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A numerical first order approach is proposed to conduct stochastic analyses of head 

and concentration under variably saturated conditions. The approach is based on a first-order 

Taylor series expansion and an adjoint state method. To implement the approach in different 

flow and transport regimes, numerical models are adopted to evaluate sensitivities of head 

and concentration with respect to hydrological parameters. This provides the possibility of 

conducting stochastic analyses of flow and transport problems with any kind of boundary and 

initial conditions. As a result, limitations of analytical approaches such as the 

spectral/perturbation approach can be avoided. In addition, the use of adjoint state method 

also alleviates the computational burden encountered in Monte Carlo simulation by allowing 

us to evaluate the sensitivities of head and concentration only at interesting/measurement 

locations. Several numerical simulations are performed to examine the sensitivities and 

moments of head and concentration under different flow conditions. The results show that 

the existence of water tables in the simulation domain can have a significant impact on the 

moment calculation of head and concentration. 

The calculated statistical moments are used to estimate log-conductivity by cokriging. 

The conditioning effect of head, concentration, and arrival time in estimating log-

conductivity is investigated under different flow conditions. The results show steady state 

head is the best secondary information compared to solute concentration and arrival time in 

estimating conductivity by providing stable and consistent results. Estimates can be error 
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prone when concentration measurements are used to estimate LnK^ because of the nonlinear 

relationship between concentration and LnK, and the large variability in the simulated solute 

plumes. A sequential estimating technique is shown to be able to overcome some of these 

inadequacies of using concentration measurements. Arrival time, requiring a large amount 

of CPU time, does not show any advantage over concentration and head in estimating 

conductivity. 
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I.l Background 

Hydrological properties of the subsurface generally exhibit a high degree of spatial 

variability at various scales due to the heterogeneous nature of geological formations. To 

investigate the heterogeneity of aquifer properties, many field experiments have been 

conducted in last decades. For instance, the experiment performed in a sandy aquifer at 

Borden Site, Ontario, Canada in 1982 {Sudicky, 1986) provided the distribution of hydraulic 

conductivity values in this aquifer by measuring conductivity at 1279 locations. This 

detailed mapping of the conductivity field demonstrates that aquifers are not homogeneous 

and conductivity varies spatially. Other field experiments include Twin Lake site {Killey 

and Moltyaner, 1988), Cape Cod site {LeBlanc et al, 1991), Columbus site {Boggs et ai, 

1992), Denmark {Jensen et ai, 1993), and Georgetown site {Yeh et al., 1995). These 

experiments not only uncovered different scales and degrees of aquifer heterogeneity, but 

also demonstrated the significance of heterogeneity on the movements of water and solutes 

in the subsurface. 

Even though we can conduct field experiments to measure aquifer parameters, our 

knowledge of the spatial distribution of the hydraulic properties is still limited and 

incomplete since we cannot take samples at every location in an aquifer. As a result, our 

predictions of flow and transport processes in the subsurface are subject to uncertainties. 

To address the uncertainty associated with our predictions, stochastic modeling of flow and 
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transport processes in geological media becomes necessary. 

1.2 Stochastic Moment Analysis 

In the past two decades, many stochastic analyses have been conducted to derive 

statistical moments of hydraulic head and solute concentration. In general, given the 

statistical properties of hydraulic parameters, statistical moments of head and solute 

concentration can be derived through analytical or numerical analyses (see Yeh, 1995). 

Based on an analytical first-order approximation, Dagan (1982, 1988) and Rubin and 

Dagan (1992) formulated covariance functions of head in uniform flow under fully 

saturated conditions. Bakr et al. (1978), Mizell et al. (1982), Yeh et al. (1985a,b), and 

Russo(1993) employed a small perturbation approach and spectral analysis to derive the 

spectral density functions and covariance function of head in saturated or unsaturated porous 

media. Neiiman and Orr (1993), Paleologos et al. (1996), and Tartakovski and Neuman 

(1998) developed analytical approaches to predict conditional moments of head and flux as 

well as effective conductivity under steady and transient flow conditions. Focusing on 

solute transport problems, Gelhar and Axness (1983) related the macro-dispersivity of 

porous media to the heterogeneity of hydraulic conductivity through the spectral 

perturbation approach. Neuman etal. (1987) also studied the behavior of Fickian dispersion 

in field scale problems. Dagan (1982, 1988) summarized the previous research results 

about the macro-dispersivity by casting the problem in a Lagrangian point of view. 

Vomvoris and Gelhar (1990) evaluated concentration variance and its affecting factors by 
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the spectral analyses. In addition to these unconditional analyses, Graham and Mclaughlin 

(1989) evaluated the conditional moments of concentration by solving perturbation 

equations and applying the Kalman filter. Ezzedine and Rubin (1996) also investigated the 

conditioning effect of head and conductivity measurements on the prediction variance of 

concentration based on the spectral solution and geostatistic approach. Zhang andNeuman 

(1995a, b) examined the conditioning effect of hydraulic conductivity and head on 

concentration through a combined Eulerian-Lagrangian theory. 

On the other hand, Monte Carlo simulation was employed by Delhomme (1979) to 

examine the effect of measurements of transmissivity on the reduction of the head 

prediction variance. In this analysis, kriging technique was used to condition on the 

available conductivity measurements. Smith and Schwartz (1980, 1981a, also analyzed 

the conditioning effect of measurements of hydraulic parameters on head and solute arrival 

time using Monte Carlo simulation. Clifton and Neuman (1982) extended the previous 

studies to condition on both transmissivity iind water levels by kriging and a Bayesian 

inverse method. Their analysis showed that conditioning on both conductivity and water 

levels significantly reduced the prediction variance of head compared to conditioning on 

conductivity alone. Harter and Yeh (1996) conducted conditional Monte Carlo simulation 

to investigate the effect of conductivity and head measurements on the solute transport in 

the vadose zone. Kitanidis {\995) also employed Monte Carlo simulation to examine the 

conditional mean head obtained through a quasi-linear geostatistic approach. 

Although numerical approaches are flexible, analytical methods are often preferred 
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because they can provide explicit relationships between the statistical properties of 

hydraulic parameters and state variables associated with flow and transport processes. 

However, the analytical approach generally has to rely on simplified assumptions, such as 

infinite flow domains, small variability of hydraulic parameters, and stationary processes. 

While these assumptions are necessary to avoid complications in mathematics, they hardly 

reflect the condition in field problems. For example, flow domains for groundwater are 

usually bounded by geological structures such as faults and different geological units. The 

upper boundary of groundwater reservoirs is generally associated with recharge or 

evapotranspiration that varies in time and space. In addition, the flow processes from the 

vadose zone to aquifers are nonstationary since the degree of mean water saturation varies 

in space and time. More importantly, the movement of solutes released from the land 

surface can hardly be characterized as a stationary process unless the solute has traveled a 

long distance and spread in a large area. 

Numerical Monte Carlo simulation on the other hand requires no assumption, except 

the specification of probability density functions for the hydraulic parameters. They can 

also be applied to either fully saturated, unsaturated or variably saturated flow in 

multidimensional media under steady or transient flow conditions. Further, this numerical 

approach can easily incorporate the measurements of aquifer parameters into the analysis 

of head and concentration moments without assuming any joint probability relationship 

between head, concentration and aquifer parameters while analytical derivation of 

conditional moments is intractable. Nevertheless, the requirement of enormous CPU time. 
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memory and storage spaces is the major drawback of the Monte Carlo simulation technique. 

In addition, the converging of moments derived by Monte Carlo simulation sometimes is 

hard to achieve. This requires even more simulation runs for the calculated statistics to 

reach stabilization. Even so, the moments calculated may not be smooth enough and cause 

problems in using them in applications such as cokriging. 

Besides these analytical methods and Monte Carlo simulations, a first-order analysis 

through Taylor series expansion of finite element or finite difference models has been used 

to derive statistical moments of flow and transport processes. Dettingerand Wilson (I98I) 

employed the first-order approximation to analyze the intrinsic and information uncertainty 

associated with numerical models. Townley and Wilson (1985) applied the first-order 

approach to investigate the uncertainty propagation in a transient saturated flow. Hoeksema 

and Kitanidis (1984) also used linearized mean and perturbation equations to generate 

second moments of head. Sun and Yeh (1992) combined the adjoint state method and a 

first-order analysis to derive the (cross)-covariance function of head. 

1.3 Stochastic Inverse Methods 

If stochastic moment analyses provide us with the forward information, i.e., the 

prediction of mean behaviors of head and concentration as well as prediction variance, 

stochastic inverse methods produce the distributed hydraulic parameters given the 

measurements of aquifer parameters such as conductivities and the measurements of head 

and concentration. These distributed parameters are essential for numerical modeling which 
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has become a necessity to simulate groundwater flow and solute transport in the subsurface. 

In any of these modeling, distributed parameters, i.e., the parameter values defined at each 

element or node should be known in order to solve a set of discretized flow and transport 

equations. Since the primary concern here is the estimation of the hydrological 

parameters such as conductivity, these parameters are often referred to primary information. 

On the other hand, measurements of head and concentration are usually referred to 

secondary information since they are used to assist the estimation of the hydrological 

parameters. It has been indicated that since we cannot obtain the complete distribution of 

aquifer parameters, methods of parameter estimation need to be developed. When 

secondary information is used to estimate parameters, the estimation method is called the 

inverse method. Stochastic inverse methods particularly regard the hydrological parameters 

and head or concentration as random variables. 

Gavalas et al. (1976) applied the Bayesian theory to estimate permeability and 

porosity in a one-dimensional flow condition. In this approach, the priori information about 

statistics of the estimated parameter was included to predefine the pattem of the unknown 

parameters. The inclusion of priori information, regarded as a regularization to inverse 

algorithms, makes the inverse method better posed than without any priori information 

(Carrera and Neiiman, 1986; McLaughlin and Townly, 1996). In recognizing this 

necessity, Neuman and Yakowitz (1979) included a factor related to the priori estimate of 

unknown conductivity in a generalized non-linear regression scheme to estimate 

conductivity under a steady state flow condition. Carrera and Neuman (1986) presented 
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an inverse approach based on the maximum likelihood theory in which the error of head 

measurements and that of conductivity measurements were assumed jointly normal. This 

algorithm improves over Neuman and Yakowitz (1979) by avoiding the ambiguity in 

choosing a weight factor for primary information and reduces computational intensities by 

adapting adjoint state method to calculate Jacobian matrix. Sun and Yeh (1990) proposed 

a coupled inverse method in which both head and concentration measurements were 

incorporated to estimate conductivity in a saturated steady state flow regime. Carrera etal. 

(1990) applied Carrera and Neuman's maximum likelihood approach to estimate transport 

related parameters such as porosity and dispersivity. Median and Carrera (1996) extended 

the previous approach to a coupled inverse analysis of flow and transport. Sun (1998) also 

proposed a Bayesian estimation technique to characterize a contaminant site in upper New 

York state using both head and concentration data. One of the common features among 

these inverse methods is that iterations are always needed since the resulting algorithms are 

always nonlinear. In addition, the minimized objective function is very similar even though 

each method begins with different statistical theories and assumptions. 

At the same time, cokriging techniques based on the geostatistical theory of 

Matheron (1971) were also introduced to estimate hydrological parameters. These methods 

begin with minimizing the estimation variance of the estimated parameter such as 

conductivity. In the minimization process, the (cross)-covariance functions of conductivity 

and head or other secondary variables are introduced to obtain the solution of weighting 

coefficients. Although the technique was developed in mining industry, it is statistically 
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well defined. If the relationship between head and conductivity is assumed jointly normal, 

cokriging yields the exact conditional mean (Dagan, 1985; Kitanidis, 1986). Since head 

and concentration is nonlinearly related to conductivity due to the nature of the flow and 

transport equation, the cokriging estimate of conductivity using head or concentration data 

is an approximate conditional mean. Kitanidis and Vomvoris (1983) and Hoeksema and 

Kitanidis (1984) applied the cokriging technique in one and two-dimensional saturated flow 

problems under steady flow conditions. In their approaches, cross-covariance functions 

were calculated based on a linearized discretized flow equation. Sun and Yeh (1992) 

applied cokriging to a saturated transient flow case in which an adjoint state method was 

used to help evaluating cokriging covariance matrix. Cokriging has also been applied in 

unsaturated flow conditions. Yates and Warrick (1987) used soil surface temperature and 

soil texture data to estimate moisture contents based on a fitted experimental variogram 

model. Yeh and Zhang (1996) extended cokriging to estimate saturated and unsaturated 

parameters using the measurements of head and moisture content. Tong and Yeh (1994) 

combined the measurements of head and concentration data to estimate aquifer parameters 

using cokriging. 

Besides these one-step linear cokriging, Harvey and Gorelick (1995) suggested a 

sequential approach in which secondary information such as head and solute arrival time 

was recursively used to estimate conductivity. Yeh et al. (1996) proposed an iterative 

cokriging technique in which the criteria of unbiasedness and minimum variance were 

imposed at each iteration. The resultant equation for evaluating the cokriging coefficients 
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is similar to the cokriging equation except that the covariance function of head and 

conductivity is conditioned on the previously estimated conductivity field. By repeatedly 

conditioning on the previously estimated conductivity field, this approach incorporates the 

nonlinear relationship between head and conductivity. As a result, the final estimated 

conductivity field is truly conditioned on head measurements, i.e., the estimated field and 

head measurements satisfy the flow equation simultaneously. This approach is further 

extended to unsaturated flow by Zhang and Yeh (1997) to estimate both saturated and 

unsaturated parameters. Kitanidis (1995) also presented a quasi-linear geostatistical 

approach in which the estimated parameter was conditioned on the previously calculated 

parameter field. 

Carrera and Glorioso (1991) showed that the first iteration of the maximum 

likelihood method can be the same as the linear cokriging estimate given the conditions that 

I)kriging is used to obtain the initial guess of the estimated parameter; 2) the cross-

covariance function used in the maximum likelihood method (the error covariance) is the 

unconditional cross-covariance function;3) The Gauss-newton iteration scheme is applied. 

The same issue is also addressed by McLaughlin and Townly (1995). Regardless this 

equality, these two methods differ in many ways. First of all, the maximum likelihood 

method is appropriate when the number of unknowns is less than the number of 

observations (Kitanidis, 1997). This explains why the estimated parameter fields are 

discretized into small numbers of conductivity zones in many applications of the maximum 

likelihood and related inverse methods (Gavalas etai, 1976; Carrera and Neuman, 1986; 
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Sun and Yeh, 1990). On the other hand, cokriging estimates can be applied without 

discretizating the estimated parameter field or when the number of unknowns is very large 

(Kitanidis andVomvoris, 1983; Hoeksema and Kitanidis, 1984). Secondly, even when the 

maximum likelihood method or Bayesian theory can be utilized to estimate the parameter 

when the number of unknowns is larger than the number of observations, the dimension of 

covariance matrixes can be very large if the number of unknowns is larger. For cokriging, 

the size of the covariance matrix is equal to the number of observations which usually is 

much smaller than the number of unknowns. As a result, cokriging has the computational 

advantage in requiring less space, memory, and CPU time. Thirdly, the solutions of the 

maximum likelihood method and other Bayesian estimating techniques are non-unique, 

depending on initial values of estimated parameters and the technique used to find the 

minimum (Clifton and Neuman, 1982; Carrera and Neuman, 1986; McLaughlin and 

Townly, 1996). On the other hand, solutions of cokriging estimates are obtained by 

inverting a positive definite covariance matrix and therefore, are unique. This uniqueness 

is based on the assumption that the statistic structure of the estimated parameter is perfectly 

known. Otherwise, the estimation of the structure parameters may bring non-uniqueness 

to cokriging. For instance, Kitanidis and coworkers estimate drift coefficients and the 

statistical structure of conductivity fields based on the available measurements and a 

maximum likelihood 3[gonihxx\(Kitanidis and Vomvoris, 1983; Hoeksema and Kitanidis, 

1984). Nevertheless, the number of parameters needed to be estimated in cokriging is much 

less than that in the nonlinear regression approaches (Kitanidis, 1997). The numerical 
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problem associated with cokriging is that the solution may be the unstable due to 

inappropriate formulations of the covariance maAx\\(Dietrich and Newsam, 1989). Finally, 

the maximum likelihood method employs iterative schemes which sometimes leads to more 

accurate estimations than linear cokriging due to the accountancy of nonlinear relationship 

between head and conductivity. For cokriging, the nonlinearity can be considered by 

adopting nonlinear cokriging approaches such as those by Yeh et al (1996) and Kitanidis 

(1995). 

The performances of these inverse methods have been evaluated by Zimmerman et 

al.(1997) who compared seven major inverse methods including the maximum likelihood 

method and linear cokriging. Based on the predicted cumulative density functions by each 

method, they indicated that there is a large difference between each method and none of the 

approaches showed significant superiority over other methods for the given test cases. This 

study also showed that linear estimators performs as good as the nonlinear ones when the 

conductivity fields are stationary. When the field is nonstationary, nonlinear estimators may 

yield better results. There are also reports that linear estimators outperformed nonlinear 

methods (Zimmerman and Gallegos, 1993). 

So far most of these stochastic analyses have focused on processes either in fully 

saturated aquifers or unsaturated vadose zones. Few analyses have been directed toward the 

study of flow and solute in an integrated system where part of the system is unsaturated (the 

vadose zone) and part of it is fully saturated (groundwater reservoirs). Since water and 

solutes usually percolate through the vadose zone from the land surface to the aquifer. 
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stochastic analyses must consider the interaction between the vadose zone and the aquifer 

to provide a realistic representation of the flow and transport process. 

1.4 Objective of This Dissertation 

The overall objective of this research is to conduct unconditional and conditional 

moment analysis of head and concentration in variably saturated media. To achieve this 

goal, a first-order Taylor series expansion of numerical models and an adjoint state method 

are employed. The advantage of this numerical first-order analysis is that the second 

moments of head and concentration can be explicitly related to the covariance functions of 

aquifer parameters. As a result, the statistical moments of head and concentration can be 

obtained without conducting large number of Monte Carlo simulations, and the CPU 

problems associated with Monte Carlo simulation can be avoided. Since this first-order 

analysis introduces numerical models into the derivation of covariance functions, the 

limitation of the analytical approaches such as stationarity and unbounded domains can be 

avoided. 

1.5 Overview of This Dissertation 

Chapter 1 presents the background and the objective of this dissertation. Chapter 

2 provides the variance of head, unsaturated conductivity, and velocity using the 

spectral/small perturbation approach. Chapter 3 develops the methodology of the proposed 

numerical first-order approach. The formulations for the first and second moments of head 
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and concentration and the cross-co variance functions between these variables and aquifer 

parameters are also presented. Chapter 4 derives adjoint state equations of head under 

variably saturated flows. An example is given to show the sensitivity behaviors of head 

with respect to saturated conductivity and pore size distribution parameter. Chapter 5 

presents results of head moments calculated using the first-order approximation and adjoint 

state method. Chapter 6 extends the adjoint state method to derive the sensitivity of 

concentration and arrival time with respect to the aquifer parameters in a coupled flow and 

transport problem. An example is also given to demonstrate the sensitivity of concentration 

with respect to the hydrological parameters. Chapter 7 presents moments of concentration 

and arrival time under different hydrological conditions. Chapter 8 investigates the 

conditioning effect of head, concentration, and arrival time on the estimation of 

conductivity by cokriging. The final chapter summarizes and concludes the approach and 

the results. 
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2.1 Introduction 

The spectxal/small perturbation approach is a first-order analysis that utilizes the 

inter-relationship between wave numbers in the spectral domain and spatial coordinates in 

the spatial domain to solve stochastic perturbation equations. The method has been 

extensively applied to the uncertainties analyses associated with flow and transport processes 

in the subsurface during last two decades {Bakr et ai, 1978; Gelhar and Axness,1983; Yeh 

et al., 1985; Mantoglou and Gelhar, 1987; Vomvoris and Gelhar, 1990). Although this 

approach suffers from assumptions such as infinite domain and stationarity, it in many cases 

still provides a simple and direct relationship between the heterogeneity of the porous media 

and the variability of head and concentration. 

This chapter presents the analytical forms of variance of head, variance of unsaturated 

conductivity, and variance of flux under unsaturated flow conditions based on the 

spectral/small perturbation theory. The analysis here follows the approach of Yeh et al. 

(1985). However, a log-normal distribution for pore size distribution parameter is assumed 

in this study. 

The governing flow equation for a steady state three-dimensional flow in unsaturated 

media is expressed as 

,  = 1,2,3 „- l)  
dx. dx. djc, ^ ' 
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where ijf is the pressure head; Xj is the coordinate in direction i with x, representing upward 

direction; x represents the vector of {x,, Xj, x,}; K is unsaturated hydraulic conductivity 

which in this study is assumed to be isotropic and related to pressure head through the 

exponential model {Gardner, 1958) 

^(il;,x)=^:^exp(ail;) (2-2) 

where K, is saturated conductivity; a is the pore size distribution parameter. Many field and 

laboratory tests have shown that these two hydraulic parameters vary in space (Warrick and 

Nielsen, 1980), which in turn causes hydraulic head or pressure head vary in space. To 

characterize the spatial variability of pressure head, the statistical moments of head need to 

be derived. To begin the small perturbation analysis, we first rewrite equation (2-1) as 

1 ai|; ^ ^ i BK 

Kdx.dx. 0^2 Kdx^ 

\ dK dUiK , 
By mtroducmg = , we have 

K dx. dx. 

dUiK (3i|f ^ ^ dUiK q 

dxf ^^1 

This equation provides convenience for us to use LnK instead of K as a random variable. 

Next, we express each variable as the sum of their means and perturbations 

\^=H+h, LnK^=F+f, Lna=A+a (2-3) 
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where H, F, and A are means; h, f, and a are perturbations which are assumed to be 

stationary. The reason we use LnKs and Lna instead ofKs and a is that field and laboratory 

experiments suggest that conductivity and pore size distribution parameter are usually log-

normally distributed in space (White and Sally, 1992). From equation (2-2), we obtain 

LnK=Y +y=F+j+eA+a(H+h) 

To linearize the above equation, we let ea::::(l +a) by assuming a is very small. This leads to 

y=j+eA(h+aH+ah) (2-4) 

Substituting (2-3) and (2-4) into equation (2-1) and taking the expected value of equation (2-

1), we obtain the mean flow equation 

The last two terms in (2-4) contain products of the perturbations off, a, and h which has been 

neglected in all the analysis by Gelhar and co-workers. We will adopt the same manner and 

give the discussion on this issue later on. After subtracting the mean equation (2-5) from 

equation (2-1 ), we obtain the perturbation equation 

A A 2 a(j+eA(h+Ha+ah) 
"V(F+e H)·"Vh+"V(j+e (h+Ha+ah))·"VH+"\1 h+ + 

axl 

"V(j+e A(h+Ha+ah))·"Vh=O 
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Assuming H is constant in space and neglecting again the products of perturbations off, a, 

and h, we obtain the simplified perturbation equation 

'\.Ph+ a(j+e Ah+e AHa) -o 
axl 

(2-6) 

Notice that the assumption that mean pressure head is constant implies that the mean flow 

is induced by gravity alone and the mean gradient is one. This assumption is consistent with 

the stationary assumption embedded in the spectral analysis. In order to solve this 

perturbation equation, we introduce Fourier-Stieltjes representations (Yeh et al., 1985) 

f(x)= J eik·xdZjk) 

where dZ represents the spectrum for each variable; k is the wave number { k1, k2, k3 }. 

Notice that the integrations should be three-fold integrations for three-dimensional problems. 

After substituting these representations into the perturbation equation (2-6), we obtain a 

linear relationship between the spectral process of h and those off and a 
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To obtain the second moment of head, we first evaluate the spectral density function 

of head by using 

where S represents the spectral density function; * represents the conjugate of complex 

numbers. Substituting d~ and dZ\ into the above expression, we obtain the spectral density 

of h 

(2-7) 

where Sn and Saa are the spectral density functions off and a. Notice that this formulation 

is identical to the one obtained by Yeh et al. ( 1985b) if A is replaced by eA and H is replaced 

by eAH in their formulations. In another word, whether pore size distribution parameter is 

normal or log-normal does not make significant effect on the behavior of head variance based 

on this small perturbation analysis. This is essentially due to the approximation of ea = 1 +a. 

For f and a, an exponential spectral density function is assumed 



33 

S(k) (2-8) 

where A.I , A.2, and A.3 are integral scales in xi, x2, and x3 direction, respectively; a is the 

variance of the random process. In the following analysis, the integral scale and variance of 

f and a will be designated by subscripts/ and a, respectively. 

2.2 Variance of Head 

Based on the spectral theory, the covariance function of head is given by the Fourier 

transformation of the spectral density function of head, i.e., 

(2-9) 

where Rhh is the covariance function of pressure head. A direct evaluation of covariance 

function is usually difficult due to the complicated nature of the transformation. More 

commonly, the numerical Fast Fourier transformation is adopted to obtain the covariance 

function (Gutjahr, 1989). However, it is possible to evaluate the head variance analytically 

by integrating equation (2-9) at x=O. This gives 

(2-10) 
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where subscripts f and a indicate f and a random process, respectively; Int1 is an integral 

given by 

Intl(t) and Int1(a) are values of this integral calculated using the integral scales off and a, 

respectively. The evaluation of this integral is given in the appendix. Note that we assume 

the medium is horizontally isotropic, i.e., A.r=A.2r=A3r and Aa=A2a=A3a in equation (2-1 0). For 

isotropic media (A. 1r=A.r, A1a=Aa ), equation (2-10) can be simplified as 

(2-11) 

2.3 Variance of Log-(unsaturated conductivity) 

In unsaturated media, the variance of unsaturated conductivity is often of interest. If we 

assume the product of ah can be neglected in (2-4 ), the random process y can be treated as 

a stationary process as well given the stationarity of f, a, and h. Therefore, we have 

Again based on the spectral theory, the spectral density function of y can be evaluated by 
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SyyCk)dk =E[dZyCk)dZY* (k)] 

=Sff dk+e AHS
00

dk+e Ashhdk 

Substituting equation (2-7) into the above equation, we have 

(2-12) 

Then variance of unsaturated conductivity is calculated by integrating the spectral density 

function at the zero distance 

which is given by 

(2-13) 

where Int4 is 

This integral is also given in the appendix. For isotropic media, (2-13) is reduced 
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2.4 Variance of Flux 

The flux of water flow in the subsurface is given by Darcy's Law 

i=1,2,3 (2-14) 

where qi is Darcy flux in xi direction; As usual, we express the flux as the sum of its mean 

and a perturbation term 

i=1, 2, 3 

where qmi is the mean flux and qi' is the perturbation in xi direction. Substituting the above 

expression into equation (2-14) and taking the expected value on both sides of the equation, 

we obtain the expression for the mean flux 

a(H+x1) 
q .=-Kcl.=-Kc---

mt l a 
xi 

i=1,2,3 (2-15) 

where K0 =eF+(exp(A))H. Removing the mean flux from equation (2-14) and neglecting high 

order terms, we obtain the perturbation of flux 
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i= 1,2,3 (2-16) 

To solve the above equation, we again introduce the Fourier-Stieltjes representation of flux 

i= 1 ,2,3 

and the representations off, a, and h into equation (2-16) and obtain 

dZ = -KG(J.(dZ1.+e AHdZ +e AdZh)+ik.dZh) q; z a z (2-17) 

Multiplying both sides of the equation by the conjugate dZqi* and taking the expected value 

lead to the spectral density functions of flux 

(2-18) 

Notice that the spectral density function of q3 is the same as that of q2 and therefore, it is not 
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presented here. After conducting the Fourier transformation at zero lag distance on equation 

(2-18), we obtain the variances of these two flux components 

o2.A .A2 

o! =K~ f If 1 (lnt4(j)-e2Alntl(j)-4lnt2(j)-lnt3(j)) 
I 1t2 

2AH2 2'\ '\2 
2 e 0 aAI .1\.a 2A 

+Kc a (lnt4(a)-e lntl(a)-4/nt2(a)-lnt3(a)) 
1t2 

(2-18) 

(2-19) 

where Int2 and Int3 are 

The evaluation of these two integrals can be found in the appendix. For isotropic media, the 

expressions for these variances are simplified as 
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(2-20) 

(2-21) 

2.5 Results and Discussion 

These analytical formulations reveal that variance of head, unsaturated conductivity, 

and flux depend on the stochastic properties off and a, i.e., a/, a/, A1r, Ar . .A 1a, Aa and mean 

pressure head, H, under unsaturated flow conditions. The variance increases as the 

variability of saturated conductivity and that of pore size distribution parameter increases. 

This is different from the findings in saturated flow conditions where these variances only 

depend on the statistical properties off (Bakr et al., 1978). It is also different from those 

results under unsaturated flows when pore size distribution is treated as a constant (Yeh et 

al., 1985). The dependence on mean pressure head demonstrates that the variance of head 

increases as soils become drier. The same is true for the variances of unsaturated 

conductivity and velocities. Notice that this dependence on mean pressure head can not be 
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seen without considering the random nature of pore size distribution parameter. These 

findings agree with those by Yeh et al ( 1985) who assumed a normal distribution for the pore 

size distribution parameter. The insignificant difference between the normal and log-normal 

distribution is due to the linearization of ea used in this approach. 

The dependence on the integral scales off and a cannot be shown in a straightforward 

manner in the formulation. To explore this relationship, we plot the variance of head, 

unsaturated conductivity, and flux components as a function of dimensionless parametereAA-1 

and aspect ratio p=A./A- 1 in Figures 2-1, 2-2, 2-3, and 2-4 respectively. Notice that integral 

scales and variances of f and a are assumed to be the same in these figures. The variance 

off and a are 0.3 and 0.1, respectively. Figure 2-1 shows that the variance of head decreases 

as eAA-1 increases which indicates that head variability is smaller in coarser media (eA is 

larger) than in fine media. Figure 2-1 also shows that the variance of head increases as the 

aspect ratio increases. When flow is perpendicular to a perfectly stratified aquifer (aspect 

ratio approaches infinite), variance of head becomes infinite. Yeh et al ( 1985) presented a 

similar graph for the variance of head. 

On the other hand, Figure 2-2 shows that the variance of the vertical flux decreases 

as the aspect ratio increases. In another word, the variance of vertical flux vanishes if the 

flow is normal to a perfectly stratified aquifer. Figure 2-2 also indicates that the variance of 

the vertical flux decreases as eAA- 1 increases which means the flux has a small variability in 

a coarse medium. 

As shown in Figure 2-3, the variance of the horizontal flux increases as the medium 
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Figure 2-4 Variance of LnK as a function of aspect ratio. 
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changes from a vertically stratified aquifer (p<1) to a homogeneous aquifer (p=1). This 

variance decreases as the medium becomes more horizontally stratified (p> 1). The variance 

of the horizontal flux becomes zero when the aquifer is perfectly horizontally stratified or 

vertically stratified, two cases where the horizontal flow vanishes. 

Figure 2-4 illustrates that the variance of unsaturated conductivity reduces as the 

aspect ratio increases which means that unsaturated conductivity has a smaller variability in 

the horizontally stratified aquifer than in vertically stratified aquifer. This is due to the fact 

that the hydraulic gradient in a horizontally stratified aquifer is one in the vertical direction 

and zero in other direction; as a result, unsaturated conductivity takes the value of the flux 

which is a constant in steady state flow. 

Although this first-order analysis illustrates many important features of variance of 

head, unsaturated conductivity and flux, we should recognize that the analysis is limited by 

several assumptions. First of all, the validity of the mean and perturbation equations is based 

on the small variability of f and a. By neglecting the product of small perturbations, this 

approach linearizes the relationship between the perturbations of head, flux and those of the 

parameters as seen in equations (2-6) and (2-16). In general, these equations are valid as a/ 

is much smaller than one in saturated flow conditions (Gutjahr and Gelhar, 1981) and both 

a/ and a/ are very small in unsaturated flow. The validity of this small perturbation analysis 

was tested by Harter ( 1994) who showed that solution of spectral analysis is valid for a/ is 

less than one (aa2 is less than a/ in his study) in unsaturated media. Secondly, head is 

assumed stationary in order to adopt Fourier-Stieltjes representations to solve the 
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perturbation equation. In order to satisfy this assumption, the mean head field must be a 

constant. In another word, when the mean degree of saturation varies in space as in many 

field situations, the solution is not valid. Thirdly, the solution is derived for infinite domains 

where boundary conditions and especially the variabilities associated with the boundaries are 

ignored. Fourthly, the solution is derived based on the exponential model of unsaturated 

conductivity. For other models such as Van Genuchten model, it would be difficult to 

linearize the mean and perturbation equations. 

To overcome some of these disadvantages, a first-order numerical approach is 

proposed and presented in the next chapter. 
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3.1 Equation of Flow in Variably Saturated Media 

Three-dimensional flow of water in porous media under variably saturated conditions 

is usually described by 

( S ^ P + X 3 ) )  ( 3 - 1 )  
Ot 

subject to initial and boundary conditions 

where li; is the pressure head and i}ro is the initial pressure head ; Sj is the specific storage; 

P is the index for saturation, and it is zero if ij/cO, one if i|;>0; Cy is the moisture capacity; 

X is the spatial coordinate x={x, x,. x,} in which Xj represents the vertical direction with 

upward positive; t is time; F, represents Dirichlet boundary conditions on which prescribed 

head ij/p is defined; Fj represents Neumann boundary conditions with a boundary flux qt,; K 

is the unsaturated conductivity which can be related to the pressure head through the 

exponential model (Gardner, 1958): 

Ki\\f)=K^c\pia}\!) 
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where Ks and a are the saturated conductivity and the pore size distribution parameter, 

respectively. Based on the exponential model, Russo ( 1988) presented a consistent form of 

8-l}f relationship 

2 

e =(8s -8,)(exp(0.5alJ1)(1-0.5alJ1)) 2+b +8, 

where 8r is the residual water content and 8s is the saturated water content. Parameter b is 

chosen to be zero in this study for simplicity. The moisture capacity in (3-1) is then defined 

as d8/dl}f. 

3.2 Equation of Solute Transport 

The movement of conservative solutes in the subsurface is determined by the 

dispersion-convection equation (Bear, 1972) 

with boundary conditions 

aec 
-=V·(DVC)-V·qC at 

Clt=o=Co 

Clr =C1 I 

-DVC·nl =q -r2 s 

(3-2) 

where C is the concentration of solutes (M/L3
); C0 is the initial concentration distribution; 
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Ci is the prescribed concentration at the Dirichlet boundary; is the solute flux at the 

Neumann boundary; D is the dispersion tensor; q is Darcy flux (L/T) given by 

qr-K \ ' /=1,2,3 
dx. 

The dispersion tensor D is defined as 00^, where is the hydrodynamic dispersion 

coefficient given by 

=(a^-a^)^ +aj.lvl6.. ij= 1,2,3 
"'J Ivl ^ 

where ttL and are the local longitudinal and transverse dispersivity(L), respectively; is 

the solute velocity defined as q/0. Ivl is the magnitude of the velocity; 6jj is the Kronecker 

delta (6ij=l if i=j and 0 otherwise). 

3.3 A First-order Formulation of Moments 

Equations (3-1) and (3-2) can be solved deterministically if the hydraulic parameters 

such as conductivity and soil retention parameters are perfectly known. However, field data 

have demonstrated that these parameters may vary significantly in space(e.g., Sudicky, 1986; 

White and Sully, 1990; Russo, 1988). Delineating the spatial distribution of these parameters 

at high resolutions is not generally possible. As a result, these hydraulic parameters may best 

be represented as random fields {Yeh, 1992 and 1995). If so, equations (3-1) and (3-2) 
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become stochastic differential equations. Head and concentration are in turn no longer 

deterministic variables and should be characterized by their statistical moments. Therefore, 

the effect of spatial variability in parameters and uncertainties in prediction due to our 

incomplete knowledge of the spatial variation in parameters can be addressed. 

In the following analysis, we will assume that saturated hydraulic conductivity (K5) 

and the pore-size distribution parameter (a) are stochastic random variables. On the other 

hand, Ss is assumed to be deterministic because of its small spatial variability (Sun and Yeh, 

1992). Though water content 8s and 8r vary spatially as well, they will not be considered to 

be a stochastic random field because of their small variability (Russo, 1988). 

Evaluation of first moments of head, flux, and concentration 

If we assume LnKs=F+f, Lna=A +a, CY = CY +cy, lJI=H +h, q=qm +q', and C=C+c, 8=8+ 

8', where F, A, CY, H, qm, C, and 8 are the mean values, f, a, cY' h, q', c, and 8' are the 

perturbations, the mean flow equations according to the perturbation analysis can be written 

as: 
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qm =-K(H)"'\l(H +x3) +0 2(/,a,h) 

aec ,. ,. 3 1 
-=\l·((D +D)'VC)-\l·(q C)+O (q ,c) at m m 

(3-4) 

where Dm is the macro-dispersion coefficient which is equal to the product of macro-

dispersivity and mean velocity. The inclusion of this high order product term is because it 

has a significant impact on the movements of solutes encountered by larger scale 

heterogeneity of aquifers. 

The last term in each equation combines all the terms related to the expected values 

of higher order terms. They can be neglected if we assume they are small comparing to other 

terms in the equation, similar to the small perturbation/spectral approach. The validity of this 

kind of omitting has been a long-held debate (Cushman, 1983; Dagan and Neuman, 1991; 

Zhang and Neuman, 1995). However, Dagan and Neuman (1991) showed that the first and 

second spatial moments of solute transport derived by truncating high order terms are 

identical to those from an exact Lagrangian first-order analysis. This simplification leads to 

that the mean equations have the same form as the original flow and transport equations (3-1) 

and (3-2) by recovering Ks and a instead ofF and A. 

With mean equations (3-3) and (3-4) (neglecting high-order terms), ensemble mean 
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head and concentration fields can be determined if mean values of parameters such as K8 , a, 

and Dm are specified. Moreover, if the conditional mean values of K8 , a, and Dm are known, 

the conditional mean head and concentration can also be obtained by solving the mean 

equations. In general, the conditional means of the parameters can be estimated from 

geostatistical techniques such as kriging and cokriging. However, estimates from these 

techniques will be the conditional means if and only if the parameters are normally 

distributed in the case of kriging. In the case of co kriging, the parameters and variables such 

as head must be jointly normal (Dagan, 1985). Otherwise, the estimates are only 

approximate conditional means. Regardless of the accuracy of these estimates, the resultant 

head and concentration fields will be approximate conditional means due to the neglecting 

of higher order terms in equations (3-3) and (3-4). 

Evaluation of second moments of head and concentration 

In order to address the uncertainty around the mean head and concentration fields, it 

is necessary to derive the second moments associated with these two fields. To do so, the 

pressure head and concentration are expanded in a Taylor series about the mean values of 

parameters. Neglecting the second and higher order terms of the Taylor series leads to a 

linear relationship between pressure head, concentration and the hydraulic parameters 

_ aw aw 
$ -H+(- IH FA) f+(-IH FA) a aj '' aa '' 

-- ac ac 
C=C+(-IH FA) f+(-IH FA) a aj '' aa '' 
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The above equations can also be written in matrix form if the governing equations are 

discretized by a finite difference or finite element approach: 

{h}=JhfiH,F,A {J}+Jh)H,F,A {a} 

{c 1=JcfiH,F,A {j}+JcaiH,F,A {a} 
(3-5) 

where {} indicates the vector of the discretized variable; Jhf' Jha' Jcf' and Jca are matrixes 

representing the derivative of head or concentration with respect to the parameters. These 

matrixes are often referred to Jacobian matrixes. Multiplying equation (3-5) by the 

transposes of {h) and {c'} and taking the expected value on both sides, we obtain 

Rhf=JhfRff 

Rha =JhaRaa 

Rcf=JcfRff 

R =I R ca ca aa 

R =] R J T +] R J T 
cc Lf .If cf ca aa ca 

(3-6) 

(3-7) 

where Rn and Raa are the covariance functions off and a, respectively, which can be 

represented by several models such as exponential and gaussian models (de Marsily, 1986; 

Russo and Bouton, 1992 ); Rhh is the covariance function of head; R hf and R ha are the cross-
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covariance functions between h andf or hand a, respectively; Rcc is the covariance function 

of concentration; Ref and Rca are the cross-covariance functions between concentration and 

f and a, respectively. It should be indicated that the dependence of concentration on head can 

be included in the evaluation of Jcf and Jca which will be presented later in Chapter 6. 

Notice that Raa and any Jacobian matrix related to a will become zero if the medium 

is fully saturated since the parameter, a, does not exist in saturated flow equations. Also it 

is assumed thatfand a are uncorrelated in equations (3-6) and (3-7). This simplification is 

mainly due to the fact that no information is available for analyzing the cross-correlation 

betweenfand a. In addition, Yeh et al. ( 1985b) showed that the uncorrelated case provides 

the upper bound of head variance and represents the worst scenario when the least 

information is available for the analysis. When there is such information about the cross

correlation between f and a, it can be included in equation (3-6) and (3-7) without any 

difficulty. 

Equation (3-6) and (3-7) show that Rhh and Rcc may be nonstationary even if Rrf and 

Raa are stationary. The reason is that Jacobian matrix depends on the mean pressure head 

which may not be a constant under variably saturated flow conditions. In addition, boundary 

conditions may cause the moments of head and concentration nonstationary as well. 

Statistical representation of hydrological parameters 

To characterize the spatial variability ofthefand a, an exponential model is used for 

the covariance function of LnKs and Lna 
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scale of random variables in xi direction; a/ and a/ are the variance of f and a random 

variables. Here it is assumed that f and a have the same correlation length due to lack of 

information about the statistics of the pore size distribution parameter. 

3.4 The Cokriging Equations 

Cokriging is a linear estimator that interpolates a random variable at non-

measurement locations based on the measurement of this variable and secondary information. 

If LnKs is the primary variable to be estimated, the secondary information can be head or 

concentration measurements. If head measurements are used, this linear predictor for LnKs 

can be written as 

where nf is the number of conductivity measurements; nh is the number of head 

measurements; f0* represents perturbation of LnKs at the estimation location (x0); fi and hj 

represent the perturbation of log-conductivity and head at measurement locations (xi) and 

(xj), respectively; J..li and A.j are cokriging weights at corresponding locations. 
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To compute these coefficients, conditions of unbiasedness and minimum variance 

need to be imposed. For an unbiased estimate, we take the expected value of the linear 

estimator 

nf nh 

E[f0*] = L Jl;E[f;] + L A.jE[h) 
i = l j=l 

=0 

It shows that the estimate is unbiased without any constraint. 

The estimation variance of cokriging is 

(3-8) 

where fT is the true perturbation of LnKs at location (X
0

, y0) . . To minimize the estimation 

variance, we differentiate equation (3-8) with respect to each Jli and A.j and set the resulting 

derivatives equal to zero, then we have 
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(3-9) 

The solution of this set of equations leads to the estimate of LnK5 • Similar cokriging 

equations were also obtained by Kitinidis and Vomvoris( 1983), Sun and Yeh ( 1990), and 

Harvey and Gorelick ( 1995). Myers ( 1982) also provided matrix form of the cokriging 

estimator and cokriging equation. 

When concentration measurements are jointly utilized to estimate conductivity, the 

linear estimator can be written in the same way as 

where nc is the number of concentration measurements; P is the cokriging weight for 

concentration measurements; c' is the perturbation of concentration at measurement 

locations. Similarly, the unbiasedness of this estimator is warranted since the mean of the 

concentration perturbation is zero. After minimizing the estimation variance of the co kriging 

estimator error, we have 



58 

J'=l n , c 

The above equation only incorporates concentration and head measurements at one 

time step. If measurements at more than one time steps are available, more than one methods 

can be used to estimate the parameters (Sun and Yeh, 1992). One approach is to apply 

cokriging using all measurements at different times simultaneously. In this case, the cross-

correlation of head or concentration between different time steps is considered. Another 

approach is to estimate the parameter using measurements at each time step individually; 

as a result, more than one sets of estimates of the parameter can be obtained. Since head or 

concentration is not in a perfect linear relationship with LnKs and Lna, estimates using data 

at different times are not the same. 

In the above formulations of cokriging estimators and cokriging equations, it is 

assumed that measurements of estimated parameters and secondary variables have no errors. 

In practical cases, these data can be contaminated with different type of errors such as 

measurement errors and numerical errors. These errors can be added on the diagonal terms 

of the covariance of log-conductivity, head, and concentration (de Marsily, 1986). In 

addition to measurement errors associated with data, there may be errors involved in the 

formulation of covariance matrixes of head and concentration due to problems such as 
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inappropriate choice of units and too many data points. These problems may cause the 

cokriging covariance matrix ill-conditioned, i.e., having extremely large condition numbers, 

which may bring unstable solution to the cokriging estimate (Dietrich and Newsam, 1989). 

To overcome the ill-conditioning, a small positive number can be added on the diagonal of 

the covariance matrixes of head and concentration to improve their properties (Yeh et al., 

1995; Zhang and Yeh, 1997). In this study, we will not distinguish the difference between 

measurement errors and errors related to the formulation of covariance matrix; instead, they 

are all referred to measurement errors. 

Measurement errors for/variable can be included in its covariance function as the 

nugget effect. The estimated field would be more erratic than the original estimate in this 

case (de Marsily, 1986). On the other hand, measurement errors associated with head or 

concentration data are added on the diagonal terms of their auto-covariance matrix. In this 

case, the cokriging estimate for / becomes smoother than the original one since less 

information will be obtained from these secondary data. 

In the above analysis, we only provided the cokriging estimate for LnK,. For Lna 

similar equations and linear estimator can be obtained and for conciseness, will not be 

repeated here. 

3.5 Conditional Moments 

Equations (3-6) and (3-7) can be used to calculate the unconditional covariance 

functions of head and concentration. In fact, the conditional covariance function of head and 
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concentration can also be computed if conditional moments ofparameterfand a are known. 

As we mentioned before, the conditional moments off and a can be estimated by using 

kriging or cokriging. For instance, if kriging is used to estimate f and a, the conditional 

covariance functions off and a are given as: 

Where Rftand Raac represent the conditional covariance functions off and a; na is the number 

of measurements for pore size distribution parameter; J.l f and J.l a are kriging weights for f and 

a estimates, respectively. A detailed derivation of the conditional covariance function can 

be found in de Marsily ( 1986). If cokriging based on head measurements is used instead, 

similar conditional covariance functions forfand a can be written as (de Marsily, 1986; Yeh 

et al., 1996) 

Clifton and Neuman ( 1982) used the kriging covariance of conductivity as the error 

covariance matrix. Ezzazine and Rubin ( 1996) evaluated the conditional variance of 

concentration by conditioning on head and conductivity measurements using cokriging. 
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4. SENSITIVITY ANALYSIS OF HEAD USING THE ADJOINT STATE 

METHOD 

4.1 Derivation of Adjoint State Equations of Head 

The evaluation of the second moments of head requires the determination of the 

Jacobian matrices. The calculation of Jacobian matrices is often referred to the sensitivity 

analysis since the Jacobian matrices represent changes of head in response to changes of 

hydraulic parameters. In our formulation, the sensitivity analysis is carried out by the adjoint 

state approach, in which the performance measure is defined as [Sykes et al., 1985; Carrera 

and Neuman, 1986]: 

P = J T fn G( lJ1 ,J, a )dD.dt 

where lf1 is the time-dependent pressure head of equation (3-1 ). G is the state function which 

in this case is the pressure head at any given time. The head field depends on state 

parameters such as f and a. 

Taking the derivative of the performance function with respect to any of the 

parameters, for instance,/, results in the marginal sensitivity of the performance function P: 

aP =f r c aG + aG aw )dD.dt 
aj rln aj aw aj (4-1) 

The first term on the right -hand side of equation ( 4-1) reflects direct contribution from 
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conductivity while the second term represents indirect influence of conductivity on the 

performance measure. 

Equation (4-1) requires the evaluation of state sensitivity awJaf, which can be 

determined by using the adjoint state equation of (3-1). To derive the adjoint state equation, 

we differentiate (3-1) with respect to f 

(4-2) 

Let <l> 1=awJaf be the state sensitivity and rearrange ( 4-2), we obtain 

Multiplying ( 4-3) with an arbitrary function <1> 1 * and integrating it over time and spatial 

domains, T and Q, yield 

(4-4) 

Applying Green's 1st Identity to the third and fourth terms in ( 4-4 ), using the partial 

integration rule on the second term, and rearranging the first term, we obtain 
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(4-5) 

where r represents the boundary surrounding domain R; Nt is the final or terminal time. 

Adding (4-5) to (4-1) leads to the marginal sensitivity of the performance measure 

a,h * a(11 r ) a<J> * a,h * 
ap =f r ( aG +[ aG -(S p +C )-'~'_I +aK 't' +x3 I _ _j__(K-'~'_I )]<J> 
a)j T)Q a)j a,lr s y at ax. ax. ax. ax. I 

't' l l l l 

(4-6) 

In order to evaluate ( 4-6), one must specify the state sensitivity <J> 1 or eliminate its 

contribution in (4-6) by setting the coefficient in front of <f> 1 to zero. If choosing the later, 

we have an adjoint state equation: 
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a"'* ac ) aQ> * a<t> * aG -(S P+C ($))-'¥_1 +aK lfl+x3 1 -~(K($)-1 )=0 
adr s y at ax. ax. ax. ax. 

'I' l l l l 

(4-7) 

subject to boundary conditions: 

and the terminal condition: 

where <f> 1 * is the adjoint state variable. 

After choosing the terminal condition, another term in equation ( 4-6) that is related 

to the state sensitivity and adjoint state variable at the initial condition needs to be 

determined. If the initial head is prescribed, this term vanishes because <I> 1 is zero 

everywhere; if the initial condition is also subject to uncertainties, we can assume the initial 

flow satisfies a steady state flow equation 
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(4-8) 

where lJ10 is the initial steady state head. Following the previous procedure, i.e., taking the 

derivative of equation (4-8) with respect to LnK5 , applying Green's 1st identity, multiplying 

both sides of the equation with an arbitrary function <l>o *, and integrating it over the 

simulation domain, we obtain 

(4-9) 

where <l>o is the state sensitivity of the initial steady state head. Adding equation ( 4-9) to 

equation ( 4-6), taking into account that <l>lt=O = <l>o. and setting the coefficient of <l>o equal to 

zero, we have 

(4-10) 

with boundary conditions 
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where <J> 1 *
0 is the transient adjoint state variable at t=O. Note that adjoint state equations ( 4-7) 

and ( 4-1 0) are linear in terms of adjoint state variables and they are valid for flow problems 

in fully saturated aquifers as well if ex is set equal zero. 

of head at tm and o is Dirac delta function, and add the steady state sensitivity to equation ( 4-

6), the state sensitivity at time tm is evaluated as: 

where Qk is the exclusive subdomain ofh which is element kin this study sincefis defined 

at each element. The change in the domain of integration from Q to Qk is due to the fact that 

Ks is only related to fat element k when the simulation domain is discretized. 

The evaluation of sensitivity of pressure head with respect to Lncx is obtained 

following the same procedure. In fact, the adjoint state equations for Lncx are identical to 

equations (4-7) and (4-10). However, the state sensitivity is now computed by 
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Notice that the adjoint state equations only need to be solved once for f and a. 

However, the adjoint state equation under transient flow conditions needs to be solved 

backward in time because of the terminal condition generated during the formulation of the 

adjoint state equation. It should be pointed out that to avoid complication in calculating the 

cross-covariance, the sensitivities of head are calculated at each element since the aquifer 

parameters such as conductivity and pore size distribution parameter are defined in each 

element. Since head is computed at each node in finite element models, the elemental value 

of head is the average of the nodal head values in that element. 

In addition to sensitivity of head to the hydrological parameters, the sensitivities of 

head with respect to flux and prescribed head boundary conditions are often required. 

Following the same procedure, sensitivity of head with respect to the head at the first type 

boundary is given by 
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and the sensitivity of head with respect to the flux at the second type boundary is given by 

The adjoint state equations for these two boundary variables again remain the same as in the 

case off and a. 

4.2 Numerical Implementation and Sensitivity Results 

Since analytical solutions of equations ( 4-7) and ( 4-1 0) are not always available, 

especially for multidimensional problems, numerical approaches are often used to obtain 

their solutions. As mentioned before, the adjoint state equations have similar form as the 

flow equations, the numerical implementation then can be achieved by modifying available 

groundwater flow codes. In this research, we will adopt the flow and transport code, 

MMOC, which is based on the Galerkin finite element technique and modified method of 

characteristic method (Yeh et al., 1993). 

As shown in equations ( 4-7) and ( 4-1 0), the adjoint state equations for saturated flow 

are identical to the flow equations; for unsaturated flow, an additional convection term 

presents in each of the adjoint equations. As a result, concerns toward a stable solution 

should be given to equations ( 4-7) and ( 4-1 0) when numerical simulations are performed. 

If the stability conditions derived for the convection-dispersion equation, i.e., the Courant 
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and Peclet number, are used here, two similar criterion can be derived for these two 

equations 

ccq.^t 

CM 
-<1 

K 

Notice that the storage term present in the adjoint state equation (4-7) bears an 

opposite sign to that in equation (3-1). Nevertheless, since the adjoint state equation is 

solved backward in time, the nature of the original governing equation is preserved. 

To demonstrate the adjoint state method, a synthetic two-dimensional vertical flow 

under a transient condition is chosen for the sensitivity analysis. The simulation domain (40 

X 2(X) cm) is evenly discretized into 10 x 50 elements and 561 nodes. This simulation 

domain will be repeatedly used in later chapters. The values of hydraulic parameters and 

statistical parameters for the numerical simulation are listed in Table 4-1. Initially, the 

pressure head is in steady state with influx equal to 0.00007 cm/sec at the surface. At time 

equal to zero (t=0), this influx is suddenly increased to q = 0.00052 cm/sec while the pressure 

head at the lower boundary is maintained at the same value, 52 cm. A no-flow condition is 

imposed on the lateral boundaries. Figures 4-1 (a) and (b) show the boundary conditions and 

the mean head distribution at different times. 

The performance measure for this simulation is defined as the head measurement at 



Table 4-1 Hydrological and statistical parameters used in the analysis. 
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a given location at different times. Based on this performance measure, the sensitivity value 

at an element thus represents the change of head at the given measurement location with 

respect to a unit change in LnK, or Lna at that element. A positive value for the sensitivity 

with respect to LnK, or Lna at an element means that an increase or decrease of LnK^ or Lna 

at the element leads to an increase or decrease in the head value at the measurement location. 

In contrast, a negative value for the sensitivity with respect to LnK, or Lna implies that an 

increase in LnK, or Lna produces a decrease in head and vice versa. 

Figures 4-2 (a) and (b) show the contours of head sensitivity values with respect to 

LnKj at t= 3200 sec for head measurements at location A(x = 18 cm, y = 26 cm) and B (x 

= 18 cm, y = 162 cm), respectively. Based on the figures, an increase of conductivity at the 

upstream of the head measurement location (or a decrease of conductivity at the downstream) 

increases the head at this location. Conversely, the head is reduced if the conductivity is 

decreased at the upstream or increased at the downstream. Overall, the maximum negative 

values are larger than the maximum positive sensitivity values. This implies that heads at 

these two locations are more sensitive to the change in conductivity values at their 

downstream locations. The reason for this is the constant head boundary condition imposed 

at the lower boundary which has a stronger influence on head than the upper flux boundary. 

Also notice that sensitivity values for head at location B (unsaturated zone) are much greater 

than those for the head at location A (saturated zone) since the gradient in the unsaturated 

zone is greater than that in the saturated region. 

Figures 4-3 (a) and (b) show the sensitivity of head at these two locations at a larger 
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tinie(t=24000 sec). As can be seen, the absolute head sensitivity for location A, in the 

saturated zone, increases as the hydraulic gradient in the saturated zone increases. At the 

same time, the sensitivity for head measurement at location B increases as well due to the 

increase of the degree of saturation. This illustrates the dependence of sensitivity of head on 

the degree of saturation in the unsaturated zone. 

Figures 4-4 (a) and (b) show the sensitivity of head with respect to Lna at t=3200 sec 

for head measurements at locations A and B, respectively. Since the pore size distribution 

parameter becomes effective only in the unsaturated zone, the sensitivity is evaluated for 

Lna at locations wherever the pressure head is negative. At location A, the sensitivity values 

are very small and the highest sensitive area is located slightly above the water table. On the 

other hand, the sensitivities of head at location B, i.e., in the unsaturated zone, have much 

greater values. Above the head observation location, the sensitivity is negative meaning a 

decrease in a will increase the head at this observation location. Below the observation 

location, the sensitivities are all positive. The behavior is opposite to the sensitivity of head 

to LnK, shown in Figure 4-2 since an increase in Lna reduces LnK, which is equivalent to 

an decrease in LnK,. 

Figures 4-5 (a) and (b) show the sensitivity of head with respect to Lna at time equal 

24000 sec. The magnitudes of the sensitivity values at both locations decreases due to the 

increased pressure head (becomes less negative). In another word, as the soil becomes 

wetter, sensitivity of head with respect to a decreases. 
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5. SECOND MOMENT OF HEAD 
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5.1 Introduction 

The second moments of head, in this study, include the auto-covariance of head and 

cross-covariance between head and LnK, or Lna. Since head is a nonstationary random 

process due to the reasons such as finite flow domains and variably saturated flows, these 

second moments depend on actual locations of two correlated variables rather than separation 

distances as in the case of a stationary random process. In addition, the moments are strongly 

dependent on boundary conditions and flow conditions. 

To investigate and understand the behaviors of these second moments, three different 

flow conditions, a saturated flow, an unsaturated flow, and a variably saturated flow, are 

studied here. The three cases have the same domain size and discretization scheme as have 

been described in last chapter. The lateral boundary conditions are all kept impermeable 

while the upper and lower boundary conditions as well as initial conditions are given in the 

following. 

Case I: fully saturated flow 

The flow domain is initially saturated with pressure head equal to 10 cm everywhere. 

At the lower boundary, pressure head is prescribed to be 10 cm and remains the same at later 

times. The upper boundary is initially given a flux of 0.00139 cm/sec and at time zero, this 

flux is suddenly increased to 0.00278 cm/sec, which generates a transient flow scenario. 

Case II: fully unsaturated flow 
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In this case, the lower boundary is maintained as a water table throughout the 

simulation period while the flux at the upper boundary is increased from 0.00007 cm/sec to 

0.00052 cm/sec at the beginning of the infiltration. 

Case III: variably saturated flow 

The boundary and initial conditions for this flow scenario are similar to case II except 

now the lower boundary is fixed at pressure head equal to 52 cm. Therefore, the water table 

is located 52 cm above the lower boundary. This is the case used in last chapter for the 

calculation of head sensitivity. 

Hydraulic parameters and statistical parameters used for the simulation are listed in 

Table 4-1. 

5.2 Cross-correlation Between Head and LnK, and Lna 

Since the cross-correlation studied here is nonstationary, i.e., it depends on the actual 

location of head and those of LnK, and Lna. In this section, we will examine the cross-

correlation between the head at (18 cm, 166cm) and the LnK, and Lna at different elevations 

of the vertical line at x= 18 cm. 

Effect of saturation 

Figure 5-1 shows the mean pressure head and the cross-correlation between head and 

LnKs(phf) and Lna (p^a) in case I, the saturated flow. As can be seen that p^f does not change 

very much even though pressure head and hydraulic gradient increases during the transient 

flow. This indicates the fact that p^f does not strongly depend on pressure head and hydraulic 

gradient in saturated flows. This is a difference between the sensitivity and the cross-
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correlation: an increase of gradient causes an increase in the sensitivity, but it does not 

necessarily result in an increase in the cross-correlation. Also notice that p^f is negative 

throughout the vertical length which means if saturated conductivity increases anywhere, 

head at location (18 cm, 166 cm) decreases. This is due to the flux boundary at the top and 

the fixed head boundary at the bottom: if there is an increase on conductivity values 

anywhere, the head value at the measurement location (18 cm, 166 cm) should be reduced in 

order to maintain the same flux. Notice that Pi^ is zero at any location since pore size 

distribution parameter does not exist for saturated flow. 

The mean pressure head and the cross-correlation between head in the unsaturated 

flow and Ln-K^, Lna are shown in Figure 5-2. Compared to Figure 5-1 (b). Figure 5-2 (b) 

demonstrates that the cross-correlation of unsaturated head with LnK, increases as mean 

pressure head increases (less negative), showing a dependent relationship with mean pressure 

head. In addition. Figure 5-2 (b) shows that the correlation distance in the unsaturated flow 

condition is shorter than that in the saturated flow. 

Figure 5-2 (c) shows that the cross-correlation between head and pore size 

distribution parameter is all positive compared to the all negative values in Figure 5-2 (b). 

This is because an increase or a decrease in Lna is equivalent to a decrease or an increase in 

LnKj though the amount of decrease or increase in each parameter may not be the same. The 

decrease of cross-correlation as mean head decreases implies that head measurements are 

more useful for estimating pore size distribution parameter when the soil is drier. This is in 

contrast to the cross-correlation of head with LnK, where head correlates with LnKj more in 



175r-

(a) (b) (c) 

~\~ LW[ 200 

~ //:/ II 1\ ' 
'• ' 175 175 I ' .............. / " /' / 

~\ ' ' I\ " \ 
' I\ ' I ....... 

~ \ ..... ' ' ~ ....... \ 

I\ 
I\ 
: \ 
~ \ 

~ " "'-... I ",)) ~ 3000 - - - - 8400 
50 ----- -- 18000 

30000 
---- 42000 
- --------- 60000 

---- tl I I I I I I I I I I I I I I I I I I I I I I I I 

-10 -20 -0.6 -0.4 -0.2 0.2 0.4 0.6 
H Pht Pha 

Figure 5-2 Mean pressure head (a) and cross-correlation between head and LnKs (b) 
and Lna (c) in the unsaturated flow. 

0.8 

00 
N 



83 

wetter conditions. 

For the variably saturated flow, Figure 5-3 shows that the cross-correlation between 

head and the two random parameters behaves similar as that in Figure 5-2 since the head 

measurement is located in the upper simulation domain where the effect of water table is 

very small. 

It should be emphasized that the concept of sensitivity is a special case of cross-

correlation analysis. In the sensitivity analysis, LnK, or Lna is assumed to be spatially 

uncorrelated and thus, the change of head at a given location reflects the change of LnK^ or 

Lna of a particular element only. In other words, the sensitivity represents a one to one 

relationship between the head at a given location and the parameter of a particular element. 

On the other hand, the existence of the spatial auto-correlation between two LnK^ or two 

Lna values in the cross-correlation analysis implies that a change of LnK^ or Lna of one 

particular element can induce corresponding changes of LnK^ or Lna of other elements. 

Therefore, when a cross-correlation is examined, the change of head at a given location 

reflects not only the effect of the change of LnK^ or Lna at one element, but also that of the 

consequent changes of LnKj and Lna at other elements. More specifically, the cross-

correlation function depicts the relationship between head at a given location and the 

parameter of a particular element with the consideration of its relationship with parameters 

at other elements. This explains why only negative cross-correlation appears in Figure 5-3 

(b) while both Figures 4-2 (b) and 4-3 (b) depict negative and positive sensitivity values. 

That is, due to the spatial correlation, the large negative sensitivities have a strong influence 



175 

x3 

.·~ 
Q 

40 

(a) 

f.\ 
·\ '\ 

h '\ 
I\ . \ 

1\ \\ 
I \ ___ ' 

j ...... 
~ 
l\ 
i \ 
/I 

/1 
/.· ~ 

./ /.
/~ 

/·o 
··o 

.·~ 
.. 'l 

20 0 -20 
H 

175 

(b) 

.f?_:./ 1' I /: .. ·· , I 
E ./ I 

/~·...- /, I /-;; .. ...- /, / 

/ 

3200 
8000 
16000 
24000 
36000 
40000 

-0.6 -0.4 -0.2 

Pht 

(c) 

0.2 0.4 0.6 

Pha 

Figure 5-3 Mean pressure head (a) and cross-correlation between head and LnKs (b) 
and Lna (c) in the variably saturated flow. 

00 
~ 



on the cross-correlation between head at location Band LnKs. 

Effect of boundary type on cross-correlations, Phr and Pha 
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In the above calculation, a second type boundary, i.e., a prescribed flux boundary was 

specified at the upper boundary. In many practical cases, flux boundary conditions are not 

available due to the difficulty to measure fluxes. Instead, prescribed head boundaries are 

often used to conduct numerical simulations. Figure 5-4 shows the mean head distribution 

and the cross-correlations when a prescribed head boundary is applied at the top of the 

previous variably saturated flow case. As can be seen, the mean head distribution is almost 

identical to Figure 5-3 (a). However, Figures 5-4 (b) and (c) show that the cross-correlations 

have changed dramatically. First of all, unlike that in the case with a flux boundary, Figure 

5-4 (b) shows that both negative and positive correlation exist in the domain: the head is 

positively correlated with conductivity above the observation location and negatively 

correlated with the conductivity below the observation locations. Secondly, the strength of 

correlations at this case are reduced by about half compared to that in Figure 5-3 (b). The 

same changes are observed in Figure 5-4 (c) as well. 

5.3 Variance of Head 

The auto-covariance of head can be calculated based on the first-order approximation 

of equation (3-6). For simplicity, only the variance of head is examined here which is shown 

in Figures 5-5, 5-6, and 5-7 for the three flow cases, respectively. To illustrate the effect of 

variability of each random variable on head variance, their contributions to head variance are 
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plotted separately on these graphs. ah/ is the variance of head caused by a/, variability of 

LnKs; aha
2 is the variance of head caused by aa

2
, variability of Lna; ahq

2 is the variance of 

head caused by aq
2

, variability of flux boundary at the top; ahb
2 is the variance of head caused 

by ab
2

, the variability of prescribed boundary head at the bottom; aht
2 is the total head 

variance, i.e., the sum of all the previous head variances. At the same time, the mean 

pressure head is again plotted in graph (a) to show the flow condition. 

Effects of variability of aquifer parameters 

The variability of head in porous media is essentially initiated by the variability of 

hydrological parameters such as conductivity and pore size distribution parameter. Since 

these parameters reflect different properties of aquifers, their effects on head variance may 

differ as well. Figure 5-5 (b) shows that ah/ under the saturated flow condition depends on 

the mean hydraulic gradient; it increases as the mean gradient increases. The same effect is 

observed in Figure 5-6 (b) where ah/ under the unsaturated flow differs at different portions 

of the wetting curve. For the variably saturated flow, Figure 5-7 (b) illustrates that ah/ in this 

case is a combination of those under the unsaturated and saturated flow condition. 

Unlike the effect of a/, Figure 5-6(c) shows that the effect of aa
2 on ah

2 strongly 

depends on the mean pressure head. For instance, aha
2 at the unit gradient portion decreases 

from 80 cm2 at t=3200 to 20 cm2 at t=40000. This head variance also varies in different steps 

of the infiltration profile. Ahead of the wetting front, aha
2 remains the same as that of the 

initial steady state. At the wetting front, aha 
2 reaches the maximum value and forms a peak 

which increases as the wetting front moves downward and decreases near the lower 
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boundary. Accordingly, behind the wetting front, the head variance gradually converges to 

that of the final steady state. 

Figure 5-7 (c) shows that aha
2 under the variably saturated flow conditions behaves 

the same as the unsaturated one at the upper part of the flow domain, i.e., the unsaturated 

zone. At the lower part, the saturated region, it seems controlled by the rate of head change 

with respect to time. At time 36000 sec, the water table rises faster than at any other time; 

as a result, aha
2 reaches a maximum also. Based on the result, it seems that the variability of 

unsaturated properties has a stronger effect on the head variance when the mean gradient in 

the saturated zone is larger. Notice that this ah/ is the variance of head in the saturated zone 

contributed by the variability ofLna in the above unsaturated zone. This variance cannot be 

observed by a fully saturated analysis as shown in Figure 5-5( c). 

Effect of variability of boundary conditions 

Figure 5-5 (d) shows that the effect of variability associated with the flux boundary 

under the saturated flow does not depend on either the mean head or the mean gradient, 

remaining unchanged through the transient flow process. The effect of aq2 on head is the 

largest at the flux boundary and gradually reduces to zero at the lower boundary where the 

prescribed head boundary is imposed. On the other hand, Figure 5-6 (d) shows that aq2 

under the unsaturated flow condition contributes to ah
2 in a similar way as that of a/, i.e., the 

head variance reaches maximum values at wetting fronts and changes significantly at 

different mean pressure head values. The effect of aq2 also propagates through the domain 

as the infiltration precedes. Near the end of the transient process, the pulse of variance 
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disappears as the wetting front fades away. For the variably saturated flow. Figure 5-7 (d) 

shows that head variance at the upper simulation domain behaves the same as that in Figure 

5-6 (d). In the saturated zone, water table begins to rise at time 42,000 seconds; at the same 

time. Figure 5-7 (d) displays that a variance appears. This peak grows as the water table 

continues to rise. This is similar to what have been seen in Figures 5-7 (b), (c) where a peak 

variance occurred at the water table. 

The effect of variability of the prescribed head boundary is illustrated in Figures 5-5 

(e), 5-6 (e), and 5-7 (e) for these three cases, respectively. In the saturated flow, 0^^* is a 

constant throughout the spatial and time domains. It shows that under the saturated flow 

condition, any increase or decrease of head at prescribed boundaries will cause the head at 

any location inside the simulation domain increase or decrease the same amount. Contrary 

to the saturated flow case. Figure 5-6 (e) shows that under the unsaturated flow condition, 

the effect of variability associated with water table is limited in the capillary fringe area, 

where any change of water table is absorbed. Also notice that the boundary effect is 

becoming smaller when the soil becomes wetter. For the variably saturated flow. Figure 5-7 

(e) demonstrates again that the effect of boundary variability is constrained in the capillary 

fringe area. In addition, the variance of head forms an increasing peak in the saturated zone 

and the position of these peaks corresponds to the water table. As the water table continues 

to rise, the peak variance increases as well. 

Total head variance 

The summation of Figures (b), (c), (d), and (e) results in the total head variance for 



93 

these three cases which are shown in Figures 5-5 (f), 5-6 (f), and 5-7 (f)- As can be seen, the 

total head variance is controlled by the leading contributors of the four factors. In the 

saturated flow, the effect of conductivity variability becomes the dominant influence while 

it is mainly contributed by the variability of pore size distribution parameter in the 

unsaturated and the variably saturated flow. 

Observing the change of total head variances. Figures 5-5 (f), 5-6 (f), 5-7 (f) show 

that the head variance is gradually losing its connection with the initial head variance. At the 

final steady state, the head variance is fully independent of that in the initial steady state. 

Therefore, the uncertainty associated with initial conditions only affects the variability of 

head at early times. At larger times, the uncertainty of head is mainly caused by other factors 

such as parameter uncertainties and uncertainties associated with boundary conditions. 

5.4 Discussion 

The proposed numerical first-order analysis performed the moment analysis of head 

in variably saturated media. The limitation of analytical solution such as spectral method 

and numerical Monte Carlo simulation has been avoided. The flexibility of the approach 

stems from the fact that numerical models and the adjoint state method are used conjunctly. 

Numerical models provide a simple means to treat any type of boundary and flow conditions. 

As a result, unlike the spectral method and other analytical methods, the assumption of 

stationarity is not required in the evaluation of statistical moments. 

The adjoint state method is computationally efficient. It allows us to evaluate the 
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sensitivity only at the node of interest (such as locations of head measurements), instead of 

at all the nodes as in other methods of sensitivity analysis. Also the adjoint state equation 

usually retains the general form of the governing flow equation so that repeated finite 

element formulations can be avoided. In addition, the adjoint state equations for different 

parameters in the head sensitivity analysis remain the same: they only need to be solved once 

for all the parameters. In case of flow through variably saturated porous media, the 

governing equation is nonlinear but the adjoint state equation is linear: no iterations are 

required. 

To compare the computational effort of our approach with that of the numerical 

Monte Carlo simulation, we evaluate CPU time and memory needed for each approach. 

CPU time is usually proportional to the number of equations (NE) and the number of 

multiplications (NM). Memory is the storage space needed to complete the calculation of the 

head covariance. Tables 5-l and 5-2 provide estimates of the computational effort required 

for calculating the second moment of head by both Monte Carlo simulation and our first

order approach. In these tables, m is the total number of nodes; Nr is the number of 

realizations needed in Monte Carlo simulation; Nris the total number of time steps within 

the simulation period; T; is the time at output i and Llt is the time step. As can be seen, our 

approach has the advantage of solving fewer equations over Monte Carlo simulation if the 

number of points of interest is much less than the total number of nodes. This situation 

corresponds to many field problems where we have only sparse measurements. On the other 

hand, when a large number of points of interest are involved, the number of equations to 
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be solved in our approach can be in the same order as that in Monte Carlo simulation. 

However, in our approach the actual CPU time needed to solve one equation is much less 

than that for solving one equation in Monte Carlo simulation. The reason is that the adjoint 

state equation is linear as opposed to the Richards' equation. Moreover, the computational 

grid size and time step can be much larger in the adjoint state method than those in Monte 

Carlo simulation since the parameters considered in the adjoint state method are constant 

means. Therefore, the adjoint state method requires less CPU time in solving equations. As 

for the number of multiplications and memory. Table 5-1 and Table 5-2 show that adjoint 

state method has no advantage over Monte Carlo simulation. Besides these numerical 

considerations, it should be pointed out that Monte Carlo simulation is supposed to yield the 

true moments of head while adjoint state method only provides a first-order approximation 

to the exact moments. However, it is difficulty to check if the moments calculated by Monte 

Carlo simulation are the true ones since they may fluctuate as more realizations are added. 

Because of this problem, the moments derived from Monte Carlo simulation may not be 

smooth in space which can cause problems for using these moments. 

In spite of many advantage of our approach, we have to emphasize that it is based on 

a first-order approximation. The validity of the approximation is generally warranted if the 

variance of saturated hydraulic conductivity is less than one for saturated flow problems. For 

unsaturated flow problems, the first-order approximation is valid if the variance of 

unsaturated hydraulic conductivity is much less than one (Harterand Yeh, 1996). At large 

variances, a higher order approximation or the iterative approach is required (Yeh et ai, 



Table 5-1 Comparisons of computational efforts in steady state flow simulations 

Variance Covariance 

1 point m points 1 pair m pairs 

Monte NE N. N. N. 
Carlo 

Simulation NM N. N^m N, N^m 

memory 2 2m 3 3m 

First-Order NE 2 m+I 3 m+1 
Method 

NM m^ m^ m^ 

memory m m- 2m m^ 



Table 5-2 Comparisons of computational efforts in transient flow simulations 

Variance Covariance 

1 point m points 1 pair m pairs 

Monte NE NTN, NTN, NTN, NTN, 
Carlo 

Simulation NM NTH Ni-N^m NTN, N-rN^m 

memory 2NT 2Njm 3NT ShiNT 

First-Order 
Method 

NE NT+ 
S(T/At) 

NT+ 
mSCT/At) 

Nt+ 
2S(T/At) 

NT+ 
mS(T/At) 

NM Nym^ Njm^ N^m^ Ni-m^ 

memory Nq-m Ni-m^ 2N-rm Ni-m-

^ represents the summation over total time steps Nf. 
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1996; Zhang and Yeh, 1997). 

Finally, the validation of our calculations has been tested against the case by Ferrante 

and Yeh (1996) who conducted a similar first-order analysis and Monte Carlo simulation in 

one-dimensional unsaturated flow. They showed that the variance of head calculated based 

on their linearized perturbation equation is close to the one from the Monte Carlo simulation. 

Since the first order analysis employed in this study yielded identical results as their first-

order analysis, it is reasonable to say that the first-order analysis conducted here is a 

favorable approximation of the true moment of head. The solution of this approach also 

provided identical head variance as those given by the spectral analysis in Chapter 2. 

5.5 Summary 

The numerical first order approach is utilized to calculate the second moments of 

head under different flow conditions. As have been demonstrated that cross-correlation 

between head and LnK^ does not depend on the hydraulic gradient. It depends on the mean 

pressure head in the unsaturated flow. For the saturated flow, it is merely determined by the 

boundary conditions and the statistical properties of LnK,. On the other hand, variance of 

head strongly depends on the mean gradient. For the unsaturated flow, it also greatly 

depends on the wetness of the soil which has also been shown by the spectral solution in 

Chapter 2. It is also shown that variability associated with boundary conditions can have a 

significant impact on head variance. The analysis in variably saturated flow condition 

showed that variability associated with unsaturated parameters can have a significant impact 



99 

on variance of head in saturated areas. This finding cannot be shown by a fully saturated 

analysis. 
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6. SENSITIVITY ANALYSIS OF CONCENTRATION USING ADJOINT STATE 

METHOD 

6.1 Derivation of Adjoint State Equations of Concentration 

The evaluation of sensitivity of concentration differs from that of head sensitivity in 

that concentration is not only a function of hydrologicai parameters but also a function of 

head. The dependence on head requires a coupled approach to derive the sensitivity of 

concentration with each parameter. Sun and Yeh (1992) presented a self-defined operator 

that can generate adjoint state equations for coupled flow and solute transport problems. In 

the following, we will follow the same procedure as in Chapter 4 to derive the adjoint state 

equations and sensitivity formulation for solute concentration in variably saturated regimes. 

To begin, we define the performance measure as 

where C is the solute concentration: G is the state function which now is the concentration. 

To obtain the sensitivity, we take the derivative of the performance function with respect to 

any of the parameters, for instance,/, we have the marginal sensitivity of the performance 

function P: 

P = [ f GiC,f,a)dQdt 
J tJQ 

(6-1) 
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As usual, we differentiate equation (3-2) with respect to f and we obtain 

(6-2) 

in which 

(6-3) 

and 

(6-4) 

equation (6-2), multiply it with an arbitrary function <f>2 * and integrate it over n and T, we 

have · 

a<f> 
f ( [V·(F.q .VC) +V·(aF.q .<f> 1VC)-V·(KF.VC-1) 

T j Q t t t t t ax. 
l 

+V·(DV<f>2) -V·(qC) -V·(aq<f>1 C) +V·(KV<f>1 C) 

-V·(q<f> ) - a8<f>2 a( CCy<f>t) ]<f> * dRdt=O 
2 at at 2 

where CY is the moisture capacity and will be zero for saturated flows. Notice that Einstein 
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summation is implied in the above equation. To remove the second derivatives, we apply 

Green's first Identity which results in 

(6-5) 

After adding equations (6-5) and (4-5) to equation (6-1), we have 



aP if aa a<t>; * a ,h * ,h * - = - +<f> 1 [ CC - -aF.q .VCV<f>2 --(KF.VCV'+'2) +aqCV'+'2 aj Q T aj y at I 
1 axi 1 

a,h * a(,,, ) a,h * a<t> * 
+V·(KCV<f>;)-(SsP+CY)-'+'-1 +aK 'I' +x2 '+'1 

_ _g_(K-1 
)] 

at ax. ax. ax. ax. 
I I I l 

-r J Kcv<t>;ll·<f>
1
drdt-J r aqb <f>~drdt+J r Ka<J>; <J>,di'dt 

Jr T rJr aj rJr axi 
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+ r e<t>2<t>;'r=Ndn- r e<t>2<t>;'t=odn+ r (s P+C )<f>~<f>1dn't =N- r (S P+c )<f>~<f>~dnlt =o Jo I Jo Jo s Y I Jo s Y 

-cyc<t>;<f>tlr=Nr +CYc<t>; <f>I'r=o 

Since <f> 1and <1>2 are unknown, we set the coefficients of <f> 1 and <f>2 equal to zero which yields 

the adjoint state equations 

(6-6) 

and 
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(6-7) 

subject to boundary and terminal conditions 

Equations (6-6) and (6-7) need to be solved conjunctively: the solution of equation 

(6-6) generates the load term for equation (6-7). Like the adjoint state equation of head, 

these two adjoint state equations maintain the structure of original flow and transport 

equations. Notice that if head is in a transient flow, equation (4-10) needs to be solved in 

subsequence of solving (6-7) if the initial head is not hydrostatic. 

concentration measurement at time tm, the sensitivity becomes 



105 

(6-8) 

where the last integral is related to the sensitivity of head at the initial steady state. 

Similarly, the sensitivity with respect to a is given by 

6.2 Numerical Implementation And Sensitivity Results 

As in the calculation of head sensitivities, the numerical simulation of adjoint state 

equations (6-6) and (6-7) is accomplished by modifying the two-dimensional MMOC2 (Yeh 

et al. , 1993) code which uses a backward particle tracking method to solve the solute 

transport equation. Compared to the solute transport equation, adjoint state equation (6-6) 

has a different direction of convective flux. To maintain the original structure of MMOC2, 

the sign of flux is reversed before the calculation of equation (6-6) and returned to its original 

sign after the calculation. Since the second adjoint state equation, i.e., equation (6-7), needs 

to be solved conjunctively, the solution of equation (6-6) will be input into equation (6-7) to 

calculate the load terms. 
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To illustrate the concentration sensitivity with respect to LnK, and Lna, a 

hypothetical case is used to perform the numerical simulation. The size of the simulation 

domain is still 40 by 200 cm and discretized into 4 cm by 4 cm elements. The pressure head 

at the top and lower boundaries are kept at -29.81 cm and 52 cm, respectively. A pulse of 

conservative solutes with unit concentration is released at location (20 cm, 178 cm) at time 

zero. The boundary condition for solute transport at the top is kept zero concentration and 

the rest of the boundaries have no dispersive flux. The longitudinal and transverse 

dispersivity values are 4 cm and 0.4 cm, respectively. Other hydraulic parameters used in 

this simulation is given in Table 4-1. 

Figure 6-1 (a) shows a vertical concentration profile at time equal to 84,000 seconds 

and 180,000 seconds. The sensitivity is evaluated for the concentration measurement at 

location C (18 cm, 138 cm). Figures 6-1 (b) and (c) display the sensitivities of concentration 

at point C with respect to LnKj at these two time levels, respectively. As shown in Figure 

6-1 (b), the sensitivities of concentration at this time is mostly positively related to LnK, 

since the peak of the solute plume has not reached elevation 138 cm. This implies that an 

increase in the conductivity values will result in an increase of concentration at this location. 

At time 180,000 seconds, most of the sensitivity values become negative as shown in Figure 

6-1 (c). At this moment, an increase of conductivity anywhere in the domain will result in 

an decrease of concentration at this location since the peak of the plume has passed the 

observation location. In addition, the magnitude of the sensitivities is reduced due to the 

decrease of the concentration gradient. 
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Figures 6-2(b) and (c) show that the sensitivity of concentration with respect toLna 

demonstrates opposite behaviors compared to the sensitivity of concentration to LnKs. At 

time 84,000 seconds, most of the sensitivity values are negative and become positive at time 

180,000 seconds. The reason for this is that an increase of a is equivalent to a decrease of 

Ks at the given steady state flow condition. This effect has been seen in the head sensitivity 

analysis. 

6.3 Sensitivity of Solute Arrival Time 

Arrival time has received growing attentions from researchers as a major variable 

related to the solute transport in the subsurface. To define arrival times, we use percentage 

of solutes arrived to implicitly define the arrival time (Harvey and Gorelick, 1995). H Q is 

the percentage quantile and -r is the arrival time where Q quantile is reached, the relationship 

between them is given by 

t 

jCdt 
0 Q=-
00 

(6-10) 

jCdt 
0 

Taking the derivative of Q with respect to LnKs and reorganizing the terms, we have the 

sensitivity of arrival time with respect to LnKs, 
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i i (6-11) 

Sf CM 

Therefore, the calculation of sensitivity of arrival time is now directly related to that of 

sensitivity of concentration which has been derived previously. Similarly, the sensitivity of 

arrival time with respect to Lna can be calculated by 

Since a complete breakthrough curve needs to be observed in order to calculate the second 

term of (6-11) and (6-12), the evaluation of sensitivity of arrival time can be computational 

demanding, especially when the observation location is far away from the source. 

Figure 6-3 shows the sensitivities of 25%, 50%, and 75% arrival times at location C 

with respect to LnK^. The all negative sensitivities indicate that an increase of LnK^ always 

reduces the arrival times of injected solutes. Figure 6-3 also shows that the magnitude of the 

sensitivity increases as the percentage of arrival time increases. 

Similarly, Figure 6-4 shows that the sensitivities of 25%, 50%, and 75% arrival times 

at location C with respect to Lna increase as the percentage of arrival increases. In contrast 

to the sensitivity to LnK, the sensitivity of arrival time with respect to Lna is mostly 

positive. An increase in Lna values leads to a decrease in K(i|r) which increases the travel 

T 

(6-12) 
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time of solutes. 
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7. SECOND MOMENTS OF CONCENTRATION AND ARRIVAL TIME 

7.1 Introduction 

Much of the research in the past two decades about solute transport in the subsurface 

has been devoted to the derivation of macro-dispersivity fGeZ/iara/it/AtTie^j, 1983; Winter 

et ai, 1984; Neuman et al., 1987; Dagan, 1982,1984). The primary concern for macro-

dispersion analysis is to account for the effect of large scale heterogeneity of aquifer 

parameters such as hydraulic conductivity in the solute transport processes. Based on 

different methods, analytical formulations of macro-dispersivity have been derived which 

is directly related to the covariance functions of saturated conductivity. A successful 

application of these theories in the field experiment is also reported by Sudicky (1985). 

Since macro-dispersivity is an effective parameter, the prediction of solute 

movements based on macro-dispersivity only represents an average (or mean) behavior of 

solute mixing processes. This mean solute concentration which usually changes smoothly 

in space and time does not necessarily resemble any real distribution of solutes which is 

more erratic. As a result, a criterion to quantify deviation of real concentration distribution 

away from the mean prediction should be presented along with the mean estimation. This 

criterion is the concentration variance. 

Vomvoris and Gelhar (1990) derived the analytical form of concentration variance 

based on the spectral/small perturbation approach. They examined several affecting factors 

on the concentration variance for asymptotic solutions. Due to the high variability of 
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concentration, many other researchers also investigated the reduction of concentration 

variance by conditioning on hydraulic conductivity, head, or concentration measurements 

(Graham and McLaughling ,1986; Ezzedine and Rubin 1996; Zhang and Neuman, 1995). 

All of these research has focused on flow or transport in saturated media. 

In this chapter, the concentration variance under variably saturated flow conditions 

and bounded domain is calculated using the adjoint state method and the first order 

numerical approximation. The effect of variability in parameters on the concentration 

variance is examined. More importantly, the cross-correlation between concentration and 

various hydraulic parameters is studied under different soil conditions. 

7.2 Variance of Concentration 

The variance of concentration under the flow and transport condition given in 

Chapter 6 is plotted in Figure 7-1. Graph a shows the mean concentration distribution at 

times 84,000, 120,000, 180,000, and 240,000 sec; graphs b and c are the variance of 

concentration (denoted by ac/ and aca2 in the graphs) contributed by a/ and a/ , 

respectively, at the corresponding times; graph d is the sum of graph b and graph c, 

representing the total variance. As shown in the figure, variance of concentration is 

proportional to the gradient of mean concentration. At the peak of the mean concentration 

plume, the variance reaches a local minimum while concentration variance rises to 

maximum at the limbs of the solute plume, where the gradient is the highest. The effect of 

concentration gradient also reflects in the temporal changes of concentration variance. As 
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the plume migrates downwards, concentration gradients decrease due to the effect of 

dispersion. Accordingly, the concentration variance decreases everywhere. This implies 

that the prediction by the mean concentration is a better representation of the reality as the 

plume has spread over a larger area and traveled over a long time. 

Graphs b and c also show that unlike the variance of head, concentration variances 

caused by different parameters exhibit the same pattern, i.e., they all depend on the 

concentration gradient. However, the magnitude of their contributions differs: the 

contribution from the variability ofLnKs is much smaller than that from Lna for this relative 

dry case. As a result, the total variance of concentration shown in graph d is in the same 

order of aea
2

• 

Notice that the variance of concentration at the peak of concentration profile is not 

zero which differs from that in saturated flow conditions. Zhang and Neuman ( 1995) 

showed that variance of concentration at the peak of concentration profiles in saturated 

flows is zero when a linearized approximation is used. However, our results show that the 

variance of concentration in unsaturated flows does not diminish even when the 

concentration gradient is zero. This is due to the fact that a change of conductivity will 

cause a change of moisture content which in turn changes the concentration. 

7.3 Cross-correlation Between Concentration And LnK5, Loa 

The cross-correlation between concentration at ( 18 em, 138 em) and LnKs (Per), 

Lna (Pea) at other locations is plotted in Figures 7-2 (b) and (c), respectively. As we can see 
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Pcf is positive at the first time step and gradually changes to negative values at the next time 

level. The transition from positive correlations to negative ones occurs at the moment when 

the peak of the plume passes elevation 138 cm. In other words, concentrations are 

positively correlated with conductivity anywhere before the peak of the plume arrives and 

negatively correlated with conductivity after the peak passes the observation location. For 

Lna, the cross-correlation is just reversed due to their opposite influence in unsaturated 

conductivity. Notice that p„ is zero below the water table (X3=52 cm) since pore size 

distribution parameter vanishes in the saturated zone. 

It is noted that the cross-correlation between concentration and conductivity in this 

case is smaller than that between concentration and pore size distribution. This shows that 

concentration in the relative dry condition (H=-29.82 cm) has a strong correlation with a. 

To examine the effect of the degree of saturation on the cross-correlation, we calculate the 

cross-correlation of concentration at the same location (18 cm, 138 cm) in a wetter soil in 

which the upper pressure head is increased to -5.0 cm and the lower boundary is reduced 

to 22 cm. The result is shown in Figure 7-3 which shows that the cross-correlation between 

concentration and LnK, increases and that between concentration and Lna decreases. This 

finding is consistent with the cross-correlation between head and LnK, and Lna (Yeh and 

Zhang, 1996). 

7.4 Cross-correlation Between Arrival Time And LnK^, Lna 

To calculate the cross-correlation between arrival time and LnK, and Lna, the mean 
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arrival times when 25%, 50%, and 75% of the solutes injected have arrived at location C( 18 

cm, 138 cm) under the condition described in last section (the drier case) are evaluated. 

Figure 7-4 shows the mean concentration distributions at these arrival times and cross-

correlation between these arrival times at location C and LnK, and Lna fields. 

As demonstrated in the figure, arrival time correlates with LnK^ negatively 

throughout the simulation domain, meaning an increase of conductivity anywhere reduces 

the arrival time of solutes at location C. On the other hand, arrival time correlates with Lna 

negatively. Figure 7-4 also shows that the cross-correlation at different percentages of 

arrival time is almost identical, meaning the information about LnK, and Lna provided by 

arrival time does not depend on the time span when the sample is collected. As 

concentration, arrival time in this case correlates stronger with Lna than LnK, Also notice 

that the cross-correlation between arrival time and LnKj is in the same order of magnitude 

as that between concentration and LnK,. 

7.5 Summary 

The second moments of concentration and arrival time under variably saturated flow 

conditions were evaluated based on the numerical first order approach. The results show 

that the variance of concentration under unsaturated conditions differs from that under 

saturated flow conditions in that it is contributed by the variability of Lna as well as the 

variability of saturated conductivity. The amount they contribute to the total variance 

depends on the degree of saturation: the drier the soil is, the larger the variance caused by 
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the variability of pore size distribution parameter. 

The analysis of cross-correlation illustrates the same behavior, i.e., the cross-

correlation between concentration and the hydraulic parameters depends on the mean 

pressure head. Under wetter conditions, concentration correlates with saturated conductivity 

more than that with pore size distribution parameter; on the other hand, it correlates better 

with a under drier conditions. 

The moment analysis of arrival time shows that the cross-correlation does not 

depend on the percentage of arrival time. It is also shown that the cross-correlations 

between arrival time and the parameters are in the similar magnitude as those between 

concentration and the parameters. 

We should point out that this moment analysis is based on the first-order 

approximation of mean flow and transport equations as well as the first-order Taylor series 

expansion of head and concentration. The validity of this first-order approximation depends 

on the magnitude of the variability of the saturated conductivity, pore size distribution 

parameter, and mean pressure head. In general, the approximation is appropriate when the 

variance of saturated conductivity is less than one for the saturated flow and when the 

variance of unsaturated conductivity is much less than one. Nevertheless, it is believed that 

the prediction based on the first-order approximation will provide the general pattern of the 

true moments as demonstrated in many previous studies on flow and transport problems. 



124 

8. PARAMETER ESTIMATION BY COKRIGING 

8.1 Introduction 

Parameter identification has been a constant interest for hydrologists for decades. 

The main reason for this concern is that measurements of hydraulic parameters such as 

hydraulic conductivity are not easy to obtain while other measurements such as head can be 

obtained with much less costs and difficulties. In addition, field or laboratory measured 

parameters such as conductivity are scale dependent; therefore, the model outputs such as 

head based on these measured parameters may not be the same as their field observations. 

The reason is that head observations may depend on conductivity values in a larger scale than 

they were measured. Therefore, the techniques to utilize the head measurements and other 

available data to estimate conductivity are needed. 

The cokriging technique as one of the parameter estimation techniques has been 

applied to estimate hydrological parameters in many studies. Kitanidis and Vomvoris (1983) 

and Hoeksema and Kitanidis (1984) applied cokriging in one and two dimensional saturated 

flows. Yates and Warrick (1987) used the soil temperature to estimate moisture content in 

the subsurface based on an experimental variogram. Sun and Yeh (1992) further extended 

the method to estimate conductivity using transient hydraulic heads. Zhang and Yeh (1996) 

used the moisture content and head measurements to estimate saturated conductivity. 

Most of these applications used the variables related to hydrological processes such 

as heads and moisture contents to estimate aquifer parameters. For variables related to 
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transport processes such as concentration, only few studies have been conducted to examine 

their conditioning effect, especially when flow and transport problems are jointly considered. 

Tong and Yeh (1994) and Tong (1996) used concentration as well as head measurements to 

estimate hydraulic conductivity and dispersivity by using the cokriging technique. Medina 

and Carrera (1996) presented a maximum likelihood method to solve the coupled inverse 

problem. While these research indicated the importance of including concentration 

measurements in the estimation of parameters, the ability of using concentration data to 

estimate the parameters, especially compared to head data, has not been addressed. 

When cokriging is applied, a critical step is to derive cross-covariance functions 

between primary and secondary variables. Gutjahr et al. (1994) and Harter and Yeh (1996) 

used the FFT to convert spectral density functions to covariance functions. Dagan (1985) 

and Rubin and Dagan(1992) used the analytically derived covariance functions. These 

analytically derived covariance functions are generally limited by several simplified 

assumptions such as infinite domains and uniform flows. Other researchers used the linear 

first-order approximation and a numerical model to derive the covariance functions 

(Kitanidis and Vomvoris, 1983; Hoeksema and Kitanidis, 1984; Sun and Yeh, 1990, 1992; 

Yeh and Zhang, 1997). Among these methods, use of adjoint state method instead of solving 

perturbation equations is especially favored since it saves tremendous CPU time by only 

calculating the sensitivity at the measurement locations. 

A method to derive covariance functions and construct the cokriging equation has 

been developed in Chapter 3. This approach combines a first-order Taylor series expansion 
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of flow and transport models and the adjoint state method to derive the second moments of 

head and concentration. The utilization of numerical models makes it possible to derive 

these moments in an arbitrary and realistic regime such as variably saturated flow, not being 

constrained by the requirements of stationarity and infinite domain as in other analytical 

approaches. The adoption of adjoint state method tremendously saves computational time 

when covariance functions are needed only at several measurement locations. This is exact 

the situation in the application of cokriging in which only a few samples of aquifer 

parameters and head or concentration measurements are available from field experiments. 

In this Chapter, the application of cokriging in estimating conductivity under different 

degrees of saturation is investigated. To compare their conditioning effects, head, 

concentration, and arrival time measurements are used as the secondary information to 

conduct cokriging. 

8.2 Case Description 

Water movement and solute transport through a synthetic heterogeneous porous 

medium under three different steady flow scenarios are used to investigate the effectiveness 

of the geostatistic estimation technique using different secondary information (i.e., pressure 

head, concentration, and travel time measurements). The synthetic porous medium is 40 cm 

wide in the horizontal direction and 200 cm long in the vertical direction. It was discretized 

into 500 finite elements (10 in the horizontal and 50 in the vertical direction). The hydraulic 

properties of each element (LnK^ and Lna) were assigned using a Fast Fourier 
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Transformation technique (Gutjahr, 1989) with the correlation scale set to 40 cm in both 

horizontal and vertical directions. The means of the generated saturated conductivity and 

pore size distribution parameter fields are 0.0014 cm/sec and 0.1 cm"', respectively, and the 

variances for LnK, and Lna are 0.24 and 0.09. LnK, and Lna are assumed statistically 

independent from each other. Figures 8-1 (a) and (b) show a generated LnKj and Lna fields. 

The values of 0,, and 0^ are specified as 0.4 and 0.0 and they are treated as constants in space. 

Three steady flow cases were simulated using these synthetic parameter fields. 

Prescribed heads were set for the upper and lower boundaries of the medium and impervious 

for the left and right boundaries. For case 1, the upper and lower boundaries were assigned 

a prescribed pressure head of 30 cm so as the medium is fully saturated and flow is driven 

by gravity alone. Pressure head values of -10 cm and -20 cm were used at the upper and 

lower boundaries for case 2 and case 3, respectively. The mean flow is under a unit gradient 

condition and the mean pressure head is 30 cm, -10 cm, and -20 cm for each case, 

respectively. Simulated pressure head and moisture content fields for the three cases are 

illustrated in Figures 8-2 and 8-3, respectively. 

For each of the three flow cases, evolutions of a conservative solute plume released 

from a continuous point source with a unit concentration, located at (18 cm, 178 cm) in the 

porous medium were simulated. A zero concentration was specified at the top and no 

diffusive flux for the bottom. A value of 24 cm and 0.3 cm were used as local dispersivity 

in the longitudinal and transverse directions, respectively. Different time steps for the 

simulation of solute transport for the three cases were used based on the Courant number 
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criterion and they are 500 sec, 1,500 sec, and 3,000 sec for cases I, 2, and 3, respectively. 

Snapshots of real and mean concentration distributions for the three flow conditions are 

illustrated in Figure 8-4 and Figure 8-5, respectively. For the saturated flow scenario, the 

snapshot was taken at t= 40,000 sec while others were taken at t= 120,000 sec and t=240,000 

sec, respectively, for the remaining unsaturated flow cases. These times were selected so 

that plume distributions for the three cases are more or less similar. 

For case 1 where the medium is fully saturated, the evolution of the solute plume 

resulting from a pulse input (with the same strength and at the same location) was also 

simulated. This simulation was carried out for 1) investigating the effect of input tracer 

forms on the geostatistic estimation and 2) evaluating the effectiveness of travel time 

information on estimating LnKs field. Figure 8-6 shows the real concentration distribution 

and the mean distribution fields at time 18,000 sec for this pulse input. 

From these synthetic LnK, and Lna fields and simulated pressure head and 

concentration fields, LnK, samples were taken from two locations while pressure head and 

concentration data were taken from eighteen locations. The sampling locations for LnK, are 

shown in Figure 8-1 as squares and the sampling locations for pressure head and 

concentration (arrival time) are indicated in Figures 8-2 and 8-4 by circles. We should point 

it out that these samples are perturbations: f = LnKs - F, h = ij; - H, and c' = C- C, in which 

H and C are evaluated based on (3-3) and (3-4) and mean parameter values. At these 

sampling locations, the 50% of arrival times defined by equation (6-10) for both the mean 

and real concentration fields resulting from impulse input were also computed. 
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8.3 Results 

A comparison of the true / field and the one estimated by cokriging using head 

measurements in case 1 where the porous medium is fully saturated is shown in Figure 8-7. 

The true/field that we generated and the estimated/field are shown in Figures 8-7( a) and 

(b), respectively, while the cokriging estimation variance is depicted in Figure 8-7(c). 

Comparing Figures 8-7 (a) and (b), it is clear that the general heterogeneity pattern of the true 

field (low and high conductivity zones) are reproduced by the geostatistic approach, 

indicating that the mean behavior of the / field is captured. The minimum estimation 

variances in Figure 8-7(c) are a reflection of the two / measurements, indicating the 

conditioning effect of /. 

Similarly, Figures 8-8, 8-9 show the cokriging results using head measured from the 

two unsaturated flow field, il;= -10 cm and ij;= -20 cm, respectively. As can be seen, the 

estimate gradually lose the information details about the true/field, especially the high 

permeability zone, as the soil becomes drier. The low conductivity zone is still identified due 

to the existence of the two/measurements. Compared to Figure 8-7(c), Figures 8-8(c) and 

8-9(c) also demonstrate that the estimation variance at locations away from the two / 

measurements increases as the mean pressure head becomes more negative. In another word, 

the conditioning effect of head information on the LnKs field depends on the mean pressure 

head value: it is stronger when the soil is wetter. 

To further inspect these results in details, the scatter plots of estimated/vs true/ 
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Figure 8-7 Cokriging using head at H=30 em: (a) true f field, (b) estimated f, and 
(c) cokriging estimation variance. 

40 

0.12 
0.11 
0.10 
0.09 
0.09 
0.08 
0.07 
0.06 
0.05 
0.04 
0.03 
0.03 
0.02 
0.00 
0.00 

...... 
VJ 
0\ 



Truef Cokriged f Estimation variance 

200 200 200 

1.58 1.58 
1.37 1.37 

150 JV:'' 1.15 150 
0.94 

1.15 150 
0.94 

0.73 0.73 
0.52 0.52 
0.30 0.30 
0.09 0.09 

-0.12 -0.12 
100--~\UUk. I. -0.34 100 -0.34 

-0.55 -0.55 
-0.76 -0.76 
-0.97 -0.97 
-1.19 -1.19 
-1.40 -1.40 

50 

20 
(a) 

40 
20 (b) 40 

20 (c) 40 

Figure 8-8 Co kriging using head at H=-1 0 em: (a) true f field, (b) estimated f field, and 
(c) cokriging estimation variance. 
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Figure 8-9 Cokriging using head at H=-20 em: (a) true f field, (b) estimated f field, and 
(c) co kriging estimation variance. 
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fields for the three cases are presented in Figures 8-10 (a), (b), and (c) for the saturated flow, 

and the two unsaturated flow cases, respectively. The figures show that the clusters of data 

points deviate from the 45-degree line when the soil becomes less saturated. Also the 

spreading of these data points increases from the saturated flow to the less saturated flows. 

The deviation and the spreading of the data points were quantified by the following two 

statistical measures, L, norm, the average absolute error, and Lj norm, the mean square error 

J-

The results of these statistics are listed in Table 8-1. It shows that saturated head 

measurements yield the smallest L, and Lj norms while heads at -20 cm present the largest 

L, and Lj norms. It should be emphasized that these statistic measures reflect the quality of 

the cokriging estimates for this particular realization of the/field. They are different from 

the cokriging estimation variance presented in Figures 8-7(c), 8-8(c), and 8-9(c) which are 

the minimized ensemble estimation variance. 

Figure 8-11 shows cokriged estimates of/using concentration measured from the 

saturated flow field. As can be expected cokriging yields a smooth/field that preserves the 

general pattem of the original field. Similar to the estimates using head measurements, 

Figures 8-12 and 8-13 show the estimates become smoother as the soil becomes drier. The 

scatter plot of Figure 8-14 and the statistics listed in Table 8-1 also illustrate that the L, and 

L2 norms increase as the soil desaturates. However, it should be indicated that a 



Table 8-1 Statistics of estimated LnK^ using different measurements 

L, norm Lj norm 

Head at H = 30 cm 0.22 0.07 

Head at H = -10 cm 0.28 0.12 

Head at H = -20 cm 0.35 0.20 

1 "-order head at H =30 cm 0.20 0.06 

1 "-order head at H = -10 cm 0.30 0.15 

["-order head at H = -20 cm 0.37 0.23 

Concentration at H = 30 cm 0.36 0.20 

Concentration at H = -10 cm 0.42 0.28 

Concentration at H = -20 cm 0.41 0.27 

P'-order concentration at H = 30 cm 0.27 0.11 

l"-order concentration at H= -10 cm 0.33 0.18 

1 "-order concentration at H= -20 cm 0.37 0.22 

Concentration from pulse input 0.35 0.18 

Arrival time at H = 30 cm 0.36 0.20 

Sequential estimate at H = 30 cm 0.18 0.052 
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Figure 8-11 Cokriging using concentration at H=30 em: (a) true f field, (b) estimated f, and 
(c) co kriging estimation variance. 
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Figure 8-12 Cokriging using concentration at H=-10 em: (a) true f field, (b) estimated f field, 
and (c) co kriging estimation variance. 
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Figure 8-13 Cokriging using concentration at H=-20 em: (a) true f field, (b) estimated f field, 
and (c) co kriging estimation variance. 
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measurement error of concentration is added on the diagonal terms of the concentration 

covariance in order to stabilize the solution; otherwise, the cokriging estimate is not 

smoother than the original field , i.e, it contains values larger than the maximum value or 

smaller than the minimum value of the true/field. This measurement error is chosen to be 

1 % to 2% of the largest concentration variance among all the concentration measurements. 

As a result, the statistics listed in Table 8-1 for concentration measurements are less 

indicative since they will depend on the amount of measurement errors added. 

To further examine the conditioning effect of head and concentration measurements, 

their cross-correlations with LnK, are investigated. Figure 8-15 is the cross-correlation of 

head with LnKj for (a) the saturated flow, (b) the unsaturated flow with H=-10 cm and (c) 

unsaturated flow with H=-20 cm. The numbers (1 to 9) represent the nine measurement 

locations on the left column of Figure 8-2 from the lower elevation to the higher elevation. 

Therefore, Line 1 in each graph represents the cross-correlation of head at location (10 cm, 

14 cm) with all the LnKj located at the same horizontal coordinate as the head measurement 

but different elevations. As can be seen, head correlates with LnK^ the strongest in the 

saturated flow; the correlation decreases as the soil becomes more unsaturated. These 

correlations are consistent with our cokriging estimates using head measurements, i.e., the 

stronger the correlation is, the closer to the true filed the cokriging estimate is. 

On the other hand, it is difficult to characterize the cross-correlation between 

concentration and LnK^in the same way since the pattern of correlation changes at different 

measurement locations. As a result, the cross-correlation at one cross-section does not 
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represent the complete distribution. Figure 8-16 is the cross-correlation of concentration at 

location (10, 14) with all the LnK, Graph a shows the cross-correlation between the 

concentration at (10,14) taken from the saturated flow at the sampling time and LnK, and 

graphs (b) and (c) for the two unsaturated flow cases, respectively. These graphs show that 

concentration at the saturated flow condition positively correlates with LnK, the strongest. 

The positive cross-correlation decreases as the soil becomes less saturated and at the same 

time, the negative correlation increases. To further illustrate the varied cross-correlation of 

concentration. Figure 8-17 shows the cross-correlation of concentration measured at location 

(10, 94) with LnK, at any other locations. As can be seen that the cross-correlation cannot 

be characterized by its maximum or minimum value. As a result, it is not clear how the 

cross-correlation between concentration and LnK, varies as the degree of saturation changes. 

To resolve this difficulty, we propose to examine the cokriging estimates using first 

order perturbations of concentration. These perturbations are generated using equation (3-5), 

i.e., the product of sensitivity of concentration and the perturbation of the parameters. Since 

these perturbations are directly calculated based on the linear relationship of concentration 

and the parameter, the cokriging estimates using them will be a perfect reflection of cross-

correlation between concentration and LnK,. The results of these estimates under the three 

flow conditions are shown in Figures 8-18, 8-19, and 8-20. As can be seen, first-order 

perturbations of concentration in the saturated flow case present a /field with more details 

of the true field. The details are gradually diminishing as the mean pressure decreases (more 

negative). This proves that concentration in the saturate flow correlates stronger with LnK, 
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Figure 8-17 Cross-correlation between concentration at x
3
=94 em and LnKs 

at (a) H=30 em, (b) H=-10 em, and (c) H=-20 em. 
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Figure 8-18 Cokriging using first-order perturbation of concentration at H=30 em: 
(a) true f field, (b) estimated f field, and (c) cokriging estimation variance. ,..... 
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Figure 8-19 Cokriging using first -order perturbation of concentration at H=-1 0 em: 
(a) true f field, (b) estimated f field, and (c) cokriging estimation variance. 
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Figure 8-20 Cokriging using first-order perturbation of concentration at H=-20 em: 
(a) true f field, (b) estimated f field, and (c) co kriging estimation variance. 
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than in the unsaturated flow. This conclusion can be further verified by the fact that the 

cokriging estimation variance shown in Figures 8-18(c), 8-19(c), and 8-20(c) increases as the 

soil becomes drier. The scatter plot of these estimates shown in Figure 8-21 and the L, and 

Lo norms listed in Table 8-1 again demonstrate that the first-order perturbations of 

concentration in the saturated flow provide more useful information in estimating LnK^ than 

those in the unsaturated flow. Also notice that the first-order perturbations at each flow case 

yield better cokriging estimates than the real concentration measurements at the 

corresponding flow condition. 

Figure 8-22 shows the cokriging estimates using concentration measurements from 

the pulse injection. The estimate is similar to that in Figure 8-11 where measurements are 

taken from a continuous source. This result is expected since the two plumes (see Figures 

8-4 and 8-6) at the time of sampling cover almost the same area of the heterogeneous field. 

In another word, what determines the estimating ability of concentration measurements is not 

the type of source, rather is the spreading area of the solutes. The scatter plot of Figure 8-

24(a) and the statistics listed in Table 8-1 also show that the estimate is similar to that using 

concentration measurements from a continuous source. 

Figure 8-23 is the cokriging results using 50% of arrival time observed at the 18 

sampling locations. As can be seen, the major features of the real field, the low and high 

permeability zones, are identified. The scatter plot of Figure 8-24(b) and the statistics in 

Table 8-1 show no advantages in using arrival time to estimate conductivity. However, 

while measurement errors need to be added for the cokriging estimation using concentration 
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Figure 8-22 Co kriging using concentration measurements from a pulse input at H=30 em: 
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Figure 8-23 Cokriging using arrival time at H=30 em: (a) true f field, (b) estimated f field, 
and (c) co kriging estimation variance. 
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Figure 8-24 Scatter plot of true f vs. estimated f using (a) concentration 
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measurements, there is no need to add anything in the estimation using arrival time. This 

may indicate that the linear relationship between arrival times and LnK, is better than that 

between concentration and LnK,. The improvement of the linear relationship is probably due 

to the summation of concentration over a time period. 

While the above cokriging estimations only included one type of secondary data, it 

is interesting to investigate the combined conditioning effect of head and concentration. If 

measurements of both head and concentration are included in the cokriging estimator, the 

property of the cokriging covariance matrix can be deteriorated due to the larger number of 

measurements (Dietrich andNewsam, 1989). An alternative is to use these data sequentially 

as proposed by Harvey and Gorelick (1995) who used head measurements and solute travel 

time in turn to estimate conductivity. The same procedure is adopted here; however, the 

concentration measurements instead of arrival time are jointly used with head data under the 

steady state saturated flow condition. The sequential estimation begins with treating the 

estimated / using saturated head measurements, i.e., Figure 8-7, as a conditional mean 

parameter field to evaluate the conditional mean concentration field from the pulse input. 

This conditional mean concentration is plotted in Figure 8-25. Compared to Figure 8-6 (b), 

the unconditional mean concentration field. Figure 8-25 is much closer to the true 

concentration distribution in Figure 8-6 (a) due to the conditioning effect of head and 

conductivity values. The next step is to subtract the conditional mean concentration field 

from the true concentration field and obtain the conditioned concentration perturbation at the 

eighteen sampling locations. These perturbations are used to perform estimation of 
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conductivity again without any conductivity measurements which have been incorporated 

in the previous cokriging estimation. 

The result of this sequential estimate of conductivity field is shown in Figure 8-26 

and the scatter plot in Figure 8-27. Compared to Figure 8-7 and 8-11, Figure 8-26 is much 

closer to the real /field and shows more details of the heterogeneity. The scatter plot in 

Figure 8-27 and statistics listed in Table 8-1 further illustrated that the sequential estimation 

provides the smallest L, and Lj norms. In addition, no measurement error was added in this 

sequential estimation, indicating an improvement of the property of the cokriging covariance 

matrix compared to the one using unconditional concentration perturbations. 

8.4 Discussion 

According to Figures 8-7, 8-8, and 8-9, cokriging estimates of LnK, based on head 

measurements deteriorate as the degree of saturation decreases. Such a decrease in 

conditioning effect of head information on LnKj can be attributed to the decrease in the 

cross-correlation between head and LnK, as the soil becomes drier. For unsaturated flow, 

head variance is proportional to not only the variability of LnK,, but also the product of 

variability of Lna and mean pressure head (H) as demonstrated by equation (2-10). Because 

the cross-correlation function between head and LnKj is defined as the cross-covariance 

function normalized by square root of the product of head variance and variance of LnK,, it 

is clear that the cross-correlation function will decrease as head variance increases when soils 

becomes drier or the mean pressure head value becomes more negative (Yeh and Zhang, 

1996). Cokriging estimation variances in Figures 8-7, 8-8, and 8-9 also illustrate the 
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Figure 8-27 Scatter plot of true f vs. estimated f based 
on the sequential estimation method. 



164 

behavior of the cross-correlation between head and LnK, as soil becomes less saturated. 

Furthermore, L, and L2 norms for /estimates calculated for this particular realization are 

found to increase as the cross-correlation decreases. Nevertheless, the increase in L, may be 

attributed to the deterioration of our first-order approximation of the effective hydraulic 

conductivity (i.e., using the same exponential model and the mean values of its parameters) 

and the mean equation. The other factor such as the nonlinear dependence of head on LnK^ 

seems to have little effect on the estimates because the cokriging estimates using the 

generated first-order perturbations yield almost identical results as those using the true 

perturbations of head. 

Similar behaviors in cokriging estimates are also observed in the case where 

concentration measurements are used: the estimate becomes more biased and scattered as the 

soil becomes less saturated. This result implies that concentration measurements under 

saturated flow conditions provide more information about LnK^ than those under unsaturated 

flow conditions when cokriging is used. However, due to the nonlinear relationship between 

LnKj and concentration, the true (observed) perturbation of concentration is very different 

from that derived from the first-order approximation. Thus, measurement errors (stabilizing 

factors) were added to the diagonal terms of concentration covariance matrix to remove 

anomalies in the cokriging estimates. Consequently, estimates using the true perturbation 

of concentration are much smoother (not as good as) than those using the first-order 

perturbation of concentration. The nonlinear relationship may partially due to the large 

variability of concentration at early times. This can be seen from Figure 8-4 which deviates 



165 

far away from the mean concentration distribution in Figure 8-5. 

The variance of concentration was significantly reduced when the concentration field 

was conditioned on measurements of head and conductivity. This can be seen in Figure 8-25 

which is very close to the true concentration field in Figure 8-6 (a). As a result, the linear 

relationship between concentration and LnKj may be improved due to the reduced 

conditional variance. Consequently, the cokriging estimate became stable, requiring no 

addition of measurement errors as compared to the one using unconditional concentration 

measurements. The substantial improvement of the sequential estimate over the one using 

concentration measurement alone is mainly due to more information is included in the 

estimation. However, the sequential estimate of/as shown in Figure 8-26 only improves 

over the estimate using head measurements marginally. This again indicates that 

concentration data are not very useful in estimating hydraulic conductivity when cokriging 

is used. 

The effect of using a continuous source and an impulse input is also investigated. For 

the flow and transport scenario examined, cokriging using concentration information from 

the two types of sources yielded similar results. This may be attributed to the fact that the 

areas covered by the plumes from the two sources are similar. Nevertheless, if the time 

progresses, the plume from the continuous source will cover a much larger area than that 

from the pulse injection, stretching from the source area to the front of the plume. Thus, 

more information about conductivity can be extracted from the concentration measurements 

resulting from the continuous source. 



166 

We also investigated the conditioning effect of arrival time on the estimation of LnK,. 

The result suggests that the information of arrival time is as effective as concentration 

measurements from the same pulse injection. Yet, we should recognize that arrival time 

provides us some information about the conductivity field between the source area and the 

sampling location. A snapshot of a plume resulting from a pulse injection is only useful in 

estimating conductivity in the vicinity of the plume. In addition, since arrival time is an 

integrated measurement, the relationship between arrival time and LnK, may be less 

nonlinear due to the integration of concentration over a time period. This may explain the 

reason that no measurement error was necessary to be added in the cokriging estimate using 

arrival time. It should be pointed out that our conclusion about the conditioning effect of 

arrival time is not contradicted with Harvey and Gorelick (1995) who presented a special 

case where head and arrival time were sampled from two far away lines. Their result showed 

that under this case arrival time is better than head in estimating conductivity due to the 

longer correlation distance between arrival time and LnK^. In our analysis, the effect of 

correlation distance is not significant due to the relative dense sampling locations. 

Overall, our numerical experiments demonstrated that the head measurements of 

steady state flow fields are the most useful secondary information for the estimation of LnKj 

field. This can be attributed to the nonlinear relationship between head and LnK, is not very 

strong at least in the cases studied. As a result, a linear estimator such as cokriging yields 

favorable results using head measurements. Another reason is that the approximation of the 

mean flow equation is well-justified due to the small variability of head. On the other hand. 
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the nonlinear relationship between concentration and LnK, may be high due to the nature of 

the transport equation and the large variability of concentration. In addition, the calculation 

of the ensemble statistics of the plume may also be erroneous since we do not have a valid 

governing transport equation for pre-Fickian regimes. Only when the plume has traveled 

over long enough distances and sampled enough heterogeneity, the ergodicity assumption 

required for the validation of the Fickian regimes will be satisfied. However, the plume by 

then may encounter heterogeneity of different scales and thus the ergodicity assumption will 

never be met. When the concentration field is conditioned on measurements, the variance 

of concentration is reduced and the approximation of the mean transport equation is justified. 

The linear relationship is therefore improved. However, the improvement in the estimation 

of LnK, is still marginal. 

We want to pointed out that in our study we used large local dispersivity values so 

that the effect of large scale heterogeneity on the smearing of the solute plume can be 

ignored. This permits us to avoid the question of the validity of the classical governing 

convection-dispersion equation and the macro-dispersivity formulation. For field problems, 

one must also address these issues. This is another reason that concentration is not as useful 

as the steady state head information. 

The use of concentration measurements and arrival times to estimate LnKj is also 

limited by the fact that the complete knowledge about the location of the solute source as 

well as the source strength and time span of the input must be acquired. This information 

is needed in the evaluation of sensitivities of concentration and arrival time. The evaluation 
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of arrival time may not be subject to the exact knowledge of the location and the strength of 

the source; however, the application of arrival time in the estimation of conductivity, i.e., the 

evaluation of Jacobian matrix, depends on information about the location and the strength 

of the source. 

Several researchers have suggested that concentration data may improve the 

estimation of hydraulic conductivity since concentration is more sensitive to the change of 

conductivity while head is not (such as McLaughlin and Townley, 1996). However, our 

numerical experiment demonstrates that sensitivity is not an appropriate criterion to judge 

the usefulness of the secondary information. Rather, cross-correlation is more indicative of 

the significance of the conditioning effect of secondary information. In fact, a high 

sensitivity of a variable with respect to a certain parameter may only contribute to a high 

variability of this variable. For instance, an increase in the hydraulic gradient in a saturated 

steady state flow will increase the sensitivity of head with respect to saturated conductivity 

whereas the cross-correlation between the head and the conductivity remains the same. 

Such an increase in sensitivity only contributes to the increase in the variance of the head. 

This is clearly demonstrated in our formulation of sensitivity in Chapter 4. In other words, 

head information from flow under high hydraulic gradients will yield identical results as that 

under small gradients if cokriging is used to estimate the hydraulic parameter. 

Our conclusion that head is the most useful secondary information has a significant 

impact on the practice of hydrology. In the field, head data set is the easiest to collect among 

the three types of data. The cost for measuring head is also generally much lower than that 
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sampling concentration and arrival time. It also takes much less time for collecting steady 

state head than sampling concentration and arrival time which may take months or years. 

The same is true for numerical simulations: it takes much less time to calculate the 

sensitivity of head with respect to conductivity than to compute the sensitivity of 

concentration and arrival time which requires the backward calculation of adjoint state 

variables, ft takes even more CPU time to calculate the sensitivity of arrival time since the 

calculation must be carried out until the end of a complete breakthrough of the solute plume 

at the observation locations. In addition to the difficulties mentioned above, the 

concentration information is also prone to large measurement errors. Moreover, the 

uncertainty associated with the boundary and initial conditions for flows is an additional 

source of error that can influence the calculation of concentration and arrival time. 

It should be pointed out that the better estimated conductivity field using head 

measurements may not necessarily reduce the prediction variance of head and concentration. 

Clifton and Neuman (1982) demonstrated that the prediction variance of head can be 

significantly reduced by taking into account both the transmissivity and head measurements. 

On the other hand, even though concentration measurements are not the best information to 

estimate the conductivity field, Tong (1996) showed that concentration data are most 

important when fitting of concentration is desired. Tong (1996) also indicated that a good 

fitting in the parameter field does not necessarily improve the prediction of concentration. 
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9. SUMMARY AND FUTURE RESEARCH 

The proposed numerical first-order analysis performed the stochastic analysis of flow 

and transport in several different flow conditions. Especially, the moments of head under 

a variably saturated flow condition is examined. The results show that the overall behavior 

of head variance under the variably saturated flow is determined by the relative magnitude 

of head variances in the unsaturated zone and the saturated aquifer. The variability 

associated with the unsaturated parameter was shown having an impact on the variance of 

head in the saturated zone. This result cannot be obtained by a separate saturated and 

unsaturated analysis. The analyses about the uncertainty of boundary conditions 

demonstrated that boundary condition can have a significant influence in the moment 

calculation. Results also show that the cross-correlation between head and LnK, in saturated 

aquifers does not depend on the mean pressure head and mean hydraulic gradient. On the 

contrary, the cross-correlation between head and LnK, in unsaturated zones depends on the 

mean pressure head: the wetter the soil, the stronger the cross-correlation. The cross-

correlation between head and Lna depends on mean pressure head in a reversed way: the 

drier the soil, the stronger the cross-correlation. 

The moment analysis on concentration reveals that the variance of concentration 

depends on the gradient of concentration profile. In the vadose zone, it is discovered that 

concentration variance does not diminish at the peak of concentration profile. The study on 

the cross-correlation between concentration and LnK^ and Lna indicates that concentration 
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correlates with LnK, stronger under wetter conditions and correlates with Lna greater under 

drier conditions, i.e., the cross-correlations depend on the degree of saturation. This finding 

is consistent with the cross-correlation between head and conductivity and pore size 

distribution. The analysis on arrival time shows that the cross-correlation between arrival 

time and conductivity does not depend on the percentage of arrival time. In addition, arrival 

time exhibits similar dependence on the degree of saturation as concentration and the 

magnitude of its cross-correlation is in the same order as that of concentration. 

The comprehensive analysis of conditioning effect of head, concentration, and arrival 

time disclosed that steady state head provides the best secondary information in estimating 

conductivity by cokriging. On the other hand, estimated conductivity fields by concentration 

and arrival time have more bias and variance due to the nonlinear relationship between solute 

concentration and LnK,. In evaluating the effect of degree of saturation, saturated head 

provides the best conditioning field of conductivity; the same is true for concentration. This 

result is consistent with the cross-correlation analysis of head and concentration, implying 

that cross-correlation is an appropriate criterion to judge the secondary information when the 

cokriging technique is employed. 

This numerical first-order analysis avoids several limitations of analytical approaches 

and those of numerical Monte Carlo simulation. The flexibility of the approach stems from 

the fact that numerical models and the adjoint state method are used conjunctively. 

Numerical models provide a simple means to treat any type of boundary and flow conditions. 

As a result, unlike the spectral method and other analytical methods, the assumption of 
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stationarity is not required in the evaluation of statistical moments. As a result, the stochastic 

analysis can be performed in variably saturated media. 

The adjoint state method is computationally efficient. It allows us to evaluate the 

sensitivity only at the node of interest (such as locations of head measurements), instead of 

all the nodes as in other methods of sensitivity analysis. Also the adjoint state equations 

usually retain the general form of the governing flow equation so that repeated finite element 

formulations can be avoided. In addition, the adjoint state equations for different parameters 

in the sensitivity analysis remain the same: they only need to be solved once for all the 

parameters. In case of flow through variably saturated porous media, the governing equation 

is nonlinear but the adjoint state equation is linear: no iteration is required. 

Nevertheless, we have to emphasize that this approach is based on a first-order 

approximation. The validity of the approximation is generally warranted if the variance of 

saturated hydraulic conductivity is less than one for saturated flow. For unsaturated flow 

problems, the first-order approximation is valid if the variance of unsaturated hydraulic 

conductivity is much less than one (Harter and Yeh, 1996). 

The above conclusions are based on the given flow and transport conditions in this 

study; an extension to other flow conditions, especially to larger domains, may need further 

research. In addition, the reduction of the variances of head and concentration due to the 

conditioning effect of head, concentration, and conductivity should be studied in the future. 

Yeh et al. (/99(5Japplied a successive linear approach to the estimation of conductivity using 

head and moisture content. The extension of their approach to the estimation of parameters 
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using concentration measurements may be even interesting since the nonlinear relationship 

between concentration and the hydraulic parameters is stronger than the flow related 

variables. Tliis further research can be conducted based on the adjoint state equations and 

the cokriging algorithm derived in this study. Finally, since this study was conducted using 

synthetic and simulated data, it is interesting and important to test the algorithm using real 

data sets. 
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Appendix A: 

EVALUATION OF INTEGRALS 

If we let 
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