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ADSTRACT

problem of cnumeratine the critical (equilibrium)

configurations of n-charges constrained to lie on an m-dimensional

torus is dnvestigated. This problem is cquivalent to the

enumeration

of the stationary values of a real-valued function

defined on an m(p-l)—dimcnsional torus.

The
function of
charges.
| The
two charges

of critical

law of mutual repulsion is assumed to be a decreasing

the square of the 2m-~dimensional distance between the

number of critical configurations for the case of
is shown to be 2". TFor thrée charges, the number

configurations is between Am. and 6", By appropri-

ately choosing the law of mutual repulsion and the weights of

the chargeé, both the upper and lower bounds may be attained.

The

principal tools used in this investigation are some

results of M., Morse's topological theory of critical points.,

A brief development of these results is included.

vii



INTRODUCTION

A probliem which arises in connection with an eafly madel of
ﬁhe atom Ls thal 'of finding the stnblé Configurations of electrdns
on g2 cooducting ~gheve ¢Whyte, 1552). A generélization of this
problem will be considered here; namely, thé determination of the
tvpe aud nurber of criticél configurations of N charges constrained
e lie on @n m-dimevnsionsl torus and acted upon by a fairly general
law of mutuai reﬁulsion. The formal statement of this problem will
be deferred until Chapter 3 wherevit‘will be formulated in terms of
classifying and enumerating the stationary points of a real-valued
function defined on = compact,m(N-l)-dimensional manifold. The
main tools used to attaék this probiem are‘some results of.M. Morse's
topological theovy of critical poiﬁ.ts°

A method for determining the maxima (minima)'of a differenti-.
aﬁle, real~valuved function, f, defined on an m;dimensional, differ-
entiable mwanifold, %fﬂ, is to seek solutions ofbsystems of equations
65 the form:

£0T™1 (x voasX .
) (T (e oxpseeen®y)) 0, 1i=1,2,.0.,n,

Bxi

where T is a homeomorphism of an open subset of MU onto the open



n-dimensional disc:

n e PR ' 2 2
V = { (-‘hl,xz,-nn,}-n) }{1 +- xz

+ eee + xﬁ <1 }.

A point, y; of 2@2 will be called a stationary point of £ on‘771
if T(y) satisfies a system of thelform (*). In general, there will
" be statiomary points>which are not extrema of £, since (%) ;s only
a necessary condition for an extremum.

If 77L is compact, tﬁere are a£ least two stationary points
of £ on 77t since a continuous real-valued function on a compact set
has a maximum and a minimum. However, the Morse Theory shows that
the total number of stationary points is at léast as large as the
sum of a set of topological invariants of 271 known as the connectivity
numbers kor.mod 2 Betti numbers) of 27&_ In general, this:sum‘will
exceed the number two; For example, the sum of the connectivity
numbers of the ordinary (Z-dimensiénal) torus is four.

Another consequence of the Morse Theory is that if certain
connectivity numbers of ?71'do not Qanish,-then there are necessarily
stationary points of £ on 27ZVﬂﬁ£h do not correspond to extrema of
£f. Again, the torus provides an example. For, on the torus, there’
are at least two stationary points of a differentiable, real-valued
function which are neither maxima nor minima of that function.

A stationary point, y = T'l(xl,xz,...,xn), of £ is said to

be non-degenerate if the Hessian of the composite functiom, foT~l,



does not vanish at (xl,xz,...;xn). The index of a non-degenerate
stationary point is defined to be the number of negative eigenvalues

of the matrix:

Bzf(T'l(xl,xz, ceesx )

axi axj

If ?71 is compact and if the stationary points of f are non-degenerate,

then the following equation due to M. Morse (Morse, 1925) is valid:

i=1 1=

where Hi denotes the number of stationary points of index i, Ri is
the i-th connectivity number of 27Z and n is the dimension of 271.
Under certain coﬁditions, this relation may be»used to find the

ex#ct number of stationary points of a real-valued fuﬁction on a
 manifold. An example of this may be found in a paper by H. Cobn
(Cohn, 1960) . Another example will appear'in Chaptér 3, below, where
the Morse Equation is used to derive an upper bound for the total

number of critical configurations of three charges on an m-dimensional

torus.

In the following, the first chapter contains a brief review

of some of the definitions and results of combinatorial topology.

-



Chapter 2 is devoted to a proof of the Mbrée Equation for a compaét
mnniféld. The préhlem of dcfermining ;he number of critical config-
urations of chhrﬂcs on an m—=dimensional torus is discuséed in.Chapter
3! ~In that cﬁapter, the law of mutual repulsion is assumcd to be a
dccreasinﬁ functioﬁ of the squarc of‘tﬁe Zm—dimcnsionnl Fuclidean
distance between the charpes. The numher of critical configuration
of two charges 1is shown to be 2™ while, for thrcé charpes, the
number of critical confipuration is ‘shown to be hctwééh 4™ and 6",
By appropriately choosing the iaw of repulsion and the weiphts of the
charges, both upper and lower bounds may be Attained in the three

charge case.



CHAPTER 1

TOPOLOGICAL PRELIMINARIES

The Morse approach to the study of stationary points is
centered around the topological concepts of absolute and relative
cycles and continuous deformations. Thus, by way of introduqtion,
this chapter will be devoted to a discussion of these and other
concepts of combinatorial topology. A general and more complete
account of the materisl presented here may be found in the standard
texts on combinatorial topology. (See, for example, Seifert and
| Threlfall, 1934 and Pontryagin, 1952.) ’

The proofs of tﬁeorems presented in th;s chapter will be

given in outline form or omitted completely.

1;1 EUCLIDEAN SIMPLEXES

" Let E® denote Euclidean n-dimensional space, and let
a, bEE™, The set of all points of.the form ta + (1 - t) b,
where t is a real number and 0£t-<l, is called the segment °
joiningla and b. A set A CE™ is convex if, for aﬁy two elements

X, YE A, each point on the segment.joining x a:id y is also an

element of A,
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Let A be any subset of E". The intersection of all convex sets

which contain A (as a subset) is called the convex hull of A. It is

' easily verified that the intersection of any number of convex sets is
also a convex set; i.e., the convex hull of a set is convex. In the
sequel, the convex hull of a set, A, will be denoted by of£A.

A finite subset {ao, 813 vees aq} of E® is said to be an

I
independent set if q = 0 or if >0 and the vectors a; - a,, az.- a,,

veey 8q - 85 arE linearly independent; that is, if the vectors

ai - 85, 8 = 8, -++; 8g - 85 generate a linear vector space of
dimension q.
Let A = {ao, 81y ceey aq}C:En be an independent set and let

T be the set of all points of the form

(1) ] X = 2 hfai_

i=0

where, for i = 0, 1, ..., q, A; is a non-negative real number and

A =1,
1=0

By an easy calculation, T may be shown to be convex with ACC T.

Therefore, the convex cover, A of A has the property that every
point x € AA may be represented in the form of equation (1).

Mcreover, the independence of A guarantees that this representation



is unique. - The numﬁera A ’Xl’ Ceey Xq are called the barycentric
coordinates of x. On the oﬁher hand, every point of EM which admits
a representation in the form of equation (1) ié an element of qu,
and hence ¢CA = T. (see Eggleston, 1963, p. &)

| The convex hull of an'independenﬁ set uﬁiquely determines
that set. For, if A and B are twd independent sets and JEA = OcB.

then A = B, (Pontryagin, 1952, p. 10).

Definition 1.1

A set S C E® is called a Euclidean q-simplex or simply'a

Euclidesn simplex if there gxiscs.an4independent set Aof q+ 1
points such that S = L A. The elements of thé unique set A are
gélled the vertices of S, and q is called the dimensién of S.

| The Euclidean 0, 1, 2 and 3 simp}exes are, respectively
points, straight line segménts, triangles, and tetrahedromé.

In the sequel, whenever a symbol of the type <A is used
to denote a Eucli&ean simplek, it is to be understood th;t A is the
set of vertices of AN aA. | |

Clearly, any non-empty spbs?t of an independent set is also
independent. Hence, if OLA is a Euclidean simplex and § # BC A,

. then B is a Euclidean simplex.



- Definition 1.2

A Eﬁclidean q-simplex; ¢IB, is a s-face or simbly a face of a.
Euclidean simplex, aﬁtA,.if B is a subset of A. oL B is a proper face
of A .if- B is a face of oA and B £ A. |
- - When considering‘collections of Euclidean simplexes, it is
desirable that the various Euclidean simplexes 'fit together" in a

certain prescribed manner. Two Euclidean simplexes, S and T, are said

to be properly situated 1f SNT = #§ or SNT is a face of 5 and a face

of T.
Definition 1.3

A collection, K, of Euclidean simplexes is a complex if
(1) Every two elements of K are properly situated.

(ii) Every face 6f an element of K i8 also an element of K.

The set of éll faces of & Euclidean simplex, S, (including S
itself) is an example of a complex. The set of all propér faces of

S 1s also a complex. These complexes will be denoted by s and S°,

respectively; 1i.e.,
'é = {t i t is a face of S} ,‘
and $” = {t l t is a proper face of s‘}.

Unless otherwise stated, all complexes will be assumed to be

finite. (i.e., contain only a finite number of simplexes.)



The union of all simplexes in a complex, K, is called a
polyhedron and will be denoted by ‘R'. K is called a triangulation
of IKI. ‘

1.2 CONE CONSTRUCTIOvaNORMAL'SUBDIVISIONi PRISM CONSTRUCTION

Three methods‘of constructing a new complex from a given
complex-will‘now be i#tfoduced. The first of these, thé cone
constructiOn, islintroduced priﬁarily,to simplify the other two
constructions. The secorid construction, normal subdivision,
provides a method bf triangulating a polyhedron into simplexes
of arbitrarily small diameter. The third consﬁruction, the prism
construction, will be used later to relate two functions defined on

the same polyhedron and to relate a complex to its normal subdivision.

The Cone Construction

Let FC E™ and let a€ E®. The point, a, is said to be in

general position with respect to.F if a€F and if for any two

distinct points x€F, y€F, the segment joining a and x and the
segment joining a and y have exactly one point in common, namely

the point a.

Definition 1.4

Let FCEP, and let a’(—:lEn such that a is in general

position with respect to F. The set-theoretic union of all
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gegments joining a and points of F is called the cone with vertex

a and base F, and is denoted by aF. Thus, aF is the set of ali

points of the form at + (1 - t)b, where 0t =1 and b is an element
of F.

Let S = Cﬂf{qo, 8y ees qq} be a Euclidean q-simplex, and

“let a be in general position with respect to S§S. Then {a,ao,al,...,aq}

~ 18 necessarily an independent set,'and the cone, aS, is the convex

cover of this set; i.e.,

as = d'{a, a3s e aq}.v

(See Pontryagin, 1952, p. 45) Thus, aS is a Euclidean q+1 simplex.

Definition 1.5

Let K be a complex and let a be in general position with

respect to lK'. Then the cone complex with vertex a and base K,

-denoted by aK, is the set of all cones of the form aS where S is

a -Euclidean simplex of K. In set notationm,
aK = {as] se:x} .

It may be shown (Pontryagin, 1952, p. 46) that aK is

~a complex, K is a subset of ak, and laK' =~a|K|.
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Normal Subdivision

Let S = cf:{ﬂo- 81, o0 aq} be a Euclidean q-simplex. Thg-

(unique) point in S whose barycentric coordinates are each equal to

'1/(q+1) is called the barycenter of S, and will‘Be denoted by b(S).

Thus,

B(S) = i a,.
g qu: t

i=1

It may be shown (Pontryagin, 1952, pp. 43-44) that b(S) is in génerél-

position with respect to S~ and that b(S)IS'l = S.
For any ccmplex, K, let K4 denote the set of all simplexes

of K whose dimensions are at most q:
K1 = { S I S is an r-simplex and r‘q}nK.

It is easy to show that Ki is a compiex; i.e., K9 satisfies (i) and
(i1) of Definition 1.3.

The normal or barycentric subdivision of a complex, K, will

be denoted by 1K. Since the purpose of normal subdivision is to obtain
a triangulation whose simpiexes have arbitrarily small diametérs, and
sin;e the diameters of the simplexe§ of K° are as small as possible
already, the normgl subdivision of K° is defined to be K°. The
l-simpléxes of K may'be replaced by smaller l-simplexes by dividing
each l-éimplex in half. 1In other worﬁs, each 1-simp1éx,

S = gﬁ:{ao, al} GIKI,'may be replaced by the two l-simplexes,
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, (ﬁ'{-i—(ao +ap), ao} = b(S) {ao} and d{-;—(ao +ap), ai} = b(s) {ay} -
.Therefore, the normal subdivision of K! is defined go be tﬁe set of

all 1-simp1exes of the form b(S) {a}, together with the faces of these
simﬁlexes and all Ojsimplexes inlxﬂ,where sE Kl and a 1is 84vertex of S.
(in general, there will be O-simplexes in K® which are not faéés of
i—simplexes of Kl. Therefore;”Ko must bg included in the subdivision
of‘K1 to ensure that I1K1|'= IKll.) To extend this procedure to the
éompiexes Kz, K3,‘etc.; suppose q>1 and that the normal subdivision
of K9-1 has been carried out. Then the proper faces of-each simple*
of K% are alfeady subdivided, ﬁnd hence, as suggested by the method of |

_subdividing K

, the procedufe for subdividing K9 is to construct cones
of the form b(S)T, where S is a q-simplex of K1 and T is a simplex |
in the subdivision of some proper face of S. To ensure that sudh'
cones are defined and that no points arevadded to or deleted from the
polyhedron |KI by suéh a grocedure, we require mot only that 1Kq'1 be
a complex su¢§ that {lKQ‘ll ; !KQ'll, but also thgt,for any complex,
L, such that L CKq‘-l,‘ L.is a complex, lLC- qu'l, and IIILI: = ILI .
Then, in particular, for any q-simplex, S, of K%, ;8 is a complex.

'andltls'l = [S’l.‘ Hence, the set of all cones of the form b(s)T, .
vtogether with the faces of these simplexes, is the complex b(S)(ls'),

- where T is a simplex in the subdivision of a proper face of S.

Moreover,

b(s)(ls')l = b(S)Is‘I = S.



13
’fhe normal subdivision of K9 is now carried out by adding,to
1’Kq'l, all complexes of the form b(s) (187, 'where S is a q-simplex of
k4. Thﬁs, for each q-simplex, S, of K4, a complex whose polyhedron is
S is added to ;K971, |
'Thils constrﬁction is f_ormalij described in f:he following

-

definition.

Definition 1.6 (Normal Subdivision of a Complex)

Let K be a complex:
(1) 1K° = K°, ,
(11) 1f ¢>0, and if, for any complex, L, such that LCKq'l,

' 1L is a complex, |1L|_ = [LI. and lL,C IKq-l’ then

1K = (1K9“1)U( U b<S)(1S')), |
' SE K1 i

It way be shown that, for all qhb, ll(q is a complex,
'I1Kq| = Iqu, and, for every complex L such that L C K9, 1I.C ll(q.
In particular, 1K ié é complex' andlll(l = lKI . -

The normal sub'diviéion of a complex consisting of a single
Euclidean 2-simplex aﬁd ité faces is shown in Figure 1.

Let K depote the complex obt:ﬁined from the complék K by
normally subdividing K r-times.l To be more precise, let K = K
and, for any r =0, let (e+1)K = 1K) -

For any s_hbset, A, of E®, let p(A) denote the diameter of A.



° N
° 6'- ° 0
0 0
K 1K

Figure 1.> The normal subdivision of a‘complex coﬁsisting of a

2-simplex and its faces.

14
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The following theorem shows that if lKl is a polyhedron,

then the normal subdivision process may be used to obtain

triangulation of !K‘ whose simplexes have arbitrary small diameters.

Theorew 1.1.

Let K be a complex, and let d be the maximum diameter of the
simplexes of K. Let q be the maximum dimension of the simplexes of

K. Then the diameter of each simpiex of 11( is at most qd/.(q+1) ; L.e.,
'P(S)é(——-q—) d
q+ 1
for all s& 1K It follows that, for any integer T ®» i,

. T
P(T) é(q—g—r) d

for all T € K.
The proof of this theorem may be found in Pontryagin,(l952,

pp. 50-59 or in Seifert and Threlfall (1934, pp. 49-50).

The Prism Construction .

Throughout the remainder of this chapter, E™ will be regarded

n+l

as a subspaée of E and the unit vector of E“'”' which is normal to

every vector of E™, will be denoted by e.
For any two sets, A and B, such that AC E® and B CE,
the symbol A X B will be interpreted either as the usual cartesian

product of A with B or as the set of all po'int:sv of the form
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X + rTe

where x€ A and '7€ﬁ.'
Let I denote the closed.unit interval; 15e., the set of all
XxE€E such that C£ x=1. |
| Lét K be'any‘complex such that K C EP. For each r€l,
lét KT be the complex obtained from k by translating.each simplex
of K a distance 7 off the hfperplgne E® in the direction of the

vector a. - In set notation,

Ker = {s x {7} l sex}.

The prism construétion is introduced to‘provide a method of
triangulating ghe set IKl X I in such avway that the triangulation
contains the complexes K-0 and (rk)i as subsets. This triangulqtioh
will‘be denoted by K-iF, where the r refers to the index in (rK)'l.
.'Some applicatic;ns of this comstruction will_ appear in Section 1.6.

Let S be a Euclidean simplex. The set s‘x I is called the

brisﬁ with baée S. (If s is a.Z-simple#, then § X I hésithe'shaée.of
the common optical prism.) The éoint c(S) = b.(S') + (1/2)e is called
the cgnter of the prism, SXI. The top and bottom of this prism afe,
respectively, the sets § X{O} énd S x,{l}, and thg sides aré ptismﬁ and
are of the form T x I where T is a simplex of S~. It can be_ shown

(;ee Pontryagih, 1952, pp. 73-74), that c(S) is in general position
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with fegpectfto the set of alllpbints which form the top, bottom and
sides of this prism; namely, (lS'| x DU x {1})LJ(S x.{O}), and
'chat the cone with vertex c{S) and base (|s‘| x IDU( x il})LJ(va{O}) |
is the prism S x 1I.

As in the case of the normsal subdivision of a complex, the‘
triangulation of K x I will be defined by induction, by considering

the compiexes K, Kkt

, etc.

If S ié a O-simplex, then S x I is already a l-simplex and
therefore, need not be tirgngulated. Therefore, K*-1° is defined ﬁo
be the set of all simplexes‘of the form S x I, S éEKO, together with
the simpiexes of K°:0 and K°-1 = (£K°)1.

If S = dﬁ{mos al} is 5 l-simplex, then the simplexes S x {0} s
{ao} x I, {alf % I, together with their faces and the simplexes of
-(ré)'l form a subdivision of the top, bottom and sides of S x I.
Hence, the set of all comes of the form c(S)T constitute a sub-
division of § x I, where T is a.simplex of the subdividgd top,

bottom or sides of S x I. But these cones and their faces form

the cone complex:
c(S) [(s'-lt)u{sx {o}}u((ré) ?1)] .

' Moreover,

e(8) [(s*-zf)u{s x {ohhU(® -1>] :
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i

c(8) [(|S'] x DU x {o}yrues x {1}) ]
= § x I.

Hence, Kl 1Y is defined to be the union of all such cone complexes
for which S€(xl - K9) and, as in the case of normal subdivision, all
simplexes of K°*1IF¥ must be included to ensure that lKl'Irl = IKII x1I.

) Thefeforé,

KL 1¥ = kO-1T U ‘c(S) [(s'-lf)u ({s} -O)U(ré)-l]
-' s €(K1-k°) |

This procedure is extended to ll(ql x I, for q>1, by
induction. Assume kq-l.Ir is defined in such a.way that for each
q-simplex, S of K4, §-IF is a complex, é.irCKq-l.‘ir’ and
lS“-Ir' = lS'l X I. Then the simplexes of (?é)'l and $™*I¥, together
witﬁ the simplexes ’of S X {O} , form a subdivision of the top, bottom
and sides of S X I; and the construction of K9'I' proceeds as in the
case of q = 1.

The -construction of K-IF¥ is formally described in the next

definition.
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Definition 1.7 (Prism Construction)

Let K be a complex.
(1) k9T = @)U O -1)U{s x Ilsexo}
(i1) Let g=>1 and suppose Kq'l.Ir is a complex such thgt:
(a) !Kq-l.lrl = IKq'1| x I
(b) 1f M is a complex such that MCKq']‘, then M.IT
is a complex and M.IY C K49-1l.1%,
() k9.0 KI"LIT and (k4D KITLoIT,

Then

k41T = (k9119 Y U c(s) [ (s'-xr)u[{s} -o) U(s-1)
| sekd-ki-1 - R

The proof thzt K9.1* is a complex such that IKq.IrI = qu xI,
k4.0 Ck4.1%, (1Kq) 1CKY-1I for all q=0 may be found (with a slight

modification) in Pontryagin, 1952, pp. 74-77.

The triangulation of a prism whose base is a 2-simplex is shown

in Figure 2.

1.3 SINGULAR SIMPLEXES AND SINGULAR CHAINS

To extend the ideas of the preceeding sections to curved

' geometrlc figures and to more general topological spaces, the concept

of a singular simplex will now be introduced.



k0. 11

k2.1l

k-1l

Figure 2 Triangulation of a prism with a 2-simplex for a base.
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Heuristically speaking, a singular qésimplexvis a continuous .

function defined on a Euclidean q-simplex of arbitrary size, shape

and location in EP. To present a more precise definition of a

singular simplex,let 7; be the set of all continuous functions whose

domains are Euciidean q-simplexes. For each_SGf?V, let S denote the

V domain of S. (By the definition of Jv , S is a Eﬁclidean q-simplex.)

Let R be the following relation defined on Zﬁﬁ for any two

-elements S and T of 'a;, let (8,T)ER 1if there exists a non-singuidr

affine transformation £ on S to T such that the composite function,

Teo f, is equal to‘S; that is, 1f there exists a transformation of the

form:

q L
f(x)i = aijxj + bi’ 1=1,2’-.o,n,
i=1
such that for each x€S5, T(£(x)) = S(x), where, (1) f(:{)i and x;
denote, respectively, the components of £(x) and x relative to the

usual basis of ET, (ii) the d&j's and b;'s are real numbers, and,

(1ii) the aij's form a non-singular matrix. It follows from the
pfoperties of affine transformations that R is an equivalence

relation.

Definition 1.8 (Singular Simplex)

The equivélence classes induced on Z; by R are called

singular gq-simplexes, or simply singular simplexes.
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In the remainder of this discussion, representatives of these

classes, rather than the classes thémselves, will be called singular

g-simplexes. Thus, for our purposes, a singular q-simplex is a
continuous function whose domain is a Euclidean q-simplex. Further-
more two singular q-simplexes, S and T, will be regarded as equal if

there exists s~ affime mwapping, iy such that f maps S onto T and

T~ f =8. The range of a singular simplex S will be denoted by |Sl

Let S be a singular q-simplex and let S = di‘{ao, ajyeees aq}.

| Then, § i% a degenerate singular simplex 1if there exists an affine
transformation £ of S onto itself such that S(f(x)) = s(x) for all
X€S, and ((a,), £(a;), ..., f(aq)) is an odd permutation of the

vertices,(ao, @y eeey aq).

Definition 1.9 (Singular Chain)

(i) A singular q-chain is a finite collection of singular

q-simplexes. For all q, B (the empty set) is a singular g-chain.
(ii) 1f C is a singular chain, then the set-theoretic union

of the ranges of all non-degenerate singular simplexes of C will be

denoted by ICI. Thus, if C' denotes the set of all non-degeneréte

simplexes in C, then

ol = U_lsl-

sec'
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(iii) 1If C, and C, are singular q-chains, then the sum of

c

1 aqd Cz,.denoted by C1 + CZ’ is defined by

cy + Cp = (¢3Ucy) - (c1N¢Cy) .

By Defiiition, if C is a singular chain, C + C = @.
If C = {Sl, Sgs erey Sr} is a singular gq-chain, then C may

be written as the sum

‘We shall sometimes omit the brackets and represent C as the "formal"

sum. \

In particular, the chain C ={E§} shall sometimes be written as

Let G be any set. A singular q-chain, C, is said to be in G

1f the range of each simplex of C is a subset of G.
1.4 THE BOUNDARY OF A SINGULAR CHAIN

For any function £, let £|A denote the restriction of f to

the set,A. In set notation,
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'fIA = f ﬂ{(x,y)’ I xEA} .

Clearly, if S is a singular simplex and t is a p-face of §, then
Slt is a singular p-simplex. Slt will sometimes be referred to as
a p-féce of the singular simplex S.
For any finite set A = {ao, a1y cees aq}, let
{ao, a1, eoey 31, ey aq} denote the set obtained from A by removing

the element a;. Thus

{ao,al,...,ai,...,aq} = A - {ai} .

Definition 1.10 (The Boundary of a Singular Chain)

(i) Let S be a singular q-simplex with qx1l. The boundary of

the singular q-chain, S , denoted by 9S, is the set of all q-1 faces

of S. Thus,

9S

SI &{aosal,ooo,ai,uco’aq} .

1f q = 0, then 95 = #.
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(1) Let C = ﬁj Sy be a singular q;chainr .Then the boundary

i=1

of C; denoted by aC, is defined by

r

dC = Z aSi .

i=1

i
S

(ii1) a¢

" Clearly, if ¢ is a singular q-chain, then 9C is a singular

q-1 éhain. Also, if C1 and Cy are two singular q-chains, then

aC]_ + aCZ = a(Cl + Cz).

An important property of the boundary operator, d, is given

.t

in the following theorem.

Theorem 1.2

Let C be a singular q-chain, Then
aac = B.
Proof

1t suffices to consider a singular q-chain consisting of

the single singular q-simplex S. Let
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S = Of{ao, a5, oot aq}'.

Then

a9s l dl{ao,ai, ...,ﬁi,...-,aq}

99S =
i=0
i-1 I
. . A N
= i Z S , dl{&o,al,-o.,qj,...,ai,...,aq}
i=1  j=0 ,
+ i S I ﬂ{ao,al,-o.,’&‘i,...,’a\j,...,aq} .
=0 j=141 .

and since each q-2 face of S appears exactly once in each summation,’

338 = @,

Q.EID.

1.5 CYCLES AND CONNECTIVITY NUMBERS

Twojsingular q-chains C; and C, will be regarded as equivalent

if |Cl + Czl =@; i.e., 1f C} + Cp = @ or Cy; + Cy contains only
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degenerate singular q-simplexes. Equivalence of singular q-chains

will be denoted by the symbol £ .

Definition 1.11 (Absolute Cycle)

A singular q-chain, C, is an (absolute) q-cycle, or simply a

cycle, 1if

ac = ¢,

From theorem 1.2, it followé that;if a_q-chain, C, is a
bound#ry, (i.e., if there exists'a singular q+1 chain D such that
© ab =C),thgn C is a cycle. The subjecﬁ of combina;ional tobology
is centered around thevexistenée of cycles which are not boundaries.

In the remainder of this section, let G be any set.

Definition 1,12 (Bounding Cyéles; Hoﬁqlogqus Chains)

(1) A q-cycle, C, is said to be a bounding cycle (in G) if

there éxists a singular q+1 chain, D, in G such that

9D = ¢

(11) Two singular q-chains, Cy and Cp , are homologous‘in G, |

written
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C,~ ¢y (in G),

1

if C;{ + Cp is a bounding cycle in G. In particular, if C is a bounding

cycle in G, Then
C ~ ¢ (in G).

Definition 1.13 (Connectivity Numbers)

(i) Let K = {Cl’ Cps vees Cr} be a set of q-cycleé in G.

The set K is said to be homologically independent (in G), if for

evefy non-empty subset,{ci s Ci s e0es Gy % of K, the éorresponding
: : 1 2 8
chain,

C + C + -on‘+ Ci ’\'

L 7 T4, s

is not a bounding cycle (in G).

-~

(11) The maximum number of homologically independent q-cycles

(in G) is called the g-th connectivity number of G. The q-th

" connectivity number of G may be infinite.
(The ¢-th connectivity number of a set G is also known as .

the q-th Betti-number (mod 2) of G.)
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In the remainder of this section, let Z be any subset of G.

Two singular q-chains, Cq and Cé, in G are said to be equal

(mod 2), written

if |c1 + c2|C 7.

Definition 1.14 (Relative Cycle)

A q~-chain C in G is a (relative) cycle (mod Z), if aC = ¢

(mod 2) .
Definition 1.15 (Relative Boundaries and Relative Homology)

(1) Let C be a g-cycle (mod Z). Then C is a bounding cxcle

(mod 2 ih G) if there exists a q+l1 chain, D, in G such that

+

3D = C (mod 2).

(ii) Let ¢y and C, be singular q-chains in G. . Then ¢y is

2
homologous to Cy» (mod Z in G), written

C, ~C, (mod Z in G), .
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if Cy + C, is a bounding cycle (mod Z in G).

Definition 1.16 ‘(Relacive Connéctivity Numbers)

(1) Let K = {Cl’ Coy eoey Cr} be a set of q-cycles @od Z) in

G. Then K is homologically independent (mod Z in G), if, for every

non-empty subset,

{Cil’ Ci.z’ ooy cis}

of K, the corresponding chain,

C + C + [ I + c
il 12 } is )

is not a bounding cycle (mod Z in G).

(1i) The maximum number of homologically independent (mod Z

in G) q-cycles (mod 2Z) is called the g-th connectivity number (mod Z)

of G.

1.6 DEFORMATIONS ; NORMAL SUBDIVISION; SIMPLICIAL APPROXIMATION

The topics of this section form the core oi-the topological
techniques which Qill be used to prove the theorems in Chapter 2.
These topics are presented from an algebraic'viewpoint in the modern
texts on topology. However, the approach adopted here Qillubevmgre

geometric then algebraic.



Deformations

Let H be a subset of a topological space G and let f be a
function on H X I into G. For each r€I1, let £, be that function

on H such.that for each x&H,

f.(x) = £(x,7).

The function,f,is called a continuous deformation of H in G if £ is

continuous on H X I to G, and fo is the identity map of H.

T
Let C = Z S
i=1

i be a q-chain in H and let £ be* a contimuous

deformation of H in G. Then,for each i, ‘the composite function
fl o 59 is continuous on §i. to G,.and is therefore, a »singular

q-simplex. Hence, {fl o S, f1 083, o0y fl o Sr} is a singular

q-chain in G. Let D denote this chain. Then we say that f deforms

-

the chain C into the chain D. The next theorem shows that these two

chains are related through "connecting" chains in G.

Theorem 1.3

K} |

Let C = i S; be a singular q-chain in HC G and let f be a
i=1 :

continuous deformation of H in G. Let
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‘ Then there exists a q+1l chain, U, in G and a q-chain, V, in

E[Iaclxl] (the image of léClXI_under £f) such that

dU = C+D+V .

Outline of Proof

For a given i, let Al, AZ, «ves Ay be the Euclidean g+l
simplexes of §1.10 and let By, By, .4, By be the Euclidean

q~-simplexes of §'1.Ios Let gl be that function defined on

gi X I such that
gl(x + re) = £(5,(x),7)

for all x€Sj and rEI.

Clearly gi is continuous on §, X I, and so the functions

i
gi|AJ; j=1, 2; easy @, are singular q+l simplexes and the

gilBJ's, j=1,2, «..y, B, are singular q-simplexes. Let



u = Z 8iIAj ,
=1
and let
{
vy = gl Bj"
j=1

(see Figure 3)

Now, it can be shown that each Euclidean q-simplex of §i.1
thch does not lie on the top, bottom, or a side of §1 X I is a face
of an even number of q+l simplexes of §k.10. (See for example,
Alexandroff and Hoff, 1935, p. 197, eq. 2) Hence, the only q-faces
of the singular q+l simplexes of uy which are not fgceb of an even

number of thg gilAj's are the simplexes
tglls X{Of = g& .
i i
i = gl = ’
g Isi.x {1} 4] , fl o Si,

and the simplexes of vy. Therefore,

aui = Si+ flosi + Vi

33
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Figure 3 Construction of cbtmecr.ing chains.
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The conclusions of the theorem are now satisfied by setting

. a
' i=1
and ,
V ] i ! Vio
' i=1

(For a detailed proof.see Seifert and Threlfall} 1934, p. 31)
If C is a cycle, then !60' =@ and so v = . Therefore, an

important consequence of this theorem is the following corollary.

Corollary 1

If C is a cycle, then

C~D (in G).

A similar result holds for relative cycles:

Corollarxlz

If C is a cycle (mod Z) and if f[laCI % I] C Z then

C~D (mod Z in G).

35
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Normal Subdivision of a Chain

The normal subdivision of a complex will now be used to

subdivide a singular chain.

Definition 1.17

(i) Let S be a singular simplex and let Aj, A2, ..., Ag

be the Euclidean g~simplexes of k§. Then

a

S =) sl

i=1

(ii) Let C = S be a singular q-chain. Then
» i=1

It may be shown that -if S is a degenerate singular simplex,
then kS = ﬂ. Hence, by Theorem 1.1, every singular chain may be

replaced by a singular chain whose simplexes are "arbitrarily small"

- in some sense.

The requirement of definition 1.6 that jL be a subset of 1K

whenever L is & complex and a subset of K suggests the following theorem.
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Theorem 1.4

1f ¢ is a singular chain, then
ake = 1 9¢.

The proof of this theorem may be found in Seifert and

Threlfall, (1934, p. 30).

In the modern approach to algebraic topology;‘fhe invariance
of certain groups (i.e., the Betti groups)‘of a polyhedron under
normal subdivision is demonstrated. The next theorem and its
corollaries may be regarded as the geometric analog to these

results.
Theorem'l.s

Let C be a singular chain. Then there exist chains U

and V such.thﬁt,
dU = C +,C + v,
whgre Uis a chain in lCIband Vis a chain:in IGCI.
The pfoof of this theorem pérallels that of Theorem‘TJB with

§{ + I and 57y . I replaced by S; . 1 and 8§ . I, and

gl(x + re) = £(x,y) replaced by gl(x + re) = Si(x). (See Seifert



and Threlfall, 1934, p. 30)

Corollary 1

1f C is a cycle, then
D~ C (in Icl). ‘

Corollary 2

If C is a cycle (mod.Z) then

D~C (mod z in|c|).

Simplicial Approximation

If C is a singular chain sﬁch that ICI is a subset of a
polyhedron‘lLI, where L is a comﬁlex, then C may be "approkimated"
by a singular chain D with the property that each siqgular_simplex
of D is a function onto a Euclidean simplex of L. The method for
obtaining an approximating chain will now be outlined and chains
"connedting" the chains C and D will be derived. The l-dimensional
analog of this process is the approximation of a curve by polygonal
‘segments. The connecting chains are obtained by fi;sc éubdividing
the curve into arcs which are small enough to be approximated by
straight i;nes lying in the polyhedron, and then déforming each arc

into its straight line Approximation.
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Let K and L be two complexes. A continuous function, £, on
K to L. is called a simplicial mapping of the complex K into the
complex L if, for each Euclidean simplex.S -= cﬁt{ao, veey aq} €K,

there exists a Euclidean simplex TEL such that £ maps the‘vertices

of S onto the vertices of T and maps each point x = Z?: Aiai of S
onto the point f(x) =‘Z§: xif(ai) of T, where the Ai's are the
‘ i=0

barycentric coordinates of x.

‘Let {ao, a1, +ee» aq} be an independent set. The set of

I;C. = i )\iai,

i=1

all points of the form

where i >‘j = 1 and the Aj's are strictly positive, is called an

i=1 o ' -
ogén éimélex.' If S is a Euclidean simplex, the open simplex

corresponding to S willkbe denoted by S'.
Let K be a complex and let a be a vertex of one of the
simplexes of K. The star of a, denoted by St(a), is defined by
se@ = U s,
seM

where

M= {slsex and- a is a vertex of S} .

39
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Definition 1.18

Let K and L be complexes and let g be a continuous function
on IK' into ILI. Then a simplicial mapping, £, is a gimplicial
approximation to g if, for each vertex a of a simplex of K, St(a)

is mapped by g into a subset of St(f(a)).
Theorem 1.6

Let K be a finite complex and.iet g be a continuous function
on lKI to [Ll, where L is a complex. Then there exists a function
f and an integer k such that f is a simplicial mapping of the k-fold
normal subdivision of K into L and £ is a simplicial approximation .of
g.

The proof of this theorem may be found in Hilton and

Wylie (1962, p. 37).
Theorem 1.7

Let C = Si S; be a singular q-chain such that for some complex
i=1 ' ‘

L, C is in |Ll

Si and

1

~ Then there exists a singular chain D =

i=1

connecting chains u in lLl and v in ILI such that for each

singular simplex T, in D, T; is a Euclidean simplex in L and
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du = C+ D+ v.

To prove this theorem, the domains of the simplexes of C

are first chosen in such a way that the collection of the §1's

. ' r
together with all their faces form a complex and g = kJSi is a
i=1l -

continuous function. This is always'ﬁossible since r is finite and
hence, the gi's may be chosen to be disjoint. Let K denote this complex.
Next, g is approximated by a simplicial mapping f of the k-fold normal

subdivision of K into L, which is possible by Theorem 1.6.

Let'Ai} A2, ...; AS be the Euclidean q-simplexes of kK- Then

S

kG = Z g|Aj.

=1

and so, by Theorem 1.5, there exist singular chains uj and vi such that

j = 1, 2, ..., 8, and let

D = T-l
Z J

§=1
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Then, since f is a simplicial mépping into L, |Tj| = f[Aj] is an

Euclidean simplex of L. The proof is now.completed by "deforming"
g . .

Z g'Aj into Dv

. j=1

" Let

1

h(x,7) rf(x) + (l;r)g(x).

Then hy(x) = g(x) and hy (x) f(x), and, by the construction used

in Theorems 1.3 and 1.5, there exist connecting chains u; and v, such

that
s
3u2 = Z glAj + D + Vz.
o - j=1.
Let u = u; + and v = Vi + Vou Then

4

du =2 C+ D+ v.

Now, u, and vy are in [Li, by Theorem 1.5. For any

xG’lQI, f(.x) and g(x) are elements of the same simplex of |L|,

since St(a) is mapped by g into St(f(a)) for each vertex aek0 .
- (See Seifert and Threlfall, 1934, pp. 107-108) Therefore, by

convexity, h(x,r) is an element of ILI, and so,'ué and vy hre in

ILI‘. Thus, u and v are in lLl



Corollary 1

If C is a cycle, then -
D~C (in ILI).

(See Seifert and Threlfall, 1934, p. 111)
This corollary states that every singular cycle C in a
polyhedronlL, may be approximated by a '"straight line" cycle of

L which is homologous in ILl-to c.
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CHAPTER 2

THE MORSE EQUATION ON A COMPACT MANIFOLD

The main theorem which we wish to prove in this chapter states
that tﬁe Morsg thation‘holds for a real-valued function defined on a
compact differentiable manifold, zn, provided the second partial
derivatives of the function (in‘terms of the local coordinates of
&) are continuous and‘the statioﬁary points of the function are

non-degenerate.

Since an n-dimensional manifold is "locally homeomorphic" to
an'open subéet of En, the first two sections of this chapter are
devoted to the behavior of a reaifvalued function defined on the
n-dimensiohal open disc, V". The local results of sections 2.1,

.and 2.2, are combined and extended to a differentiable manifold in
section 2.3. Thé main result appears in section 2.4.
The material presented in this chapter may be found in Seifert

and Threlfall (1938).

2.1 STATIONARY POINTS

Let £ be a real-valued function whoée second partial
derivatives exist aﬁd are continuous in V®. - For any YEE, let
{f <‘Y} be the set of all x such that £(x)< <% . The sets {fé‘)} ’

{f =‘Y} , {f >'Y} and {f E‘Y} are defined in a similar way.
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Definition 2.1

A point x = (X, %2, ..e, xn)GEVn is ‘a stationary point of £ if

each ;E the first partial dérivaCives, af/axl, af/3x2, ...,vaflaxn )
vanish at x. A real number, &, is a stationary value of'f if f-l )
contains a_stationary point of £.

Let X be a noﬁ-stationary pointbof £. By a well-known theorem
éf oidinary differential equations (Coddington and Levinson, 1955,
pg. 22, Theorém'7yl), there exists an open subset Q of En, a real
number b > 0, and a function'h(x,t) such that x € Q, h(x,t) is
continuo‘us on Q X [0, ] and, for each x& Q and t€ [O,b] , hix,t)

satisfies the system of ordinary equations:

- . dh:(t) _ _of - C
(1-a) ’ —&-é-‘l = Selm®, . hn(t)), 1=1,2,..0,0,

together with the initial conditions

(l-b) hi(o) = xi, i=1,2,00n,no

Clearly h deforms Q into some subset of E".

Since the partial derivativgs of £ are contihuous and one of
;hesé partial derivatives is non;zero-at ;, there exists an open
neighborhood of x such thatlfor each x in that neighborhood, one of
‘the partial derivatives does not wvanish at x. Let é denote the inter-

section of Q with that neighborhood. Then, for each x élG,

-
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n
df(h(x,t)) of ’@4
dt . :;Xi dt
i=1"
o .
= - of
Bxi
i=1
< 0.

Thus, fo.r'each x€ G, as t increases, .f(h(x,t)) decreases., ’Therefore,
h deforms G into some subset of ET sucﬁ that {f 4f(;)}ﬂG ~1is
deformed (in {E££(H)}) into a subset of {f<f(X)} , and {£ <E(R}NG
is deformed (in {f <f(i)}) into.a subset of {f<f(i)} . Therefore,

by corollary 2 of theorem 1.3, the connectivity numbers (mod'{f<f(x)} )
of {f £ f(x)} NG are zero.

Now, suppose x is a statiomary point rather than a non-stationary

‘point. Then the above argument breaks down if we try to use the

solution of(1l-a) and (1-b) to show that the commectivity numbers’

(mod {f <f'(x)} ') of {f.< f(i)} NG are zero, where G is any oben
neighborhood of ;c- . For, h(;c',t)' = X Iis the unidue solution of (ll-la)
subject to the initial conditions hy(0) = Xi, i = 1, 2, vesy m.
Therefore, for any open set G suqh that x € G, h(;c-;t) does ﬁot defo;‘m

{f < f(‘i)} NG into {f < f(}':)}‘. This suggests the possibility that

the local topological behavior of a stationary point is different

from that of a non-stationary point. To a certain extent, this is

the case.
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A stationary point, x, of f is isolated if there exists an
open set G which contains x and contains no other stationary‘points of

f.
Definition 2.2 (Type Number of an Isolated Stationary Point)

Let x be an isolated stationary point.of f, and_iet G be an
open neighborhood of x which contains no other stationary point of £.

Then the gq-th type'numher of x, denoted by m9(x), is defined to be the

q-th connectivity nuwber (mod ff <:f(x)}) of({f<:f(x)}r}G)LJ{x}.
It may be‘shown (Seifert and Threlfall, 1938, pg. 30-31)

that the g-th type number of a stationary point is actually a

pioperty of the point and the function f, and is independent

of the set G.

An isolated maximum and an'isolated minimum (if they exist
in V) provide two examples of isolated stationary points of a

differentiable, real-valued function defined on V®. They also

provides examples of stationary points which are topologically different

from non=-stationary points, as is demonstrated by the next two theorems .
Theorem 2.1

. Let x be an isolated ninimum of £.

Then



mo(x) 1,

and mq(x) 0, for q >0.

Proof
Let G be an open neighborhood of x which contains no other

stationary points of f£. Then

({f <f(x$.} NG U{x} = {_x},
#nd
fe <ea} n - o,

Clearly, the only cycle (either absolute or relative) in {x}

is the O-cycle C = {(b,x)}, where b is an arbitrary point in EU.

Moreover, {(b,x)} is independent (mod @ in {x}).
Q.E.D.
Theorem 2.2

Let x be an isolated maximum of £.

Then
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'in‘G -A'CG - {x} . Therefore,
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o (x)

1,

0, for q # n.

and " - wl(x)

Proof
Let G be an open neighborhood of x which contains no otherl

gtationary points of £. Then, since x is an isolated maximum,
’{f <f(x)}_nc = 6 - {x} and {f<f(x)}nc Ui{x} = 6.

To complete the proof,Ait suffices to show that the q-th
connectivity number (mod (G - {x})) of G is 0, for q # n, and 1, for
q = n.

)  Let C be a g-cycle (mod (C - {x})) in G. Let K be a complex
such that 'Kl = G . K may be chosen in such a way that for some
Euclidean §imp1ex A€ K, x€EZA' (A' is the open simplex corresponding
to A) and A has no poiﬁts iﬁ commén with the compact subset, Iacl,.of
Gb- {x}, (see Alegand;qff and Hopf, 1935, é. 143) . .Let D, u and v
be chains in G such that, for each singﬁlar simplex t& D, t is a
simplicial mapping into K, and du = C + D + v. (See Theorem 1.7)
| Now, the simplexes of v are constructed by connecting those
points of !acl and laDl which lie in a common‘Euciidean siﬁplex of

K. 8ince none of the points of [ac| ‘are in A, it follows that v is

\
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C ~D {mod (G - {x}) in G)

For each singular simplex SE€ D, S is a simplicial mapping of

the Euclidean q-simplex -S-'o.';\to the Euclidean p=-simplex ISIEK . Since

_the vertices of § are mapped onto the vertices of S, it follows that

p £ q. Hence, if q < n, then S is degenerate or, since the Euclidean
n-simplex A is the only simplex of K which contains x, ISlC‘G - {x}

Thus, for d<D, D is in G which implies:
md(x) = 0, for q< n.

On the other hand, if q >n, then S is ncessarily degenerate (K
contains no Euclidean simplexes of dimension greater than n) and it

follows that D = @§CG - {x} Thus,

mi(x) = 0, for q >n.

Now, let T denote the identity map of A onto itself. Then,
since x ¢ (A -AY, {T} is a cycle (mod (G - {x})) in G. MoreOQer,
{T} is independent (mod (G - {x}) in G since there are no non-

degenergte simplexes in G. Thus, ;n(x) D1,



Suppose D is not in G - {x}. Then, there exists a simplex
S € D such that |S| =A. Since T is the identity on A and 5 is a
simplicial mapping, T+ S =S and S 1s an éffine transformation on
S onéo A =T. Thué, S and T are ﬁhe same singular simplex. (see
Definition 1.8). Since S =T is the only.simpléx of D which is not
in G'- {x}, it follows that |

D - f1} mod (o - {xh).

Thus,

m(x) = 1.

Q.E.D.
As is well known, a stationary point, ;, of £ is an isolated

minimum if the matrix

- | ' 3% o
(2) axiaxj (x)

) 14

f ‘ is positive definite and is an isolated maximum if this matrix is
negative definite. One of the methods used to determine if (2) is

positive or negative definite is to reduce the quadratic form

51
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-
Bxiaxj
i,j=1

il

Q(x) (%) (xi - ii),(xj - i_])

" to the normal form:

L
®) | Z vy &%

y i=1
by an affine transformation £= £(x - X), where u% = 1.1 =1,2,000,n0
Then (2) is positive definite if v =1, 1 =1, 2; .e., n and is
negatiye definite if v, = —1? i=1, 2, «.., n. The number of

negative coefficients of the normal form (3) is called the index

of the matrix (2).

Definition 2.3

(i) A stationary point x of f is non-degenerate if the Hessian

. does not vanish at x.

(i1) The index of a non-degenerate stationary point x of f is

the index of the matrix
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-
ax'i X

Theorems 2.1 and 2.2 show that the following equation is valid
if X is an isolated maximum or minimum of £:

md (i) = 5% ’

_where i is the index of x, and Sgbis the "Kronecker delta'". The next

theorem shows that this equation holds for all non-degenerate statiohary

points.
Theorem 2.3

Let X be a non-degenerzte statiorary point of f£. Then X is
an isolated stationsry point of f and

nl® = 3,

where i is the index of X.

Proof

Suppose % is not isolated. Then there exists a sequence

{ul, uz, ...} of stationary points converging to % with uj { x for
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any k 1. By the Mean Value Theorem (Apostol; 1957, p. 117), for
each k D 1, there exists vK€ED 1lying on the segment joining uK and

% such that

0 = af(uk) zii —éﬂz&)—(uk - Xp)s, @=1,2,.0.,0,
Bxﬁa Xa ﬁ

Hence, since uK £ X,

2k
det | QLG L L o,

Bﬁgax -

for all k = 1. Clearly, the sequence {vl, v2, . } converges to X,

and so by continuity,

aet iffﬁil_
Bxﬁaxa

L1
o
-

which is impossible since X is non-degenerate. Thus, x is isolated.
" Now by Taylor's theorem, there exists a function R(x) such
"that for all x in some neighborhood; N, of X,
a | |
(45‘ £(x) - £(R) = ot (R) (xq = R)(xg = ®3) + R(x)
5xﬁaxa_ a B B
a;8=1

where the second derivatives of R(x) are continuous in N,
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it
o
-

: , ' Lim R(x
(5a) Ix - i|~»0 X - X
and

o l o (TR

We may assume that the quadratic form in_(h) is in the normal form,

il

0, v=l,2,...,n.

.n :
X

r=1
where  u_= -1, r =1,2, ..., i, w_=1, r =i+ 1, «us, n.
(Since an affine transformation is a special case of a Homeomorphism,
this assumption will have no effect on the connectivity aumbers
involved.) We may fﬁrther assume that £(x) = 0.

Let A be thé set of all x& E® such that

xi+1 = xi+2 = ese ;xn = 0,

~and let B be the set of all #éE ED such that

Xl = xz = esee =,Xi = 0-

To complete the proof, a deformation F will be constructed which,

for some neighborhood, U, of ;; degorms (Ur\{f <:0})L){i} into A
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in such a way that Uﬂ{f <0} remains in {f<0} during the deformation.
Let '

¢
2‘

Q(x; = Zurxr,' and T(x) = I—*T;‘-;Yfi
) =l -

Clearly for any x€& E , there exist unit vectors a and b
such that x =az + fb where aGA , b&B and ‘a,BEE. Hence x lies

onithé circle

(6) P(t) = le[l_.;__t_a + .L_'.;...E_b] .

As t varies from 1 to ~1, a2 point on this curve travels from the
hyperplane B to the hyperplane A. Also, for any point ¢(t) on this

curve,

e
[ Bl (e

(since a and b are unit vectors).

T(#{t))

We now show that, if ¢{t) is in a sufficiently small
neighborhood of x and v(t)eg{f <0} , then, as t decreases, f£(¢(t))
remains in {f <0}.

Now along @(t),t¢(t)| is a constant. Therefore,



IOk %'Ef(sa‘(t))

where "." denotes the scalar product.

@ o(t)

I

and

@)

Hence, for e Fl,q s

and

i

\/

d £ (et ]
Te )] %)j

d

(o)

1
7
\%‘L“ + e o

v, @Lt)
2(1 = t)

’

v V.t
2(1 + £y °

i

fl

L)) + el
= tlleco]
grad T»dgkt + -——L——E grad R«
Teol ™
But,.
Q% :
l—;};l-(l - t)‘-aa, a=1,2,0¢-,i,
p)

=i+1, nee ,n .

1,2,00.,1,

i.+1,...,n.

de¢

dt
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Also

dT

Hence, for ce:-:[-1,1] ,

grad T (—1-2

il

|}

]

e2(t) 14+t
e (t)]2 {1 -t
a =1 la. ’
T . .
‘pa_ (t) 1. - t
|9 (c)l2 t

(‘P( ))

i

vale(e)2 - qeee)) |,
[ el J“’a“’

1

58

= gfng-tL-[u -t] s QA= i,..o.’nn

Je@]* L®

3,

l+t2
l - tl “"’(t)‘z‘
1 - 2 ) Z |¢(t)|2




Also,

: de
grad.R_(qP(t)).a-g

59

Let U* ibe a neighborhood of x such that for all x&U',

1 3
*---—(x)
Ix] 3

0...

1
- A
™~ 2n

Then there exists a A neighborhood of t = 0 with & £ 1/2

such that, for all t in this neighborhood, @(t) & U

~A<t << A.

1
<1 ZZ lmt)

“_*P_(E[T Grad R(V’(L)) dt

A
W
g
g
N .

Hence, for

¢(t) , a"l
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Thus,
df(e(t))
dt > 0
for all .t&(-a,4) , which implies
an () < £(e(t0))
whenever -a<lt <t <lA.

Let U be & spherical neighborhood of x such that UCC U' and,

for each x& U,

R(x
Xl

(See 5a) Let U™ = Uﬂ{f<0}. Then for each x €U,

f(x + R(x < A .
X x[2
Thus, u'c{T' <A}.

Now, we show that if ¢(t) &y~ , then as t decreases, wP(t)

T(x)
.. remains in ‘.{f <0}. Let v(to)éu' and let t<t,. Then either

t<-Aor t>»-A If t> -A, then by (7),

()] < £(@W(ty)) < O
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If t<-4A, then

£GP | peexe)) + RO

Bk I=1°
= t 4 ROt
. IXIZ

- o < -a 4+ REAW)
| [x|2

But since U is a spherical neighborhood of ;, and ¢? is a circle whose

center is.x, Y(t)& U. Therefore,

PO - a+ A = 0.
EE

The required deformation may now be constructed using the

circles described by equation (6) . For each x& U, let <I>(t;x)

be the circle through x. Let

F(x;7) = ®((1-7)T(x) -7 ; x)

for x&E U;7&1, and.let F(X,7) = X, r & 1. C(Clearly, F is continuous

on (U'U{E}) x I into U"U{S'c}. Also,
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it

F(x,'O) P (T(x),x) = x,

1

F(x,1) $ ( -1,x)é A,
. Furthermore, F(x,rj(i-'{f<b} for x& U', 1T I since (1=-7)T(x)=-7<T(x).
Thds, F is a continuoﬁs deformation which deforms
({f<:0}I]U)LJ{i} into A in such a way that image of {f<:0}r]U
“is a subéet of {f<::0k
It follows from theorem 1.3 th#t each cycle (mod {f‘<’0}r]u)
in (fe<<o} Ny { &} is homologolous (mod {£<C0} in j£<Co} (y{&}) to
a cycle (mod (A - {i})) in A. -Hence, the q-th connectivity aumber
(mod {f<0} NU) of ({f<0}nU)U{:'c} 1is the same as the .q-th
coqpectivity number (mod(A -~ ?})) of A. But by‘theoremlz.z, this

number is I»a', since A is homeomorphic to Ei.

" Q.E.D.

2.2 CYLINDRICAL NEIGHBORHOODS AND f£-DEFORMATIONS

Let X be an isolated stationary point of £ and let G be an
open neighborhood of X which contains no other stationary points of f.

Let y&G -'be a non-stationary point of £f. Now, the system



of

= (by $-,..., D)
(b:i %4 ( 1°%2» *¥n
(8a) at = T a 2

f
Z [g—; ((bl 94,2 g e ’¢n)]
j.—: J . ,

(8b) Qi(f(y)) o ¥ L=1,2,...,n,

(=9

" has a unique solution defined for all t in some A-ne-ighborhood :

A

~of £(y) . Let®(t) denote the vector-valued function whose components

satisfy (8a) and (8b).

Then along this integral curve

i

d d
it £(P(t)) it f(ﬁ(t), coes ©,(E))

i

Therefore, for each té [f(y) -4a, £(y) +A] s E(P(E)) = t.

The curve defined by & is called the line of descent

(Fallinien) of £ through y. This cﬁrve will also be denoted by the

symbol ®.

63



64

Suppose, now that the initial condition (8b) is replaced by

(8b") D) = x5, 1=1,2,...,n.

Then there exists an t-neighﬁorhood of y and a A& neighborhood of
£(y) such tha‘t for each x in‘this 't neighborhood of y, the system
(8a) ﬁogether with the initial condition (88), has a unique solution
defined for all t in the A-neighborhood of £(y) . For each

X & {f = f(y)}‘, let ¢, () .be the line of descent through x. Let 2
be the set of all points P x(t), where xe{f = f(y)‘}, |x - 34< ¢',

and It: - f(y)ls‘A . (|x-y| denotes the Euclidean norm of x-y.) Then
Z 1is a‘neighborhood of y; 1.e., there exists an open neighborhood G'
of y such that G' C Z. (See Seifert and Threlfall, 1938, p. 94,

Note 14.) Z is called a cylindrical neighborhood of y of height 24 . |

The method of comstructing a cylindrical neighborhood of
the stationary point X will now be described.
A line of descent, tb,‘ through a point x€G -*i} is said to

empty gelinmﬁnd'en) into X if 45(!:) is defined for £(x)2t>£f(X) and as t

 approaches £(x) from above, ®(t) approaches x. The line of descent is

‘sald to recede (ausgehen) from x if ¢ (-t) empties into X.

Now, let U be a bounded open neighborhood 6f X whose closure
is a subset of G. Let ¢ be a line of descent through a péint
x=U - {:‘c} It may be shown (Seifert and Threlfall, 1938, P8 KY))

that as t decreases, ¢ (t) either empties into X or approaches a



65

point on the boundary of U. A similar result holds as_t inc:eases.
Let C be a‘bounded'opeﬁ subset of the space {f'= f(i)}land‘

suppose that the closure of C is a subset of G. Let K be the set

of all lines of descent which empty into';, recede from x or pass

through a point of C ~ {i}. Tﬁeﬂ there exists & > 0 such ;haﬁ for

each®ec K and t& [f(i) -, £(X) +A],¢(t:) is an ehlet.nent of G.

(See Seifert and Tﬁrelfall, 1938, pg. 95, Note 15) Let Z' be the set

of all points of the form & (t) such that $E&K and
(1) (X)) <t < f(X) + 4 , if ¢ empties into X
(1) £(X) - A <t <f(x), if & recedes from x

(iil) £(x) ~aZft Sf(x) + A, if & passes

through: a point of C - {i}

Then 2°' U{i} is a neighborhood of x (Seifert and Threlfall, 1938,

pg. 96, Note 16) and is called a cylindrical neighborhood of X oj_.

height 2 4.

Lemma 2.1

Let Z be a cylindrical neighborhood of X of height 24&.

Then there exists a continuous function F on Z X I to Z such that
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(1) Fl(x)e{f - (@),  for all x&z{E 2 f(i)}

.(ii.) F{x.1) = x, for all xEZﬂ{f < f(i)} and r& 1.

Proof

For each xC—T_:Zﬂ{f zf(i)} » let @, be the line of descent

through x. For each x& Zﬂ{f)f(i)} and r =1, let
F(x,7) = ¢x( (1-T)£(x) + 7 £(x) )
(1f cbx empties into %, let F(x,1) be the limit of F(x,7) as 7

-approaches 1). For each x& Zﬂ{f < f(i)} and re= 1, let F(x,7) = x.

Clearly', F ison Z X1 to Z and

F, () é{f < f(i)} :

Since each line of descent is a solution of (8a) and (8b), and since

f is continuous, F is continuous.

Q.E.D.
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Lemma 2.2

Let Z be a cylindrical neighborhood of X of height 2 A.

Let W = {f < f(i)}ﬂ Z and let W~ = {f<f(i)}nz. Then there

exists a continuous function H on W X I to W such that

(1) ul(x)cé:-:-w- for each x&& W - {%}
(ii) H(x, " = x for allre 1.

Proof

Let V= (¥;,...,¥,) be a solution of the system of

differential equations:

[=%

Ga) B -,y [EELLE) A - E®]

(9b) ‘I’i(O) = X, i =1,2,s00,n.
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For each xEEw, let W, be the solution of’v'(9a) and (9b)
'subject to the imitisl condition ¥(0) = x. Let H be onW X I such

that for each xGW and 1t &1,

.- Now, the only solution.of (9a) and Ob) for

&€ W{f = £(x) - fﬁz) l”i} is the solution \Px(t) = x. Therefore,

H(X,7) = X for allr &1,

and

H(x,7) &= W~ for all x E(wﬂ{f = £(x) -A}).
Suppose xE(Wn{f(f) "A<f})' - {i} Then

o)

d. ) . , - - )
4t (9 (6)) é-;i-f(.\m))} (e +a -],

it

~ which is negative for t = 0. Therefore, as t increases, ¥, (t) moves

from x into the set {f<f(i)} C{f<f(i)}. Moreover, Wx(t) cannot
cross the "boundary" set {f = f£(x) - A} at some time t:o>0. For, if
Wy (ty) = }’E{f = f(X) - A}, for some to>>0, then ¥y(t) =¥y(t-t,) =y

for all t:>t° by the uniqueness of the solutions of (9a) and (9b).
Thus, '
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H(x,7)E&E W~ for7 >0 and x&& (W ﬂ{f(i) -A <f}_- {i}

Q.E.D.

Combining lemmas 2.1 and 2.2, we have the following result:
Theorem 2.4

‘Let Z be a cylindrical neighborhood of X. Then there exists

a continuous function, F, onZ X I to Z such that
(1) Fq(x) E‘{f <f(i)}U(i} for éach xE Zﬂ{f 2 f(:'c)}
(i1) F(x,7) c—::‘{f<f(i)} for eachx & zﬂ{f <f(i)} andre 1

and

(1i1) F(R,7) = & for all T I.

In other words F continuously deforms the cylindrical
neighborhood Z into the set {f<f(x)}u{x} in such a way that
the point X remains fixed and the points of {f <f(x)} remain in

{f<f(x)} . The function, F, is called an f-deformation.
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2.3 COMPACT n-DIMENSIONAL MANIFOLDS

An n-dimensional manifold is & topological space mwith the

property that for each -xEmvthere exists an open subset, G, of 11"

such that x& G and G 1s homeomorphic to the open n-dimensional disc:

Vn‘:{x

Let m be a compact n-dimensional manifold. Let

\xl<<;1} C EN,

{Gl » Gy eens Gr} be an open covering of 7l such that each Gy,
i = 1,2,...,1'., is homeomorphic to Vn. Let Ty, Tys eee, T, be
t;he hdmeomorphisms corresponding to Gl’ GZ’ ey 'Gr « Then for an.y
i, = 1,2,...,r, the composite function Tingl maps a subset of Vn
onto itself. (TioTj'l may be the .empty, function, @#.) The ménifold
m is said to Be differentiable of class Cm, if Tys Tps ses, T, may
be chosen in such a way tb.at for i,‘j = _1,2,...,r, ’;‘ioT;l possesses
continuous m-th order partial .derivat;ives and has a non-vanishing
Jacobian at every point of the domain of definition of T1°T51 .
A real-valued function, f, on a differentiable manifold /0
is differentiable at'; y-'Em i£, for some homeomorphism; T, which maps a
neighborhood of y onto Vn, the composite function foT-1l {s
differentigble at the point 1 ().
In the remainder of 'this section, and in the next section, let

m be a cowpact, differentiable, n-dimensional manifold of class C3,

[&]



and let £ be a real-valued functioﬁ whose third order partial
derivativés Aare continuous on m . Under these conditions, the
preceding theo.ry msy be applied_ to /71 and f. For example, lines
of descent in m 'may be constructed by replacing the function £ _
in equat.ions (8s) and (8b) by the composite function F = foT-l:
The iines of desc.ent on m are then given by T'l(ﬁa(t)v) and since

F(¥P(t)) = t , we have
£(rl@())) = F@@) = t.

We make the further assumption that the total number of

stationary points of £ on /7] is finite.

Lemuﬁ 2.3

Let 7, ‘and Y, be stationary values of £ such 'that: Nn<m
and no stationary values of £ lie between ’71 and Y 2+ Let g be
thg set of all sta;ionary points in {f =7 1} , and let € be a
positive number such that 'Yl< 72 - €,

Then, there exists;'a continuous deformation, F, in

{£ =7, - 5} such that
(1) Fy (x) (:;{f < 711 for each xé‘{ﬁl<f < ‘72-4,

and (i1) F(x,7) = x, for each xej{f < ‘71} andr & I.
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(In other words, {f < 72 - f} xﬁay be continuou'sly deformed im:d

{f < ‘71} in such a way that {f < ‘71} rémains fixed.) .
Proof

1t sufficies to ghow that the line of descent through any

2
the set {f': "/1} 0

x < '{’715 £< v, - e} empties into a point of g or intersects

We note first that: { 7, €< v, - e} is a closed subset
of the compact set m and hence is also compact. Also,i at ea'ch
point of this set, a cylindrical neighborhood may be constructed.

The set of interiors of these cylindrical neighborhoods forms an
open covering of {vlsf < Yy - f} and hence contains a finite
subcovering. Let {Gl, Ggs seey Gr} deno?e the f-i.n_it;é set of interiors
of cylindrical neighborhoods which covers {71 <f<, -e} :
‘Let Z15 Z3, «+sy Zyp be the corresponding cylindrical neighborhoods.
Let 2A1,'2A2', +e., 24, be the heights and x;, X;, ..., X, be the
‘centers of these neighborhoods, (i.e., the points about which ﬁhe
neighborhodds are conétfucted').,

Let x @ {"71 < f £ v, --e} . Then x is an element of one
of tﬁe Gi‘s, say Gy and hence '1ies on a line of descent,CP1 () ,

" which inte'rsect:s {f = f(xl)} or emptiés into a point of ,g.' 1f
f(xl) - Al < 71, then we are through; for theﬁ,(pl (t) ‘intersect:s
{f. = ‘)’1} or empties 1ntc‘> an element of g. If ‘f(xl) - 41 > 71',

then Sol(t) intersects {f = f(xl) - Al} at the point
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Since 7; <f(x;) - A;<E(x) € ¥y -e¢ ,
S LeGey -.Al)s{'vl<f sYzw} :

Therefore,<,01(f(x1) - Al) is an element of one of the Gi's.
Now, (Pl(f(xl). - Al)(# Gy sincg every neighborhood of a point of
{f _ f(x1), ] Al}nzl contains poli’nts of {f<f(x1) - Al} and
hence contains points which do not belong to 2;. Therefore
' (Pl(f(x) - Al) is an element of some Gi different from Gy, say Gj.
Hence, ¥ 1(£(x) - A ) lies on a line of descent fpz(t) which intersects
{f =4f(x2)} or empties into a point of g. Since (pl(t) and(Pz(t)
are defined in some open set containing (Pl(f(x) - Al) and
<P1(f(x) - Al) = <P2(f(x). - A,Z) , by the uniqueness of solutions
~ of(8a) and(8b) of se.’ction .2.2, 901 UQOZ' is a (single valued)function,
and hence is a line of descent through x. Continui.ng.this process,
we ar'rive at a sequence {80 1, ‘PZ,..., (Pj } of lines of descent
such that j < r; tP1U P4 U(pJ is a line of descent, and gpj
intersects {f‘=‘ f(xj) - Aj} or empties into an element of g.
Thié process must terminate for some k < r. Then (Pk interéects

{f = f(xk) - Ak} or empties ;nto a point Vdf g- If (Pk does not
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empty into g, then £(x;) - &, <7 (otherwise the process would -
not terminate at k). But f(xk) 2 UK Therefore (Pk intersects

{f = 71} or empties into an element of g. Thus
RS T TR Kk
~¢ = ¢ 9?U... Uo*.

is a line of descent through x which empties into an ‘element of g

" or intersects {f = 71} .

The remainder of the proof parallels the proof of lemma 2.1,

section 2.2.

Q.E ID.
Lemma 2.4

Let 7, and ‘Yé be stationary values of £ such that
1P <‘Yl and no stationary .values of £ lie between 7, and 7,.
Let g be the set of stationary points of f. Then there exists

¢ >0 and a continuous deformation F in {f < ‘Yl} such that F deforms
{71 -e < £ < '71} - gvin_t.o a subset of {f <‘Yl} and F(X,F)=x

for all xE{f: 71 -c} U'g.
Proof

As in the proof of' Lemma 5, the compact .set{f = ‘71} may be

covered by a collection of open sets, Gl’ GZ’ ceey Gr’ which are the
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interiors of cylindrical neigﬁborhoods, Z15 Z9, e+ey Zyp, whose centers
are poinfs of {f =‘Yl}. Let'x.lv, Koy «ovy X and 20,28,,...,248,,
be, respectively, the centers and heights of Z,, Z,, .",;’ Z..

Since Y, - Y>>0, the neighborhoods may be chosen in
such a way that none of the neighborhoods 2y, """Zr intersect
{f = 72}' Let ¢ be the minimum of {Al,..., Ar}., Then, for
each X ‘E{’Yl -€ < f<Z 71} s there‘ exists a solution ‘I’x of (95)
and (9b) (section 2.2) such thatl ‘I’X (0) = x, and, rhoreover,.as't_
increases, f(.‘l’x’(t)) deqreasés, except for x & {f =% - e} Ug.

Let F(x,7) = ¥, (r)> 7€ I, x E{‘Yl -e <f < '7'1}- Then,
since the solutions of (9a) and (9b) vary continuously with the‘
initial conditionms, (9b), F is continuous fof each xa{‘rl -e<f < 71}.

1f xe{71 - <f 5‘71} - g, then for each 7 >0,

E(Y, () = £(F(x,7)) <E(X) < 7).

Therefore, F(x,7) C{ l -¢ < f <71}
For xe{f } U g, the (unique) solution of (9a)
and (9b) is ‘ ’
Y, (D) =

Therefore, F(x,7) = x, T &1,
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. Thus, F satisfies the conditions of the Lemma. \

Q.E.D.

Combining Lemmas 2.4 and 2.5 we have the analog (on fl )

of Theorem 2.4 of section 22

Theorem 2.5

Let 7 be a stationary value of f and let 71 be the smallest

(hiéher) critical value such that ")’ <7’1. Let g be the set of
stat.ibnarj points of 7. ‘Then for any ¢ 2 0 such that Y+ §<‘71,
there exists.a continuous deformation, F, in {f <7+ ‘} such

~ that .

(i) 1If xE{f <7}, then F(x,7) E { £ <7} for each ré 1,
(i1) 1f xg{ygfg‘yu} ; then Fl(x)@‘:E{f <7}Ug.

(iii) If xeg, then Fx,r) = X,

. The function F in Theorem 2.5 defon'ns_ the set _{fS‘)’+e}
into the se‘t {f<‘y} Ug' for any e >0 which is such that no
stationary points lie between ¥ and Y + E‘ . In particular, F

- deforms a cygle, C (mod {f <7}) in {f$7+ t} into an
homologous cycle (mod {f<‘)’}) in {f <7} U-gin such a way that
9C remains in {f < ’}’}! The points of g form what may be regarded
as a barrier béyond which C cannovt be deformed 'continuously (e gy

" without tearing) unless 9C leaves {f<7’}, in which case, C is
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not deformed into an homologous (mod {f <7’} in { fE< 7 + g] )
cycle. Noteb tﬁat even though 5 cycle cannot be deformed beyond a
staticnary point, ;_gby an. £ deformation, it may -st:ill be homologous.
in {f = f("}?:)} to a chain in ‘{'f <f(i)} . For example, 0 is a
stationary point of the fu%xc.t:ion f(x) = -x3. '.Héwever, the» cycle |
L C o= {(0,0)1 is homclogous {mod { f < 0? in {f'_<_. O}) to tﬁe
cycle {(-1,—1)} even though {(0,0)} cannot be -deformed into
{(’-1,-1)} by an fl-def'omation.

Let 7 be 1 non.--Stationary v-aiue of £ and let 71 be the
largest stationary value below /. Let g be the sef of all
stationary points in {f = 71} . Tﬁen, from theorem 2.5 and
corollary 2 of theorem 1.3, it foilows that the q-th connectivity
number (mod’ {f <7’;}) of {f.S 7} is equal to 0, while the q-th
connectivity number (mod {f <71}) of {fg?’} is equal to the g-th
cdnnectivit.y numberv (mod { f< ')‘1}) of '{f <7’1}Ug. The_ next theorem

relates the latter connectivity numbers to the type numbers of the

stationary points in g.
Theorem 2.6

Let Y be a étatioriary value of f and let g = {xi-»xz,.‘..',xr}
be the set of all stationary points in {f =Y ! . Then the q-th

conpectivity number (mod {f< 7} ) of {f<)’} U g is equal to
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T.

Z mi(xg) .
i=

Let m4 denote the q-th connectivity number (mod {f<7} )
of {f <7} U g

We begin by establishing two propositions:

Proof:

(i)v' Each q-cycle, C, (mod {f<7} ) in {f <7}U g is
homologous (mod {f< 7} in {f <7}U g) to a sum,

: Cl + C2 + eos + Cr’ of g-chains, where, for 1 = 1,...,r,

C; is a cycle (mod {f<7}) in {f<7}U{xi} .
(ii) If, for i = 1,2,...,r, C; is a cycle (mod {f<<'7} )
. in {f<7}U{xi} , and
Cp +Cy + evu o CrN¢ (mod {f<7} in {f<7}u g),,

then, for 1 = 1,2,...,1,

c;~ 98 (mod {f{?} in {f<7}U{xi]).
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" Proof of (1)

Let C be a ‘q-cycLe (mod {f< 7} ) in {f <7}Ug. Then,
since each x§ is isolétéd, there exists an integer k such that no two
elements of g lie in the same simplexlof the k-fold subdivision;
kCs of C. For each i, let C; be the set of ali simplexes of | C

which contain Xs 4

G = {s | s€,C and x; € ISI} .

r
Then, since the only'simplexes of k which do not appear in EE:Ci

i=1
are in {f <7} s

Z Ci = k€& (wod {f<7} ).

r
i=1

Also, by Theorem 2.4 of section 1.6,

W ~C (mod {f<7}A in {f'<7}Ug).
Thus,

o ici&c (mod {f <‘l} in {f<7}U g) .

i=1
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r ,
Clearly, Z Cy satisfies the requirements of (i).
i=1 ‘ '

Proof of (ii)

For i =1, 2, ..., r, let Ci be a cycle (mod {f'<7} ) in

{f<7}U {xi} , and suppose
i +Cp+ aee # C .~ @ (mod {f<7} in {£<7}Ug).
Then there exists a q + 1 cycle, D, in {_f<7} U g such that
aD = Gy + Cy + oee 4+ C (mod {f<7} ).

Let k be an integer such that no tﬁovelements of g belong

to the same simplex of the k-fold normal subdivision, kDs of D.

~For 1= 1, 2, «as, T, let Di be the set of simplexes of kD which

‘contain Xyt
D, = { 5| s€,D and x.¢ |s-|} ,

Then

WL = i D; ‘(mod'{f<7} ).
i=1 .

Now,
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D = 1 (OD) = «Ci -
1=
Therefore, -
r r
Z@Di = Z 1Ci (mod {f<7})
i-"—]. =

This last equation may be written

r
Z[ani +'kci] = ¢ (mwod {f<7} ),
1=1 -

which implies, for each i,

% § |3?1 + kCq |
But by const?uction,

x5 & | 90y + 1|

for 1 # j. Therefore,for i= 1,2,..., T, 3[§_+ kci is in {f < '/}

Hence,
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3b; = & (mod {f<7} ).

Also, by comstruction, Di is in {f<7}U{xi}. Therefore,

- —

kCi ™~ ® (mod {f.<7} in {f <7}U{xi} ),-

Now, by Theorem 1.4 of section 1.6,
Ci ~KCi (mod {'f<7} in {f<7}U{xi})-

and so

Cy~e (mod{f <‘r} in{f<7} U {x{}), {=1,2, oo, T
Thus, (ii) is established.

From the definition of 'mq(xi) , there exists a maximal set,

{z},zi, cees z?q(xi)} of cycles (mo;i{f<7} ) in [f <7}U{ii} o

which are independent (mod {f <7} in { f <7}U{xi} ). By (ii),

no sum of chains formed from the set
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K = {Z{,...,ZI{I <xl)) z%)io',Z?q(xz)n seey Z£,-...z?q(xr)}

is bounding (mod {f <7] in { £ <7} Ug) . Therefore, there are at

least md(xq) + m4(xy) + e 4 md(x.) independent cycles (mod (f<7})

iﬁ'{f<y}U‘g.

On the other hand, by (i), a q-cycle, C, (mod {f<‘l}) in

{f~-<)’] Ug is homologous to a chain, i Ci > where, for
. =)

i=1, 2, e r, C; is a cycle (mod {f<‘/}) in {f.<7} U {xi} .

Since {z%,z%,...,z‘i‘_‘q(xi)} is a maximal independent set (mod {f <Y}

/

in {f <7}U{xi} ), i=1, 2, «.., x, each Ci is homologous
(mod {f <'Y} in {f <'Y} U {xi} ) to a chain formed from a subset
of {z}_,...,z‘{’q(xi)} . Hence, C is homologous (mod {f<7} in

{f <Y]U 8 to a chain formed from a subset of K. Therefore, unless
C is one of the zi's, KU{C} is not independent (mod {f < 7} in

{f <7}Ug) . Thus, K is a maximal homologically independent set

(mod { £ <7} 1n {f<Y}Ug).

Q.E.D.
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2.4 THE MORSE EQUATION ON WU

Let‘mbe a compact, differentiable, n—dimensional manifold
of class C3, and f be a real-valued function such that the third
order partial derivatives of £ Are continuous on /L and the
stationary points of £ on M are non-&egenerate. Let RY denote
the q-th connectivity number of m

Let 7 € E. We say that a cyclie, C, (mod {f<7}) may be

completed to an absolute cycle in {f <'Y} if there exists a chain,

D, in {f <7} “such that d¢ = 9D. -
Let Q denote the set of all stationary values of £, and le.r.

Y € Q. Let tq('l ) denote the number of stationary points of index’

q in { £ <7} . Then there~exists an independént set,

{Al, Agy evey Atq(y)} ,

-of q-cycles (mod {f‘<7} ) in {f <‘7} Ug, where g is the set of
stationary points in {f =7} . By'a simple inductive argument, this

.set may be replaced by an homologous, independent set

{Bl’ Bz;.oo-, qu(y); Cl, Cz, ceey qu(y)I -

of q-cycles (mod {f <‘/} ) in {f <7}U g, where x4(?):+ s9(),= t4@),

each Bj may be completed to an absolute cycle and no combination of

the Ci's may be completec} to an absolute cycle. (1f, say

Cl +C2 + +e0 + Cg, 8 < SQ(V) » may be completed to an absolute cycle,
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we may set qu(7)+1 =0 +C + «o0 + Crf and replace Cl by qu(7)+1.-

This process may be repeated as often as necessary until the required

set is constructed.)

Let
Moo= t1(7)
Y€Q '
I‘/lil' = rq (7)
7€Q
and M = quY).
| 7€Q

Then M3 is the total number of stationary pointé of index q and
Ml = Mﬂ + M., Since ME+15; Mn+; = 0, the Morse Equation is an

immediate consequence of the following theorem.

Theorem 2.7

q - -
Z ("l)q-i( Mi "Ri ) = M1+1 ’ qéo,l,ouo.
i=1

Proof:

For all 7 € E, let RY(?) be the q-th connectivity number of

"{.f <Y] . For any 7 less than the minimum of f{ﬂ(,], R = 0,

while for 7 greater than the maximum of fFUZ], R1 = RI(Y).
We first note that R1(¥) is a constant between any two

consecutive stationary values (by Theorem 2.5).
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Let 7 € Q. We will now compute the saltus (jump) of 'Rq('r)
at the stationary value 7.
The saltus of RY(Y¥) at 7 is given by
Lim Q¢ - ) iim q¢y
RA(7 +¢€ RAY(Y -&).,
P (7 +€ ) £ 0 ( )
Now, for & sufficiently small, the q-th connectivity number of
{f < 77 + 6} is equal to the q~th connectivity number of {f <}-’}U s
where g is the set of stationary points in {f = 5’} Therefore,
El;i‘o“ RQ‘(?’-{-C) is the q-th connectivity number of {f <7} U g On
the other hand, 1if 7" is the largest stationary value of £ such
that 7'< ¥ , then every chain in {f < i’} may be continuously deformed
into a chain in {f <7 Ug“ where g' is the set of all stationary
points of £ in { £ =)"} . Hence, the q-th connectivity number of
{f<7} “is equal to that of {f <’Y'} U g', and, wmoreover, for

every sufficiently small € > 0, the q-th connectivity number of

‘{f <'r'- E} is equal to that of {f.< Y’} Ug' . Therefore, the

saltus of f at 7 is equal to the q-th conhectivit:y number of
{f <7}U g minus the g-th connectivity number of {f < 7_’} . In.

other words, as / increases from Y- & ‘to '7'-;- & , (foxr €& small),
Rq(7’) is increased or decreased by the number Ac.)f independent cycles
which are added to or removed from {f <f} by adding the pbihts of g
to {f < 7}. |
We will next shbw that the saltus of Rq('f) at ¥ is given by

4@ - sq*'l(;) . To shorten the notatiom, let rq(;) =4,
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s9(¥) = 89 and tU(P) = t9 .

" For each q = 0, let

'<10) . {g%,g%, qu; g Mg ...))qu}

be an independent set of ¢-cycles (mod {f <)-'} ) in {f 5)7} U_g
such that the .§(11°s may be completed to absolute gq-cycles, and no
combination of the ng's may be completed to absolute cycles,

‘Now the set of absolute q-cycles,
1 -
(11) , { 2)2 ‘i{+l , 37];_1+ s see a')z g'a}.l}

are independent in {f < 7} , since no combination of the 72-‘11"'1'3 way
be completed to an absolute ‘cyclé. Therefore, this set may be expanded

to a maximal homologically independent set by adding u9 absolute

q-cycles,

(12) | % rd oo e (in {£ < 7})

to the set {34 1”1,..., a>z 2’;}_1} . Then the q~th connectivity

number of {f < 7} is

(13) ud 4 sdtl,
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We now show that
(14) {Fq, R PN ST . }

is a méximgl homo];ogical_ly independent set of q-cycies in {f <’7} U.g,
where ‘g%‘ is the cycle obtained b_y completing ?? ‘to an absolute
cycle, 1 =1, 2, ..., £3.

'1‘6 show that (14) is an indépendent 'se.t, sﬁppose some

combination of chains of (l14) is bounding in { f <‘;'}Ug, say

u N
Z 8« fﬁ ~ ¢ (in {f<7}Ug).
i=1 .

i=1

Then, since I"g is in {f<‘?} for i =1, 2, ..., ul,

(15) i S 9~ g (mod {f<'>"} in {f<7}U g) .

i=1
A : _
But ZS% - Z ‘g‘ll (mod {f<7} ), and so (15) implies

i=1 i=1
B : ,
Z ‘§ <11. ~ @ (mod {‘f <7} in {f<'7} U g)»
i=1 C :

which contradicts the choice of ?%, oy "g;l:q « Thus, no
combination of the chains of (14) which contains one or more of
the $(il's is bounding in {f <7} U g .

Suppose
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Since D is a(q + 1)-cyéle (mod {f< 7’}) » D is homologous
(mod {f <7} in. {f <'7}U g) to a combination of

q+l 'q+1 } q+l q+1
El s eeny ';rq+1, 7[1 s vees 7

that is

D A ig‘iﬁl + }v:vzg*l (mod {f<7} in{f<i}Ug),
i=1 »

i=1
A S¢%l P < g9+l Then, there exists a (g + 2-chain,P, in

{f,< -i} U g. and a(q + l-chain,Q,in {f < '7} such that

' .
2P = D 4 i’é;ﬂ% Y P o+ o

i=1 i=1

Hence, since QP = @,
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‘ ‘ 2
' 1
oo = il"i‘ = ia‘%’ oL ) I e ea
i=1 i=l . i=1
But since, each §§+1 can be completed to an absolute cycle in
{f < 7} ,

| Za§g+1~ $ (in {f<7"}).

i=1

Therefore,
7} ' .
Frte Tagtt e s s w {ro).
i=1 ‘ i=1l - : ' . ,
and since Q is in {f <’7} R

o 2 '
(16) z e« .Z,a)qg“ ~ ¢ (in {f<7-}).
i=1 '

=

[ N
sy

But (16) contradicts the independence of

| . 1 1
F(ll, es ey r‘::lq ’ a’?%’{' > se ey aq :z-}-l.

Thus, (14) is an independent set in {f<7} U g.
To show that (14) is maximally independent, let T be an

absolute q-cycle in {f <'7} U g. Then, T is also a cycle



(mod {f < 7}) , and hence, since (10) is maximally independent
" (mod {f<7-'} 1in { f <7}Ug), T is homologous (mod {f <‘7}‘ in

{f <’7}U g) to a combination of chains of (10); that is

. . o -
T ~ ZE? + Z')’lg (mod {f<7} in {f<7}Ug).
i=1 i=1 ‘ :

Then, there exists a{q + l)-chain, W, in {f <'7}U g and a q-chain

Uin f£<F} such that

v c ] |
(17) W = T + Zgg + f;zg + U
i=1

1;1
Since each E;{ can be' completed to an absolute cycle in {f <“7} s

‘there exists a gq-chain V in {f<‘ '7}such ‘that

: g
av = 8T + ) o5
: i=1

Hence by (17),

o P

vV = Z 37? Cll + au,
i=1 .

and since U is in {f<7} , this implies that a combination of the

72;_1'5 may be completed to an absolute cycle. Thus, no combination

of chains of (10) which contains one or more of the 7?‘{'8 is

homologous (mod {f <7} in {f <7}Ug) to T..

-

91
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Suppocse

T ~ igg (mod {f<'i} in {f<’;’}Ug).

i=1

Then,

i S'j{‘ ~ @ (mod {f<7} in {f<7}Ug),

=

where, as before, 5‘1 is the cycle obtained by completing §‘4 to an
absolute cycle. Then there exists a(q + l)-chain F in {f <7} U g

and a q-chain G in {f<7} such that

6
8F=T+l z:g-rG

=1
But since G 1s an absolute cycle in {f <T7} » G is homologous in

{f<:7} to a combinafion of the chains of (11) and (12). Therefore,

i=

| ¢
T z q i q ‘ q+1 -
‘ 1=l : i=1
where H is a q-chain in {f < 7} . This may be written

f.?z““ d] - Y yee ir“‘z?#

and so
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i=1

) | -
Z ;331 + i P$ + T ~ ¢ (da {f<“7}U 8+
i=1 . ’ ‘ :

This last expression imblies that, if we add the cycle T to the
set (14), the resulting set is not hoﬁologically independent in
{f<7}LJg.

| Thus, (14) is a maximal, hdmological independent set and so

the saltus of RA(Y) at 7 is

4 - g9+l
1f followé that

R = Z[rqm - 5%l ]
7€Q

[}

q q+1
M+, MY

N VA

Hence,



q q ‘ ~
Z mt - rYH (-pat Z -t 4 uitl
. i==0 . i:o

i

RO M3,

But Me = 0, since every O-cycle is an absolute cycle.

Q.E.D.
Corollary
Mq 2 Rq 3 q = 0,1,00.',“-
Proof:
Since ME+1 is a non-negative integer,

’ . q . q-1 . |
ul-rY = Z ot - rY (-t Z b - rby (-1 i-l>g,

i:o . i=0 .

Q.E.D.

9%



CHAPTER 3

CRITICAL CONFIGURATIONS OF CHARGES ON AN M-TORUS

3.1 STATEMENT OF THE PROBLEM

The problem to be considered in this chapter has its origins

in the following physical problem.

Let S be a conducting surface (in E3) and let

pi = (xi, yi, zi) H i= }, 2, ..., M,

N

be the locations of n electrons constrained to lie on S. 1In a
dynamic situation, the charges will remain at these locations if

the net force"agéing onreach charge (due to the presence of the other
charges) is ndrmal‘to the surface at the 1oca£ion of that charge.
If this condition is satisfied, the charges are s;id'to be in |
equilibrium on S, and the set of points, pl,'pz, ees, PO, forms
a critical configu;atiqﬁ of charges on S. The problem is to
determine all of thé critical configurations of chafges oh S.

Under certain coﬁditions this problem may be formulated in
terms of finding tﬁe stationary points of a real valued function.
Suppose S may be represented by the equation £(x,y,2) = 0, where
the first partial derivatives'of f are continuous in some open

subset of E3 which contains S, and, at each point of S, at least
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one of the partial derivatives, 2f/dx, Of/0y, Of/ dg does not
vanish. This condition will enable us to solve f(x,y,z) = Oi(localiy)

for one of the variables in terms of the other two, and to define a

tangent plane at cach point of S.

i

The net force acting on.the charge located at p~ due to the’

presence of the other charges is given by

n

(1) Fi = Z _Ci‘i_i‘ﬁ_(p - py
j=1 |P ‘PJ‘
Ji#i

where lp - le denotes the Euclidean distance between p and- pj oy
is the magnitude of the charge located at pj j=1, 2, «¢., n, and c

is a constant. (Peck, 1952, pg. 3). Let

: n-1 n o o
vipl,pl,...,pM = e %
- i
j=1 k=j+1

(V represents the total potential of the configuration.)

—~

Equation (1) may now be wirtten:
Fi = av/ oxi, BV/ayi, BVLazi

Suppose that 2£f/3z does not vaniéh at pi. Then there exists a
function, u, and an open neighborhood, N, of (xi,yi) such that the
first partial derivatives of u are continuous on N and F(x,y,u(x,y))=0
for éll (x,y)€ N. (Buck, 1956, pg. 222.) Hence, the tangent plane

to § at pi_is given by
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z. - 4zi = v(bu/bx) (x - x1) + (bu/b}’) (y - yb

where Qu/9x and Qu/ 0y are evaluated at '(xi,vyi) .

For equilibrium, FL must be normal to this plane. Hence, if p

i

is any point in the tangent plane, the vector, p =~ p~, must be

orthogonal to F- at p-. This condition may be written:

Fl.(p - phH)

o
I

DViw i IV, | oA oV i
—-—-—axi(# 1) + _byi(y yh o+ -—Bzi(z -z

ov ., dv 3 - dV V_duy o _ ol
(bxi+ bzi a;‘:)(x ) + (—a—;{"'m—z—y-)(y ¥

where the dot, '"*'", denotes inner product. Since this equation must

hold for any p in the tangent plane, the equations

- oV DV bu
2 =0
(2a) 51 + 51 ow
and
(2b) L2V, v du_g

; Dyl 0,1 Vy
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must be satisfied if thé points pl, P2, ..., p® are ﬁo form a éritical
configuration.

By repeating this procedure, two equilibrium conditions
resembling 2a) and 2b) may be derived at each charge location. The
éqdations for a different location will be identical in form with

(Zé)and(Zb)with the exceptién that it‘may be neceséary to replace x,
y andlz by some permutation of these symbols. For example, if )
0f/dz =0 and Of/ 0y #0 at the location pk, the conditions at

pk are given by

aV+ aV aV=0
dxk  dyk o0x

and

v Jdv =0
Dyk 0z

where v(x,2) is a local solution of £(x,y,z) = 0 for y in terms of x

and z.

1

Hence, if the points p~, pz, ceny pn form a critical

configuration, then these points satisfy 2n equations of the form

(33) BV -+ B_Y awi =0
dgt J¢t 0§

and

(3b)  dv, v dvl o,

TR TLRL
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i=1, 2, ..., n, where §i, Qi, gi',-is some permutation of xi, yi, zt

and wi(é,)?) is‘ a 1o'ca1 solution of f(x,y,2z) = 0 for one oﬁ thé
variables in terms of the other two (in some neighborhood of.( é}' Q}))
But, if V(pl, p2, ...; p™ is interpreted as a real valued
function defined on a subset of ST, the n-fold carteéian product of S
with itself, then (3a) and (3b) are the conditions for a stationary
point of V. In other words, if the set of points, {pl, P2, .., b“},
forms a critical configuratipn of charges on 5, then the ordered
n-cupie (pl, pz, cees pn) is a stationary point of V on S™, and 80
the proﬁlem of determining all critical configurations of charges on
S reduces to that of finding éll>stationary points of V.
| The problem jusﬁ described may be generalized by réplacing
S by an m-dimensional surface in (m + n)-dimensional space and by
replacing the Newtonian law of mutual repulsionm, lllpi - pjl, by a
more general function. A variation of this problem, the determination

of total number of critical configurations of charges on an m-torus,

will be considered in this chapter.

Let Tm be the m-dimensional torus:

m ' 2 2 o 2m
,T {(xl,xz,...,xznP Xoi +t X5y = 1, 1= 1,2,...,m} f]E
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Let g be a real yalued function which is strictly deéreasing |
on [C,u» and which has cont inuous third order derivatives at '
every point of [b,oo).

Let

% g(lpt - pif 2,

J=i+1

'V(Plapza”':Pn) =

where pi = (x{,x%,...,x%m) e T, of is a positive regl number,

(i ;,1,2,...,n) and
P2 = Y -

We define the critical configurations of n charges on T®

' to be the stationary points of V on (™",

Since T! is the m-fold cartesian product of Tl with itself,
(TM® = T, Therefore, the dom#in of V is an mn-diﬁensional
manifold of class C%®; i.e., the mn-dimensional torus. Moreover,
the conditions imposed on g ensure that the third order partial
derivatives of V are continuous on T"%. However, before the theory
of Chapter 2 can bé applied; the potential'function,V, mﬁst be |
modified.

To simplify the notation, the points of Emn will be denoted

by {yi,j} instead of
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{Y}.s Y%, seey yil{l; Y%)‘y%) seey yl‘%l; R -ytf’ y'g: se ey y‘%} .

Let {yi,j} € E™ such that

J
(4a) cos ¥i 3 = *2i-1
and
' j
(4b) - osinyy g o= %y
‘ Then; )
m . |
i - 11 2 _ { - y 2 i - 2
ot - 23|12 - }: [("%kq 1)+ G xik?]
k=1 i
= 2 ; [1 = ocos (yg,i - yk,j)J
m' ’ . '
_ 22 1 .
= 4 Z 4Sln i—(yk’i | Yk’j)c
& .
'Thérefore,
n-i" n -
V(PI’PZ’;OMPH) = z Z OCi ocJ.g(‘b Sinz (yk,i o yk:j) )
1=1 j=i+l k=1 |

Clearly, if each yy i is increased by an amount ¢&# 0,
H ) - .

then V is unchanged. Hence, since V has at least one stationary
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point (fmnnigﬁcompact), V has an uﬁcountably infinite number of
~ stationary points. Therefofe; the theory of'Chapter 2 does rnot
apply.
This situation may be avoided by placing a fixed charge
on T". Let p° be the 1§cation of a fixed charge on . By symmetry,

p® may be located anywhere on T®, Therefore, let

pO = (lavo, 1’ 0: s ey 1: 0)'

Then the potential function of the configuration now takes the

form:

n .

. n_’ m |
velp?, . .pY Z%O& 8(‘*; sinLiy, ;4 - ’k,ﬁ)

j=i+1

n .
. 21
AR VNS
3= -

Now if each yi,j; in (4a) and (4b) is restricted to a

-sufficiently small interval, (4a) and (4b) define a homeomorphism
of T™ into Emn. Hence, the conditions for a stationary point

of V are:
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o s-1 i
! : .
(6) 21— = - 2“1“58'{ffsi“z%(yk,i-yk,s) sin(yy i = Yr,g)
¥y, s — :
i k=1
m » o
-Fé 2"‘5“18'(Z&;sinz%:(yk,s-yk,i) sin(yr,s - Yr,i)
i=s4l | |
" .
k=1
= 0,

r=1’2.0-o’m; S=1,2,..;,n.

For each y& E, let

<
]

'{zlz-y is a multiple of 271}.

L]

Let

|
]

bl <}

As in the case of E™, the elements of E™ will be denoted by {}’i’j}.b
An element {J_f._i,j} of Emn will be called a solution of (6) if

for any {zi,j}éEmn such that
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';‘-i,j = ;i,j' (1 =1,2,...,m, j = 1,2,...,0),

\" .2 .
20, g'(&i;:SLH 7(zk,s - zk,i) sin(zr,s.- zr,i)'
k=1 ,

{=
i#s

r=1,2,...,m; s = 1,2,40.,00.

1t follows from (4a) and (4b) and (6), that there exists

a 1-1 correspondence between the stationary points of V on ™™ and

~in

the solutions of (6) in E ."Therefore, in the sequel the solutions

§f (6) in BT owill sémetimés be called stationary points of V in T .
The remainder of this chapter will be devoted to the

enumeration of the statiomary points of the potential given by (5)

or, alternatively, to the enumeration of the solutions of (6) in

mn

E™, The problem of finding the total number of staﬁionary points
l

with a given index will also be considered.

. 3.2 = CRITICAL CONFIGURATIONS OF TWO CHARGES ON AN m-TORUS

When there are but two charges on T®, one of which is fixed,

equation (6) becomes

m
v 21 .
(7 _ | 2 0('0 on g' (4;;:11) 5,1 ) sin yr,l = 0,

r = "1,2,00-,m-
In this case, the critical configuratioms may be enumerated without

the aid of the Morse Theory.
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Now,
m
g' (4 Zsinz.zl.yk’l ) # 0,

k=1

since g is strictly increasing. Therefore, the only sbiutiona.of

@) are those for which
sin yi 1 = 0, i= 1,2,,o'f,mo
Hence, (7) is satisfied if and only if

yi,l G 7’; or yi’l ea-, i = 1,2,.0-,‘“.

Theorem 3.1

Let K® be the number of critical configurations of two

!
charges on %, Then,
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Proof y

It suffices to show that the set of all solutions of (7)

1
in E" may. be put into one to one correspondence with the set of

all subsets of the first m int:egers. But, if {yi I}GE is a
: ?

solution of (7), then the set of all i such that yji,] =.0 forms a

(unique) subset of the first m integers. On the other hand, let
A be a subset of the fzrst m integers, and let {yi 1} €E gL such

that

Oif 1 €A

Ji,1

and

i1 iTif 1 €A,

Then {;k’l} is a solution of (7).
Q.E.D.

‘Suppose {ii,l} is a solution of (7). Then
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2, m,
- - "4 ) sin?l
aaﬂ‘j 205 cos yi,1 8 ( sin® zyk 1)

k=1

m
O OC (dm o 2 o1 . 21 :
+ 4 o% (sin ji’l) x (4 }:31n fyk,l)

and
2 | n
%y _ . . " E 2]
a.._a—_ = 4060(l sin y; ) sin yj,l g (4k 1Sin 'i'yk,l
T1,075,1 o

1l

0, 3 i’j =l,2,-..,m;_ ,i%ju

Hence, the Hessian of V at {'frl 1} is of the form

4 m
- ol o

where r is some integer. Thus, the stationary points of V on

m

| T]z “‘18(2 —Jkl

T® are non-degenerate.
The next theorem may be proved by combinatorial methods
similar to those used to prove Theorem 3.1. However, the proof

' given here is based on some results of the preceeding chapter.
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Theoremv3f2
M= [B) - el
where M¥ is the number of s;ationary points of index k.

Let R% ) denote the k-th connectivity number of T®. Then
m
k k 0 . _ k-1 1
R@m) = R@m-1) R@) + R-1) RQ)

(Alexandroff and Hdpf, 1935, pg. 309), since ™ = Im'l x Tl. But

‘R(l) R(l) = 1, (Pontryagin, 1952, pg. 47, Theorem 1:, Tllis

homeomorphic to the polyhedron denoted by 'Sl' in this reference).

-

‘Therefore, by a simple inductive argument,

' : (m) ()
By corollary 1 of Theorem 2.7,

HELALS

. Now, if (:) # Mk, for some k, then
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which contradicts Theorem 3.1. _ -

Q.E.D,

3.3 THREE CHARGES ON AN m-TORUS

For three charges on Tm, equation (6) becomes

i

' ; - ' -
®) . 2050 g'(4Py) siny, o 2000, 8'(40p) sinlyy ) = ¥y )

- ! 1
ZOtoa‘z 4 (4p02) sin yi,2

where - -

0
= (?ley. - . _
(9 : f&,j = ZE: sin E(yk,i yk,j), i,j = 1,2,3.
. -

Clearly, those‘valueg of ¥i,1 and Yi,z for which sin ¥i,1 = 0
and sin Yi1 = 0 satisfy (8). However, there‘may be other solutions
’ N . .

since (8) ‘does not imply sin Yi,j = 0. Hence, the straight-forward

approach used in the two charge problem no longer applies.
The three charge problem, i.e., the enumeration 6f”the

stationary points of V on sz, will now be reduced to the eﬁumerat#on

of the stationary points of real valued functions defined on Tzs
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Let m be the set of all positive integers which do not

exceed m:

1t

ks {i\iisanintegerand0<i£m}.

Lemma 3.1

Let AC fi. Let BjC# =~ A and Bzca - A. Let k, byy, bg,,
and b1y be, respectively, the number of elements in A, By, B and

(ﬁlu B

2) - (Blﬂ B2 Y. Let (u,v) & EZ such that sin u ¢ 0 and

sin(u-v)

(10) o(ooclgi(4501+4ksin2%u)45i'n u -oq o8’ 4b12+4ksin2%(u-v)

1]

z

-%dzg' 4b02+4ksin21vJ sin v
Let l" be a function on A such that r'i =1 for each i € A.

: m2 .
Let {yi’j}GE su;h that

(1) yi€MNT and y; ,el(¥ if i€a

(1i1) y; ;€ 0, if i€@ -4 - By

(ii) yi

i) y;, ef, if L1€B
and My, €0, if ig(@ -A) - B,
Then ‘{yi,j} is a solution of (8);
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Proof

If i € f-A, then vy, and y. satisfy (8) since
; i,1 i,2

—

sin yi,1 = sin y; 2 = sin (y4,1 - ¥i,2) = 0.
1f i €A then, since Yi,1€ [0 and y; Zer’i\—r,
) ‘

' ' g1 21

sin yi,i

= - ' : 21 o0l -
= 00,8 (4b12 + 4k sin E(u v) sin(yi)l yi,Z)
= - ' . 21 .
= 0%, 8 (4b02 + 4k sin Ev sin yi’2
Hence, to complete the proof, we need only show
© m
L 21 = _ . 21
?bl = ZE: sin Eyi,l = bOl,* k sin Eu
i=1 -
= 21 _ .21
®o2 = sin iyi,z = b02 + k s1n 7V
i=1 :
and
m .
2 : : 2
Pz = sin %(yi,l' yi,z) = b, +k sin %(u -Vv).

—

i
Since ANB = 0,



. 21
sin 7,1

21
+ Z sin 'z'yi,l |

i€A

(m -k -by)'0 + bgptl + zﬂf sinz%.u

? = sinz.!-_y + v‘
01 | /.
i€( -A-—B1) iéBl
. 24
= + k sin"xu.
bo1 5
Similarly, -
_ . 2]
?02 - sitavi,e ot Z ®
i€( -_A-Bz) iéBZ’
= E’OZ + k sinz_%_v ’
and since

i€A

in2 1

i.yi,Z* + Z

1€A

. 2
s1in l.yi’z

2

(B1-B2) U (B2-B1) = (B31UB2) - (B1N B2) and

I(Bl-Bz)-ﬂ (BZ-BI) =@,

P12

where

u

K

ie(B, -B,)

21 s
b12 + k sin 2.(u v) ,

= @ - (B,-By) - (B,-B;).

L6(8 -B)

. 1€A

o .2 .
Z 51“2%-(3’1,1‘&,2) + Zsm %(Yi,l‘yi,ﬂ

ieK

' . 21 - : 21 -
+ Z sin f(yi,llyi,z) + Z sin f(yi,l yi’z)

Q.E.D.

112
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The preceeding lemma suugests a procedure for constructing

solutions of >(8) . We first select the sets A, By, and B, described

in the lemma and then seek solﬁtions-of (10) . The method of
constructiﬂg solutions of (10) fgom solutions of (8) is cleaf from the
lemma.v

wéinbw show that all solutions of (8) may be constructed in

this manner.
Lemma 3.2

Let {;'i,j} €T be a solution of (9). Suppose sin s'r,l £0

and sin yg 1 # 0 for Yr,1 e'yi’l and yg 1 G.;S,l' Then there exists

- 2

/ae E such t:hat:',u2 =1,

Ye,1 = Ayg,y and ;'r,Z =/"T's,Z

Proof

By hypothesis,

ofoon g' (4Po1) sin yr 1 ~atjoly g (4 Py 2) sin(yr,1 = ¥r,2)

= -(10“23 ! (4?02) sin yr , 2

and

]

o e’ (4P01) sin yg,1 = -oh%g' (4P1y) sin(y, 1 = ¥g,2)

08" (405)) sin y. o,
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where

m

2 _ ) .
P‘ij = Z sin %’(yk,i - yk,j)’ i,j = 0,1,2.
) "~ k= '

Then, since g' (4?01) £ 0 and sin ys’pé 0,

(1) sin yp } sin yp 9 _ sin(yr’l L= ¥r2 )

ssi.n'ys’1 sin Ys,2 sin(ya’1 " Ye,2 )

Let ,

(12) A = Sin(yr.l " Yr.g)__
sin(ys’1 - ys,z)

Then,

sin Yr‘,l'cos Yp,2 — sinyp jcos y. 4 = Asin ys‘,lt:bs Ys,2
| - Asin ¥g,2€98 ¥g,1

also, from (11) and (12),

~ 8in Ye,1 = Asin Ya,1 and sin Yr,zﬁ )sin ys,2‘
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" Therefore, since M= 0,
(13) '(cos'yr,z - cos ys,z)sin Ys,1 = (cos Ye,1 -oosys,l)sin Ys,g'

Let a - = s8in ¥s,1 and let b = sin Ys.,2° Then

equation (13) may be written:

(14) ¢ Vi 2 - 6 vh - $)a = 53“/1 “Ra? - ﬁ"l ~ )b
2 | ‘ ' . .
where Ej_ =1, i=1,2,3,4.. Squaring (14) and simplifying,

we obtain

2 - =h2yl T - ER VT -R2W -

Againv squaring and simplifying, we obtain

-1 f%(az F YA - )2 - a®v2)\2

= -Ezq* Y1 - ®2 71 "..&2/1"'%b2)/]- - v
. .Squaring once more .and si.'mpl_ifying, we finally arrive'at ,

SO CIERNLICERTS B



Thus,

' _ 2

sin""ys’1 = 8in’ Yg.2
(from (11) and (12)), or

sinzys’l = sinzyr’l .

116

‘Suppose sinzys’z = sinzys,l. From equation (10),

sin'ys’l and sin ¥s,2 are opposite in sign'.'.. Therefore,

sin Ys,1 = ° sin Ys,2°

—

. Hence, —y-S,',l = "ys"z or yS,l = ys’_z “' 7r- But" if

Vs,1 = Yg,2 - 1, them,
sin(y§’2 'yg,l) = 0,
which 'ié impossible since sin Yg.2 # 0. Therefore,
. , [}
. (15) : , ' Ays,l" = "Yg,2*

From equation (11), sin Ye,1 = -sin-yr 2 and
V3

by a similar argument,

80



16y §r,1 = "§r,2:

Therefore, from (11),

sin Yr,1 _ sin Zyr,l - sin'yr’l cos yr
Sin'ys,l | sin ZYs,l sin Ys,1 €08 ¥g.1
Hence,
€08 yr ;1 = COS yg -

This implies,

Ve, 1= Ys,1 °f Yr,1 = " V¥s,1°
If ’?i’l = ?;’1 s then; by (15) and (16), the lemma is true
for M=1. Similarly, if ?i’l = -is’l,,the lemma is true

fO‘I’.‘ M= "'1.

Suppose sinZys’l = sinzyr’l. xﬂen,
sin'yg] = sin ye,1 or sinyg; = -s}ﬁ Yr,1;

~ Hence, there are two cases to consider.

117
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Case 1.
Suppose sin yg 1 = sin yp; . Then, from (11),

sin yg,2 = sin yr 2. Hence,

Ye,1 =, ;’—s,i or -;r,l =7 - Ys,1»
and
Yr,?_ = .}-;S'Z or Yr,z = 7’ = ys’Z'
Now, from (11),
' . _ sin Ye. 1 - o e '
Bin(yr,l .yr,Z) - Sin(ys,l ys,Z) - sin(ys’l '8,2)
' sin ys’1

Hence, if §r,1 = T = 55,1 and i;’z = - §;’2, then
sin(ye.q = ¥p,p) = - sinlyg ; - ¥ 50

which is impossible.

If‘ yr,l = - ys’l and yf;z = yb,z,'then

sin(yy | = ¥p,2) = sin(y, 1 - ¥ ,)

= si.n(ya’1 + thi).

Hence,



Ys,1 " ¥g,2 % ys,l + 3;s,,Z
or |
¥s,1 '3’_5,2 = T - Ys,1 - Ys,2°

But 2y8,2€6, since sin yg 2 # 0. Therefore, 2;3,1 =

and so,
ys’lEﬁ’lz or ys’le-ﬂlz.

If yg4,1€ 72, then

yr,l = 77" /’/2 = W/Z = ys’lc
Similarly, if yg e -7/2, then
Ye,1 = Ys,1°

By a similar argument, if yr,l = 3'-5,2’ and

Yr,2 = M- ¥s,2° then_

Vr,z = -;s,z'

Thus, for case 1, the lemma holds for, M= 1.

7

119
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Case 2
Suppose sin Ye,1 = "= sin Ys,1° Then, as in Casg 1, there.
are four possibilities to consider: (i), ;r,l =-§;,1 and ;}’2 = -;;,2;
(11), ¥e,1 = ';;,1 and ¥y 5 = ¥g,2 =73 (111, ¥e,q = ¥s,1 -7 and
Ye,2 = ¥e,25 (), ¥r,1 = ¥s,1 - and yrp = ¥g,2 =7+
As in case 1,.'371.’1 = ;s,l - 7 and ;r,z = ;3’2 -7 is impossible

since

i

sin (Yr,l "Yr’z) sin yfgl sin (y»s,l‘-ys,Z) ‘

sin yg 1

- sin (Ys’]_ -y8,2>

74 sin (ys,l -YS,Z)

ys'z "'ﬁ ) then

1f §f,1 = '§§,1 and ;r,z

—sin (yp | =¥, p) = - sim (¥g 5 + Y5 o)

]

sin (ys,l "'ys’z) -.

Hence ¥, 5 “yg,1 = Yg,1 + ¥s,29 OF Yg,1 “Yg,2 = Yg,1 * Ys,2 - 17

and, as in case 1, 2ys’1 ¢ 0, and so
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<
it
3
N
o
"
<
n
[}
=)
S
N

5,2 8,2
Therefore,

yr,2

i
N
N N
t
=i
o
2
L)
n
1
<

————r—— —
— ——

or yr,Z

Similarly, if ?;,1 ='§;’1 - 9r and Yp,3 = “Vg,2» thenm,

yr,l = fys,l'

Thus, for case 2, the lemma is true for /L= -1.

‘QoEch

Definition 3.1

Let AC fn\, Blc?n - A, and BZCr/n\ - A. Then, for
each (pl,pz)STz, let.
W(pl,p2iA,B,,8)) = d0a18(4b01 ¥ klpl-p"]z)
: 2.,0)2
+ “Oazg("boz + klp _ .p. l )

: ’ 1.,2]2
+ oslarzg(loblz + k[p P , ),



where k, b01, boz,.and biZ are, respectively, the number of
elements in A, By, By, and (BlLJBZ) - (BjNBy), and

o’ = (1,0,1,0) € T2.

Clearly, the third order partial derivatives of

W(pl,pZ;A,Bl,Bz) are continuous on Tz. In terms of local

coordinates,

w(pl ’PZ‘ QA:B]_ ’Bz> = O&‘Oo('l g

4b01 +4k sinz%u)

+ 0‘0(32 g‘ab‘oz +4k Siﬂz%V)

+ O, g(4b12 +k sinz%(u-v)):
where (u,v) € E2 such that

pl

(cos u, sin u)

and ‘ pz

i

(cos v, sin v).

Following the convention introduced in section 3.1,

_ a point, (E,V)EEZ, will be called a stationary point of

'w(pl,pz;A,Bl,Bz) if, for each u€u and v€v ,

Z Z

(17D Zﬁbdig'(4b01+4k sinzlu)sin u = -Zdbdég'(4b02+4ksinzlv

= -2duyg’

4Dy 5 +4k sinz%(u-v)

sin(u-v).

122
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Theorem 3.3

Let {S’.i,j} € B2 Let

A = {1’. ii,l :/:6 and ?i,l #:'7_]:}
B = {i Vi1 - 7_7} .

B = {i ¥i,2 = 77} .
Then {'ii j} is a statiomary point of V if and only if
, _

(1) ('}71’1,')71’2) is a stationary point of .
w'(PlipZ;AaB]_ )Bz)s i=1,2,...,my
and - (ii) there exists a function [l on A X A to {-1,_ 1}

such that, if 1€A and j €A, then
Vi = L5V and Vo= Qg T
Proof:

Supposbe {yi,j} is a stationary point of V. -Then,
by lemma 3.2, there exists a function fL on A to {-1,‘1}
such that  yy,; = D‘i,jyj,l and J; o = S1y 35 55 13 €A
Clearly, Aif iem - A, then (;i l’ii 2) is a stationmary
) ) ] 3 .
point of w(pl,pz;A,Bl,Bz), since
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sin y; | = sin yi’z = sin(yi’l'- yi,2) = 0.

Let i € A. Then, by an argument similar to the one

used in the proof of lemma 3.1,

- ein?
(18a) E{: sin _yJ 1 o1 ZE: sin %fli,jyi,l

m

"
o
+

= . 21
= b01 + k sin fyi,l'

Similarly,

| . 21 -
(18b) _ Z sin E.yj )2 02
and =

m
(18c) j{: sin _(yJ 1 yj,Z) = b12'
N ___1

n
o
+

k sinzé.yi,z,

4+

21 - N
kosin®2yy,1 = ¥4,2)

But, since {?i j} is a stationary point of V,
R .

m
21
(19) Zotoo‘cl' g’ (4 Zsin .z-yj )1
i=1

sin Yi,1

- ' 21 :
20%, g (aisin Eyj'z) sin Yi,2

-

21 "
l;ZSin—()'j’l'Yj,z)) 31“()’1,1')’1,2) .

]

-201%p &'

-
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Thus, by (18a), (18b),(18¢c) and (19), .(§1,1,¥1,2) is a stationary
‘point of W‘(pl,pz';A,Bl,Bz') . )
| Supposé conditions (i) and (ii) of the theorem are satisfied.
By gle.finiti;)n, §i,'1 = 7, Lf 1 €B1 and §; 5 =T, |
if 1 €B2. Also, 1if i;.€ @ - A.‘- By, thgn sin y’.i’l = 0
and §; ; # 7. Therefore, ¥y, = 0 if 1€8 -A - B).
Furthermore, if i 6 o~ A - By, then sin Yi,2 = 0 and yl 2 £ TT,
since sin yi,1 = = 0 and (yl 1,yi 2) is a st:ati.onary point of |
w(pl,pZ;A,Bl,Bz) . Therefore, yi,Z = 0 if i 6. o - A - BZ.V
Thué, {yi,j} satisfies cquition_s (ii), (iid) ,' (iv)
and (v)b of lemma 3.1.‘ )

Let 1 €A and let: (u,v) = (yi l’yi 2) Let [ be on

At { 1, 1} such that if j €A, then [y = £y Then (w,v)
and M satisfy the conditions of lemma 3.1. Also, if j€A

t v = v = a . y = kvl = Ve
hen §y 0= Sy i o= TyE oand Vi, o= S 5, ry

Thus condition (i) of lemma 3.1 is also satisfied, and

therefore, {'i'{ j} is a stationary point of V.
4
QcEiDo

ALet A, Bl’ and B2 be fixed. 'lfhe stationary points of

w(p!,p? iA,B,

To simplify the notation, we shall write W(u,v) instead of

’BZ) will be investigated in the next three lemmas.

W(PI ,pz_;A.Bl-, 2) .« S



A stationary point, (G,G)GEEZ, will be called an

interior stationary point if ' sin u # 0.

Lemma 3.3

Let (G,V)' be an interior stationary point of W. Then,

(4,¥) is non-degenerate, and the ‘index of (U,V) is even.

Proof :
Let

Then,

(20a.). g_i‘é{

(20b) gé’z‘.

o) £

fl

il

Co2

C12

Do2

Dy2

D(nsinzu + Cgicos u + Dlzsinz(_u-y) + Clzcos(u-v)

2%, 8" [4bo;
2kcflo\“2 g' (li-blz

2
k dodl g" ( 4b01

Wiy, g"(4vg2

2
k dlofz g"(4b12

4k

4k

4k

bk

4k

4k

'sinz%u)

sinz%v)
sinz%(u-vﬁ
s inz%.u)
sinz%y
sinz%Gu-vﬂ

1
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Dozsin?'v + szcos v o+ DlZSinzl(_“"v) 4+ Clzcog(-u-v).

- Plzsinz(u-v) - Clzcos(u-v).

Hence, the Hessian of W at (G,V) is given by:
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2w Q%
0 us Jdudv
det
2% 2%
Qudv ov?
22 ' 2 2
= DOlDOZSin usinv + DOIDIZSin u Sin (u-v)
+ D D sinzv-sinz(u-v) + D__.C Binzu cos v
02712 01 02 .
+ D_.C sinzﬁ cos(u=v) + D_C _sindy cos (u=v)
0l 12 02 12 ,

+ DOZCOISinzu cos u + D12C0181n2(u-v) cos u
+ Dlzcozsinz(u-v)_cos.v + -COIszcos u cos.v
- .COIQizcos u cdq(g-y) + COZClzcos v‘cog(u-v).

Let & denote this determinant.

giﬁce (u4,Vv) 1is a stationary point 6f W,

(21) . | Coisin u = <Cypsin(u-v) = =Cyysin v.



Hence,

| 0151 _ Cgpsi
o - s Chq8in uo Chy8in v.

sin(u-v) sin(u=v)

Therefore,

Colcozcos ucos v + Cozclzcos

T+ Cozclzcoé v.cos(uiy)

= Co1%:2 l°°s

= 001002 [cos

=. - COICOZSin

But, (-COlcozsin u sin v) is positive since 001<10,

u cos(u-v)

ucosv + sin v cos u cot(u-v)
- sinucos v cot(urv)]

ucosv = cos(u-v)]

u sin v.

and sin u and sin v are opposite‘;n sign (from (21)). Also,

Do1 2.0, Dgp = 0, .Dlzé 0, sinu >0, sinsv >0, and

sinz(u-v) > 0. Therefore,

®

(22) 4;‘ > DOlsinZu {Cozgos v o+ Clzcos(u-v)]’

+ Dozsinzv [001cos u o+ Clzcos(u-v)]

+ Dizsinz(u-v) [Colcos'u + . Gy, cos v].

12¢
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To complete the proof, we need only show that the

bracketed terms in (22) are non-negative.

For each x,y €E, let
<-" | { z l for some integer k, x < z + 2k7r<y} .

‘ Since sin u and sin v are opposite in sign, we may
suppose  u € {3,7) and ve <'-ﬁ»6>° From (21), sinu - -
and sm(u-v) are also opposite in sign. Therefdré, (u-v) € <-7T,0>

Now, if u € <0 ’T/2> U { /2} and- -v € <0 /2>U {ﬁ'z

then u-v¢ <-7{,0>. Therefore, there are three cases to consider:

Case 1
: Six'ppose ué€’ <7—'f7?2,7/-> and -v¢g <’/_'[7:'2-,ﬂ_' . Then,
(23) .~ sinu » 0, -cosu >0, =cosv >'0, and =sin \‘1)_0..

Now, if u~v € (-’—Ii-:-i—l'/_i> U {7}7-2-} , then cos(u-v) &0,
~ -and since Cgy, Cpzs C12, cos u, and cos v are negative, the
bracketed termé in (22) -are hoﬁ-negative.

Suppose u-v € <-77/—2,6> Then, from (23),



- sih(u-v)‘ = = sin u cos.v + sin.v cos u
> -~ sin u cos v
> sin u,
Similarly,
- s_in(?l-v) > - siq '
Therefore, sir;ce Cio < 0, .we have by (21)',

COISI_n_u = = Clzsin(u-v) < Clzsinu

and

- Cypsin v = = C,,sinu-v) < -cC,sinv.

02 12

Hence, - = 001- > = C12 and - CQ2 > - Clz.

Also,
cos(u=v) = cosucosv =~ sginusinv

< cos u cos V.
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Therefore,
cos(u-v) < = cos u and cos(u-v) < - cosyv
Hence,

Cgycos u > - Clzcos(u-v)
and |

Cgpcos v > = Cppcos(u-v).

Thus, the first two bracketed terms in (22) are non-negative,
and since Cy;, Coz,'cos u and cos v are'negative, the right

hand side of (22) is non-negative.

Case 2

Suppose u € <’7—T7_.-7.,TT> and -v €<6,’l-]'/_2> U {’/775} .

Then, u-vE<-ﬁ,-77-/_2_>. ' | ' :
Let u' =u, v' = u-v,"C61»= Coi, Caz = Cyp» and

Ciz = COZ." _Then, u'é <m,77’> and -v' €<ﬁ/—2.,ﬁ> and

] ] — - [} - el | -
COISin u' = Clzsin(u v) = Cozsin v .
Hence, by the argument used in case 1, with u, v, cOi’.COZ’

! v v ' ' '
and C12 replaced by u', v', COl’ C02 and C12 s
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C..cosu + C..cosv = C'.cosu' + C!

"ot
01 02 - Co1 2608 (@'-v >0,

¢! cos v' & C' cos(u'~v') > O,

cos(u=-v) 02 12

Acozcos v f C

and

12

C01cos v o+ Clzcos(u-v)

' ' ' ' i .
C01cos u' o+ C02c°s vl > Qf

Therefore, the bracketed terms in (22) are non-negative for Case 2.

- Case 3

Suppose u € <6,%>U{772-} and -v €<’/7-"-/T".,7T/.'>;
Then, -(u-v)€<-T-ﬁ77>. Let u" = =v, V" = u-v, Cal =.Cozv,

cl, = C and C!, = C Then, by the argument used in

02 12? 12 o1°

case 2, the bracketed terms in (22) are again non-negative.
Q.E.D.
Lemma 3.4

{0,0) is a maximum of W.

Proof:
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| Let

F— —
2 2
oW oW
(0,0 —(0,0)
' vz'( ) : . duwv
H = : ]
2 2
oW oW 0.0
avau(o’o) av?'( 0)
_ i

Then, from (20a), (20b), and (20c),

- | | -

oo 8' (4bg) + Ky 8’ (4by,) -0 % 8" (4b)
H = 2k
L .
-0, 8" (4by5) o8’ (4byr ) + 10, 8" (4bgq)
- . o,
Therefore,

det H = (2k)2{o<locz [obg'(%m) + ofag'(%lz)][ovog'(‘*bog) + crls'(“bLz)]

- [oos (‘+‘>12):|2 }
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Hence, either the eigenvalues of H are both negative or both

positive. But the sum of the eigenvalues of H is equal to
the trace of H, and the trace of H is nagative since g' < 0.

Therefore, il is negative definite.
Q.E.D.
Lemma 3.5

If the stationary points of W are non-degenerate,
and if (G,¥) is an interior stationary point of W, then (u,V)
is a minimum of W. Moreover, if (d',V') is an interior

stationary point of W, and if (4W',¥') = (T,¥), then

@,v"y = (-8,-v).

Proof:
Let F be the set of all stationary points of W. in EZ.
Let
F©o= {(’ﬁ,?})lsinlu # O}QF,-
and let
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(F;" is the set of -im:erior stationary points of W.)

We note first that F+I contains an even number of
elementé. For, 1[ .(E,V)GF*' , then so is (-%,-¥), from (17),
'a‘nd (G,V) # (-4,-V).

Now, the only elements of F are 0,0, (5,";7’), (7}.',-5),
and (7, ). |

Let Mi c‘ienote the number of stationary points of W

of index i. Let- 2t be the number of elements in F*, where

t is an integer. Then, from lemmd- 3.3 and lemma 3.4,

M+ Mz..-é 2t + 1.

Also,
Ml = 3,

" since the only stationary points of W which may have an odd . -
index are the points (0,9, (7,0) and (77", 7). Hence,

if the stationary points of W are non~degenerate, then

20 _ o1 2
) Ray T Ry * Ry

]
=
[}
<4
+
=

= 2t 41 -3 = 2t -2,
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where R(é) is phe i-th connectivity npmber of TZ. Thus, t &= 1{
‘and so, either F* contains two elements or F* is empty.

Now, it is clear from (20a), (20b), and (20c) that
» azw/buz, azw/ayz, and a?w/auav are unchanged if we substitute
- (~u,=v) . for (ﬁ,v). Therefore, if F+ # @, then F* contains
either two maxima or two minima. But, F~ contains no minima, |
and F must contain at least one minima since -T2 is compact.

Thus, all interior stationary points of W are minima.
@.E.D, -

We may now compute an upper bound on the number of

 stationary points of V on sz provided we assume that all-

stationary poidts of V on sz are non-degenefaCe. The conditions

under which this assumption is valid will be considered later.
Theorem 3.4

1f the stationary points of V on sz are non-degenerate,

then there are at most 6° stationary points of V on sz.
Proof:

Let Kcﬁmz denote the set of all stationary pointé
of V on sz, and let G be the set of ordered 4-tuples of the
form (A,By ,B, ), where AC T, B/C®& -A, B,C1fl-4, and

Nis a function on A such that )\i = 1 for all i€A.



2m ar

Assume that all stationary points of V on T e

non-degenerate.

‘We now coustruct & univalent function, F, on K into G.

An element = y €K uniquely determines
P 1,3 .

the three sets:

A(p) = {i sin y.igl 1.0}(::?
Bl(P) = {i | ;i.,l = E}CE - A
Bz(p) = {i | ¥y, = T }Cx’ﬁl - A.

1f A'(p’)i =@, let
FG) = (AGE)»By(2) By (80 €G.
’Suppose A(p) # 0. 'Letv
WpCa,v) - = Weph,p? ;A<p>,nl<p>;nz<p>>}
vhere (u,v) € E® and pleTl, 1 = 1,2. By Theoren 3.3,

(¥3,1,¥;,2) is an interior stationary point of W, for each
i €A(p).
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-

Let j € A .+ Let u = . and v = .
Let j (p)‘ (p) i1 (g) Yy,2
if yj 16(5,77'). Othe wise, 1let u(p) = -'-yj 1 and

v(p) = Yj,2° By lemma 3.2, there exists a function )(p)

_ 2 .
on A(p) such that )\i(p) = 1, and, for each 1i€A(p),

Vi1 = e); T

1

AP, V(o).

and

<

i,2
Let
F() = (AR),B, (2),B, (p),A(P)) E G.

Then, F is on K into G. To show that F is univalent,

suppose F(p) = F(p'), p,p'€K. Then A(p) = A(p"), B;(p) =B (p"),
BZ(P) = Bz(p'), aﬁd:hen.ce, Wp = Wp. . Also, )\(p) =->\(p'). ' .
Therefore, if p # p', then, (T(@),V(P)) # ("), F(").

In other words, if p #p' and F(ﬁ) = F(p');‘then wp has at

least four interior stationary points. Thus, by 1e'xmnab3.5,

to show F is univalent, it suffices to Saow that the statiomary

‘points of wp are non-degenerate.
Suppose (G",¥"') is a degenerate stationary point of wp

on T4 Let p" = {?? j} € 2 such Ehat_
. ’



-

i1 = T for i€B,(p)

y1,2 = j7. for iEBz(p)
/
=n ‘__ by Y . e A; | |
Vi1 = ¥y,,=0 for i € (m | A(P)UB, (PIUB, ()
=i - ™n el _ b1 s
and Yiqg = W ¥i, =¥ for i €A(p).

-

Then, by theorem 3.3, p" is a stationary point of V on sz,

and, by hypotﬁesis, is non-degenerate.
Since,

2 a2y
o4V - ol 0,

a}’i,@.}’j,l ayi,layj,z

for i # j, the Hessian of V at p" 1is the determinant of the

matrix:

139



Ml 02 02 « o 0 02
02 Mz _02 . . . 02
‘ H = . . . « o o .
07 %) 0, N My
L 4

where 0, 1s the two by two matrix:

_- 0 0
02 =
0 0
and
B v ' m
‘ 2 2 , 2. 1
) V/ayi,l o V/ayi’layi’2
Mi =
‘ R 5
Bzvlayi’layi’z azvlayi,z
L -

i.= 1,2,...,“’.

The determinant of H is given by:
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det H =

—

det Mi .
1=1

Since p"'is non-degenerate, det H # 0. Hence, det M; # O,

i=1,2,...,m. In particular, for each i€A(p),

r 2. / 2 ]
o) Wp (U",V") b Wp (uu’vu) :
bu‘)' . buav
0 # Mi = det
' bzw "o n ) bzw TR
—.—p. N )
Fa SR |

which implies (T",¥") 1is not a degenerate stationary point
‘of Wp.

Thus, F is univalent, and so, the number of elements
of K {8 at most equal to the number of elements of G.

" To complete the proof, we now show that the number

of elements in G is 6 .
For a fixed AC AW, there are exactly 2k functions
on A to {-1, 1} , where k is the number of elements in A.

m -k
014

For a given by =< m - k and byy = m - k, Ehere are b
m - k)

-

subsets of T = A which contéin b01 'elements and ( b02

141
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subsets of m - A which contain b02 elements. Thus, there

are

m -k k
2
o2 )

m ~ k
bpy

elements in G of the form: (A,Bl,Bz,‘X), where Bi‘contains
bg; elements, B, contains by, elemeﬁts and )\ is a
function on A to (-1, 1} . It follows that the total
number of.élements in G of the form: (A’BI’BZ! X>? where
the number of elements in B; and B, is unsﬁecified, is

givén by
m-k m-k

m = k m - k Zk = 22m-k’
bo1 bo2

b01=0 b02=0

Since there are (Ej subsets of Q which contain

k elements, the total number of elements in G is

m

i m _ .

Z(k) Z?mk = sz(l-&-%)m = 6‘_“ .
k=0 .

Q.E.D.

To answer the question as to whether or not the
upper bound given by theorem 2.4 is ever attained; we return

our attention to the stationary points of W.
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iemma 3.6

.Suppose (7;5), (0,7, and (if,7) are non-degenerate
stationary points of W and suppose that the index of each

is 1. Then there exists an interior stationary point of W.
Proof:

Let Mi (i = 0,1,2) denote the number of stationary

- points of W of index i.‘ Then, Mt > 3, by hypothesis, and,
since T# is compact, M02> 1 and M22 1, Hence, there are
at least five stationary points of W. But there are only
four étatibnary points of W which are not intérior stationary

points.

Q.E.D.
Lemma 3.7
Suppose
(268) /g (bg)) - F/g (4boyrbk) = B/g'(4by,+ik) > 0,
(24b) 04 /g" (4bgp) = Oy/8" (4by +4K) = Gy/g! (4by,+ik) > 0,
(25c)  Oy/g' (4by,) = /5" (4by +4l) = & /g (4byy+bk) > O.
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Then there exists an interior stationary point of W.
Proof:

By lemma '3.6, it suffices to show that (24a), (24b), and
(24¢) imply that (TF,0), (0,M, and (i, are non-degenerate
stationary points of index 1.

For (9,%) equal to (1,0), (0,1) or (1,1), let

~ g ]
COI(-l)fP + Gy, (1) (@-P . -clz(-.l‘) (@-9
QP =
"G (1) @-” Coa (-LF + ¢, (-1 P
where
- )

Cyy = 2kdoa‘2‘g_(4b02+ 4k sin %_'mp)
and

C,, = 2keqd, g'(4b1'2+ 4k Sinz%ﬂ(?'%) .

The determinant of Q(Q,y) is given by: \
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(25 det QWD) = CgyCoy (-1 4 Go1012 1P 4 cgy0p, (-1 2

Y

11!

C51Cop (1

| PHY
K { Hol-1) .
8'(41)12 + 4k .s‘in -g(‘f"y/))

+ C01012(71;k ¥ 002012('1f?

il

+ X1 (-1 S(/ .
g'(4b01 + 4k sin.gup)
+ : 0(') (fl)q) . }
‘g'(aboz + l&'k sin él’)p)
where ’ )
. 2kl y o

2., . .2 .2
g'|4by,+ 4k sin :?:I(‘P'%) g'(4b01+ 4k sin gz)‘o)g'(4b02+ 4k sin .g[;b')
Since g' is negative, we have from (24a),
L  det Q(0,1) < 0.

But the Hessian of W at (0,]) is det Q(0,1), and since det Q(0,1)
is negative, Q(0,1) must have one positive and one negative
eigenvalue. Therefore, (6,77) is non-degenerate statiomary

- point of W of index 1.



By (24b) and (24¢), det Q(1,0) < 0, and det Q(1,1) < 0,
and so, by the same argument, (6,ﬁ3 and (ﬁiﬁ)‘are non-degenerate

stationary points of W and each had index 1.

T ’_ | » | Q.E.D.

Theorem 3.5

Suppose that, for each k, bgq, bpy, and byy, such that

P - - <= -
k<m, by &m-k, by, £m - k, bj,%m -k, andblzéb02+b01,

0
equatibns (243), (24b), and (24c) are satisfied. Then there are

exactly 6" stationary points of V on sz.

Proof:

Let X, G, and F bé the same as in the proof of Theorem
3.4. Then, it is sufficient to show that F is onto G.

Let (A,Bl,BZ,)\) EG; T‘hen, by hypothesis and lemma 3.7,
there exisﬁs (G,V} € Ez which is an interior stationary point
of w(pl,pz;A,Bl,Bz).

Let {3‘7’1’1} € E™ such that

Yi, 1 = MG and Y32 = ANV, i €A
yi,1 = 7 for i €B)
Fy, = 0 forie(@-aA-3By
Fi,, = 7 fori €3,
and F,, = 0 forie@-A-By.
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Then {§i,j} is a stationéry point of V by Theorem 3.3.
Let p =  {;L:j} . Then, A(p) = A, Bl(p) = By, Bz(p)'= B, and

Xp) =\ Therefore, F(p) = (A,B1,B3,N €G.
QnE-Do '

The next theorem settles the question as to whether or

notbthe ébnditions of Theorem 3.5 are ever sétisfied
Theorem 3.6

There exists g, Kgs 15 and Gé such that.thelnumber

2m

of stationary points of V on T™ is 6.

Proof:

Let &, =0 =, =1, and let g' = -1. Then, (24a), (24b),

and (24¢) are satisfied for all k € m, by, € m - k, by, % m - k,

blzé m -k, and b

“
12 Po1 * Pop-
QoEoDo

We now develope énalogs to theorems 3.4, 3.5, and 3.6
for a lower bound on the number of stationary points of V on sz.
' As noted in the beginning of this section, {S;i,j} é-ﬁmz
~is a stationary point of V if siny;; = sinyg ; = O. |

By the same argument used in the proof of Theorem 3.1, there

are 4™ elements in the set,
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- —=m2
{{yi,j} sin yi,l = sgin yi’z = 0:} NE".
. | "
Thus, the following theorem is established.
Theorem 3.7
: m 2m
There are at least 4 stationary points of V on T .

Before stating an analog to Theorem 3.5, we need an

analog to lemma 3.7.
Lemma 3.8

Supﬁose that strict inequality holds between the
right and left hand sides of (24a), (24b), and (24c), but
théé 6ne of the inequality signs is reversed; Then there are
no interior stationary points of W, and, moreover, ome of th'eA
points (5,7',‘)," (7.26), or (-77,7[) is the unique minimum of W |

on Tz.
Proof: ' : . -

Let Q(¢,¢/') be the same as in the proof of lemma 3.7. |

Then, by (25), (7,0), (0,1, and (7,7 are non-degenerate

stationary points of W, since strict inequalities hold between
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the left and right sides of (24a), (24b), and (24c). Hence, by
lemma 3.3 and lemma 3.4, all stationary points of W are non=~

degenerate. Therefore,

where Mi is_the numbér of stationéry points of index i (i = 0,1,2).
Since one of the inequalities in (243), (24b), or (24c)

is reversed, one of the stationary points;l(ﬁﬁa), (G}ﬁ) or

V) is either a maximdm‘or a wminimum, and; since these are

the only stationary points which may have an odd index,

Since TZ is compact, MO + Mz = 2. Therefore,

and;so, there are but fcur statiomary points 6f W, none of
which is an interior stationary point.

Since T? is compact and (5,6) is not a miniﬁum of W,
one ofbthe three remaining Stationary points must be a minimum,

and moreover must be unique since



: QoEcDa

Theorem 3}8

Suppose; for all integers k, b01,'b02 and byy such that

0Ozkem, 0eby =mk, 0=2by; £ mk, 0 £ byy & m-k and

0= b12‘ = bgy + bgos strict inequalities hold between the left and
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right hand sides of (243), (24b) and(Z4c) and one of the inequalities

is reversed. Then there are exactly 4™ stationary points of V on T2,

Proof

Let K, G, and F be as in the proof of Theorem 3.4. Let G~

denoté the set of all elements of G of the form (9, By, By, ? .

Recalling the proof of Theorem 2.4, the number of elements in G~ is

n m . m
> ) bl - ¢
by1=0 Pg=0 ‘

Therefore, to complete the proof, we need only show that F

-is univalent on K into G .



| 151
Let p = {?i’j}fl{. Let Ie(p), bgp(p) Boz(p) and by, (p) be the
number of elements in A(p} B;(p). B,(p) and (Bl(p)(\Bz(p))-(Bl(p)L)Bz(p))-
Then, since strict inequalities hold between the right and left hand
sides éf (24a), (24b) aud(24c) and one of the inequalities is reversed
. (for by = b01(pj, boz'n boz(p), and by, = blz(p)),_there are no’

interior stationary points of W,
Therefore, by Theorem 3.3, A(p) = #, and so F(p)EG .
Suppose p' = {?i,j} €K and F(p) = F(p'). Then A(p) = A(p') = @,

B1(p) = By (p") and B,(p) = B,(p"). Hence,

Yi,1 = T o= ¥i,1 for i€ By (p)

;’-i.,l = -6 = 3,-1!.,1 for ieﬁ - Bl(p)
and

5 . =0 =7, . for L€EM - B.(p)

Yi,2 77 F¥y,p FOF €W 7 BN

Thus, p = p’.

Q.E.D.
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Clearly, if Qe let g' = -1, and Uy = & =1, then é‘z may be
" chosen 'so large that the inequality sign in (24c) is reyersed for ali
integers k, bOi,: bay and bjo such that 0 £ k € m, 0 £ by .é m,
0 £ by, £ mand 0 £ by, £ m. ﬁoreover,'increasing or. increéses the

VA

- left hand sides of (24a) and (24b). This proves the following theorem.

Theorem 3.9

There exists & , ¢, , ¢, and g such that the number of

. . LlmoL M
stationary points of V en T is &,

Critical configurations for two and three charges on a.

2-torus are shown in figures 4, 5, and 6.
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Figure 4 Critical Configurations of Two Charges on T".
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rt p
p¢ ‘
pt ean pz pl' ,,po p‘ ”po.
(1 configuration) (4 configurations) (2 configurations)
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.(2 cqnfigurations) (1 configuration)
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Figure 5 Critical Configurations of Three Charges on T2 as Predicted

by Theorem 3.9.

Where more than one critical configuration is indicated, the
others may be obtained from the one given by rotating the
axes 90 degrees or by interchanging p1 and p2.



Figure 6  Additional Critical Cbnfigurations of Three Charges on T2
as Predicted by Theorem 3.6.
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Where more than one critical configuration is indicated, the

others may be obtained from the one given by rotating the
axes or by interchanging pl-and pc.
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