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ABSTRACT 

The growth of a density perturbation in a spherically 

symmetric collapsing gas cloud has been studied by following 

the notion of points on the periphery of tne perturbation. By 

auch a technique, it has been possible to obtain solutions to 

the equations of motion including the effects of nonlinearity, 

nonuniformity, radiation and rotation. Magnetic effects have 

been ignored. 

A comparison with the linearized theories of Hunter 

(1962) and Savedoff and Vila (1962) shows excellent agreement in 

the linear regime. It is found that nonlinearity enhances the 

growth rate relative to the linearized solutions. In the zero-

pressure case it has been found that nonuniformity retards the 

growth. 

The inclusion of radiation is found to give a roughly 

isothermal collapse both for temperatures of 100 and densities 

of 10 particles / cc, and for temperatures of 1.5X10 and den

sities of lO"'' particles / cc. 

It is concluded that rotational forces can prevent 

collapse if they are sufficiently large. Pressure effects and 

the inclusion of background ctnra are both found to inhibit 

growth. 
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X 

A calculation of tne importance of collisions as a way of 

destroying fragments sua:e;ests thiit the effects will be most 

pronounced in niu;h angular momentum systems. 

It is sutfRested that a second feneration of frat^ments is 

unlikely to form in lov. angular momentum systems. In high angular 

momentum systems, secondary fragmentation can probably occur in 

localized regions. 



I - INTRODUCTION 

A) EARLY STUDIES OF FRf O'-'KNTATION 

Since preni.s :.oric tines IT,an rias speculated on the origin 

of the heavens ani t.i<? world about nirv. Most of t:iis tninkinp; 

remained steeped in mythology until the rise of science in t<ie 

17th and l8th centuries. Newton susjpested that objects mignt 

cluster together under their own self-ravitational force to form 

bodies of cosmic dimensions. Laolace and Kant considered the 

origin of the solar system from a similar point of view. 

instability of a background mediurr, tne essence of many current 

studies in star and galaxy formation, was first suggested by 

Jeans and is described in nis book Astronomy and Cosmogony (1929). 

Jeans showed that in a uniform medium at rest, disturbances with 

The formation of cosmical bodies as the result of the 

a scale are unstable if 

(1) 

or in terms of masses 

2 )  M »• 

1 
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where T is the temperature in decrees kelvin, R is trie gas con

stant, G the gravitational constant, trie density in ^mc/cc, 

and n is the particle density in pcrticles/cc. \ and M are then 

in cm. and solar mosses (Mc) respectively. 

Je ans reasoned that an instability results if trie com

pression due to the passa -e of a sound wave decreases the 

gravitational ootential more than it increases the tnermal 

energy. The st^te of lower potential is tne More stable and tnus 

the gas tends to form regions of higher tlan average density. 

The critical value for ^ in eq(l) results from tie linear 

analysis of the behavior of a self-gravitating sound wave moving 

in a uniform infinite medium at rest. Disturbances of wavelength 

smaller than oscillate, while those larger grow exponentially 

in time. 

If one inserts values for T and n representative of what 

are thought for the interstellar and intergalactic medium, say 

n = 10, T = 100 and n = 10 T = 10^ , one obtains M = 2 X lo' Mo 

and M = 2 X 10^ Mo . V.'hile the latter is approximately what one 

finds for galactic masses, tne former is nearer the mess of a 

star cluster than that of an individual st^r. Thus either some 

mechanism intervenes in star formation' or Jeans' analysis is 

too idealized. 

As has been pointed out by several autnors, tie initial 

state assumed by Jeans is inconsistent, for one cannot satisfy 

both Poisson's equation and have an infinite, uniform medium at 

rest. 
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•/ ** 

A. more extensive analysis of the instabilities of an 

astrophysical system was made by .ioyle (1955) in w.iich the effects 

of radiation were included. The model considered was a cloud of 

q 
3.9 X 10 Mo with an initial temperature of 1.5 X 10 and a 

-27 
density of 10 gm/cc. By comparing the gravitational and 

thermal energy content and using trie virial tneorem, one finds 

that such a mass is unstable arainst collapse. As tie cloud 

radius shrinks, the density rises. The increasing density also 

increases the rate of radiation, offsetting the heating due to 

comnression and maintaining tae collapse isothermal. The in

creased density enhances still more the instability. Tne cloud 

begins to break up or fragment. Simultaneously the densi ty of 

the fragments is rising, making them unstable also. This 

initiates another stage of fragmentation. 

V'hen the density of the fragments has risen to the noint 

that they are opaque, preventing the escape of radiation, the 

temperature rises. Eq(2) snows that a larger T will raise the 

critical mass offsetting the instability due to the increased 

density. lence, fragmentation stops. 

In a later paper, Hoyle and Fowler (1963) make a similar 

analysis of cooler clouds including in a rough way the effects of 

angular momentum and magnetic field6. These papers are exceed

ingly valuable in that they outline a plausible sequence of events 

leading to star formation and because they offer a good explana

tion of why collapse stops. 



k  

In addition to ti.ese ratier "(ineril and semiquantitative 

a o; ro?)ches, more specific investigations have been made of 

instabilities in polytropes (Ebert (1955), Ronner (1956), McCrea 

(1957), Unno and Simoda (1963) and McNally (196*0), tue effect of 

magnetic fields (Mestel and Rpitzer (1956)), tue interplay of 

thermal radiation and mechanical stability (latanalta et al. 

(1961)), and tne role of opacity (Oaustad (1963), and Gould 

(196^)). however, in all of these papers tae actual development 

of fr apvrents has been more a reasonable supposition than a proven 

f act. 

The actual p;rowtn and formation of fragments was first 

investigated by Hunter (1962) and Savedoff and Vila (1962). 

These papers form the basic literature for an exact treatment of 

fragmentation. The model studied in botn casfs is that of a 

uniform cloud collapsing under it8 own gravitational force. Trie 

perturbations are assumed to satisfy a oolytropic equation of 

state. The pressure in tne main cloud is taicen as uniform. Wit a 

these assumptions it is possible to write down the linearized 

equations of motion and continuity and obtain from tiese a single 

differential equation for tae density of tue perturbation. The 

solutions of this equation are obtainable for a number of special 

cases and while Savedoff and Vila also study an expanding case, 

the results of tie two oapers ;:re the same. While objections 

have been raised about tae aoplicability of tnis work to star 

formation (Layzer (1963, I96M), the conditions under wtiicn 



gravitational instabilities produce density fluctuations thnt 

grow in time are well determined,) 

Layzer has criticised tais work on several trounds. '{e 

states that nonlinear processes will intervene to nrevent the 

growth of fragments and that torques induced on tfiem in the early 

stages of growth will increase the angular nomentum to the point 

where they are unable to :°;row. Since trie main cloud continues 

collapsing, they will be reabsorbei in the subsequent stages of 

collapse. 

Hunter (196^) presents arguments in a later naper based 

on the extension of the linear tneory which purport to controvert 

Layzer's objections. However, one may ouection his conclusion 

that angular morrentum does not play an important role because it 

2 
is intrinsically nonlinear due to t-ie v dependence of the 

centrifugal force. 

Any tneory of fragmentation meets its ultimate test in 

predicting the masi; function of stars and p-alaxies. In nrinciple, 

from the full equations, if one had the opacities, the magnetic 

fields, and the turbulence spectrum for eocn set of initial 

conditions, such a prediction mignt be made. however, in view of 

the basic objections raised by Layzer to tie fragmentation con

cept and the idealizations in trie linear theories to tnis stage, 

it seems more expedient to study in more dttail even the simplest 

model of a collapsing cloud. Thus in the work discussed here, 

magnetic fields are not included. Furthermore, "turbulence" is 



treated only in terms ol' -<n average over the mass elements being 

studied. (This point will become clearer when the model is 

described in part II.) Despite these simplifications, it is 

hoped that by clarifyinp; the importance of nonlinearity, non-

uniformity, pressure and rotation, a steo will nave been made 

toward a fuller understanding of the collapse of s;;)s clouds. 

B) METHODS FOR STUDYING INSTABILITIES 

The way the problem should be resolved is to write down 

the full equations of hydrodynamics including the nroper energy 

equation. As was mentioned, .Iunter and Savedoff and Vila elim

inated the energy equation by ;tssurinp: a oolytrooic equation of 

state. Radiation effects mi imt be taken into account by usin? a 

variable and complex gamma. 

Tne difficulty wita tue bydrodynamic aporoach is tnat an 

unperturbed solution is necessary in order to use first order 

perturbation theory. This is not easy to obtain excent in a few 

simple eases« such as the uniform sphere. In tnis case it is 

possible to write a separable partial differential equation for 

the density for the linearized problem. "nen nonlinear effects 

are included, or when nonuniformity, for example, is added to tne 

sphere, it is not clear waetaer an equation can be written that 

separates the density and velocity fields. 
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One metnod tnat has beer; used wit, success b.y 

Chandrasekhar (1961), Lynden-Bell (196^+), Michie (19&3) and others 

is to take moments of the hydrodynamic equations. In this case, 

particularly the work of Micnie, by choosing the averages prop

erly, nonuniformity and nonlinearity may be included in a very 

reasonable fashion. 

While there is a loss of information in moment metnods, 

it must be remembered taat the h.y irodynamic equations are tiiem-

selves moments of the Boltzmann equation, and tne taking of 

moments in this case is not only pnysically reasonable, but a 

virtual necessity if solutions are to be obtained. The connection 

with the Boltzmann equation su^srects another possible aporoach. 

In a system with spherical or plane symmetry it is only 

necessary to study the motion of one point in eacn surface in 

order to follow the development of trie systerr. Thus in a con

tracting sphere with no perturbation, for a pirticular shell, all 

points move in the same fashion. If asymmetries are introduced, 

for example, a perturbation, then while one point is no longer 

adequate, one can imagine locating points all about trie periph

ery of the perturbation and studying their motion. If the per

turbation itself possesses a high degree of symmetry, say 

spheroidal, one might think that following a point on its pole 

and another on its equator would describe the motion with some 

accuracy. One thus replaces a set of continuum equations by a 

set of equations describing tne motion of points. In tne work 



. .  8 

described in the rer-t of this v i.er, c1 «nsive use in made of 

this method wtiicn will be referre.1 to lereafter ;is tae "two-point 

model". The results obtained witi tliis rr.etnod v.ill be compared 

with those from the continuum model where tie latter are 

available. 



XX _ TVO-°OINT "oDSL 

A) E;r;U''T10N5 OF 'lOTICN FOR T!E ZERO-PRRSSURR CA3E 

In order to study t rie stability of a collapsing .ros cloud, 

a point model such as described nbove in part I has been used. 

To illustrate the metaod, the full equations; for the zero-

pressure case are derived below. A step by step comparison of 

them to the hydrodynamic equations wit.i pressure is riven in 

appendix I. 

The unperturbed model is a spherically symmetric cloud 

with some arbitrary density distribution. Hence, all particles 

in a particular shell feel tue uame gravitational attraction. 

Furthermore, the mass thnt is initially in t;ie snell remains 

within it so that the equation of mass conservetion can be 

immediately written 

3) PL( r)Arr2 = oA^rJ 

where /\r represents the tnickness of a shell, pis the local 

density and r is the distance from the cloud center. The sub

script -"o" refers to tne initial values of the quantity. 

Next, a snail density perturbation is introduced, as shown 

in fig(l), whose center lies at some initial distance r from 
o 
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c 
the cloud center. It is assumed to be spheroidal. The excess 

mass, assumed to be distributed uniformly throughout it, is to 

be small compared to the mass of trie main cloud, in the sense 

that the rest of the cloud is not significantly influenced by 

the perturbation. Note that this is not the snme as assuming 

that the density of the perturbation is small. in addition, the 

perturbation is oriented so that its axis of symmetry lies along 

a cloud radius. If "a" and "b" are the equatorial and polar 

dimensions, its volume is 

Vp = V/7a b/3 . 

If one then assumes that the total mass within it remains con

stant , 

/) V = constant 
rp P 

where is the total density of the perturbation. Since it is 

the density relative to the background that determines whether 

the perturbation will survive the collapse, the quantity £ is 

introduced, defined as 

L - ^ P L 
where p^ is the excess density. One can then write 

PP • PL(1* 6' • 
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Substituting now for V and [1 one obtains 
P r^V 

k) + E ̂ a^b = constant . 

Eliminating O with the helD of eq(^), one finds 
* 1j 

r2  /\r p  

5) PT(r=r ) —y 1 ° (l+£ ) a b = constant 
A 

which is the eauation of continuity for the perturbed flow. The 

only difficulty that arises in using tfiis expression is evaluating 

Ar 
-7— which is done in anoendix IT. Physically this quantity 

L ro 

determines how the thickness of a saell varies in time compared 

to its original value. It is hence a function of position as 

well as the initial mass and velocity distribution in tae medium. 

To summarize, the assumptions made are: 

1) Spherical symmetry in the main flow. 

2) A uniform spheroidal perturbation. 

3) A constant mass interior to the oerturbation. 

*0 The mass excess is small compared to the total 

cloud mass. 

To determine how the density of the perturbation varies 

in time, it is necessary to know .low the distances "a" and "b" 

vary. From fig(l), one can see tnat they depend on the motion 

of the points A, B, and C. Since C is the center of the per

turbation, its motion is unaffected by the presence of the per

turbation provided that there are no pressure gradients in the 
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main cloud. One can thus write 

6 )  
GM 

c -*• 

3 rc 

Point B experiences an acceleration due to the mass interior 

to it contributed by the main sphere, as well as an acceleration 

due to the perturbation. Its equation of motion is thU6 

GM. 

7) 
'b ̂  *V 

r* b " Br 
D 

A 
r. 

where 
d V 

^r 
is the acceleration of the perturbation. 

In determining the acceleration of A« it is simplest to 

introduce a new variable /( e r tan(9 where Q is defined in fi^(l) 

Differentiating twice with respect to time yields 

2 •*. . 2 • n •• 
« * t l o* o \ h2 r/l 
71 * ~2 + 2ry) * 2~ v * - f  

If u = rt /r, then 

ur s -2ru -
H2 fc_V 

"dr 

• • 2 
+ 2r coa Q Q u 

2 
Since u = tan (7 = 6), if u is small (the 

linear size of the perturbation is small compared to ttie cloud 

radius) 

8 )  ur + 2ru 
b V 

ar 
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Since there is nore moss interior to R than r, a torque 

is exerted on point A wnich tends to distort tne nerturbation. 

This has been ignored as it con be snown that it is of second 

order in - i  . Tnie allows one to write 

9) 2r £}' + r.- = -
_a_v 
?r 

Now a = u and b = r - r, 
I c b 

.. „ GMv 

Thus 

GM 
v, 'b ""c *v 10; b = r, - r = - —^ + —— -

b c 2 2 )r 
r, r 
b c 

pole 

K " 
11) a = u = - J*1 

ar 

2ru 

equator r 

To facilitate cowoutations and to indicate more clearly 

the functional dependence of the equations on the parameters, 

dimensionless variables have been introduced with r (t=0) as the 
c 

scale of length and 

' \ i \ l fQh o 

the unit of time, where ij 

the initial density of the main cloud. 

If one then defines 

x = 

b 
y = F 

z = u 

one finds 



I k  

#  •  • »  

•• 2xy y x 
y + —+ — = -

1 

3 
«b 

- i 
M (1+y)' 
. c 

d rIpolt 

5^°PeV 

- 2xz 
2 + 

X 

»V 

ar equator * 4 

5'' G/Vo 

The expressions for tae potential are taken from 

McMillian (195?) and differentiatinr; them one obtains 

GM f(e ) 

r 
P 

or an attraction due to a spherical mass times a correction factor 

f(e) where e is the eccentricity. (See apoendix III for the 

exolicit expressions.) 

M. is eliminated as follows: 
D 

M. = H + kft I p( r)r2dr 

• M0 - rb'-rc' 

J 

where /5 is the average value of p across the shell containing 

the perturbation. 

Now s rc + b = r(l+y). Since 

mc • \ irJp 

M, = Mfi |l + 7} [(l+y)5 * l] j where 
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7,, 5= 

r 

suostituting this into eq(13) and assuming y ̂  < 1, as Wcis done 

in deriving eq(8), one finds 

A B C  D  

15) y = . »iî L± - £r?^ 

16) i-, -2£i . S-q*^ 

*" x 
17) x = " "T 

x 

18) ) = vo^o'1* i'o' • 

Eq(l8) comes from eqCO with eliminated in terms of fj. 

The equations of motion thus involve four terms describing 

the time rate of change of the lengths (A); a term describing the 

change in y due to the fact that the main cloud radius x which is 

the unit in which y is measured is changing (B); a tidal term for 

the main flow absent in the z equation (C); and a term describing 

the self-gravitation and the tidal force on the perturbation 

itself (D). 

Three points should be noted regarding the equations: 

1) Aside from the initial values of x, y, and z and 

their velocities, only the parameters C , e « 
- o o 

7|0» and jj enter. 



2) The equations for the zero-pressure easy are 

homogeneous in y and z and hence the beuavior of 

the perturbation is independent of its linear 

size, provided tnis is small (See eq(lb,l6)). 

3) No restriction is placed upon the value of the 

density, £ . Thus the equations derived should 

be a valid renresentation of the nonlinear 

results, and represent therefore an extension 

beyond the work of Hunter and Savedoff and Vila. 

B) RESULTS FOR THK T"'0-POINT ZERO-PRESSURE MODEL 

In principle, it is possible to obtain an analytic solu

tion to the two-point equation for the zero-pressure uniform 

cloud case. As is shown in appendix IV, a perturbation in a 

uniform sphere is independent of the gravitational field of the 

main cloud and hence can be treated as an isolated body. It is 

then simple to obtain "t" as a function of the perturbation radius 

and hence the density, but the inversion to find the density as a 

function of time is not so simple. Since this solution is avail

able only for this speci.il case, the other equations must be 

integrated numerically anyhow. Hence, all work was done 

numerically. 

evaluated* Since it is a measure of the central concentration of 

the main cloud« it is in general a function of time. For the 

Before even numerical work can be done 



uniform case, = 1. The evaluation for other cases is described 

in appendix II. One can say tnat in general fj decreases in

dicating an increase in the central cloud density with time rel

ative to the mean density. A plot of JJ versus time is shown in 

fig(2). 

The equations were integrated numerically wita a Runge-

Kutta scheme on the IBM 1^01-7072 computer of the University of 

Arizona Numerical Analysis Laboratory. <£ was computed from JJ , 

y, and z with the use of eq(l<S). The results are plotted in 

fig(3) and figCO showing the effect of nonlinearity ( £ ) and 

central condensation ( °n the growth. One sees that non-

linearity enhances the growth relative to the linear and that 

larger central concentrations retard the growth relative to tnat 

for the uniform sphere. Fig(5) shows how the particle density, 

n, varies both in the perturbation and the main cloud for typical 

values of the interstellar medium. 

An interesting point arises in tnat the perturbations 

ar.e unstable with respect to nonradial perturbations. If the 

surface is deformed slightly, the surface accelerations are in

creased accentuating the deformation. Tr:us perturbations tend 

to become pancakes or cigars. Pressure forces obviously stab

ilize a perturbation against such distortion. One snould note, 

however, that the density growta is not seriously affected and 

cannot be discerned on the plots shown in fig(3) or fig(^). One 



thus concludes that the initial eccentricity is not an important 

parameter for a zero-pressure cloud. 

For a uniform cloud, if a perturbation starts spherical, 

it remains spherical since there is no distorting force. In a 

nonuniform cloud, however, the tidal forces rapidly pull a per

turbation into a highly prolate form. 

The parameter J) plays a very important role. As was 

mentioned, this is related to the tidal forceB on the perturbation 

in the sense that a small 'fj implies a large gradient in the force 

across the perturbation. It may seem curious that this gradient 

only retards the growth of a perturbation. However, the perturba

tion is a density excess and thus one snould compare its growth 

with that of the surroundings. In this case, it i6 easy to see 

that any tidal force due to a central condensation in the main 

cloud will affect the material in the perturbation and the sur

roundings identically. As far as the excess mass is concerned, 

while contraction along the direction of the tidal force gradient 

is retarded, that perpendicular to it is not affected. Hence, 

the excess density can still increase. 

One additional set of computations has b#e» mad* in order 

to study the effect of background stars on the density growth of 

fragments. The stars are taken to be distributed in a uniform 

sphere about the center of the gas cloud in a static con

figuration. The gas then collapses to the cloud center through 

the swarm. While the stars contribute mass to the cloud and thus 



accelerate the collapse, they do not aid the self-gravitation. 

Thus the growth of perturbations is retarded by their presence* 

Calculations were made for the density ratio of stars to gas as 

1, 10, and 100. The results are shown in fig(6) along with a 

solution illustrating the growtn when no stare are present. 

It is interesting to compare the results for the two-

point model in a uniform cloud to those of Hunter and Savedoff 

and Vila for the linear case. As is shown in appendix I, eq(6), 

the differential equations for the hydrodynamic case are iden

tical to those for the linearized two-point models. Thus it is 

not surprising that a comparison of the Hunter solutions with 

the two-point results gives excellent agreement. This is 

plotted in fig(3). One does see though that unless the initial 

amplitudes are taken small for the two-point model, the density 

very quickly grows much larger than the linear theory would pre

dict. This is a consequence of the fact that a larger initial 

amplitude increases the self-gravitation8l terms. T^e excel

lent agreement with the solutions for the hydrodynamic equations 

leads one to hope that the two-point model gives equally good 

results in those cases where the hydrodynamic treatment cannot 

readily be used. 

To summarize the results for the zero-pressure case, one 

can say the following: 

1) The agreement with the linear theory suggests 

that the two-point model is a good approximation 

to the full hydrodynamic equations. 
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Nonlinear effects accelerate the ^rowt.i rather 

than retard it in the sense th-t denser pertur

bations grow fc3ster. 

Nonuniformity of the main cloud induces a tidal 

disruption that hinders trie growth of perturba

tions but doos not prevent it. It furthermore 

accentuates the central condensation in the main 

cloud. 

Background stars reduce the growth rate of a 

perturbation by accelerating the collapse of the 

main cloud. 



Ill - CASE OF FINIT -PRESSURE 

A) DISCUSSION OF THE LINF.f.RIZED EQUATIONS 

The analysis of the flow in the finite-presture c se for 

a uniformly collapsing sphere is possible provided pressure 

gradients are allowed only in the perturbation. If pressure 

gradients are introduced in the main flow as well, it would ap

pear no longer possible to obtain an analytic solution for the 

unperturbed flow. If one is content, though, to allow the main 

sphere to collapse in free-fall, but to include pressure gradients 

in the perturbation, some solutions can be found. This has been 

pointed out by Hunter (1962) and Sovedoff and Vila (1962), here

after referred to as KSV. These solutions will be briefly dis

cussed because they afford an additional check on the two-point 

model as well as a more realistic representation of a collapsing 

cloud. 

An inspection of the partial differential equation for 

the density derived by HSV in the linearized case shows that it 

can be separated into a space and time portion. Trie space por

tion can be further separated into an angular and radial equation 

yielding spherical harmonics and spherical Bessel functions for 

the solutions. The density field is thus decomposed into a 

series of normal modes, and a general solution requires the super

position of many different wavelengths. 
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The time part is a differential equation of the second 

order in two parameters. One parameter is the ratio of the size 

of the perturbation to the Jeans' length. Trie other is the ratio 

of the specific heats of the gas—the gamma of ttie polytropic 

relation. If one thinks of the perturbation as beinp; described 

by a dominant mode, its behavior is then a function of its size 

relative to some critical size and gamma. Ttiis is physically 

reasonable since small disturbances might be thougnt to behave 

somewhat like sound waves, while longer ones would bt; dominated 

by self-gravitation. The gamma enters as a measure of the 

elasticity, so to speak, of the medium. 

Since two parameters apoear, it is surprising that except 

in the case gamma = ^/3» the asymptotic behavior is a function 

of gamma alone. This ia quite at odds with the classical Jeans 

result, though pernaps not so surprising considering that he was 

solving a different problem. Tae explanation for this lies in 

the fact that for gamma less than ̂ /3, the pressure forces dimin

ish relative to the gravitational forces as the cloud collapses 

causing ^.j to go to zero. For gamma greater that ^/3» Aj goes 

to infinity since the pressure forces rise relative to the grav

itational forces. Thus the Jeans' length enters in determining 

the growth rate but not the stability. Disturbances lar^e with 

respect to the Jeans' length grow more rapidly than those small 

with respect to it. 
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The asymptotic behavior of the solutions has been ob

tained by Saredoff and Vila from an analysis of the linearized 

equations. The results can be summarized as follows: 

Gamma less than 4/3  • . . all modes grow in time 

Gamma greater than 4/3, less than 5/3 • • • all modes 

oscillate in time with increasing amplitude 

Gamma = 5/3 • • • all modes oscillate with constant 

amplitude 

Gamma greater than 5/3  • . . all modes decay and 

oscillate 

Gamma = 4/3 • • • modes grow if /( greater than A 
J 

critical, oscillate with increasing amplitude 

otherwise. 

The simple order of magnitude calculation below indicates 

why, for gamma less than 4/3, pressure forces diminish relative 

to gravitational forces and allow the perturbation to collapse in 

essentially free-fall. 

GM 
A = - . P 

* r2 

p 
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One thus concludes that for gamma leer, than k/j>% the collapse is 

asymptotically pressure independent. 

The explanation of the oscillating modes is less apparent. 

One can argue that in these cases the pressure gradients build up 

more rapidly than the gravitational forces causing the perturba

tion to reexpand. This is not strictly true however as will be 

seen later. The fact that tie perturbation oscillates as a 

standing wave is particularly strange since one might think that 

a disturbance would generate a sound wave that would simply move 

out of the disturbed area and disperse. The standing wave cha

racter of the solution is a consequence of the spherical nature 

of the system and the fact tuat the boundary conditions demand 

that the amplitude of the oscillations always remain finite. In 

general, there can be no traveling wave solutions in a steady 

state bounded spherical system (Landau and Lifschitz, (1958)). 

B) TVO-POINT FORMULATION OF THfi FINITE-PRESSURE CASE 

In order to understand the effects t¥iat nonlinearity will 

have on the finite-pressure case, the two-point model has been 

modified to include pressure gradients. As in the linearized 

theories, the main flow is assumed to be uniform, but the pertur

bation is assumed to have a pressure gradient and to satisfy a 



25 

polytropic equation of state. The zero-pressure case showed 

that the shape of the perturbation was not important in determin

ing the results. Hence, a spherical perturbation has been 

assumed here. 

A question now arises as to how ~ 3^ should be evaluated 
p dr 

when only two points ore used. Tae most straigntforward scheme 

. . . .  .  1  ,  1  ,  d p  .  A P 
would be to replace -p- by j-p—+ p )/z and jp by "^^r • In 

this case, is averaged over tne perturbation and tae back-
P 

dP 
ground, and ^ is taken as linear across the disturbance. Such 

a procedure was followed in deriving eq(20b) below. 

Suppose, however, that one assumes 'hat the perturbation 

collapses homologously, as is found to b« the case in the linear 

theory with P#xce8S = pc(t) ̂ r^ where pc ia tne d#n8ity 

excess at the center of tne perturbation. If one now assumes 

that ' is same spatial profile is maintained for the nonlinear 

i  " r  ¥•* 1 Pi /Ar 

1 dP 
regime, it is possible to approximate — 

P 
where Q( is a factor to correct for any error incurred in re

placing the derivitive by a difference. £ con now be calculated 

using the expression for Q above. The two-point model, 
t 6xc0 s 8 

however, involves not only /') , but also the excess mass. 
/-'excess 

It is thus necessary to relate tha mass excess f>nd the density 

excess, . This can be done by the use of another factor, • 

Thus, m r — >Tr5(l+ ̂  ) » /~fr' 0 (1 + ft'- )• It is then 
excess 3 " 3 1 r <. /~ *c 

possible to evaluate j^'j in the same fashion as X* (See appendix 

I for the expressions for (X and /V.) In addition, as is seen in 
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in amendix I, by choosing the radius of trie perturbation in the 

two-point model oroperly, it is possible to obtain a nonlinear 

differential equation taat reduces exactly to the linesriued one 

for small density excesses. (In principle, if OC and fj were 
f 

treated as functions of time, it should be possible for tiie two-

point model to give an exact representation of the nonlinear 

equation. ) This nonlinear two-point equation for £ is given in 

appendix I. 

It is interesting to compare the two-point equation de

rived with the*aid of and ^ , to the linear equation of HSV 

and the two-point equation derived by sirr.ply averaging without 

recourse to Q£ jj • To do thi6, x is eliminated from eq(5)» 

appendix I, in favor of p bo that fj = jj^/x? • x is elim

inated in the same fashion. One then obtains eq(20a) or eq(20b) 

depending on whether (X and Jj (eq(20a)) are used, or a simple 

average (eq(20b)). If the equations are linearized in > , one 

obtains eq(20c), identical to that of HSV derived in appendix I, 

2 2 
with the provision that in eq(20b), An • Trle factor 

three arises from the difference between the simple average and 

the use of Ot and jj. If the density p is maintained constant, 

one sees that eq(20c) reduces to eq(20d) which is essentially 

the equation derived by Jeans. 

The term in eq(20e,b) involving ±B the ratio of 
An 

the pressure to the self-gravitational forces. Since trie density 

is measured with respect to the background, one must include the 
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p 
general rise in the density of the main flow. The term •- is a 

v.-

nonlinear term that always acts to increase the growth or retard 

the decay. 

2 0 . )  £ . « ! • £ > £ j l - j i l - l i g r  .  

' A „ l  P o l  9(i+£)6 \ 1 •£/ P I po 
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i '  < 2 '  r  (
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t 
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dt 
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c) £« 3£ 
A j / p 
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2 d In / 
+ 9 dt 
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As was mentioned in part II, gravitational forces in the 

uniform cloud do not affect a spherical perturbation, allowing it 

to be treated as an isolated unit. Since the pressure is assumed 

to be uniform in the main cloud, the inclusion of pressure does 

not alter this result with the provision that the isolated frag

ment must now have an increasing external pressure applied to it. 

Bonner (1958) has studied the stability of polytropes wnen an 

external pressure is applied and found that for gamma less than 

k/j> they were unstable. This is exactly the result found from 

the linearized theories mentioned earlier. 



In order to test the consequences of assuming a sin kr/ kr 

density profile for the perturbation, a numerical integration of 

a collansinp: ̂ as cloud has been made usinc a proaxz.m of V.'eypiann's 

(1964). As was mentioned before, since the background is uni

form, the perturbation can be treated as an isolated unit. If 

the radius of the perturbation is choosen at a maximum or a mini

mum of the density profile, then the excess mass vanishes, and 

since the pressure gradient is zero, there is effectively no 

coupling between the perturbation and the main cloud. Weymann's 

program integrates the full hydrodynamic equations. It is thus 

possible to follow in some detail the changes in the physical 

variables throughout the sphere as collapse proceeds. For the 

particular case studied, a disturbance with a sin kr / kr profile 

and an amplitude of .1 at the center was assumed along with an 

isothermal collapse. It was found that the sin kr / kr profile 

maintained itself well. The central excess density was computed 

and compared with thet determined from the two-point model 

(eq(20a)). For T» 1.029« or .936 of the free fall time, the 

exact hydrodynamic model gave an excess density of 30.247 times 

the initial excess density. The two-point model yielded 30.213. 

On the other hand, the linear theory predicted a value of 10.3. 

These results are shown in fig(10). 

One would thus conclude that the assumption of an homol

ogous contraction is fairly good, even in the nonlinear regime, 



and that the pressure gradient in tne two-point model can be 

approximated accurately with the aid of the scale factors T.X 

and Jj, 

C) RESULTS OF THK NONLINEAR ANALYSIS 

As before, the equations were integrated numerically to 

obtain the excess density as a function of time. In the com

putations, it was found advantageous to decrease the step lengths 

as the collapse proceeded in order to follow in more detail the 

oscillations that result for gamma greater than k/3. Therefore 

the time steps were calculated at each step as 

At = Ato*3/2 

where A t = .01 T and x = . 
o ' rr r 

o 

Since the main cloud is uniform, 7^ =: 1* Thus the param

eters that enter now are the initial excess density, the poly-

tropic index (expressed in terms of gamma), and the ratio of the 

Jeans' length to the perturbation size. The latter is a measure 

of the initial pressure forces to the self-gravitation. Once 

again, all initial velocities were chosen as zero. The excess 

density was fixed at .1 as being a physically reasonable value 

and yet large enough to indicate the effect of nonlinearity. 

was selected as 1.5. Since asymptotically the value of ̂  
Xl 
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does not matter, a value was chosen t.iat illustrated the effect 

of the pressure relatively early in the collapse. 

Fig(7) STOWS now the polytro:.ic index affects the solu

tion. The smaller gamma is, the more rapidly the perturbation 

grows. In fig(8), the effect of nonlinearity is shown. The 

dotted curve representing the nonlinear point model as well as 

the results of KSV (the solid curve) is snown. One can see that 

in the case where growth occurs, the nonlinear terms again accel

erate the growth relative to the linear theory. In the case of 

oscillations, the conclusions are less cle:r except that the non

linear effects cause a drastic change in the oscillatory nature 

and limit the lower density obtainei. Tne crosses on the curve 

indicate the results obtained from the two-point model when the 

initial amplitude is .0001. T:ius, agreement is a^ain excellent 

in the linear regime between T1SV and tnis work. 

In fip(9), the density of a perturbation and the cloud 

background are shown for a typical 41 cloud assumed to be col

lapsing isotnermally. One sees that tue pressure slows down 

the growth relative to tae zero-pressure case and tnat it takes 

nearly a free fall time for the density to increase to 

100 particles/ cc. 

Since, for gamma equal to one, the collapse ie asyapiot-

• 1 3/2 
ically the same as the case of free-fall, x ̂  — or x ^ t»t . 

J x o 

Converting to a density, 



31 

_ const 

If this is fitted to the numerical results, one finds for an iso

thermal collapse with an initial density of n = 10, that 

960 .. , y n — p particles / cc 
(t - i6r 

where n is the particle density and t is the time in millions of 

years. 

D) PHYSICS OF PRESSURE-RETARDED COLLAPSE 

The pulsation theory of variable stars shows that a gas 

with a gamma of 5/3 should oscillate with constant amplitude. It 

might then at first seem surprising that if one plots the radius 

of a perturbation in such a cloud as a function of time, it is 

found to be in general a decreasing function. Vhen one remembers 

though that the external pressure is constantly increasing due 

to the main cloud collapse, this becomes very understandable. 

(I am indebted to Dr. R. Michie for fir6t pointing this out to 

me.) It is also the increasing pressure that is responsible for 

the increasing amplitude of the oscillations found for gamma 

between 4/3 and 5/3^ To show ttiis, a WKB type analysis similar 

to that of HSV is used. 

If eq(15) is modified to allow for a pressure gradient in 

the perturbation following the method of appendix I, and a 
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uniform collapse is assumed ( 7} = 1), one obtains 

* 2ii • if 
* „3 

' 2 ! 

1 • l = 0 

u [oscillating functionj * 

A0 * | 

where the perturbation has been assumed spherical. This can be 

transforaed to an equation of the form u + T(/)u =0 by means 

of the substitution y = fu where f / f = -x / x . Thus f 1/x. 

In this case, T = Q + 1 / x' where Q is the coefficient of y in 

the above equation. It is now possible to use a V'KB type solu

tion and obtain 

r 

I 2  4-3.' 
In the late phases of collapse (x —>0), the term x " 'J goes 

o 

to zero if gamma is less than 4/3 and to infinity if gamma is 

greater than 4/3. Since this term is effectively a weir^nted 

ratio of the Jeans' length to the perturbation size, one can say 

that for gamma less than 4/3, A - goes to zero, while for gamma 
u 

greater than 4/3, A.j 8oes infinity. This was mentioned in 

section A of this part. 

The case of interest here is tramma greater than 4/3. In 

^ 2 3*-l 
"aj if_37f -%— 

this instance, asymptotically, T /•«> 4 - x l' . Thus u x 

«*A? 

and hence y -• ^ . Thus gamma equal to 5/3 is also a crit

ical value, as was shown by HSV. If one now converts back to the 

physical variables, the radius of the perturbation, r, can be 
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written r = xy 

h' - h 
«r 3 i i 

x • x I  oscillating function 

Since gamma is between h/j> and 5/3» one can see that r goes to 

zero as x does. Thus the physical 6ize of the perturbation 

actually is decreasing despite the increasing amplitude of the 

oscillations. One can further see that the dependence on gamma 

enters through the pressure term. Thus, as claimed above, it is 

the pressure that is responsible for the increasing amplitude of 

the oscillations. 

Physically, one sees that while the perturbation starts 

collapsing, the internal pressure gradient soon steepens, halting 

the collapse. In the meantime, though, the external pressure is 

rising, tending to compress the matter and actually raising the 

•xternal density above that interior to the perturbation. This 

lowers the pressure gradient across the fragment allowing self-

gravitation to again dominate and the collapse to be^in again. 

For a sphere that remains rigorously uniform, this behavior con

tinues to the singularity. Ttiis behavior is sketciied schemat

ically in fig (11). 

It is doubtful, under these circumstances, whetner one 

can speak meaningfully of fragmentation occurin^ for gamma in 

this range on the basis of the linear theory despite the fact 

that large density excesses are acheived. This ambiguity appears 

to be intrinsic in the model as a result of the unrealistic 
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behavior of the cloud collapsing to a point. In a real cloud, 

pressure gradients would be lively to develope. In this case, 

the growth of the perturbation probably depends on otaer factors. 

This point will be discussed further in part VII. 

To summarize the results for the finite-pressure case, 

one can say the following: 

1) The linearized two-point model as well as tne 

nonlinear two-point model for small amplitudes 

again agrees extremely well with the hydrodynamic 

approach. 

2) The nonlinear terms increase the growth rate 

relative to the linear theory and limit the lower 

densities a perturbation can obtain for the 

oscillatory solutions. 

3) Just as in the linear theory, perturbations with 

gamma less than k/5 grow. Those with gamma be

tween k/J> and 5/3 oscillate witn increasing 

amplitude. 

k) The increasing amplitude of the oscillations can 

be traced to the increasing external pressure 

forcing another stage of collapse after initial 

equilibrium is obtained by a fragment. 



IV - thermodynamics OF FRAGMENTATION 

A) TV<0-P0IN'T MODrJL INCLUDING RADIATION 

While the polytropic equation of state is useful for 

studying the gross features of fragmentation, it is desirable to 

know how good an approximation it really is. 

Hoyle (1953) has made rough calculations of the thermal 

evolution of an optically tnin gas cloud witn a temperature of 

about 10^ and a particle density of 10 He finds that the 

temperature drops rapidly to about 10 whereupon the reduced 

ability of the hydrogen to radiate causes the collapse to be 

isothermal. Mestel and Spitzer (1956) have suggested that for a 

temperature of about 100 and a particle density of 10, the col

lapse is again isothermal. Thus, one could describe these sys

tems with a polytronic relation whose gamma was one. 

As the density of trie cloud rises increasing the optical 

thickness of the medium, one expects the collapse to become 

adiabatic so that gamma would then be 5/3. Cameron (1962) has 

further suggested triat in the last phases of collapse to stellar 

densities, the ionization of the Hydrogen or the disociation of 

the hydrogen molecules might cause gamma to become * k/j>. 

There are thus several instances in which the thermodynamics of 

collapse could be described by a polytropic equation of fitate. 

35 
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However, in none of these cases was the energy equation actually 

solved. 

In order to see if the explicit inclusion of radiation 

with the dynamics of the collapse would modify the results, it 

was decided to again utilize the two-point model. Since in this 

case one is interested primarily in the thermodynamics, and in 

order to have an unperturbed solution, a uniform spherical 

collapse was a 'ain used. 

The basic form of the energy equation is 

where U is the internal energy per gram, P the pressure, p the 

density in grams / cc and F and H are the radiation losses from 

the cloud and the heat gainei from external sources respectively 

One can replace U by 3RT / where fji is ttie molecular weight 

of the gas and R is the gas constant. With tnis substitution 

and the definition of gamma in a polytropic relation as 

J - *  
d In T 
d lnp 

one can see the connection with the polytropic equation of state 

One then has 

2 2 )  / f - 1  2  

' dt 
dt 

3 
j. . £SZ-hi 

Note that for F = H = 0, implying no neat gains or losse 

gamma is 5/3» as is expected for an adiabatic system. 
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It is possible to solve eq(22) simultaneously with eq(20) 

changing gamma as one goes. However it is just simple to 

solve the energy equation in the form of eq(21) eliminating, as 

mentioned above, the internal energy in favor of the temperature. 

This is the course followed here. One then has, from eq(5) 

appendix I and eq(21), 

7- 2x6 ** i2 V/TaPn£(l+i ) 3(1+£>AP 

® >  c *  - - J X 7 5 - — ?  * F a 7 5 o 7  

2*0 

P < i - r H  
P  

M d(zrl _ 2 I dP. _ P(F-H) 
T dt 3 1 dt _ T 

J 
is eliminated from eq(23) by means of the perfect gas rela

tion. One thus has two coupled equations which give tne run of 

the temperature and density in time. /jT and /\f,j refer to 

differences between the perturbation center and the cloud back

ground. The appearance of /\T means that eq(2M must be solved 

for both the perturbation and the main flow. Hence, one should 

worry about differences in the molecular weight and the heatihg 

function between the perturbation and its surroundings. For 

simplicity however, the fragment has been assumed to start in 

thermal equilibrium with the surroundings, and the molecular 

weight has been taken as a constant. This latter assumption 

might be dangerous in some coses, but tne additional complica

tions in solving an ionization equation seem unwarranted in this 

preliminary treatment. 
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The radiation loss term F must also include conduction 

—,2 
losses. Since the latter varies as y T, it will only be 

important, for the densities considered here (n = 10 ̂  to 

n = 10^), when the wavelength of the disturbance is very short 

or the temperature very high. 

The following numerical example may be used to illustrate 

this. The conduction loss term in ergs / gm-sec can be written as 

„ k \7 k^t 

P  ̂
where 

; i/? 
K - 7 X 10 T 

for a neutral gas (Chapman and Cowling (1958) ) .  For an ionized 

gas, Spitzer (1962) gives 

v x lo'^t 2̂ 

In A 

where 

In A '•••' - 17.^ + 1.15[3 1ogT- logpj 

Radiation losses can be written as 

F = ang (T) 

where g(T) is some function of the temperature and n is the 

particle density. The value of a and g depends on the source of 

cooling. In appendix V, values are <iven for certain oases of 

interest. 
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One then obtains 

Fcond 1Q-k 
F 
rad 

for T = 100 and n = 10 and ^\r = 1 psc. 

For T = 10^ and n = 10~^ with /\r = 10 kpc, one finds 

Fcond -,^-2 
v ~ -LU 
rad 

Since conduction is such a small part of the energy loss, 

one can simply use the radiation loss to evaluate the cooling 

term. (In the numerical calculations, hov.ever, conduction was 

included.) Thus the cooling term becomes 

F = ang(T) 

One can now write down the equations governing the 

collapse and fragmentation. 

For the main flow, one has 

P p a Bq. of Density Change 

d In T 2 /dp P[aP g(T) " "J 1 _ 
- d t —  - 3  «  B T  E n e r g y  B q .  

I  u l 

d2x 47tq Pn „ , „ m.j — j  =  -  r — E q .  o f  M o t i o n  
dt 3x 
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For the perturbation one has 

c 2x5 ^ 5  ^TTq A  £(!••:) 3RT(l+£ ) 
c+ x-3T7T= x3 + „ . L-\J 

U .o. up 

AP At 

p * * 

d In T 
E = I < _£-

dt 3 | dt RT a;V(V " H 

where the subscript "p" refers to the perturbation. 

A s  before it is convenient to introduce ditr.ensionless 

v a r i a b l e s .  I f  o n e  d e f i n e s  T  =  T  ( 1  +  £ } )  a n d  T  =  T t h e n  
o 

on* can write 

25) a) 

b) 

c) 

P = 
h 3 

x 

t 

• >  e  

*• _ U g( ) -I/C/. _ 2x0 

? po p 
•' 2xf * £2 3»(1+ £) fr 

:• — " 513 —t" 

7^5 «P 

,1 

• fu+fl) } 

'' 

l 

6 p< 

„ h 8 r e  , .  2 2 £ ® i i  
_ iL 

^php + il 1+2. 

5Po 5 ^ 

Q is proportional to the square of the ratio of the free 

fall time to the cooling time. 
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B) INITIAL CONDITIONS AND COOLING FUNCTIONS 

The cooling functions depend on the environment through 

the temperature, the density and the composition. One must 

therefore decide what are reasonable initial conditions. Follow

ing Spitzer (1963), one may suppose that the formation of pop

ulation I stars occurs in regions where the temperature is about 

100 and the particle density is near 10. One further takes the 

abundances to be roughly solar. For galaxy formation, in the 

absence of any observational evidence, one can assuire the condi

tions suggested by Ho.yle (1953) and take the temperature as be-

4 6 -3 
tween 10 and 10 with the particle density as 10 

With the inital conditions defined, the expressions used 

are given in appendix V. They may be divided, tnough, into the 

two following regimes: 

1) T greater than 10 . Pure hydrogen. Cooling by 

bound-bound, bound-free, and free-free emission 

. . . Michie (1963). 

2) T less than 10^. Population I composition. 

a) Cooling by collisional excitation of Si, 

Fe, C, etc. Electrons supplied by cosmic 

ray ionization of H. Unno and Simoda 

(1963). 

b) Molecular hydrogen cooling. . . Qould (1964). 
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On* can compute cooling times from 

^ RT_ 
T cooling ̂  F 

where F ie given in appendix V. Comparing these with the free-

fall time 

t« = (5/f°po'"1/2 

one sees that 'fff =* =" Tcooling un^-ess T is very large (10^) or 

n is very small (10 ). The short cooling times present a diff

iculty. If radiation is so effective, what maintains the high 

observed temperatures of the medium? It has usually been assumed 

that there is an input of heat due to turbulence, cosmic rays or 

cloud-cloud collisions. This then gives rise to initial thermal 

equilibrium. 

Objections may be raised about assuming a constant heat 

input. One might imagine that as the cloud contracts the effi

ciency of cloud collisions would diminish and that cosmic ray 

heating would be confined to tne surface. (See Hatanaka, Dnno 

and Tatcebee (1961)) Thus the constant heat input tends to over 

estimate the heating. Since the heating in turn acts to hinder 

collapse, one underestimates the growth. 

C) DISCUSSION OF THE TWO-POINT EQUATIONS 

An examination of eq(25a) tnrough (25e) shows that the 

following quantities enter: the excess density, tne initial 



density and the density of the main flow; the excess temperature, 

the initial temperature and the temperature of the main flow; the 

heating functions and tne molecular weiguts for both the main 

flow and the perturbation; the Jeans' length and the size of the 

perturbation; and finally, the cooling functions, the cloud radius 

and the time. 

The number of parameters actually influencing the equa

tions, though, is much reduced when one recalls the assumptions 

that have been male. Once the initial values of the temperature, 

density and the molecular weight are specified, the heating and 

cooling functions are determined. The excess temperature is 

assumed zero since one postulates thermal equilibrium. The cloud 

radius is chosen as ten times the size of the perturbation. The 

parameters that enter are thus reduced to the initial excess 

density, the ratio of the Jeans' lengtn to the initial size of 

the perturbation, and the initial values of the main cloud tem

perature, density and composition. As in the finite pressure 

case, the excess density is chosen as .1 and tne ratio of the 

Jeans' length to the perturbation size is picked as 1.5* Thus 

only the temperature, density and composition appear. Tne com

position is only required to specify trie radiation law and the 

molecular weight and hence is really specified by fie choice of 

environment. Furthermore, the density apoe^rs onlv in the ex

pression for Q and in combination with the :ie iting functions. 

It is thus necessary to specify only one more parameter toan is 

used in the polytropic relations, as one would expect, since a 



polytropic equation of state relates the temperature and the 

density. 

D) RESULTS OF THE NUMERICAL II T T - /SH/ .TIONS 

It is now Dossible to integrate eq(25a) through (25e). 

The time steps were c.iosen as .01 times tae smaller of the therm

al and mechanical time scale. This usually meant that the therm

al time scale set the step length. The inclusion of conduction 

means that the results depend on the linear scale of the system, 

as was mentioned earlier. In order to cneck the importance of 

conduction, values were cuosen for the scale which were hoped to 

be reasonable for the environment considered. Thus, for an HI 

cloud, 30 psc was chosen, while for trie pregalactic cloud, a 

distance of IMpc was taken. The resulting masses of tae per-

9 
turbations were then cnosen as 10 Mo and 10 Mo respectively. 

The results of the integrations are shown in fig(12) and 

fig(13), in which the perturbation temperature is plotted against -

the fractional radius of the cloud. One sees that for an HI 

region ionic cooling leads to a substantial drop in temperature 

as collapse occurs. Molecular hydrogen produces a more nearly 

isothermal result. This is directly a result of the cooling 

x 32 
laws. Since the ionic cooling varies as T while the molec-

21 8 
ular hydregen cooling varies as about T , a slight drop in T 

in the former case causes very little decrease in the amount of 
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radiation. In the latter ca.je, however, a sli^.it drop in T cuts 

off virtually all radiation. 

A further point worth mentioning is that the increased 

density in the perturbation causes a slightly greater cooling 

than occurs in the main cloud. Thus a temperature difference 

build6 up with the hotter gas in the main flow able to compress 

the perturbation. 

One can see from fig(12) that for temperatures about 

x k 
15 X 10 , a gradual drop in T occurs to about 10 . For tem

peratures nearer 10^, the effect of the longer thermal time 

scale means that it takes a significant portion of the free fall 

4 
time to achieve the 10 level. 

The fact that the temperature does drop in collapse sug

gests that the isothermal assumption actually will underestimate 

the growth rate as the dropping temperature implies a gamma less 

than 1. It has not been feasible to follow the density to the 

point where opacity becomes important and nence no firm conclu

sion* can be reached about the value of gamma appropriate for 

this region. 

In summary one can say the following: 

1) If one approximates the thermodynamics of collapse 

by a polytropic relation, gamma should be set less 

than or equal to one. 

2) For lower temperature clouds, Molecular hydrogen 

will maintain a more nearly isothermal condition 

than ionic cooling. 
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The lower temperature in the perturbation may 

allow the external pressure to play an important 

role in accelerating collapse of fragments, as 

pointed out by Michie (1963) and McNally (1964). 



V - THE EFFECT OF ROTATION UPON THE DEVELOPMENT 

OF FRAGMENTS IN A COLLAPSING CLCTID 

A) PRELIMINARY ARGUMENTS ABOUT THE IMPORTANCE OF ROTATION 

The arguments against fragmentation raised by Layzer 

(1963) have been mentioned in part I. These objections center 

about the importance of angular momentum as a force retarding 

collapse. In the study of fragmentation with the two-point model, 

rotation has been ignored up to this time. To see why rotation 

may be important in preventing fragmentation, Layzer's arguments 

are sketched below. 

mass M will possess a peculiar velocity v due to the interaction 

with its neighbors. This ie roughly given by 

where L is a dimension cnaracteristic of the separation between 

fragments and hence is also a measure of the volume out of which 

they form. The distance to which a perturbation can approach the 

cloud center, R, is determined by its energy and angular momentum. 

The former condition yields 

A perturbation of mass m in a contracting gas cloud of 

2 Gm 
L 

v 

2 GM 
T ' 

V 
max 

The latter yields 

vr v R 
max 

<*7 



where v is the velocity at closest approach and r is the ini-
max 

tial distance of the perturbation from the cloud center. 

Combining these two results one finds 

r _ ML 
R ~ (mr) 

Now M/m = N = r^/L^ = the number of fragments. Thus 

Pm.*(cl°ud> ..2 
~ — — —  s  N  •  
P (cloud) 
' o 

Since N is expected to be fairly large, one expects a large in

crease in the cloud density. 

Turning now to the perturbations, if one says that con

traction along the equator ceases when the centrifugal force 

equals the gravitational force, 

2 
Gm rot 
2 = r ' 
"p P 

where r is the radius of a perturbation, and v .is its tan-
p rot 

gential velocity. This expression can be written in terms of 

the density as 

^final . rav 

/^initial \ **rot 

where the F's are the initial values of the rotational and grav

itational forces. Layzer now shows in a rough way that one might 

expect the two forces to be about equal and hence that the density 



ratio will not change. He points out tnat while collapse can 

still occur along the rotation axis, the limited growth that one 

finds for the fragments suggests that they will be obliterated 

by the rising background density. Thus, even if fragments do 

separate out initially, they will be subsequently destroyed. 

Hunter (196M has also analyzed the problem. He con

cludes that unless the rotational part of the velocity field is 

large compared to the irrotational part, or unless the initial 

perturbation amplitude is very small, rotation will not influence 

seriously the growth rate until the density of the perturbation 

is large compared to the background. However, these conditions 

are exactly those that Layzer is unwilling to p;rant. A further 

difficulty with Hunter's analysis is that it is based on the 

linearized theory. As has been mentioned before, rotation is 

intrinsically nonlinear due to the v /r term. One mu6t there

fore be careful in extending any linear theory to include it. 

Since the two-point model is not limited by the assump

tions of linearity, it has been modified to include rotational 

effects in the hope of understanding the difference in the 

results of Hunter and Layzer. 

B) THE TWO-POINT MODEL WITH ROTATION 

It was mentioned earlier that even the two-point ap

proach requires an unperturbed solution for the main flow. For 

this reason a uniform collapse of the main cloud nas again been 



assumed, but a term has been added to limit the collapse. This 

term may be considered an artificial angular momentum. Thus, 

while one pictures the individual fragments as possessing orbital 

angular momentum, one assumes that the angular momentum vectors 

are distributed randomly so that their average over the entire 

cloud is zero. Thus the cloud itself does not rotate. 

The perturbation is again assumed to be spheroidal with 

its axis of symmetry coinciding with a ra lius vector of the cloud. 

The equatorial cross-sections are assumed circular, and the per

turbations are assumed not to interact with one another except 

through the potential of the entire cloud. This bypasses 

Layzer's initial assumption that the perturbations interact. 

The effect that perturbations have on one another can be imitated, 

though, by assigning a slightly higher initial spin than one 

otherwise would. 

While it is not obvious that any configuration will be 

able to collapse uniformly to a nonzero radius and tnen re-expand 

maintaining its uniformity, such a collapse is postulated. Since 

it was shown in part II that only gross departures from uniform

ity seriously affect the growth rates, this assumption should not 

•itiate the results. 

If one assumes then a uniform collapse of the main cloud 

to a finite radius and that the perturbations rotate as described 

above, one can derive the equations for the two-point model. 

This is done in appendix IV. However, since the gravitational 

field of the main cloud is unimportant due to the assumption of 



51 

uniformity, it is possible to give a derivation whicii shows more 

clearly the physical picture. 

Treating the perturbation as an isolated unit, one can 

simply add a centrifugal force in the equatorial direction and 

pressure gradients to eq(10) and (11). One thus has 

Gm f(e) 2 

r_ = - * - + (jJ r - r— for the equator 
P = " -72 + P P " dr 

P 

Gra g(e) dp 

s = - * - — — for the pole . 
p s2 p ds 

Sine* it is desirable to measure density excesses, one can con

vert again to dimeneionless variables. The collapse of the main 

cloud of radiu6 R is now modified as well so that collapse is 

halted at a nonzero radius. Thus 

R = . 
R 

and 

>°^ P0 

.3 
Q - p |~|5S th 
Pcloud " ̂ o|R J ; 

While reasons have been given by Hoyle and Fowler (1963) and 

others for assuming a constant angular velocity, tne more strin

gent requirement of constant angular momentum is chosen. 

If one now uses R as the unit of length and writes 

r s 
y  B  R a n d  z  = "g" 
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the two-point equations become 

26) f - J,' 

L 
—r 
. lL f(e) - A 

3y 
O J  

27) 

28) 

z + 
2zv 

ZD 
( 

—I 
v 

o z £ 
- T5 

g(e) 
Ao 1 

"<J 
B. 

where B = U° 2 T'2 + l/*2 o w  e to v r% 

are the angular velocities of the perturbation about 
e p 

the cloud center and about its own axis of rotation respectively. 

The terms f(e) and g(e) are the corrections to the potential re

quired due to the oblateness of the perturbation. A polytropic 

equation of state has been used with ¥ = 1, as was suggested by 

2 
the results of part IV. B and \) are the ratio of the 

o o 

revolution period and rotation period to the free fall time 

squared. If these quantities are small, angular momentum is 

unimportant. 

A comparison with eq(20) shows that two new terms have 

entered the equations. The first, involving Bq, enters through 

eq(28) when one converts to dimensionless variables. It is a 

consequence of the fact that the density of the perturbation is 

referred to the background density, which in turn is a function 

of Bq through the latter's affect upon the collapse. The second 

term, involving 1/ , is the centrifugal force due to the rotation 

of the fragment. 



28) C = ' 1 + ̂ (1+ £ ) -?2- + 1 - —^ - —° 
-O; d 'O S. •* * * c 
( L- o 3y0 3 C 
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C) RESULTS FOR THE TWO-POINT MODEL I'.'ITE ROTATION 

It is interesting to solve the two equations (26) and 

(27) be means of a power series expansion. Since the excess 

density is 

i • "f (1 '  „>  "  1  

y z 

one obtain*, assuming zero initial velocities and an initially 

spherical perturbation, 

r i 
i 

where A is the Jeans' length, y ie the initial perturbation 
' 

v O 0 

size, and J is the time in units of the unimpeded free fall 

time. r has been eliminated by another power series expansion. 

One can now consider Layzer'e model. He takes B 1, 

p 
-•= ~= 1, ̂  o = 0, and = 1. This corresponds to small 

initial random velocities, small initial exctss densities, zero 

pressure, and the self-gravitation just balanced by the rotation. 

One sees that the excess density decreases as he predicts. The 

ease Hunter considers is essentially B — 1, \ = 0, X • .1, 
O o ^ o 

2 
and V •*=• * 1. Thus the excess density increases in time. The 

o 

reason for the difference between their results is then just a 

consequence of the difference in initial conditions. 

In order to see in more detail how rotation affects the 

solution, the full equations (26) and (27) were integrated 

numerically. One set of integrations was done with the pressure 



rigorously zero. The other was with a finite pressure and 

. ^ 2  >2 
Aj / A p  = 1*5» as in parts III and IV. The initial excess 

densities and ratios of spin to gravitational forces were varied. 

The results are plotted in fig(l4) and fig(15). 

One sees tnat the pressure term greatly retards growth, 

in fact, preventing it in 6ome cases where it was possible for 

the zero pressure case. 4s is to be expected, increasing the 

rotation retards the growth. On the other hand, increasing the 

initial density excess enhances the growth. 

The important point to notice is that rotation does not 

necessarily prevent a fragment from separating out. In setting 

the rotational forces nearly equal to the gravitational forces 

for the perturbation, but not for the cloud as a whole, one puts 

perturbations at a great disadvantage. Regardless, though, of 

the spin in the fragment, by making the excess density suffi

ciently large, rotation can always be made a small effect. 

One might think tnat while rotation would impede collapse 

perpendicular to the axis of rotation, collapse along the axis 

would still be possible, allowing the density to rise. Hence, 

just as in the tidal case,altnougn there is a disrupting force, 

it acts only in one plane. Tuere is a difference however between 

the two cases. Tidal forces affect the background not only in 

the perturbation but all around it. Rotational forces, in acting 

locally, retard not only the collapse of the excess mass, but the 

background as well. Hence, eventually, even the background den

sity in the perturbation is unable to increase, in contrast to 



the case of tidal disruption. Thus, since the surrounding density 

can continue to increase, the excess density is absorbed by the 

background. Only if collapse alone; the rotation axis can com

pensate for both the lowered rate of growth of the background 

relative to the surroundings as well as the collapse of the 

excess mass, can the perturbation grow. 

D) ROTATION IN /-STTOPWYSICAL SYSTEMS 

On the basis of this model, it aas been aaown tnr>t rota

tion can prevent the formation of condensations in a collapsing 

system if the rotational forces are of the same order of magni

tude as the self-gravitational forces. V.hetier tnis will affect 

the formation of stars or galaxies depends on the value of these 

forces. Since there is no information regarding the motions in 

the pregalactic medium, only tue problem of star formation can 

2 
be approached here. One is thus led to ask what values of )J , 

the parameter measuring the ratio of spin and gravitational 

forces, are expected in the present galaxy. Since the Milky V.'ay, 

in being a flattened system, probably lies in the group of sys

tems with higher than average angular momentum per unit mass, 

2 
the value of ]J found from it should be in tne nature of an 

upper limit. 

One should point out t .at stars do have ways of disposing 

of ancrulnr momentum. Observationally one finds tuat trie sun has 

only a small Dercent of the total angular momentum of the system. 
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If one assumes that multiple stars form from a common envelope, 

an exceedingly large amount of angular momentum can be deposited 

in orbital motion of comnanions. Mention :4as nlreadv been made 

of the suggestion of Hoyle and Fowler (1163) whereby the mo •jnetic 

field can couple the contracting star to the medium about it. 

Limber (196^+) has studied the crieddirig of matter at the equator 

due to rotational instability. Such a mechanism can carry away 

angular momentum, though at tiie expense of mass being lost to 

the system. All of tnese ideas, however, begin with the star as 

an isolated object. The crucial problem from the point of view 

of fragmentation is whetner one can ever achieve this isolated 

state in the first place. In view of the high percentage of the 

stars which are multiple, it mignt be interesting to look at, in 

more detail, the remark made above that orbital motions are 

potentially capable of absorbing a larger amount of angular mo

mentum. 

Consider, therefore, a cloud of radius r and mass M 
o o 

that exceeds the Jeans' mass and hence begins collaDsing. Assume 

that it has some angular momentum so that collapse perpendicular 

to the rotation axis will eventually be halted when the radius 

is rc. Let xq = i"c/r. Then, by the time collapse stops, the 

density will have increased by 1/x' and, hence, by eq(2), page 1, 

the critical mass M will be diminisned in the fashion 
c 

3/2 
M M x . Therefore subunits of the cloud will also be un-
c o o 

stable in the Jeans' sense. One should note that the instability 

proposed here is not one of rotational fission, but of 
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gravitational fragmentation. This point iB discussed briefly by 

Lynden-Bell (196^). 

Since the main cloud is rotating, the subunits might also 

be expected to possess angular momentum. Whether they will be 

able to collapse, even if they do satisfy the Jeans' condition, 

thus depends on the ratio of rotational to gravitational forces 

which has been denoted in tne previous section as • 

2 
In order to estimate , two different approaches are 

used. One involves the distribution of angular momentum. The 

other considers in a rough way the mode of break-up that might 

be expected in a rotating disc. 

One can write the orbital angular momentum Lq of a 

rotating uniform sphere of mass M and radius R as 

2MR2Q 
Lo " 5 

where 0 is the angular velocity. Suppose it splits into N 

pieces of mass m = M/N. Further suppose that the angular momentum 

is distributed equally among the N pieces. Each piece will then 

possess a soin angular momentum S and an orbital angular momentum 

L. Thus 

L = N(L+S) . 
o 

Assume the fragments may be treated as spheres of radius 

r moving about the original axis of the cloud at a distance (R) . 

Then 
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s = 

L = m(R) 2(.Jl 

where and CjT are the spin and orbital angular velocities 
S L 

respectively. Substituting in now for L and S in the expression 

for L^, 
2 

22̂ 1- . .<S>2U, ) or 

2, 

L
0 - 5 - 5 - -\»/ l 

%2 2R"Q 2f ''^S , x 2, . 
5 5 + \R) * 

Now r^x/R/N^'c «= R and (r) «=: R since the average distance of 

a fragment from the cloud center will be less than the total 

radius of the original cloud. Hence, it is consistent with the 

conservation of angular momentum to set (^J = =0 as wou^^ 

be the case for uniform rotation. 

Suppose now the cloud has contracted by the amount Xq 

suggested above, conserving angular momentum. Then it will have a 

new angular velocity given by 

Q -
x 
o 

Consider now the ratio of the self-gravitation and the rotation 

2 2 2 
forces, ]J - (jJ X as defined in eq(28). It has already been 

shown that if the cloud contracts, the increased density can 

make subunits of the cloud unstable in the Jeans' sense. The 



59 

question is now asked, if the ratio of gravitational to rota-

2 
tional forces in the original cloud is U , what is the ratio 

o 
2 

U in the subunit? In other words, does fragmentation raise or 

2 
lower U , corresponding to increasing or decreasing the import

ance of rotation? If one assumes that {jJ = , then 

2 2 2 
v =•;./'/ 

Now 

Therefore 

- 0 
2 .2 

Oz r z  

•I o 1 

—5— 
X 
o 

•r 2 1 
T = 

i/rop 

(!<•£) 
X 
o 

T2 3 
T o x o  

l + £ 

Q2r2 

2 _ * * o ' o 

^ Xn^ + £ > 

^O 

x
0
(1+£} 

Thus, if the amount of contraction is snail before rotation halts 
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the collapse, then £ will not in general be able to obtain a 

2 2 
large amplitude and BO tj =»• \J indicating that rotation be

comes more important ae subunits fragment out. 

However, if xq can become sufficiently small that the 

nonlinear effects become inportant, as suggested by Hunter, and 

found in section C for certain cases, £ can become large. In 

this case, assuming that f **** where is a factor to 

allow for the retardation due to rotation and = .5 for an 

isothermal collapse with no rotation, 

v* - • 

Hence, in some cases, could actually decrease, suggesting 

that rotation could become less important as subunits fragment. 

While it would be rash to state tn«t rotation will not affect 

the growth and subfragmentation of perturbations, the above 

calculation does suggest that under certain circumstances spin 

angular momentum can be disposed of through the conversion to 

orbital angular momentum. Tnis would appear to be possible, 

though, only if the rotational forces are initially small 

(y02~-i>. 

A second metuod for roughly estimating the evolutions of 

a rotating system is sketched below. 

Consider a disc in nonuniform rotation so that 

U * LA.f(r) f(r) = 1 for uniform rotation and decreases with r 
O » 

if the internal portion of the disc rotates more rapidly than the 
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outer part and in the same sense. If one now cuts a circular 

piece of radius Ar out of the disc at a distance r from center, 

it is possible to estimate the SDin angular velocity. If the 

disc rotates as a ri$id body, the spin and orbital rotations are 

synchronous. Thus (jJ = LJ. . However, the differential rotation S LI 

adds a component to the spin amounting to the difference in ang

ular velocity across the fragment. Thus 

U.< r) .  u/ t(r) :',/L<r) • U0  § • A r .  

For uniform rotation, df/dr = 0 , and hence ij * [J • If the 

center is rotating more rapidly than the periphery, then 

df/dr «= 0 and hence i,J «= (.} . Hence, in this simple picture 
O li 

the spin angular velocity could actually decrease as fragmenta

tion occurs. This would mean that rotational forces would con

tinuously diminish relative to gravitational forces as long as 

fragmentation proceeds. One might thus conclude that in a 

2 2 
fragmenting and rotating cloud, \) S ^ . 

2 
One now asks what are reasonable values for )J in the 

" o 

galaxy? If one assumes that the gross rotation of the cloud is 

produced by galactic shear forces, one can see^that 

(  . 2  (5* )2 . 2  
U / „  =  " 2  ~  A  

r 
o 

where is the change in the rotational velocity per unit 

distance and A is the Oort constant, r is the radius of the 
o 

cloud. While there is really little reason why this should be 
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representative of the actual velocities encountered, it is used 

as an order of magnitude estimate. 

Consider now what size cloud is unstable. For n = 10 

particles / cc and T = 100, M ... . = 2 X 10^ Me and 
crxvic&x 

R ..j.., , = 10 psc. Since one wants at least two subunits to be 
critical r 

unstable, M must be about k X 10^ Me • Taking the Oort constant 

as 15 km/sec-kpc, one thus has 

.2 ,2 r2 /1.5 X 106 
2 2 

1.5 X lo1^ I 1 

n ~ 15 

Now the critical condition for growth as deduced from 

eq(28) is 

B  \2  2 V 2  

' A p  i : : o  

2 2 
where B and \) refer to the perturbation. Now B n-> LJ- T 

p p p L 
2 2 2 

iJ T V 0 
anc* l/p VQ 

as was shown above. Thus 

V2 X2 

1 + —2 1° » o . 

' c„ 'A o '^p 

^ 2 ^ p 
Inserting values for A / A " 1*5 and f = .1 , one 

o p o 

sees that the condition for growth is satisfied. It should be 

2 2 
noted, though, that if Bp «=• j corresponding to the orbital 

angular velocity being substantially lower than the spin velocity 

the condition is not met. This could occur if the rotational 

energy is preferentially transferred to the spin component. 
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The calculations above are all very rough and hence tne 

conclusions drawn are open to dispute. The reason that any cal

culations are included at all is to try to make plausible that 

at least under one set of initial conditions, disposal of ang

ular momentum in the initial stages of fragmentation is not 

necessarily an insurmountable obstacle. 

In summary one can say the following: 

1) Rotation can prevent fragmentation. However, it 

will be expected to play an important role only 

if the ratio of the rotation period to the free 

fall time in the absence of rotation is small. 

2) Unless the spin of the frarment is considerably 

larger than thatrexpected if galactic shear 

determines the rotation, fragments should be able 

to collapse and achieve large excess densities. 

3) The above conclusions have assumed angular mo

mentum is conserved during collapse. Hence, 

while it would be helpful if angular momentum 

could be removed, it does not appear to be 

essential in achieving the formation of isolated 

objects with densities much larger than the 

background medium. 



VI - COLLISIONS B/.T-' BRN FRAGMENT.1; AS A 

POSSIBLE SOURCE OF DESTRUCTION 

A) CALCULATIONS OF THS MEAN-PRE?-PATH OF A FRAGMENT 

While fragmentation can occur in collapsing systems, the 

survival of the pieces may pose difficulties. If, artifically, 

the cloud is assumed to have rigorously no angular momentum, then 

the perturbations can readily separate out, as shown in the prev

ious sections. However, since then the main cloud ultimately 

collapses to a point, all fragments must be destroyed by colli

sions with one another at the singularity. If one considers 

cases with nonzero angular momentum, this singularity does not 

occur, and hence the destruction of fragments is not certain. 

One is then faced, however, with the crowding of the fragments 

into a small volume which might be thought to lead to their sub

sequent destruction. On the other hand, if one increases the 

orbital angular momentum to limit still more the collapse of the 

main cloud, another difficulty occurs. If the orbital angular 

momentum is increased, there i8 no reason why the spin angular 

momentum should not also be increased. Greater spin foroes, 

though, will either prevent the growth of fragments outright, or 

retard the growth. The latter will increase the cross section 

with the consequence of greater collisional destruction. This 
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is essentially the difficulty raised by Layzer (1963), though in 

a slightly different guise. 

One simple way of estimating the collision probability 

is to comoute X • mean-free-path, as a function of time for E 

swarm of fragments. The simple kinetic theory of gases gives an 

expression for the mean-free-path in terms of the density of 

particles n, and the collision cross section (/;. Thus 

«> A » —Tjr 
<n <f,) 

For a fragment in a collapsing cloud of initial radius Rq, one 

can take the cross section as simply the geometrical size. 

Thus 

0 = /Tr2 

where r is the size of the fragment, fls collapse proceeds, n 

increases and (£) decreases since the perturbation is contracting. 

If one assumes that the perturbation collapses as in free fall, 

t c 
then its density goes asymptotically as x , for isothermal 

1.5 
collapse. Hence its radius decreases as x ' . Furthermore, the 

density of fragments per unit volume goes as x Substituting 

these values into eq(29), one sees that 

= ——————— = constant . 

—2_ /Th2x3 
3 3 li V 
ox 

Since the size of the cloud is actually decreasing all the while, 

the nean-free-path relative to the cloud size increases in timet 
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While this expression for r assumes rotation is unimportant and 

i8 hence open to question in this application, tne result sug

gests that collisions play only a moderate role in fragment 

destruction. 

In order to mak.e a more refined analysis, the mean-free-

path is computed as a function of tine. One can then find the 

number of surviving fragments by integrating over the collapse 

period. One can thus write 

»> H 

where N » n/V, V is the volume of the cloud, n the total number 

of fragments, and vre^ is the relative velocity between frag

ments. Substituting V = ^7TR^/3 and (p from eq(3)» one can 

integrate eq(31) and obtain 

2 ft < 
3 f Vrel r 

" do 1 _3 

dt 

'° 3 p3 
n(t) = n(t ) e v o 

If dimensionless variables an: introduced with y = r/R and 

R s yR , one obtains 
o  •  . r  

' - 2 
X. dt j q 

32) n(t) = nQe 

3  f ' i  2  
-a J *rei x. 

Jo • 

Some questions might arise about the validity of the 

mean-free-path theory in this context as it is normally used when 

one is dealing with isolated particles. The justification for 

its application to this problem lies in the fact that the linear 
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theory shows that fragments tend toward relatively dense mass 

centers. Furthermore, the linear theory includes implicitly 

tidal and other forms of disruption that might occur due to in

teraction among the fragments. Thus it is only in the nonlinear 

regime that one need worry about such interactions and it is here 

that the problem is best represented as an "N-body" one. 

In order to make the problem more tractable, a number of 

simplifying assumptions have been made. The first is that the 

size of the perturbation can be written as 

y » yQ "ft 

where .5 for a nonrotating, isothermal collapse and = 0 

if there is no growth. In order to have an analytic expression 

for the velocity and density in the main cloud, a limited uniform 

collapse such as described in section B, part V has a^rain been 

used. One further assumption has been made in that the perturba

tions are taken to interact only through the potential of the 

whole cloud. Thus the effect of encounters has been ignored. 

To justify this assumption, tne increase in internal energy of a 

perturbation due to an encounter is computed on the basis of the 

theory developed by Spitzer (1958) for studying the disruption 

of the clusters. 

Let (3^ be the increase in internal energy of a fragment 

as the result of a tidal encounter. Let the perturbing object 

pass the fragment at a distance p with a mass M and a velocity V. 

Then if a and r are the mass and radius of the fragment, 
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47TG2M2r2m 
T = ,„2 V < 5 n  

3V"p 

If one compares this with the energy increase expected from a 

physical collision, (>UC = mV2/2, one obtains 

(5o- . 
T . G M r 

TT-TT 
V P 

V can be chosen in at least two ways. Following Layzer 

(1963)» V2 s V2 = GM/p where the subscript "I" stands for inter

actions among the neighboring particles* On the other hand, V 

could b« chosen as the free-fall velocity, in which case 

2 2 
V = = GM , ./r , , • If the mass and radius of the cloud 

ff cloud cloud 

are eliminated in terms of the perturbation mass and radius, and 

if there are N fragments, V2 = GMN2^^/ r. Thus 

6Kt r2 

6Z ' 7 

p2 if V = V, 

jrs i f  T* Tff 

Now even if r is taken as equal to p, certainly an overestimate 

of r, one sees that the ratio 1®8S than one regard' 

less of which velocity is chosen. Hence, tidal disruption is 

likely to be no more important than straight collisions. Thus 

tidal encounters are ignored. 

One can now write down t.ie relevant equations of motion 

for the system. Letting R be the distance of the fragment from 

the cloud center and 0 its angular coordinate, one then has 
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C.M(R) Ja2 
R = r- + R 

R 

= - jTfGpR + R202 

L 

mR 

where Lq is the initial orbital angular momentum of the fragment, 

m its mass, and yO the mean density of the cloud. For the cloud 

itself, one can again use eq(28) part V and thus obtain 

rc = -i/rGprc + r^2 

Introducing the dimenslonless variables used before, 

P = Po/,f 3 • xc = Rc/r0 ' and assuming conservation of angular 

momentum, one obtains 

,, v •• x c 
33a) x = - g + — 

V X 
for the 

b) q perturbation 

3^«)  V  = -  ——^ •  ——r 

V V ^ 

b) s >^2 for the cloud 
• 

c) 
L i .  1  

.^2 E 
0» 
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To evaluate the relative velocity, one can write 

' -» 

V . = V - VT 
rel p L 

where V is the velocity of the perturbation and V_ is the veloc-
P L 

ity of the surroundings measured relative to the center of the 

cloud. Since the collapse is uniform, VT is proportional to the lt 
radial distance from the cloud center. Thus VT = V r/r , where 

L o o 

VQ ie assumed purely radial. If Q is the angle between the 

direction of the perturbation velocity vector and that of a cloud 

radius vector, then 

55> Tr.l * L(VP -*vocos6"2 * "262J 
2n 211'2 

The solution of eq(33) through (3*0 suffices then to 

determine V - SB a function of C and the position of the per-
rtx 

turbation. 

One can now return to eq(32) for n(f ) and since *re^ 

and y are known functions of time, a solution is possible. 

B) CALCULATION OF THE NUMBER OF SURVIVING FRAGMENTS 

Before proceeding to a more detailed numerical calcula

tion, a rough idea of the results may be obtained if one uses for 

the relative velocity the free-fall velocity times the average 

value of the ratio of the peculiar to the free-fall velocity and 

for the radius the expression introduced before. Since the free-

fall velocity is almost certainly an overestimate of the relative 
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velocities, these approximations should tend to overestimate the 

effects of collisions. 

The systsa will be followed for two free-fall times 

corresponding to a collapse and a re-expansion. Beyond this 

point, perturbations that are going to grow should have achieved 

such a small radius that they will not be influenced by external 

forces. Furthermore, mixing of the orbits should have begun to 

have destroyed the radial characteristics of the collapse and 

the uniformity of the cloud. 

If the time is measured in units of the free-fall time, 

t>1,n 3 /*2 2 zB-1 d»/vr«l\ .. 
, r .  - i > J  d t s j r - ) "  

n ( f ) * n e  J o  \ f f /  
o 

5 i /"r»l\ . f1 2/3-1 

..."* i ' 

The factor of two in front of the integral sign arises as a re

sult of changing the variable of integration from f to V • One 

must therefore integrate over collapse and re-expansion. One 

should note how sensitive the resulting expression for n is to th« 

relative initial sizes of the perturbations and the cloud. Even 

if rotation is important, unless very extreme retardation of 

growth occurs, ( Q very small) changes in the initial sizes of 



the perturbation will have much more influence on the number of 

surviving pieces. It is interesting to note that fragments that 

are slowly rotating are favored over more rapidly rotating ones 

because they will have a smaller J2• Another point is that if 

the relative velocities are decreased, fewer fragments will be 

destroyed. 

It is worth emphasizing that while very small peculiar 

velocities can prevent the main cloud from collapsing to a point, 

they seem to have very little effect on the growth of the per

turbations. On the other hand, if the peculiar velocities are 

made very large, while the collapse of the whole cloud is essen

tially prevented, they also increase enormously the destruction 

of fragments. Thus lower velocities enhance the ability of a 

fragment to separate out from the main flow, and higher velocities 

tend to destroy it by collisions. 

In order to test these conclusions, eq(32) was integrated 

numerically. Having seen above taat the growth rate of the per

turbation is not as critical as its size in determining the 

destruction rate, an isothermal colleose was assumed. One is 

thus left with the initial size of the perturbation and its orb

ital angular velocity as the parameters. In fig(l6) the number 

of surviving fragments is plotted as a function of time. One 

sees that destruction is gradual until the last phases of 

collapse. Furthermore, in no case does the number of fragments 

drop significantly below .5 . This is a result of the fact that 



as more and more fragments are destroyed, there are fewer ones 

with which the survivors can collide. 

C) DISCUSSION OF THE EFFECTS OF COLLISION BETWEEN FRAGMENTS 

In order to apply these results, it is desirable to know 

the exact effect of collisions. Kahn (1955) has suggested that 

at densities typical of interstellar clouds, a collision is more 

likely to result in heating or break up into only two or three 

pieces rather than complete destruction of a fragment. If this 

result is extrapolated to higher densities, one might think that 

ia those cases where collisions are important, the resultant 

heating would destroy incipient subfragments by raising their 

critical masses making them stable. On the other hand, the 

possibility of compression, coupled with the rapid cooling times 

in metal rich systems, might actually enhance fragmentation as 

suggested by the calculations of Field and Orzog. However, in 

aetal poor systems, the increased thermal time scale is likely 

to rule out this lust possibility. In those systems, collisions 

could seriously slow down the growth of fragments. 

A rough estimate of the increase in temperature that one 

expects can be gotten from considerations of the amount of kinet

ic energy that must be dissipated. Thus (5T , where v is 

the relative velocity at collision. One sees that will be 

auch larger in systems with large relative velocities. Such 

would probably be the case in collapsing galaxies. Furthermore, 



since in galaxy formation the material is likel.y to be nearly 

pure hydrogen, the thermal time scale is nearly the free-fall 

time scale, as was seen in part IV. Hence, if collisions do 

occur, perturbation growtu could be prevented until the random 

velocities had decreased or until enough metals were present to 

allow more efficient cooling. Layzer (1963) has suggested that 

the time for the decay of turbulence is short compared to the 

free-fall time. Hence, once collapse of the main cloud is over, 

heating due to cloud-cloud collisions should rapidly drop. 

It was suggested in section B that collisions were more 

important, other things being equal, in systems where the pecul

iar velocities were large. Larger peculiar velocities were 

furthermore associated with systems in which the perturbations 

had large orbital angular momenta. While the case of a rotating 

system was not studied, if one assumes that the rotation here 

too produces large peculiar velocities, one might conclude that 

rotating systems should be particularly prone to the destruction 

of fragments. Hence, the major epoch of perturbation growth, 

associated with star formation, might well be delayed in such a 

system until the magnitude of the peculiar velocities was reduced. 

Another possibility mip;ht be that star formation would be con

fined to small regions where the velocities happened to be ab

normally low. It is tempting therefore to ascribe some of the 

differences between elliptical an1 spiral galaxies to an angular 

momentum effect which delays star formation in the latter case. 
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One might summarize as follows: 

1) The number of surviving framients is given 

2) One might think that systems with large amounts 

of angular momentum would be exceptionally vul

nerable to the destruction of fragments by 

collisions as a consequence of tne larger pecul

iar velocities. 

3) Even in highly unfavorable cases, the numerical 

integrations, on the basis of this model, indicate 

that collisions cannot be expected to destroy many 

more than half the fragments. 

rougnl.v by 

n 



VII - DESTRUCTION OF FRAGMENTS *S COLT APSE CEASES 

A) THE OPACITY OF CLOUDS 

As long as a collapsing cloud remains optically thin, the 

analysis of the proceeding six sections should describe in an 

approximate fashion the growth of perturbations. When the den

sity rises so that the flow of radiation out of the material is 

impeded, that is the optical depth, f , becomes one, the cha

racter of the collapse is likely to be significantly altered, as 

pointed out by Hoyle (1953). At least two major effects can now 

be expected to become important. The first is that the trapping 

of radiation can start to heat the matter switching the gamma of 

the gae from 1 to 5/3 with the consequent radical change in be

havior of the perturbations found in part III. The second is 

that the heating is likely to cause pressure gradients to be

come more important in the main flow as well as in the perturba

tion with the possibility of bringing the entire cloud into 

equilibrium. If equilibrium is established, then the virial 

theorem shows that perturbations will be stable unless they 

satisfy the local Jeans' condition. Hence, fragmentation is 

likely to stop. Some qualifications are necessary as will be 

discussed later. Nevertheless, the Doint where the cloud becomes 

optically thick is likely to mark an important dividing line in 



77 

its evolution, and hence, it is important to know, even if rough

ly, when this occurs. 

Let the optical deptn of gaseous mass M be written as 

37) T = w*P 

2 
where k is the absorption coefficient in cm /gm, and p  is the 

density in gm/cc. R is a characteristic dimension of the system. 

R can then be eliminated in terms of M and £) . If this is done, 

then one can write 

7" = constant • or 

r */P'2/? 
To M P  01 

where the subscript "o" denotes the initial value of the quantity, 

For the main cloud, p = P(/ x^ » for perturbation, 

p = (1 + £ ) , where £ is the ratio of the excess density to 
x 

the background density, and x is the radius of the main cloud in 

terms of ita initial value. For an isothermal collapse 

**" 5̂/2 9/2 
C ̂  1/x and thus p ry* 1/x for a perturbation. 

With these expressions for p it is possible to find T 

T k 1 
as a function of x. Hence, —for the main cloud, 

r  m  1 T o  

and T* * k T for the perturbation. If one assumes that 
' o ox 

the opacity is constant, then one can find the value of x for 

which the cloud becomes opaque ( f = 1). Thus 



78 

x s T (cloud)^2 1 O 

x = * f 0 (  Perturbation )^' 

Sine* initially the perturbation density is nearly that of the 

cloud and the opacities are equal, the ratio of the initial 

optical depths is proportional to the ratio of the initial sizes. 

Thus, 

T (perturbation) r° . ... 
1 o r perturbation 

T„( c l o u d )  =  o 
cloud 

Substituting this expression in the equations above for x, one 

obtains 

x5 . . .. = T (cloud) 
perturbation o 

1  r °  
-E 
r° 
c 

If x is eliminated between the expressions, one can de

termine for what ratio of perturbation and cloud sizes the cloud 

will become optically thick before the perturbation. It is im

portant to know if this can occur, because, as was mentioned 

above, if the main cloud comes into equilibrium, then the growth 

of perturbations is aalted, according to the linear theory, for 

all masses smaller than the critical Jeans' mass* One finds that 

this condition occurs if 

38) f (cloud) 
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It is still necessary to evaluate XQ above ex

pression. If eq(37) is rewritten in terms of the total particle 

density n and the ratio of the number of absorbing particles to 

the total particle density, jj , then 

T =  " 0 / 5 *  

where <'j} is the absorption cross section per absorbing particle. 

Expressing R in terms of trie mass in solar units and the density 

in particles per cc, one finds 

39) T  =  6.6 X 1018 n2/5.^p'M1/5 . 

It is thus possible to evaluate / and the value of x when the 

main cloud becomes opticallv thick. To do this, one must choose 

a particular environment. 

k , 
For temperatures much higher tn&n 10 and densities about 

10~̂  particles / cc, electron scattering is taken as the main 

source of opacity. For electron scattering, « 1 since the 

electron density equals the ion density, and cj) s 6 X 10 ̂  . 

9 -2 
Assuming a mass of k X 10 Me , x = 10 . 

For temperatures near 100, and densities about 10, 

Gaustad (1963) has shown that the main source of opacity is 

absorption by grains. Taking = 10"1* and j j  = 10~^ as the 

ratio of grains to hydrogen atoms, and a mass of 2 X 10^ Ma , on* 

again finds that x = 10 . 



Hence, in both cases, collapse can occur to very small 

fractions of the initial volume. This in turn implies that very 

large density excesses can devalope. 

In order to see whether the perturbations become opaque 

before the main cloud, it is necessary to compute the initial 

optical depths. Using expression (37) and the values for the 

-r* 2 
mass, temperature and density nbove, one sees that 7 = * com

puted above. Hence from eqOft), one sees that only perturbations 

with radii smaller than 1 oercent of the main cloud radius will 

remain optically thin longer than the cloud. 

B) SUBFRAGMENTATION OF COLLAPSING CLOUDS 

It was seen in part I that the critical Jeans' mass for 

a typical interstellar cloud is about 10^ M* . The linear and 

two-point models have shown that in such a cloud perturbations 

can grow once collapse begins. It is clear that if one is to 

produce objects whose mass is about 1M« , one must invoke either 

very small perturbations in the initial cloud or a mechanism 

which will cause large perturbations to fragment. The latter 

course is the one suggested by Hoyle (1953)» and outlined in 

part I. The fact that in the linearized theory small perturba

tions simply oscillate until their mass exceeds the local Jeans' 

mass suggests that Hoyle's picture is in fact the more reason

able one. In support of this, one could arfcue that very small 

oscillatory perturbations will initially be absorbed by the 



growth of larger ones. Once the density of a larger one has 

risen so that it satisfies the Jeans* criterion, then it can be

gin a free-fall collapse essentially independent of the main 

flow. This is a rigorous result of the asymptotic expressions 

for the linear theory. One can tnen apply the linear theory to 

this fragment and follow perturbations in it. This process con

tinues until opacity or some other effect intervenes either to 

bring the fragment into hydrostatic equilibrium or to cause its 

temperature to begin rising. Hoyle has studied this stage of the 

evolution of a fragment for a gas mixture of essentially pure 

hydrogen but with a slight admixture of metals. Gaustad (1963) 

has followed the collapse in a low temperature regime where the 

opacity is due to grains and gradually switches to hydrogen. 

Gould (196*0 has considered the problem when the opacity^ is due 

to The result for all three cases is that while the cloud 

becomes optically thick, gamma is not 5/3 because it is still 

able to radiate at a rate sufficient to offset the compressional 

energy released. Only wuen the mass is about .1 Me will radia

tion control the collapse. The question thus arises, since gamma 

is less than 5/3» and in fact still apparently near 1 for all 

fragments greater than about .1 M» , why are there any 50 M» 

stars? Suggestions have been made that angular momentum or some 

other eff*ct intervenes (Gaustad (1963))• 

Another possibility micht be mentioned. Once temperature 

gradients are built up, pressure gradients are also likely to 
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occur, as was mentioned before, i'hile they may be small, it is 

possible that these griidients could give rise to bouyant forces 

acting on the perturbations. One tiius has the possibility of a 

"convective type instability" arising. Schematically, one then 

has the picture of fragments with positive density excesses sink

ing toward the cloud center, and those with negative excesses 

rising towsrd the cloud border. Since tnere iB no guarantee that 

the fragments h ve the same entropy as the background, there is 

the possibility of "oversnooting". A very dense fragment mi^nt 

then tunnel through the cloud center and out tne other side. If 

its self-gravitation were sufficiently large, it might then be 

able to form a separate condensation. Fragments witn small den

sity excesses though might simply move up and down in the main 

flow, eventually being dissipated by viscous or radiative 

process. 

One might aaproach the problem quantitatively by assuming 

that the main flow was that of a polytrope collapsing. As a 

rough approximation a sin kr / kr density distribution could be 

used. One could then consider with the aid of th« two-point 

model, for example, the motion of a perturbation as was done in 

part III, with the modification that there is now a pressure 

gradient in the main cloud. Tne main cloud, in a first approx-

•ation, could be taken to be in equilibrium. It should then be 

possible to follow the density of the perturbation as a function 

of space and time. The objective would be to see if there was a 
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critical mass or density below which perturbations would fail to 

grow and separate from the main cloud, and to see what relation 

this has to the Jeans' mass. 

The reason that the problem sketched above is important 

is that it may clarify the question of what determines whether a 

gas cloud becomes one star or more. This in turn is clearly what 

determines the mass function. 

One might summarize the suggestions made in this part as 

follows: 

1) For the type of clouds studied, it would appear 

that the subunits become opaque before the cloud 

itself. 

2) The final mass function is probably determined by 

the processes that are operative in the subfrag-

mentation of the cloud and hence is more likely 

to depend on the parameters of the cloud immed

iately before the end of collapse, rather than 

on the initial parameters of the medium. 



VIII - SO/?; CONCLUSIONS REGARDING TH  ̂

EVOLUTION OF GAS CLOUDS 

A) SUMMARY OF TH1-; T!*'G-POINT RKSTTLTS 

Before considering the application of the results to the 

formation of astrophysical systems, it mignt be well to give a 

general summary of wh^t nas been learned so far. 

From figCO and fic;(6), one sees that for the zero-

pressure case, a large central concentration in the main cloud 

and/or the presence of background stars inhibits the formation of 

large density excesses. For the finite-pressure case witn a 

polytropic relation, smaller gummas cause an increased growth 

rate as can be seen from fig(7). Note, though, that the inclu

sion of pressure greatly retards growth. In all cases where the 

density was found to increase on the basis of the linear theory, 

the nonlinear effects were found to accelerate the growth. 

The incliision of radiation was found to produce a gamma 

less than or equal to one, as is seen in fig(12) and fig(13). 

Thus the collapse is roughly isotnermal as suggested by Hoyle 

(1953) and Mestel and Spitzer (1956). 

When rotation is included, growtn cannot occur if the ro

tation period is less than the free-fall time unless the initial 

density excess is made very large. Tnis agrees with Layze^s 

8^ 



finding. For smaller rotation periods, the major effect i6 a 

retardation of growth in tnese efirly phases. 

study of collisions among fragments showed that unless 

the initial size of the fragments was large or their growth rate 

much slower than for an isothermal collapse, destruction was un

likely. Since in a system with large amounts of angular momentum 

the above conditions are likely to be encountered, it was con

cluded on the basis of eq(36) that collisions woul 1 occur. It 

was suggested that the consequences of collsions would be unim

portant unless the cooling time scale was long, as might be ex

pected in the formation of galaxies or metal poor systems. In 

such systems therefore, fragmentation would oe retarded for 

periods comparable with the free-fall time of the cloud as a 

whole. 

B) POSSIBLE EVOLUTION OF COSMIC GAS CLOUDS 

It would not yet appear possible on the basis of the 

theories sketched here to preiict the initial mass function of 

stars. However, reasons have been (riven for supposing that frag

mentation proceeds in a very different fashion from system to 

system according to certain initial conditions. In particular, 

the importance of chemical conposition through its control on 

the cooling functions and angular momentum has been mentioned. 

In order to summarize these suggestions, consider first 

the behavior of two large clouds, say of galactic mass. Suppose 



they differ only in the amount of angular momentum. In the case 

with low angular momentum, it hus been suggested tuat collisions 

are not as likely to occur due to the lower random velocities one 

might expect. Furthermore, it war; suggested that where orbital 

velocities were low, spin velocities might also be small. Hence, 

fragmentation should proceed efficiently and rapidly in such sys

tems. In addition, Spitzer (19^+2) has stiown that what gas is re

maining in such systems will be concentrated toward the center of 

the system. One would conclude tnat in suca systems virtually 

all star formation should occur in one single brief epoch at the 

time of initial collapse of the system and that any residual gas 

would collect at the center, thus being difficult to observe. A 

study of spherical systems by Gamow, Belzer, and Keller (19^8) 

showed that in massive systems formed by collapse, the gross 

synchronous radial motion will be destroyed in times the order 

of the free-fall time. Hence, any vestiges of the collapse 

should no longer be evident. (Strictly speaking, this is true 

only of the interior regions. The radial character of the orbits 

will still be preserved in the outer regions, but any phase 

relation will have bean destroyed.) 

If one considers now systems with large amounts of ang

ular momentum, a very different picture suggests itself. As was 
\ 

found by Spitzer ( 1 9 6 3 ) ,  if a  cylinder initially stable against 

fragmentation collapses along its axis into a disc, it remains 



stable, Thus if angular momentum restricts the collapse to one 

direction, it will be very hard for stur formation to occur. 

If a roughly spherical collapse can occur for a short time, 

it is possible that the density could rise sufficiently to allow 

some fragmentation to occur. A collapse to .1 of the initial 

size will lower the critical mass from 10^ Me to 10^ Me since 

9/2 
Q = PQ/X ' Hence star formation might occur in aggregates 

of this size. It was further suggested that in systems with high 

angular momentum, perturbation growth might be retarded due to 

collisional heating. It is thus plausible that any fragments 

that do survive will have preferentially low spin angular momen

tum. Such a picture is consistent with that suggested by Egiren, 

Lynden-Bell, and Sandage (1962) on the basis of the motion of 

Pop II stars of large UV excesses. A further consequence of such 

a collapse is that lar^e amounts of s;as would be left that would 

be unable to accumulate in the central regions due to the rota

tional forces acting on it. 

Since fragmentation in rotating systems seems unlikely to 

occur oa the same sort of scale as in nonrotating ones, it is 

reasonable to ask how it does occur. The stability of rotating 

discs has been studied by Bel and Schatzman (1953), Hunter (1963), 

Toomre (196M, Lin and Shou (1964) and Mestel (1963)* It is 

found in all cases, despite the difference in assumptions regard

ing relative amounts of stars and gas, that instabilities are 

likely to occur leading to the formation of regions of higher 

than average density in the form of rings, bars or spiral arms. 



It is natural to suppose that if star formation occurs, it is in 

k 
these regions. However, with a temperature near 10 , it is still 

necessary to have enormous densities (10 particles / cc) to 

achieve instability in the Jeans' sense for a mase anywhere near 

that of even the largest aggregates of pop I stars. This suggests 

that to produce stars in such a model an additional source of 

cooling other than pure hydrogen is required to lower the temper

ature to the presently observed value of about 100. Whether this 

cooling can be ascribed to primordial metals, metals produced in 

stars that were able to form in the initial collapse, or molec

ular hydrogen is uncertain. If the temperature can be lowered to 

2 
about 10 by some mechanism, a much lower density (10 

particles / cc) is adequate to produc.e Jeans1 type instabilities 

with the consequence of star formation in groups of about 10^ Me • 

7 
The relatively short time of collapse of such a system (10 years) 

suggests that in the youngest star complexes the dynamical 

effects of an original collapse and expansion might still be ob

servable. It is not impossible that the observed expansion of 

some young associations is a manifestation of the original col

lapse in which the stars might have formed. 

C) THE POSSIBILITY 0V S-JCOND GENERATION FRAGMENTATION 

It is of interest to ask whether in systems in which 

fragmentation has occured once, a second generation of objects 

can form. This question is suggested by Herbig (1962) witn 



regard to the apparent spread of aires in the Pleiades and the 

Hyades. In the case of galaxy formation, V.'eymann (1964) has 

suggested that if gas accumulates in a system and is unable to 

fragment a second time, it mi^-ht cause the formation of a large 

mass in the nucleus of the galaxy. One can imagine the gas con

tent of a system increasing in time after one generation of ob

jects has formed due to mass ejection, accretion from the sur-

surrounding medium, as well as dispersal of tnose fragments in 

the first generation that were too small to be stable. 

Consider therefore a system in whicn collapse has pro

duced a system of stars. Unless there is a lare;e amount of un-

condensed matter, the gravitational field will be determined by 

the stars. Hence there will be a tendency for the matter 

accumulating or remaining uncondensed to concentrate toward the 

center as shown by Spitzer (19'+2), who also showed ttiat in non-

rotating systems, there is a critical mass for the gas similar 

to that found by Ebert et al. If the accumulation continues due 

to mass ejection, say, and the mass eventually exceeds tnis crit 

ical mass, then it may undergo collapse. This time, however, 

the collapse occurs through a network of stars. Furthermore, 

there is likely to be a central condensation in the cloud. In 

part II it was shown that both these factors impede the growtti 

of perturbations. 

For the case of the zero-pressure uniform sphere, the 

density of a perturbation with Initial amplitude .1 doubles when 

the excess density has increased by a factor of ten, or when the 



main cloud has collonseJ to of its original size. If the non-

uniformity index, , is .5, the growth to a similar density is 

delayed until the cloud radius is .05 • Thus, roughly a ftctor 

ten more collapse is required to achieve tr;e same density. If 

trie density of stars is 10 that of ,^as, an even more extreme 

state of collapse is required to achieve tue sf-me density. If 

one applies this factor of ton to the isothermal collapse, the 

main cloud must contract to about 1 oercent of its original size 

to have the density of even a lortce perturbation icrease by a 

factor of tent Tni6 is aoproachinft the ooint where the cloud is 

likely to be optically thick, as found in section A part VII. It 

was mentioned there, however, that the work of Gould (196^+) and 

Gaustad (1963) showed that an optically thick Hi cloud could 

still continue collapsing nearly isothermally. Hence, fragmenta

tion could conceivably occur a second time in these systems. For 

the higher temperature cloud, thousti, the picture suggests that 

fragmentation is not as likely to occur once an optically thick 

state is achieved. (Hoyle (1955)), This could possibly lead to 

the formation of a massive object in the center of the system* 

There has been much recent speculation that quasi-stellar radio 

sources are connected with just such objects (Fowler and Hoyle 

(1963)1 and Robinson, Schild and Scnucking (1965))# 
r 

It is very difficult to draw conclusions about the ulti

mate evolution of collapsing systems. A number of tentative 

points have been suggested above. Reasons have been given for 



supposing that an^ulur momentum affects the ability of a system 

to fragment, and hence star formation proceeds very differently 

in elliptical and spiral systems. Firmer conclusions necessitate 

a clearer understanding of many processes. A number of points 

are particularly crucial. One very simple point tnat has been 

ignored in all the above is the depletion of the background gas 

that is likely to occur as fragmentation proceeds. One should 

also ask what modifications are necessary in the linear theory if 

nonuniformity and rotation are included. A start in tiiis direc

tion has been made by Lynden-Bell (1962, 196^+). In general, 

though, the gravitational stability of a rotating, compressible 

mass seems to require a great deal more study. 

Another problem that has been studied only roughly is the 

consequences of collisions on moderately d;nse fragments. 

Throughout this work there has been no mention of magnetic fields. 

This must be rectified at some point, vhile it was suggested 

that orbital motion could be used to rid a system of rotational 

energy, just one special solution to see exactly how the density 

would develope in such a system would be very valuable. Finally, 

the question of what occurs *hen pressure gradients are becoming 

important, a6 mentioned in part VTI, and their influence on the 

ability of a cloud to fragment must be studied before that 

interesting question of wnat determines the stellar mass 

function can be answered. 



COLLAPSE OF A UNIFORM G.«S SPHERE 
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spherical perturbation. 
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Substitute divergence of eq(2) in eq(3)< 
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Since the main flow is radial, 
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This is the basic nonlinear two-point 

equation. 

1 dP 
Recalling now that * —R JJ: » 

/ 

one can see that since is evaluated at 

the perturbation center and the main 

cloud is uniform, P^ = 0. 

Also, Px - p2 = p" dr x 
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Then -i- — • £ 
P " /J C 

and 
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Substracting the unperturbed solution 
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Linearizing now in £ , 
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The two-point equation* as derived in eq(5)» is a differential equation in ̂  . 

As has been mentioned in part III* it is possible to obtain a more exact form of the 

equation through the us* of scale factors. As can be seen fjrom eq(3), the > used 

here is really a mean £, However, the approximation to the pressure gradient 

involves the value of at the perturbation center, £ . Thus, one wishes to relate VO 
ui 
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where pc(t) is the central excess density for tne nerturbation, tnen 
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where are evaluated at the perturbation edp;e and are nence the values in tne un

perturbed flow. One can see from eq(7) that Q( = 1. 

In order to relate > and >' , it is necessnrv to find tn® total excess C c 

mass in the oerturbation. Thus 
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sin kr „2 . 
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kr 

sin kr - kr cos kr 
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But M(r ) = irTr3 fL) and hence 
p 5 P r 

3? 
— c 

r k 
P 

Now r is the physical radius of the perturbation and hence r = r xy. 
P P ° 

k though must be measured in a Lagrangian frame. Following Hunter (19&2, p606) 

one can thus write 

. 2  1  1  

a; 
where is related to the wavelength of the disturbance. Substituting tnis value of 

k2 into the expression for f , one finds 
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APPENDIX II 

EVALUATION OF Ar0/'Ar AND V, 

The equation of continuity of the main spnere is 

P<r
0) r02Ar

o = p(r)r2Ar 

if is defined as J 3  =  Ar
0^ Ar' 

n - P ( r ) r 2  .  

^  P ( r ) r 2  
o o 

Now 7 }  =  P - l / P  '  P  ( r )  / p  *  T h u s  

•5T 2 

:1. W - JL.I 

^ X 

Furthermore, since ,j = A r0 / A r 

Vt 

/> "Sr 
/J ^ 
 ̂ JLL 

V, 

• here 
t = 

dr 

2GM 
1/2 

+ ro 
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The integration over r is performed and the derivatives 

* 

are then taken. Note that M, r , and r are functions of r . 
oo o 

Hence denends on their values throughout tae cloud. 
r* 

It is found advantageous to let 

GM 
r 
GM 

o 
r 
o 

and 

A = 
r2 GM 

GM 

Tiien the following exoressions are found for / < : 
h 

For A0 = -1. ro = 0 

( 

/-> i1 ' 2/\ I 51 yx i 

tan"1 J— X ) 
V  X 

1-i 

For A  -  0 ,  

P 
' 1 • 

Aox 
• j i *  

-i __ j +i 

r + A 
k 

+ iLA) 

o 

° '../I. 1 

s Ao" 

x + 
Ao 1 

2a° X l " k  viua^ 
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APPENDIX III 

Prolate 

SURFACE ACCELERATIONS 

2 
= 1 -

equator 
- 2 i r < i P  

• 2 

i-_c_ l ± 
,-3 ! 
C ) 

In 
1 -

pole 

... 2 

= "Z \ " T—I j .2 + In ~ 

1 -
I c 

J  

Oblate > = 1 - —-
^ 2 

a 

2 1/2 -

equator 
-2/TgP(I- - ) 

3 

2 1/2 
- (1 - s ) + sin 

pole 

2 V2 _! 
: - (1- C ) « i n  • 

where A is the acceleration, a is the equatorial distance and 

is the polar distance. 

The expressions for f( >) and g( *)« the polar and 

equatorial corrections, thus become 

ML 
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Prolate 

f (  >  )  =  1.5(1 - £ 

i  U - S i  
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/ • \ 1.5 
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- (1- £ ) Sin S ! i * t 

g( >) = 1.5 
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APPENDIX IV 

INFLUENCE OF ROTATION 

£ 
A 

A 
R 

\ ' X 
- » s  

A 

02 \  

\ » 

a s * "7 S 

Identities 

r coa Q2 = R cos ̂  + s cos yy 

rsin(92 = Rsinfc?^ - s sin ̂  

r cos X = s + R cos (X 

r sin A® R ®ln. '-."X 

Transformations 

R = scos0> ¥ sin CX 

= -s sin (X +  ̂cos OX 

A A 

r = scos A + Fsin ̂  

0P a -ssin A + ^cos X 

2 2 2 
r = a + R + 2sR cos 

r = s + R 
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Forces 

along R = 
GM(R) 

along '~1 = 0 

along r = 
, v Gm cos A GM(r) p c"°'̂  

along = 
Gm ai n A 
_E 

• e  

t and g are corrections required for asphericity. (See Appendix III.) 

Now taking the expression for s and differentiating twice 

with respect to time, 

• = r - R 

• x -(R-R^X)R - (2R^1 + R(91).91 + £(r-r6J2^+ 2* ̂2. * r 2 ̂ 

Substituting for the forces, 

8 = a eoa CC + 
rGM(r) 
—— * ^ 
r s 

Gm sin f 
(seoi X  + '/'sin ) + —2_p, cos _ s 8in ̂  j g 

Now 
GM(ri) 

V r a P T i  
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8 

If the perturbation starts spherical, then f = g. 

Therefore, 

8 
" jTTofi a a 

Gin f s 
P 
2 

8 

Note that the properties of the main cloud vanisa 

identically if one goes to the diraensionless time. Hence, apart 

from the time scale, trie growth of a rotating spheroidal fragment 

in a uniform cloud is completely independent of the cloud itself 

if the axis of rotation lies along the radius vector of the cloud. 

Now, since 

Now going to dimensionless variables and letting the unit of 

length be 

8 
A •• 
8 ( S - s y  ) + K(2sJ* + B f * ) i  

B  

vr 
o 

and defining a —BY and changing the time unit to 

To a t one obtains. 
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a + 
2SV = -6 V I -

v + "T * ~3> 
V V 

.2^2 
fn 

If one now conserves angular momentum, and assumes the 

density in the main cloud is determined by, 

v = — 
i B 1 o 
2 + 3 

v v 

then aince 

. 2 CJ2 s*1 v"*"'o o 
if It 

V s 

2 4 
^ \ )  o B o  

- ~TT~Z 
v  8  t 0  

One finally has, ignoring the pressure terms, 
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APPENDIX V 

COOLING cu:?v;:s 

CASE I - T 100 K 

IONIC 

F = 7.23 X 1013p T3*32 

i U  nno and Simoda (1963)] 

MOLECULAR HYDROGEN 

F = 8.58 X 10"31 ) T21'3 

iGould (196*01 
L  

CASE II - T =-10 K 

PURE HYDROGSN 

F = 3.59X1023l)' T 
tl/2 

H 776 1 
1 0  j  

jMicnie (1963) 

, 6.8 X 10̂  7.75 X 1010 
X • + "" + -

T T 
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Fit?. 1.—Model of Cloud and Perturbation Used for the Two 

Point Equation 

C denotes the central point of the soheroidal perturbation 
with axes a and b. r is the distance of C from the cloud center. 
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Fip;. 2.—Change of Central Concentration, as a Function of 
the Initial Central Concentration, N , for a Zero-pressure 
Collapse 

A small N implies a more centrally concentrated cloud. N 
o 

is the ratio of the local density of a snell to tne mean density 
of the matter interior to it. 

I 
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Fig. 3.—The Effect of Nonlinearity. 

The excess density is plotted at, a function of time for 
different initial excess densities, EQ , for a zero-pressure 
collapse. The curve marked "Hunter" refers to the linear theory. 
The curves are normalized to unity for the initial excess 
density. 
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Fig. --The Effect of Central Concentration 

The excess density is shown as a function of time for diff
erent initial central concentrations, N0 , for a zero-pressure 
collapse. The curves are normalized to an initial density of 
10%* N0 = 1.0 is a uniform cloud. 
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Fii?. 5«--Number of Particles per cc as a Function of Time 
for a Zero-pressure Collapse for the Main Cloud and the Pertur
bation 

The initial perturbation amplitude is 10 
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Fig. 6.—Effect of Background Stars 

The excess density as a function of time is shown for a 
zero-pressure collapse. Q is the ratio of the star density to 
the gas density. The density is again normalized to an initial 
amplitude of 10?*. 
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Fig. 7.--Effect of Gamma (.5 to 2.0) 

The excess density is shown as a function of time for a 
finite-pressure collapse. The density is a<z;ain normalized to 
its initial value of 10*. 
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Fig. 8.—Effect of Nonlinearity for a Finite Pressure 
Collapse 

The excess density is shown as a function of time. The 
results are normalized to the initial excess density, EQ . 
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Fir;. 9*—Particle Density 88 a Function of Time for an 
Isothermal Collapse 

The ratio of the Jeans' length to tne perturbation scale 
is .5 . The initial amplitude of the perturbation is 1096. 
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Fig. 10.—Comparison of the Two-point, Linear and Full 
Hydrodynamic Solutions 

The logarithm (base 10) of the excess density, normalized 
to its initial value of 10^, is shown as a function of time for 
an isothermal collapse. The .leans' length is .5 the perturba
tion size. 
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Fig. 11.--Schematic Representation of the Change in the 
Physical Variable During a Collapse '.'.'here Oscillations Occur 

The top curve represents the ratio of the internal to the 
external pressure. Th« middle one is the excess density norm
alized to its initial value. The bottom one is the ratio of 
the pressure force to the gravitational force. The abcissa is 
a time scale. 



RATIO 
OF 

PRESSURES 

EXCESS 
DENSITY 

PRESSURE 
GRAVITY 

TIME 

co 



Fig. 12.--Temperature of a Perturbation in an HI Cloud 
During Collapse 

The upper curve is for molecular hydrogen cooling. The 
lower is for metallic ion cooling. Tne initial density is 
10 particles per cc, and the Jeans' lenp;ti; is ."5 the size of 
the perturbation. The cloud is started in thermal equilibrium. 
The abcissa is the fractional radius of the main cloud, x. 
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Fi*. 13.—Temperature for a Collapsing Cloud of Ionized 
Hydrogen 

The initial density is .001 particles per cc, and the Jeans' 
length is .5 the perturbation size. 
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Fig. 14,--Effect of Rotation on a Perturbation in « Zero-
pressure Free-fall Collapse 

2 V Q  is the ratio of the free-fall time to the rotation 
period, squared. The excess density is normalized to its 
initial yalue of 10%. The main cloud is in free-fall. 
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Fig. 15.--Effect of Rotation on a Perturbation for a Finite-
pressure Collapse 

The curves are normalized to tne initial values of the ex
cess density, E0 . The main cloud is in free-fall (Be = 0). 
The collapse is assumed isothermal with the Jeans' length .5 
the size of the perturbation. 
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Fig. 16.—Fractional Number of Surviving Fragments 
Illustrating the Effect of Collisions 

The different curves show the effect of the ratio of the 
initial perturbation size to the cloud size (Y0) and the ratio 
of the effective orbital angular velocity to the free-fall 
time (B0). BQ = 0 is a free-fall collapse. 
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