. The 

fact that the variable-flux models, which do take radiative coupling into 

account in a rather rough way, all gave a granule contrast which 

decreased from the center of the disk to the limb adds credence to this 

10. P. R. Wilson, 1963. Ap.T. . 137. 606. 

11. C. A. Whitney, 1963. Ap.T.. 138. 537. 
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viewpoint. At any rate, variable fluxes are an essential feature of the 

final two-column model photosphere adopted here. 

Another essential aspect of the final model is the differential 

blanketing effect between the hot and cold columns. As was discussed 

in the preceding chapter, the line absorption coefficient, /C-^, was given 

by the expression 

k -jhl. 
L A 

Since the degree of ionization of the average metal, Xj^, was higher in 

the hot column than in the cold column at the same geometrical depth, 

the line absorption coefficient was correspondingly less in the hot 

column than in the cold column. The effect was quite pronounced, as 

the ratio of the value of in the hot column to its value in the cold 

column was, for example, 0.152 at z = 369 kilometers, or = 0.1, 

in the final model. 

A large number of models which had ^ = b/A only was con

structed during the early stages of this research. These models com

pletely neglected the difference in strength of the line absorption 

coefficient in the hot and cold columns as well as its variation with 

depth within each column. Many different combinations of reasonable 

values for the blanketing parameters were tried, and both constant-flux 

and variable-flux models were studied. The result was that a satisfac

tory fit to the observed solar radiation field could not be made, and, of 
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course, the constant-flux models all had temperature reversals from 

some geometrical depth downwards. 

In order to illustrate the preceding discussion of different types 

of inhomogeneous models in more concrete terms, a series of models is 

now presented. These models were calculated on the IBM 7072 com

puter operated by the Numerical Analysis Laboratory of the University of 

Arizona. The following models also constitute a good cross section of 

the various models that were tried before the final model was obtained. 

All these models are in radiative equilibrium to an accuracy usually of 

±1 per cent but not worse than ±2 per cent throughout the radiative part 

of the photosphere. A listing of the parameters and characteristics of 

each model is given in Table 4, where reference is made to the particu

lar table in which the central continuum intensities, 1^(0, l), in units of 

ergs cm 2 sec-1 ster 1 ( a\ = 1 cm) *, and the continuum limb 

darkening, I£ (0,jJL) = 1^ (0,yU )/I^ (0, l), for each model can be found. 

The final model is also listed in Table 4 for the sake of completeness. 



Table 4. Catalog of Models 

Model a 

1 

2 

3 

4 

0.15 5700 6.5 

0.095 60000 6.5 

Flux Distribution °CC 

Constant 

Constant 

Constant 

Variable 0.7 

5 0.15 5700 6.5 Constant 0.7 

6 0.111 60000 7.0 Constant 0.7 

7 0.13 56000 6.25 Constant 0.7 

8 0.095 60000 6.5 Variable 0.7 

9 °-095 i!S§§) 6-5 Variable 0.7 

10 0.15 19000 6.0 Constant 0.7 

11 0.095 70000 6.5 Variable 0.6 

Final 0.095 70000 6.5 Variable 0.6 
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Remarks 

Homogeneous and unblanketed 

Homogeneous and blanketed ( = b/A) 

Homogeneous and blanketed = - xm)/aJ 

Inhomogeneous and unblanketed 
TTFC = 0.85 7TF0 at Tq = 0.0 
TTFC = 0.65 TTTq at rc = 3.162 

Inhomogeneous and blanketed = b/A) 
ttfc = 0.77TFo 

7TFH = 1. 777 Fq 

Inhomogeneous and blanketed = b(l - x^j)/aJ 
7rFc = 0.77TFo 

7TFh = 1.7 77F0 

Inhomogeneous and blanketed <L = b(l - x^J)/a] 
TTYC = 0.857TFo 

7TFH = 1 . 35 7TF0 

Inhomogeneous and blanketed l>L " ̂  " xM»/A1 
77"Fq = 0.8577"F0 at -Tq = 0.0 
7TFq = 0.6577Fo at rc = 3.162 

Inhomogeneous and blanketed(= b/A) 
77"FQ = 0.8 7TFo at TQ = 0.0 "1 Slope of TTFq same as for 
7TFc = 0.6 77Fo at Tc = 3.162J Models 4 and 8. 

Inhomogeneous and blanketed ( = b/A) 
TTFC = 0.9 77"F0 

rrFH = 1.233 7TF0 

Inhomogeneous and blanketed |>L= b(l - xM)/Aj 
See Table 17 for flux distribution 

in cold column. 

Inhomogeneous and blanketed Ol = b(l - x^/A] 
See Table 17 for flux distribution 

in cold column. 
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Table 5. Continuum Central Intensities and Limb Darkening for Model 1 

\(A) Iv(0.1) x 10~14 jA. = 0.85 U- = 0.50 JA. = 0.30 

4000 4.204 0.8595 0.5446 0.3747 

5000 3.435 .8962 .6457 .4975 

6000 2.719 .9168 .7124 .5849 

7000 2.144 .9306 .7566 .6449 

8000 1.693 .9399 .7868 .6863 

9000 1.352 .9450 .8045 .7116 

10000 1.087 0.9492 0.8181 0.7299 



Table 

X(a) 

4000 

5000 

6000 

7000 

8000 

9000 

10000 

12000 

14000 

16000 

18000 

20000 

24000 
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Continuum Central Intensities and Limb Darkening for Model 2 

Iv(O.l) x 10 

5.338 

4.261 

3.303 

2.556 

1.985 

1.566 

1.242 

0.819 

0.574 

0.422 

0.276 

0.188 

0.0956 

-14 M = 0.85 

0.8745 

.9070 

.9268 

.9390 

.9470 

.9510 

.9550 

.9597 

.9642 

.9697 

.9723 

.9740 

0.9767 

l?(0,yn) 

U. = 0.50 

0.5847 

.6797 

.7411 

.7812 

.8083 

.8229 

.8355 

.8496 

.8614 

.8791 

.8892 

.8970 

0.9085 

^• = 0.30 

0.4206 

.5391 

.6208 

.6758 

.7136 

. 7351 

.7525 

.7703 

.7821 

.8042 

.8210 

.8340 

0.8534 
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Table 7. Continuum Central Intensities and Limb Darkening for Model 3 

i*(0,/o 

X (A) IvfO.l) x 10"14 V- = 0.85 JUL = 0.50 M= 0.30 

4000 4.984 0.8721 0.5810 0.4178 

5000 4.022 .9062 .6784 .5382 

6000 3.145 .9262 .7408 .6204 

7000 2.449 .9389 .7814 .6759 

8000 1.911 .9471 .8088 .7138 

9000 1.512 .9513 .8238 .7358 

10000 1.203 0.9550 0.8361 0.7531 
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Table 8. Continuum Central Intensities and Limb Darkening for Model 4 

\(A) iWO.l) x 10 

4000 4.338 

5000 3.458 

6000 2.703 

7000 2.123 

8000 1.673 

9000 1.338 

10000 1.076 

-14 

i£(o,yx) 

A = 0.85 JUL = 0.50 

o
 

00 o
 II 

0.8578 0.5345 0.3631 

.8913 .6370 .4892 

.9155 .7081 .5812 

.9303 .7533 .6426 

.9395 .7840 .6846 

.9444 .8012 .7091 

0.9489 0.8155 0.7278 



123  

Table 9. Continuum Central Intensities and Limb Darkening for Model 5 

i*(o,yu.) 

\(A) Iv(O.l) x 10~14 M- = 0.85 JU= 0. 50 j^= 0.30 

4000 5.446 0.8735 0.5805 0.4157 

5000 4.171 .9057 .6743 .5324 

6000 3.176 .9249 .7352 .6133 

7000 2.437 .9374 .7759 .6686 

8000 1.885 .9459 .8036 .7070 

9000 1.497 .9490 .8157 .7252 

10000 1.187 0.9531 0.8290 0.7433 
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Table 10. Continuum Central Intensities and Limb Darkening for Model 6 

K(0.1) x 10"14 ^ = 0.85 a= 0.50 U.= 0.30 

4000 5.349 0.8745 0.5851 0.4219 

5000 4.156 .9079 .6818 .5409 

6000 3.192 .9266 .7429 .6217 

7000 2.459 .9392 .7832 .6764 

8000 1.906 .9476 .8104 .7141 

9000 1.510 .9508 .8228 .7330 

10000 1.198 0.9548 0.8358 0.7511 
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Table 11. Continuum Central Intensities and Limb Darkening for Model 7 

i$<o./0 

\w Iv(O.l) x 10~14 >
 

il o
 

• 00
 

cn
 

>
 

il o
 

cn
 
o
 o

 
C

O
 o
 

II 

4000 5.014 0.8721 0.5795 0.4158 

5000 4.011 .9057 .6766 .5365 

6000 3.123 .9258 .7392 .6192 

7000 2.428 .9383 .7799 .6746 

8000 1.893 .9468 .8075 .7127 

9000 1.499 .9508 .8221 .7342 

10000 1.193 0.9545 0.8346 0.7516 
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Table 12. Continuum Central Intensities and Limb Darkening for Model 8 

^(AL K 10.1) X 10'14 j*- = 0. 85 jA-0.50 M . Q.JQ 

4000 5.207 0.8691 0.5643 0.3928 

5000 4.077 .9024 .6622 .5155 

6000 3.144 .9232 .7260 .6010 

7000 2.433 .9351 .7679 .6597 

8000 1.894 .9435 .7968 .7002 

9000 1.501 .9476 .8119 .7221 

10000 1.193 0.9524 0.8260 0.7406 
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Table 13. Continuum Central Intensities and Limb Darkening for Model 9 

itfo./o 

\(A) KfO.l) x 10"14 yU. • Q.85 jk • 0.50 M = 0.30 

4000 5.495 0.8701 0.5632 0.3795 

5000 4.223 .9015 .6484 .4866 

6000 3.214 .9207 .7075 .5681 

7000 2.466 .9325 .7492 .6258 

8000 1.909 .9406 .7788 .6673 

9000 1.511 .9449 .7946 .6908 

10000 1.200 0.9500 0.8102 0.7125 
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Comparison of Models 1 and 2 reveals that including 

blanketing in a homogeneous model raises the central continuum intensi

ty and decreases the center-limb intensity contrast. These effects are 

more pronounced at the shorter wavelengths. Model 2 gives an overall 

better fit to the observed central intensity and limb darkening than 

Model 1 does. Model 2 is also the one presented by Swihart as giving 

the best fit of the homogeneous models to the observed solar continuum 

radiation field. The central intensities and limb darkening for this model 

are given for a larger spectral range in order to allow a more complete 

comparison with the final model. 

The effect on a homogeneous model of- the variable blanketing 

with depth produced by use of ^ = b (1 - xm)/A for the line absorption 

coefficient can be estimated to be ratherTmall by comparing Models 2 

and 3, even though the value of a was different for the two models. 

Model 2 has X's  = 3.92 and Model 3has\'s = 3.25, so blanketing was 

total over a larger spectral range in Model 2. This fact accounts for the 

higher central intensities and slightly less center-limb contrast at 

shorter wavelengths of Model 2. The quantity X's Is the wavelength, 

in units of 10^ A, at which the blanketing becomes total. As was dis

cussed in Chapter III, no continuum radiation is emitted by a blanketed 

mode l  fo r  X' ^ X's .  
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The effect of inhomogeneities, independent of the blanketing 

effect, can be assessed by reference to Models 1 and 4. Here it is seen 

that inhomogeneities introduce greater center-limb contrast—an effect 

which is more pronounced at the shorter wavelengths. Also the central 

intensities are slightly larger for Model 4 for X ^ 5000 A and slightly 

smaller for X > 5000 A. On the whole, there does not appear to be too 

much difference between the continuum intensities of Models 1 and 4. 

Model 4 tends to be in slightly worse agreement with the observed inten

sities. On the basis of Model 4, the case for inclusion of inhomogenei

ties does not appear too encouraging. 

Model 2 and Model 5 show the effect which the inclusion of 

inhomogeneities has on a blanketed model in the case of constant 

blanketing. Model 5 has slightly greater center-limb contrast than Model 

2 does and in the direction of a better fit to the limb-darkening obser

vations, but the effect is everywhere less than 1.5 per cent. The fit of 

the calculated central intensities to the observations is good for both 

models. Thus one might conclude that the inclusion of inhomogeneities 

does not improve a blanketed model any more than it does an unblanketed 

model. In addition, Model 5 was a rather extreme model in view of the 

very large difference in the flux carried by the hot and cold columns. 

This difference was reflected in the fact that (1) was 0.45 at 

X = 5000 A, whence (AI/I)rms=±0.22 at JUL= 1, a value which is much 
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too large. Thus it appeared that, if no improvement could be obtained in 

fitting the observations by pushing the inhomogeneities to an extreme, 

then there was little hope of doing so in less extreme cases. 

Turning to Model 6, it can be seen that the inhomogeneous model 

with variable blanketing in its hot and cold columns does not give an 

improved fit of the limb darkening over that given by Model 5. In fact, 

Model 6 has practically the same central intensities and limb darkening 

as the homogeneous Model 2 has. Model 7 has slightly greater center-

limb contrast than Model 6. This fact illustrates the effect of a smaller 

value of \' for Model 7 (3.47 compared to 4.0 for Model 6), since the 
b 

decreased difference in flux between hot and cold columns would give less 

center-limb contrast if it were the only difference between Model 6 and 

Model 7. Model 7 gives about the same fit of the observed central inten

sities as Model 2 does but is somewhat improved with regard to the limb 

darkening. Still, the gains do not appear to be very great in comparison 

to the ordinary homogeneous blanketed model. 

Comparison of Model 7 with Model 5 reveals that the latter has 

slightly more contrast in its limb darkening, particularly at the longer 

wavelengths. Most of this difference, however, is due to the reduced 

difference between the fluxes of the cold and hot columns of Model 7. 

This reduction is reflected in the fact that the value of K^(l) is 0.22 for 
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Model 7, an acceptable value, but 0.45 for Model 5, which is con

siderably too large . 

Model 8 exhibits an overall increase in contrast in the limb 

darkening compared to the homogeneous blanketed models (2 and 3) and 

the inhomogeneous blanketed models (5, 6, and 7) as well. The fit with 

the observed limb darkening is improved, while the central intensities 

are about the same as those of Model 7. Model 8 has variable fluxes in 

the hot and cold columns. This characteristic accounts for most of the 

improvement in the predicted radiation field. Model 8 has K^(l) = 0.27, 

which is an acceptable value, and its estimated blanketing coefficient 

is 0.10, which is also within the range of acceptability. 

In considering Model 9, which has constant blanketing but vari

able fluxes, it is apparent that it is not the variable fluxes alone which 

produced the improvement in the predicted limb darkening noted for 

Model 8. Although If is 3.57 times larger in the cold column than in 
1j 

the hot column, it does not vary with depth in either column. Model 9 

has greater center-limb contrast in its limb darkening than Model 8 has, 

but it gives a poorer fit to the observations. Some small part of the dif

ference is due to the increased difference in flux between the hot and cold 

columns in Model 9, but certainly not all of it. Also, there is a slight 

temperature inversion in the hot column of Model 9. 

The general conclusion to be drawn from the preceding review of 

various types of solar model photospheres is that an inhomogeneous 
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blanketed model can give improved agreement between the predicted and 

observed continuum radiation fields. It seems, however, that both vari

able fluxes and variable blanketing are required in the hot and cold 

columns in order to achieve such an improved agreement. 

It should be stressed that none of the models just considered 

was adopted as the final model. These models were included simply to 

illustrate the evolution in thinking which occurred during the course of 

the present research. It seemed apparent from the start that inhomo-

geneities due to the solar granulation had to be included in any realistic 

model of the solar photosphere. The problem was how to proceed in a 

fairly simple yet physically meaningful fashion. Thus an obvious corol

lary of the inclusion of inhomogeneities appeared to be the variable 

blanketing which differed in the hot and the cold columns. A less obvi

ous corollary was the introduction of variable fluxes with depth, as was 

suggested by Swihart. Still, the plausibility argument given earlier would 

seem to indicate that this behavior is consistent with the physics of the 

situation, namely, increasing net radiative interchange of energy as one 

moves higher in the photosphere. 

Thus one was faced here with a set of fairly obvious physical 

features which the model must exhibit. The difficulty was encountered 

in adjusting the large number of parameters involved in order to construct 

a model which was physically meaningful but which at the same time gave 
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a continuum radiation field in better agreement with the observations 

than a homogeneous blanketed model of the photosphere was able to give. 

For example, there was virtually an unlimited number of flux distributions 

with depth from which to choose. 

It should also be mentioned that the models discussed above 

were selected mainly so that most of them differed from the remainder in 

one essential characteristic (such as blanketed versus unblanketed). 

There were other models of some of the same types which gave better fits 

of the limb-darkening observations by virtue of different choices of the 

model parameters. For example, in Table 14 the radiation field for Model 

10 is given. It is seen from the table that this model fits the observed 

limb darkening very well out to yU = 0.3. Its central intensities are 

slightly too large, but they are still acceptable. It also has a granule 

contrast function, K^(l) = 0.18, which is acceptable, but its blanketing 

coefficient is 0.192, which lies outside the range of acceptability. 

Furthermore, Model 10 has a temperature reversal zone extending from a 

certain depth downwards. This model also did not have either variable 

blanketing or variable fluxes, which were found to be essential to 

achieving the best overall fit of the solar radiation field. 

The continuum central intensities and limb darkening for the 

inhomogeneous model adopted here as the final model are given in Table 

15. They are also shown along with the observations in Figure 1 and 
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Table 14. Continuum Central Intensities and Limb Darkening for Model 10 

ij(o#a) 

\(A) K (0.1) x 10"14 M = 0.85 0.50 ^=0.30 

4000 5.719 0.8718 0.5746 0.4032 

5000 4.446 .9044 .6660 .5165 

•6000 3.394 .9231 .7256 .5957 

7000 2.602 .9352 .7660 .6511 

8000 2.008 .9437 .7942 .6904 

9000 1.583 .9477 .8089 .7123 

10000 1.254 0.9519 0.8227 0.7314 
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Table 15. Continuum Central Intensities and Limb Darkening for the 
Final Model 

A (A) Iv(O.l) x IP"14 

4000 5.273 

5000 4.132 

6000 3.185 

7.000 2.462 

8000 1.912 

9000 1.514 

10000 1.202 

12000 0.795 

14000 0.560 

16000 0.413 

18000 0.271 

20000 0.184 

24000 0.0941 

JU = 0.85 

0.8725 

.9050 

.9253 

.9378 

.9457 

.9497 

.9541 

.9592 

.9642 

.9705 

.9729 

.9744 

0.9765 

/<=0.50 

0.5754 

.6681 

.7289 

.7689 

.7969 

.8117 

.8261 

.8447 

.8598 

.8814 

.8908 

.8972 

0.9070 

0.30 

0.4010 

.5167 

.5980 

.6543 

.6939 

.7161 

.7357 

.7587 

.7767 

.8055 

.8210 

.8328 

0.8490 
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Fig. 1.—Continuum Central Intensity versus Wavelength 

The solid curve represents the observations 
according to Minnaert. The X's are the values predicted 
by the final model. 
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Figure 2. The agreement between the calculated and observed central 

continuum intensities is acceptable, particularly in view of the fact that 

the Minnaert values tend to be the lowest of all quoted values. The dif

ferences are +14.6 per cent at X = 4000 A, +3.9 per cent at X = 6000 A, 

+ 1.9 per cent at X = 8000 A, -0.7 per cent at X = 10,000 A, +10.7 per 

cent at X = 16,000 A, and +10.0 per cent at X = 24,000 A. Another 

reason that not too much concern is felt over the size of these errors is 

that adjustment of the blanketing parameter b would allow one to bring 

the calculated central intensities into better agreement with the defini

tive observations when they become available. 

Not too much attention should be paid to the large discrepancies 

between the calculated and observed central intensities which set in at 

wavelengths of 4000 A or less, although data for the final model is not 

given for X < 4000 A. Due to the crude fashion in which the blanketing 

effect is treated here (i.e., the modified picket-fence approach), one 

cannot expect the calculated intensities in the short-wave length region 

of the spectrum, where the blanketing is most pronounced, to be very 

well determined. Thus little importance is ascribed to the deviations 

which occur between theory and observations in this spectral region. The 

structure of the upper regions of the photosphere, from which most of the 

radiation at short wavelengths is emitted, is simply not well determined 

by the present procedure. These are essentially the same remarks made 
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Fig. 2.—Continuum Limb Darkening versus Wavelength 

The observations given by the solid, dashed, and dotted curves are those compiled by 
Pierce and Waddell. The X's are the values predicted by the final model. 
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by Swlhart in connection with his recent work on homogeneous blanketed 

model photospheres. 

The agreement between the calculated continuum limb darkening 

of the final model and the observations is quite satisfactory. At JA = 0.85, 

the largest difference is -0.6 per cent at X = 5000 A. At Jj. = 0.50, the 

largest difference again occurs at \ = 5000 A, where the predicted value 

lies 2.0 per cent below the observed value, but, in general, the agree

ment is to within 0. 5 per cent except for X > 14,000 A, where the 

predicted values have up to 1.0 per cent too much contrast. Atytt = 0. 30, 

the maximum difference is -1.8 per cent, again at X = 5000 A. The.over

all agreement, although not as good as atyA. = 0.50, is still up to 1.4 

per cent or better at all the other wavelengths listed. Although the limb 

darkening of the final model at jj. = 0.20 is not given here, the agree

ment with observation is still quite satisfactory. The maximum difference 

over the spectral range 4000 A to 24,000 A is +2.6 per cent at X = 6000 A. 

The presence of the increased center-limb contrast at 5000 A 

relative to the other wavelengths was consistently noted for all models. 

This tendency for the relative intensity at 5000 A to stand out was also 

present in the homogeneous and blanketed Model 2. For example, at 

JU = 0.50, the relative difference between theory (Model 2) and obser

vation is +2.0 per cent at X = 4000 A, -0.3 per cent at X = 5000 A, and 

+ 1.4 per cent at X = 6000 A. Likewise, at yK. = 0.30, the corresponding 
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differences are +5.0 per cent, +2.4 per cent, and +4.3 per cent, res

pectively. Thus it appears that the cause of this behavior is not pecu

liar to the final model adopted here. It is possibly due to an excess of 

continuous absorption by the upper regions of the photosphere in the 

neighborhood of 5000 A, but a detailed investigation into the cause of 

this behavior was not attempted. 

Since Model 2 was the best of the homogeneous blanketed 

models recently constructed by Swihart, comparison of it to the final 

model gives a good idea of the overall improvement achieved here in 

fitting the limb-darkening observations. The greatest improvement 

occurred at 0.30, where, for X ^ 10,000 A, the final model gives 

differences from the observed limb darkening about one-fourth as large 

as those of Swihart's model, i.e., 0.8 per cent compared to 3.6 per cent. 

For \ ̂  16,000 A, the two models agree quite closely both as far as the 

limb darkening and the central intensities are concerned. 

Model 11, for which the results are given in Table 16, serves to 

illustrate the sensitivity of the final model to the particular distribution 

which is used for 7Tas a function of depth. Model 11 and the final 

model are alike in all respects, except for the flux distributions in their 

cold columns. The two distributions of 77FQ with optical depth in the 

cold column are given in Table 17. The difference is essentially that the 

cold column of Model 11 carries slightly less flux in general than does 
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Table 16. Continuum Central Intensities and Limb Darkening for Model 11 

X(A) Iv(O.l) x 10 

4000 5.236 

5000 4.117 

6000 3.179 

7000 2.460 

8000 1.912 

9000 1.514 

10000 1.202 

-14 

lj[(0 ,yU) 

L = 0.85 JA = 0.50 U = 0.30 

0.8732 0.5782 0.4078 

.9058 .6736 .5254 

.9261 .7348 .6061 

.9384 .7748 .6620 

.9467 .8026 .7010 

.9504 .8169 .7225 

0.9546 0.8307 0.7416 

Table 17. Distribution of Integrated Flux in the Cold Columns of 
Model 11 and the Final Model 

0.000 

.100 

.178 

.316 

.562 

1.000 

1.778 

3.162 

5.623 

10.000 

TTFC( rc)/-rrF0 

Model 11 

0.792 

.792 

.795 

.796 

.783 

.740 

. 6 6 1  

.605 

.599 

0.600 

Final Model 

0.797 

.797 

.797 

.798 

.797 

.777 

.684 

.589 

. 601  

0.600 
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the cold column of the final model. An interesting side-effect is that 

there is no temperature-reversal zone in the composite Model 11, where

as there is a small one in the final model, as will be discussed later on. 

As far as the radiation field is concerned, the central intensi

ties of Model 11 and the final model are practically identical. There is a 

noticeable difference, however, in their limb darkening. Model 11 gives 

a decidedly worse fit to the observations than does the final model, par

ticularly near the limb. Model 11 also has a slightly greater granule 

contrast function, K^(l) = 0.31 as opposed to 0.30 for the final model. 

Thus the necessity of constructing such a large number of models before 

a generally acceptable one was found becomes clear. The number of pos

sible combinations of the blanketing coefficients and flux distributions 

made the search a lengthy one. 

The variation with depth of the integrated composite radiative 

flux of the final model is given in Table 18. The optical depth used in 

this table is the one in the hot column at X = 5050 A. In this table it is 

shown that the flux constancy is preserved to within ±1 per cent down to 

fjj = 3.162. The value of 7TF at T'JJ = 10.0 is somewhat uncertain, 

since = 10) >10, and 7TFQ was not calculated for TQ >10. 

Consequently, TTq was extrapolated to "£q(Th = 10) = 14 in the course 

of computing the hot column of the final model, but, in spite of the 

uncertainty implicit in such an extrapolation, the relative error in the 
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Table 18. Variation of the Integrated Composite Flux with Depth in the 
Final Model 

_  O  _ 1  
The units of 7TF are ergs cm ° sec 1. 

h 

0.000 

.100 

.178 

.316 

.562 

1.000 

1.778 

3.162 

5.623 

10.000 

7t? x 10"10 

6.345 

6.348 

6.354 

6.390 

6.385 

6.292 

6.322 

6.263 

6.230 

6.435 

(7TF- 7TFo)/yrFo 

+0.0024 

+ .0028 

+ .0038 

+ .0094 

+ .0087 

-  .0060 

- .0012 

- .0105 

- .0158 

+ 0 . 0 1 6 6  
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composite flux is still probably of the same order of magnitude. In any 

event, flux constancy at such large optical depths is probably not a 

physically meaningful requirement, in view of the onset of convection in 

the deeper photosphere. 

The two additional observational quantities calculated for the 

final model are the blanketing coefficient and the granule contrast function. 

The blanketing coefficient, fj , was found to be about 0.16. This value 

is high but still within acceptable limits. The blanketing coefficient was 

0.15 for the cold column and 0.18 for the hot column. Thus although KT li 

is greater in the cold column than in the hot column (see Tables 20 and 

21), the shifting blueward of the spectral distribution of the energy radi

ated at each depth in the hot column relative to the spectral distribution 

for the cold column caused a greater fraction of the former distribution to 

lie in the blanketing region. For this reason, even though the line opacity 

was smaller in the hot column, more of its radiated energy lay at wave

lengths subject to line absorption than was the case in the cold column. 

The blanketing parameters a and c for the final model result in total 

blanketing for X £ 3250 A and no blanketing beyond X = 6500 A. 

The granule contrast function of the final model, is given 

in Table 19 for several wavelengths. Upon examination of this table, two 

general trends are apparent in . The first is that the granule con

trast function decreases from the center of the disk to the limb, and the 
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Table 19. Granule Contrast Function for Final Model 

^c\X(A) 5Q00 5400 5800 

1 . 0 0  

0.85 

.70 

. 6 0  

.50 

.40 

.30 

0 . 2 0  

0.300 0.273 0.251 

.291 .265 .244 

.280 .255 .234 

.270 .246 .226 

.259 .237 .219 

.249 .228 .211 

.238 .219 .204 

0.233 0.216 0.203 
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second is that it decreases towards longer wavelengths. From other 

m o d e l s ,  i t  w a s  a l s o  n o t e d  t h a t  t h e  m o n o t o n i c  d e c r e a s e  i n  K w i t h  

increasing X is present at wavelengths as short as 4200 A. No defini

tive observations of the granule contrast as a function of wavelength 

appear to exist, so no test of this prediction of the final model can be 

made. Application of the factor of 0.5 to the granule contrast function, 

in accordance with de Jager's discussion, gives an rms relative intensity 

fluctuation for the final model at X = 5000 A which decreases from 

±0.150 at jjl = 1 to ±0.125 at 0.4, whereas Edmonds' results give 

±0.117 and ±0.128, respectively. Comparison of 0.5 (jjl) and 

Edmonds' data for X = 5000 A, which is given in Table 3 in this chapter, 

i s  shown in  Figure  3.  Edmonds '  curve  i s  an extrapola t ion f rom ja = 0 .40  

to the limb. The agreement is far from perfect, since the theoretical 

curve shows no maximum at yK - 0.6, but the overall agreement between 

theory and observation is considered to be satisfactory. The chief 

objection that can be raised against the theoretical granule contrast is 

that it is simply too large at the center of the disk. After all, a value of 

K^(1.0) = 0.30 implies that IJJ (0,1)/Iq (0,1) = 1.85, whereas the largest 

observed values for the ratio of granule to intergranular intensities are on 

12 the order of 1.35. De Jager's analysis, which was mentioned earlier, 

12. M. Waldmeier, 1955, Erqebnisse und Probleme der Sonnen-
forschung (2nd ed.; Leipzig: Geest and Portig K.-G.), p. 96. 
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Fig. 3.—Variation across the Disk of RMS Granule 
Contrast for X = 5000 A 

The solid curve represents the data of Edmonds. 
The X's represent the values predicted by the final model. 
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would give a value of 1.61 for this ratio based on Edmonds' rms value of 

±0.117 at the center of the disk. The theoretical granule contrast of 85 

per cent at the center of the disk would imply that the largest observed 

values require an additional correction factor of 2.4, and even the large 

intensity ratio of 1.61 derived from Edmonds' data implies a correction 

of 1. 74 to these other observations. Although this possibility cannot be 

excluded, in light of the discussion by Blackwell et al1^ and by Fell-

gett1^ on the contrast transmission function of telescopes, it does not 

seem very likely. The only defense that can be offered for the theoreti

cal granule contrast of the final model is that no models could be found 

which had a smaller granule contrast but still satisfied all the other 

observational criteria as well as the final model. The extreme difficulty 

of accurately determining the granule contrast observationally, as evi

denced by the disparity between Edmonds' contrast and that of other 

observers, permits a considerable amount of flexibility in the strictness 

with which this criterion can be applied in the evaluation of a theoretical 

model. For the present, it is concluded that the final model cannot be 

definitely invalidated on this one point. 

13. D. E. Blackwell, D. W. Dewhirst, and A. Dollfus, 1959, 
Monthly Notices of the Royal Astronomical Society. 119. 98. 

14. P. Fellgett, 1959, Monthly Notices. 119. 475. 
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The physical structures of the cold and hot columns of the final 

model are given in Tables 20 and 21 as a function of depth in each column. 

The optical depth in each case is based on = /fcont^ + wx*-L
at 

A = 5050 A. For the final model, the value of is 0. 20 at X = 5050 A. 

The level z = 0 is taken at f = 0.0001 in each column. 

Several comments should be made concerning-the data in Tables 

20 and 21. First of all, the temperature difference between columns at 

equal optical depths decreases from 788.6 °K at t = 0.0001 to a mini

mum of 705.2 °K at f = 0.1, after which it begins a monotonic increase 

and reaches 1143.7 °K at f=1.0, 1401.6 °K at f = 2.0, and 2094.5 °K 

at T = 5.0. Next, the density in both columns exhibits a negative gradi

ent starting at approximately log Th = 0.0 in the hot column and log Tq = 

0.6 in the cold column. The more extensive data from which these tables 

were extracted allow these points to be established more exactly, and 

the results are that negative density gradients commence at log = 0.10 

and log'CQ = 0.60, respectively. These points correspond to very nearly 

the same geometrical depth in each column, namely, Zg = 711 km and 

Zq = 714 km. As has been pointed out by Swihart, a negative density 

gradient is indicative of convective instability,*® but no effort was made 

in the present study to modify the unstable zones of either column. It 

15. T. L. Swihart, 1964, Smithsonian Astrophvsical Observa
tory Special Report. No. 167, p. 216. 



Table 20. Physical Structure of the Cold Column of the Final Model 

logr z(km) T(°K) -•2 P(dynes cm ) ^cont j,(cm 29m ~1) /Cl (cm^gm-*) 
_ o  

/2(gm cm ) 

-3.0 68.6 4432 1.28 x 103 0.004 0.248 
T 

4.07 x 10~9 

-2.0 198.5 4448 3.96 x 103 0.010 .572 i, 1.26 x 10~8 

-1.6 260.4 4476 6.80 x 103 0.015 .753 2.15 x 10"8 

-1.2 329.7 4545 1.24 x 104 0.025 .890 3.85 x 10"8 

-1.0 368.6 4609 1.72 x 104 0.032 .910 5.28 x 10"8 

-0.8 411.7 4710 2.46 x 104 0.044 .860 7.40 x 10~8 

-0.6 459.2 4825 3.63 x 104 0.061 .812 1.06 x 10"7 

-0.4 5,09.5 4976 5.42 x 104 0.084 .721 1.54 x 10"7 

-0.2 563.1 5199 8.17 x 104 0.105 .566 2.22 x 10~7 

0.0 617.2 5558 1.21 x 105 0.216 .392 3.08 x 10"7 

0.2 661.3 6015 1.63 x 105 0.461 .295 3.83 x 10~7 

0.4 691.9 6495 1.97 x 105 1.00 .246 4.29 x 10"7 

0.6 713.8 7056 2.24 x 105 2.24 .208 4.48 x 10~7 

0.8 728.7 7789 2.42 x 105 5.47 .160 4.38 x 10'7 

1.0 738.5 8684 2.54 x 105 14.3 0.136 4.09 x 10"7 



Table 21. Physical Structure of the Hot Column of the Final Model 

log T z(km) T(°K) P (dynes cm fcont x(cm ^ (cm^gm 1) _3 p (gm cm ) 

-3.0 152.0 5220 2.14 x 103 0.011 0.054 
/ 

5.80 x 10~9 

-2.0 342.1 5230 8.75 x 103 0.026 .123 2.37 x 10~8 

-1.6 418.5 5246 1. 54 x 104 0.039 .172 4.16 x 10"8 

-1.2 494.6 5282 2.70 x 104 0.059 .233 7.24 x 10~8 

-i.O 532.8 5315 3.58 x 104 0.074 .265 9.52 x 10~8 

-0.8 571.2 5419 4.72 x 104 0.100 .269 1.23 x 10"7 

-0.6 609.6 5504 6.21 x 104 0.132 .282 1.60 x 10~7 

-0.4 647.6 5697 8.10 x 104 0.198 .265 2.01 x 10"7 

-0.2 680.0 6116 1.00 x 105 0.408 .214 2.32 x 10"7 

0.0 702.9 6701 1.16 x 105 1.02 .173 2.44 x 10"7 

0.2 718.4 7305 1.26 x 105 2.30 .144 2.43 x 10"7 

0.4 729.2 8056 1.33 x 105 5.61 .118 2.32 x 10"7 

0.6 736.4 8972 1.38 x 105 15.2 .094 2.12 x 10"7 

0.8 740.8 10042 1.40 x 105 46.0 .072 1.86 x 10~7 

1.0 743.6 11128 1.41 x 105 127.6 0.054 1.58 x 10"7 
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was assumed that the necessary modifications of the structure of these 

regions in order to take into account convective energy transport would 

not appreciably affect the emergent radiation field. As was mentioned in 

Chapter III, Swihart has found that the inclusion of an adiabatic region in 

the unstable part of the photosphere beneath the upper radiative layers 

has a rather small effect on the emergent intensities. 

The second comment is that the horizontal optical thicknesses of 

elements comparable in size to the granules (hot column) and inter-

granular regions (cold column) should be computed at various depths in 

order to check on how good the initial assumption of large optical thick

nesses in the horizontal direction is. The values adopted here for the 

average size of the granules and intergranular regions are 640 km and 

350 km, respectively. The horizontal optical thickness of a granule is 

denoted as f^ and that of an intergranular region as t*2. Table 22 gives 

and *C 2 as functions of geometrical depth. The absorption coefficient 

used was ky = ^COnt^ + wa ̂  L at ^ = 5050 A. Also tabulated are the 

optical depths in the hot and cold columns for the geometrical depths 

listed. As is seen from this table, the assumption of optically thick 

columns is certainly not valid at geometrical depths less than approxi

mately 660 km. As stressed earlier, the incorporation of variable fluxes 

compensates in a crude fashion for the breakdown of the radiative 

de-coupling assumed to hold between the hot and cold columns of the 
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Table 22. Horizontal Optical Thicknesses at Various Depths in the Final 
Model 

z(km) j-j. rh h tc 

0.0 0.002 0.0001 0.002 0.0001 

404.2 .02 .021 .53 .15 

500.9 .52 .068 1.16 .37 

599.7 1.72 .22 2.58 .86 

661.3 4.27 .48 6.99 1.58 

700.0 13.9 .93 20.3 2.93 
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model as a result of the assumption of large optical thicknesses in the 

horizontal direction. The small horizontal optical thicknesses in the 

upper layers also indicate that as the limb is approached, the line-of-

sight will actually traverse several adjacent elements before the cumu

lative optical thickness becomes very large. This effect was completely 

neglected in the present work. 

Since accurate interpolations for the temperatures and pressures 

at equal geometrical depths in the two columns are not conveniently 

made from the data contained in Tables 20 and 21, it was decided to also 

include, in Table 23, a brief tabulation of these quantities. The pressure 

2 — 7 at the top of each column was always taken as 7.00 x 10 dynes cm 

throughout these calculations. The following features of the data in 

Table 23 are deserving of comment. The temperature differences between 

the hot and cold columns at equal geometrical depths are smaller than 

those at equal optical depths. The cause of this behavior is that the 

absorption coefficient is greater in the cold column than in the hot column 

at equal geometrical depths. In all previous inhomogeneous models of 

the photosphere, the temperature differences were greater at equal geo

metrical depths than at equal optical depths. The behavior of the present 

model stems partly from the relaxation of the pressure-equality condition 

and partly from the neglect in most previous models of the blanketing 

effect. The relaxation of the pressure-equality condition results in 
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Table 23. Physical Conditions at Equal Geometrical Depths in the Hot 
and Cold Columns of the Final Model 

z(km) 

0 . 0  

405.8 

507.3 

6 1 6 . 1  

670.2 

708.7 

720.5 

729.2 

734.3 

738.1 

741.4 

TH(°K) 

5219 

5242 

5292 

5516 

5965 

6883 

7423 

8056 

8650 

9317 

10217 

Tc(°K) Ph (dynes cm-2) 

4430 

4694 

4968 

5549 

6148 

6880 

7336 

7825 

8236 

8635 

9084 

7.00 x 102 

1.40 x 104 

2.97 x 104 

6.50 x 104 

9.42 x 104 

1.19 x 105 

1.27 x 105 

1.33 x 105 

1.36 x 105 

1.38 x 105 

1.40 x 105 

Pq(dynes cm"2) 

7.00 x 102 

2.35 x 104 

5.33 x 104 

1.20 x 105 

1.72 x 105 

2.17 x 105 

2.32 x 105 

2.43 x 105 

2.49 x 105 

2.53 x 105 

2.57 x 105 
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larger pressures in the cold column than in the hot column. This situation 

tends to increase the absorption coefficient in the cold column relative 

to that in the hot column. The inclusion of the blanketing effect in a way 

which allows it to depend on the amount of neutral metals present, i.e., 

= b(l - Xj^)/A, has the effect of giving a larger in the cold 

column than in the hot column. Again the result is to enhance the 

absorption coefficient in the cold column relative to that in the hot 

column. 

An odd feature noted from Table 23 is that the hot column is 

colder than the cold column for a distance of approximately 92 km from 

z = 616.1 km. The hot column again exceeds the cold column in tempera

ture at z = 708.7 km. The corresponding ranges in optical depth are 1.0 

to 3.4 in the cold column and 0.27 to 1.16 in the hot column. At equal 

optical depths, the hot column is hotter than the cold column throughout 

the entire model. The maximum temperature reversal effect of -183 °K 

occurs at z = 670.2 km. This reversal zone is a peculiarity of most of 

the models constructed, and no model was found which contained no 

temperature-reversal zone but gave as good a fit to the observations as 

the final model. As was shown earlier in this chapter, the reversal zone 

comes about as the result of physical conditions in the cold column pro

ducing a steeper temperature gradient there than in the hot column. This 

effect has no significance as far as the validity of the simulation of solar 
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granulation by a columnar model is concerned. It was mentioned in 

Chapter II that Vitense in her discussion of the solar convection zone 

by means of the mixing-length theory had encountered a temperature 

reversal between the granules and their surroundings at equal geometrical 

depths in the upper portions of the photosphere (between log P = 4.79 and 

log P = 4.9). 

The other interesting feature which a glance at Table 23 reveals 

is that the horizontal pressure differences are rather large. Following 

the suggestion made earlier, one can assume that the difference in 

pressure acts over half the diameter of a granule cell, or about 495 km. 

The granule cell size is taken here as simply the sum of the average 

sizes of the granules and the intergranular regions. This effective pres

sure gradient will cause a horizontal acceleration, which is given by the 

following equation: 

d2x = L_ . A P = 2_ . _AP ( 

dt^ y^av (ax/2) />av ax 

where yOav is the average density at the depth in question, A P is the 

horizontal pressure difference, and A x is the granule cell size. The 

time required for this horizontal acceleration to move the cell half its 

diameter is simply 

"-MS-

or, substituting for the acceleration from the preceding expression, the 
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following equation results: 

at = (Ax)2/?av 

2 AP 

= Ax RE-
— 7 —3 At z = 708.7 km, the appropriate data are y0av = 3.46 x  10 ' gm cm , 

A P = 9.80 x 10^ dynes cm and Ax = 9.90 x 10^ cm. One thus 

obtains 

A t  = 132 sec = 2.20 min. 

This time is of the same order of magnitude as the observed average 

16 granule lifetime of 8.6 min. This agreement is one of the bonuses of 

relaxing the condition of pressure equality between columns at the same 

geometrical depth. The value of At does not vary too rapidly with depth, 

as it is 2. 32 min at z = 670. 2 km and 2.10 min at z = 720. 5 km. Thus it 

seems reasonable to suppose that horizontal pressure differences play a 

role in determining the lifetimes of solar granules. 

This chapter summarizes the results of the principal research 

undertaken for this dissertation. The final model adopted here for the 

solar photosphere incorporates both the blanketing effect and inhomogene-

ities due to solar granulation. This model is also in radiative equilibrium 

to an accuracy of ± 1 per cent throughout the region above f H = 3.16. 

16. J. Bahng and M. Schwarzchild, 1961, Ap. I.. 134. 312. 
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Finally, the final model reproduces the observed solar continuum central 

intensities within the limits of disagreement between various published 

values (10 per cent) and the observed continuum limb darkening to an 

accuracy of the order of 1 per cent as near to the limb as jJ. = 0. 30. The 

final model also has an acceptable value of the blanketing coefficient, 

but the simulated granule contrast may be too large. The relaxation of 

the pressure-equality condition gave horizontal pressure differences 

compatible with the observed average granule lifetime. The neglect of 

radiative coupling between columns was compensated for in a crude 

manner by the use of variable fluxes in the hot and cold columns. This 

aspect of the final model is one which should receive a more refined 

treatment in future investigations. 



SUMMARY AND RECOMMENDATIONS 

FOR FUTURE WORK 

Earlier efforts to take granulation into account in the con

struction of models of the solar photosphere are discussed here in detail. 

Most earlier studies were found to be lacking in one or more features 

considered essential to an accurate description of physical conditions in 

the photosphere. In particular, little heed was paid to either the 

blanketing effect or to the condition of radiative equilibrium. Further

more , none of the models considered gave good agreement with the 

observed solar radiation field over a range of wavelengths and disk 

positions which could be considered adequate. 

Thus the motivation for the work carried out for this disser

tation arose both from the lack of a satisfactory inhomogeneous model 

of the solar photosphere and from Swihart's demonstration that good 

agreement between the predicted and observed intensities could not be 

achieved with a homogeneous model. 

The basic assumptions and equations which go into the con

struction of a model photosphere are discussed. A detailed description 

is given of the way in which blanketing and inhomogeneities are taken 

into account. The physical structure of the final inhomogeneous model 

160 
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is presented, along with a comparison between its predicted emergent 

continuum intensities and the intensities observed for the sun. Good 

agreement is found between theory and observation. 

The most significant features of the final model are the differ

ential blanketing effect between the hot and the cold columns and the 

variable integrated radiative fluxes in each column. It was the combi

nation of these two factors which enabled a satisfactory fit to be made 

to the observed solar radiation field over a wide spectral range and for 

disk positions as near to the limb as YU. = 0.30. The simulated 

granule contrast, although of the right order of magnitude, does not 

exhibit the center-limb behavior observed by Edmonds. The reason for 

this discrepancy is not clear, but it may stem from a failure to take 

fully into account the radiative coupling between hot and cold columns. 

The need for independent observations of the center-limb behavior of the 

granule contrast is also apparent. Clearly, though, the assumption of 

radiative de-coupling needs to be relaxed but in the context of a non-gray 

blanketed model. This model should be one which is in radiative equi

librium rather than an essentially gray unblanketed empirical model as 

used by P. R. Wilson. Pressure differences between adjacent photo-

spheric elements must be retained in all future inhomogeneous models. 

An additional improvement would be to follow Wilson in adopting a con

tinuous periodic variation of the temperature in the horizontal direction 
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in place of the discontinuous variation which is implicit in the columnar 

approach. These problems will be looked into in future work. 
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