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ABSTRACT

The growth of a density perturbation in a spherically
symmetric collapsiny gas cloud has been studied by following
the motion of points on the periphery of tne perturbation. By
such a technique, it has been possible to obtain solutions to
the equations of motion including the effects of nonlinearity,
nonuniformity, radiation and rotation. Magnetic effects have
been ignored.

A comparison with the linearized thneories of Hunter
(1962) and Savedoff and Vila (1962) shows excellent agreement in
the linear regime. It is found that nonlinearity enhances the
growth rate relative to the linearized solutions. 1In the zero-
pressure case it has been found that nonuniformity retards the
growth.

The inclusion of radiation is found to give a roughly
isothermal collapse both for temperatures of 100 and densities
of 10 particles /cc, and for temperatures of 1.5X 10“ and den-

sities of 10"

particles / cc.
It is concluded that rotational forces can prevent
collapse if they are sufficiently larce. Pressure effects and

the inclusion of backeround stnrs are both found to inhibit

growth.

ix



x
A calculation of tne importince of collisions as a way of
destroyingz fragments suerests thut the effects will be most
pronounced in high anrular momentum systems.
It i8 suggested that a second generation of fraements is
unlikely to form in lov angular momentum systems. In high sngular
momentum systems, secondary fragmentation can probably occur in

localized recions.



I - INTRODUCTICN

A) EARLY STUDIES OF FR/MGUNTLTION

Since prenistloric times mosn nas sveculated on tine oriwsin
of the heavens ani t.ic world about nirm. Most of tais tninking
remained steeped in mytholovyv until the rise of science in tnae
17th and 18th centuries. Newton sucrested thut objects mignt
cluster torether under their own selfeoravitational force to form
bodies of cosmic dimensions. Lanlace and Kant considered the
origin of the solar system from a similar point of view.

The formation of cosmicul bodies as tne result of the
instability of a background mediur, tne essence of many current
studies in star and galaxy formation, was first suggested by

Jeans and is described in ais book Astronomy and Cosmosony (1929).

Jeans showed that in a uniform medium at rest, disturbances with

a scale ,X are unstable if
(1) A= R
+
or in terms of masses,

2) M



2
where T is the temperature in derrees kelvin, R is the gas con-
stant, G the gravitational constant, A) tne density in oms/cc,
and n is the porticle density in pearticles/cc. ;{ and M are tnen
in cm. and solar masses (Me) respectively.

Jeans reasoned that an instability results if tne com-
pression due to the passa e of 2z sound wave decreuses tne
gravitational vpotential more than it incresses tae taermal
energy. The stuate of lower potential is tne more stable and thus
the cas tends to form regions of hicher than uverage density.

The critical value for ,l in eq(l) results from tae linear
analysis of the behavior of a self-gravitatingz sound wéve moving
in a uniform infinite medium at rest. Disturbances of wavelength
smaller than ,l oscillate, while those larger grow exponentially
in time.

If one inserts values for T and n representative of what
are thought for the interstellar and intergalactic medium, say

n =10, T =100 and n = 107>, T = 10°, one obtains M=2 X 10>

and M = 2 X 1311 Mo o %hile the latter is zpvroximately what one

Mo

finds for salactic masses, tne former is nearer the muss of a
star cluster tnan that of an individual stsr.  Thus either some
mechanism intervenes in star formation or Jeans' analysis is
too idealized.

As has been pointed out by sever:1l autnors, tne initial
state assumed by Jeans is inconsistent, for one cannot satisfy
both Poisson's equation and have an infinite, uniform medium at

rest.



A more extensizg analysis of the instabilities of an
astrophysical svstem was made by .doyls (1953) in wnica tne effects
of radiation were included. Tne model considered was a cloud of
2.9 X 109 Mo with an initial temperature of 1,5 X 104 and a

density of 10-27

gm/cc. By comparine the cravitationsl and
thermal)l energy content and usins tne virial tneorem, one finds
that such a mass is unstable arainst collapse. As tae cloud
radius shrinks, the density rises. The increasing density also
increases the rate of radiation, offsetting tne neatins due to
comnregsion and maintainine tne collapse isothermal. The in-
creased density enhances still more the instability. Tne cloud
begins to break up or fragment. Simultaneously the density of
the frastments is rising, making them unstable also. This
initiates anotner stage of fragmentation.

“hen tne density of the fraziments has risen to the point
that they are opague, preventineg the escape of radiation, the
temperature rises. EQq(2) snows that s lsreer T will raise the
critical mass offsetting the instability due to the increased
density. Jence, frammentation stops.

In a later paper, Hoyle and Fowler (1963) make a similar
analysis of cooler clouds includine in & roush way the effects of
angular momentum and maznetic fields. These papers are exceed-
ingly valu;51e in that they outline a plausible sequence of events

leading to star formation and because they offer a good explana-

tion of why collapse stops.
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In addition to ti.ese rataier ieneral snd semiquantitative
aoiroaches, more npecific investications have been made of
instabilities in polytrones (Ebert (1955), Ronner (1956), McCrea
(1957), Unno and Simoda (1963) and MeNally (1964)), tune effect of
macnetic fields (Mestel and Spitzer (19%6)), tne interplay of
thermal radintion and mechanical stebility ({atanaka et al.
(1961)), and tne role of opacity (Gaustad (1963), and Gould
(1964)). ‘lowever, in all of these nupers tae sctual development
of frasemants has been more a reasonable supposition than a proven
fact.

The actual prowtn and formation of fragrnents was first
investigated by Hunter (1962) and Savedoff and Vila (1962).
These papers form the basic literature for asan exact treatment of
fragmentation. The model studied in botn cas€s is that of a
uniform cloud collapsing under its own pgravitztional force. Tne
perturbations are assumed to satisfy o nolytropic eguation of
state. The pressure in tne main cloud is taken as uniform. Wita
these assumptions it is possible to write down tiie linesrized
eauations of motion and continuity and obtszin from these a single
differential equation for tne density of tue perturbation. The
solutions of this equation are obtainable for a number of special
cases and vhile Savedoff and Vila also study an expanding case,
th; ;esults of tie two vapers aore the szme. While objections
have been raised about tne avplicability of tnis work to star

formation (Layzer (1963, 196G4)), the conditions under wnicn



gravitational instabilities produce density fluctuations that
rrow in time are well determined.

Layzer nas criticised tais work on severasl esrounds. ‘e
states that nonlinear nrocesses will intervene to nrevent the
growth of fragments and that torques induced on them in tne early
stages of pgrowth will increase tie angular momentum to tne point
where tney are unable to srow. Since tnhe mzin cloud continues
collapsing, they will be reabsorbed in the subseauent stages of
collapse.

Hunter (1964) presents arrsuments in & lzter naper based
on the extension of the linesr tneory which purport to controvert
Layzer's objections. !lowever, one may ouection nis conclusion
that anpular momentum does not play an important role because it
is intrinsically nonlinear due to tne v2 dependence of tne
centrifugal force.

Any tneory of fragmentation meets its ultimate test in
predictine the mass function of stars and ralaxies. In pnrinciple,
from the full equations, if one néd the opnscities, the marnetic
fields, and the turbulence spectrum for escn set of initial
conditions, such a prediction mignt be made. ‘jowever, in view of
the basic objections raised by lLayzer to tue fragmentation con-
cept and the idealizations in tne linesr taeories to tnis stare,
it seems more expedient to study in more detail even the simplest
model of a collapsing cloud. Thus in the work discussed here,

magnetic fields are not included. Furthermore, "turbulence" ies
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treated only in terms of :n aver:re over the mass elements being
studied. (This voint will become clexrer when the model is
described in part II.) Despite these simplifications, it is
hoped that by clzrifying the importance of nonlinearity, non-
uniformity, pressure and rotation, a stev will nave been made

toward a fuller understanding of the collapse of sas clouds.

B) METZO0DS FOR STUDYING INSTABILITIES

The way the problem should be resolved is to write down
the full equations of nydrodynamics includin~ the onroper enervy
equation. As was mentioned, Jdunter and Savedoff and Vila elim-
inated the energy eguation by assuming a polytrovic equation of
state., Radiztion effects mivnt be taken into account by usinz a
variable and complex pgamma.

Tne difficulty wita tne hydrodynamic azporoach is tanat an
unperturbed solution is necessary in order to use first order
perturbation theory. This i3 nct easy to obtain excent in a few
simple cases, such as the uniform sphere. In tnis case it is
possible to write a separable nartiul differential equation for
the density for the linearized problem. "nen nonlinear effects
are included, or vwhen nonuniformity, for example, is added to tne
sphere, it is not clear waetaer an ejuation c2n be written that

separates the density and velocity fields.



One metnod tast nas been used wit, success by
Chandrasekhar (1961), Lynden-3ell (1664), Michie (1963%) and others
is to take moments of the hydrodynamic equations. In this case,
particularly the work of Micnie, by chocsins the averages prop-
erly, nonuniformity and nonlinearity may be included in a very
reasonable fashion.

While there is a loss of information in moment metnods,
it must be remambered tanat tne nyirodynamic ecuations are them-
selves moments of the Boltzmann equation, and tne taking of
moments in this case is not only paysically reasonable, but a
virtual necessity if solutions are to be obtained. The connection
with the Boltzmann ecuation suzrects another possible aponroach.

In a system with spherical or plane symmetry it is only
necessary to study the motion of one roint in eacn surface in
order to follow the development of trne syster. Thus in a con-
tracting sphere with no perturhation, for a particular shell, all
points move in the same fashion. If asymmetries are introduced,
for example, a perturbation, then wiile one noint is no longer
adequate, one can imagine locating points all about tne periph-
ery of the perturbsaticn and studying their motion. If the per-
turbation itself possesses a a2igh degree of symmetry, say
spheroidal, one might think that following a point on itslpole
and another on its eauator would describe the motion with some
accdracy. One thus replaces a set of continuum equations by a

set of equations describine tne motion of points. In tne work



described in thne rert of tiais ..uver, c¢v'ensive use is made of
this method wnica will be referred to ereafter as tne "two-noint
model', The results obtsined wita this metnod vill he compared
witihh those from the continuum model wiere tae latter are

available.



IT - TVO=-"CINT "UOEL
A) EUATIONS OF "07ICN FCR THE ZERO-PRESSURE CASE

In order to study tne stability of a collapsin~t ras cloud,
a point model such as described sbove in nmart I has been used.
To illustrate the metaod, the full esuatione for tae zero-
pressure case are derived below., A step by sten comparison of
them to the nydrodynamic equations wit: pressure is rsiven in
appendix I.

The unperturbed model is & spherically symmetric cloud
with some arbitrary density distribution. Hence, all particles
in a varticular shell feel tue same gravitational attraction.
Furthermore, the mass that is initielly in tae saell remzins
within it so that the equation of manss conserv-tion can be

immediately written

2 “ 2
3) pL(r)Arr = ProlArgr,
where ZXr represents the tnickness of a shell, /JL is the local
density and r is the distance from the cloud center. The sub-
script "o" refers to tne initial values of the quantity.
Next, a small density perturbation is introduced, as shown

in fig(l), whose center lies at some initial distance r, from

9
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the cloud center. It is assumed to be spheroiidal. The excess (
mass, assumed to be distributed uniformly throughout it, is to
be small compared to tne mass of tne main cloud, in the sense
that the rest of the cloud is not siznificantly influenced by
the perturbation. Note that this is not the same as assuming
that the density of tne perturbation is small. In addition, the
perturbation is oriented so that its axis of symmetry lies along

a cloud radius. If "a" and "b" are the equatorial and polar

dimensions, its volume is

Vp = 4 ')Ta 2b/} .

e

If one then assumes that the total mass within it remains con-

stant,

/)pvp = constant

where ;)p is the totzl density of the perturbation. Since it is
the density relative to the background that determines whether
the perturbation will gurvive the collapse, the quantity * is

introduced, defined as

S
¢ . e
93
where ;)E is the excess density. One cun then write

Pp = Pri+ &) .
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b t.t ti =, L f r nd "; one Obt in.:
SU. stitu nP, now (o] u a e a s
3 L

Eliminating /DI with the helo of eq(3), one finds
l

To o
5) Plr=r ) —

r® Ar

whiech is the eauation of continuity for tae perturbed flow. The

(1+&) a’b = constant

only difficulty that arises in using this expression is evaluating

Lir

7?; which is done in apnendix IT. Physically this quantity
A% o

determines how the thickness of & saell varies in time compared
to its original value. It is hence a function of position as
well as the initial mass and velocity distribution in tne medium.
To summarize, the assumptions made are:

1) Spherical symmetry in the main flow.

2) A uniform sphercidal perturbation.

3) A constant mass interior to the verturbation,

4) The mass excess is small compared to the total

cloud mass.
To determine how the density of the perturbation varies

in time, it is necessary to know aow the distances "a" and "b"
vary. From fig(l), one can see taat they depend on the motion
of the points A, B, and C. Since C is the center of the per-
turbation, its motion is unaffected by the presence of tne per-

turbation provided that there are no pressure pgradients in the
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main cloud. One can thus write

et GMc -

6) rc=-—3rc
r
c

Point B experiences an acceleration due to the mass Mb interior

to it contributed by the main sphere, as well as an acceleration

due to the perturbation. 1Its equation of motion is thus

- GM
7) r, = -—E?b--?-!- ?b
or P

r b3

where %%! is8 the acceleration of the perturbation.
rip

In determining the scceleration of A, it is simplest to

introduce a new variable jy= rtan(a‘ where 6 is defined in fig(l).

Differentiating twice with respect to time yields

- 2 [ X2 ° o
> R -~ R 2 r
= -2- (!‘6 + 2!‘9) + 2—5 e + —;—
r r
If uw = I /r, then
2
oo 2.2
2V + 2rc0529 9 u

- 42
Since u = tanf7 = 9(1+ 19 /6). if u is small (tne

linear size of the perturbuation is small compared to tue cloud

radius)

dV

8) ur+2§~ﬁ=-

"

P
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Since there is more mass interior to R than r, a torque
is exerted on point A wiuich tends to distort the nerturbation.
This has been ignored as it con be sinown that it is of second

order in . Tnis allows one to write

2 Y 2V
9) ar < re o= = Srlp
Now a = u and b = 'r -r ‘. Thus
c b
" . GM,  GM_ 4y
10) b =r, -r = = +
b c 2 2 or| pole
r r
b c
. e 2V 1 _ 2ru
11) a=u=- or |equator ' r r

To facilitate comnutations and to indicate more clearly
the functional dependence of thne equations on the varameters,

dimensionless variables have been introduced withn rc(t=O) as the

scale of length and WE"WWQM the unit of time, where /Qo is

V?ifoo
the initial density of tne main cloud.

If one then defines

r

X =
r

o)
y = b
“r
Z = u

one finds
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4 v

oo g 1 -~y

v B L X L e S 2rlpole
x yc(1+y) 3/(Gp°r°x

2xz _ _

X r

<

1
equator * &

"’ o
31 GLT

The expressions for tne potential are taken from

McMillian (1958) and differentiatins them one obtains

E!R f(e)

2 1,
r
p

or an attraction due to &2 sphericzl mass times a correction factor

f(e) where e is the eccentricity. (See apoendix III for the

explicit expressions.)

Mb is8 eliminated as follows:

r
b
M, = M, 47’2’[ Dryrar
r
c

~ 3
Mc + “TTPL rT- r‘?
—_—

where ;DL is the average value of [] across the shell containing
the perturbation.

b c t b = r(ls+y). Since

b, 3
M = 37070

My = M, {1 + TI[(l«ry)}-l]} where
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]

~
o

n s

suostituting this into eq(1l3) and assuming y « <1, as was done

in deriving eq(8), one finds

A B c D

15) § = f2§z . ML;D_ - &7 £(e)y
x x

o« =2 X2 (e) 2

16) z = —;-ETIE-?——
17) 5£=--1-2-
x

18) yzzn(l+ £) = yozoszo(l+ SO) .

Eq(18) comes from eq(4) with /JL eliminated in terms of T?.
The equations of motion thus involve four terms describing
the time rate of change of the lengths (A); a term describing the
change in y due to the fact that the main cloud radius x which is
the unit in which y is measured is changing (B); a tidal term for
the main flow absent in the z equation (C); and a term describing
the self-gravitation and the tidal force on the perturbation
itself (D).
Three points should be noted regarding the equations:
1) Aside from the initial values of x, y, and z and
their velocities, only the parameters Eo’ e ,

o

7?0' and 7? enter.
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2) The equ:tions for the zero-pressure cas¢ are
homogeneous in y and z and hence the beaavior of
the perturbation is indepenient of its linear
size, provided tnis is small (See eq(15,16)).
3) No restriction is placed upon the value of the
density, f « Thus the equations derived should
be a valid renresentation of the nonlinear

results, and represent therefore an extension

beyond the work of ‘*lunter and Savedoff and Vilsa.

B) RESULTS FOR THX TwO0-POINT ZERO-PRESSURE MODEL

In principle, it is possible to obtain an analytic solu-
tion to the two-point equation for the zero-pressure uniform
cloud case. As is shown in appendix IV, a perturbation in a
uniform sphere is independent of the gravitational field of the
main cloud and hence can be treated as an isolated body. It is
then simple to obtain "t" as a function of the perturbation radius
and hence the density, but the inversion to find the density &s a
function of time is not so0 simple. Since this solution is avail-
able only for this special case, the other equations must be
integrated numerically anyhow. ‘'lence, all work was done
numerically.

Before even numerical work can be done, 7Zmust be
evaluated. Since it is a measure of the central concentration of

the main cloud, it is in general a function of time. For the
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uniform case, 72: 1. The evaluation for other cases is described
in appendix II. One can say tnat in general q decreases in-
dicating an increase in the central cloud density with time rel-
ative to the mean density. A plot of 77 versus time is shown in
fig(2).

The equations were integrated numerically wita a Runge-
Kutta scheme on the IBM 1401-7072 computer of the University of
Arizona Numerical Analysis Laboratory. E was computed from J?.
¥, and z with the use of eq(l3). The results are plotted in
fig(3) and fig(4) showing the effect of nonlinesrity ( Eo) and
central condensation ('no) on the growth., One sees that non-
linearity enhances tne growth relative to the linear and that
larger central concentrations retard the growtn relative to tnat
for the uniform sphere. Fig(5) shows how the particle density,
n, varies both in the perturbation and the main cloud for typical
values of the interstellar medium.

An interesting point srises in tnat the perturbations
are unstable with respect to nonradial perturbations. If the
surface is deformed sligntly, the surface accelerations are in-
creased accentuating the deformation. Trus perturbations tend
to become pancakes or cigars. Pressure forces obviously stab-
ilize a perturbation against such distortion. One suould note,
however, that the density growtn is not seriously affected and

cannot be discerned on the plots shown in fig(3) or fig(4). One
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thus concludes that the initial eccentricity is not an important
parameter for a zero-pressure cloud.

For a uniform cloud, if a perturbation starts spherical,
it remains spherical since there is no distorting force. 1In a
nonuniform cloud, however, the tidal forces rapidly pull a per-
turbation into a highly vrolate form.

The parameter 72 plays a very important role. As was
mentioned, this is related to the tidal forces on the perturbation
in the sense that a small 7? implies a large gradient in the force
across the perturbation. It may seem curious that this gradient
only retards the growth of a perturbation. However, the perturba-
tion is a density excess and thus one snould compare its growth
with that of the surroundings. In this case, it is easy to see
that any tidal force due to a central condensation in the main
cloud will affect the material in the perturbation and the sur-
roundings identically. As far as the excess mass is concerned,
while contraction along the direction of the tidal force gradient
is retarded, that perpendicular to it is not affected. Hence,
‘the excess density can still increase.

One additional set of computations has been made in order
to study the effect of background stars on the density srowth of
fragments. The stars are taken to be/aistributed in a uniform
sphere about the center of the gas cloud in a static con-
figuration. The gas then collapses to the cloud center through

the awarm. While the stars contribute mass to the cloud and thus
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accelerate the collapse, they do not aid the self-gravitation.
Thus the growth of perturbations is retarded by their presence.
Calculations were made for the density ratio of stars to gas as
1, 10, and 100. The results are shown in fig(6) along with a
solution iliustrating the growtn when no stars are present.

It is interestinvs to compare the results for the two-
point model in a uniform cloud to those of Hunter and Savedoff
and Vila for the linear case. As is shown in appendix I, eq(6),
the differential equations for the hydrodynamic case are idene-
tical to those for the linearized two-point models. Thus it is
not surprising that a comparison of the Hunter solutions with
the two-point results gives excellent agreement. This is
plotted in fig(3). One does see though that unless the initial
amplitudes are taken small for the two-point model, the density
very quickly grows much larger than the linear theory would pre-
dict. This is a consequence of the fact that a larger initial
amplitude increases the self-gravitational terms. T:.e excel-
lent agreement with the solutions for the hydrodynamic equations
leads one to hope that the two-point model gives equally good
results in those cases where the hydrodynamic treatment cannot
readily be used.

To summarize the results for the gero-pressure case, one
can say the following:

1) The agreement with the linear theory suggests
that the two-point model is a good approximation

to the full hydrodynamic equations.



2)

3)

b)
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ﬁonlinear effecte accelerate the growt. rather
than retard it in the sense th:-t denser pertur-
bations grow fuster.

Nonuniformity of the main cloud induces a tidal
disruption that hinders tne growth of perturba-
tions but does not prevent it. It furthermore
accentuates the central condensation in the main
cloud.

Background stars reduce the growth rate of a
perturbation by accelerating the collapse of the

main cloud.



IIT - CASE OF FINIT'-PRESSURE
A) DISCUSSION OF TH&E LINRARIZED EQUATIONS

The analysis of the flow in the finite-pres:ure c:se for
a uniformly collapsinz aphere is possible provided pressure
gradients are allowed only in the perturbation. If pressure
gradients are introduced in the main flow as well, it would ap-
pear no longer possible to obtuin an analytic sglution for the
unperturbed flow. If one is content, though, to allow the main
sphere to collapse in free-fall, but to include pressure gradients
in the perturbation, some solutions can be found. This has been
pointed out by Hunter (1962) and Savedoff and Vila (1962), here-
after referred to as liSV. These solutions.will be briefly dis-
cussed because they afford an additional check on the two-point
model as well as a more realistic representation of a collapsing
cloud. ¢

An inspection of the partial differential equation for
the density derived by 4SV in theAlinearized case shows that it
can be separated into a space and time portion. Tune space por-
tion can be further separated into an angular and radial equation
yielding spherical harmonics and spherical Bessel functions for
the solutions. The density field is thus decomposed into a
series of normal modes, and a general solution requires the super-
position of many different wavelengths.

21
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The time part is a differential equation of the second
order in two parameters. One varameter is the ratio of the size
of the perturbation to the Jeans' length. Tae other is the ratio
of the specific heats of the gas--the gamma of tne polytropic
relation. If one thinks of the perturbation as beinpg described
by a dominant mode, its benavior is then a functlion of its size
relative to some critical size and gamma. Tnis is physically
reasonable since small disturbances might be thougut to behave
somewhat like sound waves, while longer ones would be dominated
by self-gravitation. The gamma enters as a measure of the
elasticity, so to speak, of the medium.

Since two parameters appear, it is surprising that except
in the case gamma = 4/3, the asymptotic benavior is a function
of gamma alone. This is quite at odds with the classical Jeans
result, though pernaps not so surprising considering that he was
solving a different vroblem. Tae explanation for this lies in
the fact that for gamma less than 4/3, the pressure forces dimin-
ish relative to the gravitational forces as the cloud collapses
causing ,lJ to go to zero. For gamma greater taat 4/3, ,lJ goes
to infinity since the pressure forces rise relative to the grav-
itational forces. Thus the Jeans' length enters in determining
the growth rate but not the stability. Disturbsnces large with
respect to the Jeans' length grow more rapidly than those small

with respect to it.
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The asymptotic behavior of the solutions has been ob-
tained by Savedoff 2nd Vila from an analysis of the linearized
equations. The results can be summarized as follows:
Gamma less than 4/3. .. all modes grow in time
Gamma greater than 4/3, less than 5/3. .. all modes
oscillate in time with increasing amplitude
Gamma = 5/3 . .. all modes oscillate with constant
amplitude
Gamma greater than 5/%. .. all modes decay and
oscillate
Gamma = 4/3 . .. modes grow if ,lJ greater than ),
critical, oscillate with increasing amplitude
otherwise.
The simple order of magnitude calculation below indicates
why, for gamma less than 4/3, pressure forces diminish relative
to gravitational forces and allow the perturbation to collapse in

essentially free-fall.
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One thus concludes that for gamma less than 4/3, the collapse is
asymptotically vressure independent.

The explanation of the oscillating modes is less apparent.
One can argue that in these cuses the pressure gradients build up
more rapidly than the gravitational forces causing the perturba-
tion to reexpand. This is not stric:.ly true however as will be
seen later. The fact that tae perturbation oscillates as a
standing wave is particularly strange since one might think that
a disturbance would generate a sound wave that would simply move
out of the disturbed area and disperse. The standing wave cha=-
racter of the solution is a consequence of the spherical nature
of the syatem and the fact tuat the boundary conditions demand
that the amplitude of the oscillations always remain finite. 1In
general, there can be no traveling wave solutions in a steady

state bounded spherical system (Landau and Lifschitz, (1958)).

B) TY¥O-POINT FORMULATION OF THE FINITE-PRESSURE CASE

In order to understund the effects tnat nonlinearity will
have on the finite-pressure case, the two-point model has been
modified to include pressure gradients. As in the linearized
theories, the main flow is assumed to be uniform, but the pertur-

bation is assumed to have a pressure gradient and to satisfy a
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polytropic equation of stute. The zero-pressure case showed
that the shape of the perturbation was not important in determin-
ing the results. iHence, a spherical perturbation has been
assumed here.

A question now arises as to how ;& %%- should be evaluated
~

when only two points are used. Tne most straigntforward scheme

ap ZXP

1
would be to replace -= by and by « In
fo) (pL Dp)/2 dr F

this case, j%- is averaged over tne perturbation and tne back-
7
ground, and %§ is taken as linesr across the disturbancg. Such

a procedure was followed in deriving eq(20b) below,
Suppose, however, that one assumes 'hat the perturbation

collapses homologously, as is found to be the case in tne linear

ein

theory with ;Doxcess /~c(t) where /)c is tae density

excess at the center of tne perturbation. If one now assumes

that ° is same spatial profile is maintained for the nonlinear
regime, it is possible to approximate éL_dP by 1 ZB

;} dr }31 /\r

where (X is a factor to correct for any error incurred in re-
placing the derivitive by a difterence. ‘I can now be cslculated

using the expression for /- excess above. Tne twc-point model,

however, involves not only » but also the excess mass.

ﬁ)excess

It 18 thus necessary to relate the mass excess snd the density

excess, Se « This can be done by the use of another factor, B.
3(14 &) = 45703 ) &

Thus, m _ . cs = .. JTr?(1+ 3 jr pc(l+ fG""c). It is then

possible to evaluate }5 in the same fashion as "X. (See anvendix

I for the expressions for (X and Af.) In zddition, as is seen in
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in anrendix I, by choosinz tne radius of the perturbation in the
two-point model oroperly, it is vossivle to obtain & nonlinear
differential egquation taat reduces exactly to the linezrized one
for small density excesses. (In principle, if /X andlif were
treated as functions of time, it should be possible for tiae two-
point model to give an exact representation of the nonlinear
equation.) This nonlinear two~point equation for E is given in
appendix I.

It is interesting tc compare tihe two-point equation de-
rived with the*aid of () and %?, to the linear equation of HSV
and the two-point .equation derived by sinoly avera:sing witnout
recourse to (X and ;3 . To do this, x is eliminated from eq(5),
appendix I, in favor of /D so tnhat [ = ;Jo/'xB. x is elim=-
inated in the same fashion. One then obtains eq(20a) or eg(20b)
~depending on whether (X and }3 (eq(20a)) are used, or a simple
average (eq(20b)). If the equations are linearized in - , one
obtains eq(20¢), identical to tnat of HSV derived in apoendix I,
with the provision thst in eq(20b), ,\i b},\i « Tne factor
three arises from tne difference between the simple average and
the use of X and ;3. If the density [7 is maintained constant,
one sees that eq(20c) reduces to eq(20d) which is essentially
the equation derived by Jeans.

The term in eq(20s,b) involving TIE is the ratio of

n

the pressure to the self-gravitational forces. Since tne density

is measured with respect to the background, one must include the
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general rise in the density of the main flow. The term {2 is a

nonlinear term that always acts to increase the growth or retard

the decay.
. A2 p\l-ur3 c | y \ l )]
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A8 was mentioned in part II, éravitutional forces in the
uniform cloud do not affect a spherical perturbation, allowing it
to be treated as an isolated unit. Since the pressure is assumed
to be uniform in the main cloud, the inclusion of pressure does
not alter this result with the provision that tne isolated frag-
ment must now have an increasing e;ternal pressure applied to it.
Bonner (1958) has studied the stability of polytropes wnen an
external pressure is applied and found that for gamma less than
L/3 they were unstable. This is exactly the result found from

the linearized theories mentioned earlier.
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In order to test the consequences of assuming a sin kr/ kr
density profile for the perturbation, a numerical integration of
a collansing gas cloud has been made usineg a procrem of "eymann's
(1964)., As was mentioned before, since the background is uni-
form, the perturbation can be treated as an isolated unit. 1If
the radius of the perturbation is choosen at a maximum or a mini=-
mum of the density profile, then the excess mass vanishes, and
since the pressure gradient is zero, there is effectively no
coupling between the perturbation and the main cloud. Weymann's
program integrates the full hydrodynamic equations. It is thus
possible to follow in some detail the cnanges in the physical
variables throuchout the spliere as collapse proceeds. For the
particular case studied, a disturbance with a sinkr /kr profile
and an amolitude of .1 at tne center was assumed along with an
isothermal collapse. It was found that the sinkr/kr profile
maintained itself well. The céntral excess density wéu computed
and compared with that determined from the two-point model
(eq(20a)). For T = 1.029, or .936 of the free fall time, the
exact hydrodynamic model gave an excess density of 30.247 times
the initial excess dengity. The two-point model yielded 30.213.
On the other hand, the linear tneory predicted a2 value of 10.3.
These results are shown in fie(10).

One would thus conclude that the assumption of an homol-

ogous contraction 15 fairly good, even in the nonlinear regime,
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and that the pressure gradient in tne two-point model can be

approximated accurately with the aid of the scale factors (X

and;j.

C) RESULTS OF TH: NCNLINEAR ANALYSIS

As before.lthe equations were integrated numerically to
obtain the excess density as a function of time. In the com-
putations, it was found advantageous to decrease the step lengths
as the collapse proceeded in order to follow in more detail the
oascillations that result for gamma greater than 4/3. Therefore

the time steps were calculated at each step as

At = At°x3/2

r
where ZXto = +01 7,, and x = ;: .

Since the main cloud is uniform, 72 = l. Thus the param-
eters that enter now are the initial excess density, the poly-
tropic index (expressed in terms of gamma), and the ratio of the
Jeana' length to the perturbation size. The latter is a measure
of the initial pressure forces to the self-gravitation. Once
again, all initisl velocities were chosen as zero. The excess
density was fixed at .1 as being a pnysically reasonable value

and yet large enough to indicate the effect of nonlinearity.

){2

)T% was selected as 1.5. Since asymptotically the value of )_n
n

-
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does not matter, a value was chosen taat illustrated the effect
of the pressure relatively early in the collapse.

Fig(7) snows now the polytro.ic index affects the solu~-
tion. The smaller gamma is, the more rapidly the perturbation
grows. In fig(8), the effect of nonlinearity is shown. The
dotted curve representing the nonlinear point model as well as
the results of HSV (the solid curve) is sunown. One can see that
in the case where growth occurs, the nonlinear'terms again accel-
erate the growth relative to the linesr theory. In the case of
oscillations, the conclusions are less cle:r except that the non=-
linear effects cause a drastic change in the oscillatory nature
and limit the lower density obtainei. The crosses on the curve
indicate the results obtained from the two-point model when the
initial amplitude is .0001. Tuus, asreement is apain excellent
in the linear regime between 'SV and this work.

In fir(9), the density of a perturbation and tne cloud
background are shown for a tyvical 4l cloud assumed to be col-
lapsing isotnermally. One sees that tie pressure slows down
the growth relative to tne zero-pressure case and that it takes
nearly a free fall time for the density to increase to
100 particles / cc.

Since, for gamma equal to one, the collapse is asympiot-

3/2

[ J
ically the same as the case of free=fall, x,y,% or x ~ t..to,

Converting to a density,
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_const
2
(t-to)

p "y

If this is fitted to the numerical results, one finds for &an iso~
thermal collapse with an initial density of n = 10, that

960

: particles/ ce
(t-16)

n - P

where n is the particle density and t is the time in millions of

years.

D) PHYSICS OF PRSSSURE-RETARDED COLLAPSE

The pulsation theory of variable stars shows that a gas
with a gamma of 5/3 should oscillate with constant amplitude. It
might then at first seem surprisins that if one plots the radius
of a perturbation in such a cloud as a function of time, it is
found to be in general a decreasinz function. W%hen one remembers
though that the external pressure is constantly increasing due
to the main cloud collapse, this becomes very understandable.

(I am indebted to Dr. R. Michie for first pointin, t:is out to
me.) It is also the increa;ing pressure that is responsible for
the increasing amplitude of the oscillations found for gamma
between 4/3 and 5/3. To show this, a WKB type analysis similar
to that of HSV is used.

If eq(15) is modified to allow for a pressure gradient in

the perturbation following the method of appendix I, and a
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uniform collapee is assumed ( /) = 1), one obtains

(Y

®e '\2 1
; + 251 + jil l - A\ ; =0
x3 tz XBZ‘-5735
L o |

where the perturbation has been assumed spherical. This can be
transformed to an equation of the form u + T(/)u = 0O by means
of the substitution y = fu where i‘/f = -x/X . Thus £ -~ 1/x.
In this case, T = Q + 1/x3 where Q is the coefficient of y in
the above equation. It is now possible to use a WKB type solu-

tion and obtain
u —%75 {oacillating function} ;
T

2 yo3y

In the late phases of collapse (x —0), the term iti x °  goes
o

to zero if gamma is less than 4/3 and to infinity if gamma is
greater tnan 4/3. Since this term is effectively a weiznted
ratio of the Jeans' length to the perturbation size, one can say
that for gamma less than 4/3, ,lJ goes to zero, while for gamma
greater tnan 4/3, ,XJ goes to infinity. Tnis was mentibﬂed in
section A of this part.

The case of interest here is ramma greater than 4/3, 1In

2 } \_ﬂ'.-l
this 1natancq. asymptotically, T ~~ —3—-% xh 3¢ e Thus u -x

x ‘ko
and hence y - EIELE . Thus zamma equal to S5/3 is also a crite
ical value, as wes shown by H3V. I1f one now converts back to the

physical variables, the radius of the perturbation, r, can be
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written r = xy

~ X *X loscillating function]

Since gamma is between 4/3 and 5/3, one can see that r goes to
zero as x does. Thus the physical size of the perturbation
actually is decreasing despite the increasing amplitude of the
oscillations. One can further see that the depenience on gamma
enters through the pressure term. Thus, as claimed above, it is
the pressure that is responsible for the increasing gmplitude of
the oscillations.

.Physically. one sees that while the perturbation starts
collapsing, the iﬁternal pressure gradient soon steepens, halting
the collapse. In the meantime, though, the external pressure is
rising, tending to compress the matter and actually raising the
external density above that interior to the perturbation. This
lowers the pressure gradient across the fragment allowing self-
gravitation to again dominate and the collapse to beyin again.
For a sphere that remains rigorously uniform, this behavior con-
tinues to the singularity. This behavior is sketcned schemat-
fcally in fig (11).

It is doubtful, under these circumefanées, whetner one
can speak meaningfully of fragmentation occuripz for gamma in
this range on the besis of the linear theory despite the fact
thai large density excesses are acheived. This ambiguity appears

to be intrinsic in the model as a result of the unrealistic
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behavior of the cloud collapsing to a point. In a real cloud,
pressure gradients would be lixely to develope. 1In this case,
the growth of the perturbation probably d:pends on otaer factors.
This point will be discussed further in part VII.
To summarize the results for the finite-pressure case,
one can say the follqwing:

1) The linearized two-point model as well as the
nonlinear two-point model for small amplitudes
again agrees extremely well with the hydrodynamic
approach.

2) The nonlinear terms increase the growth rate
relative to the linear theory and limit the lower
densities a perturbation can obtain for the
oscillat&ry solutions.

3) Just as in the linear theory, perturbations with
gamma less than 4/3 grow. Those with gamma be~
tween 4/3 and 5/3 oscillate witn increasing
amplitude.

L) The increasing amplitude of the oscillations can
be traced to the increasing external preasure
forcing another stage of collapse after initial

equilibrium is obtained by a fragment.



IV - THERMODYNAMICS OF FRAGMENT/TION
A) TwO=-POINT MOD:ZL INCLUDINS RADIATION

While the polytropic equation of state is useful for
studying the gross features of frasmentstion, it is desirable to
know how good an approximation it really is.

Hoyle (1653) has made rough calculations of the thnermal
evolution of an optically thin gas cloud witn a temperature of
about 105 and a particle density of 10-3. lle finds that the
temperature drops rapidly to about 10“ whereupon the reduced
ability of the hydrogen to radiate cagses the collapse to be
isothermal. Mestel and Spitzer (1956) have sugcested that for =a
temperature of about 100 and a particle density of 10, the col-
lapse is again isothermal. Thus, one could describe these sys-
tems with a polytrovnic relation whose gamma was one.

As the density of tne cloud rises increasing the optical
thickness of the medium, one expects the collapse to become
adiabatic so that gamma would then be 5/3. Cameron (1962) has
further suggested tnat in the last phases of collapse to stellar
densities, the ionization of the Hydrogen or the disociation of
the hydrogen molecules might cause gamma to become ™= 4/3,

There are thus several instances in which the thermodynamics of

collapse could be described by a polytropic equation of state.

35
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However, in none of these cases was tne energzy equation actually
solved.

In order to see if the explicit inclusion of radiation
with the dynamics of the collapse would modify the results, it
was decided to again utilize the two-point model. Since in this
case one is interested primarily in tne thermodynamics, and in
order to have an unperturbed solution, a uniform spherical
collapse was arain used.

' The basic form of the energy eauation is

av _ _P_S .
2l1) a-;°D2dt F + H

where U is the internal energy per gram, P the pressure, /3 the
density in grams/cc and F and H are the radiation losses from
the cloud and the heat gaineil from external sources respectively.
One can replace U by 3RT/2[[ where LL is tue molecular weicht
of the gas and R is the gas constant. With tnis substitution

and the definition of gamma in a polytropic relation as

'Zf_l - dlnT

d 1n;]

one can see the connection with the polytrovic equation of state.

One then has

22) X1 = 21 - 2EH0
- 3 RT d
at

Note that for F =" = O, implying no neat gains or losses,

gamma is 5/3, as is expected for an adiabatic system.
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It is possible to s0lve eq(22) simultaneously with eq(20)
changing gomma us one goes. ilowever it is just :c simple to
solve the energy equation in the form of eq(21l) eliminating, as
mentioned above, the internal energy in favor of the temperature.

This is the course followed here. One then has, from eq(5)

appendix I and eq(2l),

23) (1.+ 2;‘_5__5’_ E.'Z QITTGQQE(IJ;G:_) . 3(1+ g)AP
x Jls x3 /3 (1¢-s-)r2
welgl | 2/ Puaw
T dt 3 ' dt R T !

L T

[XP is eliminated from eq(23) by means of the perfect gas rela=
tion. One thus has two coupled equations which give tne run of
the temperature and density in time. iﬁT and [}FJ refer to
differences between the perturbation center and the cloud back-
ground. The appearance of ZXT mezns that eq(24) must be solved
for both the perturbation and the main flow. Hence, one should
worry about differences in the molecular weight and the heatihg
function between the perturbation and its surrqundings. For
simplicity however, the fragment has been assumed to start in
thermal equilibrium with the surrourndings, and the molecular
weicht has been taken as 'a constant. This latter assumption
might be dangerous in some cases, but tné additional complica~-
tions in solving an ionization equation seem unwarranted in this

preliminary treatment.
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The radiation loss term F must also include conduction
—2
losses. Since the latter varies as |/ T, it will only be

important, for the densities considered here (n = 1072

to
n = 1016). when the wavelength of the disturbance is very short
or the temperature very high.

The following numerical example may be used to illustrate

this. The conduction loss term in ergs / gm-sec can be written as

2 A
K T K. 3
po BV KA
e, AR
where
/
K . 7 x 10072
for a neutral gas (Chapman and Cowling (1958)). For an ionized

gas, Spitzer (1962) gives

4 x 10'5r5/2

ln/\

where

b

In/\ "= - 17.4 4+ 1.15 ‘L3 1ogT - 1ok ;) |
Radiation losses can be written as

F = ang (T)

where g(T) is some function of the temperature and n is tne
particle density. The value of a and g depends on the source of
cooling. In appendix V, values are ziven for certain cases of

interest.
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One then obtains

F
cond 4,k

Frad
for T = 100 and n = 10 and /\r = 1 psc.

For T = 10° and n = 10~ with /\r = 10 kpc, one finds

Fcond -2
T~ 10

rad
Since conduction is such a small part of the enerwxy loss,
one can simply use the radiation loss to evaluate the cooling
term. (In the numerical calculations, hovwever, conduction was

included.) Thus the cooling term becomes
F = ang(T)

One can now write down the equations governing the
collapse and fragmentation.

For the main flow, one has

;3 = 122 Eq. of Density Change
x3

dlnT 2
dt -3

RT

U
a°x . o wTTa L,
2

dt2 Ix

[0 Dispen -
}dt -

)
)
? Energy Eq.

Eq. of Motion
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For the perturbétion one has

X
_4lMa D, £
} (1« --)r

3RT(1+£) [AD At
,’.)

1
dlnT fd 3 Y p ‘

where the subscripot '"p" refers to the perturbetion.

As before it is convenient to introduce dimensionless
If one defines '['p =P(1+£) and T = Toé‘-. then

variables.
one can write
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x
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0
where Q = Bficm
o* L4

Q is proportional to the square of the ratic of tne free-

fall time to the cooling time,
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B) INITIAL CONDITIONS AND COOLING FUNCTIONS

The cooling functions depend on the environment through
the temperature, the density and the composition. One must
therefore decide what are reasonable initial conditions. Follow-
ing Spitzer (1963), one may supnose that the formation of pop-
ulation I stars occurs in rezions where the temperature is about
100 and the particle density is near 10. One further takes thne
abundances to be roughly solar. For galaxy formation, in the
absence of any observational evidence, one can assume the condi-
tions suggested by Hoyle (1953) and take the temperature as be-
tween 10“ and 106 with the particle density as 10-3.

With the inital conditions defined, the expressions used
are given in appendix V. They may be divided, tnough, into thé
two following regimes:

1) T greater than 104. Pure hydrogen. Cooling by
bound-bound, bound-free, and free-free emission
« s+ Michie (1963).
2) T less than 10°. Population I composition.
é) Cooling by collisional excitstion of Si,
Fe, C, etc. Electrons supplied by cosmic
ray ionization of H. Unno and Simoda

(1963).

b) Molecular hydrogen cooling. .. Gould (1964).
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One can compute cooling times from

RT
Tfooling ~F

where F 1is given in appendix V. Comparing these with the free-

fall time

4 ~ \=1/2
leg = (3106

one sees thst T}f >'="rcooling unless T is very large (105) or
n is very small (10-4). The short cooling times present a diff-
iculty. If radiation is so effective, what maintains the high
observed temperatures of the medium? It hss usually been assumed
that there is an input of heat due to turbulence, cosmic rays or
cloud-cloud collisions. This then gives rise to initial thermal
equilibrium,

Objections may be rdised about assuming a constant heat
input. One might imagine that as the cloud contracts the effi-
ciency of cloud collisions would diminisn and that cosmic ray
heating would be confined to tne surface. (See Hatanaka, Unno
and Takebee (1961)) Thus tne constant heat input tends to over

estimate the heating. Since the heating in turn acts to hinder

collapse, one underestimates the growth,

C) DISCUSSION OF THE TWO-POINT EQUATIONS

An examination of eq(25a) tarough (25e) shows that the

following quantities enter: the excess density, tne initial

-~
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density and the density of the main flow; the excess temperature,
the initial temperature and the temperature of the main flow; the
heating functions and thne ﬁolecular weignts for both the main
flow and the perturbation; the Jeans' length and the size of the
perturbation; and finally, the cooling functions, the cloud radius
and the time.

The number of parameters actually influencing the equa-
tions, though, is much reduced when one recalls the assumptions
that have been maie. Once the initial values of the temperature,
density and tne molecular weipght are specified, the heating and
cooling functions are determined. The excess temperature is
assumed zero since one postulates thermal equilibrium. The cloud
radius is chosen as ten times the size of the perturdbation. The
parameters that enter are tnus reduced to the initial excess
density, the ratio of the Jeans' lengtn to the initial size of
the perturbation, and the initial values of the main cloud tem~
perature, density and composition. &As in the finite pressure
case, the excess denéity is chosen as .1 and the ratio of the
Jeans' length to the perturbation size is picked as 1.5. Thus
only the temperature, density and composition appenr. Tne com-
position is only required to specify tne radiation law and the
molecular weizht and hence is really specified by the choice of
environment. Furthermore, the density appexars onlv in the ex-
pression for Q and in combination with thé neating functions.

It is thus necessary to specify only one more parameter taan Iéﬂ

used in the polytropic relations, as one would éxpect. since a
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polytropic equarion of state relates the temperature and the

density.

D) RESULTS OF THE NUMERICAL INT GRATIONS

It is now vpossible to integrate eq(25a) throuch (25e).
The time steps were ciosen as .0l times tue smaller of the thera-
al and mechanical time scale. This usually meant that the therm-
al time scale set the step length. Tne inclusion of conduction
means that the results depend on the linear scale of the system,
as wag mentioned earlier. In order toc cueck tne importance of
conduction, values were cuosen for the scale which were hoped to
be reasonable for the environment considered. Thus, for an HI
cloud, 30 psc was chosen, while for the pregalactic cloud, a
distance of 1lMpc was taken. Tne resultinc masses of tne per-

9

turbations were then chosen as 10 Me and 10° Me respectively.
The results of the integrations are shown in fig(l2) and
fig(13), in which the perturbation temperature is plotted against -
the fractional radius of the cloud. One sees that for an HI
region ionic cooling leads to a substantial drop in temperature
as collapse occurs. Molecular hydrogen produces a more nearly
isothermal result. This is directly a result of the cooling

3¢32

laws. Sinc@ the ionic cooling varies as T while the molec-

ular hydregem cooling varies as about T21'8. a slight drop in T

in the former case causes very little decrease in the amount of
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radiation. In the latter ca;e, nowever, a slipgat drop in T cuts
off virtually all radiation.

A further point worth mentioning is that the increased
density in the perturbation causes a slightly grester cooling
than occurs in the main cloud. Thus a temperature difference
builds up with the hotter gas in the main flow able to compress
the perturbation.

One can see from fig(l2) that for temperatures about
15 X 103. a gradual droop in T occurs to about 104. For tem-

5

peratures nearer 10”7, the effect of the longer thermal time
scale means that it takes a significant portion of the free fall
time to achieve the 10“ level.

The fact that the temperature does drop in collapse sug-
gests that the isothermsl assumption actually will underestimate
the growth rate as the dropping temperature implies a gamma less
than 1. It has not been feasible to follow tne density to thne
point where opacity becomes important and nence no firm conclu-
sions can be reached about the value of gamma appropriate for
this region.

In summary one can say the following:

1) If one aporoximates the thermodynamics of collapse
by a polytropic relation, gamma should be set less
than or equal to one.

2) For lower temperature clouds, Molecular hydrogen
will maintain a more nearly isothermal condition

than ionic cooling.
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The lower temperature in the perturbation may
allow the external pressure to play an important
role in accelerating collapse of fragments, as

pointed out by Michie (1963) and McNally (1964).



V = THE EFFECT OF ROTATION UPON THE DEVELOPMENT

OF FRAGMENTS IN A COLLAT'SING CLCUD

A) PRELIMINARY ARGUMENTS AROUT THE IMPORTANCE OF ROTATION

-The arguments against fragmentation raised by Layzer
(1963) have been mentioned in part I. These objections center
about the importance of angular momentum as a force retarding
collapse. In the study of fragmentation with the two-point model,
rotation has been ignored up to this time. To see why rotation
may be important in preventing fragmentation, Layzer's arguments
are sketched below.

A perturbation of mass m in a contracting gas cloud of
mass M will possess a peculiar velocity v due to tne interaction
with its neighbors. This is roughly given by

R
- L

where L is a dimension cnaracteristic of the separation between
fragments and hence is also a measure of the volume out of which
they form. The distance to which a perturbation can approach the
cloud center, R, is determined by its energy and anguler momentum.

The former condition yields

A

max =~ R °
The latter yields

vr = vmax R



48
where 'max is the velocity at closest approach and r is the inie~
tial distance of the perturbation from the cloud center.

Combining these two results one finds

Now M/m = N = rB/L3 = the number of fragments. Thus

[]max(C1°ud) 2
ﬂ%(cloud)

Since N is expected to be fairly larize, one expects a large in-
crease in the cloud density.

Turning now to the perturbations, if one says that con=-
traction along the equator ceases when the centrifugal force

equals the gravitational force,

v2
EE _ rot
r2 - rp '
P

where rp is the radius of a perturbation, and vrot is its tan~
gential velocity. This expression can be written in terms of

the density as

;Dfinal . Fsrav 3
;jinitial Frot

where the F's are the initiasl values of the rotational and grave
itational forces. Layzer now shows in a rough way that one might

expect the two forces to be about equal and hence that the density
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ratio will not change. He points out tuat while collapse can
still occur along the rotation axis, the limited growtn that one
finds for the fragments suggests that they will be obliterated
by the rising background density. Thus, even if fragments do
separate out initially, they will be subsequently destroyed.

Hunter (1964) has also analyzed the problem. He con-
cludes that unless the rotational part of the velocity field is
large compared to the irrotational part, or unless the initial
perturbation amplitude is very small, rotation will not influence
seriously the growth rate until the density of the perturbation
is large compared to the background. However, these conditions
are exactly those that Luyzer is unwilling to prant. A further
difficulty with Hunter's analysis is that it is based on the
linearized theory. As has been'mentioned before, rotation is
intrinsically nonlinear due to the vz/r term. One must there-
fore be careful in extending any linear theory to include it.

Since the two-point model is not limited by the assump-
tions of linearity, it has been modified to include rotational
effects in the hope of understanding the difference in the

results of Hunter and Layzer.

B) THE TWO-POINT MODEL WITH ROTATION

It was mentioned earlier that even the two-point ap-
proach requires an unperturbed solution for the main flow. For

this reason a uniform collapse of the main cloud unas again been
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assumed, but a term has been added to limit the collapse. This
term may be considered an artificial angular momentum. Thus,
while one pictures the individual fragments as possessing orbital
angular momentum, one assumes that the angular momentum vectors
are distributed randomly so that their averase over the entire
cloud is zero. Thus the cloud itself does not rotate.

The perturbation is again assumed to be spheroidal with
its axis of symmetry coinciding with a ra:idius vector of the cloud.
The equatorial cross-sections are assumed circular, and the per-
turbations are assumed not to interact with one another except
through the potential of the entire cloud. This bypasses
Layzer's initial assumption that the perturbations interact.

The effect that perturbations have on one another can be imitated,
though, by assigning a slightly higher initial spin than one
otherwise would.

while it is not obvious that any configuration will be
able to collapse uniformly to a nonzero radius and tnen re-expand
maintaining its uniformity, such a collapse is postulated. Since
it was shown in part II that only gross departures from uniform-
ity seriously affect the growtn rates, this assumption should not
vitiate the results.

If one assumes then a uniform collapse of the main cloud
to a fiﬁite radius and that the perturbations rotate as described
above, one can derive the equations for the two-point model.

This is done in appendix IV. However, since the gravitational

field of the main cloud is unimportant due to the assumption of
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uniformity, it is possible to give a derivation whicii shows more
clearly the physical picture.

Treating the perturbation as an isoiated unit, one can
simply add a centrifugal force in the equatorial direction and

pressure gradients to eq(l0) and (11). One thus has

v Gm f(e)

2 1
Pt 2 p

p

e}

"

1
DoI o

for the equator

G )
TR L Y
P s ;3

for the pole .

%l%

Since it is desirable to measure density excesses, one can con-
vert again to dimensionless variables. The collapse of the main
cloud of radius R is now modified as well so that collapse is

halted at a nonzero radius. Thus

° GM 2
R--;é' *UOR

and

Feloud = Fo { )= ﬁo

While reasons have been given by Foyle and Fowler (1963) and
others for assuming a constant angular velocity, tne more strin-
gent requirement of constant angular momentum is chosen.

If one now uses R as the unit of lensth and writes

p >
ys= R and z = R



52

the two-point equations become

2 b~ 2
e 2yv ‘ ono
26) ¥+ "L --’-z:fﬁo'—rJ'L%f‘e" .
v y v Yo .
2
. 2zv 2B, | Ao ‘z
27) z + — = -5 - =% gle) - S
e =S
o® B
28) vV = - —lg + -J%
v v

. ,02 .2 2 02,2
where B =/ "T, + ]/o = ij To

Q/:and Lj; are the angular velocities of the perturbation about
the cloud center and about its own axis of rotation respectively.
The terms f(e) and g(e) are the corrections to the potential re-
quired due to the oblateness of the perturbation. A poly‘ropic
equation of state has been used with ?’= 1, as was suzgested by
the results of part IV. B° and Lli are the ratio of tue
revolution period and rotation period to the free fall time
squared. If these quantities are small, angular momentum is
unimportant.

A comparison with eq(20) shows that two new terms have
entered the equations. The first, involving Bo' enters through
eq(28) when one converts to dimensionless variables. It is a
consequence of the fact that the density of the perturbation is
referred to the background density, which in turn is a function
of Bo through the latter's offect upon the collapse. The asecond
term, involving DL. is the centrifugal force due to the rotation

of the fragment.
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C) RESULTS FOR THE TWO-POINT MODEL "ITH ROTATION

It is interesting to solve the two equations (26) and
(27) be means of a power series expansion. Since the excess

density is

= yés g

L= =3 1+ 50) -1
¥y z

one obtaing, assuming zero initial velocities and an initially

spherical perturbation,

/ i > >

: B 2 2y |

28) = /1*2(1-0' [;" )‘—_l+1-_.°- - o TZ-I
O 2 (o] "\ 2 - {

\ L= g 3& |

where )‘o is the Jeans' length, Yo is the initial perturbation
size, and | is the time in units of the unimpeded free fall
time. v has been eliminated by another power series expansion.

One can now consider Layzer'ms model. ile takes 50-4-‘ 1,
E‘o - = 1, Ao = 0, and U°2= l. This corresponds to small
ihitial random velocities, small initial excess densities, zero
pressure, and the self-gravitation just balanced by the rotation.
One sees that the excess density decreuses as he predicts. The
case Hunter considers is essentially Bo'~ = 1, )\o = 0, }EO- el,
and l/i*=‘< 1. Thus the excess density increases in time. The
reason for the difference between their results is then just a
consequence of the difference in initial conditions.

In order to see in more detail how rotation affects the

solution, the full equations (26) and (27) were integrated

numerically. One set of integrations was done with the pressure
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rigorously zero. The other was with a finite pressure and
Xi//\i = 1.5, as in parts III and 1V. Tae initial excess
densities and ratios of spin to gravitational forces were varied.
The results are plotted in fig(l4) and fig(1l5).

One sees tnat the pressure term greatly retards growth,
in fact, preventing it in some cases where it was posasible for
the zero pressure case. As is to be expected, increasing the
rotation retarde the growth. On the other hand, increasing the
injtial density excess enhances the growth.

The important point to notice is that rotation does not
necessarily prevent a fragment from separéting out.‘ In setting
the rotational forces nearly equal to the gravitational forces
for the perturbation, but not for the cloud as a whole, one puts
perturbations at a great disadvantage. Regardless, though, of
the spin in the fragment, by making the excess density suffi-
clently large, rotation can always be made a small effect.

One might think tnat while rotation would impede collapse
perpendicular to the axis of rotation, collapse along the axis
would still be possible, allowing the density to rise. Hence,
just as in the tidal case,altnougn there is a disrupting force,
it acts only in one plane, Tuere is a difference however between
the two cases. Tidal forces affect the background not only in
the perturbation but all around it. Rotational forces, in acting
locally, retard not only the collapse of the excess mass, but the
background as well, Hencé. eventually, even the background den-

sity in the perturbation is unable to increase, in contrast to
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the case of tidal disruption. Thus, since the surrounding density
can continue to increuse, the excess density is absorbed by the
background. Only if collapse along the rotation axis can com-
pensate for both the lowered rate of growth of the background
relative to the surroundings ss well as the collapse of tne

excess mass, can the perturbation grow.

D) ROTATION IN ASTROPHYSICAL SYST:MS

On the basis of this model, it nas been snown tnat rota-
tion can prevent the formation of condencations in a collapsing
system if the rotational forces are of the same order of magni-
tude as the self-gravitational forces. Whetaer tais will affect
the formation of stars or ealaxies depends ou the value of these
forces. Since there is no information regardins the motions in
the pregalactic medium, onlyv tie problem of star formation can
be approached nere., One is thus led to ask what values of 2}2,
the parameter measuring the ratio of spin and gravitational
forces, are expected in the present galaxy. Since the Milky Vay,
in being a flattenéd system, probably lies in the group of sys-
tems with higher than averace anrmular momentum per unit mass,
the value of ]/2 found from it saould be in tue nature of an
upper limit.

One should point out t.at stars do have ways of disposing
of anrul~ar momentum. Observationally one finds tust the sun has

only a small vnercent of the total anrular momentum of the system.
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If one assumes that multiple sturs form from a common envelope,
an exceedingly large amount of angular momentum can be deposited
in orbital motion of comnanions. Mention uas zlreadv been made
of the sugeestion of iloyle and Fowler (1963%) whereby the ma-‘netic
field czn couple the contracting star to the medium about it.
Limber (1964) has studied the sneddinc of matter ut the equator
due to rotational instability. Such a mechanism can carry away
angular momentum, though at tie expense of mass being lost to
the system. All of tnese ideas, however, begin with the star as
an isolated object. The crucial problem from the point of view
of fragmentaticn is whetner one can ever achieve this isolated
state in the first place. In view of the high percentage of the
stars which are multiple, it mignt be interesting to look at, in
more detail, the remark made above tnat orbital motions are
potentially capable of absorbing s larger amount of angular mo-
mentum.

Consider, therefore, a cloud of radius ro and mass Mo
thaf exceeds the Jeans' mass and hence besins collaosing. quume
that it has some angular momentum so that collapse perpendicular
to the rotation sxis will eventually be halted when the radius
is r,. Let x = rc/r. Then, by the time collapse stops, the
density will have increased by l/x3 and, hence, by eq(2), page 1,
the critical mass Mc will be diminisned in tne fashion
Mc ~ Moxz/2 + Therefore subunits of the cloud will also be un-

stable in the Jeana' sense. One should note that the instability

proposed here is not one of rotational fission, but of
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gravitational fragmentation. This point is discussed briefly by
Lynden-Bell (1964).

Since the main cloud is rotating, the subunits might also
be expected to possess angular momentum. Whether they will be
able to collapse, even if they do satisfy the Jeans' condition,
thus depends on the ratio of rotational to gravitational forces
which has been denoted in tne previous section as ]je.

In order to estimate L/a, two different approaches are
used. One involves the distribution of angular momentum. The
other considers in a rough way the mode of break-up that might
be expected in a rotating disc.

One can write the orbital angular momentum Lo of a

rotating uniform sphere of mass M and radius R as
2
b, - 2ESL

where (2 is the angular velocity. Suppose it splits into N
pieces of mass m = M/N. Further suppose that the angular momentum
is diatribu@ed equally among the N pieces. KEach piece will then
possess a spin angular momentum S and an orbital angular momentum

L. Thus

Lo = N(L+S) .

Assume the fragments may be treated as spheres of radius
r moving about the original axis of the cloud at a distance (R) .

Then
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L = m(R) 2"..qu

where Lu% and QjL are the spin and orbitel angular velocities

respectively. Substituting in now for L and S in the expression

for Lo'
2
2 2mr 1,/
L, = ZMRSQ = N(—-—T—§ + m(R) 2(,,.71‘) or
2200 2:-2,(,/5 5
20 T wy, -
1/3

Now r ~R/N < < R and (R) << R since the average distance of
a fragment from the cloud center will be less than the total
radius of the original cloud. Hence, it is consistent with the
conservation of angular momentum to set Lu% = QjL = {? as would
be the case for uniform rotation.

Suppose now.the cloud has contracted by the amount x,
suggested above, conserving angular momentum. Then it will have a
new angular velocity given by

{2 = i{; .

(o)

Consider now the ratic of the self-gravitation and the rotation
forces, Vz '-'UZTZ as defined in eq(28). It has already been
shown that if the cloud contracts, the increased density can

make subunite of the cloud unstable in the Jeans' sense. The
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question is now asked, if the ratio of gravitational to rota-
tional forces in the oririnal cloud is l}i v what is the ratio
1}2 in the subunit? 1In other words, Jdoes fraumentation raise or
lower lj2 , correspondinz to increasing or decreasing the import-

ance of rotation? If one assumes tnat QJ% =§? y then

2 2,2

U =L/ [’

QZ ’_.2

Now

N
¢|

2
Tox
—

1+

Therefore
2,2
2 gzo'ro

xo(l +5)

Ve

xo(l +£)

Thus, if the amount of contraction is small before rotation halts
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the collapse, then & will not in reneral be able to obtain a

large amrlitude and so LJZ

= L/i indicating that rotastion be-
comes more important as subunits fragment out.

However, if x, can become sufficiently small thot the
nonlinear effects become irportant, as suggested by Hunter, and
found in section C for certain cases, 6‘can become large. 1In
this case, assuming that E7ﬁv go/x3 where /3 is a factor to
allow for the retardation due to rotation and }? = .5 for an
isothermal collapse with no rotation,

2 - .)J,ax3,/_?-1 ]

(o TN o]

Hence, in some cases, L/a could actually decrease, suggesting
that rotation could become less important as subunits fragment.
While it would be rash to state tnst rotation will not affect
the growth and subfragmentation of perturbations, the above
calculation does suggest that under certain circumstances spin
angular momentum can be disposed of through the conversion to
orbital angular momentun. Tnis would appear to be possible,
though, only if the rotational forces are initially small
(l45-<-< 1).

A second metuod for roughly estimating the evolutions of
a rotating system is sketched below.

Consider a disc in nonuniform rotation so that
W= Lubf(r)' f(r) = 1 for uniform rotation and decreases with r

if the internal portion of the disc rotates more raﬁidly than the
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outer part and in the same sense. If one now cuts a circular
piece of radius ZXr out of the disc at a distance r from center,
it is possible to estimete the srin angular velocity. If the
disc rotates as a rigid body, the spin and orbital rotations are
synchronous. Thus LJS = LJL' However, the differential rotation
adds a component to the spin amounting to the difference in ang-

ular velocity across the fragment, Thus

Lige) = /p () + S22 Ar =0 (1) e W, S A

For uniform rotation, df/dr = 0 , and hence iug = CJL e If the
center is‘rotating more rapidly than the periphery, then
df/dr <= O and hence st-< bjL +« Hence, in this simple picture
the spin angular velocity could actuelly decrease as fragmenta-
tion occurs. This would mean that rotational forces would con-
tinuously diminish relative to gravitational forces as long as
fragmentation proceeds. One might thus conclude that in a
fragmenting and rotating cloud, Ui = Vi .

One now asks what are reasonable valueg for l/i in the
galaxy? 1If one assumes that the gross rotation of the cloud is

produced by galactic shear forces, one can see that

where C)Ll is the change in the rotational velocity per unit
distance and A is the Oort constant. r, is the radius of the

cloud. While there is really little reason why this should be
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representative of the actual velocities encountered, it is used
as an order of magnitude estimate.
Consider now what size cloud is unstable. For mn = 10

particles/cc and T = 100, M =2X 105 Me and

critical
= 10 psc. Since one wants at least two subunits to be

3

Rcritical

unstable, M must be sbout 4 X 10° Me . Taking the Oort constant

as 15 km / sec-kpc, one thus has

2 2
Y2 2p2 o jL5X 106) X (1.5 X 1015} L
o *o'lo 3 x 1021 n 15

Now the critical condition for growth as deduced from

eq(28) is
3 @ 2
B, AL e
1 + - - = 0
Fo 3)2 3¢
¢ o & o

where Bp and Lg refer to the perturbation. Now Bpﬁu Lji]’z.m,

i‘/z’refv )2 and Vp ~ U, @8 was shown above. Thus

o
2 v 2
Uo /‘\o
1+ ~ - 2)00
3 &o B}lp
1 ti 1 £ 12/ 3°2 1 a £ = .1
nserting values for ’&o Ap = 5 an Eo = *1 1 one

sees that the condition for zrowth is satisfied. It should be
noted, though, that if Bp< %vi correaponding to the orbital
angular velocity being substantially lower than the spin velocity
the condition is not met. This could occur if the rotational

energy is preferentially transferred to the spin component.
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The calculations above are all very rough and lhience tne

conclusions drawn are open to dispute. The reason that any cal-

culations are included at all is to try to make plausible that

at least under one set of initial conditions, disposal of ang-

ular momentum in the initial stapres of fracmentation is not

necessarily an insurmountable obstacle.

In summary one can say the following:

1)

2)

3)

Rotation can prevent fragmentation. However, it
will be expected to play an important role only
if the ratio of the rotation period to the free
fall time in the absence of rotation is small,
Unless the spin of the frayment is considerably
larger than that“expected if galactic shear
determines the rotstion, fragments snould be able
to collapse and achieve large excess densities.
The above conclusions have assumed angular mo-

mentum is conserved during collapse. Hence,

~while it would be helpful if angular momentum

could be removed, it does not appear to be
essential in achieving the formation of isolated
objects with densities much larger than the

background medium.



VI - COLLISIONS BLTYEWN FRAGMSNTS AS A

POSSIBL: SOURCE OF DESTRUCTION
A) CALCULATIONS OF TH® MEAN-FRE--PATH OF A FRAGM=NT

While fragmentation can occur in collapsing systems, the
survival of the pieces may pose difficulties. If, artificelly,
the cloud is assumed to have rigorously no angular momentum, then
the perturbations can readily separate out, as shown in tne prev-
ious sections. However, since then the main cloud ultimately
collapseas to a point, all fragments must be destroyed by colli=-
sions with one another at the singularity. If one considers
cases with nonzero angular momentum, this singularity does not
occur, and hence the destruction of fragments is not certain.

One is then faced, however, with the crowdins of the fragments
into a small volume which micht be thought to lead to their sub-
sequent destruction. On the other hand, if one increases the
orbital angular momentum to limit still more the collapse of the
main cloud, another difficulty occurs. If the orbital angular
momentum is increuased, there is no reason why the spin angular
momentum should not also be increased. Greater spin foreces,
though, will either prevent the growth of fragzments outrizht, or
retard the growth. The latter will increase the cross section

with the consequence of greater collisional destrucfion. This

64
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is essentially the difficulty raised by Layzer (1963), though in
a slightly different guise.

One simvple way of estimating the collision probability
is to comvoute )\. the mean-free-path, as a function of time for a
swarm of fragments. The simple kinetic theory of gases pgives an
expression for the mean-free-path in terms of the density of

particles n, and the collision cross section qc. Thus

1l
(n

For a fragment in a collavsing cloud of initiel radius Ro. one

29) A =

can take the cross section as simply the geometrical sigze.

Thus

O = Mr?

where r is the size of the fragment. As collapse proceeds, n
increases and 95 decreases since the perturbation is contracting.

If one assumes that the perturbation collapses as in free fall,

4,5

then its density goes asymptotically as x s for igothermal

1.5

collapse. Hence its radius decreuses as x '~. Furthermore, the

density of fragments per unit volume goes aa x'B. Substituting

these values into eq(29), one sees that

A = 1 = constant .
no .. 2.3
—s /IR x
3.3 n o
Rox
Since the size of the cloud is actually decreasinz all the while,

the mean~free-path relative to the cloud size increases in time!
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While this expression for r assumes rotztion is unimportant and
is hence open to question in this applicsation, tne result sug-
gests that collisions p;ay only a moderate role in fragment
destruction.

In order to make a more refined analysis, the mean-free=-
path is computed as a function of time. One can then find the
number of surviving fragments by integrating over the collapse

period. One can thus write

R

ala.
cr|s

31)

rel

where N = n/V, V is the volume of the cloud, n the total number
of fragments, and Veel is the relative velocity between frag-
ments. Substituting V = QTTRB/B and QD from eq(3), one can
integrate eq(31l) and obtain

2
BJ(t V.o I dt
- o A ——

RF)

n(t) = n(t ) e
If dimensionless variables are introduced with y = r/R and

T. 2
'%f Xre1 L. 4t
o v

R = vRo s one obtains

32) n(t) = n_ e

Some questions might arise about the validity of the
mean-free-path theory in this context as it is normally used when
one is dealing with isolated particles. The justification for

its application to tnis problem lies in the fact that the linear
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theory shows that fragments tend toward relatively dense mass
centers., Furthermore, the linear theory includes implicitly
tidal and other forms of disruption that might occur due to in-
teraction among the fragments. Thus it is only in the nonlinear
regime that one need worry about such interactions and it is here
that the problem is best represented as an "N-body" one.

In order to make the problem more tractable, a number of
simplifying assumptions have been made. The first is tnat the

size of the perturbation caen be written as
y = v B

where ,£3= «5 for a nonrotating, isothermal collapse and /3 =0
if there is no growth. 1In order to have an analytic expression
for the velocity and density in the main cloud, a limited uniform
collapse such as described in section B, part V has azain been
used. One further assumption has been made in that the perturba-
tions are taken to interact only through the potential of the
whole cloud. Thus the effect of encounters has been ignored.
To justify this assumption, tne increase in internal energy of a
perturbation due to an encounter is computed on the basis of the
theory developed by Spitzer (1958) for studying the disruption
of the clusters.

Let 6UT be the increase in internal energy of a fragment
as the result of a tidasl encounter. Let the perturbing object
pass the fragment at a distance p with a mass M And a velocity V.

" Then if m and r are the mass and radius of the fragment,
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T T w

If one compares this with the energy increase expected from a

physical collision, éﬁUC = mV2/2. one obtains

éU’l‘ . Gzlw‘?r'2

Qv v
V can be chosen in at least two ways. Following Layzer

2
I

actions among the neighboring particles. On the other hand, V

(1963), V2 = V. = GM/p where the subscript "I" stands for inter=~

could be chosen as the free-fall velocity, in which case

2 .2
Vo= Ve = My 0ud’Teloud

are eliminated in terms of the perturbation mass and radius, and

e If the mass and radius of the cloud

if there are N fragments, V2 = GMNE/B//r. Thua

[ 2
é; X ] if V = VI
.UT o r J
(5U ) ;K r2
Cc ;W? if V:fo

A

Now even if r is taken as equal to p, certainly an overestimate
of r, one sees that the ratio CSUT/dSUC is less than one regard~
less of which velocity is chosen. Hence, tidal disruption is
likely to be no more important then straight collisions. Thus
tidal encounters are ignored.

One can now write down tue relevant equations of motion
for the system. Letting R be the distunce of the fragment from

the cloud center and 6 its angular coordinate, one then has
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(X} ("'
R - rM(ZR) + R2€2
R

- %'ﬁGﬁR + R262

L
0
69 mR2

where Lo is the initial orbital angular momentum of the fragment,
m its mass, and Zj the mean density of the cloud. For the cloud

itself, one can again use eq(28) part V and thus obtain

e 4 =y 2 2
r, = - 'B'ITGprc + rce

Introducing the dimensionless variables used before,
D.' = po/' 3 ' X, = Rc/ro s+ and assuming conservation of angular

momentum, one obtains

33&) .x. = - x2 + ..?3
v x for the
b) 6 = 0_1;_2_ perturbation
x
34a) V. -1, £,
v v~
b) p = E% for the cloud
v
L2
c) ¢ = “02 . 1 .
for” 3176 [,
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To evaluate the relative velocity, one can write

- - -l
Veepr = vp - Vi

-
where‘V; is the velocity of the perturbation and VL is the veloc-
ity of the surroundings measured relative to the center of the

cloud. Since the collapse is uniform, V. is proportional to the

L
radial distance from the cloud center. Thus VL = Vor/ro. where
Vo is assumed purely radial. If 6 is the angle between the

direction of the perturbation velocity vector and that of a cloud

radius vector, then

»11/2
35) V = ir_(Vp - X Vv, cos 6‘)2 + R262]

rel

The solution of eq(33) through (34) suffices then to
determine vrol as a function of C and the position of the per-
turbation.

One can now return to eq(32) for n(7 ) and since x

rel

and y are known functions of time, a solution is possible.

B) CALCULATION OF THE NUMBER OF SURVIVING FRAGMENTS

Before proceeding to a more detailed numerical calcula-
tion, & rough idea of the revsults may be obtained if one uses for
the relative velocity the free-fall velocity times the averace
value of the ratio of the peculiar to the free-fall velocity and
for the radius the expression introduced before. Since the free-

fall velocity is almost certainly an overestimate of the relative
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velocities, these approximations should tend to overestimate the
effects of collisions.

The system will be followed for two free-fall times
corresponding to a collanse and a re-expansion. Beyond this
point, perturbations that are going to grow should have achieved
such a small radius that they will not be influenced by external
forces. Furthermore, hixing of the orbits should have begun to
have destroyed the radial characteristics of the collapse and
the uniformity of the cloud.

If the time is measured in units of the free-fall time,

T'o then _3-[2 2 2}9_1 g-v-< l‘.l\ dt
a(T) =n e B o Vet
; o
1 2 -1
RIAC "> 7
= n
o?®

‘ -2 :2 . <vrel>
7§ r° Ver
n e (]
(o]

36)

The factor of two in front of the integral sign arises as a re-
sult of changing the variable of integration fron.T'to V. One
must therefore integrate ovef collapse and re-expansion. One
should note how sensitive tne resulting expression for n is to the
relative initial sizes of the perturbations and the cloud. Even
if rotation is important, unless very extreme retardation of

growth occurs, (j3<very small) changes in the initial sizes of
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the perturbation will have much more influence on the number of
surviving pieces. It is interesting to note that fragments that
are s8lowly rotating are favored over more rapidly rotating ones
because they will have a smaller /3. Another point is that if
the relative velocities are decreased, fewer fragments will be
destroyed.

It is worth emphasizing that while very small peculiar
velocities can prevent the main cloud from cdllapsing to a point,
they seem to have very little effect on the growth of the per-
turbations. On the other hand, if the peculiar velocities are
made very lorge, while the collapse of the whole cloud is essen-
tially prevented, they also increase enormously the destruction
of fragments. Thus lower velocities ennhance the ability of a
fragment/to separate out from tne main flow, and higher velocities
tend to destroy it by collisions.

In order to test taese conclusions, eq(32) was integrated
numerically, Having seen above tanat the growth rate of the per-
turbation is not as critical as its size in’determining the
destruction rate, an isothermal collespse was assumed. One is
thus left with the initial size of the perturbation and its orb-
ital angular velocity as the parameters. In fig(l6) the number
of surviving fracments is plotted as a function of time. One
sees that destruction is gradual until the last phases of
collapse. Furthermore, in no case does the number of fragments

drop significantly below .5. This is a result of the fact that
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as more and more fragments are destroyed, there are fewer ones

with which the survivors can collide.

C) DISCUSSION OF THE XFFECTS OF COLLISICN RuTWEEN FRAGMENTS

In order to anply these results, it is desirable to know
the exact effect of collisions. Kahn (1955) has suggested that
at densitfeé typical of interstellar clouds, a collision is more
likely to result in heating or break up into only two or three
pieces rather thsn complete destruction of a fragment. If this
result is extrapoléted to higher densities, one might think that
im those cases where collisions are important, the resultant
heating would destroy incipient subfragments by raising their
critical masses making them stable. On the other hand, the
possibility of compreséion. coupled with the rapid cooling times
in metal rich systems, might actually enhance fragmentation as
suggested by the calculations of Field and Orzog. However, in
metal poor systems, the increased thermal time scale is likely
to rule out this last possibility. In those systems, collisions
could seriously slow down the growth of fragments.

A rough estimate of the increase in temperature that one
expects can be gotten from considerationa of the amount of kinet-
ic energy t.hat must be dissipated. Thus 6'1‘ ~v2 + where v 1is
the relative velocity at collision. One sees that {)'T will be
much larger in systems with large relative velociti;s. Such

would probably be the case in collapsing galaxies. Furthermore,
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since in galaxy formation the material is likely to be nearly
pure hydrogen, the thermal time scale is nearly the free-fall
time scale, as was seen in part IV. Hence, if collisions do
occur, perturbation growt: could be prevented until the random
velocities had decreased or until enough metals were present to
allow more efficient cooling. Layzer (1963) has suggested that
the time for the decay of turbulence is short compared to the
free-fall time., Hence, once collapse of the main cloud is over,
heating due to cloud-cloud collisione stiould rapidly drop.

It was gsuggested in section B that collisions were more
important, other things being equal, in systems where the pecul-
iar velocities were large. Larger peculiar velocities were
furthermore associated with systems in which the perturbations
had large orbital angular momenta. While the case of a rotating
system was not studied, if one assumes that tle rotation here
too produces large peculiar velocities, one miéht conclude that
rotating systems should be particularly prone to the destruction
of fragments. Hence, the major epoch ofvperturbation growth,
associated with star formation, might well be delayed in such a
system until the magnitude of the veculiar velocities was reduced.
Another possibility misht be that star formation would be con-
fined to small regions where the velocities happened to be ab-
normally low. It is temptins therefore to ascribe some of the
differences between ellipticnl ani spiral galaxies to an angular

momentum effect which delays star forﬁation in the latter case.
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One might summarize as follows:
1) The number of surviving framents is c<iven

rougnly by

o 2
// re€>
n = n e
(o]

2) One might think that systems with large amounts
of angular rmomentum would be exceptionally vul-
nerable to the destruction of frarments by
collisions as a consequence of the larger pecul-
iar velocities.

3) %ven in highly unfavorable cases, the numerical
integrations, on the basis of this model, indicate
that collisions cannot be expected to destroy many

more than half the fragments.



VII - DESTRUCTION OF FRAGMENTS 1S COLIAPSE CEASES
A) THE OPACITY OF CLOUDS

As long as a collapsing cloud remains optically thin, the
analysis of the proceeding six sections should describe in an
approximate fashion the growth of perturbations. When the den-
Bity rises so that the flow of radiation out of the material is
impeded, that is the optical depth, 7'. becomes one, the cha=
racter of the collapse is likely to be significantly altered, as
pointed out by Hoyle (1953). At least two major effects can now
be expected to become important. The first is that the trapping
of radistion can start to heut tne matter switching the gamma of
the gas from 1 to 5/3 with the consequemt radical chance in be-
havior of tte perturbations found in part III. The second is
that the heating is likely to cause pressure gradients to be-
come more important in the main flow as well as in the perturba-
tion with the possibility of bringing the entire cloud into
equilibrium. If equilibrium is established, then the virial
theorem shows that perturbations will be stable unless they
satisfy the local Jesns' condition. Hence, fragmentation is
likely to stop. Some qualifications are necessary as will be
discussed later. Nevertheless, the point where the cloud becomes

optically thick is likely to mark an important dividing line in
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its evolution, and hence, it is important to know, even if rough-
ly, when this occurs.

Let the optical deptn of gaseous mass M be written as
37) T = kRp

where k is the absorption coefficient in cmz/gm, and j? is the
density in gm/cc. R is a characte;istic dimension of the system.
R can then be eliminated in terms of M and [D. If this is done,

then one can write

2/3 M1/3

T = constant e k‘) or

2/3

7 x | P

7; ko /)o
where the subscript "o" denotes the initial value of the quantity.
For the main cloud, /) = /_’_")o/x3 , while for the perturbation,

p = -933 (1+€) s where E is the ratio of tne excess density to
x

the background density, and x is the radius of the main cloud in
terms of its initial value. For an isoth:rmal collapse
&~ 1/:3/2 and thus [)ru ];/x9/2 for a perturbation.
With these expressions for [) it is vossible to find T
as a function of x. Hence, —’-,{:— = Ek- --2'2 for the main cloud,
T x 1 o o x
and 7; = q‘;’; for the perturbation. If one assumes that

the opacity is constant, then one can find the value of x for

which the cloud becomes opaque ('T = 1). Thus
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x = To(cloud)l/a

1/3

»
]

T;(perturbation

Since initially the perturbation density is nearly that of the
cloud and the opacities are equal, the ratio of the initisal

optical depths is proportional to the ratio of the initial sizes.

Thus,
o
ro(perturbation) = fpgrturbation
Tolcloud) ~°
cloud
Substituting this expression in the equations above for x, one
obtains
; >
xperturbation = 'To(cloud) r°
c

If x i8 eliminated between the expresasions, one can de-
termine for what ratio of perturbation and cloud sizes the cloud
will become opticslly thick before the perturbation. It is im-
portant to know if this can occur, because, as was mentioned
above, if the main cloud comes into equilibrium, then the g:owth
of perturbations is nalted, according to the linear theory, for
all masses smaller than the critical Jeans' masa. One finds that

this comdition occurs if

38) To(cloud) >

0.’0 ‘U.’O
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It is 8till necessary to evaluate 7; in the above ex-
pression. If ed(3?) is rewritten in terms of the total particle
density n and the ratio of the number of absorbing particles to

the total particle density.j3 s« then

T: BQ\ﬁR
where (f)is the absorption cross section per absorbing particle.

Expressing R in terma of tne muss in solar units and the density

in particles per cc, one finds

39) T = 6.6 X 10

18 2/ ’4 yl/3

It is thus possible to evaluote 7 and tne value of x when the
main cloud becomes ovnticallvy thick. To do this, one must choose
a particular environment.

For temperatures much higher tnan 10“ and densities about
10-3 particles / cc, electron scattering is taken as the main
source of opacity. For electron scattering, }3 = 1 s8ince the
electron density equals the ion density, and‘{i}= 6 X 10-25.
.Asauming a mass of 4 X 109 Me , x = 10-2.

For temperatures near 100, and densities about 10,
Gausted (1963) has shown that the main source of opacity is
absorption by grains. Taking €[‘= 10711 ang ;3 = 107> as the

ratio of grains to hydrogen atoms, and a maess of 2 X 103 Me , One

again finds that x = 1072,
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Hence, in both cases, collapse can occur to very small
fractions of the initial volume. Tais in turn implies that very
large density excesses can deveclope.

In order to see whether the perturbations become opaque
before the main cloud, it is necessary to compute the initial
optical depths. TUsing expression (37) and the values for the
mass, temperature and density 2bove, one sees that 'r = xz com=-
puted above. Hence from eg(38), one sees that only perturbations
with radii smaller than 1 overcent of the main cloud radius will

remain optically thin longer than the cloud.

B) SUBFRAGMENTATION OF COILAPSING CLOUDS

It was seen in part I that the critical Jeans' mass for

3

a typical interstellar cloud is about 10° Me . The linear and
two-point models have shown that in such a cloud perturbations
can grow once collapse besins. It is clear that if one is to
produce objects whose mass is about 1Me , one must invoke either
very small perturbations in’the initial cloud or a mechanism
which will cause large perturbations to fravment. The latter
course is the one suggested by Hoyvle (1953), and outlined in
part I. The fact that in the linearized theory small perturba-
tions simply oscillate until their mass exceeds the local Jeans'
mass suggests that Hoyle's picture is in fact the more reason-
able one. In support of this, one could argue that very small

¢

oscillatory perturbations will initially be absorbed by the
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growth of larger ones. Once the density of a larger one has
risen so that it satisfies the Jeans' criterion, then it can be-
gin a free-fall collapse essentially independent of the main
flow. This is a rigorous result of the asymptotic expressions
for the linear theory. One can then apply the linear theory to
this fragment and follow perturbations in it. This process con~
tinues until opacity or some other effect intervenes either to
bring the fragment into hydrostatic equilibrium or to cause its
temperature to begin rising. Hoyle has studied this stage of the
evolution of a fragment for a gas mixture of essentially pure
hydrogen but with a slight admixture of metals. Gaustad (1963)
has followed the collapse in a low temperature regime where the
opacity is due to grains and graduslly switches to hydrogen.
Gould (1964) has considered the problem when the opacity is due
to Hz. The result for all three cases is that while the cloud
becomes optically thick, gamma is not 5/3 because it is still
able to radiate at a rate sufficient to offset the compressional
energy released. Only waen the mass is about .1 Me will radia-
tion control the collapse., The question thus arises, since gamma
is less than 5/3, and in fact still apparently near 1 for all
fragments greater than about .1 Me, why are there any 50 Me
stars? Suggestions have been made that ansular momentum or some
other effect intervenes ( Gauatad (1963)),

Another possibility mieht be mentioned. Once temperature

gradients are built up, pressure cradients are also likely to
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occur, as was mentioned before., hile tiey may be small, it is
possible that thnese gradients could give rise to bouyant forces
acting on the perturbations. One thus has the possibility of a
"convective type instability" arisin<. Sciematically, one then
has the picture of frarments with positive density excesses sink-
ing toward the cloud center, znd those with negative excesses
rising toward the cloud border. Since there is no gusrantee that
the fragments h:ve the same entropy as the background, there is
the possibility of "oversnooting'". A very dense fragment mivnt
then tunnel through the cloud center aznd ocut tne other side. If
its self-gravitation were sufficiently large, it might then be
able to form a separate condensation. Frarments witn small den-
sity excesses though might simply move up and down in the main
flow, eventually being dissipated by viscous or radiative
process.

One miecht aporoach the problem gquantitatively by assuming

that the main flow was tiuat of a polytrope collapsing. As a
rough approximation a sinkr /kr dénaity diastribution could be
used. One could then consider with the aid of the two-point
model, for example, the motion of a perturbation as was done in
part II1, witi the modification that there is now a pressure
gradient in the main cloud. Tne main cloud, in a first approx-
mation, could be taken to be in equilibrium. It should then be
possibie to follow the density of the perturbation as a function

of space and time., The objective would be to see if there was a
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critical mass or density below which perturbations would fail to
grow and separate from the main cloud, and to see what relation
this has to the Jeans' mass.

The reason that the problem sketched above is important
is that it may clarify the question of what determines whether a
gas cloud becomes one star or more. This in turn is clearly what
determines the mass function.

One might summarize the surcgestions made in this part as
follows:

1) For the type of clouds studied, it would appear
that the subunits become opaque before the cloud
itself. |

2) The final mass function is probably determined by
the processes that are operative in the subfrag-
mentation of the cloud and hence is more likely
to depend on the parameters of the cloud immed-~
iately before‘the end of collapse, rather tnan

on the initial parameters of the medium.



VIII - 507K CCONCLUSIONS RNMGARDING TH®

EVOLUTION OF GAS CLCUDS
A) SUMMARY OF THY T#w(«POINT RLSULTS

Before considering the spnplication of the results to the
formation of astrophysical systems, it mignt be well to give a
general summary of whst nas been learned so far.

From fig(4) and fin(6), one sees that for the zero-
pressure case, a large central concentration in the main cloud
and/or the presence of background stars inhibits the formation of
large density excesses. For the finite-pressure casc with a
polytropic relation, smaller g mmas cause an increzsed growth
rate as can be seen from fig(?). Note, though, that the inclu=-
sion of pressure greatly retards growth. 1In all cases where the
density was found to increase on the basis of the linexr theory,
the nonlinear effects were found to accelerate tne growth.

The inclusion of radiation was found to produce a gamma
less than or equal to‘one, as is seen in fig(l2) and fig(13).
Thus the collapse is roughly isothermal as suggested by Hovle
(1953) and Mestel and Spitzer (1956).

When rotation is included, growtn cannot occur if the ro-
tation period is less than the free-fall time unless the initisl

density excess is made very large. Tnis acrees with Layzer's

84
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finding. For smaller rototion periods, the major effect is a
retardation of growth in tnese early phases.

# study of collisions among fragments snowed that unless
the initial size of the fragments was lurge or their growth rate
much slower than for an isothermal collapse, destruction was un-
likely. Since in a system with large amounts of angular momentum
the above conditions are likely to be encountered, it was con-
cluded on the basis of eq(36) that collisions wouli occur. It
was sugegested that the consequences of collsions wonuld be unim-
portant unless the cooling time scale was long, as might be ex-
pected in the formation of galaxies or metal pour systems. 1In
such systems therefore, fragmentation would ve retarded for
periods comparable with the free-fall time of the cloud as a

whole.

B) POSSIBLE EVOLUTION OF COSMIC GAS CLOUDS

It would not yet appear possible on the basis of the
theories sketched here to vredict the initial mass function of
stars. However, reasons have been riven for supposing that frag-
mentation proceeds in a very different fashion from system to
system according to certain initial conditions. 1In particular,
the importancf of chemical co:iposition through its control on
the cooling functions and an zular momentum has been mentioned.

In order to summarize these suggestions, consider first

the behavior of two large clouds, say of galactic mass. Suppose
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they differ only in the amount of angular momentum. In the case
with low angulur momentum, it has been sujsested tuat collisions
are not as likely to occur due to the lower random velocities one
might expect. Furthermore, it was suggested that where orbital
velocities were low, spin velocities might also be small. Hence,
fragmentation should proceed efficiently and rapidly in such sys-
tems. In addition, Spitzer (1942) has snown that what gas is re-
maining in such systems will be concentrated toward the center of
the system., One would conclude taat in suc:i syztems virtually
all star formation should occur in one single brief evoch at the
time of initial collapse of the system and that any residugl gas
would collect at the center, thus being difficult to observe. A
study of spherical systems by Gamow, Belzer, and Keller (19438)
showed that in massive systems formed by collapse, the gross
synchronous radial motion will be destroyed in times the order
of the free-fall time. Hence, any vestiges of the collapse
should no longer be evident. (Strictly speaking, this is true
only of the interior regions. The radial character of the orbits
will still be preserved in the outer regioms, but any phase
relation will have been destroyed.)

If one considers now systems with large amounts of ang-
ular momentum, a very different picture sugrests itself. As was\
found by Spitzer (1963), if a cylinder initially stable acainst

fragmentation collapses along its axis into a disc, it remains
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stable, Thus if angular momentum restricts the collapse to one
direction, it will be very nard for stur formation to occur.

If a roughly spherical collapse can occur for a short time,
it is possible that the density could rise sufficiently to allow
some fragmentation to occur. A collapse to .1 of the initial
size will lower the critical mass from 1011 Me to 106 Me since
/].= [30/19/2 . Hence star formation might occur in ag.regates
of this size. 1t was further suggested that in systems with high
angular momentum, perturbation growth might be retarded due to
collisional heating. It is thus plausible(that any fragments
that do survive will have preferentially low spin angular momen-
tum. Such a picture is ccnsistent with that suggested by Fgeren,
Lynden-Bell, and Sandagze (1962) on the basis of the motion of
Pop II stars of large UV excesses. A further consequence of such
a collapse ia that large amounts of gas would be left that would
be unable to accumulate in the central recvions due to the rota-
tional forces acting on it.

Since fragmentation in rotating systems seems unlikely to
occur oa the same sort of scale as in nonrotating ones, it is
reasonable to ask how it does occur. The stability of rotating
- discs has been studied by Bel and Schatzman (1953), Hunter (1963),
Toomre (1964), Lin and Shou (1964) and Mestel (1963). It is
found in all cases, despite the difference in assumptions regard-
ing relative amounts of stars and gas, that instabilities are
likely to occur lcading to the formation of regions of hizher

tﬁan average density in the form of rings, bars or spiral arms.
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It is natural to suvpose that if star formation occurs, it is in
these regions. HYowever, with a temperature near 104. it is still
necessary to have enormous densities (105 particles / cc) to
achieve instability in the Jeans' sense for a mass anywhere near
that of even the largest agpgrezates of pop I stars. This suggests
that to produce stars in such a model an additional source of
cooling other than pure hydrogen is required to lower the temper-
ature to the presentlv observed value of about 100, Whether this
cooling can be ascribed to primordial metals, metals produced in
stars that were able to form in the initial collapsc, or molec-
ular hydrogen is uncertain. If the temperature csn be lowered to
about lO2 by some mechanism, a much lower density (10

particles /cc) is adequate to produce Jeans' type instabilities

3

with the counsequence of star formation in groups of about 107 Me .

7 years)

The relatively short time of collapse of such a system (10
suggests that in the youngest star complexes the dynamical
effects of an original collapse and expansion might still be ob-
servable., It is not impossible that the observed expansion of

some young associations is a manifestation of the orizinal col-

lapse in which the stars might have formed.

C) THE POSSIBILITY OF S:COND GRENSRATION FRAGMENTATION

It is of interest to ask whether in systems in which
fragmentation has occured once, a second generation of objects

can form. This question is sugzested by Herbig (1962) witn
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regard to the apparent spread of azes in the Pleiades and the
Hyades. In the case of galaxy formation, Weymann (1964) has
suggested that if gas accumulates in a system and is unable to
fragment a second time, it micht cause the formation of a large
mass in the nucleus of the galaxy. One can imazine the gas con-
tent of a system increasing in time after one generation of ob-
jects has formed due to mass ejection, accretion from the sur-
surrounding medium, as well as dispersal of tnose fragments in
the first generation that were too small to be stable.

Consider therefore a2 system in whicn collapse has pro-
duced a system of stérs. Unless there is a large amount of un-
condensed matter, the gravitational field will be determined by
the stars. Hence there will be a tendency for the matter
accumulating or remaining uncondensed to concentrate toward the
center as shown by Spitzer (1942), who also showed tnat in non-
rotating systems, there is a critical mass for the gas similar
to that found by Ebert et al. If the accumulation continues due
to mass ejection, say, and the mass eventually exceeds tnis crit-
ical mass, then it may undergo collapse. This time, however,
the collapse ocecurs through a network of stars. Furthermore,
there is likely to be a central condensation in the cloud. 1In
part II it was shown that both these factors impede the growtn
of perturbations.

For the case of the zero-pressure uniform sphere, the
density of a perturbation with initial amplitude .1 doubles when

the excess density has increased by a factor of ten, or when the
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main cloud has collansed to .4 of its orieginal size. If the non~
uniformity index, 71. is .5, the zrowth to a similar density is
delayed until the cloud radius is .25. Thus, roughly a fector
ten more collapse is required to achieve tne same density. If
the density otf stars is 10 that of 7as, zn even more extreme
state of collapse is renuired to achieve tue s=me density. If
one applies this factor of ten to the isotnermsl collapse, the
main c¢loud must contract to about 1 nercent of its orisinal size
to have tne density of even a lorice perturbation icrease by a
factor of ten, This is avproaching the ooint where the cloud is
likely to be optically thick, as found in section A part VII. It
was mentioned there, however, that the work of Gould (1964) and
Gaustad (1963) showed that an optically thick *I cloud could
still continue collapsinz nearly isothermally. Hence, fragmenta-
tion could conceivably occur a second time in these systems. For
the higher temperature cloud, thousn, the picture suggesta that
fragmentation is not as likely to occur once an optically thick
state is achieved. (Hoyle (1953)), This could possibly lead to
the formation of a massive object in the center of the system.
There has been much recent speculation that quasji-stellar radio
sources are connected with just such objects (Fowler and Hoyle
(1963), and Robinson, Schild and Schucking (1965)).

It is very difficult to draw conclusions about the ultie-
mate evolution of collapsing systems. A number of tentative

points have been suggested abdve. Reasons have been siven for
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supposinz that anrular momentum affects the ability of a system
to fragment, and hence star formation proceeds very differently
in elliptical and spiral systems. Firmer conclusions necessitate
a clearer understanding of many processes. A number of points
are particularly crucial. One very simple point tnat has been
ignored in all the above is the depletion of the background gas
that is likely to occur as fragmentation proceeds. One should
also ask what modifications are necessary in the linear theory if
nonuniformity and rotation are included. A start in tiis direc-
tion has been made by Lynden-RBell (1962, 1964). 1In general,
though, the gravitational stability of a rotating, compressible
mass seems to require a great deal more study.

fnother problem that has been studied only roughly is the
consequences of collisions on moderately donse fragments.
Throughout this work there has been no mention of magnetic fields.
This must be rectified at some point. ‘hile it was suggested
that orbital motion could be used to rid a system of rotational
energy, Jjust one special solution to see exactly how the density
would develope in such a system would be very valuable. Finally,
the question of what occurs when pressure gradients are becoming
important, as mentioned in part VII, and their influence on the
ability of a cloud to fragment must be studied before that
interesting question of wnat determines the stellar mass

function can he answered.,



26

COLLAPSE OF A UNIFORM GAS SPHER:
HYDRODYNAMIC - TWO POINT

Basic Equations Basic Equations

. GM;, Gm
1) L _ .5 1) P = - —X__—p_1l4
5 dt v 1 2 2 " ar
~ ry r : 1l
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rY . 2 1l dp,
dv - T 2P 2) r e il
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S A ‘ 1 730 ¢ /LYy
where [/ = density —_
) m = :IIJV Pi = -l—g-gi
Qﬁ = gravitational Potential P p ;7 i
P = pressure x = X
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v = velocity
Take %? of eq(l) For definitions of other quantities,
see part II, amd fig(l). Assume a
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d 1 47 .
3) It ;} 1#;7 = spherical perturbation.
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Substitute divergence of eq(2) in eq(3).
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Now curl curl 'ﬁJr =

Also

A

A= 3f2+2fv-3+rf:r\7.a‘.

Since (;-V)(v-‘:) = rf aar V‘ﬁ ’
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This is the basic nonlinear two-point

equation.
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Recalling now that Pi =

one can see that since P2 is evaluated at
the perturbation center and the main

cloud is uniform, P, = O.
|
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Also, P, - P = fa-;-i
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Substracting the unperturbed solution Linearizing now in 2,

and eliminating f,
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The two-point equation, as derived in eq(5), is a differential equation in = .
As has been mentioned in part III, it is possible to obtain a more exact form of the
equation through thé use of scale factors. As can be seen from eq(B). the .i used
here is really a mean &

& E?. However, the approximation to the pressure gradient

involves the value of ‘g at the perturbation center, ‘Sc . Thus, one wishes to relate
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where jZE are evaluated at the perturbation edge and are nence the values in tne un-

perturbed flow. One can see from eq(7) that ( = 1.

In order to relzte 4+ and £ , it is necesssry to find the total excess
< Ce

mass in the perturbation. Thus
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Now r is tﬁe physical radius of the perturbation and hence rp = T _Xy.
k though must be measured in a Lagrangian frame. Following Hunter (f962. p606)

one can thus write
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where LLZ is related to the wavelength of the disturbsnce. Substitutiag tais value of

k2 into the expression for Er,,one finds
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APVENDIX II
EVALUATION OF Ar_//Ar "anp M
The equation of continuity of the main-spnere is
prprlAr, = pryefr
if /@ is defined as [3 = Ar,//\r, then
3 - Puyre?

Q(t‘o) r°2
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The integration over r is performed and the derivatives
are then taken. Note that M, ro. and ;o are functiocns of L
Hence ;3 denvends on their values throurhout tae cloud.

It is found advantageous to let

= eme—— and

2 r
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. . ~
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APPENDIX 111

SURFACE tCCELERATIONS

ped
Prolate o= 1 -_33_
c
s T -2 ;
’2776)‘) H % 1- ': l,’, -
A = R A - 1n a
equator -3 g 2 -
o i |
—_— : n
A 1. 2”G}J(; ISP S
P £ : lav |
~ ca
Oblate ::‘ = 1 - —-2-
a
. . e 1/2 i 1/2 -
2fcff(-5) ; 2 1 I
R equator © 3 ~(1= ) + sin _xa

Apole

where A is the acceleration, a is the equatorial distance and ¢
is the polar distance.
The expressions for f( ) and g(f‘), the polar and

squatorial corrections, thus become

pley
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APPENDIX IV

INFLUENCE OF ROTATION

™~
. T —
U
L M2 -Ll
Identities

rcoa@z = Rcos@l + 8¢cos y
A A .

rainc.z = Rsinol ssin;

rco-,\: 8 + Rcos (X

r s8in A: R sin X

r2 - l2 + R2 + 2sRcos .\

BN

- -
r=8+R
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A
R

I

8 A
7S

Transformations

A
Scos X+ psin (X

A A
-g 8in {X + ¥ cos (X

A
cos L + Yein )

a>

-Sainl + )gcos ,\
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Forces
along R = =~ GMéR)
R
along 91 = 0
am(r) _ Ompcos A
along r = - =—>— - P > . e
r 8
i Gm_sin A
along "‘}.2 = - _LZ——‘ g
8

f and g are corrections required for asphericity. (See Appendix III.)
Now taking the expression for 8 and differentiating twice

with respect to vazme,

- -3 —
s =r R
SN . ;2 A e ow oA Ao : 2 i~ - A o~
= -(R-RGI)R - (2R;_71+R(:}1)@1+r(r-r(jz)+ @2(2r72+r(;¢2)
Substituting for the forces,
2 ’ A ' r Gm_coa " ]
s = GM(R) scoa X + ¥ sin x| - GM(r) + —L £l o
2 2 2
R } .r 8
A A Gm_sin A ) y
(scos )\ + ¥sin L) + -Lg——lt"coe)g - ssin } i. g
8 .
eM(r, )
i L Y
Now ra = EJTG}_)ri
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.. § i N )
8 = Git- %‘_T{'G/js - :22 (fcosa,l, + p,s:lnz)_)g
A | Gm sinﬂ‘cos).

- y’f E 5 (f - g)l

If the perturbation starts sphericsl, then f = g.

Therefore,

= - %TTG;S; - "—2—‘

Note that the properties of the main cloud vanisa
identically if one goes to the dimensionless time. Hence, apart
from the time scale, the growtn of a rotating spheroidal fragment
in a uniform cloud is completely independent of the cloud itself

if the axis of rotation lies along the radius vector of the cloud.

Now.~aince

-

A e . 2 A . - ..
8 = 8(B8 ~8¢ )+ ¢#(28Y¥ + 8#),
- .2 b .. — Gm_f
8 = B? - 3/{Gps - +

Now going to dimensionless variables and letting the unit of

length be

Vro = ro —
J

and defining & —) gv and changing the time unit to

To = (%7{G/§o)'1/2. one obtains,
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. Zéi__sl+l+"_,'ro

If one now conserves angular momentum, and assumes the

density in the main cloud is determined by,

R S
V2 V3
then since

;42 2 4
'2_""}080 =v050
v = TT % T T L3
v s vs T
o]

One finally has, ignoring the pressure terms,
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AVPPENDIY V
COOLING CURVS

CASE I = T .~ 100°K

IONIC

13 3.32

F = 7.23 X 10 ;} T

iUnno and Simoda (196})j

MOLECULAR HYDROG®N

F o= 8.58 x 1070%  p?28

;:Gould (196&)}
1+O
CASE II - T >10' K

PURE HYDROGEN

1/2r 5 10
- 23 ~ [T 17 6.8x107 7.75X10
F = 3.59 X 10 /‘) (—061} ihl.liz + + gz' i

1 T T -

LMicnie (1963)}
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Fig. l.--Model of Cloud and Perturbation Used for the Two
Point Equation

C denotes the central point of the soheroidal perturbation
with axes a and b, r is the distance of C from the cloud center.
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Fig. 2.--Change of Central Concentration, as a Function of
the Initial Central Concentration, No' for a Zero-pressure
Collapse

A small N dimplies a more centrally concentrated cloud. N

is the ratio of the local density of a saell to tne mean density
of the matter interior to it.
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Fig. 3.--The Effect of Nonlinearity.

The excess density is plotted as a function of time for
different initiesl excess densities, Eg» for & zero-pressure
collapse. The curve marked 'Hunter" refers to the linear theory.
The curves are normalized to unity for the initial excess
density.
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Fig. 4.,~-~The Effect of Central Concentration

The excess density is shown as a function of time for diff-
erent initial central concentrations, N,, for a zero-pressure
collapse. The curves are normalized to sn initial density of
10%. Ng = 1.0 is & uniform cloud.
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Fig. 5.-«Number of Particles per cc as a Function of Time
for a Zero-pressure Collapse for the Main Cloud and the Pertur-
bation

The initial perturbation amplitude is 10 %.



120 }

00

®
o

o0
o

PARTICLE DENSITY
&

N
(@)

PERTURBATION

S | A

A

6 ;) 0 2

"TIME (10 MILLION YEARS)

16

RS



Fig. 6.--Effect of Background Stars

The excess density as a function of time is shown for a
zero-pressure collapse. Q is the ratio of the star density to
the gas density. The density is again normalized to an initial
amplitude of 109,
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Fig. 7.-=-Effect of Gamma (.5 to 2.0)

The excess density is sunown as a function of time for a
finite-pressure collapse. The density is again normalized to
its initial value of 10%.
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Fig. 8.--Effect of Nonlinearity for a Finite Pressure
Collapse

The excess density is shown as a function of time. The

results are normalized to the initial excess density, Eo.
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Fig. 9.--Particle Density as a Function of Time for an
Isothermal Collapse

The ratio of the Jeans' length to tne perturbation scale
is .5. The initial amplitude of the perturbation is 10%.
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Fig. 10.,~--Comparison of the Two-point, Linear and Full
Hydrodynamic Solutions

The logarithm (base 10) of the excess density, normalized
to its initial value of 10%, is shown as a function of time for
an isothermal collapse., The Jeans' length is .5 the perturba-

tion size.
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Fige 1ll.-=-Schematic Representation of the Change in the
Physical Variable During a Collapse “here Oscillations Occur

The top curve represents the ratio of the interpmal to the
external pressure. The middle one is the excess density norm-
alized to its initial value. The bottom one is the ratio of
the pressure force to the gravitetional force. The abecissa is
a time scale.
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Fig. 12.--Temperaturc of & Perturbation in an 43I Cloud
During Collapse

The upper curve is for molecular hydrozen coolinz. The
lower is for metallic ion cooling. The initial density is
10 particles per cc¢, and the Jeans' lensti is .5 the size of
the perturbation. The cloud is started in thermsl equilibrium.
The abcissa 1s the fractional radius of the main cloud, x.
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Fig. 1l3.--Temperature for a Collansing Cloud of Ionized
Hydrogen

The initial density is .D0l particles per cc, and the Jeans'
length is .5 the perturbation size.
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Fig. 14,--Effect of Rotation on a Perturbation in & Zero-
pressure Free-=fall Collapse

1/3 is the ratio of the free~fall time to the rotation
period, squared. The excess density is normalized to its
initial value of 10%. The main cloud is in free-fall.
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Fig. 15.--Effect of Rotation on a Perturbation for a Finite-
pressure Collapse

The curves ares normalized to tne initial values of the ex-
cess density, Eg5. The main cloud is in free-fall (Bg = 0).
The collapse is assumed isothermal with the Jeans' lengtn .5
the size of the perturbstion.
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Fig. 16,-=-Fractional Number of Surviving Fragments
Illuastrating the Effect of Collisions

The different curves show the effect of the ratio of the
initial perturbation size to the cloud size (Y,) and the ratio
of the effective orbital angular velocity to tne free~fall
time (By). B, = O is a free-fall collapse.
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