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ABSTRACT 

In this work the problem of actuator and sensor mapping and controller design for 

the flexible structure control is approached as minimization of the residual deformations 

index norm of the closed-loop disturbance - deformation path) over the set of non-

destabilizing feedback controllers and over the set of possible actuator and sensor 

mappings. Computational load associated with this approach is reduced by restricting the 

search to the mapping areas where an inexpensive lower estimate of residual deformations 

index (derived as a part of this study) is less than the desired value of this index. Further 

improvement is achieved by including statistical description of the difference between the 

actual and the estimated performance index over the set of mappings, in order to adjust 

the level of the mapping acceptance / rejection in such a way that the number of rejected 

mappings is increased. Serial and parallel optimization procedures based on exhaustive 

search and genetic algorithms are discussed. These concepts and algorithms are applied to 

test cases of simply supported beam, the UCLA Large Space Structure, and a telescope 

mirror model: a hinged round plate. 
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NOTATION AND ABBREVIATIONS 
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NOTATION AND ABBREVIATIONS- Continued 
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1 INTRODUCTION 

The study of the active control of flexible structures has gained increasing 

importance over the last decade as a result of a growing need for precise control of space 

and earth-based structures, e.g. space vehicles, antennas, optical devices, and aseisniic 

design (see Sparks and Juang, 1992 for an extensive list of the existing experimental 

facilities). The principal challenge of active control of continuous flexible structures is to 

achieve an acceptable reduction in structural vibration using only a finite number of 

actuators. 

It is known that one cannot eliminate completely deformations produced by 

disturbances in continuous flexible structures by means of a fmite number of point 

actuators and sensors. This means that there will be residual defonmtions left in the 

structure whose magnitude depends on the locations of the actuators and the control 

action implemented. Also one cannot eliminate completely deformations in a Rayleigh 

model of an order and dimension high enough to capture the properties of the continuous 

structure because of the fundamental limitations of the feedback control. This means that 

the residual deformations in a flexible structure with an active fmite-dimensional controller 

came from three sources; (a) the approximation error of the Rayleigh model, (b) feedback 

limitations, i.e. closed-loop dynamic errors of the controllable and detectable part of the 

Rayleigh model with a feedback controller, and (c) the presence of uncontrollable / 

undetectable components of the Rayleigh model, caused in turn by the limited number of 
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actuators and sensors. These three sources are typically strongly input / output coupled 

and modified by the closed-loop control action, with disturbances and controls considered 

as inputs, and distributed deformations and point measurements considered as outputs. 

The effect of the approximation error of the Rayleigh model is nonlinear. Since it 

cannot be addressed directly, it is typically assessed in an a posteriori simulation. This 

issue is not addressed further in this work. However, the effects of feedback limitations 

and uncontrollable / undetectable components in the Rayleigh model are open to a priori 

analysis. It is universally accepted that the amount of deformations that cannot be 

elimiiuted in the Rayleigh model depends on the mapping of actuators and sensors, a fact 

that has been exploited by various mapping optimization techniques. In general one 

attempts to find a mapping resulting in the best deformation suppression in terms of a 

selected closed-loop performance index. This index is usually a combination of control and 

deformations energies, depending on the adopted control design approach. For instance, 

the degree of controllability based on structural modes is examined in many references 

(Viswanathan et al, 1984; Longman et al, 1982; Hamdan and Nayfeh, 1989; Lim, 1992; 

Choe and Baruh, 1992; Maghami and Joshi, 1993; Hac and Liu, 1993). Some references 

take into account control performance criteria, like optimal control cost (Chen and 

Seinfeld, 1975; Aidarous et al, 1976; Martin, 1978), minimization of control energy 

(Baruh and Meirovitch, 1981; DeLorenzo, 1990) and minimization of deformation energy 

(Vincent et al, 1989, 1990). It is evident that the problem of actuator placement can be 

solved efficiently only if stated within the main control design framework, which is highly 

specific for any adopted approach. 
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For a control engineer the control of flexible structures presents a number of 

challenges, caused by inherently unfavorable properties of flexible structures, as outlined 

by Rogers and Li (1993) based on the comprehensive treatment of the flexible structures 

by Balas (1982) and Mackay (1983): 

(i) it is the relation of physical dimensions and mass limitations that makes the structures 

quite flexible, hence the term "flexible structure"; 

(ii) flexible structures (typically) have a large number of closely spaced resonances at low 

frequencies, and a characteristic distribution of eigenvalues on the complex plain, 

which makes model order reduction techniques (typically) not appropriate, with the 

obvious disadvantages in terms of computational loads; 

(iii) requirements imposed by 'acceptable' control (pointing accuracy, vibration 

suppression, shape maintenance) demand a high controller bandwidth, and hence 

dynamic interaction of the controller and the structural vibration modes; 

(iv) flexible structures are modeled by partial differential equations (PDE), and hence have 

an infinite dimensional state vector; 

(v) usually the sensors and actuators are regarded as point devices, hence the control and 

measurement vectors, as weU as the controller itself, are finite dimensional 

There are two approaches to modeling flexible structures and designing associated 

controllers. One can use finite-element methods to produce a lumped model with a high 

order state and high input/output dimensions and design a controller for this model; or one 

cm design a distributed control based on the PDE model and later discretize the results. 

Both approaches have advantages and disadvantages with serious implications (see Greene 
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and Stein (1979) for an extensive treatment of the subject). Because of these implications 

preference for one approach over the other is mainly a matter of taste for the control 

engineer. This work is restricted to the finite-element approach which leads to a second 

order (or Rayleigh) model 

One appealing design approach for flexible structures is control, which 

addresses minimization of the r.m.s. deformation. For a given actuator and sensor mapping 

a properly posed //. design procedure produces the minimum possible H_-nonn of the 

deformation-disturbance path and the (non-destabilizing) feedback controller ±at achieves 

this norm. In other words, the design procedure gives exactly the actual limit of 

deformation suppression in terms of the H_ performance index. In this context the H_-

optimal mapping of actuators and sensors appears as a minimization of the //,-norm of the 

closed-loop disturbance-deformation path (a) over the set of non-destabilizing feedback 

controllers, and (b) over the set of possible actuator and sensor mappings. The only 

obvious implementation of this concept requires the standard //_ design procedure to be 

placed inside the automated search loop, the search being conducted over all possible 

mappings (e.g. see Warren et al, 1995). This means that a complete H_ design is 

performed for every mapping evaluated. Advantages of this straightforward approach are: 

(i) causality of the controller and internal closed-loop stability are guaranteed; 

(ii) robustness and measurement noise issues can be addressed directly. 

These advantages come at the price of tremendous computational overhead, 

possibly impractical in the case of flexible structures with large nimibers of degrees of 



freedom. The //_ design procedure relies heavily on computationally expensive algorithms 

like the singular value decomposition (SVD), eigenvalue analysis, and the Eliccati 

equations, with computational loads and storage requirements proportional to the cube 

and the square of the state vector order (for the details of the contemporary H_ control 

theory see Zhou, Doyle, Glover, 1995; Green and Limebeer, 1995). As was stated earlier, 

model order reduction is not very helpful in this case for the following reason. Finite 

element models, usually used to describe flexible structures, arise from elliptic PDE-s, and 

therefore have an open-loop poles distribution in the complex plane with a very 

characteristic pattern. This pattern makes any immediate order reduction impossible, so 

that one has first to design a simple static feedback to increase damping and alter the 

pattern, then to apply the order reduction, and finally to apply //. design to the reduced-

order (closed-loop) system, as demonstrated by Safonov, Chiang, and Rashner (1991). 

The resulting ihree-step procedure requires human intervention and therefore is unlikely to 

work efficiently inside an automated search loop, while the computational cost reduction 

is not significant. 

One can easily realize that the computations involved are largely wasted, since for 

most of the actuator and sensor mappings there will be no control that meets the 

performance requirements, a fact that can be discovered only at the very end of the 

design. A computationally inexpensive method to determine the lower bound for the 

achievable H_ norm of the closed-loop disturbance - deformation path, would eliminate 

the mappings with inadmissible performance index without performing an //_ design on 
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these mappings. Such a bound can be characterized as a lower limit of deformation 

suppression in flexible structures. Preliminary results based on this concept were discussed 

in Arabyan, Chetnishkian, and Meroyan (1996), Arabyan and Chemishkian (1998). 

In this work the problem of the flexible structure control is stated in the 

following way: given a flexible structure subject to external disturbances and a 

desired limit of the resulting elastic deformations, specified by some norm, 

determine the minimum necessary number of sensors and actuators and their 

placement (mapping) on the structure together with achievable control actions to 

realize the desired objective. The objective of the problem is defined through 

minimization of the residual deformations index (//_ norm of the closed-loop disturbance -

deformation path) over the set of non-destabilizing feedback controllers and over the set 

of possible actuator and sensor mappings. This approach requires to solve for f/_-optimal 

control for every possible mapping in search loop, which is computationally very 

expensive. In this work it is proposed to reduce the associated computational loads by 

restricting the search to areas where an optimistic (lower) estimate of residual 

deformations index (derived as a part of this study) is less than the desired value of this 

index. The computational savings can be very significant, depending on the ratio of the 

number of acceptable mappings to the rejected ones, as well as on the ratio of the 

computational cost of the actual index evaluation to the optimistic estimate evaluation. 

Further improvement is achieved based on statistical analysis of the difference between the 



26 

actual and the estimated performance index, which allows to adjust the level of the 

mapping acceptance/rejection, and to increase the number of upfront rejected mappings. 

H_ optimal mapping of actuators and sensors with the flexible structure described 

by a model with a state dimension between 100 and 300 can overwhelm serial computers, 

even if a computationally inexpensive lower bound is used in the goal function. This 

problem becomes virtually intractable for large space structures whose state dimensions 

are in several thousands range. Parallel computation and associated algorithms have the 

potential to overcome this bottleneck. The problem considered here can be parallelized in 

several ways. 

• The recently developed technique of genetic algorithms (GAs) (Holland, 1975) 

allows the evaluation of a goal function (actual H_ norm or the optimistic 

bound) for several tested mappings simultaneously (one mapping per one 

computational node) on separate nodes of a parallel computer. GAs also treat 

with equal ease parameters defined over continuous, discrete, and mixed sets 

(Davis, 1991, Michalewicz, 1996), i.e. it is possible to optimize the actuator and 

sensor mapping over continuous, discrete, or mixed position sets. 

• The inherent parallelism of the exhaustive search. 

• The highly special structure of the Rayleigh model state matrices allows the use 

of an efBcient parallel Riccati solver (Gardiner and Laub, 1991; Rogers and Li, 

1993), and parallel frequency response solver (Laub and Gardiner, 1988; 

refinements Rogers and Li, 1993). 
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The efiBciency of the parallel incarnation of the actuator and sensor mapping optimization 

based on the mentioned paraDelization approaches depends crucially on several factors: 

the even distribution of computational loads and storage among the computational nodes, 

the amount of inter-node communications, and the architecture of parallel computer. 

Detailed analyses of the problem and test cases are considered further in this study to 

determine pros and cons of a particular approach or a combination of approaches. 

Serial computations in this study were performed with Matlab 5 and Robust 

Control Toolbox (Mathworks, Inc.), Matcom V3 (Mathtools, Inc.) and Visual C-H- 5.0 

compiler (Microsoft) on a PC with Pentium Pro CPU and Windows NT 4.0 (Microsoft) 

operating system. Parallel computations were performed with MPICH, Matcom V3 

(Mathtools, Inc.) and native CC compiler on SGI Origin 2(X)0 supercomputer with IRIX 

operating system. 

The objectives of this study can be summarized as the following; 

• To establish a computationally inexpensive optimistic lower Umii of deformation 

suppression in a flexible structure, which is based on the input / output properties 

of the structure, and would avoid direct construction of //_-opiimaI feedback 

controUer. 

• To develop search enhancement tools based on statistical properties of the 

deviation of the optimistic lower limit from the actual lower limit of deformation 

suppression on large sets of possible actuator and sensor mappings. 
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• To construct search algorithms for the optimization of actuator and sensor 

mapping over discrete sets of possible mappings based on the hybrid use of the 

optimistic and actual lower limits of deformation suppression. 

• To examine the computational efiBciency of the mapping optimization using 

exhaustive search and GA on serial and parallel computers. 

This dissertation is organized as follows. Mathematical background of flexible 

structures control, structure models, and lower limits of deformations suppression based 

on these models are considered in Chapter 2. Computational properties of the optimistic 

and actual lower limits of deformation suppression, statistical enhancement of the lower 

limits, as well as several serial and parallel map optimization algorithms are presented in 

Chapter 3. These algorithms are applied to the test cases of simply supported beam 

(Chapter 4), the UCLA Large Space Structure (Chapter 5), and a hinged round plate, as a 

simple model of telescope mirror (Chapter 6). Conclusions are provided in Chapter 7. 

A proof of the central mathematical result, the optimistic lower limit, is presented in 

Appendix A. Comparison of speed of the search code on different computers and 

compilers, used in this study, provides the benchmark problem in Appendix B. Concept 

used in the parallel implementation of the search codes are presented in Appendix C. 
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2 UMU OF DEFORMATION SUPPRESSION IN FLEXIBLE 

STRUCTURES 

2.1 Second-Order Model of a Flexible Structure 

Consider a generic flexible structure (Figure 2.1), which is described by a model 

with the nxl vector of lumped (nodal) deformations X. The generic form of the second-

order or so-called Rayleigh model for this generic flexible structure is the matrix 

differential equation (Rogers and Li, 1993): 

M  X + C  X  = D  U  
(2.1) 

Y  =  P  X  +  S  X - \ ^ D  U  

•where U is the /xl input vector, K is the mxl output vector (a linear combination of nodal 

deformations, velocities, and inputs). The matrix M is usually termed the mass matrix, C is 

the Rayleigh (damping) matrix, and /(T is the Hooke or stifihess matrix. This is because 

Equation 2.1 often arises as a model of a system itself derived by applying Newton's laws, 

or, as in the considered case, from applying fmite element methods to a dynamic 

coQtinuum problem. Generally speaking. Equation 2.1 is just a matrix generalization of the 

trivial single-input single-output second order model of the spring-mass-damjjer system 

(see Figure 2.2). 
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Figure 2.1. A generic flexible structure 

• .L * m 

7^ 

Figure 2.2. A spring-raass-damper system 
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Usually the matrices M, K, and C have certain structures: 

M = \f^>0 (symmetric, positive definite), 

K = (symmetric, positive semi-definite), 

C = Ci +• C2, 

Ci = Ci^= a-M + P"AT ̂  (symmetric, positive semi-definite), 

C2 = -€2^ (skew symmetric). (2.2) 

In the decomposition of the Rayleigh matrix, Ci is termed the dissipation matrix and 

represents structural damping forces, and C2 is the gyroscopic matrix which represents the 

gyroscopic forces. Of course, the stiffiiess matrix may be modified to take account of 

circulatory, as opposed to the purely conservative, field forces, in which case it will not be 

positive semi-definite any more, but thJs case is not considered further (see also in-depth 

study of possible benefits and limitations of the Rayleigh model by Arnold, 1984). 

The standard approach to bring the Rayleigh model into the control systems 

context is to define an augmented deformations vector and to transform the original 

second order model into the equivalent first order model, i.e. the standard state-space 

model of the plant. If one defines the generalized state vector as 

9 = 
X 

X 
(2.3) 

then the equivalent first order model becomes 

0 K 0 

- M ' K  - M ' C  
q + 

M ' D  
U 

(2.4) 

Y  = [ P  S ] q  +  D U .  
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[ I .  O l  '  0  ' 0 '  

I '
" •

• 
^
 

; 

1 

.q = 
- K  - C  

• q  +  
D  

•U 
U Mj ' [-A -CJ • lU 

could be used. 

Obviously, the standard state-space model (ABCD model) 

X  =  A  x  +  B  u ,  

y  = C  x  +  D  u  

is related to the model (2.4) in the following way: 

A = 

B  =  

0 

- M ' K  - M ' C  

0 

M ' D  

C  =  [ P  s] 
D  =  D .  

(2-5) 

(2.6) 

2.2 Actual Lower Limit of Deformation Suppression 

In terms of the H, control theory the problera of deformation suppression in a 

flexible structure is the standard four-block disturbance attenuation problem, as it is 

defined by Zhou, Doyle and Glover (1995), or Green and Limebeer (1995). The four-

block model of a flexible structure (Figure 2.3) has two inputs (exogenous disturbance 

vector w, and control vector u) and two outputs (deformation vector z that should be 
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minimized, and measurement vector y ) .  The state-space equations, describing the 

structure, have the following form: 

x(r )  =  i4  •  x ( t )  +  Bi  •  w i t )  +  B2  •  u { t )  

r ( f )  =  Ci  • x ( r )  +  />!  I  •  wi t )  + Z) i2  •  u{ t )  

y { t )  =C2X(r )  +  D2iW(0  +  D22-"(0  

(2.7) 

where x is the state vector, and the vectors x, h*, Z ,  U , y have lengths rrix, rru^, rriz, rrin, M Y ,  

with characteristic relations 

nty « « m^, . (2.8) 

A dynamic feedback controller Kis) is used for active damping of the deformations 

z, based on the information from the measurements^. The frequency-domain equations of 

the four-block model with the added feedback controller K(s) have the form 

' z ( s )  

J ( s )  

Gii(^)  

G21 (.y) 

G ^ i s )  

^22 (•^) 

H'(.y) 

3'(>y) 
=  G i s )  

^(5) 

y { s )  

(2.9) 

u ( s )  =  K { s ) y { s ) .  

The closed-loop Transfer Function Matrix (TFM) of the disturbance - deformation 

path Tiw can be computed as the lower Linear Fractional Transformation (LET), see 

Zhou, Doyle and Glover (1995): 

T ^ i s )  =  7 ^ ( G , K )  =  G , , i s ) +  G , , ( s )  • K ( s )  [ / - G ^ ( s ) -  A - ( ^ ) ] " '  G , , ( s ) .  (2.10) 
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Figure 2.3. The basic four-block model of the flexible structure structure: (a) 

verbose and (b) compact form 
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If the flexible structure described by this four-block model is subjected to disturbance 

processes w(t) with ~ norm limited by one: 

(2.11) 

then according to the H~ control theory the ~ norm of the resulting deformation process 

z(t) is limited by the H~ norm of the disturbance - deformation path: 

(2.12) 

Hence the norm llrzwll_ represents the worst-case deformation, 1.e. the limit for 

deformation suppression. All liT zwiL depends on the feedback controller selection, then the 

following definition is valid. 

Definition 2.1. The actual/ower limit of deformation suppression in a flexible structure 

in terms of the H~ performance index is defined as the minimum H~ norm of the 

disturbance - deformation path Tzw taken over the set of all-stabilizing controllers 

~all-stab: 

t actual = min liT zw CK)IL. 
KE:{aJJ - - . 

(2.13) 

Any changes in the L;_ norm limit of the disturbance result in proportional scaling of the 

actual lower limit (2.13). 

Another way to look at the actual lower limit of deformation suppression defmed 

above is provided by the Q-parametrization, or the Youla-Kucera parametrization (see 

Green and Lirnebeer, 1995, Zhou, Doyle and Glover, 1995). According to this approach, 
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it is always possible to introduce a TFM Q(s) (the Q-parameter) in the equation for the 

closed-loop disturbance- deformation path TFM (2.10): 

Q(s) = K(s) · [1- G22 (s) · K(s) r. (2.14) 

In this case the closed-loop TFM of the closed-loop disturbance - deformation path 

becomes: 

Tzw (s) = G11 (s) +G12 (s) · Q(s) · G21 (s). (2 .15) 

Hence the following modification to the definition 2.1 is valid. 

Definition 2.2. The actual lower limit of deformation suppression in a flexible structure 

in terms of the H~ performance index is defmed as the minimum H~ norm of the 

disturbance - deformation path Tzw taken over the set of stable real-rational TFM 

Q with finite H~ norm : 

(2.16) 

Information related to the typical spectral properties of the exogenous disturbance 

w, or desired frequency response of the deformation vector z, can be included in the 

performance index by means of a performance weighting function wp(m) in the following 

way: 

(2.17) 

This corresponds to the modified four-block problem as shown in Figure 2.4. The scalar 

weight was selected for the formula (2.17) (i) because usually that is enough for practical 

problems, and (ii) to avoid unnecessary complications arising in the case of full-matrix 
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weights. For example, if it was known in advance that the disturbance w is limited to the 

low frequency range, say 0-6 Hz, and a roll-off rate of -20 db/decade is allowed above the 

6 Hz limit, then one possible weighting function wp(m) could be selected as plotted in 

Figure 2.5. 

A more realistic performance index should take into account the influence of 

model truncation errors and uncertainties in the flexible structure model on the closed-

loop stability. One way to do this is to add a robust stability condition to the performance 

index (2.17), as it is usually done in the mixed sensitivity design problems (see Zhou, 

Doyle, and Glover, 1995). If the open-loop multiplicative uncertainty Lia(s) of the flexible 

structure model G(s) is defined by upper frequency-dependent bound, i.e. 

(2.18) 

then a robust stability requirement for the four-block problem (Figure 2.4) can be set in 

the equivalent H~-forrn: 

(2.19) 

This requirement can be combined with the performance requirement (2.17) in the 

traditional mixed-sensitivity manner: 

. Tzw(K) · p · wP (m) 
t(p)= mm ~1 

Ke'%:all _,., T(z-y )(w-u) (K) · W,s (m) 

• . t(p) t(p*) 
t =mrn-- = --.-

(2.20) 

P p p 
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w 

Figure 2.4. The four-block model with performance weight Wp 
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Figure 2.5. The typical performance weight Wp for a low-frequency disturbance 
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which corresponds to the augmented four-block problem, as shown in Figure 2.6. Here 

where r is an equivalent performance index of the augmented system containing the 

uncertain block AC, and p* is the H_ performance index, or the minimal deformation 

bound, achieved by the closed-loop system (Figure 2.6) with a multiplicative uncertainty 

limited by the inequality (2.18). A typical robust stability weighting function w„ describing 

a high-frequency model truncation error is plotted in Figure 2.7. 

Modifications of the H_ performance indices, described by the Equations (2.17), 

(2.20), win be also referred to as the actual limit of deformation suppression in a flexible 

structure for the sequel of this paper. 

Minimization problems, set by the Equations (2.13), (2.16), (2.17), and (2.20) for 

a given mapping of actuators and sensors can be solved by means of standard H_ design 

procedures. The discussion that follows assumes the two Riccati equation method is 

applied to the corresponding four-block problem, e.g. procedures hint and hinfopt from 

the Robust Control Toolbox. The same approach is valid in the case of combined 

performance - robust stability problem, set by the Equation (2.20). 

This approach has severe limitations which are caused mainly by the dimension of 

the problem and the poor open-loop controllability / observability of the flexible structure 

model. High problem dimension results in huge computational costs, which makes the 

evaluation of the actual limit of deformation suppression within the actuators and sensors 

mapping optimization loop unfeasible. In addition, the limited accuracy of 
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u 

Figure 2.6. The modified four-block problem with performance (Wp) and robust 

stability (wn) weights 

Figure 2.7. The typical robust stability weight Wn and performance weight Wp for a 

low-frequency disturbance and high-frequency uncertainty 
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computer representation may cause the design procedure to fail in the case of ill-

conditioned matrix A of high dimensions. Note also that output weighting always 

increases the dimensions of the equivalent augmented model by the number of outputs x 

order of the scalar weight function model. One way to overcome these limitations is 

proposed below. 

2.3 Optimistic Lower Limit of Deformation Suppression 

The main reason for the high computational cost of the H_ design procedure is that 

it treats the closed-loop stability and performance requirements simultaneously, i.e. the 

procedure yields both the best achievable H_ norm and the corresponding stabilizing (or 

non-destabilizing) controller. This is justified in general, when the internal stability of the 

closed-loop system is the major limiting factor for the closed-loop performance. This is 

not necessarily true for flexible structures because of the characteristic relations in the 

input and output dimensions of the four blocks, described by Equations (2.7),(2.8). A 

feedback control cannot compensate for all defonnations, as there are much fewer control 

inputs (/riu) than disturbance inputs (/Ww). Similariy, sensors cannot detect all deformation 

shapes, as there are much fewer measurements (wiy) than minimized deformation outputs 

{nij). That is, the system is not completely controllable from the control inputs, and not 

completely observable from the measurement outputs. It means that for a flexible structure 

the mapping of actuators and sensors is a performance limiting factor by itself, and internal 
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Stability requirement can be treated as a design constraint, adding indirectly to this primary 

limitation. 

The question is if it is possible to estimate the actual lower limit of deformation 

suppression t (2.13),(2.16) without solving the design problem. One way to do this is 

(a) by rela.\ing the internal stability requirement, Le. not requiring that the parameter Q is a 

stable real-rational TFM, and (b) by using a frequency sweep to compute the //_ norm of 

the disturbance - deformation operator. The central theoretical resuh of this study is the 

following theorem which defines the optimistic lower limit for deformation suppression. 

Theorem 2.1. If the parameter Q ( s )  in the definition of actual lower limit of vibration 

suppression (2.16) is constructed from the TFM Gn, Gu, G21 and their adjoint 

operators in the following way: 

Q = -(GI; G,2) Gi", Gi, G;"! • (Gji G,*!) , (2.21) 

then Equation (2.16) defines the optimistic lower limit of deformation suppression 

in fle.uble structures, which is guaranteed to be less than (better) or equal to the 

actual limit defined by (2.16). An alternative and computationally less expensive 

way to compute the optimistic lower limit is based on the following frequency 

sweep: 

=sup5([c„ -{l/,, (v,, •V„')](ja.)). (2.22) 
OJ ' 

Here the matrix Vn contains the left singular vectors of the FRM of the control -

deformation path Ga, which correspond to non-zero singular values of Gn (column-space 
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of Gn(jm)), and the matrix V21 contains the right singular vectors of the FRM of the 

disturbance- measurement path G21 , which correspond to non-zero singular values of G21 

(row-space of G21Um)). 

The proof of Theorem 2.1 is provided in Appendix A. 

Adjoint operators of stable real-rational operators are known to be anticausal or at 

least to have anticausal components. Thus the ideal Q-parameter (2.21) always contains 

two components: a stable one Q+, and an antistable one Q.: 

(2.23) 

That is why the ideal Q-parameter leads to an optimistic limit of deformation suppression, 

which bounds the actual lower limit of deformation suppression from below and usually 

can not be achieved. 

To fmd a stabilizing Q-parameter one has to find the stable part of the parameter Q 

A 

and approximate the parameter QUm) by a TFM Q(s) E RH""' in the following sense: 

(2 .24) 
II<G 11 + Gl2 · Q · G21) -Gl2 ·Q_ · G2lt $ t oprimistic + I!G12 · Q_ · G211L 

where t optimistic is the optimistic lower limit (2.22), and the term IP12 · Q_ · G21 jL is added 

because of the internal stability requirement. The difference between the optimistic and the 

actual limit is always less than the added termlp12 ·Q_ ·G21 L. One way to evaluate 

IP12 · Q_ · G21 1L in the bounding formula (2.24) results in the Nehari theorem (Green and 

Limebeer, 1995; Zhou, Doyle, and Glover, 1995), but this algorithm is slow and less 
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reliable compared to the direct H_ design by the two Riccati equation algorithm. The only 

goal of this analysis is to show the place of the optimistic lower limit (2.22) in the H_ 

control theory. 

It is not possible to estimate the difference between the optimistic and actual limits 

for deformation suppression without evaluating both, however it is always possible to treat 

this difference in a statistical sense on large enough sets of possible actuator and sensor 

mappings. This allows the estimation of the difference with a certain probability that may 

be acceptable in many real-life cases. 

The main advantages of the optimistic limit (2.24) over the actual limit defined in 

Section 2.2 are its numerical stability, remarkably low computational cost, and inherent 

parallelism. These properties of the optimistic limit are discussed in the Chapter 3. 

2.4 Major Results 

1. The problem of deformation suppression in a flexible structure with //_ performance 

index by means of a feedback controller can be recast as the standard four-block 

disturbance attenuation problem, described in detail in modem literature on //_ 

control. The four-block model has four direct paths (four blocks) for the plant: 

disturbance - deformation (Cn), disturbance - measurement (G21), control -

deformation (.Gn), and control - measurement (G22), as well as one controUer K 

closing the feedback (measurement - control) path. 
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2. The actual/ower limit of deformation suppression in a flexible structure is defmed as 

the minimal H~ norm of the disturbance - deformation path operator Tzw (with the 

feedback controller K) over the set of non-destabilizing (all-stabilizing) controllers 

~all-stab: 

The problem usually can be solved for K by standard H~ solvers, e.g. the hinfopt 

procedure of Matlab (two Riccati equations method). 

3. The actual limit of deformation suppression has an equivalent representation in terms 

of the Q-parametrization (the Youla-Kucera parametrization) of the controller transfer 

function matrix: 

K = Q · [I +G 22 · Q r, 
tacruaJ = .minjjG11 +G12 ·Q ·G21ll . 

QeRH: ~ 

4. A lower (optimistic) limit for deformation suppression is obtained by (a) relaxing the 

internal stability requirement of Q E RH~, and (b) evaluating the H~ norm through a 

frequency sweep rather then by the standard indirect way based on the state space 

models (see the Theorem 2.1 for details). The evaluation of this optimistic limit is be 

demonstrated in later chapters to be computationally less expensive than the evaluation 

of the actual limit. The primary use for the optimistic limit is to avoid evaluation of the 

actual limit for the actuator and sensor mappings when the optimistic limit already 
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violates (exceeds) the performance specifications, set by the deformation damping 

requirements. 

5. The FRM of the Q-parameter, corresponding to the optimistic limit in the Q

parametrization formula, is expressed in terms of the frequency response matrices of 

the open-loop disturbance-deformation (G 11 ), and pseudoinverses of the control -

deformation (G 12) and disturbance- measurement (G22) paths: 

Q(jw) = -G12 + (jw) · G 11 (jw) · G21 + (jw). 

6. The TFM of this ideal Q-parameter is expressed in terms of the direct and adjoint 

operators ofGtt. Gn, and G21: 

Q = -(Gt; ·Gt2r ·Gt-2 ·Gtt ·G;t · (G2t ·G2-1r · 

Adjoint operators are guaranteed to have anticausal components, thus the ideal Q

parameter always contains two components: a stable one Q+, and an antistable one Q.: 

That is why the ideal Q-parameter leads to an optimistic limit of deformation 

suppression, which is always better (less) than the actual limit. 

7. It is not possible to estimate the difference between the optimistic and actual limits for 

deformation suppression without evaluating both limits. However it is always possible 

to treat this difference in a statistical sense on large enough sets of possible actuator 

and sensor mappings. This allows the estimation of the difference with a certain 

probability, that may be acceptable in many real-life cases. 
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8. Information on the external disturbance spectrum, as well as on the flexible structure 

model errors, is added to the four-block problem as weighting matrices, by means of 

the standard mixed sensitivity formulation. This leads to increased system dimensions 

and hence to increased computational expenses. 
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3 MAPPING OPTIMIZATION WITH H_ PERFORMANCE INDEX 

3.1 General Concepts 

According to Chapter 1 of this study, a procedure for actuator and sensor mapping 

optimization involves evaluation of the lower limit of deformation suppression in a flotible 

structure within a mapping search loop. As was demonstrated in sections 2.2 and 2.3, for a 

particular mapping it requires to compute either the optimistic lower limit (2.22), or the 

actual lower limit (2.16) for the four-block problem (see Figure 3.1 for the system 

description). 

Computational procedures for the optimistic and the actual lower limits can be 

characterized by the following factors: 

1. to tal CO mputatio nal co st; 

2. amount of reusable computations; 

3. computer storage needs; 

4. variability of computational cost; 

5. ease of parallelization. 

Factors 1-3 are equally important for the serial and parallel computational schemes, while 

the factors 4 and 5 enter the picture only with parallel computations. Property 4 

(variability of the computational cost) depends on the particular problem, especially on the 

particular mapping. Because mapping optimization is usually conducted over a large set of 

possible mappings, this property is more naturally treated as a random variable 
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Figure 3.1. The four-block H. design problem (a) and description of the plant (flexible 

structure) in that problem (b) 
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described by the standard statistical properties, such as the mean, minimum and maximum 

values, standard deviation, and probability function. 

Because the efficiency of a search strategy depends crucially on these properties, 

the properties of the two lower limits are considered first (Sections 3.2 and 3.3), and 

appropriate search schemes are proposed later. 

3.2 Computational Properties of the Actual Lower Limit 

The actual lower limit of deformation suppression (2.16) is computed by means of 

the conventional //_ design tools. Currently the most popular method to solve the four-

block H_ design problem is the y-iteration based on the two-Riccati-equation algorithm 

(see Green and Limebeer, 1995, Zhou, Doyle and Glover, 1995). This algorithm is used, 

for instance, in the Robust Control Toolbox of Matlab (procedures hinf, hinfopt). The 

y-iteration is based on the following concept: 

If the inverse of an unknown performance index is defined as y*, i.e. 

(3.1) 

then it is possible to construct a procedure that can verify if a test value ytts is smaller or 

larger than y*. The flowchart for this procedure, known as the two-Riccati-equation 

algorithm is depicted in the Figure 3.2. This is exactly how the hinf procedure of Matlab 

works. 
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It is always possible to approximate the actual value of y* with a desired accuracy 

by adjusting Yuai. For example, one can use the binary search (see Figure 3.3). This 

iterative search is usually referred to as the y-iteration method, and this is exactly how the 

procedure hinfopt of Matlab is designed. Note that the two-Riccati-equation algorithm 

(Figure 3.2) requires five evaluations of eigenvalues (and in two cases also eigenvectors) 

of large Hermitian matrices. The accuracy of the algorithm depends crucially on the 

threshold used to detect the eigenvalues with zero real parts. The accuracy of the results 

deteriorates rapidly as the order of the model state grows, meaning that the applicability of 

the method is limited to models with a few hundred states. 

An analysis of the flowchart in Figures 3.2 and 3.3 leads to the following 

conclusions: 

1. The computational cost of an //_ design is proportional to the cube of the number of 

states of the flexible structure model, i.e. it is approximated by O(mx^) flops - see 

Table 3.1. 

2. The 7-iteration algorithm has no obviously reusable parts. 

3. The required computer storage includes (a) storage for the initial state-space model 

matrices {ABCD}, and (b) intermediate storage for the Eliccati equation solver. The 

sizes of these two storage areas are proportional to the square of the number of 

states, i.e. they are approximated by O(mj^). 

4. The computational cost of a single y-iteration is not constant because the algorithm 

has at least three exit points (see Figure 3.3). Computational cost of each major 



component of the two-Riccati-equation algorithm (Figure 3.3) is not constant either, 

as it involves spectral decomposition of a Hermitian matrix, which itself is an iterative 

process with variable cost. Finally, the computational cost of the whole y-iteration 

algorithm is not constant because of the variations of the computational cost of the 

building y-iterations, and also because the number of iterations necessary to achieve 

the prescribed accuracy is not constant. Standard descriptive statistics of the 

experimental computational cost for several flexible structures is provided in Chapters 

4 through 6, demonstrating that the cost variations are moderate, at least for the 

considered problems. 

The parallelization of the y-iteration algorithm is possible only by parallel 

implementation of the Riccati equation solver, as proposed by Gardiner and Laub 

(1991), Rogers and Li (1993). Such a parallelization involves extensive 

communications between the computational nodes, hence its efficiency on networked 

cluster of nodes is much worse than on shared memory machines. Rogers and Laub 

(1993) tested their scheme on a hypercube architecture and found that a load equalizer 

utility is necessary to distribute the computational load evenly and achieve significant 

speedup. 
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Table 3.1. Computational cost of the actual lower limit (2.16) 

# Operation Matlab style code Rops estimate 

1 H _  design [  ]  = hinfopt(A,Bi,B2'^i>^2'-")  



Y test 

no 

yes 

no 

yes 

Solve the Riccati equation 

Form the l®* Riccati equation 
(the controUer equation) 

Form the 2*^ Riccati equation 
(the observer equation) 

Solve the 2 Riccati equation 

Figure 3.3. The two-Riccati-equation solver 
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3.3 Computational Properties of the Optimistic Lower Limit 

The computation of the optimistic lower limit (2.22) includes two steps. First, the 

frequency responses GU, Gu, G21 are computed from the state-space matrices, and, 

second, the optimistic lower limit (2.22) is computed from these frequency-responses. 

These two steps require operations to be performed for every frequency 0)i from a pre

defined set of frequencies {cOi}. There are two possible ways to organize this frequency 

sweep: 

• as a single sweep, which evaluates both the frequency responses Gii(/C0i), GuOox), 

GiiOoJi), and the partial optimistic lower limit /(cOi) at the current frequency Q\; 

• as two separate sweeps, one to compute and store in computer memory the frequency 

responses Gu, Gn, G21 for all the test frequencies {cOi}, and the second to evaluate the 

partial optimistic lower limits for the stored test frequencies. 

The second method with two separate sweeps requires more computer storage than the 

first one. However the first sweep is obviously a preparatory one. Therefore it can be 

isolated and made a one-time overhead if several mappings are to be evaluated. Hence 

only this case is considered further in connection with mapping optimization based on 

exhaustive search and genetic algorithms. 

The flowchart of the proposed algorithm for the optimistic lower limit is depicted 

in Figure 3.4. The following assumptions are made: 

(i) mu actuators and my sensors are to be placed in locations selected from Mo and My 

possible ones; the corresponding 'Targe" matrices A2'^2i'^z!'^i2'^2i'^22 
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are marked with the symbol "-" to distinguish them from the regular matrices 

standing for a particular mapping of actuators and sensors; the regular matrices 

G 12 ,G21 ,G22 are extracted from the "large" ones G12 ,G21 ,G22 depending on the 

true mapping of actuators and sensors; 

(ii) the number of frequencies for the frequency sweep is proportional to the model order 

mx, i.e. the dimension of the state matrix A; 

(iii) the number of possible locations of actuators and sensors, Mu and My, is proportional 

to the model order mx; 

(iv) the order of the disturbance vector, mw, as well as the order of deformation vector, mz., 

is proportional to the model order, mx (this is typical for models arising from finite-

element models); 

(v) the number of possible mappings, N, varies roughly by the factorial of Mu, mu, My, my; 

in the case of non-collocated actuators and sensors N is given by: 

N '- Nl 
N - em· . Cmy - " . Y • N N (3 2) 

- N. Ny - m '-(N -m ) Lm I.(N -m )1' mu << u• my<< y· 0 

u· u u. y· y y • 

In the case of collocated actuators and sensors, which are usually used because of 

improved overall stability (see Martin,1978; Safonov, Chiang, and Aashner, 1991) N 

becomes 

An analysis of the flowchart in Figure 3.4leads to the following conclusions: 



A 
C: DN 

^22. 

the I" frequency sweep 

"ll <^12 

Stage 1 ends 

Mapping parameters 

Extract the current model 

Computer storage 

<^12 

the Z"*" frequency sweep 

Evaluate the optimistic 
lower limit (2.22) 

L(^ i )  

Stage 2 ends 
f  =  s u p r ( f f l , )  

yes 

Figure 3.4. Algorithm for the computation of the optimistic lower Umit (2.22) 
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1- The computational cost of the optimistic lower limit, computed according to the 

flowchart in Figure 3.4, has a certain structure (see Table 3.2). The fu:st step of the 

algorithm costs about 0{m*), and the second step of the algorithm costs about Oint:d-

As is demonstrated below and in Table 3.3, it is the second step with the much smaller 

cost 0{m^, that actually implements Equation (2.22) as it stays inside the search loop. 

2. As proposed earlier, the "large" E^RM can be stored in computer 

memory, and the current "small" FRM Gi2,G2i,G22. corresponding to the tested 

mapping can be just extracted from the large ones. Hence the FRM 0^2 .^21 ,G22 are 

100% reusable. As the main portion of this cost, Le. the evaluation of the E^RM 

Gi2,G2i,G22, is represented by the term Oim*), this first step can be considered as a 

one-time overhead and moved out of the search loop. In the case when the optimistic 

lower limit is evaluated several (iVmai) times, the cost of this one-time overhead per 

evaluation of (2.22) is 0(rax'') divided through iVmai- As /Vmai grows by the factorial, i.e. 

much faster than the polynomial (9(mi'*), it is the cost of the second step (0(mx)) that 

will dominate the mapping optimization for sufficiently large models. This idea is 

clearly demonstrated by the computational cost estimates given in Table 3.3. 

3. Computer storage necessary to store the large matrices ^12,^21,622' ^ roughly 

estimated as 0{mx). 

4. Variations in the computational costs for each mapping evaluation can be assumed to 

be insignificant. The only source of such variations is the iterative nature of the two 
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SVD-s required for optimistic limit evaluation (see the Expression (2.22)). A sense of 

the computational cost variations for a simply supported beam problem is given in 

Chapters 4 and 5. 

5. The optimistic lower limit (2.22) is easily parallelized, as it is based on the frequency 

sweep. The latter allows to assign a computational node to a subset of test frequencies 

and perform evaluation and storage of a subset of "large" FRM G121^21,022^ 

extraction of the subset of "small" FRM 0^2 .G21,622. and evaluation of partial limits 

/(CO) on this node. 

3.4 Mapping Optimization with Exhaustive Search 

Let c  be the vector of location parameters, which encodes a mapping of actuators 

and sensors, and C^n is the full set of all possible mappings, which includes Nau mappings. 

The following algorithm performs straightforward mapping optimization, based on an 

exhaustive search procedure using the actual lower limit of deformation suppression. 
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Table 3.2. Computational cost of the optimistic lower limit (2.22) 

with the number of test frequencies m( proportional to the state order m* 

# Operation Matlab style code Hops estimate 

1.1 { jCOi  - l  -A) ' ^  Ematj = l/G'WiM-A) 

1.2 G-n =Ct 'Ematj *6, +Dii rain(mi,/nw)) 

1.3 
Gi2 =Ci 'Ematj *§2 +D12 0(mx"niin(mzAi)) 

1.4 
Gix i joJ- , )  G21 — C2 Ematj B.| +D21 min(iVy,/nw)) 

1 total 1.1.. 1.4 for mt =c mj, frequencies 

2.1 [Ui2.,] = svd(Gi2) 0(mj)  

2.2 V2I(M) [U21,.] = svd(G2i) 0{my^)  

2.3 IW tj = norm(Gii - (9(max(/n:,mw)^) 

2 total 2.1 ..2.3 for mt frequencies O(mx') 



Table 3.3. Comparison ol searcfi algoriilims based on the optimistic lower limit (2.22) and on the actual lower 

limit (2.16). Total A'um trials, A'l.cw updated mappings per iteration 

Search algorithm Optimistic lower limit (2.22) Actual lower limit (2.16) Search algorithm 

total flops flops per trial total flops flops per trial 

the first computed once s
' o

 
+

 

"
 

O(mx^) 

the first step computed 

every A'new trials 
c,,,,I N,,. 

\ new J 

fO(wi/) ^ 
• -fO(,«.) 

V "«• 
0(mx^)/Vu„i O(mx^) 
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Algorithm 1 (base exhaustive search). 

1. Evaluate the actual lower limit for all possible mappings ce Cau. 

2. Find the best mapping : 

^actual ^actual = min (c). (3.4) 

Estimated computational cost for this algorithm is 

Cost = • Cost^^, (3.5) 

where Costactuai is the computational cost of actual lower limit evaluated for one mapping. 

Unfortunately the optimistic lower limit cannot be used by itself to find the best 

mapping of actuators and sensors. An exhaustive search with the optimistic lower limit as 

its goal function 

^ optamiac ^ opnmaac^^ aptmuru:^ ^ optimisnc ' (3.6) 

will produce an optimal mapping , which does not have to be the same as . 

Hybrid Search Procedure 

Of course, one is more interested in the result produced by the optimization with 

the actual lower limit, which unfortunately comes at a huge computational cost. The two 

lower limits have to be combined in order to benefit from the low computational cost of 

the optimistic limit, and the accuracy of the actual limit procedures. 



63 

Assume that one has set a target of !target for the deformation suppression, i.e. it is 

desired to determine the best mapping of actuators and sensors c :ctual, which provides a 

closed-loop performance index of at least !target: 

.. - ( *)- . ( ) < 
tactual - tactual c - mm tactual c - t target ' 

ceCaJJ 
(3.7) 

Based on the properties .of the optimistic lower limit (2.22), any mapping c whose 

optimistic limit exceeds the target limit, i.e. 

!optimistic( C) > !target , 

can be safely discarded, as it is guaranteed that the actual limit will be also over the target 

limit: 

factual( C) ;::: !optimistic( C) > !target · 

Hence only the mappings with optimistic lower limits less than the target limit are good 

candidates, and it makes sense to test for the actual lower limit on this mappings only. 

This suggests the following mapping optimization algorithm based on exhaustive search. 

Algorithm 2 (improved exhaustive search). 

1. Evaluate the optimistic lower limit for all (Nau) possible mappings CE Cau-

2. Discard the mappings with the optimistic lower limit over the target limit, i.e. 

!optimistic( C) > ftarget , (3.8) 

This leaves a subset of mappings, Coptimistic(ttarget), with Noptimistic(trarget) mappings, 

which depend on the selection of ftarget· 

3. Evaluate the actual lower limit for all mappings in the subset Coptimistic. and fmd 

the best one, 
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(3.9) 

A designer could be optimistic when setting the target, since he would have no 

advance knowledge about the limits of deformation suppression before the mapping 

optimization is performed. The optimal mapping c • found by the Algorithm 2 is 

guaranteed to be the best possible mapping in the full set Cau, only if it satisfies the target 

limit requirement (3.7). The reason is that if the target is set to a value less than the 

optimistic limit for the mapping c:zual (3.4), 

this mapping will be discarded at Step 2 of Algorithm 2. Hence Step 3 of the algorithm 

will just find the best mapping of what is left in the subset Coptimistic(trarger). This is one of 

the hidden caveats associated with the target selection. 

Computational savings provided by this algorithm versus Equation (3.4) depend on 

the selection of the target and on the properties of the optimistic lower limit for the 

problem considered. These ~avings can be estimated as 

. N.u· Costoptimisric + N optimistic(ttarger) · CostaclWll Noptimislic(ttarget) 
Savmgs """ 1- """ 1- N . (3.10) 

N au · Cost aczual a11 

Also the speedup of Algorithm 2 is roughly estimated as 

S d 
N a11 • Cost actual N a11 

pee up= """ 
N all · Cost optimi.rtic + N optimistic ( t target ) · Cost actual N optimistic ( t target ) 

(3.11) 

In order to improve Algorithm 2 further, it is necessary to come up with some 

strategy for the assignment of the target limit, which does not require to solve Equation 
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(3.4).It is also necessary to predict the possible difference between the actual and 

optimistic lower limits for the same mapping. A statistical analysis of the relative 

difference between the optimistic and the actual lower limits is one way to do this. The 

procedure is described below. 

Definition 3.1. The relative difference between the optimistic and the actual lower 

limit of deformation suppression, x(c), is defined in the following 

way: 

f 
j c ( c )=  —1>0 .  (3 .12 )  

^ optimisnc (c) 

Thus the following formula is correct: 

= ^op,x„^(c)-(l + 4c)). (3.13) 

It is assumed that the reasons for the limits to be different are unknown (although 

in reality they are deterministic). Hence for a sufficiently large set of possible mappings the 

relative difference x can be treated as a random variable with certain statistical properties. 

If one knows the function P{x) that defines the probability that the relative difference 

between the optimistic and actual limits for a given mapping is less than or equal to x, and 

its inverse function x{P), then there are exactly Na = l^airP{a) mappings such that x{c)<a. 

In other words, there are exactly Na mappings such that 

^actual ( c )  ~ ^optxmisric (C) ( l  +  f l ) ,  

and Mail -Na mappings with 

^actual ( c ) >  ̂ opamistic (C) ( l  +  f l ) .  
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The following statements are then valid. 

1. With confidence P = P{x)  there is at least one mapping with the following actual lower 

limit: 

^  nrru t j l  (C)  ~ ^Optimistic [ l  +  x iP) ) .  

Hence one can pick the target limit value of 

^target ( P )  ~ ^optimistic 

and with confidence P the search based on Algorithm 1 will not miss the best mapping 

 ̂actuoi ' 

2. With confidence P the actual lower limit is larger than the following value: 

^actual (c)>  ̂  opti/nistic ( c ) ( l  +  x ( l -P ) ) .  

With this in mind, the following statistically improved search algorithm was constructed. 

Algorithm 3 (statistically improved exhaustive search). 

1. Evaluate the optimistic lower limit for all possible mappings c&Cjn, total Naii 

mappings. 

2. Find ±e best optimistic lower limit as 

Cprunistic = (c) • (3.14) 

3. Evaluate the actual lower limit for N,ample randomly selected mappings, and 

approximate  the  p robabi l i ty  func t ion  P(x)  and  i t s  inverse  x{P) .  

4. Set the target limit with confidence Pi: 
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(/"l ) = t'opiun:^ " + ^^1 )) - (3- 15) 

5. Discard all mappings with optimistic lower limit over the following value (the 

opt imis t i c  t a rge t  wi th  conf idence  (P i ,  P2)) :  

_ . H-.t(Pi) 
^oprimisiic ^ ^aptimisnc uxrget' ' 1' ' 2 I + JC(1 — /^ ) ^ ^ _ p ^ ' 

which leaves a subset of possible mappings CoptimutidPi, Pi) with 

}^cpum,st^{P\, Pz) mappings. 

6. Evaluate the actual lower limit for all mappings in the subset CoptimtsudPu Pi), 

and find the best one, 

t '  = t^^{c ' )=  min f^(c). (3.17) 

By setting Pi=l one guarantees that the target limit will be satisfied, but only by setting Pi 

= P2 = 1 one can guarantee that the mapping with the best actual lower limit c^raoi ^ 

found. The accuracy of this statement depends on the accuracy of the probability function 

estimate obtained with N^ampu tests at Step 2. 

The computational savings and the speedup provided by the statistically improved 

exhaustive search (Algorithm 3) are slightly different from Expressions (3.10) and (3.11) 

in that they have to include the cost of N^oinpte samples.: 

^ all optmistK ^ ^ uonpU ^ optimbxic jP^ ,  P , ) )  •  Cos t^  

(3.18) 

Savings = 1 - • ., ^ 
^aU ' actual 

, ^ sampU ^ optimtsac 
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_ T ^ aU ' Speedup = 
l^all • Cost+if^«unpU + ^of^unc ( ̂ 1 . ̂2 )) " COSt^^ ^ sa^ pn. 

^oa 

^sampU •'" ^oplaniiac ( ' ̂ 2 ) 

The improvement is achieved by reducing number of mappings NoptunMciPi, Pi) in the 

subset Coptimistic(.P 11 Pi)-

3.5 Mapping Optimization with Genetic Algorithm 

In real life a flexible structure may be so complex, and the number of possible 

mappings so big, that computer limitations would not allow one to use the exhaustive 

search, as proposed above. In such instances one should turn to alternatives of the 

exhaustive search. One possible alternative provide genetic algorithms (GA). 

The concept of GA as a search technique based on mimicking Darwin evolutionary 

process was introduced by John Holland in 1975 (see Holland, 1975). Being mainly 

empirical technique, GAs rely heavily on computational power of the environment they are 

run in. Back in 1970s-80s computers lacked that power, and the active research and 

development of feasible implementations of GAs were delayed until late 1980s. It is not 

easy to mention every researcher who contributed to the evolution of GAs into useful 

practical tool, but some major contributors are Davis (1991), Goldberg (1989), 

Michalewicz (1996), Syswerda (1989). Several successful computer implementations of 

GAs were developed and penetrated die practical application area, e.g. GENITOR 
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(Whitley, 1988) and PGAPACK based on aC++ (Levine, 1995), GEATbx for Matlab 

(Pohlheim, 1996), GENESIS in LISP (John Grefensiette, see Davis, 1991). GAs are 

currently considered as a powerfiil approach within the area of evolutionary computing 

(Michalewicz, 1996; Back, 1996). 

The main concept. 

Assume that it is necessary to minimize a function/(.ri,..., JTO) of several integer parameters 

(Le. a goal function), with parameters constrained in certain ranges. GA treats each point 

in the corresponding subspace of parameters as an individual, described by its unique 

genotype { JCi,..., Xn }, and possibly non-unique phenotype (value of the goal function). 

Each individual is represented in GA by its chromosome, i.e. the binary string constructed 

from m-bit binary representations of the parameters ,ti.. Xa with leading zeros, glued 

together (for example see Figure 3.5). A GA always operates on a set of individuals 

existing simultaneously (population). Each individual in the populations has a fitness value 

reflecting how good is it compared to the others. 

In short, a standard sequence of events in a GA is the following. 

1. Create initial population including M individuals (initialization can be partially random, 

some known good individuals can be inserted in the initial population deliberately to 

boost the evolution speed). 

2. Evaluate the population fitness (see subsection "Fitness evaluation" below). 
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Binary chromosome 

(*1)10=3 (^2)10=7 (-*3)10=15 
^ ^ ^ 

(*1)2=0011 (*2)2=0111 (;C3)2=1111 

1 
0011 0111 0111 

assuming 0 < ( Aj)io^ 15 

Figure 3.5. Construction of a binary chromosome 
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3. Construct children, Le. new individuals (or rather their chromosomes) from the 

genetic material existing in the population. Children are constructed by means of 

operators from selected parents. See subsections "Operators" and "Parents selection" 

below. 

4. Construct a new generation either by replacing the parents with their children {the 

generational replacement), possibly preserving the best parents (the elitist strategy), 

or make the children and parents compete and erase the N worst individuals (the 

survival of the fittests and the steady-state reproduction, see Syswerda, 1989; 

Whitley, 1988). Eliminate duplicate chromosomes from the population, or leave as it is 

(the overhead required for steady-state population without duplicates is usually 

justified by real-life demands, as fitness evaluation is usually the most time and effort 

consuming part of the GA, see Goldberg and Richardson, 1987; Deb and Goldberg, 

1989; Davis, 1991). 

5. Repeat from the Step 2, until termination criterion is satisfied (usually it is the 

population uniformity test based on the genotype and the phenotype comparison; 

sometimes it is a limit on the number of generations). 

Evolutionary pressure is exerted through (a) elitist strategy (b) survival of the fittest and 

(c) increased reproductive ability of the fittest parents through the parent selection 

mechanism. 
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Parent selection 

When selecting parents, one usually wants to give priority to the parents which 

have better fitness. The easiest method is a roulette wheel where each individual has a 

chance to be selected with a probability proportional to its fitness. Another rule a random 

tournament (see Davis, 1991). 

Fitness evaluation 

The basic methods used for computing the individual fitness are listed below. A 

number of less common methods and their detailed discussion is available fi"om Baker 

(1989) and Michalewicz (1996). 

1. Evaluation is fitness: i.e. value of the goal function is assigned as the fitness 

value. 

2. Windowing (first time implemented in GENESIS): find the minimum evaluation 

in the population, and apply the formula: 

Qtness(chromosome) = evaluation(chroraosome) - minimum. 

More elaborate modifications of this approach were used by some researchers 

(Davis, 1991). 

3. Linear normalization: order chromosomes by decreasing evaluation (goal 

function), assign fimess starting with some constant value (the best 

chromosome gets the highest fitness) and decrease linearly (the constant value 

and the decrement are parameters of the method). 
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4. Nonlinear normalization: similar to the linear normalization, but the fitness is a 

non-linearly decreasing function. 

5. Fitness with history: fitness is evaluated according to any of the given 

techniques, but it is increased if the individual already produced any good 

children. 

Operators 

The simplest operators for binary chromosomes are the mutation and one-point 

crossover (Figure 3.6). The one-point crossover is actually borrowed fi'om nature, it was 

introduced by Davis (1975). The two-point crossover (Figure 3.6(c)) as well as more 

general multi-point crossovers have no analog in nature. 

Many GA practitioners claim that if the crossover operators are eliminated firom 

the reproduction mechanism, resulting algorithm is no more a GA. The crossover (or the 

sexual reproduction) allows rapid combination of beneficial new traits in a way that cannot 

be duplicated by mutation. Crossover works like combining building blocks of good 

solutions from diverse chromosomes. According to Holland (1975), each building block is 

"schema". GA manipulates schemata when it runs. This is asserted by the principal 

theoretical result, explaining successful functioning of GA as a search algorithm, i.e. the 

ioWomiig Holland's Schema TTieorem (Holland, 1975^: 

Let r be average fitness of all chromosomes in the population containing S 

schema. Let« be the number of chromosomes in the population containing 

S. Let a be the average fitness of all chromosomes in the population. Then 
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expected number of occurrences of 5 n the next generation of the 

population is 

nr 
disruptions caused by mutation and crossover. 

a 

Because there always exist schemata that cannot be created from the given 

population using one and two-point crossovers, Syswerda (1989) suggested to use the 

uniform crossover, or creep, where each bit of the kid is borrowed randomly from one of 

the parents. It has been found that uniform crossover with generational replacement and 

allowed duplicates is inferior to one- and two-point crossover algorithms (Davis, 1989), 

probably because the uniform crossover can do a great deal of violence to what is good 

on a chromcsorae. 

Another imponant issue is the operation selection. Davis (1991) suggests to 

manipulate the probability of calling each operator during the GA run. One can assign 

fitness to every operator used in the GA, and select operators based on the same 

mechanism as used for parent selection (fitness-based roulette, tournament). Operator 

selection is considered adaptive, if the fltness is manipulated based on the history of 

success of operators (an operator is considered successful in a generation n if it created a 

kid which was better than the best parent). It is possible also to change the fitness 

according to a predefined schedule (e.g. more crossovers in the beginning, more mutations 

in the end), the approach is usually called interpolated selection. 

Because a binary GA is very inefificient when fine-tuning the optimum point in the 

end of run, it is usefW either to include gradient-based search, or local mutations. Local 
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binary mutations can be created using Gray code and limiting the number of mutating bits 

(Shaffer et al, 1989; Cellier, 1991). 

Finally, it is possible to either to use only one operator from the list of operators 

when generating kids (crossover, mutation), or first mutate and then after apply crossover 

to generate kids. The second approach is considered more classical, while the former one 

allows more aggressive search at the beginning and better preservation of good schema in 

the end of the G A run. 

According to Holland (1975), GA has intrinsic parallelism, i.e. GA is 

manipulating a large number of schema (chromosomes of individuals) in parallel. The 

reproduction mechanism together with crossover make the best schema proliferate in the 

population, while mutations provide necessary diversity of the population. The power of 

this parallelism is unleashed in massively parallel computational environment, provided by 

shared memory multiprocessor machines, and large networked clusters (see PGAPACK by 

Levine, 1995, and also the GA realization proposed in this study. Section 3.6 and 

Appendix C). 
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Mutation 

Parent Mutated parent .,.-§.:-·; __ ___., .,.. 
mutating bit mutated bit 

(a) 

One-point crossover 

Parents Children 

(b) 

Two-point crossover 

Parents Children 

Crossover points 
(c) 

Figure 3.6. Crossover and mutation operators: (a) mutation; (b) one-point crossover; 

(c) two-point crossover 
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According to Davis (1991), a GA implementing the generational replacement with 

elitism and linear normalization is considered a classical, or traditional GA. This approach 

was adopted as background for se for the following base genetic algorithm, which is 

intended to replace the base exhaustive search with actual lower limit (Algorithm 1), as 

defmed by the expression (3.4). 

Algorithm 4 (base genetic algorithm). 

1. Construct the initial population by randomly selecting Npcpuiation mappings 

{c]population- Evaluate the population using the actual lower limit as the goal 

function, assign fitness etc. 

2. Create a set of children {c}chiidren- Evaluate the goal function, assign the fitness, 

insert the children into the population. 

3. Return to the step 2 if the termination criteria are not satisfied. 

The flow of this algorithm is principally the same as that of Algorithm 1: huge 

computational cost. 

This algorithm can also be improved by introducing the optimistic lower limit and 

the statistical description of the relative difference between the actual and optimistic lower 

limits. One possible realization of the statistically improved GA is described in the 

flowchart in Figure 3.7 and in Table 3.4, in general it follows the recommendations 

provided by Davis (1991). Because this algorithm exploits the ideas of the statistical 

improvement developed in the Section 3.4, it has many common features with 
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Algorithm 3. Steps 1-4 of Algorithm 3 are performed at the stage of initial population 

seeding of the statistically improved GA. Then Steps 2-4 are reiterated after every 

generation update during the GA execution. The speedup achieved with this GA is better 

or equal to that of the base GA (Algorithm 4), while the probability of finding the best 

mapping is less than or equal to that of the base GA The difference between the two GAs 

depends on the properties of the GA and of the flexible structure modeL 

Algorithm 5 (statistically improved genetic algorithm). 

1. Construct the initial population by randomly selecting N popula1ion mappings 

{c }populalion· Evaluate both the actual lower limit and the optimistic lower limit for 

all members of the initial population. Assign fi.tnesses based on the actual lower 

limit. Estimate statistical properties of the relative difference x(P), with P(x) 

based on the initial population. Assign the current optimistic target as in (3.16), 

i.e. 

. 1 + x( ~ ) 
t curwu oprimilric ltugtl (PI ' p2 ) = m m t optimistic (c) . __ ___;_....:....:...__ 

ce(cJ,.,..,... 1 + x(l - P2 ) 
(3.20) 

2. Create a set of children { c} children from the individuals in the current population, 

using the parent selection, operators, and operator selection criteria defined in 

Table 3.4. 

3. Evaluate the optimistic lower limit for all children. 

4. Evaluate the actual lower limit for children which meet the condition 

t optimistic (C) ~ t currem optimistic lllrgtl ( ~ ' p2 ) ' (3.21) 
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and assign the actual lower limit as 

for the rest of the children (i.e. for the mappings that do not meet condition 

(3.21) above). 

5. Assign the fitness of the children based on the evaluated actual lower limit and 

insert the children in the population. 

6. Update the current optimistic target (3.20) based on the current population. 

7. Update the statistics x(P), P(x) by adding the new population members. 

8. Return to Step 2 if the termination criteria are not satisfied. 

Steps 6 and 7 are optional. Step 6 dynamically improves the accuracy of the target limit, 

but could also be left without updates. Step 7 improves the estimated statistical properties, 

but it also makes the statistics biased toward the better mappings. Thus it adds to the 

evolutionary pressure and may lead to premature convergence to a local minimum. 

It is difficult to estimate the speedup of Algorithm 5 over Algorithm 4. The only 

way is to run a series of experiments and analyze statistics of the runs. 
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Table 3.4. Properties of the Genetic Algorithm. 

Property Value or setting 

Coding Simple binary (fixed-length single chromosome) 

Generation update scheme 1. A constant pool size. 

2. The fittest among the parents and children survives. 

3. The duplicate genotypes are allowed. 

4. A population roster is maintained to avoid the goal 

function re-evaluation 

Children reproduction rate 1/3 of the population size. 

Operator selection scheme A roulette wheel based on the fitness. 

Operator fitness The operator fitness is adapted according to the pre

defined rules (a linear change). 

Parents selection scheme A roulette based on the fitness. 

Individual fitness Simple ranking and linear fitness/or distinct genotypes 

only. 

Operators used 1. A far (large) binary mutation. 

2. A Gray (near) binary mutation. 

3. A uniform binary crossover (creep). 

4. A one-point binary crossover. 

Termination criterion A predefined number of iterations. 



81 

GA part Problem-spec ifi c part 

I Randomly seed the population J .. 
Evaluate the optimistic lower limit .. 

Evaluate the actual lower limit l 
Create .. 

Estimate the probability function 
P(x) and the current target ltar~t 

Population 

I Evaluate the fi tness I. I Roster I 

• l 
I Produce the children 

+ 
Check the constraints 

I + 
Check out duplicates from 

the Roster 

I ~ 
Add 

I Evaluate the optimistic lower limit 

+ 
Compare with the target, penalize 

bad mappings 

I 
I ~ 

Update the 

I 
Evaluate the actual lower limit 

qxrators 
_+ 

Update the probability function P(x) 
and the current target ltargl!t 

_L 

:E 

I Insert kids in the population 
-,--

.. 
I Update the fitness I .. 
I Kill the worst individuals I 

I Figure 3.7. Diagram of the GA + 



82 

3.6 Parallel Realization of Search Algorithms 

The GA described above includes two separate blocks: "Evaluate the optimistic 

lower limit" and "Evaluate the actual lower limit", which contain the compute-intensive 

part of the population update (once per generation). In general each of these two blocks 

can evaluate from 0 to ^children max mappings (individuals, according to GA terminology), 

the evaluation of each individual being independent from the other mappings. Hence the 

computations in each of these two blocks can be organized in a parallel manner, when the 

evaluation of each individual is run in a separate execution branch, as is shown in Figure 

3.6 (b). If there are several CPUs available in the system, the parallel code will distribute 

the computational load over the available CPUs, resulting in certain speedup compared to 

the serial / single CPU version of the code. The exhaustive search algorithms, described in 

this chapter, can be parallelized in a similar fashion. 

There are several system mechanisms that can be used to implement the parallel 

code from Figure 3.8(b). In this study only one of those is considered: the Message-

Passing Protocol, or MPI (Gropp, Lusk, and Skjellum, 1994), a public domain software, 

which has become a de-facto standard that is implemented on the majority of operating 

systems. Although MPI represents a classical UNIX-style solution, it has also been ported 

to Windows NT 4.0, with a commercial version available from the MPI Software 

Technology Inc. (WWW link: http://www.erc.msstate.edu/mpi/mpiNT.html). 

Another possible implementation is multithreaded executaion, which was 

introduced recently for the popular operating systems, Windows NT/95, Solaris, AIX-4, 

http://www.erc.msstate.edu/mpi/mpiNT.html
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Linux (kernels 2.0.32 and higher). Parallelization based on multithreading is built into 

Matcom V3 (Matlab to C-H- compiler developed by Mathtools Inc., 1997) for the 

Windows NT 4.0 and Sun Solaris 2.6 operating systems. Any real speedup with 

multithreaded execution is possible only on systems with multiple CPUs. Unfortunately no 

systems of this kind were available to the author at the time this manuscript was compiled. 

Hence this option is left for fiiture research. 

For the problems considered in this study typical delays associated with data 

transfers between the main code and parallel branches constitutes a tiny fraction (less than 

0.01%) of the time spent in the execution branch, because only the optimization 

parameters (positions of actuators / sensors) are sent to parallel nodes, Le. 

communications are limited to only a few kilobytes per 5-10 minutes. This means that the 

data transfer delays should not contribute to the efficiency of the parallel implementation 

of the considered algorithms, and the performance of computer clusters should be similar 

to that of the shared-memory machines. Concrete implementation of these algorithms and 

experiments with different cases on single and multiprocessor machines are described in 

Chapters 4 through 6. 
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Figure 3.8. Serial (a) and parallel (b) organization of evaluation of the individuals 

in the GA 
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3.7 Major Results 

1. An analysis of the optimistic lower limit evaluation procedure indicates that the most 

of the computational cost is due to the evaluation of the FRMs for particular 

mappings. It is proposed to replace this step by (a) the evaluation of "large" FTlMs, 

including all possible locations of actuators and sensors (only once) moved out of the 

mapping optimization loop, and (b) the extraction of the FRMs, corresponding to an 

evaluated mapping from the 'large" F^RMs. 

2. An algorithm for the optimistic lower limit evaluation is proposed. An analysis of this 

algorithm suggests that it is internally parallel and renders itself easily to external 

parallelization by GA or exhaustive search. 

3. Performance of search algorithms discussed in this chapter is compared to the mapping 

optimization procedure based on exhaustive search with actual lower limit in the goal 

function (Algorithm 1). 

4. The improvement of Algorithm I is achieved by hybridizing the actual and optimistic 

lower limits (Algorithm 2). First the optimistic lower limit is computed for all possible 

mappings {Naii mappings), then a target limit {t,arget) is set for the mapping 

optimization, and Anally the actual lower limit is evaluated only for the mappings with 

the optimistic lower limit less or equal to the target limit {Nopt,mxsucUtarget) mappings). 

Estimated speedup is roughly equal to 
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5. Further improvement of the exhaustive search is proposed based on the statistical 

properties (probability function P{x)) of the relative difference between the actual and 

optimistic lower limits, defined as 

X = 1. 
^opnmisTic 

This statistical approach allows one to reduce the target limit to a certain safe margin 

with a specified confidence level to miss the best possible mapping. Thus the number 

of mappings for which the actual lower limit is evaluated can be reduced, and speedup 

increased. 

6. A GA is proposed for the mapping optimization, which includes estimation and 

dynamic update of the target limit and statistics Pix) of the relative difference x. This 

algorithm takes full advantage of the improvements proposed above for the exhaustive 

search, but allovs analysis of flexible structures and actuators / sensors with very large 

number of possbb mappings, when exhaustive search becomes prohibitive. 

7. Various approidies for parallel realization of the mapping optimization were 

considered. One ot" those, based on the Message Passing Protocol (MPI), is to be 

tested funher. 
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4 EXAMPLE 1; THE SIMPLY SUPPORTED BEAM 

4.1 Problem Description 

A model of simply supported beam with two collocated actuators and sensors (see 

Figure 4.1) was considered as a testbed for the mapping optimization algorithms 

developed in Chapters 2 and 3. The beam is deformed by forces, acting in the transverse 

direction, and only the deformations along this normal direction are considered 

(deformations, measurements). The beam is defined by a 30-node linear model obtained 

with the help of finite element software (ANSYS 5.4). The physical properties of the beam 

are listed in Table 4.1. 

Because of the anticipated limited bandwidth of the actuators, and the traditional 

strategy of limiting the controller bandwidth (minimizing the control action at high 

frequencies), the shaping weight function was selected as 

w(s) =|0.(X)022 .y + Il^ 

which guarantees -40 dB/decade roUoff for the closed-loop TFM of the disturbance-

deformation path at high frequencies (over 7(X) Hz). The upper bound of the frequency-

responses of the beam without control, and the weight function, are plotted in Figure 4.2. 

The layout of the eigenmodes of the beam model (eigenvalues of the state matrix 

A) plotted in Figure 4.3 indicates that it is necessary to increase damping of the most 

significant modes prior to using model order reduction techniques. Otherwise any model 

order reduction procedure will generate a low-order model of the beam which is very 



Table 4.1. Physical properties of the beam 

Diameter 10 ram 

Length 1000 mm 

Density 7.85l0^kg/m^ 

Young modulus 210^GPa 

Damping ratio 0.02 
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disturbance 

actuators / sensors 

deformation 

actuators / sensors 

Figure 4.1. Simply supported beam, 30 node model 

Response, rrvN 

weight 
response wnhout control 

Cydic frequency, rad^sec 

Figure 4.2. Beam response without control, and weight imposed as design specification 
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different from the actual model at some natural resonance frequencies, the difference 

(error) being of the same significance order as the limit of deformations suppression. The 

damping can be increased by a constant feedback controller with all available inputs and 

outputs (see Safonov, Chiang, Flashner, 1991). However the use of a full-dimensional 

controller does not fit into the configuration with two collocated actuators and sensors set 

above. Hence the model reduction option is dropped. 

Next the actual and optimistic lower limits of deformation suppression are 

evaluated for all possible mappings. Statistical data on the computational cost (Figures 

4.4, 4.5) indicates that the maximum variation is about ±10% and ±8% for the actual and 

optimistic Umits respectively, hence the mapping optimization can be easily parallelized 

without any load equalizing tools (Le. maximum idle time of a processor will be 10 %). 

An examination of the maps of the two limits (Figures 4.6, 4.7) reveals a certain 

correlation between the good and bad areas, predicted by the two limits, but the optimal 

mappings obtained with the actual and optimistic lower limits as goal functions are not 

exactly the same. 

A statistical analysis of the relative difference x between the actual and optimistic 

lower limits (Figure 4.8) demonstrates that this variable is distributed non-uniformly with a 

standard deviation. 
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Figure 4.4. Variation of the computational cost of the actual lower limit for the beam: 

(a) statistical distribution; (b) map of relative variations 
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Figure 4.5 . Variation of the computational cost of the optimistic lower limit for the 

beam: (a) statistical distribution; (b) map of relative variations 
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4.2 Exhaustive Search 

The optimistic lower limit versus the mapping number, sorted in ascending order, 

is plotted in Figure 4.9. The actual lower limit values, added to the same figure, offer a 

good sense on the spread and the typical upward shift of the actual limit relative to the 

opthiistic limit. Statistical data on the relative difference x is used to plot the upper and 

lower bounds and the expected value of the actual lower limit (see Figure 4.10) as 

^upper — ^optimistic 

•( L'WCNIIN)I 

^acpected ~ ̂ optimutic'i.^'^Xexpected)i 

Figures 4.11 and 4.12 demonstrate which mappings are discarded and what 

speedups can be expected with different confidence values for the target limit selection in 

the ilgorithm 3. 

Figures 4.13-4.20 demonstrate the statistical behavior of the mapping optimization 

witi Algorithm 3 depending on the confidence values for target limit selection, and on the 

acciracy of the estimate of the statistical relative difference (Le. on the number of 

sanples). To make the results statistically sound 1000 algorithm runs per each 

conbination of the algorithm parameters were used. As is evident from these figures, well-

estinated statistics results in consistent speedups and moderate deterioration of the 

opthization accuracy (accuracy loss up to 5-8 % with speedups increasing from 2-3 to 6-

7 tines). At the same time poorly estimated statistics results in larger accuracy 
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Figure 4.11. Computational cost reduction for the beam by (a) selecting the target with 
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bound with confidence 0.9 
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deterioration with very inconsistent speedup (accuracy loss of up to 20-30% with 

speedups in the range 1-20 without any clear attraction value). The main statistical 

properties of Algorithm 3 for the beam case are displayed in Tables 4.2 and 4.3. 

4.3 Search with Genetic Algorithm 

A simple Genetic Algorithm was constructed to validate Algorithm 5, discussed in 

the Chapter 3 (Figure 3.5, and Table 3.4). Binary coding used to encode the actuator / 

sensor location is explained in the Figure 4.21. Adaptation rules of the operator fitness are 

described in Figure 4.22. 

The statistical behavior of the Algorithms 4 and 5 (GA) was explored on large 

sample series (1000 runs) to estimate the influence of the population size (30 or 90 

individuals) and the target selection confidence (Pi and Pi in Equations (3.16), (3.17)) on 

speedup and search accuracy. This statistical behavior is demonstrated in Figures 4.24-

4.29, and the main statistical properties are tabulated in Tables 4.2 and 4.3. These results 

lead to the following conclusions. 

1. The search accuracy depends little on the population size (whether there are 30 

or 90 individuals, it does not matter). 

2. The search speedup is slighdy better with smaller population sizes. 

3. Lower confidence Pi combined with smaller population size results in very 

poor accuracy. This is probably caused by imprecise target prediction (after 
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Il l  

the optimistic limit evaluation step the best actual mapping is erroneously 

removed from the list of the individuals which are to be tested for the actual 

lower limit also. 

4. The smaller the confidence values (Pi and P2), the larger search speedup. 

5. Even with perfect confidence of P\ = P2 =1.0 there is a definite improvement 

over the base GA algorithm (1.5 - 1.8 times). 

4.4 Parallel Realization of Search 

The efficiency of the parallel realization of Algorithm 3 and Algorithm 5 was 

assessed on the basis of average speedups obtained on 1000 runs on the multiple CPU / 

parallel code configuration versus the single CPU / serial code (see Figures 4.29 - 4.31). 

The parts of those plots which correspond to the number of CPUs in the range 1-4 were 

obtained experimentally on an SGI Origin 2000 (IRIX operating system, native 32 bit C 

compiler). The parts of the plots which correspond to the number of CPUs larger than 4 

were obtained through multiprocessor code simulation in Matlab. Experimental and 

simulated results were found to be within 1% accuracy range. 

The general conclusion that can be drawn from Figures 4.29 - 4.31 is that speedup 

with exhaustive search is higher and scales better than speedup with GA. 
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Figure 4.23. The probability to find at least the 1st, 2nd, 3rd best mappings as a function 

of the iteration number for the statistically improved GA (Algorithm 5) 

(population 30, (a) Pi = 1.0, Pi = 1.0; (b) Pi = 0.8, Pz = 1.0) 
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Figure 4.24. Statistical analysis of speedup with statistically improved GA (Algorithm 5) 

compared to the base exhaustive search (Algorithm 1) (population 30, 

(a) P, = 1.0, Pi = I.O; (b) Pi = 0.8, P2 = 1.0) 
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Figure 4.25. Statistical analysis of speedup with statistically improved GA (Algorithm 5) 

compared to the base GA (Algorithm 4) (population 30, (a) Pi = 1.0, Pi = 1.0; 

(b) P, =0.8,P2= 1.0) 
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Table 4.2. Average speedup compared lo the base exhaustive search (Algorithm 1) for the beam 

Px. Pi Statisucally improved exhaustive 

scarch (Algorithm 3) 

Base GA (Algorithm 4) Statistically improved GA 

(Algorithm 5) 

Px. Pi 

Sample set 30 Sample set 90 Population 30 Population 90 Population 30 Population 90 

Px. Pi 

Average st.dev. 

(%) 

average si.dev. 

(%) 

average .si.dev. 

(%) 

average si.dev. 

(%) 

average st.dev. 

(%) 

Average si.dev. 

(%) 

P i "  1.0, PI = 1.0 1.7 2.9 1,5 1.3 5.8 15 3.0 6.8 10.6 17.0 4.8 7.0 

P, = l.Q.Pi = {).9 2.4 6.3 2.0 8.1 n/a n/a 12.2 18.0 5.2 9,0 

/>,» 1.0.P, = 0.8 3.2 25.0 2.4 8.1 n/a n/a 13.1 20.2 5.4 13.0 

Pi = 0.9, Pi = 1.0 1.8 5.2 1.7 2.5 n/a n/a 16.0 14.5 7.3 10,5 

/>, . 0.9. Pj - 0.9 3.0 39.5 2.4 9.6 n/a n/a 20.2 12.4 8.6 8.7 

Pi = 0.9, Pj = 0.8 4.0 42.0 3.1 13.4 n/a n/a 22.9 11.2 9.3 5.3 

P, = 0.8, Pj= 1.0 2.0 12.6 1.8 4.4 n/a n/a 17.3 20.0 7.8 11.9 

P, = 0.8, Pj = 0.9 3.4 43.2 2.9 15.5 n/a n/a 21.2 11.6 9.0 6.4 

P, = 0.8, Pi = 0.8 5.9 43,0 4.0 15.0 n/a n/a 23.7 8.0 9.6 5.3 



Table 4.3. Probability to find at least the first, the second, the third best mapping for the beam 

Pi. Pi Statistically improved exhaustive searcli 

(Algorithm 3) 

Base GA (Algorithm 4) Statistically improved GA (Algorithm 5) Pi. Pi 

Sample set 30 Sample set 90 Population 30 Population 90 Population 30 Population 90 

Pi. Pi 

1st 2n(l 3r(l 1st 2n(l 3rd Ist 2nd 3rd Ist 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd 

P, = 1.0. Pj = 1,0 1.0 1.0 1.0 1.0 1.0 1.0 0.86 0.95 0.99 0.99 1.0 1.0 0.86 0.89 0.98 0.94 1.0 1.0 

/>, = 1.0, Pi = 0.9 0.97 0.97 0.99 1.0 1.0 1.0 n/a n/a 0.59 0.64 0.85 0.9 0.95 1.0 

Pi = 1.0, Pj = 0.8 0.89 0.9 1.0 1.0 1.0 1,0 n/a n/a 0.33 0.64 0.85 0.71 0.77 0.93 

/>, = 0.9. Pi = 1.0 1.0 1.0 1.0 1.0 1.0 1.0 n/a n/a 0.04 0.13 0.72 0.12 0.34 0.86 

P, = 0.9, Pj = 0.9 0.92 0.93 0.99 1.0 1.0 1,0 n/a n/a 0.04 0.12 0.52 0.08 0.34 0.73 

P, - 0.9, Pj - 0.8 0.75 0.78 0.97 0.67 0.74 1.0 n/a n/a 0.02 0.14 0.23 0.12 0.45 0.59 

P, = 0.8.Pj= 1.0 1.0 1.0 1.0 1.0 1.0 1.0 n/a n/a 0.05 0.2 0.64 0.09 0.33 0.9 

P, = 0.8, Pj = 0.9 0.84 0.84 0.99 0.91 0.94 l.O n/a n/a 0.03 0.12 0.34 0.09 0.4 0.58 

Pi = 0.8, Pi = 0.8 0.3 0.43 0.93 0.34 0,5 1.0 n/a n/a 0.04 0.19 0.24 0.13 0.36 0.45 
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Figure 4.29. Average speedup in multiprocessor system with (a) statistically improved 

exhaustive search and (b) statistically improved GA 
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Figure 4.30. Average speedup in multiprocessor system: (a) statistically improved GA for 

the beam, population 30, probabilities P\= 1.0, Pi= 1.0; (b) Pi=0.8, Pi= 1.0, 

number of CPUs from 1 to 20, bottom to top 
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Figure 4.31. Average speedup in multiprocessor system: (a) statistically improved GA for 

the beam, population 90, probabilities P\= 1.0, ?!= 1.0; (b) P\= 0.8, Pi= 1.0, 

number of CPUs from 1 to 20, bottom to top 
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Speedup with GA saturates toward some limit, which depends on the number of 

children and size of the population used by the GA: the larger the number of children 

generated in each generation, the larger the number of parallel CPUs it takes to get to the 

saturation limit, and the higher the speedup limit. The speedup is not uniform through the 

course of the algorithms, it drops to very low values at the end of the process. This can be 

explained by the fact that the three built-in learning mechanisms (evolutionary mechanism, 

population roster, statistical improvement) teach the GA to spot good mappings very fast 

(a well-known property of GA). The number of mappings where the actual lower limit is 

to be evaluated declines from full population size at the beginning to 1-2 per generation in 

the end. Hence most of the parallel CPUs stay idle at the end of search. 

4.5 Major Results 

1. A statistically improved exhaustive search, proposed in the Chapter 3 (Algorithm 3), 

delivers consistent speedups of 6-7 with only minor loss of accuracy (5-8 %) 

compared to a straightforward exhaustive search with actual lower limit (Algorithm I) 

but only in presence of well-estimated statistics of the relative difference. Poorly 

estimated statistics result in sporadic speedups and poor optimization accuracy, 

although the maximum speedup values are larger. 



2. The computation of the actual and optimistic lower limits proves to have a very 

consistent cost (maximum variation about ±10%), meaning that the parallel realization 

of the search does not require any load equalizing tools. 

3. Genetic algorithms (GA) with a hybrid goal function provide excellent search 

accuracy, as well as a huge speedup over the basic exhaustive search, and a substantial 

speedup over G A with the actual lower limit (only) in the goal function. 

4. Parallel implementation of the exhaustive search algorithms provides speedup roughly 

proportional to the number of CPUs, and scales weU. The number of samples does not 

affect the speedup. 

5. Parallel implementation of GAs provides speedup as a nonlinear function of the 

number of CPUs, saturating toward certain speedup limits. This saturation limit 

depends on the size of population: the larger the population, the higher the saturation 

level. Learning mechanisms built into the GA (evolutionary mechanism, population 

roster, and statistical improvements) cause very fast reduction of speedup near the end 

of search process. Hence the GA search does not scale well. 
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EXAMPLE 2: UCLA LARGE SPACE STRUCTURE 

5.1 Problem Description 

This chapter examines a more realistic engineering problem, namely the Large 

Space Structure (LSS) of UCLA, which has been successfully used as a testbed for several 

control techniques (see Safonov, Chiang, ETashner, 1991). The LSS model used in this 

study was kindly provided by Professor M. Safonov of UCLA in the form of state-space 

matrices {A B C D} extracted from a large fuiite-eleraent model of the full-scale structure, 

obtained with the help of the NASTRAN software. The model consists of 58 vibrational 

modes with frequencies ranging from 0.4 to 477 Hz. The first two modes describe the 

rigid-body tilt about the x and y axis. The structure is controlled by 18 actuators 

embedded in structure's truss elements (Figure 5.1). Twelve disturbances act on the top 

and bottom of the structure. There are 20 sensors, of which the two most important are 

the line of sight (LOS) position sensors. The remaining 18 are rate sensors collocated with 

the control actuators. The four-block model of the structure in this case has the following 

inputs and outputs: 

w = 
disturbancei 

disturbance <^2 

, z = 

LOS^ 
LOS, 

position^ 

position^^ 

(5.1) 
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Figure 5.1. The Large Space Structure (UCLA) 
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t/ = 
actuator^ 

actuatori^ 

, Y = 

LOS, 

LOSy 

rate sensor^ (5.2) 

rate sensor^g 

The control objective in this case is to reduce the weighted rms output with 

feedback control using any three collocated actuators/sensors and the only two LOS 

sensors. A -40 dB/decade roll-off beyond the frequency 15 Hz is to be forced in order to 

avoid any high-frequency control action, which is technically impossible with the control 

actuators being used. Finally, it is necessary to take care of the total deformation of the 

LSS shape, because any algorithm which attenuates only the tip deflections measured by 

LOS sensors wiU ignore the shape deformations and cause huge mechanical stresses in the 

structure elements. 

In terras of the H_ control theory this means that the performance index is based 

on the weighted output lV(^) z(5), i.e. 

y =||>V(5) r^ U)||__, (5.3) 

Here the dynamic weighting matrix H^(5) was selected in the following way: 

W { s )  =  

I. 1 0 

0 
I 

0 
! Ilr 1 j position w 

V-

1 + -
2;r-15 

. (5.4) 

This selection of the weighting matrix W can be explained as follows. The static matrix 
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r h 1 0 

0 
1 IKOS-l. 

is necessary to increase the relative weight of the shape deformations compared to the 

open-loop "disturbance - LOS" path. The dynamic scaling factor 1 + -
1tc\5 

IS 

necessary to force the above-mentioned roll-off beyond the 15 Hz frequency. 

Because the LSS model has a strictly proper TFM {Du-Dti are zero matrices) the 

weighting matrix W{s) can be absorbed into the four-block model using the standard 

augmented system techniques (see Safonov, Chiang, Flashner, 1991). AH the subsequent 

computations were performed with this augmented model. The dimensions of the model, 

as it follows from the discussion above, are 

mx=l 16, mi=20, mv=\.2, Ny=20, my=5, = 18, /nu=3. (5.5) 

Because of the anticipated limited bandwidth of the actuators, and the traditional 

strategy of limiting the controller bandwidth, the shaping weight function was selected as 

w { s )  =|5/95 + l j" ,  

which guarantees -40 dB/decade rolloff for the closed-loop TFM of the disturbance-

deformation path at high frequencies (over 15 Hz). The upper bound of the frequency-

response of the beam without control, as well as the weight function, are plotted in Figure 

5.2. 
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An inspection of the layout of the LSS model eigenmodes (eigenvalues of the state 

matrix A), plotted in Figure 5.3, leads to the same conclusions about feasibility of order 

reduction of the model, as in the case of the simply supported beam (Chapter 4): it is 

necessary to use a full-dimensional static controller to increase the structure damping, but 

this is not possible with the three actuator / five sensor configuration. Hence the model 

reduction option is dropped. 

Each mapping of three actuators and five sensors (including the two LOS sensors) 

was coded by a vector with three integer components, sorted in ascending order; 

C = {Ci, C2, C3}, 1 <Ci <C2<C3<I8, 

with total of 1140 possible distinct mappings. 

The actual and optimistic lower limits of deformation suppression were evaluated 

for all possible mappings. The statistics of the computational cost (Figures 5.4, 5.5) 

indicates that the maximum variation is about 10-15% for both the actual and optimistic 

limits, hence the mapping optimization can be easily parallelized without any load 

equalizing tools (ma.vimura idle time of a computational node will be 10 %). 

A statistical analysis of the relative difference x between the actual and optimistic 

lower limits (figure 5.6) demonstrates that this variable is distributed nonuniformly with a 

quite large spread and standard deviation. 

There is quite a substantial number of actuator / sensor mappings which guarantee 

a good performance index, as shown by Figure 5.7. Some of these good mappings are 
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Figure 5.8. The four best mappings for the LSS 
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demonstrated in Figure 5.8. There are roughly seven mappings with performances of 

within 1%, about 15 mappings within 2%, and about 35 mappings within 5% of the 

absolutely best mapping. This hampers the performance of the GA, when applied to 

mapping optimization, but does not afifect the exhaustive search results, as will become 

obvious in the next sections. 

5.2 Exhaustive Search 

The optimistic lower limit versus the mapping number, sorted in ascending order, 

is plotted in Figure 5.9. The actual lower limit values, added to the same figure, give a 

good idea about the spread and the typical shift of the actual limit versus the optimistic 

limit. Figures 5.10 - 5.12 demonstrate which mappings are discarded and what speedups 

are expected with different confidence values for the target limit selection in Algorithm 3. 

The statistical properties of Algorithm 3 were explored for different confidence 

level for target limit selection, and with sampling sizes of 30 and 100 mappings to estimate 

a probability function of the relative difference between the actual and optimistic limits. In 

addition 1000 algorithm runs per each combination of the algorithm parameters were used 

to make the results statistically sound. The results of the statistical analysis are shown in 

Table 5.1 (speedup) and Table 5.2 (accuracy). As can be concluded from these figures, the 

size of sampling series is not very important for this problem. Consistently large speedups 

(6-9 times) and insignificant deterioration of the optimization accuracy (accuracy loss up 

to 1-2 %) are obtained with confidence settings of Pi = 0.3, Pi =1.0. 
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confidence Pi=O.S, and the lower bound with confidence P2=0.8 
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Figure 5.12. Computational cost reduction for the LSS by selecting the target with 
confidence Pi=0.1, and the lower bound with confidence ^2=0.7 



Table 5.1. Average speedup for ihe LSS compared to the base exhaustive search (Algorithm 1) 

Pu Pi Statistically improved exhau.stive 

search (Algorithm 3) 

Base GA (Algorithm 4) Statistically improved GA 

(Algorithm 5) 

Pu Pi 

Sample .SCI 30 Sample .set 90 Population 30 Population 90 Population 30 Population 90 

Pu Pi 

average .st.dev. 

(%) 

average .st.dev. 

(%) 

average .st.dev. 

(%) 

average st.dev. 

(%) 

average st.dev. 

(%) 

average st.dev. 

(%) 

Pi = 1.0, Pi = 1.0 1.1 25.2 1.0 4.6 5.3 17.1 2.8 21.8 5.3 17.2 2.6 22.0 

P, » 1.0. Pj = 0.9 1.2 28.2 1.0 5.3 n/a n/a 5.4 18.1 2.6 22.1 

p^= 1.0, Pj = 0.8 1.2 29.1 1.0 7.9 n/a n/a 5.4 17.0 2.6 22.1 

P, = 0.9. Pi= 1.0 2.0 21.0 1.8 10.1 n/a n/a 12.3 88.5 6,8 76,1 

P, = 0.9. P, = 0.9 2.1 70.5 1.9 10.0 n/a n/a 9.2 18.5 4.4 22.5 

P, = 0.9, P, = 0.8 2.1 21.3 1.9 10.4 n/a n/a 10.0 40.4 4.5 22.5 

P, = 0.8. Pi= 1.0 2.7 19.1 2.3 9.2 n/a n/a 12.5 72.4 7.0 69.6 

P, - 0.8. Pi = 0.9 2.8 19.7 2.4 8.4 n/a n/a 11.0 18.8 5.1 22.7 

P, = 0.8, Pi = 0.8 2.9 21.2 2.5 8.2 n/a n/a 11.6 18.8 5.2 22.6 

P, -0.3, Pj = 1.0 9,4 40.1 6.0 15.5 n/a n/a 19.0 57.7 10.9 49.6 

VO 



Tabic !).2. Probability to find a mapping with performance within 1%, 2%, and 5% of the absolutely best mapping for the LSS 

Pu Suilislically improved cxhausUvc 

search (Algorithm 

Base GA (Algorithm 4) StaiisUcally improved GA (Algorithm S) Pu 

Sample set 30 Sample .set 90 Population 30 Population 90 Population 30 Population 90 

Pu 

1% 2% 5% 1% 2% 5% 1% 2% 5% 1% 2% 5% 1% 2% 5% 1% 2% 5% 

P, = \.0.P2= 1.0 1.0 1.0 1.0 1.0 1.0 1,0 0,78 0,96 1,0 0.94 1.0 1.0 0.76 0.95 1.0 0.97 1.0 1.0 

P, = 1.0,^2 = 0.9 1.0 1.0 1.0 1.0 1.0 1,0 ii/a n/a 0.77 0.95 1.0 0.97 1.0 1.0 

= 1.0, Pj = 0.8 1.0 1.0 1.0 1.0 1.0 1,0 n/a n/a 0.79 0.94 1.0 0.96 1.0 1.0 

/>,-0,9./», = I.O 1.0 1.0 1.0 1.0 1.0 1,0 n/a n/a 0.76 0.90 1.0 0.88 0.98 1.0 

/>, . 0.9. Pi - 0.9 1.0 1.0 1.0 1.0 1,0 1,0 n/a n/a 0.79 0.96 1.0 1.0 1.0 1.0 

Pt - 0.9. P, = 0.8 1.0 1.0 1.0 1.0 1.0 1,0 n/a n/a 0,77 0.95 1.0 0.98 1.0 1.0 

P, = 0.8. P2= 1.0 1.0 1.0 1.0 1.0 1,0 1,0 n/a n/a 0.78 0.92 0.97 0.88 0.93 0.99 

/>, = O.K. Pj = o.«; 1.0 1.0 1.0 1.0 1.0 1,0 n/a n/a 0.78 0.95 1.0 0.97 1.0 1.0 

p, = 0.8. Pi = 0.8 1.0 1.0 1.0 1.0 1.0 1,0 n/a n/a 0.82 0.96 1.0 0.99 1.0 1.0 

Pi » 0.3, Pi = 1.0 0.98 0.99 1.0 1.0 1,0 1.0 n/a n/a 0.70 0.84 0.95 0.65 0,82 0.96 
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5.3 Search with Genetic Algorithm 

The GA was constructed based on Algorithm 5. The binary coding used to encode 

the actuator / sensor location is explained in Figure 5.13. Adaptation rules of operator 

fitness are the same as in the case of simply supported beam (see Figure 4.22). 

The statistical behavior of this GA was explored on large sample series (1000 runs) 

to estimate the influence of the population size (30 or 90 individuals) and target selection 

confidence (probabilities P\ and Pi in the Equation (3.16), (3.17)) on the speedup and 

search accuracy. The main statistical properties are shown in Tables 5.1 (speedup) and 

Table 5.2 (search accuracy). These lead to the following conclusions. 

1. The search accuracy is better with the larger population size (90 individuals), 

smaller confidence P\ and larger confidence P^. 

2. The search speedup improves with smaller population size, but the smaller 

population size results in an unacceptable deterioration of the search accuracy. 

3. The best compromise between the speedup and accuracy is achieved with the 

population size of 30, and confidence Pi = 0.3, P2 =1.0. 

4. GA with statistical improvements (Algorithm 5) is definitely faster than the 

base GA (Algorithm 4), with improvements of 2-4 fold. 

5. For this particular problem the GA cannot provide any significant improvement 

over Algorithm 3 (statistically improved exhaustive search) while maintaining 

equal search accuracy. 
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GA coding (chroraosorae): (nuraber)2 01 00000000000 

Bits 1..13 

Goal function coding : (number)ig ABC 

(10)io+l 
(ll)io+l (12)io+l 

Actuatori (1..18) Actuator: (1..18) Actuators (1..18) 

Figure 5.13. The actuator / sensor position coding for the LSS 
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5.4 Parallel Realization of Search 

As in previous case, the efficiency of the parallel realization of Algorithm 3 and 

Algorithm 5 was characterized by the average speedups obtained over 1000 runs on a 

multiple CPU / parallel code configuration versus the single CPU / serial code (see Figures 

5.14 - 5.16). The portions of those plots which correspond to the number of CPUs in the 

range 1-4 were obtained experimentally on the SGI Origin 2000 (IRK operating system, 

native 32 bit C compiler). The portions of the plots which correspond to the number of 

CPUs larger than 4 were obtained through multiprocessor code simulation in Matlab. 

Experimental and simulated results were found to be within 1% accuracy range. 

As can be noticed from the curves, the speedup obtained with parallel realization 

exhibits the same properties as those already observed for the simply supported beam 

problem in Section 4. The speedup with exhaustive search is larger and scales better than 

in the case of GA. 

Speedup with GA saturates toward some limit, which depends on the number of 

children and size of the population used by the GA: the larger the number of children 

generated in each generation, the larger the number of parallel CPUs it takes to get to the 

saturation limit, and the higher the speedup limit. The speedup is not uniform through the 

course of the algorithms, it drops to very low values at the end of the process. This can be 

explained by the fact that the three built-in learning mechanisms (evolutionary mechanism, 

population roster, statistical improvement) teach the GA to spot good mappings very fast 



144 

30 samples, P1=P2=1.0 
30 samples, P1=0.3. P2=1.0 
90 samples. P1=P2=1.0 
90 saunples, P1=0.3. P2=1.0 

8 10 12 14 
Number of CPUs 

14 

30 individuals, P1=P2=1 0 
30 indlMduals. P 1=0.3, P2=1.0 
90 individuals, P1=P2=1.0 
90 Indivduals, P 1=0.3, P2=1.0 

12 

10 

a. 
8 

6 

4 

2 

2 8 12 16 6 10 18 20 4 14 
Number of CPUs 

(b) 

Figure 5.14. The average speedup in multiprocessor system with (a) statistically improved 

exhaustive search; (b) statistically improved GA 
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Figure 5.15. Average speedup in multiprocessor system: (a) statistically improved GA for 

the LSS, population 30, probabilities Pt= 1.0, P2= 1.0; (b) P,= 0.3, P2= 1.0, 
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Figure 5.16. Average speedup in multiprocessor system: (a) statistically improved GA for 

the LSS, population 90, probabilities P\= 1.0, Pz= 1.0; (b) P\= 0.3, P2= 10, 

number of CPUs from 1 to 20, bottom to top 
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(a well-known property of GA). The number of mappings where the actual lower limit is 

to be evaluated declines from full population size at the beginning to 1-2 per generation in 

the end. Hence most of the parallel CPUs stay idle at the end of search. It turns out that 

the exhaustive search algorithm has more predictable properties and is preferable for both 

serial and parallel architectures. 

5.5 Major Results 

The statistical behavior of the search techniques from Chapter 3, applied to the LSS, 

leads to the following conclusions: 

1. A statistically improved exhaustive search delivers consistent speedups of 6-10 with 

only minor loss of accuracy (1-2 %) compared to the base exhaustive search. Larger 

numbers of sample evaluations of the two limits results in a better estimate of statistics 

of the relative difference, and hence in slightly better accuracy of the algorithm. This 

accuracy comes at a price of lower speedup. 

2. Genetic algorithm (GA) with the hybrid goal function provides speedups of up to 20, 

at the cost of marginally acceptable search accuracy (up to 5% error). Statistical 

improvement of GA results in a substantial speedup over the base GA. 

3. Parallel implementation of the exhaustive search algorithms provides speedup roughly 

proportional to the number of CPUs and scales well. The number of samples does not 

affect the speedup. 

4. Parallel implementation of GAs provides speedup as a nonlinear function of the 

number of CPUs, saturating towards certain speedup limit. This saturation limit 
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depends on the size of population: the larger the population, the higher the saturation 

level. Learning mechanisms built into the GA (evolutionary mechanism, population 

roster, and statistical improvements) cause rapid decline of speedup toward the end of 

search process. Hence the GA search does not scale well. 
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6 EXAMPLE 3: TELESCOPE MIRROR MODEL (HINGED ROUND 

PLATE) 

6.1 Problem Description 

This chapter describes an engineering problem that arises in active optics, namely 

the active stabilization of the shape of a thin mirror embedded in a telescope assembly. A 

30-inch span mirror with 58 piston actuators (Figure 6.1) was used as a testbed for several 

shape stabilization techniques by Volpe and Robertson (1973), and Robertson (1993). A 

flat round plate, hinged at three supporting points was suggested as a simple and efficient 

prototype model of the mirror. The same model is adopted in the present study. 

The physical parameters of the plate are listed in Table 6.1. The locations of the 58 

piston actuators, as well as the three hinged support points attached to the plate are 

charted in Figure 6.2. 

A dynamic model of the hinged plate in the form of state-space matrices {ABC 

D} was e.xtracted from a larger finite-element model, obtained with the help of the 

ANSYS 5.4 software. The fmite element model does not take into account any symmetry 

of the plate, in order to introduce small irregularities. As a result the dynamic model is not 

exactly symmetrical Thus the non-symmetrical model is different from the symmetrical 

one within the range of the typical errors encountered in finite-element methods (2-5%). 

The model consists of 58 vibrational modes with fr-equencies ranging from 40 to 
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Figure 6.1. The active mirror assembly (Volpe and Robertson, 1973) 
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Figure 6.2. Possible locations of collocated actuators / sensors on the plate 



Table 6.1. Physical properties of the plate 

Diameter 30 in 

Thickness 0.3 in 

Material Steel 

Density 7.8510^^kg/ra^ 

Young modulus 210"^GPa 

Damping ratio 0.02 
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1575 Hz (see Figure 6.3). Disturbances were modeled as point forces acting at in the same 

points as the piston actuators (in fact, Voipe and Robertson, 1973 used the piston 

actuators to produce disturbance forces to mimic real-life disturbances). Actuators and 

sensors were not physically collocated, unlike the case of the simply supported beam and 

the LSS (Chapters 4 and 5), as the plate displacements are typically detected by a laser 

interferometer which continuously scans the plate (see Volpe and Robertson (1973) for 

the details). However there are important benefits in using collocated actuators and 

sensors in terms of the closed-loop system stability and performance (see Mackay (1996)). 

Therefore it makes sense to use collocated actuators and sensors. The interferometer scans 

only the points where the selected control actuators are attached, and perhaps also some 

of the other designated 58 actuator locations. 

In the sequel of this chapter only one control configuration is tested, namely a 

system with four collocated actuators / sensors. This model has the following I/O 

dimensions: 

;m»=1 16, mz=58, mw=58, A^y=58, my=4, N^ = 5S.ma=4. (6.1) 

An inspection of the layout of the LSS model eigenmodes (eigenvalues of the state 

matrix A), plotted in Figure 6.3, leads to the same conclusions about feasibility of order 

reduction of the model, as in the case of the simply supported beam (Chapter 4): it is 

necessary to use a full-dimensional static controller to increase the structure damping, but 

this is not possible with the three actuator / five sensor configuration. Hence the model 

reduction option is dropped. 
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Figure 6.3. Eigenvalues of the plate model; (a) all; (b) the first 24 ones 
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Because of the anticipated limited bandwidth of the actuators, and the traditional 

strategy of limiting the controller bandwidth, the shaping weight function was selected as 

W(5)=|^/628+11\ 

which guarantees -40 dB/decade rolloff for the closed-loop TFM of the disturbance-

deformation path at high frequencies (over 100 Hz). Because the plate model has a siricdy 

proper TFM (,D\x.J)22 are zero matrices), the weight h<5) can be absorbed into the four-

block model using the standard augmented system techniques (see Safonov, Chiang, 

Flashner, 1991). All the subsequent computations were performed with this augmented 

model The upper bound of the frequency-response of the beam without control, as well as 

the weight function, are plotted in Figure 6.4 

6.2 Exhaustive Search 

Because of the internal symmetry of the plate one is tempted to adopt without 

proof the following hypothesis: the best mapping of four actuators / sensors for the plate 

model should be symmetrical. This means that one of the actuators has to be placed at the 

center (position 20), and the remaining three actuators should be placed in one of the 19 

possible symmetrical patterns listed in Table 6.2. Some of these patterns are demonstrated 

in Figure 6.5. The actual lower limit and the optimistic lower limit were evaluated for aU 

the symmetric patterns, and it turns out that there are two best mappings (mappings 15 

and 17 in Table 6.2, see also Figure 6.6). 
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Table 6.2. Symmetrical mappings with four collocated actuators / sensors. The mappings 

with the best deformation suppression are highlighted. 

No. Aauators Optimistic lower limit Actual lower limit No. Aauators 

Value, xlO"* CPU time 
(seconds) 

Value, xlO"* CPU time 

(seconds) 

1 19, 21, 29, 20 1.829 10.4 1.811 1021 

2 12, 28, 30. 20 1.831 10.3 1.825 1020 

3 13, 27, 39, 20 1.830 10.2 1.812 1014 

4 1 1 , 3 1 , 3 7 , 2 0  1.369 10.1 1.340 1023 

5 18, 22, 38, 20 1.830 10.2 1.812 1028 

6 6, 36, 40. 20 1.368 10.3 1.339 1024 

7 17, 23. 47, 20 1.825 10.2 1.830 1014 

8 10. 32, 46. 20 1.347 10.0 1.342 1052 

9 5. 41. 45. 20 1.346 10.0 1.318 1098 

10 2, 44. 50. 20 1.831 10.2 1.835 1032 

11 7, 35. 49, 20 1.350 11.0 1.344 1036 

12 14, 26, 48, 20 1.337 10.0 1.324 1025 

13 3, 43. 58. 20 1.414 10.0 1.408 1022 

14 8, 34, 57. 20 1.359 10.1 1.346 1022 

15' 15. 25. 56. 20 1.301 10.1 1.252 1032 

16 16, 24, 55, 20 1.831 10.2 1.856 1030 

17* 9, 33. 54. 20 1.323 10.0 1.295 1041 

18 4, 42, 53. 20 1.342 10.1 1.321 1049 

19 1 ,  5 1 ,  5 2 ,  2 0  1.414 10.1 1.377 1047 
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Figure 6.6. Symmetrical mappings with the best performance index. 
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The goal of this chapter is to test this hypothesis, Le. to see if there are any better 

mappings than the best ones listed in Table 6.2. In this section mappings with four 

actuators / sensors are coded by a vector with three integer components sorted in 

ascending order: 

C = {CuC2,Ci), 1<Ci<C2<C3^8. 

The founh actuator is always attached to the center of the plate (position 20), so it is not 

reflected in the mapping vector c. The total number of mappings with four non-coinciding 

actuators) to be evaluated is 29,260. The average CPU time per actual lower limit 

evaluation for the symmetrical mappings (Table 6.2) was about 10.5 minutes (PC with 

Pentium Pro 200, Windows NT 4.0, and Matlab 5.1 with Robust Control Toolbox). At 

this speed an exhaustive search with the actual lower limit in the goal function 

(Algorithm 1 from Chapter 3) would require about 350 days. 

In order to solve the problem in a reasonable time. Algorithm 3 was applied to this 

problem. To improve the target performance index estimate, i.e. to increase the search 

speed, the search was initially seeded by the symmetrical mappings listed in Table 6.2. The 

optimistic lower limit, evaluated for all available mappings and sorted in ascending order, 

is plotted in Figure 6.7. The actual lower limit for the symmetrical mappings is shown in 

the same figure by x-marks. The probability function of the relative difference is estimated 

based on the 19 symmetrical mappings only. The target value, topimMaargeiil.O, 1.0) for the 

optimistic lower limits was computed from this probability function (see Eqn. (3.16)), and 
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the actual lower limit was evaluated only for the mappings with optimistic lower limits 

lower than this value (see Figure 6.8). With this scheme only 156 mappings need to be 

evaluated, in addition to the 19 symmetrical mappings that were already evaluated. This 

results in a total speedup of about 65, taking into account the evaluation of the optimistic 

lower limit for all mappings. 

The best mapping of actuators and sensors, corresponding to the plate model, is 

charted in Figure 6.9. The actual lower limit of deformation suppression, achieved with 

this mapping, is about 7% better than the one provided by the best symmetrical mapping. 

However because of the errors introduced by the finite-element model it is difficult to tell 

if this is correct in reality. 

It turns out that for the case considered in this chapter the actual lower limit is very 

close to the optimistic lower hmit (difference is within 5% range), but the actual lower 

limit is less than the optimistic limit for the vast majority of mappings. This paradox can be 

explained in the following way: because of the imposed firequency-dependent weight 

(Figure 6.4) and the dynamic properties of the plate, the two limits supposedly should be 

very close, ahnost coincide. Unfortunately for large models like the one considered here 

the H_ design algorithm hinfopt from the Robust Control Toolbox is not very accurate, 

and in this panicular case it produces consistently optimistic results. 
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6.3 Major Results 

1. The statistically improved exhaustive search (Algorithm 3), proposed in the Chapter 3, 

delivered tremendous speedup of 167 times in the problem of optimal mapping of 

three collocated actuators / sensors on a round plate (plus a fourth actuator in the 

center). 

2. The ignored symmetry of the problem and inherent errors of the finite-element model 

resulted in non-synunetrical optimal mappings. 

3. The low accuracy of the H_ design procedure hinfopt for large dynamic models 

resulted in actual lower limits being slightly lower than the optimistic lower limit. 
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7 CONCLUSIONS 

The problem of H.-optimal mapping of actuators and sensors on flexible structures, 

considered in this study, was solved using the following basic assumptions; 

1. The problem of deformation suppression in flexible structures is stated as the four-

block disturbance attenuation problem, which is a standard problem in //_-control 

theory. 

2. Only systems with number of DOF much larger than the number of actuators and 

sensors are considered, and in this case the closed-loop performance may be a 

more limiting requirement than the internal stability constraint. 

The actual lower limit of deformation suppression in flexible structures with 

performance index is defined as the norm of the disturbance-deformation path of the 

closed-loop system with H_ optimal feedback controller. Actuator and sensor mapping 

optimization based on the actual lower limit, i.e. on the //_ performance index, requires 

evaluation of the actual lower limit of deformation suppression within the search loop. 

This is a computationally inefficient procedure, because 

(a) most of the evaluated mappings do not meet the target limit of deformation 

suppression; 

(b) computational cost of the actual lower limit evaluation is high. 
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Theoretical concepts developed in this study are supported by three test problems: 

deformations suppression in a simply supported beam, the UCLA Large Space Structure 

(LSS, see Safonov et al, 1991), and a hinged round plate as a model of a telescope mirror 

(based on model from Volpe and Robertson, 1973). A comparison of the three models, 

depicted by Table 7.1, suggests that these are large control problems, that the number of 

DOF is much larger than the number of actuators / sensors, and that the computational 

time required for the //.-optimal mapping with standard exhaustive search would be very 

large in two cases, and possibly unfeasible in the third case. 

Table 7.1. Comparison of the three test problems. 

Flexible structure 

Beam LSS Plate 

State-space model order 60 116 116 

Number of actuators 2 3 4 

Number of sensors 2 5 4 

Number of available locations of 

collocated actuators / sensors 
30 18 58 

Number of possible mappings 900 1,140 29,260 

Approximate computation time of 

exhaustive search with the actual 

lower limit, seconds 
6.75-10'= 1 day l.M0®=13 days 3.1-10^=1 year 

Required computer memory, MB 15 10 55 
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An optimistic lower limit of deformation suppression is proposed in this study, 

which is defined as the minimum achievable norm of the disturbance-deformation path 

with the relaxed (removed) constraint of the internal system stability. The optimistic lower 

limit is computed in a form of frequency sweep based on the frequency-response matrices 

of the four-block model, in contrast to the actual lower limit, which is computed based on 

the state-space matrices. The most remarkable property of this procedure is that in search 

loops with large numbers of possible mappings it may be much cheaper than the actual 

lower limit. This is proven by a comparison of the CPU time and number of flops for the 

two limits, evaluated for the three test problems (Tables 7.2 and 7.3). 

Table 7.2. Average CPU time required for evaluation of one mapping, in seconds. 

Rexible structure 

Beam LSS Plate 

Actual lower limit 75 980 1050 

Optimistic lower limit 2.8 2.2 10 

Table 7.3. Average cost of evaluation of one mapping, in Mflops. 

Flexible structure 

Beam LSS Plate 

Actual lower limit 2,1(X) 22,000 29,000 

Optimistic lower limit 70 8 350 
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If the optimistic lower limit is larger than some target limit for a given a given 

lllapping of actuators and sensors, then the actual lower limit is also larger than this target 

limit. Hence the primary use of the optimistic lower limit is to fmd and eliminate obviously 

n.nacceptable mappings and pave the road for the actual lower limit evaluation. The use of 

tre optimistic lower limit as the sole criterion of selection will produce erroneous results. 

Comparisons of the relative difference between the actual and optimistic lower limits for 

tlr three test problems are shown in Table 7 .4. The fact that the actual lower limit 

sometimes is slightly smaller than the optimistic lower limit (especially see Case 3 for the 

plate in Chapter 6) is explained by the fact that the large models considered here may 

cross the line where the two Riccatti equation design algorithm can provide acceptable 

tccuracy. 

rable 7 .4. Relative difference between the actual and optimistic lower limits, computed as 

(actual - optimistic) I optimistic. 

Flexible structure 

Beam LSS Plate 

~verage 0.89 2.5 -0.032 

Min 0.005 0 -0.064 

Max 1.54 72.6 0.014 

The hybrid use of the actual and optimistic lower limits in a goal function improves 

tre speed of the exhaustive search. The speedup is inversely proportional to the number of 

mappings which are not discarded after the optimistic lower limit evaluation. The speedup 
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is sensitive to the selection of the target limit of deformation suppression, set at the 

beginning of the search. An algorithm for tuning the target limit is proposed based on the 

statistical properties of the relative difference between the actual and optimistic lower limit 

defined over the set of possible mappings. Further improvements are achieved with the 

search based on genetic algorithm (GA), incorporating the same statistical enhancements. 

Comparisons of the speedups achieved with the statistically improved exhaustive search 

and GA for serial computer architecture are shown in Table 7.5. 

Table 7.5. Average speedup with serial computer architecture. 

Flexible structure 

Beam LSS Plate 

Algorithm 3 (statistically improved 

exhaustive search) 3.5 9.4 64 

Algorithm 5 (statistically improved GA) 10.6 19 n/a 

Because the enhancements to the exhaustive search and GA are based on 

experimental estimates of statistical properties of certain variables, the mapping 

optimization algorithm is not guaranteed to find the best mapping. Optimization accuracy 

is described by the probability to find a mapping within 1%, 2%, or 5% range of the best 

mapping. A comparison of appropriate results is shown in Table 7.6. the results are 

adequate with proper tuning of the statistical enhancement algorithm. 
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Table 7.6. Probability of the search accuracy within 5% range. 

Flexible structure 

Beam LSS Plate 

Algorithm 3 (statistically improved 

exhaustive search) 0.99 1.0 1.0 

Algorithm 5 (statistically improved GA) 0.98 0.95 N/a 

Parallel realization of the exhaustive search and GA is possible thanks to the fact 

that evaluation of any particular mapping is to certain degree independent from other 

mappings. A parallel implementation of the search was attempted on a shared-memory 

machine (SGI Origin 2000 ) with message-passing protocol (MPI). Matlab codes were 

translated into C+-H executables with the help of Matcom V3 compiler. An analysis of the 

speedups from the parallel organization of the code (Table 7.7) suggests that the 

exhaustive search scales much better than the GA. This is because the properties of GA 

during the search process change significantly toward the end of the process which can no 

longer efficiently benefit fi-om the parallel CPUs. 

Table 7.7. Average speedup with 4/14 parallel CPUs. 

Flexible structure 

Beam LSS Plate 

Algorithm 3 (statistically improved 

exhaustive search) 3.9/12 3.9/12 n/a 

Algorithm 5 (statistically improved GA) 2.5-3.5 / 3.5 2.5/4 n/a 
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APPENDIX A. PROOF OF THEOREM 2.1 

Let the FRM Gd)m) with dimensions mzXmu, mz<mu, have the following SVD at a 

frequency w: 

where 

G12 = U12 • I 12 . V, 2·, 

r12 = rank(G12 ) S mu, 

L' 12 =diag{a12 J, a 12 i >0, for 1SiSr12 • 

U12 is a mzxr1z matrix containing r12left singular vectors of G1z; 

Vtz is a muxr1z matrix containing rtz right singular vectors of Gtz. 

(A.l) 

Similarly, let the FRM G21 (jm) with dimensions myXmw, my<mw, have the following SVD 

at a frequency w: 

where 

G2, = Uz, · rz, · Vz,·, 

r21 = rank(G21 ) S mY, 

I 21 = diag { C121J, a2li > 0, for 1 S i S r21 . 

U21 is a myxrz1 matrix containing r21 left singular vectors of Gz 1; 

V21 is a mwxrz1 matrix containing rz1 right singular vectors of G21 . 

The following three lemmas are necessary to prove the theorem 2.1. 

Lemma Al. At any given frequency (J), the problem 

(A.2) 
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(A.3) 

has the following solution: 

(A.4) 

Lemma A2. At any given frequency ro, one easy way to construct the optimal matrix 

Q(jro) (A.4) from Lemma A1 is: 

(A.5) 

Lemma A3. When evaluated at s = jro, the TFM Q(s), given by the formula 

(A.6) 

has the same FRM Q(jro) (A.5) as in lemma A2. 

Proof of Theorem 2.1. 

The definitions of the actual lower limit of deformation suppression (Definition 

2.2, page 14) and Expression (2.15) for the closed-loop TFM of the disturbance-

deformation path Tzw(s) can be combined to give the following equivalent expression: 

(A.7) 

Recalling that the H~ norm of an operator can be determined through its behavior with 

s=jro, the latter definition (A.7) can be re-formulated as the following optimization 

problem: 
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tactual= min [supqG11 (jm)+G12 (jm)·Q(jm) ·G 21 (jm)]]. (A.8) 
QeRH, _ ll) 

The optimistic lower limit will be different from the latter in that the Q stability constraint 

(QE RH+_) is removed: 

and obviously 

t optimistic ~ t actual • 

According to Lemma Al, at every frequency ro there IS a solution to the 

minimization over Q, given optimal G12(jm)·Q(jm)·G21(jm): 

(A.lO) 

hence the following formula is true 

t aprimistic =sup a[ Gi l (jm) -[u!z · u;z ]Um) ·Gil (jm) · [vzl · Vz~ ]Um)]. (A.ll) 
(J) 

Lemmas A2 and A3 give tools to construct first the FRM of the optimal controller 

parameter Q(jm): 

Q(jm) = -G1~ (jm) · G11 (jm) · G;1 (jm). 

and then the real-rational TFM of this parameter Q(s): 

Q.E.D. 
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Note. Q(s) above contains both causal Q+ and anti-causal Q_ components, which are 

unique and can be computed based on the Nehari theorem (Zhou et al, 1995). However 

generally speaking it is true that 

and usually it is not true that 

Proof of Lemma Al. 

The following definitions are necessary. 

1. 1[,.., 11 +G12 ·Q ·G2111 = minl[,.., 11 ·w+G12 ·Q ·G21 ·wll= minllzll, ~ 2 w~~~ w~~ 
(A.l2) 

where z =Gil · w +G12 ·Q ·G21 · w . 

where wu and w .L are the detectable and non-detectable components of w, and V 21 

spans the row space of the matrix G21 , i.e. the subspace of disturbances, detectable 

with measurementsy. 

where zu and z.i are the detectable and non-detectable components of z, and U12 spans 

the column space of the matrix G12, i.e. the subspace of deformations, suppressible 

by controls u. 
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Now the matrix G\ \  can be split into four components, depending on the input and 

output subspaces of those components, with the components given by Table A1 (see also 

the flowchart in Figure A. 1). Obviously, the following equality is true: 

Gn Q G, ,  Q  G, ,  [ v , ,  -v;j, (A. 13) 

because Uiz spans the column space of Gn, and V21 spans the row space of G21. 

A comparison of (A. 12), (A. 13) and Gjl^ from the table A1 suggests, that it may 

be possible to eliminate G/}' completely from the expression (A. 12) by a proper choice of 

the parameter Q: 

c,, • e• G,, = -c;," =-[{/„ t/,;].o„.[n,.n;], 

O:, +G„ e c,, =G® +c;,» +c;," =c„ -g™ =c„ -[(/„ t^.-j G,, [t'n v;,]. 

Thus 

^mrnJlG,, +C,, e G,,!, =||c„ -[{/,, f/;.] C,. [v,, , 

G,. e o„ = -c;;' •t/.-J c,, [v., v,;]. 

Q.E.D. 

Proof of Lemma A2. 

Assume that FRM of the parameter Q is Q(ja ) )  =  -G*~ { j c t } )  G^i { jQ) )  G2 i ( jo ) ) ,  as 

suggested by Lemma 2. Recall that the Moore-Penrose pseudoinverse of a matrix can be 

computed through the SVD of this matrix. Then the following is true: 
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Then the expression G12 Q G21 can be evaluated in the following way: 

On e-c., =-c,, [(V,, i/.-.j c,, (v,,.e;; t/;,)]c„ = 

-(f= -2;n •>'1;)•[(>'.. Sri f i) C„ (n, 2:;: 'Vn) = 

Q.E.D. 

Proof of Lemma A3. 

Recall the definition of pseudoinverse for a "thin" matrix A {nxm), n>m: 

A "  = ( A ' A ) ' ' A * .  

This is the case of G12 , mz>ma : 

G*, { j c t ) )  =  {G' . i j co )  G,,G' . i jQ) )  =  

(G;^ i-jco) • G,, (jO))] • 0^2 

This suggests to consider Gijijco) as the mapping of TFM 

G;-(^) =(G,'1(-j) Gj,(5))'' G.^C-i) 

to the imaginary axis s=j(i). 

Similarly, using the defmition of the pseudoinverse for a "fat" matrix B (nxm), 

ncm: 

B* =B' 

one ends up with 
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Gn Uoi) = G,*, UO))  • (G;i Uco ) • G,*i { jO) ) )~  =  

i - jo ) )  •  [G .J jco )  •  G j j  i - j co ) )  

- I  

-I 

\-i 

and the corresponding TFM: 

G* i s )  =  Gl  i - s )  • (C,.(5) • Gl  i - s ) ) '  

For the final step recall that a system with TFM G{s)  has an adjoint system with 

TFM 

G-{s )=G^{-s ) .  

Hence the following formulae are valid: 

(*12 (-y) =(Gj2(.s) G,, (5)) 

C * (^) = G - i s )  (g,, i s )  •  G - (5))"', 

and finally 

Q = -{^12 -^ i : )  -^12 • 

Q.E.D. 



Tabic A.l. Componenis of C„ =C,'J' +C,','^ +0,'," 

Detectable disturbance —> Suppressible deformation 

Non-detectable disturbance —> Suppressible deformation [/^-V„ v;,] 

Detectable disturbance -> Non-suppressible deformation 

Non-detectable disturbance —> Non-suppressible deformation c;," =[ / . ,  -V„  I/;,] c,. [/^ -v„ V,;] 
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Figure A. 1. Input / Output subspace interpretation of the Lemma AI 

Figure A.2. Feedback control flowchart 
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APPENDIX B. COMPUTER SPEED BENCHMARKS 

A one-tirae overhead of the optimistic lower limit (Table 3.2), i.e. the 

computation of the four frequency-response matrices for 121 test frequencies for the plate 

model (Section 6), was used to benchmark the computers and compilers used in this 

study. The average CPU time required to complete the computation was obtained from 10 

runs of the corresponding code. The results are shown in the table B.l. 

Table B.l. Computer benchmarks: CPU time associated with the frequency 

responses evaluation for the plate model (Chapter 6). 

# Computer / Operating System CPU time, seconds 

MaUabS.l 
(Mathworks, Inc.) 

Matcom V3 
(Mathtools, Inc.) 

I. Pentium Pro 200 / Windows NT4.0 92 59' / 28-

2. Pentium Pro 200 / Linux (kernel 2.0.32) n/a 56^ 

3. IBM RS/6000 / AJX4 (fln4.u.arizona.edu) 141 n/a 

4. SGI Origin 2000 / IRIX (super.arizona.edu) n/a 38' /25^ 

1. MS Visual C-H- v. 5.0 compiler, optimization option G6. 

2. Matcom Pentium Accelerator, and MS Visual C++ v. 5.0 compiler, optimization 

option G6. 

3. GCC 2.7.2 C/C++ compiler, optimization option 02 with Intel x86 specific code. 

4. CC v. 7.0 (SGI native C/C++ compiler), optimization option 02. 

5. BLAS libraries, CC v. 7.0, - optimization option 02. 
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APPENDIX C. ORGANIZATION OF THE PARALLEL 

COMPUTATIONS 

The exhaustive search algorithms and GA, described in the chapter 3, where 

implemented on the SGI Origin 2000 supercomputer with native C compiler with BLAS 

libraries and MPICH version of the message-passing protocol. Organization of the code 

was shaped by the considerations and solutions listed in the Table C.I. 

As the result of these, the parallel implementation tends to be very smart, as 

suggests the Table C.2. Time spent into the serial pan (search process) is negligible 

compared to the time spent in the parallel part. Interprocess communications' effect on 

the computational time is so small, that it is not detected at all. This guarantees high 

confidence of Matlab simulations of parallel code in Chapters 4-6. 
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Table C. 1. Considerations and solutions for the parallel implementation 

No. Concept Solution 

1. Minimize the time spent in 

serial process. 

1. Separate the search algorithm (serial part) 

and goal function evaluation (parallel part) 

in two different processes (search process 

and server process). Use the out-of-state 

server concept of platform. 

2. Avoid serial parts in the server (parallel) 

process, by avoiding master processes. 

2. Minimize the interprocess 

communication time. 

Send only mapping codes, not the whole model. 

3. Use as much of the Matlab 

prototype code, as possible. 

Use Matcora V3 (Matlab to C-M- compiler) to 

generate C-h- code and to minimize direct C-h-

prograraming. 

4. Provide robust interprocess 

communications with minimum 

programming effort. 

Avoid MPI messaging, pass the mapping code 

through the standard .mat files 

5. Provide robust synchronization 

of the search and server 

processes. 

1. Avoid command messages via pipes. Use 

the events and event loop concepts. Use 

names of the .mat files as events. 

2. Control each branch of the server process 

separately. 
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Table C.2. Computational time profiles: parallel realization of mapping 

optimization for the LSS. 

Number Search process time Server process (parallel), in seconds 

(serial), in seconds Model optimistic limit actual limit 

1 8 17 3,290 246,000 

2 9 17 1,650 124,000 

3 9 17 1,100 84,000 

4 9 17 830 64,000 

5 9 17 670 52,000 

6 9 17 550 43,000 

10 10 17 340 28,000 
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