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ABSTRACT 

The problem of cnumera;: i.nr: the critical (equilibrium) 

configuration;; of n-charges constrained to lie on an m-dimensional 

torus is investigated. This problem is equivalent to the 

enumeration of the stationary values of a real-valued function 

defined on an m(n-l)-dimensional torus. 

The law of mutual repulsion is assuraed to be a decreasing 

function of the square of the 2m-dimensional distance between the 

charges. 

The number of critical configurations for the case of 

two charges is shown to be 2m. For three charges, the number 

of critical configurations is between 4m and 6m. By appropri­

ately choosing the law of mutual repulsion and the weights of 

the charges, both the upper and lower bounds may be attained. 

The principal tools used in this investigation are some 

results of M. Morse's topological theory of critical points. 

A brief development of these results is included. 

vii 



INTRODUCTION 

A problem which arises in connection with an early model of 

l:he atom Is that of finding the stable configurations of electrons 

on 9 conducting -i:here. (Whyte, 1952.) . A. generalization of this 

problem will be considered here; namely, the determination of the 

type and number of critical configurations of N charges constrained 

i.o lie on ar> m-dimensional torus and acted upon by a fairly general 

l.aw of mutual repulsion. The formal statement of this problem will 

be deferred until Chapter 3 where it will be formulated in terms of 

classifying and enumerating the stationary points of a real-valued 

function defined on a compact, rc(N-1)-dimensional manifold. The 

main tools used to attack this problem are some results of M. Morse's 

topological theory of critical points» 

A method for determining the maxima (minima) of a differenti-

able, real-valued function, f, defined on an m-diroensional, differ-

enttable manifold, HfL , is to seek solutions of systems of equations 

of the form: 

/ \ (T~^ (x, .x0 , o.« ,x ')) 
(*) - 1 5 2' LjoLL a o, i b l,2,...,n, -

<^x^ 

where T is a hoireomorphism of an open subset of Tift, onto the open 
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n-dimensional disc: 

n \ 2 2 2 . ) 
V = \ (x i, , • < • > '̂ 1  ̂ x2 + •••+ Xq 1 > . 

A point, y, of ??? will be called a stationary point of f on m 

if T(y) satisfies a system of the form (*). In general, there will 

be stationary points which are not extrema of f, since (*) is only 

a necessary condition for an extremum. 

If 771 is compact, there are at least two stationary points 
of f on m since a contiguous real-valued function on a compact set 

has a maximum and a minimum. However, the Morse Theory shows that 

the total number of stationary points is at least as large as the 

sum of a set of topological invariants of m known as the connectivity 

numbers (or mod 2 Betti numbers) of m. In general, this sum will 

exceed the number two. For example, the sura of the connectivity 

numbers of the ordinary (2-dimensional) torus is four. 

Another consequence of the Morse Theory is that if certain 

connectivity numbers of Yif~L do not vanish, then there are necessarily 

stationary points of f on HTL which do not correspond to extrema of 

f. Again, the torus provides an example. For, on the torus, there 

are at least two stationary points of a differentiable, real-valued 

function which are neither maxima nor minima of that function. 

A stationary point, y = T-*(X^,X2,...,xn), of f is said to 

be non-degenerate if'the Hessian of the composite function, f°T~^, 



does not vanish at (x^ ̂  > • • * • The index of a non-degenerate 

stationary point is defined to be the number of negative eigenvalues 

of the matrix: 

3 f (T (x1 , x? , .. . , xn) ) 

If m compact and if the stationary points of f are non-degenerate, 

then the following equation due to M. Morse (Morse, 1925) is valid: 

(-1)1 Mi (-1)1 R1 , 

i=l 

where M1" denotes the number of stationary points of index i, rA is 

the i-th connectivity number of M and n is the dimension of TTL. 

Under certain conditions, this relation may be used to find the 

exact number of stationary points of a real-valued function on a 

manifold. An example of this may be found in a paper by H. Cohn 

(Cohn, 1960). Another example will appear in Chapter 3, below, where 

the Morse Equation is used to derive an upper bound for the total 

number of critical configurations of three charges on an td-dimensional 

torus. 

In the following, the first chapter contains a brief review 

of some of the definitions and results of combinatorial topology. 



Chapter 2 is devoted to a proof of the Morse Equation for a compact 

manifold. The problem of determining the number of critical config­

urations of chnrges on an m-dimensional torus is discussed in .Chapter 

3. In that chapter, the law of mutual repulsion is assumed to be a 

decreasing function of the square of the 2m-dimensional Euclidean 

distance between the charges. The number of critical configuration 

of two charges is shown to be ?.m while, for three charges, the 

number of critical configuration is shown to be between 4m and 6™. 

By appropriately choosing the law of repulsion and the weights of the 

charges, both upper and lower bounds may be attained in the three 

charge case. 



CHAPTER 1 

TOPOLOGICAL PRELIMINARIES 

The Morse approach to the study of stationary points is 

centered around the topological concepts of absolute and relative 

cycles and continuous deformations. Thus, by way of introduction, 

this chapter will be devoted to a discussion of these and other 

concepts of combinatorial topology. A general and more complete 

account of the material presented here may be found in the standard 

texts on combinatorial topology. (See, for example, Seifert and 

Threlfall, 1934 and Pontryagin, 1952.) 

The proofs of theorems presented in this chapter will be 

given in outline form or omitted completely. 

1.1 EUCLIDEAN SIMPLEXES 

Let En denote Euclidean n-dimensional space, and let 

a, b€En. The set of all points of the form ta + (1 - t) b, 

where t is a real number and 0£t-£L, is called the segment 

joining a and b. A set A C En is convex if, for any two elements 

x, y€ A, each point on the segment joining x and y is also an 

element of A. 

5 



Let A be any subset of En. The intersection of all convex sets 

which contain A (as a subset) is called the convex hull of A. It is 

easily verified that the intersection of any number of convex sets is 

also a convex set; i.e., the convex hull of a set is convex. In the 

sequel, the convex hull of a set, A, will be denoted by ctf?A. 

A finite subset a^, aql of En is said to be an 
4 i  

independent set if q = 0 or if q>0 and the vectors a^ - aQ, - aQ, 

..., aq - a0 are linearly independent; that is,if the vectors 

a^ - a0, &2 " ao» •••» aq " ao generate a linear vector space of 

dimension q. 

Let A » |aQ, a^, .aq}(ZEn be an independent set and let 

T be the set of all points of the form 

(1) x = ^ \ at 

i-0 

where, for i = 0, 1, q, ^ is a non-negative real number and 

\ = 1. 
i=0 

By an easy calculation, T may be shown to be convex with AC T. 

Therefore, the convex cover, ctfTA, of A has the property that every 

point cRLA may be represented in the form of equation (1). 

Moreover, the independence of A guarantees that this representation 
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is unique. The numbers ̂ 0'\» • ••» ttre called the barycentric 

coordinates of x. On the other hand, every point of En which admits 

a representation in the form of equation (1) is an element of dik% 

and hence <nCA = T. (see Eggleston, 1963, p. 4) 

The convex hull of an independent set uniquely determines 

that set. For, if A and B are two independent sets and <&k • ̂ B, 

then A m B. (Pontryagln, 1952, p. 10) 

Definition 1„1 

A set SCEn is called a Euclidean q-simplex or simply a 

Euclidean simplex if there exists an independent set A of q + 1 

points such that S =- drZk. The elements of the unique set A are 

called the vertices of S, and q is called the dimension of S. 

The Euclidean 0, 1, 2 and 3 simplexes are, respectively 

points, straight line segments, triangles, and tetrahedroms. 

In the sequel, whenever a symbol of the type cfck is used 

to denote a Euclidean simplex, it is to be understood that A is the 

set of vertices of dZk. 

Clearly, any non-empty subset of an independent set is also 

independent. Hence, if ilA is a Euclidean simplex and 0 / BCZA, 

then cK.B is a Euclidean simplex. 



Definition 1.2 

A Euclidean q-simplexi <7£B, is a q-face or simply a face of a 

Euclidean simplex, <t£a, if B is a subset of A. (fu B is a proper face 

of (fiCk if tfCB is a face of dSLk and B ^ A. 

When considering collections of Euclidean slmplexes, it is 

desirable that the various Euclidean slmplexes "fit together" in a 

certain prescribed manner. Two Euclidean slmplexes, S and T, are said 

to be properly situated if SOT » 0 or SflT is a face of S and a face 

of T. 

Definition 1.3 

A collection, K, of Euclidean slmplexes is a complex if 

(1) Every two elements of K are properly situated. 

(ii) Every face of an element of K is also an element of K. 

The set of all faces of a Euclidean simplex, S, (including S 

Itself) is an example of a complex. The set of all proper faces of 

S is also a complex. These complexes will be denoted by S and S , 

respectively; i.e., 

S as |t | t is a face of S j , 

and S" » 11 | t is a proper face of S | . 

Unless otherwise stated, all complexes will be assumed to be 

finite, (i.e., contain only a finite number of slmplexes.) 



The union of all simplexes in a complex, K, is called a 

polyhedron and will be denoted by j K|. K is called a triangulation 

of |K|. 

1.2 CONE CONSTRUCTION; NORMAL SUBDIVISION; PRISM CONSTRUCTION 

Three methods of constructing a new complex from a given 

complex will now be introduced. The first of these, the cone 

construction, is introduced primarily to simplify the other two 

constructions. The second construction, normal subdivision, 

provides a method of triangulating a polyhedron into simplexes 

of arbitrarily small diameter. The third construction, the prism 

construction, will be used later to relate two functions defined on 

the same polyhedron and to relate a complex to its normal subdivision. 

The Cone Construction 

Let FC En and let a€En. The pointy a, is said to be in 

general position with respect to F if a€F and if for any two 

distinct points xGF, yGF, the segment joining a and x and the 

segment joining a and y have exactly one point in common, namely 

the point a. 

Definition 1.4 

Let FC£ni and let ac En such that a is in general 

position with respect to P. The set-theoretic union of all 
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segments joining a and points of F is called the cone with vertex 

a and base F, and is denoted by aF. Thus, aF is the set of all 

points of the form at + (1 - t)b, where O^t^l and b is an element 

of F. 

Let S = c£{aQi be a Euclidean q-simplex, and 

let a be in general position with respect to S. Then |a>a^,a^,...,a^| 

is necessarily an independent set, and the cone, aS, is the convex 

cover of this set; i.e., 

~ (£. |a» ̂  aq | " 

(See Pontryagin, 1952, p. 45) Thus, aS is a Euclidean q+1 simplex. 

Definition 1.5 

Let K be a complex and let a be in general position with 

respect to JKJ. Then the cone complex with vertex a and base K, 

denoted by aK, is the set of all cones of the form aS where S is 

a Euclidean simplex of K. In set notation, 

aK = |aS J S£K | . 

It may be shown (Pontryagin, 1952, p. 46) that aK is 

a complex, K is a subset of aK, and aK = -a K|. 
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Normal Subdivision 

Let S = » •••» be a Euclidean q-simplex. The 

(unique) point in S whose barycentric coordinates are each equal to 

l/(q+l) is called the barycenter of S, and will be denoted by b(S). 

Thus, 

+T .£ H. 
b(S) * 

q 
i=i 

It may be shown (Pontryagin, 1952, pp. 43-44) that b(S) is in general 

position with respect to S" and that b(s)|s"j = S. 

For any complex, K, let 1(4 denote the set of all slmplexes 

of K whose dimensions are at most q: 

K<1 - {  S is an r-simplex and rrfq OK* 

It is easy to show that KH is a complex; i.e., K9 satisfies (i) and 

(ii) of Definition 1.3. 

The normal or barycentric subdivision of a complex, K, will 

be denoted by ^K. Since the purpose of normal subdivision is to obtain 

a triangulation whose simplexes have arbitrarily small diameters, and 

since the diameters of the simplexes of K? are as small as possible 

already, the normal subdivision of K° is defined to be K°. The 

1-simplexes of K may be replaced by smaller 1-simplexes by dividing 

each 1-simplex in half. In other words, each 1-simplex, 

s = <£ |a0, al } CK1, may be replaced by the two 1-simplexes, 
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<£{|<ao + ai)» a0} = Ms) 1 ao} an<* + ai^» ai| B Ms) |aj| . 

Therefore, the normal subdivision of K* is defined to be the set of 

all 1-simplexes of the form b(S) jaj , together with the faces of these 

sitnplexes and all O-simplexes in K°, where SE and a is a vertex of S. 

(In general, there will be O-simplexes in K° which are not faces of 

1-simplexes of K^. Therefore, K° must be included in the subdivision 

of K* to ensure that = K1].) To extend this procedure to the 

complexes K^, K^, etc., suppose q^l and that the normal subdivision 

of has been carried out. Then the proper faces of each simplex 

of are already subdivided, and hence, as suggested by the method of 

subdividing K*, the procedure for subdividing K5 is to construct cones 

of the form b(S)T, where S is a q-simplex of and T is a simplex 

in the subdivision of some proper face of S. To ensure that such 

cones are defined and that no points are added to or deleted from the 

polyhedron J k| by such a procedure, we require-not only that be 

a complex such that , but also that, for any complex, 

L, such that L is a complex, ^LCZ AND |JL| = |L| . 

Then, in particular, for any q-simplex, S, of K*l, ^S" is a complex 

and ^S~| = [s"|. Hence, the set of all cones of the form b(S)T, 

together with the faces of these simplexes, is the complex b(S)(^S~), 

where T is a simplex in the subdivision of a proper face of S. 

Moreover, 

b ( S ) ( l S - )  = b(S) | S~ J - S. 
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The normal subdivision of is now carried out by adding,to 

all complexes of the form b(S) (^S") , where S is a q-siioplex of 

K^. Thus, for each q-simplex, S, of Kq, a complex whose polyhedron is 

S is added to 1Kq_1. 

This construction is formally described in the following 

definition. 

Definition 1.6 (Normal Subdivision of a Complex) 

Let K be a complex; 

(i) 1K° = K°. 

(ii) If q>0, and if, for any complex, L, such that LCR'^i 
t 

JL is a complex, |J_L| » |L|, and jLC then 

^ = (^U U HS)^') 
Ise^ < ' 

It may be shown that, for all q^O, is a complex, 

j^K^I = j^Ji and, for every complex L such that L CI K^, jL CI jKq. 

In particular, is a complex and|jK| = JK|, 

The normal subdivision of a complex consisting of a single 

Euclidean 2-simplex and its faces is shown in Figure 1. 

Let CK denote the complex obtained from the complex K by 

normally subdividing K r-times. To be more precise, let QK = K 

and, for any r^O, let = i(rK)* 

For any subset, A, of En, let p(A) denote the diameter of A. 



1 1 

Figure 1. The normal subdivision of a complex consisting of a 

2-simplex and its faces. 



The following theorem shows that if |KJ is a polyhedron, 

then the normal subdivision process may be used to obtain 

triangulation of 

Theorem 1.1. 

K whose simp1exes have arbitrary small diameters. 

Let K be a complex, and let d be the maximum diameter of the 

simplexes of K. Let q be the maximum dimension of the simplexes of 

K. Then the diameter of each simplex of is at most qd/(q+1) ; i.e. 

7>(S)^ 
, q + l  

for all SG jK. It follows that, for any integer r Sk I, 

'<T> ~ I q~"+~T d 

for all T£rK. 

The proof of this theorem may be found in Pontryagin, (1952, 

pp. 50-55) or in Seifert and Threlfall (1934, pp. 49-50). 

The Prism Construction 

Throughout the remainder of this chapter, En will be regarded 

as a subspace of En+̂ " and the unit vector of E^* which is normal to 

every vector of En, will be denoted by e. 

For any two sets, A and B, such that ACZ En and BCE, 

the symbol A x B will be interpreted either as the usual cartesian 

product of A with B or as the set of all points of the form 
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x + re 

where xG A and T£B. 

Let I denote the closed unit interval; i.e., the set of all 

xGE such that G£ xS 1 . 

Let K be any complex such that K G En. For each TCI, 

let K-r be the complex obtained from K by translating each simplex 

of K a distance r off the hyperplane En in the direction of the 

vector o. In set notation, 

K-T = |s X } T ( | S e K| . 

The prism construction is introduced to provide a method of 

triangulating the set | K | x I in such a way that the triangulation 

contains the complexes K°Q and (rK)*l AS subsets. This triangulation 

will be denoted by K°Ir, where the r refers to the index in (rK)*l. 

Some applications of this construction will appear in Section 1.6. 

Let S be a Euclidean simplex. The set S X I is called the 

prism with base S. (If S is a. 2-simplex, then S x I has the shape.of 

the common optical prism.) The point c(S) = b(S) + (l/2)e is called 

the center of the prism, SXI- The top and bottom of this prism are, 

respectively, the sets S *{o} and S x {l}, and the sides are prisms and 

are of the form T x I where T is a simplex of s". It can be shown 

(see Pontryagin, 1952, pp. 73-74), that c(S) Is in general position 
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with respect to the set of all points which form the top, bottom and 

sides of this prism, namely, (|S"| X I) U (S x {l}) U (S X jo}), and 

that the cone with vertex c(S) and base (|s"| x I) tj (S x |l})|J(S xjoj) 

is the prism S x 1-

As in the case of the normal subdivision of a complex, the 

tri.angul&tion of K x I will be defined by induction, by considering 

the complexes K°„ K^", etc. 

If S is a O-simplex, then S x I is already a 1-sitnplex and 

therefore, need not be tirangulated. Therefore, K0,ir is defined to 

be the set of all simplexes of the form S x I, S 6K°, together with 

the simplexes of Ko,,0 and Kc< 1 = (rK°)"l. 

If S = tfvj&QP 1̂J. is a l-simplex, then the simplexes S x |0 } , 

|a0| X I, { x I, together with their faces and the simplexes of 

(rS)*1 form a subdivision of the top, bottom and sides of S X I. 

Hence, the set of all cones of the form c(S)T constitute a sub­

division of S x I, where T is a simplex of the subdivided top, 

bottom or sides of S x I. But these cones and their faces form 

the cone complex: 

c(S) <s-*lr)u{sx )0(|u((rS) 'I) 

Moreover. 

c(S) (s"'ir)u|s x |o(|u((rs) *D 



18 

= c (s) ̂ (|s"| X I) U ( S  x  jof ) U ( s  x ji( ) j 

S x I, 

Hence, K^*Ir is defined to be the union of all such cone complexes 

for which SGT(K^ - K°) and, as in the case of normal subdivision, all 

simplexes of K°'Ir must be included to ensure that | K̂ - *Ir| = j 1 x I. 

Therefore, 

K1'!* = K°'IrU U c(S) f(s"-i r)'J (|s| 
se^-K") L 

This procedure is extended to Jk^J X I, for q>l, by 

induction. Assume is defined in such a way that for each 

q-simplex, S of K^, S*Ir is a complex, S'Ir CZ and 

J s~"Ir| = | s " |  x I. Then the simplexes of (rS)•1 and S"*Ir, together 

with the simplexes of S x jo} , form a subdivision of the top, bottom 

and sides of S x I, and the construction of K^'Ir proceeds as in the 

case of q = 1. 

The construction of K*Ir is formally described in the next 

definition. 
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Definition 1.7 (Prism Construction) 

Let K be a complex. 

<i) K° *ir = (K° -o)U (K° -i)U |s X I seK°J 
(ii) Let q^rl and suppose Kq~*.Ir is a complex such that: 

(a) Kq'1.ir = [Kq-1| X 1 

(b) If M is a complex such that MClKq"^, then M.Ir 

is a complex and M.IrCKl'^.Ir. 

(c) Kq"1.OCKtl"1.Ir and 

Then 

K<L-IR = (KQ~1-Ir)U 1J C(S) 
SSK^-K^"1 

(s"'i r)u|{s( -o] U( rs-1) 

The proof that Kq.Ir is a complex such that |Kq.Ir| = [k^ | x I, 

Kq.O CI Kq.Irs (j^K^) for all qiO may be found (with a slight 

modification) in Pontryagin, 1952, pp. 74-77. 

The triangulation of a prism whose base is a 2-simplex is shown 

in Figure 2. 

1.3 SINGULAR SIMPLEXES AND SINGULAR CHAINS ' 

To extend the ideas of the preceeding sections to curved 

geometric figures and to more general topological spaces, the concept 

of a singular simplex will now be introduced. 

u o 



K°.ll K1-!1 

Figure 2 Triangulation 

K2-!1 = K-I1 

of a prism with a 2-simplex for a base. 
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Heurlstically speaking9 a singular q-simplex i8 a continuous 

function defined on a Euclidean q-simplex of arbitrary size, shape 

and location in En. To present a more precise' definition of a 

singular simplex,let be the set of all continuous functions whose 

domains are Euclidean q-simplexes. For each .SET let S denote the 

domain of S. (By the definition of , S is a Euclidean q-simplex.) 

Let R be the following relation defined on (JT^s for any two 

elements S and T of 2^, let (S,T)€IR if there exists a non-singular 

affine transformation f on S to T such that the composite function, 

To f, is equal to S; that is, if there exists a transformation of the 

form! 

q 

f(x>i = ^ aijxj + bi' i=l,2,...,n, 

i=l 

such that for each x€ S , T(f(x)) = Sf(x) , where, (i) f(x)^ and x^ 

denote, respectively, the components of f(x) and x relative to the 

usual basis of En, (ii) the aij's and b^'s are real numbers, and, 

(iii) the fiTjj's form a non-singular matrix. It follows from the 

properties of affine transformations that R is an equivalence 

relation. 

Definition 1.8 (Singular Simplex) 

The equivalence classes induced on 2^ by R are called 

singular q-simplexes. or simply singular simplexes. 

I 
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In the remainder of this discussion, representatives of these 

classes, rather than the classes themselves, will be called singular 

q-simplexes. Thus, for our purposes, a singular q-simplex is a 

continuous function whose domain is a Euclidean q-simplex. Further­

more two singular q-simplexes, S and T, will be regarded as equal if 

thare exists a-. affiir.e trapping; f, such that f maps S onto T and 

T ° f = S The range of a singular simplex S will be denoted by | S|• 

Let S be a singular q-simplex and let S = dx\&Q, a^,..., aq^. 

Then, S is a degenerate singular simplex if there exists an affine 

transformation f of S onto itself such that S(f(x)) = S(x) for all 

x€S, and(£(a0), f(a-^) , f(fiq)) is an odd permutation of the 

vertices, (a , a., ..., a ) . 
* o 1 q 

Definition 1.9 (Singular Chain) 

(i) A singular q-chain is a finite collection of singular 

q-simplexes. For all q, 0 (the empty set) is a singular q-chain. 

(ii) If G is a singular chain, then the set-theoretic union 

of the ranges of all non-degenerate singular simplexes of C will be 

denoted by . thus, if C' denotes the set of all non-degenerate 

simplexes in C, then 

|c| = U ,1s! • 
Off se c 
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(iii) If and C2 are singular q-chains, then the. sum of 

and C^, denoted by + C2» is defined by 

+ C2 — (C^UC2) - (C^|^C2) • 

By Definition, if C is a singular chain, C + C » 0. 

If C = |sj, S21 Sr | is a singular q-chain, then C may 

be written as the sum 

0- £ w-
i=l 

We shall sometimes omit the brackets and represent C as the "formal" 

sum: 

In particular, the chain C shall sometimes be written as 

C - S. 

Let G be any set. A singular q-chain, C, is said to be in G 

if the range of each simplex of C is a subset of G. 

1.4 THE BOUNDARY OF A SINGULAR CHAIN 

For any function f, let £jA denote the restriction of f to 

the set,A. In set notation, 
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f jA =: f fl j(x,y) | x£a| . 

Clearly, if S is a singular simplex and t is a p-face of S, then 

sjt is a singular pi-simplex. s|t will sometimes be referred to as 

a p-face of the singular simplex S. 

For any finite set A = |ao' al» aq}' *et 

|aQ, a^ a^, a^| denote the set obtained from A by removing 

the element a^. Thus 

|a0»al»,,,»ai»*,,»aq} = ̂  {aif 

Definition 1.10 (The Boundary of a Singular Chain) 

(i) Let S be a singular q-simplex with q^l. The boundary of 

the singular q-chain, S , denoted by dS, is the set of all q-1 faces 

of S. Thus, 

dS = y S| |a0>a ,̂..•,a^»•••»aq^ • 

If q = 0, then dS = 0> 
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(ii) Let C = ^ be a singular q-chain. Then the boundary 

i= l  

of C, denoted by dC, is defined by 

r 

dC = ^ aSi . 

i=l 

(iii) 30 = 0. 

Clearly, if C is a singular q-chain, then dC is a singular 

q-1 chain. Also, if Cj and C2 are two singular q-chains, then 

+ d C 2  3 d(Ĉ  + C2) • 

An important property of the boundary operator, d, is given 

in the following theorem. 

Theorem 1.2 

Let C be a singular q-chain. Then 

d d C  = 0. 

Proof 

It suffices to consider a singular q-chain consisting of 

the single singular q-simplex S. Let 
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® 55 (fl> {a0' al' aq} 

Then 

d d S  = ^ ^ S J ' •' • »®£> • • • >®q| 

i=0 

q i-1 

^ ^ S j ^^|ao»a i '  * *  *  , a j  »• •  •  >a i> ' • •  »aq|  

i=l j=0 

+ S j dC\*0,al ' * *' ,aq} ' 

i=0 j=i+l 

and since each q-2 face of S appears exactly once in each summation, 

aas = 0. 

Q »G >D« 

1.5 CYCLES AND CONNECTIVITY NUMBERS 

Two singular q-chains and will be regarded as equivalent 

if + C2 = 0; i.e., if + C2 = 0 or + C2 contains only 



degenerate singular q-siraplexes. Equivalence of singular q-chains 

will be denoted by the symbol = . 

Definition 1.11 (Absolute Cycle) 

A singular q-chain, C, is an (absolute) q-cycle, or simply a 

cycle, if 

dC * 0. 

From theorem 1.2,it follows that,if a q-chain, C, Is a 

boundary, (i.e., if there exists a singular q+1 chain D such that 

dD = C), then C is a cycle. The subject of combinational topology 

is centered around the existence of cycles which are not boundaries. 

In the remainder of this section, let G be any s.et. 

Definition 1.12 (Bounding Cycles; Homologous Chains) 

(i) A q-cycle, C, is said to be a bounding cycle (in G) if 

there exists a singular q+1 chain, D, in G such that 

9D » C 

(il) Two singular q-chains, Cj and C2 » are homologous in G. 

written 
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CL ~ C2 (in G), 

if + C2 is a bounding cycle in G. In particular, if C is a bounding 

cycle in G, Then 

C ~ 0 (in G) . 

Definition 1.13 (Connectivity Numbers) 

(i) Let K = 1^, C2, Crj be a set of q-cycles in G. 

The set K is said to be homologically independent ( i n  G)> if for 

every non-empty subset, <C^ , ?, of K, the corresponding 
v 1 2 s* 

chain, 

C. + C. + • • • + C. , 
H 2 1s 

is not a bounding cycle (in G). 

(ii) The maximum number of homologically independent q-cycles 

(in G) is called the q-th connectivity number of G. The q-th 

connectivity number of G may be infinite. 

(The q-th connectivity number of a set G is also known as 

the q-th Betti-number (mod 2) of G.) 
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In the remainder of this section, let. Z be any subset of G. 

Two singular q-chains, and C2* in G are said to be equal 

(mod Z), written 

= (mod Z)1 

if |C1 + C2|C Z. 

Definition 1.14 (Relative Cycle) 

A q-chain C in G is a (relative) cycle (mod Z), if dC = 0 

(mod z) . 

Definition 1.15 (Relative Boundaries and Relative Homology) 

(i) Let C be a q-cycle (mod Z) . Then C is a bounding cycle 

(mod Z in G) if there exists a q+1 chain, D, in G such that 

3D = C (mod Z). 

(ii) Let andC2 be singular q-chains in G. Then is 

homologous to C2» (mod Z in G), written 

Ci ~ C2 (mod Z in G), 
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if + Gj is a bounding cycle (mod Z in G)• 

Definition 1.16 (Relative Connectivity Numbers) 

(i) Let K = jc^, C2, ...» Cr| be a set of q-cycles (pod z) In 

G. Then K is homolosically independent (mod Z in G) . if, for every 

non-empty subset, 

Ci2' Cis} 

of K, the corresponding chain, 

Cj + C, + i • • + Cj 
n H s 

is not a bounding cycle (mod Z in G). 

(11) The maximum number of homologically independent (mod Z 

in G) q-cycles (mod Z) is called the q-th connectivity number (mod Z) 

of G. 

1.6 DEFORMATIONS: NORMAL SUBDIVISION; SIMPLICIAL APPROXIMATION 

The topics of this section form the core of the topological 

techniques which will be used to prove the theorems in Chapter 2. 

These topics are presented from an algebraic viewpoint in the modern 

texts on topology. However, the approach adopted here will be more 

geometric then algebraic. 
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Deformations 

Let H be a subset of a topological space G and let f be a 

function on H X I into G. For each r£I, let fr be that function 

on H such that for each x^H, 

The function,fjis called a continuous deformation of H in G if f is 

continuous on H x I to G, and f(j is the identity map of H. 

deformation of H in G. Then,for each i, the composite function 

f^ o is continuous on to G,-and is therefore, a singular 

q-simplex. Hence, jf^ o S^, f^ o S2, •••» f^ ° Sr| is a singular 

q-chain in G. Let D denote this chain. Then we say that f deforms 

the chain G into the chain D. The next theorem shows that these two 

chains are related through "connecting" chains in G. 

Theorem 1.3 

fr(x) = f(x,r). 

r 

Si be a q-chain in H and let f be* a continuous 

i=l 

be a singular q-chain in HCI G and let f be a 

i=l 

continuous deformation of H in G. Let 
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r 

D = 

i=l 

r 

I f i #  g i  "  

Then there exists a q+1 chain, U, in G and a q-chain, V, in 

f[|dc|xl] (the image of JdC|xl under f) such that 

au = C + D + V . 

Outline of Proof 

For a given i, let A^» •••> be t̂ ie Euclidean q+1 

~ 0 
simp1exes of S^.I and let B^, B2, •••, be the Euclidean 

q-simplexes of Let g*- be that function defined on 

x I such that 

gi-Oc + re) = f(Si(x) ,r) 

for all x£S*i and r£I. 

Clearly g*- is continuous on x I, and so the functions 

g^Aj; j a 1, 2, a, are singular q-fl simp 1 exes and the 

g^Bj's, j c 1, 2, ./J, are singular q-simplexes. Let 
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a 

ui ° Y, siiAJ 
j=i 

and let 

8MBj. 

(see Figure 3) 

_ 0 
Now,it can be shown that each Euclidean q-simplex of S^.I 

which does not lie on the top, bottom, or a side of x I is a face 

of an even number of q+1 simplexes of (See for example, 

Alexandroff and Hoff, 1935, p. 197, eq. 2) Hence, the only q-faces 

of the singular q+1 simplexes of uj which are not faces of an even 

number of the g^A^'s are the simplexes 

gtjSj^ X j0) = gjij «S 

gi|six )l( « gj- = fx o Si, 

and the simplexes of v^. Therefore, 

du^ » + fl°Si- vi* 
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B 

0 

Figure 3 Construction of connecting chains. 



The conclusions of Che theorem are now satisfied by setting 

u » y Ui 

and 

V 

(For a detailed proof see Seifert and Threlfall, 1934, p. 31) 

If C is a cycle, then |dc| = 0 and so v = 0. Therefore, an 

important consequence of this theorem is the following corollary. 

Corollary 1 

If C is a cycle, then 

C — D (in G) . 
t 

A similar result holds for relative cycles: 

Corollary 2 

If C is a cycle (mod Z) and if f £|dC j x ij C Z then 

C ~ D (mod Z in G) . 
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Normal Subdivision of a Chain 

The normal subdivision of a complex will ntow be used to 

subdivide a singular chain. 

Definition 1.17 

(i) Let S be a singular simplex and let Aj_, A2» Aa 

be the Euclidean q-simplexes of kS . Then 

kS - y1  siAi'  
i=l 

(ii) Let C = 2^ be a singular q-chain. Then 

i=l 

n 

kc <= y ks1. 

It may be shown that if S is a degenerate singular simplex, 

then Hence, by Theorem 1.1, every singular chain may be 

replaced by a singular chain whose simplexes are "arbitrarily small" 

in some sense. 

The requirement of definition 1.6 that ]L be a subset of iK 

whenever L is a complex and a subset of K suggests the following theorem 



37 

Theorem 1.4 

If C is a singular chain, then 

d  kG = k ac-

The proof of this theorem may be found in Seifert and 

Threlfall, (1934, p. 30). 

In the modern approach to algebraic topology, the invariance 

of certain groups (i.e., the Betti groups) of a polyhedron under 

normal subdivision is demonstrated. The next theorem and its 

corollaries may be regarded as the geometric analog to these 

results. 

Theorem 1.5 

Let C be a singular chain. Then there exist chains U 

and V such that, 

dU ± C + kC + V, 

where U is a chain in |G j and V is a chain in |dC j, 

The proof of this theorem parallels that of Theorem 1.3 with 

0 — 0 J. v — k 
Si . I and S"i . I replaced by .1 and Si . I , and 

8i(* + re) = f (x,T) replaced by g*(x + re.) = Si(x) . (See Seifert 



and Threlfall, 1934, p. 30) 

Corollary 1 

Xf C is a cycle, then 

D ~ C (in |C|> . 

Corollary 2 

If C is a cycle (mod Z) then 

D ~ C (mod Z in | C|). 

Simplicial Approximation 

If C is a singular chain such that |cj is a subset of a 

polyhedron JI*J, where L is a complex, then C may be ''approximated" 

by a singular chain D with the property that each singular simplex 

of D is a function onto a Euclidean simplex of L. The method for 

obtaining an approximating chain will now be outlined and chains 

"connecting" the chains C and D will be derived. The 1-dimensional 

analog of this process is the approximation of a curve by polygonal 

segments. The connecting chains are obtained by first subdividing 

the curve into arcs which are small enough to be approximated by 

straight lines lying in the polyhedron, and then deforming each arc 

into its straight line approximation. 



Let K and L be two complexes. A continuous function, f, on 

K to L is called a simplicial mapping of the complex K into the 

complex L if, for each Euclidean simplex-S-= <fC BqJ €1 K, 

there exists a Euclidean simplex TEL such that f maps the vertices 

of S onto the vertices of T and maps each point x = ^ ̂iai ^ 

A 
onto the point f(x) = y X^fCa^) of T, where the are the 

i=0 

barycentric coordinates of x. 

Let |a0, a^ a^ be an independent set. The set of 

all points of the form 

x = Xiai» 

i=l 

where ^ Xj = 1 and the Xj's are strictly positive, is called an 

i=l 

open simplex. If S is a Euclidean simplex, the open simplex 

corresponding to S will be denoted by S1. 

Let K be a complex and let a be a vertex of one of the 

simplexes of K. The star of a, denoted by St(a), is defined by 

St (a) » Us', 
S£M 

where 

M = |s|seK and a is a vertex of . 
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Definition 1.18 

Let K and L be complexes and let g be a continuous function 

on JKJ into j L.| . Then a simplicial mapping, f, is a simplicial 

approximation to g if, for each vertex a of a simplex of K, St(a) 

is mapped by g into a subset of St(f(a)). 

Theorem 1.6 

Let K be a finite complex and let g be a continuous function 

on JK to L|, where L is a complex. Then there exists a function 

f and an integer k such that f is a simplicial mapping of the k-fold 

normal subdivision of K into L and f is a simplicial approximation of 

g-

The proof of this theorem may be found in Hilton and 

Wylie (1962, p. 37) . 

Theorem 1.7 

Let C = ) Sj_ be a singular q-chain such that for some complex 

i=l 

L, C is in J L|. 

s 

Then there exists a singular chain D = ^ and 

i=l 

connecting chains u in |L| and v in |L| such that for each 

singular simplex T^ in D, T^ is a Euclidean simplex in L and 
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3u ± C + D +• v. 

To prove this theorem, the domains of the simplexes of C 

are first chosen in such a way that the collection of the S^'s 

r 
together with all their faces form a complex and g a USf is a 

i=l 

continuous function. This is always possible since r is finite and 

hence^the S^'3 may be chosen to be disjoint. Let K denote this complex. 

Next, g is approximated by a simpllcial mapping f of the k-fold normal 

subdivision of K into L, which is possible by Theorem 1.6. 

Let "A", A . A be the Euclidean q-simplexes of kK. Then 
1 2 s  K  

kC •  £  + »  
j=l 

and so, by Theorem 1.5, there exist singular chains and v^ such that 

3u^ = C + kC + v^. 

Let f|A^ = j» ^ = *•» 8» anti *et 
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Then, since f is a simplicial mapping into L, || = f[^j] is an 

Euclidean simplex of L. The proof is now.completed by "deforming" 
s 

y* sjAj into D." 

j=l 

Let 

h(x,r) = rf (x) + (l-r)g(x). 

Then hQ(x) = g(x) and h^(x) = f(x), and, by the construction used 

in Theorems 1.3 and 1.5, there exist connecting chains U2 and v2 such 

that 

s 

du2 = ^ gjAj + D + v2. 

j=l 

Let u = + U2 and v = + V2« Then 

du i C + D + v. 

Now, u^ and are in |L|, by Theorem 1.5. For any 

x€|C|, f(x) and g(x) are elements of the same simplex of |L|, 

since St(a) is mapped by g into St(f(a)) for each vertex aSK® . 

(See Seifert and Threlfall, 1934, pp. 107-108) Therefore, by 

convexity, h(x,r) is an element of |L|, and so, u2 and v2 are in 

L . Thus, u and v are in LI. 



Corollary 1 

If C is a cycle, then 

D ~ C (in |L ). 

(See Seifert and Threlfall, 1934, p. Ill) 

This corollary states that every singular cycle C in a 

polyhedron | l»j may be approximated by a "straight line" cycle of 

L which is homologous in |L| to C. 



CHAPTER 2 

THE MORSE EQUATION ON A COMPACT MANIFOLD 

The main theorem which we wish to prove in this chapter states 

that the Morse Equation holds for a real-valued function defined on a 

compact differentiable manifold, ffil, provided the second partial 

derivatives of the function (in terms of the local coordinates of 

are continuous and the stationary points of the function are 

non-degenerate. 

Since an n-diroensional manifold is "locally homeomorphic" to 

an open subset of En, the first two sections of this chapter are 

devoted to the behavior of a real-valued function defined on the 

n-dimensional open disc, Vn. The local results of sections 2.1, 

and 2.2, are combined and extended to a differentiable manifold in 

section 2.3. The main result appears in section 2.4. 

The material presented in this chapter may be found in Seifert 

and Threlfall (1938). 

2.1 STATIONARY POINTS 

Let f be a real-valued function whose second partial 

derivatives exist and are continuous in Vn. For any 7CE, let 

|f<7} be the set of all x such that f(x)<7 . The sets {f^^} , 

{f = Y| , {f and {f ̂ 7} are defined in a similar way. 

44 
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Definition 2.1 

A point x - (x^, X2, • • •, xn)•€ Vn is a stationary point of f if 

each of the first partial derivatives, df/^Xp df/&<2» • • •» > 

vanish at x. A real number, m. is a stationary value of f if f 1 00 

contains a stationary point of f. 

Let x be a non-stationary point of f. By a well-known theorem 

of ordinary differential equations (Goddington and Levinson, 1955, 

pg. 22, Theorem 7.1), there exists an open subset Q of En, a real 

number b > 0, and a function h(x,t) such that x €! Q, h(x,t) is 

continuous on Q X |o,bj and, for each xGQ and tG j^O,bj , h(x,t) 

satisfies the system of ordinary equations: 

(1-a) 
dt ox^ MO 

> (O 1 ' ^ > 

together with the initial conditions 

(1-b) h^(0) = Xi, i-1,2,...,n, 

Clearly h deforms Q into some subset of E . 

Since the partial derivatives of f are continuous and one of 

these partial derivatives is non-zero at x, there exists an open 

neighborhood of x such that for each x in that neighborhood, one of 

the partial derivatives does not vanish at x. Let G denote the inter­

section of Q with that neighborhood. Then, for each x G, 
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d£(h(x,Q) = V dfjdhj, 
dt / . oxj^ dt 

i=l 

n o 

-Zfef 
1=1 

< 0 .  

Thus, for each x-G! G, as t increases, f(h(x,t)) decreases. Therefore, 

h deforms G into some subset of En such that jf<-f(x)}nG is 

deformed (in |f^f(x)|) into a subset of |f<f(x)| , and {f<f(X)Jp)G 

is deformed (in |f<f(x)[) into a subset of |f<f(x)| . Therefore, 

by corollary 2 of theorem 1.3, the connectivity numbers (mod |f<f(X)} ) 

of jf ^f(x)f n G are zero. 

Now, suppose x is a stationary point rather than a non-stationary 

point. Then the above argument breaks down if we try to use the 

solution of( 1-a) and (1-b) to show that the connectivity numbers 

(mod |f < f (x)J ) of jf <f(x)| fiC arie zero, where G is any open 

neighborhood of x. For, h(x>t) = x is the unique solution of (1-a) 

subject to the initial conditions h£(0) = X£, i = 1, 2, ...n. 

Therefore, for any open set G such that xGG, h(x;t) does not deform 

|f < f(x)| HG into {f < f(ic)[ . This suggests the possibility that 

the local topological behavior of a stationary point is different 

from that of a non-stationary point. To a certain extent, this is 

the case. 
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A stationary point, x, of f is isolated if there exists an 

open set G which contains x and contains no other stationary points of 

f. 

Definition 2.2 (Type Number of an Isolated Stationary Point) 

Let x be an isolated stationary point of f, and let G be an 

open neighborhood of x which contains no other stationary point of f. 

Then the q-th type number of x, denoted by m^(x), is defined to be the 

q-th connectivity number (mod jf <f(x)}) of |{f <f (x)j-fie)U | x } . 

It may be shown (Seifert and Threlfall, 1938, pg. 30-31) 

that the q-th type number of a stationary point is actually a 

property of the point and the function f, and is independent 

of the set G. 

An isolated maximum and an isolated minimum (if they exist 

in Vn) provide two examples of isolated stationary points of a 

differentiable, real-valued function defined on Vn. They also 

provide?1 examples of stationary points which are topologically different 

from non-stationary points, as is demonstrated by the next two theorems. 

Theorem 2.1 

Let x be an isolated minimum of f. 

Then 



m°(x) = 1, 

and m^(x) = 0, for q >0. 

Proof 

Let G be an open neighborhood of x which contains no other 

stationary points of f. Then 

jf <f(x)j OGJU ]X} = jxf, 

and 

|f < f(x)| O G = 0. 

Clearly, the only cycle (either absolute or relative) in jx 

is the 0-cycle C = |(b,x)| , where b is an arbitrary point in Em. 

Moreover, ^(b,x)| is independent (mod 0 in jx|) . 

Q.E.D. 

Theorem 2.2 

Let x be an isolated maximum of f. 

Then 
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nf1 (x) = 1, 

tr,1 (x) = 0, for q jt n. 

Let G be an open neighborhood of x which contains no other 

stationary points of f. Then, since x is an isolated maximum, 

|f <f(x)| flG = G-{x}and {f < f (x)} P| G Ujx | = G. 

To complete, the proof, it suffices to show that the q-th 

connectivity number (mod (G - |x})) of G is 0, for q ^ n, and 1, for 

q = n. 

Let C be a q-cycle (mod (G - |x|)) in G. Let K be a complex 

such that J K j = G . K may be chosen in such a way that for some 

Euclidean simplex A€i K, x-GZA* (A1 is the open simplex corresponding 

to A) and A has no points in common with the compact subset, |dcj , of 

G - |x|» (see Alexandroff and Hopf, 1935, p. 143). .Let D, u and v 

be chains in G such that, for each singular simplex t£D, t is a 

simplicial mapping into K, and du = C + D + v. (See Theorem 1.7) 

Now, the simplexes of v are constructed by connecting those 

points of |dcj and |do| which lie in a common Euclidean simplex of 

K. Since none of the points of JdC| are in A, it follows that v is 
\ 

in G -A'GG - |x| . Therefore, 

and 

Proof 



50 

C ~ D (mod (G - |xj) in G) 

For each singular simplex S£ D, S is a simplicial mapping of 

the Euclidean q-simplex S onto the Euclidean p-simplex sJeK . Since 

the vertices of s are mapped onto the vertices of S , it follows that 

p £ q. Hence, if q < n, then S is degenerate or, since the Euclidean 

n-simplex A is the only simplex of K which contains x, |s|(Z G - {*}• 

Thus, for q <D, D is in G which implies: 

m^x) = 0, for q< n. 

On the other hand, if q >n, then S is ncessarily degenerate (K 

contains no Euclidean simplexes of dimension gteater than n) and it 

follows that D — 0CG - Thus, 

m^Cx) = 0, for q >n. 

Now, let T denote the identity map of A onto itself. Then, 

since x - A'), | T | is a cycle (mod (G - {*})) in G. Moreover, 

|T^ is independent (mod (G - in G) since there are no non-

degenerate simplexes. in G. Thus, nan(x) 1. 
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Suppose D is not in G - |xj. Then, there exists a simplex 

S£ D such that jsj = A. Since T is the identity on A and S is a 

simplicial mapping, T c S = S and S is an affine transformation on 

S onto A = T. Thus, S and T are the same singular simplex, (see 

Definition 1.8). Since S = T is the only simplex of D which is not 

in G - {x}> it follows that 

D = |T| (mod (G - |x|)). 

Thus, 

mn(x) « 1. 

Q.E.D. 

As is well known, a stationary point, x, of f is an isolated 

minimum if the matrix 

(2) a2f 

dxjdxj 
(x) 

is positive definite and is an isolated maximum if this matrix is 

negative definite. One of the methods used to determine if (2) is 

positive or negative definite is to reduce the quadratic form 
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Q(x) = 

to the normal form: 

(3) 

V 
/ , axi?xj 
i,j=l 

(x) (xi - Xj) (Xj - Xj) 

XI 

»l£i 

i=l 

— z by an affine transformation £= £(x - x) , where 1^=1, i = l,2,.»,,n. 

Then (2) is positive definite if = 1, i = 1, 2, n and is 

negative definite if = -1, i = 1, 2, n. The number of 

negative coefficients of the normal fottn (3) is called the index 

of the matrix (2). 

Definition 2.3 

(i) A stationary point x of f is non-degenerate if the Hessian 

det d2f 
dxjdxj 

does not vanish at x. 

(ii) The index of a non-degenerate stationary point x of f is 

the index of the matrix 
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3x^5x7^ 

Theorems 2.1 and 2.2 show that the following equation is valid 

if x is an isolated maximum or minimum of f: 

mq(x) = 8§ , 

where i is the index of x, and 8^ is the "Kronecker delta". The next 

theorem shows that this equation holds for all non-degenerate stationary 

points. 

Theorem 2.3 

Let x be a non-degenerate stationary point of f. Then x is 

an isolated stationary point of f and 
* 

m^Cx) =8^, 

where i is the index of x. 

Proof 

Suppose x is not isolated. Then there exists a sequence 

u''", u2, ... / of stationary points converging to x with u^ ^ x for 
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any k ̂  1. By the Mean Value Theorem (Apostol, 1957, p. 117), for 

each k ^ 1, there exists "A<EEn lying on the segment joining uk and 

x such that 

0 = ^£(uk) = ) (vk) (uk . x 
oXj £__> ox^dxa P *• 

/5-1 P 

i) j (i —1 

Hence, since uk ^ x, 

det £2f(vk) 
dx̂ dxa 

= 0, 

for all k 1. Clearly, the sequence ̂ v1, v2, ..converges to x, 

and so by continuity, 

det d2f(x) = 0, 

which is impossible since x is non-degenerate. Thus, x is isolated. 

Now by Taylor's theorem, there exists a function R(x) such 

that for all x in some neighborhood, N> of x, 

3|_(X) (Xa - Ka> - *g) + »W 
|5 a 

(4) f(x) - f(x) = 

ttslS=l 

where the second derivatives of R(x) are continuous in N, 
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(5a) 

and 

(5b) 

Li™ , < ,MX) 
x - x -"»0 f x - x j 

= 0, 

Lira IdR/frx,, (xH = 0 

x - x —»0 i Jx - Xj 4 
V =1>2| • ••jHi 

We may assume that the quadratic form in (4) is in the normal form, 

i>4 
r=1 

where vt = -1, r =1, 2 i, wr= 1» ' r = i + 1, ...,n. 

(Since an affine transformation is a special case of a Homeomorphism, 

this assumption will have no effect on the connectivity numbers 

involved.) We may further assume that f(x) =0. 

Let A be the set of all x€= En such that 

xi+l = xi+2 = f ̂  » 0, 

and let B be the set of all x£ En such that 

X1 = x2 = *** =,xi = 0• 

To complete the proof, a deformation F will be constructed which, 

for some neighborhood, U, of x, deforms (uojf into A 



56 

in such a way that Ufl{f <0} remains in {f <0 [ during the deformation. 

Let 

n 

Q(x) = 
M v2 

iyrxr, and T(x) = r=̂ |2r ^ 

r-t 

Clearly for any x€=l E , there exist unit vectors a and b 

such that x =aa + /3b where a<=A , bGB and a^SsE. Hence x lies 

on the circle 

(6) *<t) • = |x| 1 - t A + 1 + t b 
2 

As t varies from 1 to -1, a point on this curve travels from the 

hyperplane B to the hyperplane A. Also, for any point V(t) on this 

curve, 

r 

T(^(t)) = 
I2  

x 

-N-%1 
2 /1 + t 

+ 

Mlf + mM2 j 

Ihill t. 

(since a and b are unit vectors). 

We now show that, if <^(t) is in a sufficiently small' 

neighborhood of x and ̂ >(t)<~-jf s then, as t decreases, f(v(t)) 

remains in^f^©!. 

Now along V*(t) »| is a constant. Therefore, 
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dt 
£M) 
>(t)j 7 

— T(V(t)) + i-
dt. dt 

i^oi 
I 2 

grad T..ffiO- + -—L-~ grad R . 
dt U(t) 2 dt 

where denotes the scalar product. But, 

V»a(t) = M(1 - t)^a . a=l,2,...,i, 

V 2  

and 

¥>(t} 
a * 

% 
(1 + t) 8^) a =i+l i • • •»n • 

Hence, for t S pi, lj , 

and 

dJk = un , a = 1,2, 
dt 2(1 - t) 

d fa = un *fl(t) , a= i+l,...,n. 
dt 2(1 + t) 
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Also 

b T 

d*-

Ug\<P(t)\2 - Q(V(t)) 

|*(t)|4 
2 Vfl(t) 

,2 

|V(t)|2 
V- T(V(t)) 

Hence, for t €£ ̂ -1, lj , 

2 »„<t) 

^o] [-2 a ) A — lj***)!!! 

grad T . 
dt 

2. 

• I  
1 + t 

n 

a-i+ J 
*a(t)| 

n 

= 2 1 + t2 

1 - t2 

1 - t 

1 - t 
1 + t 

<Pa2(t) 

K<t)|: 

- 2 

n 

2t 1 V Va^ 

1  - t2' .4r i* 

v«».z(rt 

,1  -  t2  

(t)|5 

i + t2 - 2ts#m 

a 2. 
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Also, 

grad R(<p(t)).4^ 
dt 

* *  v M t )  
$*cL 2(1 - t) 

a.-1+i 

IT̂ > 

»a <P*(t) 
a"xa 2(1 + t) 

SIR 
a*a 

fa(t) ( "a " t) 

Let U' be a neighborhood of x such that for all xGET-U1, 

1 dR 
(x) < h  

|x| dxa 

Then there exists a A neighborhood of t = 0 with A < 1/2 

such that, for all t in this neighborhood, f>(t) €£ U'. Hence, for 

-A<t < A . 

i f  V(t) ^—2 Grad R(V(t))«^ < 
r - ^  

1 <*R 

v»ct) b*. 
„ .j 

|V> (T) ' A I 

n 
" k  
"3 2n 

. 2 

<2. 
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Thus, 

for all t€= , which implies 

(7) f(V»(t)) < f(V(t0», 

whenever -A<Ct<Ct0<A. 

Let U be a spherical neighborhood of x such that U CZ U* and, 

for each x e U, 

Thus, U"C 

Now, we show that if V(t) EU" , then as t decreases, V>(t) 

remains in |f <Co|. Let ̂ (to)6=U~ and let t<tQ. Then either 

t$-Aor t>-i If t>-A, then by (7), 

fWt)> < f('/7(t0)> < 0 

R(x) < A 

(See 5a) Let U" = Then for each x EU , 
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If t<-A, then 

jjmi „ TWt)) + ami 
x |x K 

t + M̂ )) 
|x|2 

<- A + Mmi 
|x|2 

But since U is a spherical neighborhood of x, and <p is a circle whose 

center is. x, U. Therefore, 

ismii < - a + 4 = o. 
ui? 

The required deformation may now be constructed using the 

circles described by equation (6) . For each x£ lT , let <|>(t;x) 

be the circle through x. Let 

F(X;T) = 4>((1-T)T(X) - r ; x ) 

for xGUjTGI, and let F(x,r) = x, t €= I. Clearly, F is continuous 

on (U' ~U|X}) X I into Also, 
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F(x,'0) = 4>(T(x),x) = x, 

F(x, 1) = $( -l,x)e A. 

Furthermore, F(x,r)<E: Jf<I0}- for x€= u", T€= I since (l-r)T(x)-T<T(X) . 

Thus, F is a continuous deformation which deforms 

(|f<Co| P|U) \ into A in such a way that image of |f<Co}riU 

is a subset of |f<Co}. 

It follows from theorem 1.3 that each cycle (mod {f < 0|r|U) 

in (|f<^o} PlU)(J {xj is honsologolous (mod{f<Cof in {f <Co} (j{x|) to 

a cycle (mod (A - jx})) in A. Hence, the q-th connectivity number 

(mod {f<0( Ui* f *"s t*ie same as t̂ le <l"th 

connectivity number (mod(A - (x^)) of A. But by theorem 2.2, this 

number is *q, since A is homeomorphic to E1. 

Q.E.D• 

2.2 CYLINDRICAL NEIGHBORHOODS AND f-DEFORMATIONS 

Let x be an isolated stationary point of f and let G be an 

open neighborhood of x which contains no other stationary points of f. 

Let y£G be a non-stationary point of f. Now, the system 
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C8a) 
d<ft. 

dt 

3f 
3x^ ^1 & 2 '  ' ' ' '̂ n) 

n ' 

J=1 
|f. <*1 .*2 *«) 

j « 

(8b) ^(^(y)) " y^ i- = 1,2,...,n, 

has a unique solution defined for all t in some A-neighborhood 

f (y) • Let^(t) denote the vector-valued function whose components 

satisfy (8a) and (8b). 

Then along this integral curve 

iLf(«i»(t)) = iLf^t), ...,*n(t)) 
dt 

= i, 

f*xj dt 

Therefore, for each t €=• £f(y) - A , f(y) +a| , f($(t)) = t. 

The curve defined by $ is called the line of descent 

(Fallinien) of f through y. This curve will also' be denoted by the 

symbol 



64 

Suppose, now that the initial condition (8b) is replaced by 

(8b1) (*)) = i = 1,2,•••,n» 

Then there exists an t-neighborhood of y and a A neighborhood of 

f(y) such that for each x in this t neighborhood of y, the system 

(8a) together with the initial condition (8li) , has a unique solution 

defined for all t in the A-neighborhood of f(y) . For each 

x G £f = f(y)} » let $x(t) be the line of descent through x. Let Z 

be the set of all points 4»x(t), where x€~|f - ^y) ̂, jx - yj<C * » 

and |t - f(y)J< A . (|x-y| denotes the Euclidean norm of x-y.) Then 

Z is a neighborhood of y°, i.e., there exists an open neighborhood G* 

of y such that G' CT Z. (See Seifert and Threlfall, 1938, p. 94, 

Note 14.) Z is called a cylindrical neighborhood of y of height 2A . 

The method of constructing a cylindrical neighborhood of 

the stationary point x will now be described. 

A line of descent, <£>, through a point x€G "'jx} is said to 

empty (einmuruien') into x if$. (t) is defined for f (x) "> t > f (3S) and as t 

approaches f(x) from above, $(t) approaches x. The line of descent is 

said to recede (ausgehen) from x if<£(-t) empties into x. 

Now, let U be a bounded open neighborhood of x whose closure 

is a subset o£ G. Let $ be a line of descent through a point 

xS U - It be shown (Seifert and Threlfall, 1938, p.g 37) 

that as t decreases, 4> (t) either empties into x or approaches a 
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point on the boundary of U. A similar result holds as t increases. 

Let C be a bounded open sub&et of the space |f = f(x)| and 

suppose that the closure of C is a subset of G. Let K be the set 

of all lines of descent which empty into x, recede from x or pass 

through a point of C - {xj-. Then there exists A > 0 such that for 

each <f> G K ar.d tG ĵ f(x) -A, f(x) + Aj,<J>(t) is an element of G. 

(See Seifert and Threlfall, 1938, pg. 95, Note 15) Let Z' be the set 

of all points of the form <J>(t) such that $6K and 

(i) f(x) < t < f(x) + A , if <t> empties into x 

(ii) f(x) ~ A  < t <f(x), if recedes from x 

(iii) f(ic) — A<t < f(x) + A , if $ passes 

through a point of C » jx}. 

Then Z'(j|x^ is a neighborhood of x (Seifert and Threlfall, 1938, 

pg. 96, Note 16) and is called a cylindrical neighborhood of x of 

height 2 A. 

Lemma 2.1 

Let Z be a cylindrical neighborhood of x of height 2&. 

Then there exists a continuous function F on Z X 1 to Z such that 
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(i) F1(x) e f £<«>), for all x< zfi{f > f(*)} 

( i i )  F { x „ T ) =  X  ,  for all x&zf||f ̂  f(x)| and re I. 

Proof 

For each x Z let <J>X be the line of descent 

through x. For each x&Zpl^f (x)j1 and r €=I, let 

F(x,r) = 4»x( (l-r)f(x) +rf(x) ) 

(If <|> empties into x, let F(xsl) be the limit of F(x,r) as * 

•approaches l). For each xG zD^f ̂  f(x)| and r €E I, let F(X,T) = x. 

Clearly, F is on Z x I to Z and 

Ft(x) <=|f < f(x)| . 

Since each line of descent is a solution of (8a) and (8b), and since 

f is continuous, F is continuous. 

Q >E »D • 



Lemma 2.2 

Let Z be a cylindrical neighborhood of x of height 2 A. 

Let W = [f <f(x)|f|Z and let W" = jf<f(x)jf|Z. Then there 

exists a continuous function H on W X I to W such that 

(i) H^(x)<~W~ for each xG W - j x | 

(ii) HCX, r) = x for all r €= I. 

Proof 

Let ^ = ("^ ]_»•••> ¥n) be a solution of the system Of 

differential equations: 

(9a) ••••*„) + * " f(5)] 

(9b) ^(0) = Xi, i = 1,2,... ,n. 
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For each x€EWs let S x̂ be the solution of (9a) and (9b) 

subject to the initial condition ^(0) = x. Let H be on W x I such 

that for each x€rW and r €= I, 

H(x,r) = *x(r) • 

Now, the only solution of (9a) and (?b) for 

x 6= (Wfljf - f.(x) ~ A|) U{X} *-s t̂ e solution x̂(t) = x. Therefore, 

and 

H(x.,t). s x for all r SI, 

H(xsT) e= w" for all x ^(wf]^f = f(x) -A|) 

Suppose x €—(w[*).|f (x) -A<!f|) *" {*}• Then 

f̂(̂ x(t)) » - cr-fWt)) 
dxi 

[f(*(t)) + A- - f(x)] , 

which is negative for t = 0. Therefore, as t increases, ̂ (t) moves 

from x into the set |f <Cf(x)^ CZI jf f (x)|. Moreover, ̂ x(t) cannot 

cross the "boundary" set |f = f(x) - at sorae"time" tQ̂ > 0. For, if. 

^x^o) - ye|f = f(x) - for some to>0, then*x(t) =^y(t-t0) = y 

for all t^tQ by the uniqueness of the solutions of (9a) and (9b). 

Thus, 
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H(x,f)€=W" for7*>-0 and xfcr(W p||f(x) -A<Cf|- |x| 

Q.E.D. 

Combining lemmas 2.1 and 2.2, we have the following result: 

Theorem 2.4 

Let Z be a cylindrical neighborhood of x. Then there exists 

a continuous function, F, on Z x I to Z such that 

(i) Fj^x) e|f <Cf (x)ju(xj for each x£ Zf||f ^ f (x)j-

(ii) F(xsr) <H= |f <C f (x)| for each x Z fl jf <Cf (x)| anti * S I 

and 

(iii) F(X,T) = x for all f S I. 

In other words F continuously deforms the cylindrical 

neighborhood Z into the set |f <Cf (x)j-|J jx| in such a way that 

the point x remains fixed and the points of •|f<^f(x)| remain in 

|f <f(x) | . The function, F, is called an f-deformation. 
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2.3 COMPACT n-DIMENSIONAL MANIFOLDS 

An n-dimensional ir>anifoid is & topological space m with the 

property that for each there exists an open subset, G, of 

such that x€~ G and G is hoineomorphic to the open n-dimensional disc: 

T n. ~ | x | |xj<l} CZ En. 

Let a compact n-dimensional manifold. Let 

I^L ' ̂2 » •••» an °Pen covering of 7Tt such that each G^, 

i = l,2,...,r, is hoineomorphic to iP . Let , ̂ 2* •••> Tr be 

the homeomorphisms corresponding to G^, G^j • • • > . Then for any 

i n 
i,j = l,2,...,r, the composite function T^oTj maps a subset of V 

onto itself. (T^oTj1 may be the empty function, 0.) The manifold 

m is said to be differentiable of class Cm, if T^, T£, ..., Tr may 

be chosen in such a way that for i,j =s 1,2,...,r, T^oTj* possesses 

continuous ra-th order partial derivatives and has a non-vanishing 

Jacobian at every point of the domain of definition of T^oTj^ • 

A real-valued function, f, on a differentiable manifold m 

is differentiable at y €= m u, for some homeomorphisro, T, which maps a 

H i 
neighborhood of y onto V , the composite function f®T-i is 

differentiable at the point T"^(y). 

In the remainder of this section, and in the next section, let 

"jftfts be a compact, dif ferentiable, n-dimensional manifold of class C^, 



and let f be a real-valued function whose third order partial 

derivatives are continuous on7/\ . Under these conditions, the 

preceding theory may be applied to and f. For example, lines 

of descent in rray be constructed by replacing the function f 

in equations (8a) and (8b) by the composite function F = f«T ̂  

The lines of descent on are then given by T'^^Ct)) and since 

P(f(t)) = t , we have 

fd"1̂ ))) = F(<?(t)> = t. 

We make the further assumption that the total number of 

stationary points of f on 77£ is finite. 

Lemma 2.3 

Let 7^ and y^ be stationary values of f such that 7j_ < 

and no stationary values of f lie between 7^ and 7 ̂. Let g be 

the set of all stationary points in |f = Y , and let e be a 

positive number such that *̂ 2 ~~ * • 

Then, there, exists a continuous deformation, F, in 

jf <72 - 6[ such that 

(i) F^ (x) <=:] f ^ 7^^ } for each x^{71<^f< ~ 

and (ii) F(x,0 = x, for each xe: jf < ̂  } and r £1, 
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(In other words, jf < 72 ~ be continuously deformed into 

|f < ^ such a way that |f < 7^j remains fixed.) 

Proof 

It suffici.es to show that the line of descent through any 

x 17^— f < 7^ - «| empties into a point of g or intersects 

the set | f = 7 ̂ | • 

We note first that' | 7 ̂ < f ^2 ~ € } is a closed subset 

of the compact set 7T[ and hence is also compact. Also, at each 

point of this set, a cylindrical neighborhood may be constructed. 

The set of interiors of these cylindrical neighborhoods forms an 

open covering of ^7^<f < | an<* hence contains a finite 

subcovering. Let|c^, G2» -••> Grj denote the finite set of interiors 

of cylindrical neighborhoods which covers — ̂  — "*2"e} 

Let Z]_, Z2» •••» Zr be the corresponding cylindrical neighborhoods. 

Let 2^, 2^2, ..., 2 r̂ be the heights and Xj_, x2, *r be the 

centers of these neighborhoods, (i.e., the points about which the 

neighborhoods are constructed). 

Let x 17^ < f £ 12. " * T̂ en x is an element of one 

of the G^s, say G ŝ and hence lies on a line of descent (t) , 

which intersects f = f(x^)| or empties into a point of g. If 

f(x^) - < 7 t̂ then we are through; for then,^> (t) intersects 

|f s 7^| or empties into an element of g. If f(x^) - ^ > 7^ 

then *p ̂  (t) intersects |f = f(x^) - ^ at the point 
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9 i(f(Xl) - Ax) €= {f = f(xx) - OZi . 

Since 7^ «Cf(x-l) - A|<Cf(x.) < V2 - < , 

SP1(f(x1) - Ax) < £ < Y2 - • 

Therefore, <P*(f(xi) -  A j )  is an element of one of the G^'s. 

Now, </>!(f<x1) - A-^^ G since every neighborhood o£ a point of 

jf e f(x̂ ) - contains points of |f <Cf(xj) - aru* 

hence contains points which do not belong to Zj_.' Therefore 

<pl(f(x) - A^) is an element of some G^ different from G^, say G2« 

Hence, *(f (x) - A J) lies on a line of descent <f 2(T) which intersects 

|f = f(x2)j- or empties into a point of g. Since <jP^(t) and^(t) 

are defined in some open set containing <P^(f(x) - A j) and 

<P*(f(x) - ulj) = <P2(f(x) - A 2) , by the uniqueness of solutions 

of(8a) and(8b) of section 2.2, ^ is a (single valued)function, 

and hence is a line of descent through x. Continuing this process, 

we arrive at-a sequence •J'P ..., | of lines of descent 

such that j < r, is a line of descent, and 1 

intersects | f = f(Xj) " or empties into an element of g. 

This process must terminate for some k < r. Then (f ̂  intersects 

•jf = f(x^) - A^j1 or empties into a point of g. If (p^ does not 
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empty into g, then f(Xfc) ~ (otherwise the process would 

is a line of descent through x which empties into an element of g 

or intersects j f = 7 ̂ | . 

The remainder of the proof parallels the proof of lemma 2.1, 

section 2.2. 

Lemma 2.4 

Let 7^ and be stationary values of f such that 

72 ̂ 7^ and no stationary values of f lie between 7^ and 

Let g be the set of stationary points of f. Then there exists 

« 0 and a continuous deformation F in {f < 7]J such that F deforms 

f< 

Proof 

As in the proof of Lemma 5, the compact set | f = 7^ may be 

covered by a collection of open sets, G^, G2, •••, Gr, which are the 

not terminate at k) . But f(x^) ̂  7^ . Therefore intersects 

or empties into an element of g. Thus 

- < p  = X̂(J ( p 1  U- - - L)VK. 

Q «E ID • 

g into a subset of 
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interiors of cylindrical neighborhoods, Zj_, Z2, •••» Zr, whose centers 

are points of |f = Let x^, x2, ...» xr and 2 ,2A2 »• • • »2Ar > 

be, respectively, the centers and heights of Z^, Z^, Zf. 

Since 7^ - 7 2^"®, the neighborhoods may be chosen in 

such a way that none of the neighborhoods Z^, ..., Zr intersect 

| f a ^21" êt e t̂ e ni:i-ni-inum °f ^rj" Then, for 

each x ̂  1 "4 ^ f ̂  , there exists a solution of (9a) 

and (9b) (section 2.2) such that (0) = x, and, moreover, as t 

increases, f(^x'(t)) decreases except forx€s|f = 7^ - <|Ub* 

Let F(X,T) = (r) , RE I, XEJ^J - « < f £ 7^ • Then, 

since the solutions of (9a) and (9b) vary continuously with the 

initial conditions, (9b) , F is continuous for each x <=S. |"T^ -c<f < 

Ifxs{^i - - g, then for each t > 0, 

f(*x(x)) = f(F(x,r)) <f(x) < yi. 

Therefore, F(X,T) GT -E < f 

Forx<={{ = yi - «} (J g, the (unique) solution of (9a) 

and (9b) is 

*x (r) = X. 

Therefore, F(x,r) = x, r 61. 
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Thus, F satisfies the conditions of the Lemma. 

Q IE .D • 

Combining Lemmas 2.4 and 2.5 we have the analog (on ) 

of Theorem 2.4 of section. 2.2. 

Theorem 2.5 

Let If be a stationary value of f and let be the smallest 

(higher) critical value such that Let g be the set of 

stationary points of T • Then for any « ^ 0 such that y + t <Z^i> 

there exists a continuous deformation, F, in |f < *Y + * ̂  such 

that 

(i) If x &jf then F(x,r) S | f < for each rG 1, 

(ii) If xe|r^f^7 + « } , then F1(x)s|f <7}tJg-

(iii) If x<^gs then F(x,r) = x. 

The function F in Theorem 2.5 deforms the set |f <C 7+ 

into the set ^f <7} Us for any < 0 which is such that no 

stationary points lie between 7 and *y + « . In particular, F 

deforms a cycle, C (mod |f in into an 

homologous cycle (mod | f <C y )  ) in |f such a way that 

dC remains in |f <C /yj;- The points of g form what may be regarded 

as a barrier beyond which C cannot be deformed continuously (e.g., 

without tearing) unless dC leaves in which case, C is 
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not deformed Into art homologous (mod [£<r] in ^ f < y + 5 j ) 

cycle. Note that, even though a. cycle cannot be deformed beyond a 

stationary point, x, by an f deformation, it may still be homologous 

in £ f ̂  f(x)| to a chain in ^£ <.f(x)j • For example, 0 is a 

3 stationary point of the function f(x) = x . However, the cycle 

C =• |(0»0) j is homologous (mod £ f < 0 j in 2=. 0^ ) to the 

cycle £(-l,-l)j even though £(0,0)j cannot be deformed into 

£<-l,-l)j by an f-deformation. 

Let *Y be a non-stationary value of f and let be the 

largest stationary value below ~Y . Let g be the set of all 

stationary points in ^f = . Then, from theorem 2.5 and 

corollary 2 of theorem 1.3, it follows that the q-th connectivity 

number (mod £ f < ) of |f </j is equal to 0, while the q-th 

connectivity number (mod ^ f {££7} is equal to the q-th 

connectivity number (mod £f<yjj) of ^f The next theorem 

relates the latter connectivity numbers to the type numbers of the 

stationary points in g. 

Theorem 2.6 

Let 7 be a stationary value of f and let g » £ x^,x2> • • • »xrj 

be the set of all stationary points in £f • Then the q-th 

connectivity number (mod ̂ f<yj ) of {«</] U g is equal to 
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r 

nflCxj)' 

T=] 

Proof: 

Let m1! denote the q-th connectivity number (mod ( f <7 { ) 

(£<>]U6. of 

We begin by establishing two propositions: 

(i) Each q-cycle, C ,y (mod £f<7j ) in £f <7|[J g is 

homologous (mod {£<7} in {f < r}U s) to a sum, 
CL + C2 + ... + Cr, of q-chains, where, for i = l,...,r, 

is a cycle (mod £ f < ) in 

(ii) If, for i l,2,...,r, is a cycle (mod ) 

in | f < U £xij » and 

cx + c2 + • • • + Cr ̂  0 (mod £ f < 7 j in ^ f < U s)> 

then, for i = 1,2,...,r, 

C^*"" 0 (mod £ f*-n 
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Proof of (i) 

Let C be a q-cycle (mod ) in < > | U s -  Then, 

since each x^ is isolated, there exists an integer k such that no two 

elements of g lie in the same simplex of the k-fold subdivision, 

^C, of C. For each i, let be the set of all simplexes of 

which contain x^: 

f £s | S€ kC and x^ | S fj . 

r 

Then, since the only simplexes of k which do not appear in ^ ci 

in (f<VJ , 1=1 are xn 

^ Gi " kc (mod {f<̂ } )•* 

i=l 

Also, by Theorem 2.4 of section 1.6, 

kC ̂  C (mod £ f < 7^ in ^ f <yj U g) • 

Thus, 

i. 

£>^0 (mod [f<*l *n ^fOjUg) 

i=l 
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r 

Clearly, ̂  satisfies, the requirements of (i) . 

i=l 

Proof of (ii) 

For i = 1, 2, .r, let be a cycle (mod ) *"n 

^ f < Vj U , and suppose 

C]L 4* C2 • • • + Cr~ 0 (mod {fO] ̂ ̂fOjUg). 

Then there exists a q + 1 cycle, D, in J f LJ g such that £f<VJ u 

r (mod £f <vj ) 3D — + • • • + C 

Let k be an integer such that no two elements of g belong 

to the same simplex of the k-fold normal subdivision, ̂ D, of D. 

For i = 1, 2, ..., r, let be the set of simplexes of which 

contain x^: 

D. = ^ S | S€kD and Xj€ | S | j „ 

Then 

r 
D = 
k 

i=l 

^ (mod ^ f ) 

Now, 



<^kD - = ) kCi 

Therefore, 

i=l i=l 

This last equation may be written 

r r 

- I (mod f < Vj ) 

^[^Di + kCi] 3 ^ (mod 

i=l 

which implies, for each i, 

*L + I 9°i + kGi I • 

But by construction. 

xj ( | dVi + kci| 

for i ^ j. Therefore,for i= 1,2,..., r, 91^ + is in |f <L 

Hence, 
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3d^ = ^Ci (rood )• 

Also, by construction, is in < VjTherefore, 

kCî y0 (mod^f<7^ in 

X  —  1 )  2 )  •  •  •  ,  I T *  

Now, by Theorem 1,4 of section 1.6, 

ci/vykci (raod {f<̂ } in ^ * <"^|U{x:ij ) • 

and so 

Ci~0 (mod £f <>| in ̂  f <>| ^x-jj ),i = l, 2, ...,r. 

Thus, (ii) is established. 

q 
From the definition of m (x^), there exists a maximal set, 

..., z™ | of cycles (mod^f<7'| ) in £ f <7^ 

which are independent (mod £f < in £ £ -< )• By (ii) i 

no sum of chains formed from the set 
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K - ^ zl,...,z5q(*2>, z\ «.;q(*r>| 

are at is bounding (mod £f in ^ f <~y|LJg)- Therefore, there 

least mcl(x^) + mcl(x2) + ... + m^Xj.) independent cycles (mod £ f<7^) 

in {f<yjU's-

On the other hand, by (i) , a q-cycle, C, (mod 

(£<Y) U g is homologous to a chain, , where, for 

i — 1, 2, r, is a cycle (mod £ f < ) in ^f<yj • 

Since •£ zl,z^,... ,z q̂(xi) | is a maximal independent set (mod 

in £ f < (J JIC^ ) , i = 1, 2, ..., r, each is homologous 

(mod £ f < yj in £f <̂ | LJ ) to a ĉ ain formed from a subset 

of ^ z^,... ,z°q(xi) . Hence, C is homologous (mod ^ f ^-n 

g to a chain formed from a subset of K. Therefore, unless 

C is one of the z|'s, *-s not independent (mod in 

{f <?}Us> Thus, K is a maximal homologically independent set 

(mod £ f < yj in ^f<Y|(Jg). 

Q.G »D • 
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2.4 THE MORSE EQUATION ON Tft 

Let 1ftbe a compact, differentiable, n-dimensional manifold 
' C 
3 

of class C , and f be a real-valued function such that the third 

order partial derivatives of f are continuous on 7fL and the 

stationary points of f on 7TL are non-degenerate. Let R^ denote 

the q-th connectivity number of !$t. 

Let I f  e E. We say that a cycle, C, (mod | f < VJ ) may be 

completed to an absolute cycle in (f <v] if there exists a chain, 

D, in £f < y*| such that dc £ 3d. 

Let Q denote the set of all stationary values o£ f, and let 

y € Q. Let tqC/ ) denote the number of stationary points of index 

q in {£<7} Then th&r&^exists an independent set, 

•^A-p A2» •••> Aj.q^yj ̂  > 

of q-cycles (mod { f<VJ ) in where g is the set of 

stationary points in . By a simple inductive argument, this 

set may be replaced by an homologous, independent set 

^ ®1' ®2®r^(y) ' ̂ 1' ̂ 2' •••» ^s^(y)| 

of q-cycles (mod £ f < 7^ ) in £f cyj^Jg, where tq00» 

each Bi may be completed to an absolute cycle and no combination of 

the G^'s may be completed to an absolute cycle. (If, say 

C1 + c2 + ••• + Cs, s < s^y), may be completed to an absolute cycle, 
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we may set = + C^ 4* • • • *t* C^ j and r6plflcc C^ by ^r^(y)+l * 

This process may be repeated as often as necessary until the required 

set is constructed.) 

Let 

tfl = t°l(7) 

7£Q 

^ ^ ̂(7) 

76.Q 

and MS = ^ ̂ s^ (?0 . 

7CQ 

Then is the total number of stationary points of index q and 

= Mj + Mfl. Since Mn+̂  = 0, the Morse Equation is an 
T m 

immediate consequence of the following theorem. 

Theorem 2.7 

£ (-l)£l"i( M1 - R1 ) = M$+1 , q = 0,1,.-.. 

i=l 

Proof: 

For all ye E, let R^(7) be the q-th connectivity number of 

f < v"| . For any f less than the minimum of f R^OO = 0, 

while for ~¥ greater than the maximum of f J, = R^(/) . 

We first note that R^(7) is a constant between any two 

consecutive stationary values (by Theorem 2.5). 
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Let y e Q. We will now compute the saltus (jump) of Rq(y ) 

at the stationary value Y . 

The saltus of Rq(y) at 7 is given by 

Lira Rq(y+£ ) . Lim Rq^y _£ j 
£—*• 0 *->0 

Now, for £ sufficiently small, the q-th connectivity number of 

£ f < y + is equal to the q-th connectivity number of {£<y}Us-

where g is the set of stationary points in £ f = /j. Therefore, 

+ ̂ ) is t̂ ie q-th connectivity number of £ f < y| g. On 

the other hand, if 7' is the largest stationary value of f such 

that y <9 , then every chain in £ f < y| may be continuously deformed 

into a chain in ^ f ^y'jl^Jg' where g1 is the set of all stationary 

points of f in £f = y'j . Hence, the q-th connectivity number of 

f <"^ '"'is equal to that of ^f < y'| g® , and, moreover, for 

every sufficiently small £>0, the q-th connectivity number of 

^f <y'-cj is equal to that of ^f < Y'| U g* • Therefore, the 

saltus of f at 7 is equal to the q-th connectivity number of 

g minus the q-th connectivity number of {£<y} . In-

other words, as Y increases from Y~ C 'to / + £ , (for £ small), 

Rq(y) is increased or decreased by the number of independent cycles 

which are added to or removed from -£f "^y^ by adding the points of g 

to {£<?}. 

We will next show that the saltus of R^(y) at y is given by 

r^cy) - stl"t'^(y) . To shorten the notation, let r^(y) = r4!, 
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s1(/) = s^ and t^(y) = t^ . 

For each q ^ 0, let 

^ ̂ l >  ̂ 2' ^rq' ̂ 1' ̂2' 

be an independent set of q-cycles (mod { f <y] ) in { f <y}Ug 

-e Q 
such that the 5 ̂ s may be completed to absolute q-cycles, and no 

combination of the may be completed to absolute cycles. 

Now the set of absolute q-cycles, 

(11) 34}+1. â +1, ... , 

are independent in ^f < , since no combination of the may 

be completed to an absolute cycle. Therefore, this set may be expanded 

to a maximal homologically independent set by adding absolute 

q-cycles, 

(12) F?> RB •••» R2Q> <!»{«< '}> 

to the set 3^ gq+1 ̂  * T̂ en t'ie connectivity 

|f < y] i number of if <r> is 

(13) u<i + s*+1. 



We now show that 

.(14) (r?, .... ruv J? & } 

is a maximal homologicaLly independent set of q-cycles in 

where is the cycle obtained by completing to an absolute 

cycle, i = 1, 2, ..., r^. 

To show that (14) is an independent set, suppose some 

combination of chains of (14) is bounding in <*>J g> say 

^ P J + ^ 0 (iti 

i=l i=l 

Then, since is in £ f < y| for i = 1, 2 ,  * • • > U > 

(15) (mod {f <f] in £f <VJU 8)' 

i^l 
a  a  

But ^ ̂ i - ' ^ ̂ i m̂°d { f ^' atld so (15) implies 

i=l i = l 

• & 
^ ̂  0 (mod ^f<?| in ^f<v| |sJg), 

i=l 

which contradicts the choice of •••» ? rq * Thus , no 

combination of the chains of (14) which contains one or more of 

the «^i's is bounding in £f U e* 

Suppose 



a
-

^ P 2 ̂  0 (in | f < [J g) . 

i=l 

Then there exists a (q + l)-chain, D, in ^ f < y| g such that 

ao . £ r?. 

i=l 

Since D is a (q + l)-cycle (mod {£<?}) , D is homologous 

(mod ia <v|Ug) to a combination of 

•e q+1 *q+l . -» q+.i ->,<1+1 
5  1  ' • • • ' »  r q + l '  U  ' ••• '  ksq+l ' 

that is 

^ | l+l + ]T y( l+l (mod [ f < /] in { f < /] (J 8) D ~ 

i=l i=l 

T) ̂  . Then, there exists a ̂  + Z^chain^P, in 

•^f <7^ g and a (q + l)-chain^Q,in |f <1?j such that 

9P . D + f  I f 1  
+  -  Q -

i=l i=l 

Hence, since 30P = 0 , 



= f n  = £>?r x  *  Y . 3 >t  T 1  + 3Q-

i=l i=l i=l 

But since, each can be completed to an absolute cycle in 

{*<*}• 

Yp^i+1 ̂ 0 (in |f<y| ). 

i=l 

Therefore, 

& i )  

2_, r i + Y 9 ? ̂ +1 + aQ ̂  0 (in {f < y] ) , 

i=l i=l 

and since Q is in |f <vj , 

c j  i f  

<i6> Z r? + Y dyitl ~ * (in {f<*} 
i=l i=l 

But (16) contradicts the independence of 

r? r? q !  a.?r l  

Thus, (14) is an independent set in { £<?} U 6-
To show that (14) is maximally independent, let T be an 

absolute q-cycle in g. Then, T is also a cycle 



in 

(rood [f<f] ), and hence, since (10) is maximally independent 

(mod in £ £ "^VjUs)' T is homologous (mod |f <y| 

<7^^ g) to a combination of chains of (10) ; that is 

<T J>  

T ̂  (m°d {f<*} ln (f<*}Ug)* 

i=l i=l 

Then, there exists a (q + ^-chain, W, in <y^Lj g and a q-chain 

U in £f < /J such that 

( 17)  a w  =  T + ^ | j  +  ^ 7 2 J + u .  

i=l i=l 

Since each can be completed to an absolute cycle in {f</} . 

there exists a q-chain V in |f< y^such that 

ff 

a v  =  8 t  +  ^ 9 ^  ? •  

i=l 

Hence by (17) , 

r 

a v  =  ] j T  J  +  a u ,  

i=l 

and since U is in £f<y^ , this implies that a combination of the 

7^'s may be completed to an absolute cycle. Thus, no combination 

of chains of (10) which contains one or more of the 7^'s is 

homologous (mod £f</ji in [ f <̂ ]U8) to T' 
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Suppose 

CL" 

t ̂  ? 5 m̂°d {f < in {f < u &' 

i-L 

Then, 

T + ^ ̂ 9 ̂  0 (mod ^ f <?J in £ f <-*J Li g) » 

i=l 

where, as before, is the cycle obtained by completing to an 

absolute cycle. Then there exists a(q + l)-chain F in {£ <7} U g 

and a q-chain G in {£<f} such that 

6  

3F = T 

i=l 

+. Z •)? + 

But since G is an absolute cycle in £f » G *-8 homologous in 

£f <"/J. to a combination of the chains of (11) and (12). Therefore, 

0f *  t + + -£rj + Eay  r1 + s" -•  * -

i=l i=l i=l 

where H is a q-chain in £f < yj . This may be written 

a [ F  -  L  ? iT y  *  « ]  =  t  SI  *  £ r? + i. 
i=l i=l i=l 

and so 
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Z  ̂? +  Z r? + T (in (^>}Us). 

i=l i~l 

This last expression implies that^ if we add the cycle T to the 

set (14), the resulting set is not homologically independent in 

Thus, (14) is a maximal, homological independent set and so 

the saltus of r5( /) at y is 

rq - s 1̂. 

If follows that 

r5 = ^ [rq(7> - s<i+1<7)] 

T'CQ 

= M? - M 1̂ 
*T 

= Mq - M! - My1. 

Hence, 
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q 

Y (M1 - R1) + M"+1> 

iexO i=0 

= (-l)qM? + MS+1. 

But o 0, since every 0-cycle is an absolute cycle. 

Q.E;D. 

Corollary 

^ s 5 = 0>1)•••|H> 

Proof: 

Since is a non-negative integer, 

q q-1 

Mq"Rq = Z <Mi" Ri)<-i)q_i + Y(Mi" Ri)('i)q"i"1-°' 
i=0 i«0 



CHAPTER 3 

CRITICAL CONFIGURATIONS OF CHARGES ON AN H-TORUS 

3.1 STATEMENT OF THE PROBLEM 

The problem to be considered in this chapter has its origins 

in the following physical problem. 

3 
Let S be a conducting surface (in E ) and let 

PL =  (x1, y x ,  z1) ; i = 1, 2, ..., n, 

* 

be the locations of n electrons constrained to lie on S. In a 

dynamic situation, the charges will remain at these locations if 

the net force"acting on each charge (due to the presence of the other 

charges) is normal to the surface at the location of that charge. 

If this condition is satisfied, the charges are said to be in 

equilibrium on S, and the set of points, p*", p^, pn , forms 

a critical configuration of charges on S. The problem is to 

determine all of the critical configurations of charges on S. 

Under certain conditions this problem may be formulated in 

terms of finding the stationary points of a real valued function. 

Suppose S may be represented by the equation f(x,y,z) = 0, where 

the first partial derivatives of f are continuous in some open 

3 subset of E which contains S, and, at each point of S, at least 



one of the partial derivatives, Qf/0x, df/dy, df/5 z, does not 

vanish. This condition will enable us to solve f(x,y,z) = 0 (locally) 

for one of the variables in tierms of the other two, and to define a 

tangent plane at cach point of S. _ 

The net force acting on the charge located at p^ due to the 

presence of the other charges is given by 

CD F1 = y cgt*j, <Pi -

L  - „ii3 

w ,p  

where |p*- - pj denotes the Euclidean distance between p and p^, 0Cj 

is the magnitude of the charge located at p^, j = 1, 2, ..., n, and C 

is a constant. (Peck, 1952, pg. 3). Let 

vcp^P2 P"> = y1 

_k _ j 
P - PJ 

j=l k=j+l 

(V represents the total potential of the configuration.) 

Equation (1) may now be wirtten: 

3V/ 9x*-, "dv/3y*-, "dV/3z^ 

Suppose that Bf/az does not vanish at p*. Then there exists a 

function, u, and an open neighborhood, N, of (x^y*) such that the 

first partial derivatives of u are continuous on N and F(x,y,u(x,y))=0 

for all (x,y)e N. (Buck, 1956, pg, 222.) Hence, the tangent plane 

to S at p* is given by 
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z z1 = du/dx)(x - x1) + | ^ u / d y ) ( y  -  y 1 - )  

where "5u/"bx and ()u/<)y are evaluated at (x*-,y*) . 

For equilibrium, F*- must be normal to this plane. Hence, if j 

is any point in the tangent plane, the vector, p - p*", must be 

orthogonal to F1" at p1. This condition may be written: 

0 = Fl • (p - p1) 

- x1) + ~^(y - y1) + -^kz - z1) 
0 x x  d y 1  d z i -

( & £  +  - p L  & u )  ( x  -  X i )  +  ( - 1 4  +  t t t  " 4 $  ( y  "  y i )  

dxi ^z1 ox 3yi iz1 ^ 

where the dot, denotes inner product. Since this equation must 

hold for any p in the tangent plane, the equations 

(2a) . + d V _|u = 0 
dxi fc2i T* 

and 

(2b) + _JL5L = 0 
ŷi Ty  
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must be satisfied if the points p^, p^, pn are to form a critical 

configuration. 

By repeating this procedure, two equilibrium conditions 

resembling (?a) and (2b) may be derived at each charge location. The 

equations for a different location will be identical in form with 

(2a)and(2b)with the exception that it may be necessary to replace x, 

y and z by some permutation of these symbols. For example, if 

^f/3 z = 0 and d)f/dy ^0 at the location pk, the conditions at 

pk are given by 

d V + b V _dv _ o 
2)yk i)x 

and 

^ V + £> V J_v = o 
"2>zk "3z 

where v(x,z) is a local solution of f(x,y,z) = 0 for y in terms of x 

and z. 

Hence, if the points p^, p^, ..., pn form a critical 

configuration, then these points satisfy 2n equations of the form 

(3a) d V + 'b V ^ w1 = o 

and 

(3b) jLt + V - 0, 
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i = 1, 2, n, where is some permutation of x*", y*~, z 

andw^,^) is a local solution of f(x,y,z) = 0 for one of the 

variables in terras of the other two (in some neighborhood of ( ̂  

But, if V(p^> p^, •••> pn) is interpreted as a real valued 

function defined on a subset of Sn, the n-fold cartesian product of S 

with itself, then (3a) and (3b) are the conditions for a stationary 

point of V. In other words, if the set of points, P^> •••» 

forms a critical configuration of charges on S, then the ordered 

n-tuple (p^, p^, •••> pn) is a stationary point of V on Sn, and so 

the problem of determining all critical configurations of charges on 

S reduces to that of finding all stationary points of V. 

The problem just described may be generalized by replacing 

S by an m-dimensional surface in (m + n)-dimensional space and by 

replacing the Newtonian law of mutual repulsion, 1/jp*" - p^ J, by a 

more general function. A variation of this problem, the determination 

of total number of critical configurations of charges on an m-torus. 

will be considered in this chapter. 

Let Tm be the m-dimensional torus: 

i » 1,2,...,raj f)E2m nEQ {<v .,x2m) *21-1 + *!i 
= i. 
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Let g be a real valued function which is strictly decreasing 

on £o,oo) and which has continuous third order derivatives at 

every point of [o,oo). 

Let 

VCp1 ,p 2  , • • • ,pn) = y* g( IP1 - pj|2)» 

1=1 j=i+l 

where p1 = (x£ ,x|,... ^ <*£ is a positive real number, 

(i =1,2,...,n) and 

2m 

jpi - pj|2 = £ (x£ -

k=l 

We define the critical configurations of n charges on 1®° 

to be the stationary points of V on (T1?)11. 

Since T* is the ra-fold cartesian product of T* with itself, 

(I™)11 =.l5an. Therefore, the domain of V is an mn-dimensional 

manifold of class C°°; i.e., the mn-dimensional torus. Moreover, 

the conditions imposed on g ensure that the third order partial 

derivatives of V are continuous on T1011. However, before the theory 

of Chapter 2 can be applied, the potential function, V, must be 

modified. 

To simplify the notation, the points of Emn will be denoted 

by |y^ jj instead of 



{y}» y2' •••' yra' yl' y2' yra' ' yl' y2* yS^ 

Let {/i.j} £ E
ran such that 

(4a) 

and 

(4b) 

cos yt>i = 

sin yi,j -

J 
x2i-l 

J 
x2i * 

Then, 

m p 

|pi - pj|2 = ^ p*2k-l " xlk-l)2 + <x2k " xlk^' 

k=l L 

Therefore, 

= 2 J^l - cos (yk>i - yk>j) 

ra 
= 4 
£ sin2 |(yk,i " >rk>j> 

k=l 

VCp1,?2,...,?11) 

n-1 n 

E  I « 1  ° S  S ( 4 L  S i n i  ( y K . l  "  y " . j  
i=l j=i+l k=1 

Clearly, if each y^ . is increased by an amount 0, 
* > 1 

then V is unchanged. Hence, since V has at least one stationary 
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point (Tmn is compact), V has an uncountably infinite number of 

stationary points. Therefore, the theory of Chapter 2 does not 

apply. 

This situation may be avoided by placing a fixed charge 

on Tm. Let p° be the location of a fixed charge on T™. By symmetry, 

p° may be located anywhere on Tm. Therefore, let 

p °  =  (  1> 0 ,  1 ,  0 ,  1 ,  0 ) .  

Then the potential function of the configuration now takes the 

form: 

n-1 n m 

(5) VCp1,?2,...,?11) = \ V 0^ g 4^T sin2I(yk̂ i - yfê ) 

i=l j=i+l 

n 

5+Jt sln2ly".j) 
+ J  ô cC. 

Now if each y^ in (4a) and (4b) is restricted to a 
)  i  A  

sufficiently small interval, (4a) and (4b) define a homeomorphism 

of Tmn into Emn. Hence, the conditions for a stationary point 

of V are: 
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s -1 

(6) 
5 V 
3y"r,i 

2«i%g' ̂^8in?̂ (yk,i-yk,a) I sin<yr,i - yr,s> 

' kli ' 

in 

£/ 111 

2RTSe' J 4 in2I(yk 9 s-yk > t) si"(yr,s " yr,i> 

i=s+l 

I  m 

+ 2«b«sS' U^sin2!^, 

* k=l 

sin yr>s 

0, 

r lj2|***)iii) s -• 1,2,... ,n. 

Let 

For each yG E, let 

y = jz|z-y is a multiple of 277 j. 

E = jy|y E E|. 

As in the case of Emn, the elements of Emn will be denoted by jyi^j}* 

An element ^yi,jj of E will be called a solution of (6) if 

for any |z^ j|eEmn such that 
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j_}j = yi,j, (i = 1,2,... ,m, j=a 1,2,...,n), 

sin(zr)8 - zr,t), 0 = ) 2ori<*s g'(4J - zk,i> 
k=l 

i--U 

ijts 

r = s —* l,2,.««yn. 

It follows from (4a) and (4b) and (6), that there exists 

a 1-1 correspondence between the stationary points of V on T™1 and 

the solutions of (6) in Enm. Therefore, in the sequel the solutions 

of (6) in Emn will sometimes be called stationary points of V in T™1. 

The remainder of this chapter will be devoted to the 

enumeration of the stationary points of the potential given by (5) 

or, alternatively, to the enumeration of the solutions of (6) in 

E®11. The problem of finding the total number of stationary points 
# ( 

with a given index will also be considered. 

3.2 - CRITICAL CONFIGURATIONS OF TWO CHARGES ON AN m-TORUS 

When there are but two charges on Tm, one of which is fixed, 

equation (6) becomes 

I™ 4 L si" yr,l = °" 
k=l I . 

r = 1,2,...,m. 

In this case, the critical configurations may be enumerated without 

the aid of the Morse Theory. 



NOW T 

m 

4 ) sin2lyk)1 t o» 

k=l 

since g is strictly increasing. Therefore, the only solutions of 

(7) are those for which 

sxn y^ ^ s 01 i = 1 j2.j • • • iiui 

Hence, (7) is satisfied if and only if 

yi}l 6 Tf or ^i,l ^ ^ = 1»2,...,m. 

Theorem 3.1 

Let Km be the number of critical configurations, of two 

charges on T0. Then, 

m m 
K = 2 . 



Proof 

It suffices to show that the set of all solutions of (7) 

in E™^ may be put into one to one correspondence with the set of 

•) --ml 
all subsets of the first in integers. But, if ^y^ jJ € E is a 

solution of (7), then the set of all i such that yitl =0 forms a 

(unique) subset of the first m integers. On the other hand, let 

A be a subset of the first m integers, and let ^y^ ̂  £ E10* such 

that 

yi,l = 0 if i € A 

and 

yifl = TT if i ̂ A. 

Then is a solution of (7). 

Suppose -jy^ is a solution of (7) . Then 

Q.E.D 
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-£-7~ = cos yifl •g,[4^sin2Iyk>1] 
1,1 ' > k=l * 

ITTI 
4 ̂ sin2lyk>1 

k=l 

• 2"b9i cos yi.i s'(4I;oi"2̂ k,i 
, i =1,2,...,m, 

and 

a2v 
• %°isin yi,isln yj,i s"r£,lnVk,i) 

' k=l ' 

i,j = 1,2,...,m; ,i ^ j. = 0, 

Hence, the Hessian of V at 

fcwi s'(4^sin2lyk>1 

f/i.l] is of the form 

i=l k=l 

cos yi.i = <-1>' (tn . 

4X!sin2 

m 

i=l 

where r is some integer. Thus, the stationary points of V on 

T m are non-degenerate. 

The next theorem may be proved by combinatorial methods 

similar to those used to prove Theorem 3.1. However, the proof 

given here is based on some results of the preceeding chapter. 
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Theorem 3.2 

uk | m | ml 
l^J - kl (m-k) ' 

where ia the number of stationary points of index k. 

Proof 

Let R.k denote the k-th connectivity number of Tm. Then 
(m) 

R(m) = R(ra-1) R(l) + R(m-1) R(l) 

(Alexandroff and Hopf, 1935, pg. 309) , since = T™"^ X T*. But 

R(l) = R(l) = (Pontryagin, 1952, pg. 47, Theorem 1 , T* is 

homeomorphic to the polyhedron denoted by 

Therefore, by a simple inductive argument, 

Rk _ r 
(m) |k 

S1 in this reference) 

By corollary 1 of Theorem 2.7, 

™| = ^Mk 

k I (m) 

Now, if ^ M^, for some k, then 
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in m 

2m = \ CM < \ Mk 
k 

1^0 k=0 

which contradicts Theorem 3.1. 

Q *E «Df 

3.3 THREE CHARGES ON AN m-TORUS 

For three charges on T , equation (6) becomes 

(8) , 20^ g'(4J>0i) Sin ytjl. = -2ej^ g' (4pu> sin(y1>;l - y^) 

= S'(4p02) sin yi 2 

where - -

(9) pi.j = y sin2i(yk,t • fk.j'' i>j = i-2-3-

k=i 

Clearly, those values of y^i and y ŝ2 f°r which sin = 0 

and sin = 0 satisfy (8) . However, there may be other solutions 

since (8) does not imply sin yj^j - 0. Hence, the straight-forward 

approach used in the two charge problem no longer applies. 

The three charge problem, i.e., the enumeration of the 

stationary points of V on T m̂, will now be reduced to the enumeration 

2 
of the stationary points of real valued functions defined on T . 
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Let m be the set of all positive integers which do not 

exceed m: 

/» m = | i i is an integer and 0 < i ̂  m^ 

Lemma 3.1 

Let AC ra. Let B-jC in " A and B2C m - A. Let k, bQ-^, bQ2» 

and bi2 be, respectively, the number of elements in A, B2 and 

(B1UB2) - (B1HB2). Let (u.v) £ E' such that sin u ^ 0 and 

(10) ofQoe^g1 |4bQ^+4ksin^iu| sin u = -a^oC^g1 

= -Cty*2g' 

4b^2+4ksin^i (u-v)| siti(u-v) 

4bo2+4ksin^v 

Let P be a function on A such that =1 for each i € A. 

Let such that 

W yi,le^i" and if i€A 

^i.l € Tf , if i G Bx ' 

(iii) £ °3 if i€(m - A) - Bj_ 

( i v> yi,2 elr,  if  i€B2  

and (v) yi 2 £0, if i£(m-A) - B2 

Then j| is a solution of (8). 

sin v 



Proof 

If i d rri-A, then y^ i and y^2 satisfy (8) since 

sin yifl = sin y i j 2  = sin (yifi - yi>2) = '°-

If i £A then, since yi an<* Yi 2^^iv 

<XqO?i g 4b ' + 4k sin2iu 
2 

ain yt>1 

33 4b. „ + 4k sin2I-(u-v) 
12 2 

Sin(yi,l"yi,2) 

•w' 
4b_0 + 4k sin2iv 

\J£. 9 Sin yi,2 

Hence, to complete the proof, we need only show 

?01 

?Q2 

m 

)T Sin2iyi,l = b01 + k sin2lU 

and 

i=l 

i=l 

ra 

,21 sin i.y^ 2 = bQ2 + ̂  si,n ̂ "v 
. 2 1 ,  

?12 " y1.2> = b12 + k sln2I(u " ">• 

i=l 

Since AflB = 0, 
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Poi = V 
sin2h.i + Y sin2h.i 

+ Y sl°2Ki 
iCC^-A-Bp i€B1 i€A 

= (m - k - bgi) • 0 + bgi • 1 + ^ f j sir?^.u 

i^A 

2-1 
= bQj^ + k sin iu. 

Similarly, 

?02 " * Y sin2ryi.2- + Y si"2ryi.' 
1€(S-A-B2) i^B2 ,i€A 

= bQ2 + k sin^Lv 

and since (B]_-B2)-U 0*2"Bl) = (B1UB2) ~ (BjO B2) and 

<B 1-B2)n(B 2-Bi) = 0,  

?i2  "  Y  s i " 2 r < y i . i - y i ,2 )  +  Y s i " 2 r ( y i , i - ! ' i ,2>  

i€K . ie^-E^) 

+ ^ + Y sln2r(yt.i"yi.2) 

i€(BL-B2) i€A 

a b12 + k sin2̂ (u - v) , 

where K = (ft - (B^-B2) - (B2~B^). 

Q *G .D • 
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The preceeding lemma suugests a procedure for constructing 

solutions of (8). We first select the sets A, B^, and B2 described 

in the lemma and then seek solutions of (10). The method of 

lemma. 

We now show that all solutions of (8) may be constructed in 

this manner. 

Lemma 3.2 

and sin y3|i / 0 for yr>i € yr,l an<* ̂ 3,1 € ̂ 8,1* T̂ en there exists 

£  E  s u c h  t h a t  j j l  = 1 ,  

yr.l = ^s.l and yr,2 = ^8,2 

Proof 

By hypothesis, 

« . 

cjfo^is'^poi) sln yr,l 0 -040,28i (^Pl2) sin<yr,l - yr,2> 

constructing solutions of (10) from solutions of (8) is clear from the 

solution of (9). Suppose sin yrf\ t 0 

-ctyx2g' W>2> sin yr>2 

and 

®roF*l-g'(4poi> sin ys,i = -<*!<*2g' (Upu) sin(y8>1 - ys>2) 

-ofQ^g'(ApQ2) sin ys 2, 



where 

m 
2 

Pij = ) 8i° I<yk.i " yfc.J>p 

Then, since g' (^PQ1) ̂  0 and sin Ys,!^ °» 

(ID 
sin yr>i sin yr 2 sin(yr>1 - yT̂  ) 

1 S5 1 1 1 S r 

sin ys i ys,2 8in(y
8,l " ys,2 > 

Let 

(12) 

Then, 

X = Sin(yr.l " yr.2> 

8in(ys,l - y.#2) 

sin yr>1cos yr>2 - sin yr>2cos yr ̂  = Asin y8>1cos yS)2 

- Xsin y8>2cos y8 

also, from (11) and (12), 

sin yr l = A sin yg>1 and 8in yr,2 B*ain ys,2' 



Therefore, since X= 0, 

(13) (cos yr>2 " cos ys2)sift ys>1 = (cos yr>1 -cosyg^sin yfl 

Let a = sin yS)i and let b = sin ys.,2* Then 

equation (13) may be written: 

(14) ^( Vi -A2b2 - l2 /l - bz)a = £3( a2)b 

2 
where 8^ = 1, i = 1,2,3,4. Squaring (14) and simplifying, 

we obtain 

I 

a2 -V - «,a2 - e4b2 

Again squaring and simplifying, we obtain 

-1 +i(a2 + b^)(l - A2) - a^b^A2 

= - /l - /l - a2/l -Ŵ /l 

Squaring once more arid simplifying, we finally arrive at 

(A2 ~ l)2(a? - b?? «= 0 



Thus, 

= s1"2̂ ,2 

(from (11) and (12)), or 

sin2ys,i = sin2yr>1 

ry J 
Suppose sin ySj2 = si-n ¥3,1* From equation (10), 

sin yD i and siri y= 9 are opposite in sign'. Therefore, S Y X S}*I 

sin ys,i = -sinys,2-

Hence, 7^,1 = -7S>2 or ys,l = *8,2 " V' But'» if 

*8,1 = ys,2 " then» 

8 in<ys,2 - y s , i> c  °* 

which is impossible since sin y_ 9 £ Q. Therefore, 

<"> ?s,l " -»s,2-

From equation (11), sin yr ^ = -sin yr>2» aru* so» 

by a similar argument, 
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(l&)i yr,l = ~yr,2i 

Therefore, from,(11), 

sin yr>1 _ sin 2yr>1 ^ sin yrl cos yr>1 

sinys>1 sin 2ys>1 sin ys>l cos ys,l 

Hence, 

cos yr , i  -  cos  y s , i  

This implies, 

yr,i = y s , i  or  yr , i  = " y8 , i-

If ytji = y6>i , then, by (15) and (16), the lemma is true 

for /x = l. Similarly, if yr̂  = "^8,1' tlie êirana is true 

for //• - -1. 

Suppose sit^y8 ^ = sin^yr Then, 

sln ys,i = sin yr,i or sin y8,i s ~sfn yr,i* 

Hence, there are two cases to consider. 
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Case 1 

Suppose sin ySji = sin yr>i • Then, from (11)» 

si'n.ys,2 = sin yr,2» Hence, 

yr,i =. ys,i or yr,i = v - ys,i» 

and 

yr,2 = ys,2 or yr,2 " ^ " ̂ ,2-

Now, from (11) , 

Sln(yr>1 -yr>2) = 8ln(ys l - ya 2> = - ySj2) 

sln r.,1 
Hence, if yr>1 « 7T - ySjl and yj.^ * ' ft m Ya f2 ' then 

" yr,2> " " 9in(!rs,l • 

which is impossible. 

I£ yr>1 = tt- 7S>1 atld yrj2 = 7Sj2, then 

»in(yr l - yr>2) = si°<ys>i - ys,2> 

8ln<Vl + ̂ ,2>-

Hence, 

\ 
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ys,i - ySf2 = ys,i + ys,2 

or 

ys,i - 7S,2 = i f  -  y s , i  -  y s , 2 -

But 2ya>2 ̂  Oj since sin ySf2 i* Therefore, 2ys>^ = Tf 

and so, 

yStl^m or yS)1e-^2. 

If ys>1e S8/2-, then 

y r , i  -  ^ - ^ 2  =  W i  =  7 S i l -

Similarly, if y_ n S -71/2, then FC> , J. 

^,i = ys,i-

By a similar argument, if yrjx = ys,2> and 

yr,2 a 7T- ys,2' then 

7r,2 = 7s,2 • 

Thu9, for case 1, the lemma holds for, /*= 1. 
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Case 2 

Suppose sin yr ^ » - sin ys>i_* Then, as in Case 1, there 

are four possibilities to consider: (i) , yr>i =~ys,l and yr,2 ~ "^8,2' 

(ii), 7r>1 = -7S)i and 7r>2 = 7a>2 -ff; C"1). yr,i a ys,i and 

yr,2 = -ys,2i <lv>' y"r,l = ys.l -W y"r,2 * yg,2 

As in case 1, yr>1 = ygl - and yr(2 = ys>2 " ̂  is impossible 

since 

sin (yrl -yr>2) = stn yr,l sin (yg>1 -ys>2) 
sin ys,i 

= - sin <y8,i -y8,2> 

/sin <yS); -yg>2) 

If yr>1 » -7S,1 and 7r>2 = 7g>2 -j?, then 

-sin (yr>1 -yr>2) = - sin (ys>1 + ys>2) 

= sin <ys>1 -ys>2). 

Hence ys>2 -7S>1 = 7S>1 + ys>2, °r 78>1 -ya>2 = y8>1 + ys>2 - Jf. 

and, as in case 1, 2yS)̂  ^ 0, and so 
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yS;2 = */2 or ys_2 - -7/2 

Therefore, 

?r,2 ' •ir/2 ' 7 * -W2 " "yS,2 

or yr>2 - -W2 - r - W/2 = -y<)2. 

yr,l * %,1 

Similarly, if y . » y, j - IT and yIfi - ~y3,2' chen> 

-7..r 

Thus, for case 2, the leimna is true for -1. 

- Q .E .D • 

Definition 3.1 

Let A<Z m, BjClm - A, and C rn - A. Then, for 

each (p^,p2)€T̂ » let 

W(P1,P2;A,B1,B2) = CCQC^S ̂ b
01 + HP1"?0!2 

+ *V<2*(4B02 + K|PZ"P°|2] 

+ 0{1fr28rb12 + k[pl"p2|2)» 
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where k, bQ1, bQ2, and b12 are, respectively, the number of 

elements in A, B^, B2, and (B^U E2) ~ (B^p|B2)> and 

p° = (1,0,1,0) GT2 

Clearly, the third order partial derivatives of 

12 2 W(p ,p ;A,B|,B2) are continuous on T . In terms of local 

coordinates, 

W(p1,p2;A,B1,B2) = Yl s Ah-.. +4k sin^JLu , 01 2 

f4bri9 +4k s in2l\ a0ot2 s|'+u02 1 

4bi2 +4k sin^l(u-v) + oc^2 

where (u,v)€ E such that 

p* = (cos u, sin u) 

and p = (cos v, sin v) 

Following the convention introduced in section 3.1, 

— — —2 
a point, (u,v)€E , will be called a stationary point of 

10 _ _ 
W(pA,p* ;A,B1,B2) if, for each u£ u and v€v , 

(17) 2dQ<*Lg' 4bgi+4k sin^ulsin u = -2ctQC^g' 4b02+4ksin2lv sin v 

= -2<*joc2g' 4b>i2+4k 3in^l(u-v) sin(u-v) 
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Theorem 3.3 

Let £ Era? Let fn.j) e p 

4 = {' I ?i,i * 5 and *1,1 * V } 

1 - I1 I *1,1 " 7?} B-

Bn - f I 71>2 = V ) • 

Then ^y^ ̂ j is a stationary point of V if and only if 

(i) (y£ ^,y^ 2^ i"s a stationary point of 

W(p1,p^ jA >Bj iB^) > i = 1)2) • • • jiii) 

and (ii) there exists a function A on A x A to 

such that, if i£A and j € A, then 

h , i  = and h , 2  •  

Proof: 

Suppose |yi):j] is a stationary point of V. Then, 

by lemma 3.2, there exists a function n. on A to 

such that ^ J = ^i,SyS,l <"><> *1,2 - ,2! € A' 

Clearly, if igra - A, then (y^ 2^ *s a stat*onary 

point of W(pl,p^;A,B^,B2>, since 
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sin yul = sin yi>2 = sin(ylfl - yi>2) = 0. 

Let i € A- Then, by an argument similar to the one 

used in the proof of lemma 3.1, 

rn t i i 
(18a) V sin2lyul = bQ1 .+ \ sin2l nif 

j=l i€A 

= bQ1 + k sin2lyi>]L. 

Similarly, 

m 
(18b) V "in2Ly.2 = bQ2 + k sin Iyt>2, 

u 
m 

(i8c) ^  s i n 2 z ( y j , i  '  yj,2> = bi2 + k s i n * 5 ( y t , i  " yi,2>-

-j=l 

But, since |y^ jj- is a stationary point of V, 

. m , 

(19) 2^ g' 4^siu2Iyjfl sin yi}1 

j=1 - ' 

= -2C0C*2 g' j4£sin2Iyj(2 j sin y i  2  

" ~ | tn 

= -2*1*2 g, Uysin2I(yj>1-yj>2) sin(yi>1-y1 >2) 
1 j-1 
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Thus, by (18a), , (18b),(18c) and (19) , ,..(yi,l»7i,2) is a stationary 

point of W(p1 ,p2 ,B2) • 

Suppose conditions (i) and (ii) of the theorem are satisfied. 

By definition, ^,1 = 77» i-f i € Bj_ and Y£f2 ** ^* 

if i € B2« Also, if i G m - A - B^, then sin y^ - ,0 

and y. ^ j4 7T • Therefore, yj^i = 0 if i € m - A - B]^. 

Furthermore, if i € m - A - B2» then sin y^2 = ® an(* ̂ i,2 ^ * 

since sin y^ ̂  = 0 and (y^ •£) a stationary point of 

W(p1,p2 jA,BlfB2) . Therefore, y^ 2 = ® if i £ tn - A - B2« 

Thus, | y• w satisfies conditions (ii), (iii), (iv) 
\ L f J J 

and (v) of lemma 3.1. 

Let 1 £ A and let (u,v) = ^i l'^i^* êt ̂  on 

A to [-1, lj such that if j € A, then pj = • Then (u,v) 

and P satisfy the conditions of lemma 3.1. Also, if j€A 

then y = fl. .y = f1. u and y = fl J = P.v. 
J » 1  i , j  x , l  • 7  3  J » 2  J  

Thus condition (i) of lemma 3.1 is also satisfied, and 

therefore, {y^ is a stationary point of V. 

Q «E *D # 

Let A, B^, and B2 be fixed. The stationary points of 

W(p1,p2;A,B ,B ) will be investigated in the next three lemmas. 
1 H 

To simplify the notation, we shall write W(u,v) instead of 

W(P1,P2;A,B1,B2). 
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_2 A stationary point, (u,v)XEIi , will be called an 

intferior stationary point if sin u f 0. 

Lemma -3.3 

Let (u,v) be an interior stationary point of W. Then, 

(u,?) is non-degenerate, and the "index of (u,v) is even. 

Proof: 

Let 

CQJL = 2k(*0a1 g'|4b01 + 41c sin2|-u.j 
C02 = 2kcr0cf2 g'(4b02 + 4k sin2i-vj 

C12 = 2kS'[4b^2 + 4k sin2i.(u-v)j 

D0i = ^o^l S"(4b01 + 4k sin2lu) 

D02 = k2c^0c^ g"(4b02 + 4k sin2lv) 

d12 = g"(4b12 + ^k sin2*.(u-v)J 

Then, 

(20a) -̂JSr = DQISIN2U + CQ^cos u + D^2si-n2 (u-v) + C^2C°8(U"V) 

t 

(20b) J—= DQ2sin2v + Cp2Cos v + (u-v) . + C^2C0S(U"V) 

2 
(20c) d W _ _ IQ sin2 (u-v) - C-.^ cos (u-v). 

dudv L*- L£-

Hence, the Hessian of W at (u,v) is given by: 



127 

c)2W 

9u2 
3 w 

3udv 

det 

a2w 
<^uc>v 

d2W 

2 2 2 2 
D01D02Sin U Sin V + D01D12Sin U Sin û~v) 

0 0 0 
+ D D sin v sin (u-v) + DC sin u cos v 

02 12 01 02 

2 ' A  
+ DQ1C12S*" u cos(u"v) + D02Cl28in V coŝ u_v̂  

+ DQ2CQ^sin2u cos u + D^CgiSin2(u-v) cos u 

+ D^2C02sin̂ û,"v̂  cos v + 'C01C02COS U cos v 

+ CQ^CJ^COS U CO^(U-V) + Crt9C.,,cos v cos(u-v) 02 12 

Let & denote this determinant. 

Since (u,v) is a stationary point of W, 

(21) Cousin u = -C^2si-n(u"v) B rCQ^sin v. 



Hence, 

C12 - coisi" u = • cpa3ln v, 

sin(u-v) sin(u-v) 

Therefore, 

^01C02CO8 u cos v + ^02^12COS u cos(u-v) 

+ C02c12co® v cos(u~v) 

C01C02 
cos u cos v + sin v cos u cot(u-v) 

- sin u cos v cot(u-i-v) j 

= CQ1CQ2 [COS U cos v - cos(u-v)] 

- CQ^CQ^si11 u v* 

Bu t  ̂ ( ~ C 0 1 C 0 2 u  s i n  v )  i s  p o s  i t i v c  s l u c c  c 0 1 < 0 '  C 0 2 <  ° '  

and sin u and sin v are opposite in sign (from (21)). Also, 

D01 D02 ~ °12 ̂  sin̂ u > 0> sin^v >0, and 

• o 
sin (u-v) > 0. Therefore, " 

(22)  ̂> DQ̂ SIN2U [CQ2COS V + Ĉ 2COS(U-V')J 

+ DQ2sin^v [c01cos u + C^2Cos(u-v)J 

+ D^2SIN2(U-V) [CQ^COS U + ,  CQ2COS V J«  
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To complete the proof, we need only show that the 

bracketed terms in (22) are non-negative. 

For each x,y 6E, let 

(x,y) = { * | for some integer k, x < z + 2k7T < yj . 

Since sin u and sin v are opposite in sign, we may 

suppose u € ^0,77"^ and v€ • From (21), sin u ~ 

and sin(u-v) are also opposite in sign. Therefore, (u-v) € 0/ • 

Now, if u £ ̂ 0,77/2̂  (J {7/72J and- -v £ <0,72>U{#2), 

then u-v ̂  Therefore, there are three cases to consider: 

Case 1 

Suppose u€ ^TThtTfy and -v£ ̂7(/2,TT^. Then, 

(23) s i n  u  >  0 ,  - c o s  u  >  0 ,  - c o s  v  >  0 ,  a n d  - s i n  v  > 0 .  

Now, if u-v 6 U {̂ } > then cos (u-v) 4* 0, 

and since Cqi, Cq2> cos u> an<* cos v are negative, the 

bracketed terms in (22) are non-negative. 

Suppose u*v({-^/2,o). Then, from (23), 



sin(u-v) = - sin u cos v + sin v cos 

> - sin u cos v 

> s in u. 

Similarly, 

- sin(u-v) > - sin v. 

Therefore, since 0» we have by (21), 

Cg^sin u = - C 2̂sin(u-v) < C^sin u 

and 

CQ2sin v = - C12sin(u-v) < - C^sin v 

Hence, ?C01> - and - CQ2 > - C^. 

Also, 

cos(u-v) = cos u cos v - sin u sin v 

^ cos u cos v. 



Therefore, 

cos(u-v) K - cos u and cos(u-v) K - cos v 

Hence, 

Cg^cos u > - C^2cos(u-v) 

and 

Cq2COS v > - C^2cos(u~v)• 

Thus, the first two bracketed terras in (22) are non-negative, 

and since CQ^, CQ2» cos u and cos v are negative, the right 

hand side of (22) is non-negative. 

Case 2 

Suppose u £ ̂1f/2tTfy and -v £"^0,Tf/2^ {'W2.'} • 

Then, u-v € ̂  -77, -Till ^ . 

Let u' = u, v* = u-v, = C01, CQ2 = C^, and 

C12 = C02* Then, u'e<^72,Tf> and -v' 7?) and 

C^sin u1 = - C|2sin(u*v) 88 "^02Ŝ n V * 

Hence, by the argument used in case 1, with u, v, CQ^, CQ2I 

and C^2 replaced by u1, vV, C^, CQ2 and C|2 , 
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CQ1cos u + CQ^COS v = C^cos U' + C|2cos(u'-v1) > 0, 

C02COS V + CL2°0Ŝ U"V̂  = ^02COS V' + ci2cos ' ~v'^ ^ °» 

and 

C cos v + C cos(u-v) = C' cos u' + C' cos v1 >0. 
U1 1Z U1 vZ 

Therefore, the bracketed terms in (22) are non-negative for Case 2. 

Case 3 

Suppose u € ^0,7f/2y {T/2} and -v€^/f/2,/T^. 

Then, -(u-v) € ̂ -7f,-7172^ . Let u" = -v, v" = u-v, Cjjj = Cq2, 

C02 = C12' and C12 = G01' Then» argument used in 

case 2, the bracketed terras in (22) are again non-negative. 

Q «E «D« 

Lemma 3.4 

(0,0) is a maximum of W. 

Proof: 



Let 

32W 

•a-2-(0,0) 

H = 

a2w (0,0) 

a2w 

9v3u 
(0,0) 

a2w 

^v2 
(0,0) 

Then, from (20a), (20b), and (20c), 

H = 2k 

<4b0i) + <*1*2 8' (4b12> - 2̂s'<4b12^ 

'^**2 s' (4b12^ &o&2 S' <4bQl > + ̂ 1*2S' (^b^) 

Therefore, 

det H = (2k) *1°^ [^'^W + ̂ g,(4b12)][aOS'(4l̂ 2) + ̂ l8' 

- (4bI2>D | 

> 0 . 
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Hence, either the eigenvalues of H are both negative or both 

positive. But the sum of the eigenvalues of H is equal to 

the trace of H, and the trace of H is negative since g' ̂  0. 

Therefore, II is negative definite. 

Q.E.D. 

Lemma 3.5 

If the stationary points of W are non-degenerate, 

and if (u,v) is an interior stationary point of W, then (u,v) 

is a minimum of W. Moreover, if (u',v') is an interior 

stationary point of W, and if (u*,v') = (u,v), then 

(u'.v1) = (-u,-v). 

Proof; 

-2  
Let F be the set of all stationary points of W in E . 

Let 

F+ = ^ (u,v) | sin u ^ ojriF , 

and let 

F = F - F+. 



(F+ is the set of interior stationary points of W.) 

We note first that F* contains an even number of 

elements. For, if (H,V)€Ff+ , then so is (-tT,-"?), from (17), 

and (u,v) £ (-u,-v). 

Now, the only elements of F are (0,0), (0,5f), (7,0) , 

and ( Wt 7ft . 

Let M1 denote the number of stationary points of W 

of index i. Let 2t be the number of elements in F+, where 

t is an integer. Then, from lemma 3.3 and lemma 3.4, 

M° + M2 — 2t + 1. 

Also, 

M1 ^ 3, 

since the only stationary points of W which may have an odd 

index are the points (0^), (JT,0) and (ft). Hence, 

if the stationary points of W are non-degenerate, then 

° = R(2) " R(2) + R(2) 

= M° - M1 + M2 

3* 2t + 1 - 3 = 2t - 2, 



i 2 
where R(2) t*ie connectivity number of T . Thus, t ^ 

and so, either F+ contains two elements or F+ is empty. 

Now, it is clear from (20a), (20b), and (20c) that 

d2W/du2, 2)2W/3v2, and d2W/3uc>v are unchanged if we substitute 

(-u,-v) for (u,v). Therefore, if F+ f 0, then F+ contains 

either two maxima or two minima. But, F~ contains no minima, , 

o 
and F must contain at least one minima since T is compact. 

Thus, all interior stationary points of W are minima. 

Q**E «D • 

We may now compute an upper bound on the number of 

2m 
stationary points of V on T provided we assume that all 

9m 
stationary points of V on T are non-degenerate. The conditions 

under which this assumption is valid will be considered later. 

Theorem 3.4 

2m 
If the stationary points of V on T are non-degenerate, 

then there are at most 6m stationary points of V on T m̂. 

Proof: 

^2 
Let KCE denote the set of all stationary points 

of V on T2™, and let G be the set of ordered 4-tuples of the 

form (A,Bl,B2̂ )» where A Clm, B^CL m - A, ™ " A' an(* 

Xis a function on A such that = 1 for all if A. 



2m 
Assume that all stationary points of V on T are 

non-degenerate. 

We now construct a univalent function, F, on K into G 

An element p = £y^ £K uniquely determines 

the three sets: 

A(p) = |i sin yi,1 ^ . ID 

Bl(P> = {*• | ^ - A 

B2(P) = (j- | yij2 
= ^ " A* 

If A(p) =0, let 

F(p) = (A(p) ,B1(p) ,B2(p) ,0) € G. 

Suppose A(p) 0. Let 

Wp(u,v) = W(pX ,p2;A(p) .B-j^p) ,B2(P>) 

where (u,v) & E2 and p^£T^, i = 1,2. By Theorem 3.3, 

^1,1'^i,2^ *s an ̂ nter̂ -or stationary point of Wp for each 

i € A(p) . 



Let j £ A(p). Let u(p) = y and v(p) = y 
J > 

A J I * 

if y, . e<S,7T>. Othe wise, let u(p) = -y. , and 
j > L J » 1 

v(P) » -y, o • By lemma 3.2, there exists a function X(p) 
J > ̂  

2 
on A(p) such that >i<p> = 1, and, for each i£A(p), 

yL>1 = '(A(p))i u(p) 

and yi 2 = (X(p)>i v(p) . 

Let 

F(p) = (A(p),B1(p),B2(p),A(p)) 6 G. 

Then, F is on K into G. To show that F is univalent, 

suppose F(p) = F(p1) , p,p'€K. Then A (p) =A(p'), B1 (p) = Bj^ 

B_ (p) = B (p') , and hence, W = W , . Also, )^(p) = X(p') . 
L JL p P 

Therefore, if p f p1, then, (u(p),v(p)) ^ (u(p'),v(p*)). 

In other words, if p / p1 and F(p) = F(p'), then Wp has at 

least four interior stationary points. Thus, by lemma 3.5, 

to show F is univalent, it suffices to Snow that the stationary 

points of Wp are non-degenerate. 

Suppose (u",tf") is a degenerate stationary point of Wp 

on T*. Let p" ss £y^ j j £ such that 



^i,l ~ ̂  
for i€Bi^P) 

y'l 2 = V for i£B2^p^ 

/ ' 

y'| j = ^ 2=0 for i £ (m - A(p) IJ Bx (p) U B2 (p)) 

and y1' . = u", y'.' „ = v" for i 6A(p) . 
J. ) 1 1 > Z 

2m Then, by theorem 3.3, p" is a stationary point of V on T , 

and, by hypothesis, is non-degenerate. 

Since, 

^ 2V 

ayi,i^yj,i 

, —— = 0> 

ayi,idyj,2 

for i ^ j, the Hessian of V at p" is the determinant of the 

matrix: 



H 

02 02 

°2 M2 °2 

• ' t 

o2 02 02 

where 02 is the two by two matrix: 

o2 = 

0 0 

0 0 

and 

MJ 

92V/dyJ}1 ^^1,1 

B^V/dy. &y. 
X y x !• j fc 

d^/dy? 

The determinant of H is given by: 



m 
det H = det . 

1=1 

Since p"is non-degenerate, det H 0. Hence, det £ 0, 

i = l,2,...,m. In particular, for each i€A(p), 

0 ^ MJ = det 

^Wa(u",v") 
V u *  

^ W„A," „ll 

dudv 
*x(u",v") 

_^Wp.(u",v") 
dudv 

dv2 

which implies (u",v") is not a degenerate stationary point 

of Wp. 

Thus, F is univalent, and so, the number of elements 

of K is at most equal to the number of elements of G. 

To complete the proof, we now show that the number 

m 
of elements in G is 6 . 

k 
For a fixed ACT m, there are exactly 2 functions 

on A to {-1> l} ) where k is the number of elements in A. 

For a given bQ^ ̂  m - k and bQ2 ̂  m - k, there are 

subsets of m - A which contain bQ^ elements and 
m - k\ 
b02 

m - k] 

01 



subsets of m - A which contain bQ2 elements. Thus, there 

are 

m - k ' 
b01 

m - k I 

*02 2 

elements in G of the form: (A.B-^,B2> A) » where B^ contains 

>01 elements, B9 contains bQ2 elements and \ is a 

function on A to l} • It follows that the total 

number of elements in G of the form: (A,B^,B2» X), where 

the number of elements in B^ and B2 is unspecified, is 

given by 

m-k m-k 

[ I  

m - k  

b01 
m - k\ 2k _ 2^-va~ î 

b02 

subsets of m which contain Since there are 

k elements, the total number of elements in G is 

m 
1 m ,2m-k = 22m(1 + !)"» = 6m 

k=0 

Q.E 

To answer the question as to whether or not the 

upper bound given by theorem 2.4 is ever attained, we return 

our attention to the stationary points of W. 



Lemma 3.6 

Suppose (77,0)., (0,7/), and (/7,7/) are non-degenerate 

stationary points of W and suppose that the index of each 

is 1. Then there existi; an interior stationary point of W. 

Proof: 

Let M1" (i = 0,1,2) denote the number of stationary 

points of W of index i. Then, ^ 3, by hypothesis, and, 

since T1 is compact, ^ 1 and 1. Hence, there are 

at least five stationary points of W. But there are only 

four stationary points of W which are not interior stationary 

points. 

Q.E 

Lemma 3.7 

Suppose 

(24a)" Cf/g'(4b01) . G*/g'(4b02+4k) - C*/g' (4b12+4k) > 0, 

(24b) CX1/g'(4b02) - or2/g-'(4b01+4k) 

(25c) °V8' b̂12^ " ̂ 2^S* (4bQi+Alc) 

- %/&' (4bi2+4k) > 0, 

- ai/g1(4b02+4k) > 0. 
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Then there exists an interior stationary point of W. 

Proof: 

By lemma 3.6, it suffices to show that (24a), (24b), and 

(24c) imply that (?f/0) , (5",70 > and (7f,7?) are non-degenerate 

stationary points of index 1. 

For (<P,<//) equal to (1,0), (0,1) or (1,1), let 

Q = 

c01(-if +C12(-I)((M0 .C]L2(-I)«P-^ 

-c12(-i)W-Y> c 02(-i)f + C19(-1 W12' 

where 

Cqx = ^kol^ax g'| b̂oi+ 4k sin2I"77y| 

and 

°02 = 2kcf0<x, S'(4b02+ Ak Sin2iW9>) 

C12 = 2^0^ s'(4bi2+ 

The determinant of is given by: \ 
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(25) dct Q- Cqi Cq2(-1)^ ^ + CqiCi o (-lj1̂  + ̂ 02^12^"^^ ^ 

C01C02 _̂1̂  + ̂ 01^12 + C02C12^~1̂  

r ' .<p*-V 
K I *oizn 

s'(4b12 + 4k sinZ|(f"l^) 

+ • 2li=l£ __ 

g' [4b0l + 4k sin If <?] 

+  ^ ( - 1 ) ^  2 1  

8' (4b02 + 4k 8in %f\ * 

where 

K = 2kofQofiOC2 

g'|4biz+ 4k sin23T((J?-(/oJ g'( 41tq^+ 4k sin^G^Jg'|4bQ2+ 4k sin^j^J 

Since g' is negative, we have from (24a), 

det Q(0,1) < 0. 

But the Hessian of W at (0yf) is det Q(0,1), and since det Q(0,1) 

is negative, Q(0,1) must have one positive and one negative 

eigenvalue. Therefore, (0,7T) is non-degenerate stationary 

point of W of index 1. 



By (24b) and (24c), det Q(1,0) < 0, and det Q(l,l) ̂  0, 

and so, by the same argument, (0,70 and (Tf,7t) are non-degenerate 

stationary points of W and each had index 1. 

Q.E.D 

Theorem 3.5 

Suppose that, for each k, bQ^, bQ2> and b^2» such that 

k ̂  m, bQ1*£ m - k, bQ2 £ m - k, b^^m - k, and b12 ̂  bQ2 + bQ\> 

equations (24a), (24b), and (24c) are satisfied. Then there are 

Let K, G, and F be the same as in the proof of Theorem 

3.4. Then, it is sufficient to show that F is onto G. 

Let (A,BpE2>)0 €G. Then, by hypothesis and lemma 3.7, 

-  -  - 2  
there exists (u,v) € E which is an interior stationary point 

of W('pl,p2;A,B1,B2) . 

exactly 6™ stationary points of V on T m. 

Proof: 

Let 

and 

y"i,l = XiU and yij2 = XjV , i €A 

y"i,l =7f for i €BX 

yi 1 = 0 for i e (fn - A - Bp 

yij2 = 7T for i <£B2 

7i 2 = 0 f°r i € .(ro ~ A - B2) • 
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Then ^y^ jj is a stationary point of V by Theorem 3.3. 

Let p = ' Then> = A» Bl^P) = Bl> %(p) " B2 and 

X(p) = Therefore, F(p) = (A,B^,B2,A)€ G. 

Q .E .D. 

The next theorem settles the question as to whether or 

not the conditions of Theorem 3.5 are ever satisfied 

Theorem 3.6 

There exists g, OCQ, ot^, and Cf^ such that the number 

of stationary points of V on T m̂ is 6ra. 

Proof: 

Let (Xq = = <f~2 - 1, and let g' = -1. Then, (24a), (24b), 

and (24c) are satisfied for all k £ m, ̂ 01 ~ m " m ~ 

n» - k, and + b^* 

Q.E.D. 

We now develope analogs to theorems 3.4, 3.5, and 3.6 

9m 
for a lower bound on the number of stationary points of V on T . 

As noted in the beginning of this section, 

is a stationary point of V if sin = sin y£j2 = 

By the same argument used in the proof of Theorem 3.1, there 

are 4ra elements in the set, 



J I sln yi,l " siayl,2 ' °}nE"'2-

Thus, the following theorem is established. 

Theorem 3.7 

There are at least 4m stationary points of V on T2ra. 

Before stating an analog to Theorem 3.5, we need an 

analog to lemma 3.7. 

Lemma 3.8 

Suppose that strict inequality holds between the 

right and left hand sides of (24a), (24b), and (24c), but 

that one of the inequality signs is reversed. Then there are 

no interior stationary points of W, and, moreover, one of the 

points (Q,T?) , ' (93fO) > or (Tl*7fi is th^ unique minimum of W 

on T2. 

Proof: » 

Let Q(^>,yO be the same as in the proof of lemma 3.7. 

Then, by (25), (jf,t5), (0,7), and (If,if) are non-degenerate 

stationary points of W, since strict inequalities hold between 
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the left and right sides of (24a), (24b), and (24c). Hence, by 

lemma 3.3 and lemma 3.4, all stationary points of W are non-

degenerate. Therefore, 

12 0 M = M + M , 

where M1 is the number of stationary points of index i (i = 0,1,2) 

Since one of the inequalities in (24a), (24b), or (24c) 

is reversed, one of the stationary points, (jf,0) , (0,77) or 

is either a maximum or a minimum, and, since these are 

the only stationary points which may have an odd index,' 

M1 2. 

n r\ 

Since T2 is compact, M + M ^ 2. Therefore, 

1 0 2 M = M + M = 2, 

and so, there are but four stationary points of W, none of 

which is an interior stationary point. 

2 « * 
Since T is compact and (0,0) is not a minimum of W, 

one of the three remaining stationary points must be a minimum, 

and moreover must be unique since 



150 

M2 = 4 - M1 - M° ^ 4 - R 2̂) - R°2) = 1. 

Q IE .D • 

Theorem 3.8 

Suppose, for all integers k, bQi> bQ2 and b^2 such that 

0 ̂  k ̂  m, 0 bg^ ra-k, 0 £= bQ2 — ra-k, 0 — b^ ̂  m-k and 

0 £ bj^ — ^ol + ̂ 02' str*-ct: inequalities hold between the left and 

right hand sides of (24a), (24b) and(24c) and one of the inequalities 

is reversed. Then there are exactly 4ra stationary points of V on T2m. 

Proof 

Let K, G, and F be as in the proof of Theorem 3.4. Let G~ 

denote the set of all elements of G of the form (0, B̂ , B2» 0) • 

Recalling the proof of Theorem 2.4, the number of elements in G" is 

b01.o b02-o 

I 
Therefore, to complete the proof, we need only show that F 

is univalent on K into G~. 
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Let p = jyV Let k(p) , bQ1(p) bQ2(p) and b12(p) be the 

number of elements in A(p) B-^(p), B2(p) and (B^ (p) Ob2 (p) )-(B^ (p) UB2 (p) ) 

Then, since strict inequalities hold between the right and left hand 

sides of (24a) , (2.4b) and(24c) and one of the inequalities is reversed 

(for b01 = bQ1(p), bQ2 ^ b02(p), and b12 = bl2^P^» there are n0 

interior stationary points of Wp# 

Therefore, by Theorem 3.3, A(p) = 0, and so F(p)CG . 

Suppose p' = {/i j} €K and F(p) = F(p'). Then A(p) '= A(p') » 0, 

^^(p) = B1(p") and B2(p) = B2(p°). Hence, 

y"i3i = ?r = yl.i for i€Bx(p) 

yi,l = ° = y"ifi for - Bx(p) 

and 

yis2 = % = yi>2 for ieB2(P) 

yi,2 = ° = yi,2 for i€™ " B2(p) 

Thus, p = p8. 

Q |E »D« 
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Clearly, if we let g' ~ -1, and CCQ = cf^ = 1, then C\ 2 may be 

chosen so large that the inequality sign in (24c) is reversed for all 

integers k, bQ| , bQ2 and b^such that 0 — lc ^ m, 0 ̂  boi ^ m, 

0 £ bg9 m and 0 — b-^ m. Moreover, increasing CC^ increases the 

left hand sides of (24a) and (24b). This proves the following theorem. 

Theorem 3.9 

There exists &Q , 0^ , and g such that the number of 

2m in 
stationary points of V on T is 4 . 

Critical configurations for two and three charges on a 

2-torus are shown in figures 4, 5, and 6. 
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0 1 
P .. P 

index 2 index 0 

index 1 index 1 

Figure 4 Critical Configurations of Two Charges on T . 
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P1 V  

(1 configuration) (4 configurations) (2 configurations) 

P1 P* 

(2 configurations) (1 configuration) 

(A configurations) (2 configurations) 

Figure 5 Critical Configurations of Three Charges on T as Predicted 
by Theorem 3.9. 

Where more than one critical configuration is indicated, the 
others may he obtained from the one given by rotating the 
axes 90 degrees or by interchanging pi and p2. 
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(4 configurations) (8 configurations) 

(A configurations) (A configurations) 

Figure 6 Additional Critical Configurations of Three Charges on T 
as Predicted by Theorem 3.6. 

Where more than one critical configuration is indicated, the 
others may be obtained from the one given by rotating the 
axes or by interchanging p* and p^. 
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