
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm nmster. UMI

films the text directly from the original or copy submitted. Thus, some

thesis and dissertation copies are in typewriter face, while others may be

from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality

illustrations and photographs, print bleedthrough, substandard margins,

and improper alignment can adversely aflfect reproduction.

In the unlikely event that the author did not send UMI a complete

manuscript and there are missing pages, these will be noted. Also, if

unauthorized copyright material had to be removed, a note will indicate

the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and

continuing from left to right in equal sections with small overlaps. Each

original is also photographed in one exposure and is included in reduced

form at the back of the book.

Photographs included in the original manuscript have been reproduced

xerographically in this copy. Higher quality 6" x 9" black and white

photographic prints are available for any photographs or illustrations

appearing in this copy for an additional charge. Contact UMI directly to

order.

UMI
A Bell & Howell Infonnation Company

300 North Zeeb Road, Ann Aibor MI 48106-1346 USA
313/761-4700 800/521-0600

COMPUTATIONAL METHODS FOR THE OPTIMIZATION

OF THE MAPPING OF ACTUATORS AND SENSORS

IN THE CONTROL OF FLEXIBLE STRUCTURES

by

Sergey Chemishkian

A Dissertation Submitted to the Faculty of the

DEPARTMENT OF AEROSPACE AND MECHANICAL ENGINEERING

In Partial Fulfillment of the Requirements

For the Degree of

DOCTOR OF PHILOSOPHY
WITH A MAJOR IN MECHANICAL ENGINEERING

In the Graduate College

THE UNIVERSITY OF ARIZONA

1 9 9 8

UMI Number: 9831826

UMI Microform 9831826
Copyright 1998, by UMI Company. All rights reserved.

This microform edition is protected against unauthorized
copying under Title 17, United States Code.

UMI
300 North Zeeb Road
Ann Arbor, MI 48103

THE UNIVERSITY OF ARIZONA ®

GRADUATE COLLEGE

As members of the Final Examination Committee, we certify that we have

read the dissertation prepared by Sergey Y. Chemishkian

entitled COMPUTATIONAL METHODS FOR THE OPTIMIZATION OF

THE MAPPING OF ACTUATORS AND SENSORS IN THE CONTROL

OFFLEXIBLESTRUCTURES

and recommend that it be accepted as fulfilling the dissertation

2

requirement for the Degree of ___ DO ___ C_T_O_R __ O_F __ P_HIL ___ O_S_O __ P_frY ______________ ___

Dr. Karl Ousterhout

z:, {)& zt;a ,0::::. 9

Date

Final approval and acceptance of this dissertation is contingent upon
the candidate's submission of the final copy of the dissertation to the
Graduate College.

I hereby certify that I have read this dissertation prepared under my
direction and recommend that it be accepted as fulfilling the dissertation

requiremen;r ~

Dissertation Director Dr. Ara Arabyan
Mew 26, 19..98

Date/

3

STATEMENT BY AUTHOR

This dissertation has been submitted in partial fulfillment of requirements for an

advanced degree at 1be University of Arizona and is deposited in the University Library to

be made available to borrowers under rules of the Library.

Brief quotations from this dissertation are allowable without special permission,

provided that accurate acknowledgment of source is made. Requests for permission for

extended quotation from or reproduction of this manuscript in whole or in part may be

granted by the head of the major department or the Dean of the Graduate College when in

his or her judgment the proposed use of the material is in the interests of scholarship. In all

other instances, however, permission must be obtained from the author.

SIGNED:--~-=__..::::___:._ ______ _

4

ACKNOWLEDGMENTS

This manuscript would not be possible without Dr. Ara Arabyan (U of A) and Dr.
Oleg Gasparian (Granit Co., Yerevan) bringing to my attention the problem of control of
flexible structures in relation to the Active Optics concepts at Spring, 1993.

I deeply appreciate Dr. Arabyan's guidance and advice during the research and
preparation of this dissertation. I must confess that our long debates on the fate of the
modem operating systems made me, a diehard adept of the Microsoft Windows, to
perform a significant part of the computations for this dissertation in the UWDC
environment.

I owe a big deal of my notion of the control theory to my teachers Dr. Francois
Cellier (ECE Department, UofA), and Dr. Eduard Karslian (State Engineering University
of Armenia).

I would like to thank my committee members Dr. Hal Tharp, Dr. Karl Ousterhout,
and Dr. Ernest Passe for their time and patience in reviewing this manuscript.

I am grateful to Dr. Michael Safonov (UCLA) who kindly provided me with his
model of the Large Space Structure, used in this manuscript.

I am grateful to the friendly people from Mathtools, Inc., and Mathworks Inc. for
the excellent computational tools they created (Matcom and Matlab respectively), and
especially to Ben Hirsch and Michelle Handron, the Mathtools support people.

1 am gratefiil to the academia support program of the Microsoft, Inc. for the
donated prerelease and final versions of the Windows NT 4.0 Workstation, which allowed
to create a robust environment for computational experiments.

I deeply appreciate support of my friends and colleagues from the University of
Arizona, from the State Engineering University of Armenia, and from the Engineering
Research Center of the American University of Armenia in 1993-1998.

Finally, but not the last, I would like to thank my dear wife Dr. Yelena Meroyan
and my daughter Maria Cheraishkian for their love, help, and encouragement.

TABLE OF CONTENTS

UST OF ILLUSTRATIONS 8

UST OF TABLES 15

ABSTRACT 17

NOTATION AND ABBREVL\TIONS 18

1 INTRODUCTION 20

2 LIMIT OF DEFORMATION SUPPRESSION IN FLEXIBLE

STRUCTURES 29

2.1 Second-Order Model of a Flexible Structure 29

2.2 Actual Lower limit of Deformation Suppression 32

2.3 Optimistic Lower Limit of Deformation Suppression 41

2.4 Major Results 44

3 MAPPING OPTIMIZATION WITH H, PERFORMANCE

INDEX 48

3.1 General Concepts 48

3.2 Computational Properties of the Actual Lower Limit 50

3.3 Computational Properties of the Optimistic Lower Limit 55

3.4 Mapping Optimization with Exhaustive Search 59

3.5 Mapping Optimization with Genetic Algorithm 68

3.6 Parallel Realization of the Search Algorithms 82

3.7 Major Results 85

6

TABLE OF CONTENTS - Continued

4 EXAMPLE 1: THE SIMPLY SUPPORTED BEAM 87

4.1 ftoblem Description 87

4.2 Exhaustive Search 97

4.3 Search with Genetic Algorithm 109

4.4 Parallel Realization of Search 111

4.5 Major Results 123

5 EXAMPLE 2: THE UCLA LARGE SPACE STRUCTURE 125

5.1 Problem Description 125

5.2 Exhaustive Search 136

5.3 Search with Genetic Algorithm 141

5.4 Parallel Realization of Search 143

5.5 Major Results 147

6 EXAMPLE 3; THE TELESCOPE MIRROR MODEL

(HINGED ROUND PLATE) 149

6.1 Problem Description 149

6.2 Exhaustive Search 155

6.3 Major Results 164

7 CONCLUSIONS 165

APPENDIX A. PROOF OF THEOREM 2.1 171

7

TABLE OF CONTENTS - Continued

APPENDIX B. COMPUTER SPEED BENCHMARKS 180

APPENDDC C. ORGANIZATION OF THE PARALLEL

COMPUTATIONS 181

REFERENCES 184

8

UST OF EXUSTRATIONS

FIGURE 2.1, A generic flexible structure 30

HGURE 2.2, A spring-mass-damper system 30

FIGURE 2.3, The basic four-block model of the flexible structure: (a) verbose

and (b) compact form 34

FIGURE 2.4, The four-block model with performance weight Wp 38

FIGURE 2.5, The typical performance weight Wp for a low-frequency disturbance 38

HGURE 2.6, The modified four-block problem with performance (wp) and

robust stability (wb) weights 40

HGURE 2.7, The typical robust stability weight and performance weight Wp

for a low-frequency disturbance and high-frequency uncertainty.... 40

FIGURE 3.1, The four-block H. design problem (a) and description of the plant

(flexible structure) in that problem (b) 49

RGURE 3.2, The y-iteration algorithrn 49

FIGURE 3.3, The two-Riccati-equations solver 54

FIGURE 3.4, Algorithm for the computation of the optimistic lower limit (2.22) 57

HGURE 3.5, Construction of a binary chromosome 70

HGURE 3.6, Crossover and mutation operators: (a) mutation; (b) one-point

crossover; (c) two-point crossover 76

HGURE 3.7, Diagram of the GA 81

HGURE 3.8, Serial (a) and parallel (b) organization of evaluation of the

individuals in the OA 84

HGURE 4.1, The simply supported beam, 30 node model 89

HGURE 4.2, The beam response without control, and weight imposed as design

specification 89

HGURE 4.3, Eigenvalues of the beam model; (a) all (b) the first 12 ones 91

9

UST OF ILLUSTRATIONS - Continued

FIGURE 4.4, Variation of computational cost of the actual lower limit for the

beam: (a) statistical distribution; (b) map of relative variations 92

FIGURE 4.5, Variation of computational cost of the optimistic lower limit for

the beam: (a) statistical distribution; (b) map of relative variations . 93

FIGURE 4.6, Map of the actual lower limit for the beam: (a) standard;

(b) positions within the range of 100% around the best mapping

are elevated 94

FIGURE 4.7, Map of the optimistic lower limit for the beam: (a) standard;

(b) positions within the range of 100% around the best mapping

are elevated 95

FIGURE 4.8, Properties of the relative difference between the two limits for the

beam: (a) the map; (b) statistical distribution 96

FIGURE 4.9, Actual and optimistic lower limits for the beam 98

FIGURE 4.10, Statistical bounds for the actual lower limit for the beam based on

the optimistic lower limit 98

FIGURE 4.11, Computational cost reduction for the beam by (a) selecting the

target with confidence 0.9; (b) selecting the target with confidence

0.9 and the lower bound with confidence 0.9 99

FIGURE 4.12, Computational cost reduction for the beam by (a) selecting the

target with confidence 0.8; (b) selecting the target with confidence

0.8 and the lower bound with confidence 0.8 100

FIGURE 4.13, Statistical behavior of Algorithm 3 with good estimate of

probability P{x) and (M): (a) optimal performance;

(b) speedup 101

10

LIST OF ILLUSTRATIONS - Continued

FIGURE 4.14, Statistical behavior of Algorithra 3 with good estimate of

probabiKty P{x) and (0.9,0.9): (a) optimal performance;

(b) speedup 102

RGURE 4.15, Statistical behavior of Algorithm 3 with good estimate of

probability P{x) and (0.8,0.8): (a) optimal performance;

(b) speedup 103

FIGURE 4.16, Statistical behavior of Algorithra 3 with good estimate of

probabiHty P(x) and ,0.1): (a) optimal performance;

(b) speedup 104

FIGURE 4.17, Statistical behavior of Algorithra 3 with poor estimate of

probability P(.r) and : (a) optimal performance;

(b) speedup 105

HGL'RE 4.18, Statistical behavior of Algorithra 3 with poor estimate of

probabiHty P{x) and (0.9,0.9): (a) optimal performance;

(b) speedup 106

nGURE 4.19, Statistical behavior of Algorithra 3 with poor estimate of

probability P(.r) and a,,«(0.8,0.8): (a) optimal performance;

(b) speedup 107

HGURE 4.20, Statistical behavior of Algorithra 3 with poor estimate of

probabiUty P{x) and (0.7,0.7): (a) optimal performance;

(b) speedup 108

nGURE 4.21, Actuator / sensor position coding for the beam 110

FIGURE 4.22, GA operator fitness adaptation 110

11

UST OF EXUSTRATIONS - Continued

nCURE 4.23, The probability to find at least the 1st, 2nd, 3rd best mappings as

a function of the iteration number for the statistically improved

GA (Algorithm 5) (population 30, (a) Pi = l.O, Pi = 1.0; (b) Pi =

0.8,/'2= 1.0) 112

FIGURE 4.24, Statistical analysis of speedup with statistically improved GA

(Algorithm 5) compared to the base exhaustive search

(Algorithm 1) (population 30, (a) Pi = 1.0, Pi = 1-0; (b) Pi = 0.8,

P2=1.0) 113

RGURE 4.25, Statistical analysis of speedup with statistically improved GA

(Algorithm 5) compared to the base GA (Algorithm 4)

(population 30, (a) Pi = 1.0, Pi = l.O; (b) Pi = 0.8, Pi = 1.0) 114

FIGURE 4.26, The probability to find at least the 1st, 2nd, 3rd best mappings as

a function of the iteration number for the statistically improved

GA (Algorithm 5) (population 90, (a) Pi = 1.0, Pi = 1.0;

(b)Pi =0.8, P 2 = 1.0) 115

FIGURE 4.27, Statistical analysis of speedup with statistically improved GA

(Algorithm 5) compared to the base exhaustive search

(Algorithm 1) (population 90, (a) Pi = 1.0, Pi = 1.0; (b) Pi = 0.8,

P 2 =1.0) 116

nGURE 4.28, Statistical analysis of speedup with statistically improved GA

(Algorithm 5) compared to the base GA (Algorithm 4)

(population 90, (a) Pi = 1.0, Pi = l.O; (b) Pi = 0.8, Pi = l.O) 117

FIGURE 4.29, Average speedup in multiprocessor system with (a) statistically

improved exhaustive search and (b) statistically improved GA 120

12

UST OF ILLUSTRATIONS - Continued

nGURE 4.30, Average speedup in multiprocessor system: (a) statistically

improved GA for the beam, population 30, probabilities Pi= 1.0,

Pi= l.O; (b) Pi=0.8, P2= 1.0, number of CPUs from 1 to 20,

bottom to top 121

HGURE 4.31, Average speedup in multiprocessor system; (a) statistically

improved GA for the beam, population 30, probabilities Pi= 1.0,

Pi= 1.0; (b) P\= 0.8, P2= l.O, number of CPUs from I to 20,

bottom to top 122

FIGURE 5.1, The Large Space Structure (UCLA) 126

FIGURE 5.2, The LSS response without control, and the weight imposed as

design specification 129

FIGURE 5.3, Eigenvalues of the LSS model: (a) all; (b) the first 24 ones 130

nGURE 5.4, Variation of computational cost of the (a) actual and

(b) optimistic lower limits for the LSS 132

FIGURE 5.5, Variation of computational time of the (a) actual and

(b) optimistic lower limits for the LSS 133

FIGURE 5.6, Statistical distribution of the relative difference between the two

limits for the LSS 134

nGURE 5.7. Difference in performance (the actual lower limit) between the

best mappings for the LSS 134

FIGURE 5.8, The four best mappings for the LSS 135

RGURE 5.9, The actual and optimistic lower limits for the LSS 137

HGURE 5.10, Computational cost reduction for the LSS by selecting the target

with confidence Pi =0.9, and the lower bound with confidence

P2=0.9 137

13

UST OF ILLUSTRATIONS - Continued

FIGURE 5.11, Computational cost reduction for the LSS by selecting the target

with confidence Pi=0.8, and the lower bound with confidence

/'2=0.8 138

nOURE 5.12, Computational cost reduction for the LSS by selecting the target

with confidence Pi=0.7, and the lower bound with confidence

/'2=0.7 138

FIGURE 5.13, The actuator / sensor position coding for the LSS 142

HGURE 5.14, The average speedup in multiprocessor system with

(a) statistically improved exhaustive search; (b) statistically

improved GA 144

FIGURE 5.15, Average speedup in multiprocessor system: (a) statistically

improved GA for the LSS, population 30, probabilities Pi= 1.0,

^2= 1-0; (b) Pi=0.3, Pi= 1.0, number of CPUs from 1 to 20,

bottom to top 145

FIGURE 5.16, Average speedup in multiprocessor system: (a) statistically

improved GA for the LSS, population 90, probabilities Pi= 1.0.

P2= 1.0; (b) Pi=0.3, P2= l.O, number of CPUs from 1 to 20,

bottom to top 146

nGURE6.1, The active mirror assembly (Volpe and Robertson, 1973) 150

FIGURE 6.2, Possible locations of collocated actuators / sensors on the plate ... 151

FIGURE 6.3, Eigenvalues of the plate: (a) all; (b) the first 24 ones 154

RGURE 6.4, Plate response without control, and the weight imposed as a

design specification 156

FIGURE 6.5, Some symmetrical mappings of actuators and sensors 158

nGURE6.6, Symmetrical mappings with the best performance index 159

14

LIST OF ILLUSTRATIONS - Continued

RGURE 6.7, Optimistic lower limit for all available mappings and actual

lower limit for symmetrical mappings 161

RGURE 6.8, Target value toptimistic1.0) and mappings with the actual

limit evaluated during the search 161

nCURE 6.9, The best mapping 163

nGURE A.l, Input / Output subspace interpretation of the Lemma AI 179

HGURE A.2, Feedback control flowchart 179

15

UST OF TABLES

TABLE 3.1, Computational cost of the actual lower limit (2.16) 53

TABLE 3.2, Computational cost of the optimistic lower limit (2.22) with the

number of test frequencies mr proportional to the state order 60

TABLE 3.3, Comparison of search algorithms based on the optimistic lower

limit (2.22) and on the actual lower limit (2.16). Total Miiai trials,

A'new updated mappings per iteration 61

TABLE 3.4, Properties of the Genetic Algorithm 80

TABLE 4.1, Physical properties of the beam 88

TABLE 4.2, Average speedup compared to the base exhaustive search

(Algorithm 1) for the beam 118

TABLE 4.3, Probability to find at least the first, the second, the third best

mapping for the beam 119

TABLE 5.1, Average speedup compared to the base exhaustive search

(Algorithm I) for the LSS 139

TABLE 5.2, Probability to find a mapping with performance within 1%, T^c, and

5% of the absolutely best mapping for the LSS 140

TABLE 6.1, Physical properties of the plate 152

TABLE 6.2, Symmetrical mappings with four collocated actuators / sensors, the

mappings with best deformation suppression are marked with

asterisk 157

TABLE 7.1, Comparison of the three test problems 166

TABLE 7.2, Average CPU time required for evaluation of one mapping, in

seconds 167

TABLE 7.3, Average cost of evaluation of one mapping, in Mflops 167

TABLE 7.4, Relative difference between the actual and optimistic lower limits,

computed as {actual - optimistic) /optimistic 168

16

LIST OF TABLES - Continued

TABLE 7.5, Average speedup with serial computer architecture 169

TABLE 7.6, Probability of the search accuracy within 1%, 2%, and 5% range 170

TABLE 7.7, Average speedup with 4/14 parallel CPUs 170

TABLE A.l, Components of Gn =Gii"

TABLE B.l, Computers benchmark: CPU time associated with the frequency

responses evaluation for the plate model 180

TABLE C. 1, Considerations and solutions for the parallel implementation 182

TABLE C.2, Computational time profiles: parallel realization of mapping

optimization for the LSS 183

17

ABSTRACT

In this work the problem of actuator and sensor mapping and controller design for

the flexible structure control is approached as minimization of the residual deformations

index norm of the closed-loop disturbance - deformation path) over the set of non-

destabilizing feedback controllers and over the set of possible actuator and sensor

mappings. Computational load associated with this approach is reduced by restricting the

search to the mapping areas where an inexpensive lower estimate of residual deformations

index (derived as a part of this study) is less than the desired value of this index. Further

improvement is achieved by including statistical description of the difference between the

actual and the estimated performance index over the set of mappings, in order to adjust

the level of the mapping acceptance / rejection in such a way that the number of rejected

mappings is increased. Serial and parallel optimization procedures based on exhaustive

search and genetic algorithms are discussed. These concepts and algorithms are applied to

test cases of simply supported beam, the UCLA Large Space Structure, and a telescope

mirror model: a hinged round plate.

18

NOTATION AND ABBREVIATIONS

FRM frequency response matrix

GA genetic algorithm

LFT lower firactional transformation

MPI message-passing protocol

SVD singular value decomposition

TFM transfer function matrix

X state vector (m^xl)

w external disturbance vector (m»xl), deforming the structure

z (nodal) deformations vector {nijXl) , used to describe the structure shape

u control forces vector (muXl), generated by actuators

y measurements vector (myXl), generated by sensors

A/u number of possible actuator positions

My number of possible sensor positions

Gn TFM of the disturbance - deformation path

G\2 TFM of the control - deformation path

G21 TFM of the disturbance - measurement path

G22 TFM of the control - measurement path

K TFM of a feedback controller

A* Moore-Penrose pseudoinverse of a matrix A

ABCD

llxll

II All

a [A]

O"[A]

lk;IL

RH_~

Ka11-stab.

19

NOTATION AND ABBREVIATIONS- Continued

Hermitian transpose of a complex matrix A

adjoint operator of a TFM G

standard state-space matrices

Euclidian norm of a vector x

spectral norm of a matrix A

the least singular value of a matrix A

the largest singular value of a matrix A

L;_ norm of a process x with finite energy, defmed in the following way

H~ norm of an operator G, defmed in the following way

IIGIL = suplp(jm)ll =sup a[G(jm)]
llJ llJ

closed-loop TFM of the disturbance - deformation path

set of all causal, real-rational TFMs with finite H~ norm

set of all anti-causal, real-rational TFMs with finite H~ norm

set of all-stabilizing controllers for the given plant

20

1 INTRODUCTION

The study of the active control of flexible structures has gained increasing

importance over the last decade as a result of a growing need for precise control of space

and earth-based structures, e.g. space vehicles, antennas, optical devices, and aseisniic

design (see Sparks and Juang, 1992 for an extensive list of the existing experimental

facilities). The principal challenge of active control of continuous flexible structures is to

achieve an acceptable reduction in structural vibration using only a finite number of

actuators.

It is known that one cannot eliminate completely deformations produced by

disturbances in continuous flexible structures by means of a fmite number of point

actuators and sensors. This means that there will be residual defonmtions left in the

structure whose magnitude depends on the locations of the actuators and the control

action implemented. Also one cannot eliminate completely deformations in a Rayleigh

model of an order and dimension high enough to capture the properties of the continuous

structure because of the fundamental limitations of the feedback control. This means that

the residual deformations in a flexible structure with an active fmite-dimensional controller

came from three sources; (a) the approximation error of the Rayleigh model, (b) feedback

limitations, i.e. closed-loop dynamic errors of the controllable and detectable part of the

Rayleigh model with a feedback controller, and (c) the presence of uncontrollable /

undetectable components of the Rayleigh model, caused in turn by the limited number of

21

actuators and sensors. These three sources are typically strongly input / output coupled

and modified by the closed-loop control action, with disturbances and controls considered

as inputs, and distributed deformations and point measurements considered as outputs.

The effect of the approximation error of the Rayleigh model is nonlinear. Since it

cannot be addressed directly, it is typically assessed in an a posteriori simulation. This

issue is not addressed further in this work. However, the effects of feedback limitations

and uncontrollable / undetectable components in the Rayleigh model are open to a priori

analysis. It is universally accepted that the amount of deformations that cannot be

elimiiuted in the Rayleigh model depends on the mapping of actuators and sensors, a fact

that has been exploited by various mapping optimization techniques. In general one

attempts to find a mapping resulting in the best deformation suppression in terms of a

selected closed-loop performance index. This index is usually a combination of control and

deformations energies, depending on the adopted control design approach. For instance,

the degree of controllability based on structural modes is examined in many references

(Viswanathan et al, 1984; Longman et al, 1982; Hamdan and Nayfeh, 1989; Lim, 1992;

Choe and Baruh, 1992; Maghami and Joshi, 1993; Hac and Liu, 1993). Some references

take into account control performance criteria, like optimal control cost (Chen and

Seinfeld, 1975; Aidarous et al, 1976; Martin, 1978), minimization of control energy

(Baruh and Meirovitch, 1981; DeLorenzo, 1990) and minimization of deformation energy

(Vincent et al, 1989, 1990). It is evident that the problem of actuator placement can be

solved efficiently only if stated within the main control design framework, which is highly

specific for any adopted approach.

22

For a control engineer the control of flexible structures presents a number of

challenges, caused by inherently unfavorable properties of flexible structures, as outlined

by Rogers and Li (1993) based on the comprehensive treatment of the flexible structures

by Balas (1982) and Mackay (1983):

(i) it is the relation of physical dimensions and mass limitations that makes the structures

quite flexible, hence the term "flexible structure";

(ii) flexible structures (typically) have a large number of closely spaced resonances at low

frequencies, and a characteristic distribution of eigenvalues on the complex plain,

which makes model order reduction techniques (typically) not appropriate, with the

obvious disadvantages in terms of computational loads;

(iii) requirements imposed by 'acceptable' control (pointing accuracy, vibration

suppression, shape maintenance) demand a high controller bandwidth, and hence

dynamic interaction of the controller and the structural vibration modes;

(iv) flexible structures are modeled by partial differential equations (PDE), and hence have

an infinite dimensional state vector;

(v) usually the sensors and actuators are regarded as point devices, hence the control and

measurement vectors, as weU as the controller itself, are finite dimensional

There are two approaches to modeling flexible structures and designing associated

controllers. One can use finite-element methods to produce a lumped model with a high

order state and high input/output dimensions and design a controller for this model; or one

cm design a distributed control based on the PDE model and later discretize the results.

Both approaches have advantages and disadvantages with serious implications (see Greene

23

and Stein (1979) for an extensive treatment of the subject). Because of these implications

preference for one approach over the other is mainly a matter of taste for the control

engineer. This work is restricted to the finite-element approach which leads to a second

order (or Rayleigh) model

One appealing design approach for flexible structures is control, which

addresses minimization of the r.m.s. deformation. For a given actuator and sensor mapping

a properly posed //. design procedure produces the minimum possible H_-nonn of the

deformation-disturbance path and the (non-destabilizing) feedback controller ±at achieves

this norm. In other words, the design procedure gives exactly the actual limit of

deformation suppression in terms of the H_ performance index. In this context the H_-

optimal mapping of actuators and sensors appears as a minimization of the //,-norm of the

closed-loop disturbance-deformation path (a) over the set of non-destabilizing feedback

controllers, and (b) over the set of possible actuator and sensor mappings. The only

obvious implementation of this concept requires the standard //_ design procedure to be

placed inside the automated search loop, the search being conducted over all possible

mappings (e.g. see Warren et al, 1995). This means that a complete H_ design is

performed for every mapping evaluated. Advantages of this straightforward approach are:

(i) causality of the controller and internal closed-loop stability are guaranteed;

(ii) robustness and measurement noise issues can be addressed directly.

These advantages come at the price of tremendous computational overhead,

possibly impractical in the case of flexible structures with large nimibers of degrees of

freedom. The //_ design procedure relies heavily on computationally expensive algorithms

like the singular value decomposition (SVD), eigenvalue analysis, and the Eliccati

equations, with computational loads and storage requirements proportional to the cube

and the square of the state vector order (for the details of the contemporary H_ control

theory see Zhou, Doyle, Glover, 1995; Green and Limebeer, 1995). As was stated earlier,

model order reduction is not very helpful in this case for the following reason. Finite

element models, usually used to describe flexible structures, arise from elliptic PDE-s, and

therefore have an open-loop poles distribution in the complex plane with a very

characteristic pattern. This pattern makes any immediate order reduction impossible, so

that one has first to design a simple static feedback to increase damping and alter the

pattern, then to apply the order reduction, and finally to apply //. design to the reduced-

order (closed-loop) system, as demonstrated by Safonov, Chiang, and Rashner (1991).

The resulting ihree-step procedure requires human intervention and therefore is unlikely to

work efficiently inside an automated search loop, while the computational cost reduction

is not significant.

One can easily realize that the computations involved are largely wasted, since for

most of the actuator and sensor mappings there will be no control that meets the

performance requirements, a fact that can be discovered only at the very end of the

design. A computationally inexpensive method to determine the lower bound for the

achievable H_ norm of the closed-loop disturbance - deformation path, would eliminate

the mappings with inadmissible performance index without performing an //_ design on

25

these mappings. Such a bound can be characterized as a lower limit of deformation

suppression in flexible structures. Preliminary results based on this concept were discussed

in Arabyan, Chetnishkian, and Meroyan (1996), Arabyan and Chemishkian (1998).

In this work the problem of the flexible structure control is stated in the

following way: given a flexible structure subject to external disturbances and a

desired limit of the resulting elastic deformations, specified by some norm,

determine the minimum necessary number of sensors and actuators and their

placement (mapping) on the structure together with achievable control actions to

realize the desired objective. The objective of the problem is defined through

minimization of the residual deformations index (//_ norm of the closed-loop disturbance -

deformation path) over the set of non-destabilizing feedback controllers and over the set

of possible actuator and sensor mappings. This approach requires to solve for f/_-optimal

control for every possible mapping in search loop, which is computationally very

expensive. In this work it is proposed to reduce the associated computational loads by

restricting the search to areas where an optimistic (lower) estimate of residual

deformations index (derived as a part of this study) is less than the desired value of this

index. The computational savings can be very significant, depending on the ratio of the

number of acceptable mappings to the rejected ones, as well as on the ratio of the

computational cost of the actual index evaluation to the optimistic estimate evaluation.

Further improvement is achieved based on statistical analysis of the difference between the

26

actual and the estimated performance index, which allows to adjust the level of the

mapping acceptance/rejection, and to increase the number of upfront rejected mappings.

H_ optimal mapping of actuators and sensors with the flexible structure described

by a model with a state dimension between 100 and 300 can overwhelm serial computers,

even if a computationally inexpensive lower bound is used in the goal function. This

problem becomes virtually intractable for large space structures whose state dimensions

are in several thousands range. Parallel computation and associated algorithms have the

potential to overcome this bottleneck. The problem considered here can be parallelized in

several ways.

• The recently developed technique of genetic algorithms (GAs) (Holland, 1975)

allows the evaluation of a goal function (actual H_ norm or the optimistic

bound) for several tested mappings simultaneously (one mapping per one

computational node) on separate nodes of a parallel computer. GAs also treat

with equal ease parameters defined over continuous, discrete, and mixed sets

(Davis, 1991, Michalewicz, 1996), i.e. it is possible to optimize the actuator and

sensor mapping over continuous, discrete, or mixed position sets.

• The inherent parallelism of the exhaustive search.

• The highly special structure of the Rayleigh model state matrices allows the use

of an efBcient parallel Riccati solver (Gardiner and Laub, 1991; Rogers and Li,

1993), and parallel frequency response solver (Laub and Gardiner, 1988;

refinements Rogers and Li, 1993).

27

The efiBciency of the parallel incarnation of the actuator and sensor mapping optimization

based on the mentioned paraDelization approaches depends crucially on several factors:

the even distribution of computational loads and storage among the computational nodes,

the amount of inter-node communications, and the architecture of parallel computer.

Detailed analyses of the problem and test cases are considered further in this study to

determine pros and cons of a particular approach or a combination of approaches.

Serial computations in this study were performed with Matlab 5 and Robust

Control Toolbox (Mathworks, Inc.), Matcom V3 (Mathtools, Inc.) and Visual C-H- 5.0

compiler (Microsoft) on a PC with Pentium Pro CPU and Windows NT 4.0 (Microsoft)

operating system. Parallel computations were performed with MPICH, Matcom V3

(Mathtools, Inc.) and native CC compiler on SGI Origin 2(X)0 supercomputer with IRIX

operating system.

The objectives of this study can be summarized as the following;

• To establish a computationally inexpensive optimistic lower Umii of deformation

suppression in a flexible structure, which is based on the input / output properties

of the structure, and would avoid direct construction of //_-opiimaI feedback

controUer.

• To develop search enhancement tools based on statistical properties of the

deviation of the optimistic lower limit from the actual lower limit of deformation

suppression on large sets of possible actuator and sensor mappings.

28

• To construct search algorithms for the optimization of actuator and sensor

mapping over discrete sets of possible mappings based on the hybrid use of the

optimistic and actual lower limits of deformation suppression.

• To examine the computational efiBciency of the mapping optimization using

exhaustive search and GA on serial and parallel computers.

This dissertation is organized as follows. Mathematical background of flexible

structures control, structure models, and lower limits of deformations suppression based

on these models are considered in Chapter 2. Computational properties of the optimistic

and actual lower limits of deformation suppression, statistical enhancement of the lower

limits, as well as several serial and parallel map optimization algorithms are presented in

Chapter 3. These algorithms are applied to the test cases of simply supported beam

(Chapter 4), the UCLA Large Space Structure (Chapter 5), and a hinged round plate, as a

simple model of telescope mirror (Chapter 6). Conclusions are provided in Chapter 7.

A proof of the central mathematical result, the optimistic lower limit, is presented in

Appendix A. Comparison of speed of the search code on different computers and

compilers, used in this study, provides the benchmark problem in Appendix B. Concept

used in the parallel implementation of the search codes are presented in Appendix C.

29

2 UMU OF DEFORMATION SUPPRESSION IN FLEXIBLE

STRUCTURES

2.1 Second-Order Model of a Flexible Structure

Consider a generic flexible structure (Figure 2.1), which is described by a model

with the nxl vector of lumped (nodal) deformations X. The generic form of the second-

order or so-called Rayleigh model for this generic flexible structure is the matrix

differential equation (Rogers and Li, 1993):

M X + C X = D U
(2.1)

Y = P X + S X - \ ^ D U

•where U is the /xl input vector, K is the mxl output vector (a linear combination of nodal

deformations, velocities, and inputs). The matrix M is usually termed the mass matrix, C is

the Rayleigh (damping) matrix, and /(T is the Hooke or stifihess matrix. This is because

Equation 2.1 often arises as a model of a system itself derived by applying Newton's laws,

or, as in the considered case, from applying fmite element methods to a dynamic

coQtinuum problem. Generally speaking. Equation 2.1 is just a matrix generalization of the

trivial single-input single-output second order model of the spring-mass-damjjer system

(see Figure 2.2).

30

Figure 2.1. A generic flexible structure

• .L * m

7^

Figure 2.2. A spring-raass-damper system

31

Usually the matrices M, K, and C have certain structures:

M = \f^>0 (symmetric, positive definite),

K = (symmetric, positive semi-definite),

C = Ci +• C2,

Ci = Ci^= a-M + P"AT ̂ (symmetric, positive semi-definite),

C2 = -€2^ (skew symmetric). (2.2)

In the decomposition of the Rayleigh matrix, Ci is termed the dissipation matrix and

represents structural damping forces, and C2 is the gyroscopic matrix which represents the

gyroscopic forces. Of course, the stiffiiess matrix may be modified to take account of

circulatory, as opposed to the purely conservative, field forces, in which case it will not be

positive semi-definite any more, but thJs case is not considered further (see also in-depth

study of possible benefits and limitations of the Rayleigh model by Arnold, 1984).

The standard approach to bring the Rayleigh model into the control systems

context is to define an augmented deformations vector and to transform the original

second order model into the equivalent first order model, i.e. the standard state-space

model of the plant. If one defines the generalized state vector as

9 =
X

X
(2.3)

then the equivalent first order model becomes

0 K 0

- M ' K - M ' C
q +

M ' D
U

(2.4)

Y = [P S] q + D U .

Also the generalized realization of the form

32

[I . O l ' 0 ' 0 '

I '
" •

•
^

;

1

.q =
- K - C

• q +
D

•U
U Mj ' [-A -CJ • lU

could be used.

Obviously, the standard state-space model (ABCD model)

X = A x + B u ,

y = C x + D u

is related to the model (2.4) in the following way:

A =

B =

0

- M ' K - M ' C

0

M ' D

C = [P s]
D = D .

(2-5)

(2.6)

2.2 Actual Lower Limit of Deformation Suppression

In terms of the H, control theory the problera of deformation suppression in a

flexible structure is the standard four-block disturbance attenuation problem, as it is

defined by Zhou, Doyle and Glover (1995), or Green and Limebeer (1995). The four-

block model of a flexible structure (Figure 2.3) has two inputs (exogenous disturbance

vector w, and control vector u) and two outputs (deformation vector z that should be

33

minimized, and measurement vector y) . The state-space equations, describing the

structure, have the following form:

x(r) = i4 • x (t) + Bi • w i t) + B2 • u { t)

r (f) = Ci • x (r) + />! I • wi t) + Z) i2 • u{ t)

y { t) =C2X(r) + D2iW(0 + D22-"(0

(2.7)

where x is the state vector, and the vectors x, h*, Z , U , y have lengths rrix, rru^, rriz, rrin, M Y ,

with characteristic relations

nty « « m^, . (2.8)

A dynamic feedback controller Kis) is used for active damping of the deformations

z, based on the information from the measurements^. The frequency-domain equations of

the four-block model with the added feedback controller K(s) have the form

' z (s)

J (s)

Gii(^)

G21 (.y)

G ^ i s)

^22 (•^)

H'(.y)

3'(>y)
= G i s)

^(5)

y { s)

(2.9)

u (s) = K { s) y { s) .

The closed-loop Transfer Function Matrix (TFM) of the disturbance - deformation

path Tiw can be computed as the lower Linear Fractional Transformation (LET), see

Zhou, Doyle and Glover (1995):

T ^ i s) = 7 ^ (G , K) = G , , i s) + G , , (s) • K (s) [/ - G ^ (s) - A - (^)] " ' G , , (s) . (2.10)

34

w
Gil

Gil

-¥ Giz

Gn

(a)

u

(b)

Figure 2.3. The basic four-block model of the flexible structure structure: (a)

verbose and (b) compact form

35

If the flexible structure described by this four-block model is subjected to disturbance

processes w(t) with ~ norm limited by one:

(2.11)

then according to the H~ control theory the ~ norm of the resulting deformation process

z(t) is limited by the H~ norm of the disturbance - deformation path:

(2.12)

Hence the norm llrzwll_ represents the worst-case deformation, 1.e. the limit for

deformation suppression. All liT zwiL depends on the feedback controller selection, then the

following definition is valid.

Definition 2.1. The actual/ower limit of deformation suppression in a flexible structure

in terms of the H~ performance index is defined as the minimum H~ norm of the

disturbance - deformation path Tzw taken over the set of all-stabilizing controllers

~all-stab:

t actual = min liT zw CK)IL.
KE:{aJJ - - .

(2.13)

Any changes in the L;_ norm limit of the disturbance result in proportional scaling of the

actual lower limit (2.13).

Another way to look at the actual lower limit of deformation suppression defmed

above is provided by the Q-parametrization, or the Youla-Kucera parametrization (see

Green and Lirnebeer, 1995, Zhou, Doyle and Glover, 1995). According to this approach,

36

it is always possible to introduce a TFM Q(s) (the Q-parameter) in the equation for the

closed-loop disturbance- deformation path TFM (2.10):

Q(s) = K(s) · [1- G22 (s) · K(s) r. (2.14)

In this case the closed-loop TFM of the closed-loop disturbance - deformation path

becomes:

Tzw (s) = G11 (s) +G12 (s) · Q(s) · G21 (s). (2 .15)

Hence the following modification to the definition 2.1 is valid.

Definition 2.2. The actual lower limit of deformation suppression in a flexible structure

in terms of the H~ performance index is defmed as the minimum H~ norm of the

disturbance - deformation path Tzw taken over the set of stable real-rational TFM

Q with finite H~ norm :

(2.16)

Information related to the typical spectral properties of the exogenous disturbance

w, or desired frequency response of the deformation vector z, can be included in the

performance index by means of a performance weighting function wp(m) in the following

way:

(2.17)

This corresponds to the modified four-block problem as shown in Figure 2.4. The scalar

weight was selected for the formula (2.17) (i) because usually that is enough for practical

problems, and (ii) to avoid unnecessary complications arising in the case of full-matrix

37

weights. For example, if it was known in advance that the disturbance w is limited to the

low frequency range, say 0-6 Hz, and a roll-off rate of -20 db/decade is allowed above the

6 Hz limit, then one possible weighting function wp(m) could be selected as plotted in

Figure 2.5.

A more realistic performance index should take into account the influence of

model truncation errors and uncertainties in the flexible structure model on the closed-

loop stability. One way to do this is to add a robust stability condition to the performance

index (2.17), as it is usually done in the mixed sensitivity design problems (see Zhou,

Doyle, and Glover, 1995). If the open-loop multiplicative uncertainty Lia(s) of the flexible

structure model G(s) is defined by upper frequency-dependent bound, i.e.

(2.18)

then a robust stability requirement for the four-block problem (Figure 2.4) can be set in

the equivalent H~-forrn:

(2.19)

This requirement can be combined with the performance requirement (2.17) in the

traditional mixed-sensitivity manner:

. Tzw(K) · p · wP (m)
t(p)= mm ~1

Ke'%:all _,., T(z-y)(w-u) (K) · W,s (m)

• . t(p) t(p*)
t =mrn-- = --.-

(2.20)

P p p

38

w

Figure 2.4. The four-block model with performance weight Wp

WF [OB]

- 1 0 -

-20-

-30

-40
10' f[Hzl

Figure 2.5. The typical performance weight Wp for a low-frequency disturbance

39

which corresponds to the augmented four-block problem, as shown in Figure 2.6. Here

where r is an equivalent performance index of the augmented system containing the

uncertain block AC, and p* is the H_ performance index, or the minimal deformation

bound, achieved by the closed-loop system (Figure 2.6) with a multiplicative uncertainty

limited by the inequality (2.18). A typical robust stability weighting function w„ describing

a high-frequency model truncation error is plotted in Figure 2.7.

Modifications of the H_ performance indices, described by the Equations (2.17),

(2.20), win be also referred to as the actual limit of deformation suppression in a flexible

structure for the sequel of this paper.

Minimization problems, set by the Equations (2.13), (2.16), (2.17), and (2.20) for

a given mapping of actuators and sensors can be solved by means of standard H_ design

procedures. The discussion that follows assumes the two Riccati equation method is

applied to the corresponding four-block problem, e.g. procedures hint and hinfopt from

the Robust Control Toolbox. The same approach is valid in the case of combined

performance - robust stability problem, set by the Equation (2.20).

This approach has severe limitations which are caused mainly by the dimension of

the problem and the poor open-loop controllability / observability of the flexible structure

model. High problem dimension results in huge computational costs, which makes the

evaluation of the actual limit of deformation suppression within the actuators and sensors

mapping optimization loop unfeasible. In addition, the limited accuracy of

40

w

u

Figure 2.6. The modified four-block problem with performance (Wp) and robust

stability (wn) weights

Figure 2.7. The typical robust stability weight Wn and performance weight Wp for a

low-frequency disturbance and high-frequency uncertainty

41

computer representation may cause the design procedure to fail in the case of ill-

conditioned matrix A of high dimensions. Note also that output weighting always

increases the dimensions of the equivalent augmented model by the number of outputs x

order of the scalar weight function model. One way to overcome these limitations is

proposed below.

2.3 Optimistic Lower Limit of Deformation Suppression

The main reason for the high computational cost of the H_ design procedure is that

it treats the closed-loop stability and performance requirements simultaneously, i.e. the

procedure yields both the best achievable H_ norm and the corresponding stabilizing (or

non-destabilizing) controller. This is justified in general, when the internal stability of the

closed-loop system is the major limiting factor for the closed-loop performance. This is

not necessarily true for flexible structures because of the characteristic relations in the

input and output dimensions of the four blocks, described by Equations (2.7),(2.8). A

feedback control cannot compensate for all defonnations, as there are much fewer control

inputs (/riu) than disturbance inputs (/Ww). Similariy, sensors cannot detect all deformation

shapes, as there are much fewer measurements (wiy) than minimized deformation outputs

{nij). That is, the system is not completely controllable from the control inputs, and not

completely observable from the measurement outputs. It means that for a flexible structure

the mapping of actuators and sensors is a performance limiting factor by itself, and internal

42

Stability requirement can be treated as a design constraint, adding indirectly to this primary

limitation.

The question is if it is possible to estimate the actual lower limit of deformation

suppression t (2.13),(2.16) without solving the design problem. One way to do this is

(a) by rela.\ing the internal stability requirement, Le. not requiring that the parameter Q is a

stable real-rational TFM, and (b) by using a frequency sweep to compute the //_ norm of

the disturbance - deformation operator. The central theoretical resuh of this study is the

following theorem which defines the optimistic lower limit for deformation suppression.

Theorem 2.1. If the parameter Q (s) in the definition of actual lower limit of vibration

suppression (2.16) is constructed from the TFM Gn, Gu, G21 and their adjoint

operators in the following way:

Q = -(GI; G,2) Gi", Gi, G;"! • (Gji G,*!) , (2.21)

then Equation (2.16) defines the optimistic lower limit of deformation suppression

in fle.uble structures, which is guaranteed to be less than (better) or equal to the

actual limit defined by (2.16). An alternative and computationally less expensive

way to compute the optimistic lower limit is based on the following frequency

sweep:

=sup5([c„ -{l/,, (v,, •V„')](ja.)). (2.22)
OJ '

Here the matrix Vn contains the left singular vectors of the FRM of the control -

deformation path Ga, which correspond to non-zero singular values of Gn (column-space

43

of Gn(jm)), and the matrix V21 contains the right singular vectors of the FRM of the

disturbance- measurement path G21 , which correspond to non-zero singular values of G21

(row-space of G21Um)).

The proof of Theorem 2.1 is provided in Appendix A.

Adjoint operators of stable real-rational operators are known to be anticausal or at

least to have anticausal components. Thus the ideal Q-parameter (2.21) always contains

two components: a stable one Q+, and an antistable one Q.:

(2.23)

That is why the ideal Q-parameter leads to an optimistic limit of deformation suppression,

which bounds the actual lower limit of deformation suppression from below and usually

can not be achieved.

To fmd a stabilizing Q-parameter one has to find the stable part of the parameter Q

A

and approximate the parameter QUm) by a TFM Q(s) E RH""' in the following sense:

(2 .24)
II<G 11 + Gl2 · Q · G21) -Gl2 ·Q_ · G2lt $ t oprimistic + I!G12 · Q_ · G211L

where t optimistic is the optimistic lower limit (2.22), and the term IP12 · Q_ · G21 jL is added

because of the internal stability requirement. The difference between the optimistic and the

actual limit is always less than the added termlp12 ·Q_ ·G21 L. One way to evaluate

IP12 · Q_ · G21 1L in the bounding formula (2.24) results in the Nehari theorem (Green and

Limebeer, 1995; Zhou, Doyle, and Glover, 1995), but this algorithm is slow and less

44

reliable compared to the direct H_ design by the two Riccati equation algorithm. The only

goal of this analysis is to show the place of the optimistic lower limit (2.22) in the H_

control theory.

It is not possible to estimate the difference between the optimistic and actual limits

for deformation suppression without evaluating both, however it is always possible to treat

this difference in a statistical sense on large enough sets of possible actuator and sensor

mappings. This allows the estimation of the difference with a certain probability that may

be acceptable in many real-life cases.

The main advantages of the optimistic limit (2.24) over the actual limit defined in

Section 2.2 are its numerical stability, remarkably low computational cost, and inherent

parallelism. These properties of the optimistic limit are discussed in the Chapter 3.

2.4 Major Results

1. The problem of deformation suppression in a flexible structure with //_ performance

index by means of a feedback controller can be recast as the standard four-block

disturbance attenuation problem, described in detail in modem literature on //_

control. The four-block model has four direct paths (four blocks) for the plant:

disturbance - deformation (Cn), disturbance - measurement (G21), control -

deformation (.Gn), and control - measurement (G22), as well as one controUer K

closing the feedback (measurement - control) path.

45

2. The actual/ower limit of deformation suppression in a flexible structure is defmed as

the minimal H~ norm of the disturbance - deformation path operator Tzw (with the

feedback controller K) over the set of non-destabilizing (all-stabilizing) controllers

~all-stab:

The problem usually can be solved for K by standard H~ solvers, e.g. the hinfopt

procedure of Matlab (two Riccati equations method).

3. The actual limit of deformation suppression has an equivalent representation in terms

of the Q-parametrization (the Youla-Kucera parametrization) of the controller transfer

function matrix:

K = Q · [I +G 22 · Q r,
tacruaJ = .minjjG11 +G12 ·Q ·G21ll .

QeRH: ~

4. A lower (optimistic) limit for deformation suppression is obtained by (a) relaxing the

internal stability requirement of Q E RH~, and (b) evaluating the H~ norm through a

frequency sweep rather then by the standard indirect way based on the state space

models (see the Theorem 2.1 for details). The evaluation of this optimistic limit is be

demonstrated in later chapters to be computationally less expensive than the evaluation

of the actual limit. The primary use for the optimistic limit is to avoid evaluation of the

actual limit for the actuator and sensor mappings when the optimistic limit already

46

violates (exceeds) the performance specifications, set by the deformation damping

requirements.

5. The FRM of the Q-parameter, corresponding to the optimistic limit in the Q

parametrization formula, is expressed in terms of the frequency response matrices of

the open-loop disturbance-deformation (G 11), and pseudoinverses of the control -

deformation (G 12) and disturbance- measurement (G22) paths:

Q(jw) = -G12 + (jw) · G 11 (jw) · G21 + (jw).

6. The TFM of this ideal Q-parameter is expressed in terms of the direct and adjoint

operators ofGtt. Gn, and G21:

Q = -(Gt; ·Gt2r ·Gt-2 ·Gtt ·G;t · (G2t ·G2-1r ·

Adjoint operators are guaranteed to have anticausal components, thus the ideal Q

parameter always contains two components: a stable one Q+, and an antistable one Q.:

That is why the ideal Q-parameter leads to an optimistic limit of deformation

suppression, which is always better (less) than the actual limit.

7. It is not possible to estimate the difference between the optimistic and actual limits for

deformation suppression without evaluating both limits. However it is always possible

to treat this difference in a statistical sense on large enough sets of possible actuator

and sensor mappings. This allows the estimation of the difference with a certain

probability, that may be acceptable in many real-life cases.

47

8. Information on the external disturbance spectrum, as well as on the flexible structure

model errors, is added to the four-block problem as weighting matrices, by means of

the standard mixed sensitivity formulation. This leads to increased system dimensions

and hence to increased computational expenses.

48

3 MAPPING OPTIMIZATION WITH H_ PERFORMANCE INDEX

3.1 General Concepts

According to Chapter 1 of this study, a procedure for actuator and sensor mapping

optimization involves evaluation of the lower limit of deformation suppression in a flotible

structure within a mapping search loop. As was demonstrated in sections 2.2 and 2.3, for a

particular mapping it requires to compute either the optimistic lower limit (2.22), or the

actual lower limit (2.16) for the four-block problem (see Figure 3.1 for the system

description).

Computational procedures for the optimistic and the actual lower limits can be

characterized by the following factors:

1. to tal CO mputatio nal co st;

2. amount of reusable computations;

3. computer storage needs;

4. variability of computational cost;

5. ease of parallelization.

Factors 1-3 are equally important for the serial and parallel computational schemes, while

the factors 4 and 5 enter the picture only with parallel computations. Property 4

(variability of the computational cost) depends on the particular problem, especially on the

particular mapping. Because mapping optimization is usually conducted over a large set of

possible mappings, this property is more naturally treated as a random variable

w
•

Figure 3.1. The four-block H. design problem (a) and description of the plant (flexible

structure) in that problem (b)

H Ytest

yes: desired
accuracy is reached

no: continue
iterarions

increase yiest decrease yicst

The two Riccati
equations solver

A ^2
C: Dn Dn <->

^21 1
Q

Gli Gi2

G , , G 2 2 .

(b)

(a)

Figure 3.2. The y-iteration algorithm

50

described by the standard statistical properties, such as the mean, minimum and maximum

values, standard deviation, and probability function.

Because the efficiency of a search strategy depends crucially on these properties,

the properties of the two lower limits are considered first (Sections 3.2 and 3.3), and

appropriate search schemes are proposed later.

3.2 Computational Properties of the Actual Lower Limit

The actual lower limit of deformation suppression (2.16) is computed by means of

the conventional //_ design tools. Currently the most popular method to solve the four-

block H_ design problem is the y-iteration based on the two-Riccati-equation algorithm

(see Green and Limebeer, 1995, Zhou, Doyle and Glover, 1995). This algorithm is used,

for instance, in the Robust Control Toolbox of Matlab (procedures hinf, hinfopt). The

y-iteration is based on the following concept:

If the inverse of an unknown performance index is defined as y*, i.e.

(3.1)

then it is possible to construct a procedure that can verify if a test value ytts is smaller or

larger than y*. The flowchart for this procedure, known as the two-Riccati-equation

algorithm is depicted in the Figure 3.2. This is exactly how the hinf procedure of Matlab

works.

51

It is always possible to approximate the actual value of y* with a desired accuracy

by adjusting Yuai. For example, one can use the binary search (see Figure 3.3). This

iterative search is usually referred to as the y-iteration method, and this is exactly how the

procedure hinfopt of Matlab is designed. Note that the two-Riccati-equation algorithm

(Figure 3.2) requires five evaluations of eigenvalues (and in two cases also eigenvectors)

of large Hermitian matrices. The accuracy of the algorithm depends crucially on the

threshold used to detect the eigenvalues with zero real parts. The accuracy of the results

deteriorates rapidly as the order of the model state grows, meaning that the applicability of

the method is limited to models with a few hundred states.

An analysis of the flowchart in Figures 3.2 and 3.3 leads to the following

conclusions:

1. The computational cost of an //_ design is proportional to the cube of the number of

states of the flexible structure model, i.e. it is approximated by O(mx^) flops - see

Table 3.1.

2. The 7-iteration algorithm has no obviously reusable parts.

3. The required computer storage includes (a) storage for the initial state-space model

matrices {ABCD}, and (b) intermediate storage for the Eliccati equation solver. The

sizes of these two storage areas are proportional to the square of the number of

states, i.e. they are approximated by O(mj^).

4. The computational cost of a single y-iteration is not constant because the algorithm

has at least three exit points (see Figure 3.3). Computational cost of each major

component of the two-Riccati-equation algorithm (Figure 3.3) is not constant either,

as it involves spectral decomposition of a Hermitian matrix, which itself is an iterative

process with variable cost. Finally, the computational cost of the whole y-iteration

algorithm is not constant because of the variations of the computational cost of the

building y-iterations, and also because the number of iterations necessary to achieve

the prescribed accuracy is not constant. Standard descriptive statistics of the

experimental computational cost for several flexible structures is provided in Chapters

4 through 6, demonstrating that the cost variations are moderate, at least for the

considered problems.

The parallelization of the y-iteration algorithm is possible only by parallel

implementation of the Riccati equation solver, as proposed by Gardiner and Laub

(1991), Rogers and Li (1993). Such a parallelization involves extensive

communications between the computational nodes, hence its efficiency on networked

cluster of nodes is much worse than on shared memory machines. Rogers and Laub

(1993) tested their scheme on a hypercube architecture and found that a load equalizer

utility is necessary to distribute the computational load evenly and achieve significant

speedup.

53

Table 3.1. Computational cost of the actual lower limit (2.16)

Operation Matlab style code Rops estimate

1 H _ design [] = hinfopt(A,Bi,B2'^i>^2'-")

Y test

no

yes

no

yes

Solve the Riccati equation

Form the l®* Riccati equation
(the controUer equation)

Form the 2*^ Riccati equation
(the observer equation)

Solve the 2 Riccati equation

Figure 3.3. The two-Riccati-equation solver

55

3.3 Computational Properties of the Optimistic Lower Limit

The computation of the optimistic lower limit (2.22) includes two steps. First, the

frequency responses GU, Gu, G21 are computed from the state-space matrices, and,

second, the optimistic lower limit (2.22) is computed from these frequency-responses.

These two steps require operations to be performed for every frequency 0)i from a pre

defined set of frequencies {cOi}. There are two possible ways to organize this frequency

sweep:

• as a single sweep, which evaluates both the frequency responses Gii(/C0i), GuOox),

GiiOoJi), and the partial optimistic lower limit /(cOi) at the current frequency Q\;

• as two separate sweeps, one to compute and store in computer memory the frequency

responses Gu, Gn, G21 for all the test frequencies {cOi}, and the second to evaluate the

partial optimistic lower limits for the stored test frequencies.

The second method with two separate sweeps requires more computer storage than the

first one. However the first sweep is obviously a preparatory one. Therefore it can be

isolated and made a one-time overhead if several mappings are to be evaluated. Hence

only this case is considered further in connection with mapping optimization based on

exhaustive search and genetic algorithms.

The flowchart of the proposed algorithm for the optimistic lower limit is depicted

in Figure 3.4. The following assumptions are made:

(i) mu actuators and my sensors are to be placed in locations selected from Mo and My

possible ones; the corresponding 'Targe" matrices A2'^2i'^z!'^i2'^2i'^22

56

are marked with the symbol "-" to distinguish them from the regular matrices

standing for a particular mapping of actuators and sensors; the regular matrices

G 12 ,G21 ,G22 are extracted from the "large" ones G12 ,G21 ,G22 depending on the

true mapping of actuators and sensors;

(ii) the number of frequencies for the frequency sweep is proportional to the model order

mx, i.e. the dimension of the state matrix A;

(iii) the number of possible locations of actuators and sensors, Mu and My, is proportional

to the model order mx;

(iv) the order of the disturbance vector, mw, as well as the order of deformation vector, mz.,

is proportional to the model order, mx (this is typical for models arising from finite-

element models);

(v) the number of possible mappings, N, varies roughly by the factorial of Mu, mu, My, my;

in the case of non-collocated actuators and sensors N is given by:

N '- Nl
N - em· . Cmy - " . Y • N N (3 2)

- N. Ny - m '-(N -m) Lm I.(N -m)1' mu << u• my<< y· 0

u· u u. y· y y •

In the case of collocated actuators and sensors, which are usually used because of

improved overall stability (see Martin,1978; Safonov, Chiang, and Aashner, 1991) N

becomes

An analysis of the flowchart in Figure 3.4leads to the following conclusions:

A
C: DN

^22.

the I" frequency sweep

"ll <^12

Stage 1 ends

Mapping parameters

Extract the current model

Computer storage

<^12

the Z"*" frequency sweep

Evaluate the optimistic
lower limit (2.22)

L(^ i)

Stage 2 ends
f = s u p r (f f l ,)

yes

Figure 3.4. Algorithm for the computation of the optimistic lower Umit (2.22)

58

1- The computational cost of the optimistic lower limit, computed according to the

flowchart in Figure 3.4, has a certain structure (see Table 3.2). The fu:st step of the

algorithm costs about 0{m*), and the second step of the algorithm costs about Oint:d-

As is demonstrated below and in Table 3.3, it is the second step with the much smaller

cost 0{m^, that actually implements Equation (2.22) as it stays inside the search loop.

2. As proposed earlier, the "large" E^RM can be stored in computer

memory, and the current "small" FRM Gi2,G2i,G22. corresponding to the tested

mapping can be just extracted from the large ones. Hence the FRM 0^2 .^21 ,G22 are

100% reusable. As the main portion of this cost, Le. the evaluation of the E^RM

Gi2,G2i,G22, is represented by the term Oim*), this first step can be considered as a

one-time overhead and moved out of the search loop. In the case when the optimistic

lower limit is evaluated several (iVmai) times, the cost of this one-time overhead per

evaluation of (2.22) is 0(rax'') divided through iVmai- As /Vmai grows by the factorial, i.e.

much faster than the polynomial (9(mi'*), it is the cost of the second step (0(mx)) that

will dominate the mapping optimization for sufficiently large models. This idea is

clearly demonstrated by the computational cost estimates given in Table 3.3.

3. Computer storage necessary to store the large matrices ^12,^21,622' ^ roughly

estimated as 0{mx).

4. Variations in the computational costs for each mapping evaluation can be assumed to

be insignificant. The only source of such variations is the iterative nature of the two

59

SVD-s required for optimistic limit evaluation (see the Expression (2.22)). A sense of

the computational cost variations for a simply supported beam problem is given in

Chapters 4 and 5.

5. The optimistic lower limit (2.22) is easily parallelized, as it is based on the frequency

sweep. The latter allows to assign a computational node to a subset of test frequencies

and perform evaluation and storage of a subset of "large" FRM G121^21,022^

extraction of the subset of "small" FRM 0^2 .G21,622. and evaluation of partial limits

/(CO) on this node.

3.4 Mapping Optimization with Exhaustive Search

Let c be the vector of location parameters, which encodes a mapping of actuators

and sensors, and C^n is the full set of all possible mappings, which includes Nau mappings.

The following algorithm performs straightforward mapping optimization, based on an

exhaustive search procedure using the actual lower limit of deformation suppression.

60

Table 3.2. Computational cost of the optimistic lower limit (2.22)

with the number of test frequencies m(proportional to the state order m*

Operation Matlab style code Hops estimate

1.1 { jCOi - l -A) ' ^ Ematj = l/G'WiM-A)

1.2 G-n =Ct 'Ematj *6, +Dii rain(mi,/nw))

1.3
Gi2 =Ci 'Ematj *§2 +D12 0(mx"niin(mzAi))

1.4
Gix i joJ- ,) G21 — C2 Ematj B.| +D21 min(iVy,/nw))

1 total 1.1.. 1.4 for mt =c mj, frequencies

2.1 [Ui2.,] = svd(Gi2) 0(mj)

2.2 V2I(M) [U21,.] = svd(G2i) 0{my^)

2.3 IW tj = norm(Gii - (9(max(/n:,mw)^)

2 total 2.1 ..2.3 for mt frequencies O(mx')

Table 3.3. Comparison ol searcfi algoriilims based on the optimistic lower limit (2.22) and on the actual lower

limit (2.16). Total A'um trials, A'l.cw updated mappings per iteration

Search algorithm Optimistic lower limit (2.22) Actual lower limit (2.16) Search algorithm

total flops flops per trial total flops flops per trial

the first computed once s
' o

+

"

O(mx^)

the first step computed

every A'new trials
c,,,,I N,,.

\ new J

fO(wi/) ^
• -fO(,«.)

V "«•
0(mx^)/Vu„i O(mx^)

62

Algorithm 1 (base exhaustive search).

1. Evaluate the actual lower limit for all possible mappings ce Cau.

2. Find the best mapping :

^actual ^actual = min (c). (3.4)

Estimated computational cost for this algorithm is

Cost = • Cost^^, (3.5)

where Costactuai is the computational cost of actual lower limit evaluated for one mapping.

Unfortunately the optimistic lower limit cannot be used by itself to find the best

mapping of actuators and sensors. An exhaustive search with the optimistic lower limit as

its goal function

^ optamiac ^ opnmaac^^ aptmuru:^ ^ optimisnc ' (3.6)

will produce an optimal mapping , which does not have to be the same as .

Hybrid Search Procedure

Of course, one is more interested in the result produced by the optimization with

the actual lower limit, which unfortunately comes at a huge computational cost. The two

lower limits have to be combined in order to benefit from the low computational cost of

the optimistic limit, and the accuracy of the actual limit procedures.

63

Assume that one has set a target of !target for the deformation suppression, i.e. it is

desired to determine the best mapping of actuators and sensors c :ctual, which provides a

closed-loop performance index of at least !target:

.. - (*)- . () <
tactual - tactual c - mm tactual c - t target '

ceCaJJ
(3.7)

Based on the properties .of the optimistic lower limit (2.22), any mapping c whose

optimistic limit exceeds the target limit, i.e.

!optimistic(C) > !target ,

can be safely discarded, as it is guaranteed that the actual limit will be also over the target

limit:

factual(C) ;::: !optimistic(C) > !target ·

Hence only the mappings with optimistic lower limits less than the target limit are good

candidates, and it makes sense to test for the actual lower limit on this mappings only.

This suggests the following mapping optimization algorithm based on exhaustive search.

Algorithm 2 (improved exhaustive search).

1. Evaluate the optimistic lower limit for all (Nau) possible mappings CE Cau-

2. Discard the mappings with the optimistic lower limit over the target limit, i.e.

!optimistic(C) > ftarget , (3.8)

This leaves a subset of mappings, Coptimistic(ttarget), with Noptimistic(trarget) mappings,

which depend on the selection of ftarget·

3. Evaluate the actual lower limit for all mappings in the subset Coptimistic. and fmd

the best one,

64

(3.9)

A designer could be optimistic when setting the target, since he would have no

advance knowledge about the limits of deformation suppression before the mapping

optimization is performed. The optimal mapping c • found by the Algorithm 2 is

guaranteed to be the best possible mapping in the full set Cau, only if it satisfies the target

limit requirement (3.7). The reason is that if the target is set to a value less than the

optimistic limit for the mapping c:zual (3.4),

this mapping will be discarded at Step 2 of Algorithm 2. Hence Step 3 of the algorithm

will just find the best mapping of what is left in the subset Coptimistic(trarger). This is one of

the hidden caveats associated with the target selection.

Computational savings provided by this algorithm versus Equation (3.4) depend on

the selection of the target and on the properties of the optimistic lower limit for the

problem considered. These ~avings can be estimated as

. N.u· Costoptimisric + N optimistic(ttarger) · CostaclWll Noptimislic(ttarget)
Savmgs """ 1- """ 1- N . (3.10)

N au · Cost aczual a11

Also the speedup of Algorithm 2 is roughly estimated as

S d
N a11 • Cost actual N a11

pee up= """
N all · Cost optimi.rtic + N optimistic (t target) · Cost actual N optimistic (t target)

(3.11)

In order to improve Algorithm 2 further, it is necessary to come up with some

strategy for the assignment of the target limit, which does not require to solve Equation

65

(3.4).It is also necessary to predict the possible difference between the actual and

optimistic lower limits for the same mapping. A statistical analysis of the relative

difference between the optimistic and the actual lower limits is one way to do this. The

procedure is described below.

Definition 3.1. The relative difference between the optimistic and the actual lower

limit of deformation suppression, x(c), is defined in the following

way:

f
j c (c)= —1>0 . (3 .12)

^ optimisnc (c)

Thus the following formula is correct:

= ^op,x„^(c)-(l + 4c)). (3.13)

It is assumed that the reasons for the limits to be different are unknown (although

in reality they are deterministic). Hence for a sufficiently large set of possible mappings the

relative difference x can be treated as a random variable with certain statistical properties.

If one knows the function P{x) that defines the probability that the relative difference

between the optimistic and actual limits for a given mapping is less than or equal to x, and

its inverse function x{P), then there are exactly Na = l^airP{a) mappings such that x{c)<a.

In other words, there are exactly Na mappings such that

^actual (c) ~ ^optxmisric (C) (l + f l) ,

and Mail -Na mappings with

^actual (c) > ̂ opamistic (C) (l + f l) .

66

The following statements are then valid.

1. With confidence P = P{x) there is at least one mapping with the following actual lower

limit:

^ nrru t j l (C) ~ ^Optimistic [l + x iP)) .

Hence one can pick the target limit value of

^target (P) ~ ^optimistic

and with confidence P the search based on Algorithm 1 will not miss the best mapping

 ̂actuoi '

2. With confidence P the actual lower limit is larger than the following value:

^actual (c)> ̂ opti/nistic (c) (l + x (l -P)) .

With this in mind, the following statistically improved search algorithm was constructed.

Algorithm 3 (statistically improved exhaustive search).

1. Evaluate the optimistic lower limit for all possible mappings c&Cjn, total Naii

mappings.

2. Find ±e best optimistic lower limit as

Cprunistic = (c) • (3.14)

3. Evaluate the actual lower limit for N,ample randomly selected mappings, and

approximate the p robabi l i ty func t ion P(x) and i t s inverse x{P) .

4. Set the target limit with confidence Pi:

67

(/"l) = t'opiun:^ " + ^^1)) - (3- 15)

5. Discard all mappings with optimistic lower limit over the following value (the

opt imis t i c t a rge t wi th conf idence (P i , P2)) :

_ . H-.t(Pi)
^oprimisiic ^ ^aptimisnc uxrget' ' 1' ' 2 I + JC(1 — /^) ^ ^ _ p ^ '

which leaves a subset of possible mappings CoptimutidPi, Pi) with

}^cpum,st^{P\, Pz) mappings.

6. Evaluate the actual lower limit for all mappings in the subset CoptimtsudPu Pi),

and find the best one,

t ' = t^^{c ')= min f^(c). (3.17)

By setting Pi=l one guarantees that the target limit will be satisfied, but only by setting Pi

= P2 = 1 one can guarantee that the mapping with the best actual lower limit c^raoi ^

found. The accuracy of this statement depends on the accuracy of the probability function

estimate obtained with N^ampu tests at Step 2.

The computational savings and the speedup provided by the statistically improved

exhaustive search (Algorithm 3) are slightly different from Expressions (3.10) and (3.11)

in that they have to include the cost of N^oinpte samples.:

^ all optmistK ^ ^ uonpU ^ optimbxic jP^ , P ,)) • Cos t^

(3.18)

Savings = 1 - • ., ^
^aU ' actual

, ^ sampU ^ optimtsac

68

_ T ^ aU ' Speedup =
l^all • Cost+if^«unpU + ^of^unc (̂ 1 . ̂2)) " COSt^^ ^ sa^ pn.

^oa

^sampU •'" ^oplaniiac (' ̂ 2)

The improvement is achieved by reducing number of mappings NoptunMciPi, Pi) in the

subset Coptimistic(.P 11 Pi)-

3.5 Mapping Optimization with Genetic Algorithm

In real life a flexible structure may be so complex, and the number of possible

mappings so big, that computer limitations would not allow one to use the exhaustive

search, as proposed above. In such instances one should turn to alternatives of the

exhaustive search. One possible alternative provide genetic algorithms (GA).

The concept of GA as a search technique based on mimicking Darwin evolutionary

process was introduced by John Holland in 1975 (see Holland, 1975). Being mainly

empirical technique, GAs rely heavily on computational power of the environment they are

run in. Back in 1970s-80s computers lacked that power, and the active research and

development of feasible implementations of GAs were delayed until late 1980s. It is not

easy to mention every researcher who contributed to the evolution of GAs into useful

practical tool, but some major contributors are Davis (1991), Goldberg (1989),

Michalewicz (1996), Syswerda (1989). Several successful computer implementations of

GAs were developed and penetrated die practical application area, e.g. GENITOR

69

(Whitley, 1988) and PGAPACK based on aC++ (Levine, 1995), GEATbx for Matlab

(Pohlheim, 1996), GENESIS in LISP (John Grefensiette, see Davis, 1991). GAs are

currently considered as a powerfiil approach within the area of evolutionary computing

(Michalewicz, 1996; Back, 1996).

The main concept.

Assume that it is necessary to minimize a function/(.ri,..., JTO) of several integer parameters

(Le. a goal function), with parameters constrained in certain ranges. GA treats each point

in the corresponding subspace of parameters as an individual, described by its unique

genotype { JCi,..., Xn }, and possibly non-unique phenotype (value of the goal function).

Each individual is represented in GA by its chromosome, i.e. the binary string constructed

from m-bit binary representations of the parameters ,ti.. Xa with leading zeros, glued

together (for example see Figure 3.5). A GA always operates on a set of individuals

existing simultaneously (population). Each individual in the populations has a fitness value

reflecting how good is it compared to the others.

In short, a standard sequence of events in a GA is the following.

1. Create initial population including M individuals (initialization can be partially random,

some known good individuals can be inserted in the initial population deliberately to

boost the evolution speed).

2. Evaluate the population fitness (see subsection "Fitness evaluation" below).

70

Binary chromosome

(*1)10=3 (^2)10=7 (-*3)10=15
^ ^ ^

(*1)2=0011 (*2)2=0111 (;C3)2=1111

1
0011 0111 0111

assuming 0 < (Aj)io^ 15

Figure 3.5. Construction of a binary chromosome

71

3. Construct children, Le. new individuals (or rather their chromosomes) from the

genetic material existing in the population. Children are constructed by means of

operators from selected parents. See subsections "Operators" and "Parents selection"

below.

4. Construct a new generation either by replacing the parents with their children {the

generational replacement), possibly preserving the best parents (the elitist strategy),

or make the children and parents compete and erase the N worst individuals (the

survival of the fittests and the steady-state reproduction, see Syswerda, 1989;

Whitley, 1988). Eliminate duplicate chromosomes from the population, or leave as it is

(the overhead required for steady-state population without duplicates is usually

justified by real-life demands, as fitness evaluation is usually the most time and effort

consuming part of the GA, see Goldberg and Richardson, 1987; Deb and Goldberg,

1989; Davis, 1991).

5. Repeat from the Step 2, until termination criterion is satisfied (usually it is the

population uniformity test based on the genotype and the phenotype comparison;

sometimes it is a limit on the number of generations).

Evolutionary pressure is exerted through (a) elitist strategy (b) survival of the fittest and

(c) increased reproductive ability of the fittest parents through the parent selection

mechanism.

72

Parent selection

When selecting parents, one usually wants to give priority to the parents which

have better fitness. The easiest method is a roulette wheel where each individual has a

chance to be selected with a probability proportional to its fitness. Another rule a random

tournament (see Davis, 1991).

Fitness evaluation

The basic methods used for computing the individual fitness are listed below. A

number of less common methods and their detailed discussion is available fi"om Baker

(1989) and Michalewicz (1996).

1. Evaluation is fitness: i.e. value of the goal function is assigned as the fitness

value.

2. Windowing (first time implemented in GENESIS): find the minimum evaluation

in the population, and apply the formula:

Qtness(chromosome) = evaluation(chroraosome) - minimum.

More elaborate modifications of this approach were used by some researchers

(Davis, 1991).

3. Linear normalization: order chromosomes by decreasing evaluation (goal

function), assign fimess starting with some constant value (the best

chromosome gets the highest fitness) and decrease linearly (the constant value

and the decrement are parameters of the method).

73

4. Nonlinear normalization: similar to the linear normalization, but the fitness is a

non-linearly decreasing function.

5. Fitness with history: fitness is evaluated according to any of the given

techniques, but it is increased if the individual already produced any good

children.

Operators

The simplest operators for binary chromosomes are the mutation and one-point

crossover (Figure 3.6). The one-point crossover is actually borrowed fi'om nature, it was

introduced by Davis (1975). The two-point crossover (Figure 3.6(c)) as well as more

general multi-point crossovers have no analog in nature.

Many GA practitioners claim that if the crossover operators are eliminated firom

the reproduction mechanism, resulting algorithm is no more a GA. The crossover (or the

sexual reproduction) allows rapid combination of beneficial new traits in a way that cannot

be duplicated by mutation. Crossover works like combining building blocks of good

solutions from diverse chromosomes. According to Holland (1975), each building block is

"schema". GA manipulates schemata when it runs. This is asserted by the principal

theoretical result, explaining successful functioning of GA as a search algorithm, i.e. the

ioWomiig Holland's Schema TTieorem (Holland, 1975^:

Let r be average fitness of all chromosomes in the population containing S

schema. Let« be the number of chromosomes in the population containing

S. Let a be the average fitness of all chromosomes in the population. Then

74

expected number of occurrences of 5 n the next generation of the

population is

nr
disruptions caused by mutation and crossover.

a

Because there always exist schemata that cannot be created from the given

population using one and two-point crossovers, Syswerda (1989) suggested to use the

uniform crossover, or creep, where each bit of the kid is borrowed randomly from one of

the parents. It has been found that uniform crossover with generational replacement and

allowed duplicates is inferior to one- and two-point crossover algorithms (Davis, 1989),

probably because the uniform crossover can do a great deal of violence to what is good

on a chromcsorae.

Another imponant issue is the operation selection. Davis (1991) suggests to

manipulate the probability of calling each operator during the GA run. One can assign

fitness to every operator used in the GA, and select operators based on the same

mechanism as used for parent selection (fitness-based roulette, tournament). Operator

selection is considered adaptive, if the fltness is manipulated based on the history of

success of operators (an operator is considered successful in a generation n if it created a

kid which was better than the best parent). It is possible also to change the fitness

according to a predefined schedule (e.g. more crossovers in the beginning, more mutations

in the end), the approach is usually called interpolated selection.

Because a binary GA is very inefificient when fine-tuning the optimum point in the

end of run, it is usefW either to include gradient-based search, or local mutations. Local

75

binary mutations can be created using Gray code and limiting the number of mutating bits

(Shaffer et al, 1989; Cellier, 1991).

Finally, it is possible to either to use only one operator from the list of operators

when generating kids (crossover, mutation), or first mutate and then after apply crossover

to generate kids. The second approach is considered more classical, while the former one

allows more aggressive search at the beginning and better preservation of good schema in

the end of the G A run.

According to Holland (1975), GA has intrinsic parallelism, i.e. GA is

manipulating a large number of schema (chromosomes of individuals) in parallel. The

reproduction mechanism together with crossover make the best schema proliferate in the

population, while mutations provide necessary diversity of the population. The power of

this parallelism is unleashed in massively parallel computational environment, provided by

shared memory multiprocessor machines, and large networked clusters (see PGAPACK by

Levine, 1995, and also the GA realization proposed in this study. Section 3.6 and

Appendix C).

76

Mutation

Parent Mutated parent .,.-§.:-·; __ ___., .,..
mutating bit mutated bit

(a)

One-point crossover

Parents Children

(b)

Two-point crossover

Parents Children

Crossover points
(c)

Figure 3.6. Crossover and mutation operators: (a) mutation; (b) one-point crossover;

(c) two-point crossover

77

According to Davis (1991), a GA implementing the generational replacement with

elitism and linear normalization is considered a classical, or traditional GA. This approach

was adopted as background for se for the following base genetic algorithm, which is

intended to replace the base exhaustive search with actual lower limit (Algorithm 1), as

defmed by the expression (3.4).

Algorithm 4 (base genetic algorithm).

1. Construct the initial population by randomly selecting Npcpuiation mappings

{c]population- Evaluate the population using the actual lower limit as the goal

function, assign fitness etc.

2. Create a set of children {c}chiidren- Evaluate the goal function, assign the fitness,

insert the children into the population.

3. Return to the step 2 if the termination criteria are not satisfied.

The flow of this algorithm is principally the same as that of Algorithm 1: huge

computational cost.

This algorithm can also be improved by introducing the optimistic lower limit and

the statistical description of the relative difference between the actual and optimistic lower

limits. One possible realization of the statistically improved GA is described in the

flowchart in Figure 3.7 and in Table 3.4, in general it follows the recommendations

provided by Davis (1991). Because this algorithm exploits the ideas of the statistical

improvement developed in the Section 3.4, it has many common features with

78

Algorithm 3. Steps 1-4 of Algorithm 3 are performed at the stage of initial population

seeding of the statistically improved GA. Then Steps 2-4 are reiterated after every

generation update during the GA execution. The speedup achieved with this GA is better

or equal to that of the base GA (Algorithm 4), while the probability of finding the best

mapping is less than or equal to that of the base GA The difference between the two GAs

depends on the properties of the GA and of the flexible structure modeL

Algorithm 5 (statistically improved genetic algorithm).

1. Construct the initial population by randomly selecting N popula1ion mappings

{c }populalion· Evaluate both the actual lower limit and the optimistic lower limit for

all members of the initial population. Assign fi.tnesses based on the actual lower

limit. Estimate statistical properties of the relative difference x(P), with P(x)

based on the initial population. Assign the current optimistic target as in (3.16),

i.e.

. 1 + x(~)
t curwu oprimilric ltugtl (PI ' p2) = m m t optimistic (c) . __ ___;_....:....:...__

ce(cJ,.,..,... 1 + x(l - P2)
(3.20)

2. Create a set of children { c} children from the individuals in the current population,

using the parent selection, operators, and operator selection criteria defined in

Table 3.4.

3. Evaluate the optimistic lower limit for all children.

4. Evaluate the actual lower limit for children which meet the condition

t optimistic (C) ~ t currem optimistic lllrgtl (~ ' p2) ' (3.21)

79

and assign the actual lower limit as

for the rest of the children (i.e. for the mappings that do not meet condition

(3.21) above).

5. Assign the fitness of the children based on the evaluated actual lower limit and

insert the children in the population.

6. Update the current optimistic target (3.20) based on the current population.

7. Update the statistics x(P), P(x) by adding the new population members.

8. Return to Step 2 if the termination criteria are not satisfied.

Steps 6 and 7 are optional. Step 6 dynamically improves the accuracy of the target limit,

but could also be left without updates. Step 7 improves the estimated statistical properties,

but it also makes the statistics biased toward the better mappings. Thus it adds to the

evolutionary pressure and may lead to premature convergence to a local minimum.

It is difficult to estimate the speedup of Algorithm 5 over Algorithm 4. The only

way is to run a series of experiments and analyze statistics of the runs.

80

Table 3.4. Properties of the Genetic Algorithm.

Property Value or setting

Coding Simple binary (fixed-length single chromosome)

Generation update scheme 1. A constant pool size.

2. The fittest among the parents and children survives.

3. The duplicate genotypes are allowed.

4. A population roster is maintained to avoid the goal

function re-evaluation

Children reproduction rate 1/3 of the population size.

Operator selection scheme A roulette wheel based on the fitness.

Operator fitness The operator fitness is adapted according to the pre

defined rules (a linear change).

Parents selection scheme A roulette based on the fitness.

Individual fitness Simple ranking and linear fitness/or distinct genotypes

only.

Operators used 1. A far (large) binary mutation.

2. A Gray (near) binary mutation.

3. A uniform binary crossover (creep).

4. A one-point binary crossover.

Termination criterion A predefined number of iterations.

81

GA part Problem-spec ifi c part

I Randomly seed the population J ..
Evaluate the optimistic lower limit ..

Evaluate the actual lower limit l
Create ..

Estimate the probability function
P(x) and the current target ltar~t

Population

I Evaluate the fi tness I. I Roster I

• l
I Produce the children

+
Check the constraints

I +
Check out duplicates from

the Roster

I ~
Add

I Evaluate the optimistic lower limit

+
Compare with the target, penalize

bad mappings

I
I ~

Update the

I
Evaluate the actual lower limit

qxrators
_+

Update the probability function P(x)
and the current target ltargl!t

_L

:E

I Insert kids in the population
-,--

..
I Update the fitness I ..
I Kill the worst individuals I

I Figure 3.7. Diagram of the GA +

82

3.6 Parallel Realization of Search Algorithms

The GA described above includes two separate blocks: "Evaluate the optimistic

lower limit" and "Evaluate the actual lower limit", which contain the compute-intensive

part of the population update (once per generation). In general each of these two blocks

can evaluate from 0 to ^children max mappings (individuals, according to GA terminology),

the evaluation of each individual being independent from the other mappings. Hence the

computations in each of these two blocks can be organized in a parallel manner, when the

evaluation of each individual is run in a separate execution branch, as is shown in Figure

3.6 (b). If there are several CPUs available in the system, the parallel code will distribute

the computational load over the available CPUs, resulting in certain speedup compared to

the serial / single CPU version of the code. The exhaustive search algorithms, described in

this chapter, can be parallelized in a similar fashion.

There are several system mechanisms that can be used to implement the parallel

code from Figure 3.8(b). In this study only one of those is considered: the Message-

Passing Protocol, or MPI (Gropp, Lusk, and Skjellum, 1994), a public domain software,

which has become a de-facto standard that is implemented on the majority of operating

systems. Although MPI represents a classical UNIX-style solution, it has also been ported

to Windows NT 4.0, with a commercial version available from the MPI Software

Technology Inc. (WWW link: http://www.erc.msstate.edu/mpi/mpiNT.html).

Another possible implementation is multithreaded executaion, which was

introduced recently for the popular operating systems, Windows NT/95, Solaris, AIX-4,

http://www.erc.msstate.edu/mpi/mpiNT.html

83

Linux (kernels 2.0.32 and higher). Parallelization based on multithreading is built into

Matcom V3 (Matlab to C-H- compiler developed by Mathtools Inc., 1997) for the

Windows NT 4.0 and Sun Solaris 2.6 operating systems. Any real speedup with

multithreaded execution is possible only on systems with multiple CPUs. Unfortunately no

systems of this kind were available to the author at the time this manuscript was compiled.

Hence this option is left for fiiture research.

For the problems considered in this study typical delays associated with data

transfers between the main code and parallel branches constitutes a tiny fraction (less than

0.01%) of the time spent in the execution branch, because only the optimization

parameters (positions of actuators / sensors) are sent to parallel nodes, Le.

communications are limited to only a few kilobytes per 5-10 minutes. This means that the

data transfer delays should not contribute to the efficiency of the parallel implementation

of the considered algorithms, and the performance of computer clusters should be similar

to that of the shared-memory machines. Concrete implementation of these algorithms and

experiments with different cases on single and multiprocessor machines are described in

Chapters 4 through 6.

84

{Individual i }i<,<vchildren

Individual i

Branch 1

Individual j
r

Branch 2

1

•

i

»•

Individual .vcjijton

Branch ycbildreo

I
(a)

{ Individual 1 } 1 <J<V childrcn

Individual Individual Individual vchudim Individual -

Branch 3 Branch 2 Branch I Branch

(b)

Figure 3.8. Serial (a) and parallel (b) organization of evaluation of the individuals

in the GA

85

3.7 Major Results

1. An analysis of the optimistic lower limit evaluation procedure indicates that the most

of the computational cost is due to the evaluation of the FRMs for particular

mappings. It is proposed to replace this step by (a) the evaluation of "large" FTlMs,

including all possible locations of actuators and sensors (only once) moved out of the

mapping optimization loop, and (b) the extraction of the FRMs, corresponding to an

evaluated mapping from the 'large" F^RMs.

2. An algorithm for the optimistic lower limit evaluation is proposed. An analysis of this

algorithm suggests that it is internally parallel and renders itself easily to external

parallelization by GA or exhaustive search.

3. Performance of search algorithms discussed in this chapter is compared to the mapping

optimization procedure based on exhaustive search with actual lower limit in the goal

function (Algorithm 1).

4. The improvement of Algorithm I is achieved by hybridizing the actual and optimistic

lower limits (Algorithm 2). First the optimistic lower limit is computed for all possible

mappings {Naii mappings), then a target limit {t,arget) is set for the mapping

optimization, and Anally the actual lower limit is evaluated only for the mappings with

the optimistic lower limit less or equal to the target limit {Nopt,mxsucUtarget) mappings).

Estimated speedup is roughly equal to

86

5. Further improvement of the exhaustive search is proposed based on the statistical

properties (probability function P{x)) of the relative difference between the actual and

optimistic lower limits, defined as

X = 1.
^opnmisTic

This statistical approach allows one to reduce the target limit to a certain safe margin

with a specified confidence level to miss the best possible mapping. Thus the number

of mappings for which the actual lower limit is evaluated can be reduced, and speedup

increased.

6. A GA is proposed for the mapping optimization, which includes estimation and

dynamic update of the target limit and statistics Pix) of the relative difference x. This

algorithm takes full advantage of the improvements proposed above for the exhaustive

search, but allovs analysis of flexible structures and actuators / sensors with very large

number of possbb mappings, when exhaustive search becomes prohibitive.

7. Various approidies for parallel realization of the mapping optimization were

considered. One ot" those, based on the Message Passing Protocol (MPI), is to be

tested funher.

87

4 EXAMPLE 1; THE SIMPLY SUPPORTED BEAM

4.1 Problem Description

A model of simply supported beam with two collocated actuators and sensors (see

Figure 4.1) was considered as a testbed for the mapping optimization algorithms

developed in Chapters 2 and 3. The beam is deformed by forces, acting in the transverse

direction, and only the deformations along this normal direction are considered

(deformations, measurements). The beam is defined by a 30-node linear model obtained

with the help of finite element software (ANSYS 5.4). The physical properties of the beam

are listed in Table 4.1.

Because of the anticipated limited bandwidth of the actuators, and the traditional

strategy of limiting the controller bandwidth (minimizing the control action at high

frequencies), the shaping weight function was selected as

w(s) =|0.(X)022 .y + Il^

which guarantees -40 dB/decade roUoff for the closed-loop TFM of the disturbance-

deformation path at high frequencies (over 7(X) Hz). The upper bound of the frequency-

responses of the beam without control, and the weight function, are plotted in Figure 4.2.

The layout of the eigenmodes of the beam model (eigenvalues of the state matrix

A) plotted in Figure 4.3 indicates that it is necessary to increase damping of the most

significant modes prior to using model order reduction techniques. Otherwise any model

order reduction procedure will generate a low-order model of the beam which is very

Table 4.1. Physical properties of the beam

Diameter 10 ram

Length 1000 mm

Density 7.85l0^kg/m^

Young modulus 210^GPa

Damping ratio 0.02

89

disturbance

actuators / sensors

deformation

actuators / sensors

Figure 4.1. Simply supported beam, 30 node model

Response, rrvN

weight
response wnhout control

Cydic frequency, rad^sec

Figure 4.2. Beam response without control, and weight imposed as design specification

90

different from the actual model at some natural resonance frequencies, the difference

(error) being of the same significance order as the limit of deformations suppression. The

damping can be increased by a constant feedback controller with all available inputs and

outputs (see Safonov, Chiang, Flashner, 1991). However the use of a full-dimensional

controller does not fit into the configuration with two collocated actuators and sensors set

above. Hence the model reduction option is dropped.

Next the actual and optimistic lower limits of deformation suppression are

evaluated for all possible mappings. Statistical data on the computational cost (Figures

4.4, 4.5) indicates that the maximum variation is about ±10% and ±8% for the actual and

optimistic Umits respectively, hence the mapping optimization can be easily parallelized

without any load equalizing tools (Le. maximum idle time of a processor will be 10 %).

An examination of the maps of the two limits (Figures 4.6, 4.7) reveals a certain

correlation between the good and bad areas, predicted by the two limits, but the optimal

mappings obtained with the actual and optimistic lower limits as goal functions are not

exactly the same.

A statistical analysis of the relative difference x between the actual and optimistic

lower limits (Figure 4.8) demonstrates that this variable is distributed non-uniformly with a

standard deviation.

1

0.8

0.6

0.4

0.2

I 0

-0.2

-0.4

-06

-0.8

-1

X 10

-1800 -1600 -1400 -1200 -1000 -800 -600 -400 -200 0
Re

(a)

1

08

0.6

0.4

02

I 0

-02

-04

-0.6

-0.8

X 10

-100 -90 -80 -70 -60 -50 -40 -30 -20 -10
Re

(b)

Figure 4.3. Eigenvalues of the beam model: (a) all (b) the Qrst 12 ones

0.25 .---..-----r---.---..,---.-------,---...,..---n

~ 0.2

l 0. 15~~·--+---l---4

~ 0.1 ~+-·--+---l---4
-~ L......;;c:.::;-:.--===-.;.:...r::..;_--'
~ 0.05~~·--+---l-----4---+---r

1850 1900 1950 2000 2050 2100 2150 2200

C\1 ..
. g
-~
a..

.~0. 8
15
~ 0.6

a.. 0.4

0.2

0

Computational cost per mapping, Mflops

·--r---- /

I
I --r---r-- I

! I --f-· I

r- f-- 1 I
I ...-1

1850 1900 1950 2000 2050 2100 2150 2200

5

Computational cost per mapping, Mflops

10

(a)

15
Position 11

(b)

20 25 30

92

0.18

0.16

0.14

0.12

0 .1

0.08

0.06

0.04

0.02

0

Figure 4.4. Variation of the computational cost of the actual lower limit for the beam:

(a) statistical distribution; (b) map of relative variations

C\J

""

5

10

§ 15
·z:;
·u;
0

a_

20

25

0

-~0. 8
'8
~ 0.6

Cl. 0.4

0.2

0

I I I I

H--- I i I +-
awrage - 70.1938

I---
std.dev = 1. 7669

H--- min = 60.6386
I ~- max= 70.6007
I

I
--+

I I i
~ ~ ro M ffi oo ~ M ~ ro

Computational cost per mapping, Mflops

i i
I I *-~~j-- -j

=t=~~- I !
I I l I I I I

1 I i ---TI--T I

5

I

I ---~- I T I

~ ~ ro M ffi oo ~ M ~ ro
Computational cost per mapping, Mflops

10

(a)

15
Pooiticn #1

(b)

20 25 30

93

Figure 4.5 . Variation of the computational cost of the optimistic lower limit for the

beam: (a) statistical distribution; (b) map of relative variations

5

10

~ 15

20

25

30

5

C\1 15
'*"

5 10

5 10

15
#1

15
#1

19

18

17

16

15

14

13

20 25 30

(a)

20 25 30

(b)

Figure 4.6. Map of the actual lower limit for the beam: (a) standard; (b) positions within

the range of 100% around the best mapping are elevated

94

5 10

5 10

15
!11

15
#1

(a)

95

20 25 30

20 25 30

(b)

Figure 4.7. Map of the optimistic lower limit for the beam: (a) standard; (b) positions

within the range of 100% around the best mapping are elevated

0.1

~ 0.08

!0.06

-~ 0.04
~
£ 0.02

0

-~ 0.8
~
~ 0.6

0.. 0.4

0.2

0

0

0

5 10 15 20 25
Positioo #1

(a)

awrage =
std.dev = 0.29848
min= 0.0045406
max= 1.5455

0.2 0.4 0.6 0.8
Relatiw diterence

v
/

~
I--'

~

0.2 0.4 0.6 0.8 1
Relatiw ciference

(b)

96

1.5

0.5

0
30

1.2 1.4 1.6

- [...:._?
--1---

I

1.2 1.4 1.6

Figure 4.8. Properties of the relative difference between the two limits for the beam:

(a) the map; (b) statistical distribution

97

4.2 Exhaustive Search

The optimistic lower limit versus the mapping number, sorted in ascending order,

is plotted in Figure 4.9. The actual lower limit values, added to the same figure, offer a

good sense on the spread and the typical upward shift of the actual limit relative to the

opthiistic limit. Statistical data on the relative difference x is used to plot the upper and

lower bounds and the expected value of the actual lower limit (see Figure 4.10) as

^upper — ^optimistic

•(L'WCNIIN)I

^acpected ~ ̂ optimutic'i.^'^Xexpected)i

Figures 4.11 and 4.12 demonstrate which mappings are discarded and what

speedups can be expected with different confidence values for the target limit selection in

the ilgorithm 3.

Figures 4.13-4.20 demonstrate the statistical behavior of the mapping optimization

witi Algorithm 3 depending on the confidence values for target limit selection, and on the

acciracy of the estimate of the statistical relative difference (Le. on the number of

sanples). To make the results statistically sound 1000 algorithm runs per each

conbination of the algorithm parameters were used. As is evident from these figures, well-

estinated statistics results in consistent speedups and moderate deterioration of the

opthization accuracy (accuracy loss up to 5-8 % with speedups increasing from 2-3 to 6-

7 tines). At the same time poorly estimated statistics results in larger accuracy

98

optimistic
actual

g

1.4
3 to

1.2 c 3
3

•5 O.a

= 0.6

3 0.4

0.2

0 200 100 300 400 300 500 700 900 600
Mapping number

Figure 4.9. Actual and optimistic lower limits for the beam

optimistic
actual
lower bound
average sNft
upper bound

s

I 3.5 (O c p

I 2.5
0
1 2

0.5
0 100 200 300 400 500 700 800 900 600

Mapping number

Figure 4.10. Statistical bounds for the actual lower limit for the beam based on the

optimistic lower limit

99

optimistic
actual
P,=0.9
P2=0.9

expected speedup =1.8

the best limit = 1.6e-4

300 400 500 600
Mapping number

800 900

(a)

optimislic
actual
P,=0.9
P2=0.9

expected speedup = 3

the best limit = 1.6e-4

300 400 500 600
Mapping number

700 800 900

(b)

Figure 4.11. Computational cost reduction for the beam by (a) selecting the target with

confidence 0.9; (b) selecting the target with confidence 0.9 and the lower

bound with confidence 0.9

100

§

I

.2 3

•o
"3

1

X 10

3.5

0.5

expected speedup = 2

the best limit = 1.6e-4

optimistic
actual
P,=0.8
P,=0.8

100 200 300 400 500 600
Mapping number

(a)

700 aoo 900

X 10

optimistic
actual
P,=0.8
P 2=0.8

M 2.5

expected speedup = 6.7

the best limit = 1.68e-4

300 400 500 600
Mapping number

700 800 900

(b)

Figure 4.12. Computational cost reduction for the beam by (a) selecting the target with

confidence 0.8; (b) selecting the target with confidence 0.8 and the lower

bound with confidence 0.8

101

g"

1

0.9

0,8

0.7

0.6

0.5

I 0.4
cc

0.3

02

0.1

0

I !
1000 mns

100 samples

'optimBlclarBot^ '̂ ̂

1000 mns

100 samples

'optimBlclarBot^ '̂ ̂

1000 mns

100 samples

'optimBlclarBot^ '̂ ̂

f
i
B •5 cr

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

0.95 1 1.05 1.
The tomd best lower limit

1 1.15 1.2 1.25
related to the best actual lower limit

(a)

4 6 8 10 12 14 16 18
Speedup compared to the basic extiajstive search

1.3

1 1 1 1
1000 runs
100 samples
'opumse largGt' ' ^

1000 runs
100 samples
'opumse largGt' ' ^

1000 runs
100 samples
'opumse largGt' ' ^

1
20

(b)

Figure 4.13. Statistical behavior of Algorithm 3 with good estimate of probability P(jc) and

optmistic target (1,1): (a) optimal performance; (b) speedup

102

1 1
1000 runs
100 samples
'opiitilstc

1000 runs
100 samples
'opiitilstc

1000 runs
100 samples
'opiitilstc

J
t t

0.95 1 1.05 1.1 1.15 1.2 1.25 1.3
The found best lovwr limit related to the t»st actual lower limit

(a)

S"

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

I I I !
1000 mns
100 samples
'optmstc

1000 mns
100 samples
'optmstc

1000 mns
100 samples
'optmstc

I
L
JL

4 6 8 10 12 14 16 18
Speedup compared to the basic exhaustive search

20

(b)

Figure 4.14. Statistical behavior of Algorithm 3 with good estimate of probability P{x) and

(0.9,0.9) t (a) Optimal performance; (b)speedup

103

1 1
1000 tuns

100 samples

'opOmlBlc

1000 tuns

100 samples

'opOmlBlc

1000 tuns

100 samples

'opOmlBlc

1 L
0.S5 1 1.05 1.1 1.15 1.2 1.25 1.3

The isund best loMer limit related to the best actual lower limit

(a)

1 1 1 1
1000 runs

100 samples

^optimslc

1000 runs

100 samples

^optimslc

1

1000 runs

100 samples

^optimslc

1
1
1

1
L
J

2 4 6 8 10 12 14 16 18 20
Speedup compared to tt« basic exhaustive search

(b)

Figure 4.15. Statistical behavior of Algorithm 3 with good estimate of probability P(x) and

(0.8,0.8): (a) optimal performance; (b) speedup

104

i 1
1000 nns

100 samples

'opunstc target^®'

1000 nns

100 samples

'opunstc target^®'

1000 nns

100 samples

'opunstc target^®'

• 1 fe.
0.95 1 1.05 1.1 1.15 1 2 1.25 1.3

The isund best lower fimit related to the best actual lower limit

(a)

1 1 1 1
1000 runs

100 samples

optinstc target 1
1000 runs

100 samples

optinstc target
1

1000 runs

100 samples

optinstc target
1
1
1
1
1

1
1 L

2 4 6 a 10 12 14 16 18 20
Speedup compared to the basic exhaustive search

(b)

Figure 4.16. Statistical behavior of Algorithm 3 with good estimate of probability P{x) and

^prfmuncuriwCO-^.O.?): (a) Optimal performance; (b) speedup

105

1 1
1000 runs

25 samples

'of*irtstc largel̂ ^"^ ̂

1000 runs

25 samples

'of*irtstc largel̂ ^"^ ̂

1000 runs

25 samples

'of*irtstc largel̂ ^"^ ̂

0.95 1 1.05 1.1 1.15 1.2 1.25 1.3
The found best lower limit related to the best actual lovner limit

(a)

1 1 1 1
1000 runs

25 samples

'opiifTistc targat '̂'' ̂

1000 runs

25 samples

'opiifTistc targat '̂'' ̂

1000 runs

25 samples

'opiifTistc targat '̂'' ̂

1
1
1
1
1
1
1
2 4 6 8 10 12 14 16 18 20

Speedup compared to the basic exhaustive search

(b)

Figure 4.17. Statistical behavior of Algorithm 3 with poor estimate of probability P(x) and

(I'D: (a) optimal performance; (b) speedup

106

! !
1000 runs

2S samples

t fO 9 0 9) optretc target ̂ • '

1000 runs

2S samples

t fO 9 0 9) optretc target ̂ • '

1000 runs

2S samples

t fO 9 0 9) optretc target ̂ • '

0.95 1 1.06 1.1 1.15 1 2 1.25 1.3
The found best knver limit telated to the tiest actual lower limit

(a)

1 ! 1 1

1000 runs

25 samples

'optirrtsic target

1000 runs

25 samples

'optirrtsic target

1000 runs

25 samples

'optirrtsic target

1

1

i

1

1

2 4 6 8 10 12 14 16 18 20
Speedup compared to ttie basic exhaustne search

(b)

Figure 4.18. Statistical behavior of Algorithm 3 with poor estimate of probability P{x) and

(0-9,0.9): (a) optimal performance; (b) speedup

107

1

0.9

0.8

0.7

>•

I 0®

0.5

.1
I 0.4
cr

0.3

0.2

0.1

1 1
1000 runs

25 samples

'optiTBlc

1000 runs

25 samples

'optiTBlc

1000 runs

25 samples

'optiTBlc

- u 1 y
0.95 1 1.05 1.1 1.15 1.2 1.25

The kxrxi best lower limit related to ttie best actual limit
1.3

(a)

1 1 1 1
1000 runs

25 sampies

I (0 8 0 8) opthBtc \aigBC ' '

1000 runs

25 sampies

I (0 8 0 8) opthBtc \aigBC ' '

1000 runs

25 sampies

I (0 8 0 8) opthBtc \aigBC ' '

1
1 _

lJJ Ad. k
2 4 6 8 10 12 14 16 18 20

Speedup compared to the basic exhaustive search

(b)

Figure 4.19. Statistical behavior of Algorithm 3 with poor estimate of probability P{x) and

(0.8,0.8): (a) optimal performance; (b) speedup

108

t 1
1000 tuns

25 samples

'opOrtsic

1000 tuns

25 samples

'opOrtsic

1000 tuns

25 samples

'opOrtsic

0.95 1 1.05 1.1 1.15 1.2 1.25 1.3
The bund best lower limit related to the best actual lower limit

1 1
I

1 1 1 I 1 1
I 1000 runs

25 samples

'ool*iis!c

1000 runs

25 samples

'ool*iis!c

1000 runs

25 samples

'ool*iis!c

d J
u

•
Id u k

2 4 6 8 10 12 14 16 18 20
Speedup ccmpcired to the basic exhaustive search

(b)

Figure 4.20. Statistical behavior of Algorithm 3 with poor estimate of probability P(x) and

(0.7,0.7): (a) Optimal performance; (b) speedup

109

deterioration with very inconsistent speedup (accuracy loss of up to 20-30% with

speedups in the range 1-20 without any clear attraction value). The main statistical

properties of Algorithm 3 for the beam case are displayed in Tables 4.2 and 4.3.

4.3 Search with Genetic Algorithm

A simple Genetic Algorithm was constructed to validate Algorithm 5, discussed in

the Chapter 3 (Figure 3.5, and Table 3.4). Binary coding used to encode the actuator /

sensor location is explained in the Figure 4.21. Adaptation rules of the operator fitness are

described in Figure 4.22.

The statistical behavior of the Algorithms 4 and 5 (GA) was explored on large

sample series (1000 runs) to estimate the influence of the population size (30 or 90

individuals) and the target selection confidence (Pi and Pi in Equations (3.16), (3.17)) on

speedup and search accuracy. This statistical behavior is demonstrated in Figures 4.24-

4.29, and the main statistical properties are tabulated in Tables 4.2 and 4.3. These results

lead to the following conclusions.

1. The search accuracy depends little on the population size (whether there are 30

or 90 individuals, it does not matter).

2. The search speedup is slighdy better with smaller population sizes.

3. Lower confidence Pi combined with smaller population size results in very

poor accuracy. This is probably caused by imprecise target prediction (after

Chromosome : 0 1 1 1 0 0 1 1 0
Bits 1..5 Bits 6 .. 10

Location 1 (<30) Location 2 (<30)

Figure 4. 21. Actuator I sensor position coding for the beam

Operator fitness, %

50r--r-o==========================~-----,,-~
Gray code mutation
far mutation
uniform crossover (creep)
single-random-point crossov

' I ·+----~···---··-r
i i

. ·---·--~---·-

+-----t----1·----- I I ·1-----+! -----t---
1 ;

i i
t ~

2 4 6 8 10 12 14
Iteration number

Figure 4.22. GA operator fitness adaptation

110

Il l

the optimistic limit evaluation step the best actual mapping is erroneously

removed from the list of the individuals which are to be tested for the actual

lower limit also.

4. The smaller the confidence values (Pi and P2), the larger search speedup.

5. Even with perfect confidence of P\ = P2 =1.0 there is a definite improvement

over the base GA algorithm (1.5 - 1.8 times).

4.4 Parallel Realization of Search

The efficiency of the parallel realization of Algorithm 3 and Algorithm 5 was

assessed on the basis of average speedups obtained on 1000 runs on the multiple CPU /

parallel code configuration versus the single CPU / serial code (see Figures 4.29 - 4.31).

The parts of those plots which correspond to the number of CPUs in the range 1-4 were

obtained experimentally on an SGI Origin 2000 (IRIX operating system, native 32 bit C

compiler). The parts of the plots which correspond to the number of CPUs larger than 4

were obtained through multiprocessor code simulation in Matlab. Experimental and

simulated results were found to be within 1% accuracy range.

The general conclusion that can be drawn from Figures 4.29 - 4.31 is that speedup

with exhaustive search is higher and scales better than speedup with GA.

112

Probability to find...

0.9

0.8

0.7

0.6

O.S
at laast 1st best (0 %)
at least 2nd best (1.2034 %)
at least 3rd best (4.4325 %) 0.4

0.3

0.2

0.1

15 5 10 20 25 30
Generation numt)er

(a)

Prob£it>irity to (irKi...

1 J •• I
at least 1st best (0 %)
at least 2nd best (1.2034 %)
at least 3rd best (4.4325 %)

-

1 J •• I
at least 1st best (0 %)
at least 2nd best (1.2034 %)
at least 3rd best (4.4325 %)

-

——f""

5 10 15 20 25 30
Generation number

(b)

Figure 4.23. The probability to find at least the 1st, 2nd, 3rd best mappings as a function

of the iteration number for the statistically improved GA (Algorithm 5)

(population 30, (a) Pi = 1.0, Pi = 1.0; (b) Pi = 0.8, Pz = 1.0)

113

0.14

1000 tuns

population at 30

generation #30

S 0.06

8 9 10 11 12 13 14
Speedup compared to the basic exaustive search

(a)

0.16

0.14

0.12

I
J 0.08

I
I 0 - 0 6

0.04

0.02

0
10 15 20 25

Speedup compared to the basic exaustive search

(b)

!
1

1000 ons

population of 30

generation # 30

1
1000 ons

population of 30

generation # 30

i

Kr

m J m
30

Figure 4.24. Statistical analysis of speedup with statistically improved GA (Algorithm 5)

compared to the base exhaustive search (Algorithm 1) (population 30,

(a) P, = 1.0, Pi = I.O; (b) Pi = 0.8, P2 = 1.0)

114

0.12

0.1

0.08

0.C6

0.04

0.02

J 1 1
1000 runs

Doculation of 30

1 1 geneiation * 30

_J
1.3 1.4 1.5 1.6 1.7 1.8

Speedup compared to the basic GA

(a)

1.9

1000 runs

population of 30

generation # 30

1.5 2 2.5 3 3.5 4 4.5 5
Speedup compared to the tasic GA

5.5

(b)

Figure 4.25. Statistical analysis of speedup with statistically improved GA (Algorithm 5)

compared to the base GA (Algorithm 4) (population 30, (a) Pi = 1.0, Pi = 1.0;

(b) P, =0.8,P2= 1.0)

115

Probability to find...

1

/
• •

/
/

t
/ i r

at least 1st best (0%)
at least 2nd best (1.2034 %)
at least 3rd best (4.4325 %)

at least 1st best (0%)
at least 2nd best (1.2034 %)
at least 3rd best (4.4325 %)

2 4 5 8 10 12 14
Generation number

(a)

Probability to find it

0.1 >-
2 4 6 8 10 12 14

Generation number

(b)

Figure 4.26. The probability to find at least the 1st, 2nd, 3rd best mappings as a function

of the iteration number for the statistically improved GA (Algorithm 5)

(population 90, (a) P\ = 1.0, Pi = 1.0; (b) Pi = 0.8, Pi = 1.0)

1

0.14

0.12

3
1

0.08

S 0.06

0.04

0.02

1000 runs

population of 90

genefad'cn # 15

4.2 4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6
Speedup compared to the tasic exaustive search

(a)

0 14

1000 oris

popolation of 90

generation # 15

^ 0.06

5 6 7 8 9
Speedup compared to the basic exaustive search

(b)

Figure 4.27. Statistical analysis of speedup with statistically improved GA (Algorithm 5)

compared to the base exhaustive search (Algorithm 1) (population 90, (a) P\

I.O, Pr = 1.0; (b) Pi = 0.8, Pi = 1.0)

117

0.16

1000 runs

populatation at SO

genetaticxi« 15

1.5 1.6 1.7 1.8
Speedup compared to the basic GA

(a)

0.12

o.ce

1000 OflS

populatation of 90

generation # 15

006

0.04

002

1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3
Speedup compared to the basic GA

(b)

3.2 3.4

Figure 4.28. Statistical analysis of speedup with statistically improved GA (Algorithm 5)

compared to the base GA (Algorithm 4) (population 90, (a) Pi = 1.0, Pi = l.O;

(b) Pi =0.8,^2=1.0)

Table 4.2. Average speedup compared lo the base exhaustive search (Algorithm 1) for the beam

Px. Pi Statisucally improved exhaustive

scarch (Algorithm 3)

Base GA (Algorithm 4) Statistically improved GA

(Algorithm 5)

Px. Pi

Sample set 30 Sample set 90 Population 30 Population 90 Population 30 Population 90

Px. Pi

Average st.dev.

(%)

average si.dev.

(%)

average .si.dev.

(%)

average si.dev.

(%)

average st.dev.

(%)

Average si.dev.

(%)

P i " 1.0, PI = 1.0 1.7 2.9 1,5 1.3 5.8 15 3.0 6.8 10.6 17.0 4.8 7.0

P, = l.Q.Pi = {).9 2.4 6.3 2.0 8.1 n/a n/a 12.2 18.0 5.2 9,0

/>,» 1.0.P, = 0.8 3.2 25.0 2.4 8.1 n/a n/a 13.1 20.2 5.4 13.0

Pi = 0.9, Pi = 1.0 1.8 5.2 1.7 2.5 n/a n/a 16.0 14.5 7.3 10,5

/>, . 0.9. Pj - 0.9 3.0 39.5 2.4 9.6 n/a n/a 20.2 12.4 8.6 8.7

Pi = 0.9, Pj = 0.8 4.0 42.0 3.1 13.4 n/a n/a 22.9 11.2 9.3 5.3

P, = 0.8, Pj= 1.0 2.0 12.6 1.8 4.4 n/a n/a 17.3 20.0 7.8 11.9

P, = 0.8, Pj = 0.9 3.4 43.2 2.9 15.5 n/a n/a 21.2 11.6 9.0 6.4

P, = 0.8, Pi = 0.8 5.9 43,0 4.0 15.0 n/a n/a 23.7 8.0 9.6 5.3

Table 4.3. Probability to find at least the first, the second, the third best mapping for the beam

Pi. Pi Statistically improved exhaustive searcli

(Algorithm 3)

Base GA (Algorithm 4) Statistically improved GA (Algorithm 5) Pi. Pi

Sample set 30 Sample set 90 Population 30 Population 90 Population 30 Population 90

Pi. Pi

1st 2n(l 3r(l 1st 2n(l 3rd Ist 2nd 3rd Ist 2nd 3rd 1st 2nd 3rd 1st 2nd 3rd

P, = 1.0. Pj = 1,0 1.0 1.0 1.0 1.0 1.0 1.0 0.86 0.95 0.99 0.99 1.0 1.0 0.86 0.89 0.98 0.94 1.0 1.0

/>, = 1.0, Pi = 0.9 0.97 0.97 0.99 1.0 1.0 1.0 n/a n/a 0.59 0.64 0.85 0.9 0.95 1.0

Pi = 1.0, Pj = 0.8 0.89 0.9 1.0 1.0 1.0 1,0 n/a n/a 0.33 0.64 0.85 0.71 0.77 0.93

/>, = 0.9. Pi = 1.0 1.0 1.0 1.0 1.0 1.0 1.0 n/a n/a 0.04 0.13 0.72 0.12 0.34 0.86

P, = 0.9, Pj = 0.9 0.92 0.93 0.99 1.0 1.0 1,0 n/a n/a 0.04 0.12 0.52 0.08 0.34 0.73

P, - 0.9, Pj - 0.8 0.75 0.78 0.97 0.67 0.74 1.0 n/a n/a 0.02 0.14 0.23 0.12 0.45 0.59

P, = 0.8.Pj= 1.0 1.0 1.0 1.0 1.0 1.0 1.0 n/a n/a 0.05 0.2 0.64 0.09 0.33 0.9

P, = 0.8, Pj = 0.9 0.84 0.84 0.99 0.91 0.94 l.O n/a n/a 0.03 0.12 0.34 0.09 0.4 0.58

Pi = 0.8, Pi = 0.8 0.3 0.43 0.93 0.34 0,5 1.0 n/a n/a 0.04 0.19 0.24 0.13 0.36 0.45

120

03

1 1 1 1 1

3 0 samples, P1=P2=1.0
9 samples, P 1=0.8, P2=1.0
9 samples, P1=P2=1.0
9 samples, Pl=0.8, P2=1.0

3
9

0 samples, P1=P2=1.0
9 samples, P 1=0.8, P2=1.0
9 samples, P1=P2=1.0
9 samples, Pl=0.8, P2=1.0 9

0 samples, P1=P2=1.0
9 samples, P 1=0.8, P2=1.0
9 samples, P1=P2=1.0
9 samples, Pl=0.8, P2=1.0

tn

8 10 12
Number of CPUs

14

(a)

X X
30 individuals. P1=P2=1.0
30 individuals, Pl=0.8, P2=1.0
90 individuals. P1 = P2=1.0
90 individuals, PI =0.8, P2=1.0

Number of CPUs

16 18 20

(b)

Figure 4.29. Average speedup in multiprocessor system with (a) statistically improved

exhaustive search and (b) statistically improved GA

121

15

Geneiadon

(a)

IS
Generation

(b)

Figure 4.30. Average speedup in multiprocessor system: (a) statistically improved GA for

the beam, population 30, probabilities P\= 1.0, Pi= 1.0; (b) Pi=0.8, Pi= 1.0,

number of CPUs from 1 to 20, bottom to top

122

M=20

(a)

Generalion

(b)

Figure 4.31. Average speedup in multiprocessor system: (a) statistically improved GA for

the beam, population 90, probabilities P\= 1.0, ?!= 1.0; (b) P\= 0.8, Pi= 1.0,

number of CPUs from 1 to 20, bottom to top

123

Speedup with GA saturates toward some limit, which depends on the number of

children and size of the population used by the GA: the larger the number of children

generated in each generation, the larger the number of parallel CPUs it takes to get to the

saturation limit, and the higher the speedup limit. The speedup is not uniform through the

course of the algorithms, it drops to very low values at the end of the process. This can be

explained by the fact that the three built-in learning mechanisms (evolutionary mechanism,

population roster, statistical improvement) teach the GA to spot good mappings very fast

(a well-known property of GA). The number of mappings where the actual lower limit is

to be evaluated declines from full population size at the beginning to 1-2 per generation in

the end. Hence most of the parallel CPUs stay idle at the end of search.

4.5 Major Results

1. A statistically improved exhaustive search, proposed in the Chapter 3 (Algorithm 3),

delivers consistent speedups of 6-7 with only minor loss of accuracy (5-8 %)

compared to a straightforward exhaustive search with actual lower limit (Algorithm I)

but only in presence of well-estimated statistics of the relative difference. Poorly

estimated statistics result in sporadic speedups and poor optimization accuracy,

although the maximum speedup values are larger.

2. The computation of the actual and optimistic lower limits proves to have a very

consistent cost (maximum variation about ±10%), meaning that the parallel realization

of the search does not require any load equalizing tools.

3. Genetic algorithms (GA) with a hybrid goal function provide excellent search

accuracy, as well as a huge speedup over the basic exhaustive search, and a substantial

speedup over G A with the actual lower limit (only) in the goal function.

4. Parallel implementation of the exhaustive search algorithms provides speedup roughly

proportional to the number of CPUs, and scales weU. The number of samples does not

affect the speedup.

5. Parallel implementation of GAs provides speedup as a nonlinear function of the

number of CPUs, saturating toward certain speedup limits. This saturation limit

depends on the size of population: the larger the population, the higher the saturation

level. Learning mechanisms built into the GA (evolutionary mechanism, population

roster, and statistical improvements) cause very fast reduction of speedup near the end

of search process. Hence the GA search does not scale well.

125

EXAMPLE 2: UCLA LARGE SPACE STRUCTURE

5.1 Problem Description

This chapter examines a more realistic engineering problem, namely the Large

Space Structure (LSS) of UCLA, which has been successfully used as a testbed for several

control techniques (see Safonov, Chiang, ETashner, 1991). The LSS model used in this

study was kindly provided by Professor M. Safonov of UCLA in the form of state-space

matrices {A B C D} extracted from a large fuiite-eleraent model of the full-scale structure,

obtained with the help of the NASTRAN software. The model consists of 58 vibrational

modes with frequencies ranging from 0.4 to 477 Hz. The first two modes describe the

rigid-body tilt about the x and y axis. The structure is controlled by 18 actuators

embedded in structure's truss elements (Figure 5.1). Twelve disturbances act on the top

and bottom of the structure. There are 20 sensors, of which the two most important are

the line of sight (LOS) position sensors. The remaining 18 are rate sensors collocated with

the control actuators. The four-block model of the structure in this case has the following

inputs and outputs:

w =
disturbancei

disturbance <^2

, z =

LOS^
LOS,

position^

position^^

(5.1)

126

Secondary Hirror

(7-12)

Structural Member
(13-18) —

Primary Hirror

(1-6) •

X <-

Disturbances

y (25-30)

Disturbances

— (19-24)

Figure 5.1. The Large Space Structure (UCLA)

127

t/ =
actuator^

actuatori^

, Y =

LOS,

LOSy

rate sensor^ (5.2)

rate sensor^g

The control objective in this case is to reduce the weighted rms output with

feedback control using any three collocated actuators/sensors and the only two LOS

sensors. A -40 dB/decade roll-off beyond the frequency 15 Hz is to be forced in order to

avoid any high-frequency control action, which is technically impossible with the control

actuators being used. Finally, it is necessary to take care of the total deformation of the

LSS shape, because any algorithm which attenuates only the tip deflections measured by

LOS sensors wiU ignore the shape deformations and cause huge mechanical stresses in the

structure elements.

In terras of the H_ control theory this means that the performance index is based

on the weighted output lV(^) z(5), i.e.

y =||>V(5) r^ U)||__, (5.3)

Here the dynamic weighting matrix H^(5) was selected in the following way:

W { s) =

I. 1 0

0
I

0
! Ilr 1 j position w

V-

1 + -
2;r-15

. (5.4)

This selection of the weighting matrix W can be explained as follows. The static matrix

128

r h 1 0

0
1 IKOS-l.

is necessary to increase the relative weight of the shape deformations compared to the

open-loop "disturbance - LOS" path. The dynamic scaling factor 1 + -
1tc\5

IS

necessary to force the above-mentioned roll-off beyond the 15 Hz frequency.

Because the LSS model has a strictly proper TFM {Du-Dti are zero matrices) the

weighting matrix W{s) can be absorbed into the four-block model using the standard

augmented system techniques (see Safonov, Chiang, Flashner, 1991). AH the subsequent

computations were performed with this augmented model. The dimensions of the model,

as it follows from the discussion above, are

mx=l 16, mi=20, mv=\.2, Ny=20, my=5, = 18, /nu=3. (5.5)

Because of the anticipated limited bandwidth of the actuators, and the traditional

strategy of limiting the controller bandwidth, the shaping weight function was selected as

w { s) =|5/95 + l j" ,

which guarantees -40 dB/decade rolloff for the closed-loop TFM of the disturbance-

deformation path at high frequencies (over 15 Hz). The upper bound of the frequency-

response of the beam without control, as well as the weight function, are plotted in Figure

5.2.

129

s
10'

4
10

wei^t
response without control ,3 10'

.2
10

,1
10

.0 10"

•1
10

•J
10

•3
10

10"*

•3
10

10 10 10
Cyclic frequfincy. rad/sec

10" 10

Figure 5.2. The LSS response without control, and the weight imposed as design
specification

130

3000

2000

1000

i 0

-1000

-2000

-3000
-5 -3

Ra
-1

(a)

20

15

10

E 0

-10

-15

-20
-0.04

* X
* X

X

X

X

* * •

K « "

X

X

X *

X

X *

-0.035 -0.03 -0.025
Ra

(b)

-0.02 -0.015

Figure 5.3. Eigenvalues of the LSS model: (a) all; (b) the first 24 ones

131

An inspection of the layout of the LSS model eigenmodes (eigenvalues of the state

matrix A), plotted in Figure 5.3, leads to the same conclusions about feasibility of order

reduction of the model, as in the case of the simply supported beam (Chapter 4): it is

necessary to use a full-dimensional static controller to increase the structure damping, but

this is not possible with the three actuator / five sensor configuration. Hence the model

reduction option is dropped.

Each mapping of three actuators and five sensors (including the two LOS sensors)

was coded by a vector with three integer components, sorted in ascending order;

C = {Ci, C2, C3}, 1 <Ci <C2<C3<I8,

with total of 1140 possible distinct mappings.

The actual and optimistic lower limits of deformation suppression were evaluated

for all possible mappings. The statistics of the computational cost (Figures 5.4, 5.5)

indicates that the maximum variation is about 10-15% for both the actual and optimistic

limits, hence the mapping optimization can be easily parallelized without any load

equalizing tools (ma.vimura idle time of a computational node will be 10 %).

A statistical analysis of the relative difference x between the actual and optimistic

lower limits (figure 5.6) demonstrates that this variable is distributed nonuniformly with a

quite large spread and standard deviation.

There is quite a substantial number of actuator / sensor mappings which guarantee

a good performance index, as shown by Figure 5.7. Some of these good mappings are

132

0.2

0.15

0.1

0.05

0

1 1 1
average = 2.2&t'004
std.dev= l.67e+003
min = 1.68e<-004
max = 2.74©4-004

1 1 1
average = 2.2&t'004
std.dev= l.67e+003
min = 1.68e<-004
max = 2.74©4-004

J
- 1 J I u 1 fe •

1.7 1.8 1.9 2.1 2.2 2.3 2.4 2.5 2.6 2.7

Computational cost per mapping. MIops X 10

1.9 2 2.1 2.2 2.3 2.4 2 5 2.6

Computational cost per mapping. MIops

(a)

X 10

0.2

I °

1 0.1

I
i 0.06

i 1
average = 7 92
std.dev = 0.960
min = 4.54
max = 10.3

i 1
average = 7 92
std.dev = 0.960
min = 4.54
max = 10.3 I

i
1 •

J n hui —J.

6 7 8 9

ComputationaJ cost per mapping. MIops

Computational cost per mapping. MIops

(b)

10

Figure 5.4. Variations of computational cost of the (a) actual and (b) optimistic lower

limits for the LSS

133

average = 981
std.dev= 51.2
min = 818
max = I.l7e+003

average = 981
std.dev= 51.2
min = 818
max = I.l7e+003

850 900 950 1000 1060 1100 1150
Computation time per mapping, sec

08

i 06

04

0.2

850 950 900 1000 1060 1100 1150
Computation time per mapping, sec

(a)

1
average = 2.9
std.dev = 0.334
min = 1.45
max = 3.62

1
average = 2.9
std.dev = 0.334
min = 1.45
max = 3.62

1.5 2 2.5 3 3.5
Computation time per mapping, sec

0.8

i 0.6

•5 0.4

02

1.5 2 2.5 3 3.5
Computation time per mapping, sec

Figure 5.5. Variation of computational time of the (a) actual and (b) optimistic lower
limits for the LSS

134

1
1

average = 2.5
std.dev= 25.7
min = 0
maut = 726

1
average = 2.5
std.dev= 25.7
min = 0
maut = 726

L
k

Relative dference

0.8

S 0.6

0.4

0.2

7 8 0 4 5 6 2 3 1

Relative dfbrence

Figure 5.6. Statistical distribution of the relative difference for the LSS

20

«

o

30 50 70 100 10 20 40 60 80 90
The best #...

Figure 5.7. Difference in performance (the actual lower limit) between the best mappings
for the LSS

Figure 5.8. The four best mappings for the LSS

136

demonstrated in Figure 5.8. There are roughly seven mappings with performances of

within 1%, about 15 mappings within 2%, and about 35 mappings within 5% of the

absolutely best mapping. This hampers the performance of the GA, when applied to

mapping optimization, but does not afifect the exhaustive search results, as will become

obvious in the next sections.

5.2 Exhaustive Search

The optimistic lower limit versus the mapping number, sorted in ascending order,

is plotted in Figure 5.9. The actual lower limit values, added to the same figure, give a

good idea about the spread and the typical shift of the actual limit versus the optimistic

limit. Figures 5.10 - 5.12 demonstrate which mappings are discarded and what speedups

are expected with different confidence values for the target limit selection in Algorithm 3.

The statistical properties of Algorithm 3 were explored for different confidence

level for target limit selection, and with sampling sizes of 30 and 100 mappings to estimate

a probability function of the relative difference between the actual and optimistic limits. In

addition 1000 algorithm runs per each combination of the algorithm parameters were used

to make the results statistically sound. The results of the statistical analysis are shown in

Table 5.1 (speedup) and Table 5.2 (accuracy). As can be concluded from these figures, the

size of sampling series is not very important for this problem. Consistently large speedups

(6-9 times) and insignificant deterioration of the optimization accuracy (accuracy loss up

to 1-2 %) are obtained with confidence settings of Pi = 0.3, Pi =1.0.

137

10

9

i 8 03
i
& 7 3 «
i 6
i
I =
"5

4

I -
2

1

optimistic

' *•̂ 1
• > /

^ /

.
•

'• • • /

•.
1 /̂

•

• -*1

200 400 600

Mapping number
800 1000

Figure 5.9. The actual and optimistic lower limits for the LSS

10

9

o 8 a>
as
B
& 7 3

-2 6
«

i
I ^
"5

4

J

I '
2

1

-

•

P,=0.9

P2-O.9
/
/

-

•

P,=0.9

P2-O.9

/ /
/

-
>j/

*S /

' ^

/

• • .' •

T

•f

V .

;**v
<3^

L.'Jl '''-V

200 400 600

Mapping number
800 1000

Figure 5.10. Computational cost reduction for the LSS by selecting the target with
conSdence /'i=0.9, and the lower bound with confidence Pi=Q.9

138

10

9

i 8 <0
i
& 7 3
0}

I 6

i ^
'Z
-s 4
I

I '
2

1

-

1
P =0.8
P2=0.8 I

-

1
P =0.8
P2=0.8

4
. yf

.
•

•' • •.fy

t • •

• •• • • * . r

Bit^ "-i-

200 800 1000 400 600
Mapping number

Figure 5.11. Computational cost reduction for the LSS by selecting the target with
confidence Pi=O.S, and the lower bound with confidence P2=0.8

10

9

8

7

6

5

4

1

200 400 600 1000 0 800
Mapping nunber

Figure 5.12. Computational cost reduction for the LSS by selecting the target with
confidence Pi=0.1, and the lower bound with confidence ^2=0.7

Table 5.1. Average speedup for ihe LSS compared to the base exhaustive search (Algorithm 1)

Pu Pi Statistically improved exhau.stive

search (Algorithm 3)

Base GA (Algorithm 4) Statistically improved GA

(Algorithm 5)

Pu Pi

Sample .SCI 30 Sample .set 90 Population 30 Population 90 Population 30 Population 90

Pu Pi

average .st.dev.

(%)

average .st.dev.

(%)

average .st.dev.

(%)

average st.dev.

(%)

average st.dev.

(%)

average st.dev.

(%)

Pi = 1.0, Pi = 1.0 1.1 25.2 1.0 4.6 5.3 17.1 2.8 21.8 5.3 17.2 2.6 22.0

P, » 1.0. Pj = 0.9 1.2 28.2 1.0 5.3 n/a n/a 5.4 18.1 2.6 22.1

p^= 1.0, Pj = 0.8 1.2 29.1 1.0 7.9 n/a n/a 5.4 17.0 2.6 22.1

P, = 0.9. Pi= 1.0 2.0 21.0 1.8 10.1 n/a n/a 12.3 88.5 6,8 76,1

P, = 0.9. P, = 0.9 2.1 70.5 1.9 10.0 n/a n/a 9.2 18.5 4.4 22.5

P, = 0.9, P, = 0.8 2.1 21.3 1.9 10.4 n/a n/a 10.0 40.4 4.5 22.5

P, = 0.8. Pi= 1.0 2.7 19.1 2.3 9.2 n/a n/a 12.5 72.4 7.0 69.6

P, - 0.8. Pi = 0.9 2.8 19.7 2.4 8.4 n/a n/a 11.0 18.8 5.1 22.7

P, = 0.8, Pi = 0.8 2.9 21.2 2.5 8.2 n/a n/a 11.6 18.8 5.2 22.6

P, -0.3, Pj = 1.0 9,4 40.1 6.0 15.5 n/a n/a 19.0 57.7 10.9 49.6

VO

Tabic !).2. Probability to find a mapping with performance within 1%, 2%, and 5% of the absolutely best mapping for the LSS

Pu Suilislically improved cxhausUvc

search (Algorithm

Base GA (Algorithm 4) StaiisUcally improved GA (Algorithm S) Pu

Sample set 30 Sample .set 90 Population 30 Population 90 Population 30 Population 90

Pu

1% 2% 5% 1% 2% 5% 1% 2% 5% 1% 2% 5% 1% 2% 5% 1% 2% 5%

P, = \.0.P2= 1.0 1.0 1.0 1.0 1.0 1.0 1,0 0,78 0,96 1,0 0.94 1.0 1.0 0.76 0.95 1.0 0.97 1.0 1.0

P, = 1.0,^2 = 0.9 1.0 1.0 1.0 1.0 1.0 1,0 ii/a n/a 0.77 0.95 1.0 0.97 1.0 1.0

= 1.0, Pj = 0.8 1.0 1.0 1.0 1.0 1.0 1,0 n/a n/a 0.79 0.94 1.0 0.96 1.0 1.0

/>,-0,9./», = I.O 1.0 1.0 1.0 1.0 1.0 1,0 n/a n/a 0.76 0.90 1.0 0.88 0.98 1.0

/>, . 0.9. Pi - 0.9 1.0 1.0 1.0 1.0 1,0 1,0 n/a n/a 0.79 0.96 1.0 1.0 1.0 1.0

Pt - 0.9. P, = 0.8 1.0 1.0 1.0 1.0 1.0 1,0 n/a n/a 0,77 0.95 1.0 0.98 1.0 1.0

P, = 0.8. P2= 1.0 1.0 1.0 1.0 1.0 1,0 1,0 n/a n/a 0.78 0.92 0.97 0.88 0.93 0.99

/>, = O.K. Pj = o.«; 1.0 1.0 1.0 1.0 1.0 1,0 n/a n/a 0.78 0.95 1.0 0.97 1.0 1.0

p, = 0.8. Pi = 0.8 1.0 1.0 1.0 1.0 1.0 1,0 n/a n/a 0.82 0.96 1.0 0.99 1.0 1.0

Pi » 0.3, Pi = 1.0 0.98 0.99 1.0 1.0 1,0 1.0 n/a n/a 0.70 0.84 0.95 0.65 0,82 0.96

141

5.3 Search with Genetic Algorithm

The GA was constructed based on Algorithm 5. The binary coding used to encode

the actuator / sensor location is explained in Figure 5.13. Adaptation rules of operator

fitness are the same as in the case of simply supported beam (see Figure 4.22).

The statistical behavior of this GA was explored on large sample series (1000 runs)

to estimate the influence of the population size (30 or 90 individuals) and target selection

confidence (probabilities P\ and Pi in the Equation (3.16), (3.17)) on the speedup and

search accuracy. The main statistical properties are shown in Tables 5.1 (speedup) and

Table 5.2 (search accuracy). These lead to the following conclusions.

1. The search accuracy is better with the larger population size (90 individuals),

smaller confidence P\ and larger confidence P^.

2. The search speedup improves with smaller population size, but the smaller

population size results in an unacceptable deterioration of the search accuracy.

3. The best compromise between the speedup and accuracy is achieved with the

population size of 30, and confidence Pi = 0.3, P2 =1.0.

4. GA with statistical improvements (Algorithm 5) is definitely faster than the

base GA (Algorithm 4), with improvements of 2-4 fold.

5. For this particular problem the GA cannot provide any significant improvement

over Algorithm 3 (statistically improved exhaustive search) while maintaining

equal search accuracy.

142

GA coding (chroraosorae): (nuraber)2 01 00000000000

Bits 1..13

Goal function coding : (number)ig ABC

(10)io+l
(ll)io+l (12)io+l

Actuatori (1..18) Actuator: (1..18) Actuators (1..18)

Figure 5.13. The actuator / sensor position coding for the LSS

143

5.4 Parallel Realization of Search

As in previous case, the efficiency of the parallel realization of Algorithm 3 and

Algorithm 5 was characterized by the average speedups obtained over 1000 runs on a

multiple CPU / parallel code configuration versus the single CPU / serial code (see Figures

5.14 - 5.16). The portions of those plots which correspond to the number of CPUs in the

range 1-4 were obtained experimentally on the SGI Origin 2000 (IRK operating system,

native 32 bit C compiler). The portions of the plots which correspond to the number of

CPUs larger than 4 were obtained through multiprocessor code simulation in Matlab.

Experimental and simulated results were found to be within 1% accuracy range.

As can be noticed from the curves, the speedup obtained with parallel realization

exhibits the same properties as those already observed for the simply supported beam

problem in Section 4. The speedup with exhaustive search is larger and scales better than

in the case of GA.

Speedup with GA saturates toward some limit, which depends on the number of

children and size of the population used by the GA: the larger the number of children

generated in each generation, the larger the number of parallel CPUs it takes to get to the

saturation limit, and the higher the speedup limit. The speedup is not uniform through the

course of the algorithms, it drops to very low values at the end of the process. This can be

explained by the fact that the three built-in learning mechanisms (evolutionary mechanism,

population roster, statistical improvement) teach the GA to spot good mappings very fast

144

30 samples, P1=P2=1.0
30 samples, P1=0.3. P2=1.0
90 samples. P1=P2=1.0
90 saunples, P1=0.3. P2=1.0

8 10 12 14
Number of CPUs

14

30 individuals, P1=P2=1 0
30 indlMduals. P 1=0.3, P2=1.0
90 individuals, P1=P2=1.0
90 Indivduals, P 1=0.3, P2=1.0

12

10

a.
8

6

4

2

2 8 12 16 6 10 18 20 4 14
Number of CPUs

(b)

Figure 5.14. The average speedup in multiprocessor system with (a) statistically improved

exhaustive search; (b) statistically improved GA

145

14

12

~ 10

~
1Nr20 I

g- 8
_JI

1
..._ -6

~
4

2

Jf
5 10 15 20 25 30

Np=2 Generation

(a)

14r---~----~------r-----~----------~

20 25 30

(b)

Figure 5.15. Average speedup in multiprocessor system: (a) statistically improved GA for

the LSS, population 30, probabilities Pt= 1.0, P2= 1.0; (b) P,= 0.3, P2= 1.0,

number of CPUs from 1 to 20, bottom to top

146

/V^20

10 12
Generation

(a)

8 10 12
Generation

(b)

Figure 5.16. Average speedup in multiprocessor system: (a) statistically improved GA for

the LSS, population 90, probabilities P\= 1.0, Pz= 1.0; (b) P\= 0.3, P2= 10,

number of CPUs from 1 to 20, bottom to top

147

(a well-known property of GA). The number of mappings where the actual lower limit is

to be evaluated declines from full population size at the beginning to 1-2 per generation in

the end. Hence most of the parallel CPUs stay idle at the end of search. It turns out that

the exhaustive search algorithm has more predictable properties and is preferable for both

serial and parallel architectures.

5.5 Major Results

The statistical behavior of the search techniques from Chapter 3, applied to the LSS,

leads to the following conclusions:

1. A statistically improved exhaustive search delivers consistent speedups of 6-10 with

only minor loss of accuracy (1-2 %) compared to the base exhaustive search. Larger

numbers of sample evaluations of the two limits results in a better estimate of statistics

of the relative difference, and hence in slightly better accuracy of the algorithm. This

accuracy comes at a price of lower speedup.

2. Genetic algorithm (GA) with the hybrid goal function provides speedups of up to 20,

at the cost of marginally acceptable search accuracy (up to 5% error). Statistical

improvement of GA results in a substantial speedup over the base GA.

3. Parallel implementation of the exhaustive search algorithms provides speedup roughly

proportional to the number of CPUs and scales well. The number of samples does not

affect the speedup.

4. Parallel implementation of GAs provides speedup as a nonlinear function of the

number of CPUs, saturating towards certain speedup limit. This saturation limit

148

depends on the size of population: the larger the population, the higher the saturation

level. Learning mechanisms built into the GA (evolutionary mechanism, population

roster, and statistical improvements) cause rapid decline of speedup toward the end of

search process. Hence the GA search does not scale well.

149

6 EXAMPLE 3: TELESCOPE MIRROR MODEL (HINGED ROUND

PLATE)

6.1 Problem Description

This chapter describes an engineering problem that arises in active optics, namely

the active stabilization of the shape of a thin mirror embedded in a telescope assembly. A

30-inch span mirror with 58 piston actuators (Figure 6.1) was used as a testbed for several

shape stabilization techniques by Volpe and Robertson (1973), and Robertson (1993). A

flat round plate, hinged at three supporting points was suggested as a simple and efficient

prototype model of the mirror. The same model is adopted in the present study.

The physical parameters of the plate are listed in Table 6.1. The locations of the 58

piston actuators, as well as the three hinged support points attached to the plate are

charted in Figure 6.2.

A dynamic model of the hinged plate in the form of state-space matrices {ABC

D} was e.xtracted from a larger finite-element model, obtained with the help of the

ANSYS 5.4 software. The fmite element model does not take into account any symmetry

of the plate, in order to introduce small irregularities. As a result the dynamic model is not

exactly symmetrical Thus the non-symmetrical model is different from the symmetrical

one within the range of the typical errors encountered in finite-element methods (2-5%).

The model consists of 58 vibrational modes with fr-equencies ranging from 40 to

primary mirror

figure sensor
beam

mirror figure
error sensor

actuators
control electronics

Figure 6.1. The active mirror assembly (Volpe and Robertson, 1973)

151

0.4

0.3

35

0.2
53

28 46

30

-0.1

-0.2

41

-0.3 42

•0.4

-0.4 -0.3 0 0.1 0.2 0.3 0.4 -0 2 •0.1

Figure 6.2. Possible locations of collocated actuators / sensors on the plate

Table 6.1. Physical properties of the plate

Diameter 30 in

Thickness 0.3 in

Material Steel

Density 7.8510^^kg/ra^

Young modulus 210"^GPa

Damping ratio 0.02

153

1575 Hz (see Figure 6.3). Disturbances were modeled as point forces acting at in the same

points as the piston actuators (in fact, Voipe and Robertson, 1973 used the piston

actuators to produce disturbance forces to mimic real-life disturbances). Actuators and

sensors were not physically collocated, unlike the case of the simply supported beam and

the LSS (Chapters 4 and 5), as the plate displacements are typically detected by a laser

interferometer which continuously scans the plate (see Volpe and Robertson (1973) for

the details). However there are important benefits in using collocated actuators and

sensors in terms of the closed-loop system stability and performance (see Mackay (1996)).

Therefore it makes sense to use collocated actuators and sensors. The interferometer scans

only the points where the selected control actuators are attached, and perhaps also some

of the other designated 58 actuator locations.

In the sequel of this chapter only one control configuration is tested, namely a

system with four collocated actuators / sensors. This model has the following I/O

dimensions:

;m»=1 16, mz=58, mw=58, A^y=58, my=4, N^ = 5S.ma=4. (6.1)

An inspection of the layout of the LSS model eigenmodes (eigenvalues of the state

matrix A), plotted in Figure 6.3, leads to the same conclusions about feasibility of order

reduction of the model, as in the case of the simply supported beam (Chapter 4): it is

necessary to use a full-dimensional static controller to increase the structure damping, but

this is not possible with the three actuator / five sensor configuration. Hence the model

reduction option is dropped.

154

1.5
X 10

0.5

E 0

-0.5

-1.5
-250

1

n

"" 1

« X « X X «*

*«" *

-200

2500

2000

1500

1000

500

E 0

-500

-1000

-1500

-2000

-2500

-150 -100 -50

Re

(a)

-50 -45 -40 -35 -30 -25 -20 -15 -10 -5
Re

(b)

Figure 6.3. Eigenvalues of the plate model; (a) all; (b) the first 24 ones

155

Because of the anticipated limited bandwidth of the actuators, and the traditional

strategy of limiting the controller bandwidth, the shaping weight function was selected as

W(5)=|^/628+11\

which guarantees -40 dB/decade rolloff for the closed-loop TFM of the disturbance-

deformation path at high frequencies (over 100 Hz). Because the plate model has a siricdy

proper TFM (,D\x.J)22 are zero matrices), the weight h<5) can be absorbed into the four-

block model using the standard augmented system techniques (see Safonov, Chiang,

Flashner, 1991). All the subsequent computations were performed with this augmented

model The upper bound of the frequency-response of the beam without control, as well as

the weight function, are plotted in Figure 6.4

6.2 Exhaustive Search

Because of the internal symmetry of the plate one is tempted to adopt without

proof the following hypothesis: the best mapping of four actuators / sensors for the plate

model should be symmetrical. This means that one of the actuators has to be placed at the

center (position 20), and the remaining three actuators should be placed in one of the 19

possible symmetrical patterns listed in Table 6.2. Some of these patterns are demonstrated

in Figure 6.5. The actual lower limit and the optimistic lower limit were evaluated for aU

the symmetric patterns, and it turns out that there are two best mappings (mappings 15

and 17 in Table 6.2, see also Figure 6.6).

156

10^

10^

10°
10

Cyclic frequency, rad'sec

.-3
10

-4.
10

.-5

•7
10

10 10
Cyclic frequefxy, rad/sec

Figure 6.4. Plate response without control, and the weight imposed as a design

specification

157

Table 6.2. Symmetrical mappings with four collocated actuators / sensors. The mappings

with the best deformation suppression are highlighted.

No. Aauators Optimistic lower limit Actual lower limit No. Aauators

Value, xlO"* CPU time
(seconds)

Value, xlO"* CPU time

(seconds)

1 19, 21, 29, 20 1.829 10.4 1.811 1021

2 12, 28, 30. 20 1.831 10.3 1.825 1020

3 13, 27, 39, 20 1.830 10.2 1.812 1014

4 1 1 , 3 1 , 3 7 , 2 0 1.369 10.1 1.340 1023

5 18, 22, 38, 20 1.830 10.2 1.812 1028

6 6, 36, 40. 20 1.368 10.3 1.339 1024

7 17, 23. 47, 20 1.825 10.2 1.830 1014

8 10. 32, 46. 20 1.347 10.0 1.342 1052

9 5. 41. 45. 20 1.346 10.0 1.318 1098

10 2, 44. 50. 20 1.831 10.2 1.835 1032

11 7, 35. 49, 20 1.350 11.0 1.344 1036

12 14, 26, 48, 20 1.337 10.0 1.324 1025

13 3, 43. 58. 20 1.414 10.0 1.408 1022

14 8, 34, 57. 20 1.359 10.1 1.346 1022

15' 15. 25. 56. 20 1.301 10.1 1.252 1032

16 16, 24, 55, 20 1.831 10.2 1.856 1030

17* 9, 33. 54. 20 1.323 10.0 1.295 1041

18 4, 42, 53. 20 1.342 10.1 1.321 1049

19 1 , 5 1 , 5 2 , 2 0 1.414 10.1 1.377 1047

0.4

0.3

0.2

-0.2

-0.3

0 0.2 -0.4 -0.2 0.4

0.4

0.3

0.2

0.1

-0.2

-0.3

-0.4

-0.2 0 0.2 0,4 -0.4

0.4

0.3

0.2

,39
•0.1

-0.2

•0.3

-0.4

•0.2 0 0.2 0.4

0.4

0.3

0.2

0.1

,20 0

O.I

-0.2

-0.3

•0.2 0 0.2 0.4 -0.4

Figure 6.5. Some symraeirical mappings of actuators and sensors.

159

Number 15 Number 17

0.4

0.2

-0.2

©33-

-0.4

0 -0.4 -0.2 0.2 0.4

0.4

0.2

-0.2

-0.4

-0.4 -0.2 0.2 0.4 0

Figure 6.6. Symmetrical mappings with the best performance index.

160

The goal of this chapter is to test this hypothesis, Le. to see if there are any better

mappings than the best ones listed in Table 6.2. In this section mappings with four

actuators / sensors are coded by a vector with three integer components sorted in

ascending order:

C = {CuC2,Ci), 1<Ci<C2<C3^8.

The founh actuator is always attached to the center of the plate (position 20), so it is not

reflected in the mapping vector c. The total number of mappings with four non-coinciding

actuators) to be evaluated is 29,260. The average CPU time per actual lower limit

evaluation for the symmetrical mappings (Table 6.2) was about 10.5 minutes (PC with

Pentium Pro 200, Windows NT 4.0, and Matlab 5.1 with Robust Control Toolbox). At

this speed an exhaustive search with the actual lower limit in the goal function

(Algorithm 1 from Chapter 3) would require about 350 days.

In order to solve the problem in a reasonable time. Algorithm 3 was applied to this

problem. To improve the target performance index estimate, i.e. to increase the search

speed, the search was initially seeded by the symmetrical mappings listed in Table 6.2. The

optimistic lower limit, evaluated for all available mappings and sorted in ascending order,

is plotted in Figure 6.7. The actual lower limit for the symmetrical mappings is shown in

the same figure by x-marks. The probability function of the relative difference is estimated

based on the 19 symmetrical mappings only. The target value, topimMaargeiil.O, 1.0) for the

optimistic lower limits was computed from this probability function (see Eqn. (3.16)), and

161

X10

optimistic
actuai (symmetrical mappings)

0.5 1 1.5

Ma(i()<ng number
23

X 10

Figure 6.7. Optimistic lower limit for all available mappings and actual lower limit for

symmetrical mappings.

X 10"*
1.28

1 26

1.24

122

optimistic
actual
the tiest actual

1.18

1.16
0 40 20 60 80 100 120 140 160 180 200

Mapping nutrber

Figure 6.8. Target value foptimut,ctarget(l-0, 1.0) and mappings with the actual limit evaluated

during the search

162

the actual lower limit was evaluated only for the mappings with optimistic lower limits

lower than this value (see Figure 6.8). With this scheme only 156 mappings need to be

evaluated, in addition to the 19 symmetrical mappings that were already evaluated. This

results in a total speedup of about 65, taking into account the evaluation of the optimistic

lower limit for all mappings.

The best mapping of actuators and sensors, corresponding to the plate model, is

charted in Figure 6.9. The actual lower limit of deformation suppression, achieved with

this mapping, is about 7% better than the one provided by the best symmetrical mapping.

However because of the errors introduced by the finite-element model it is difficult to tell

if this is correct in reality.

It turns out that for the case considered in this chapter the actual lower limit is very

close to the optimistic lower hmit (difference is within 5% range), but the actual lower

limit is less than the optimistic limit for the vast majority of mappings. This paradox can be

explained in the following way: because of the imposed firequency-dependent weight

(Figure 6.4) and the dynamic properties of the plate, the two limits supposedly should be

very close, ahnost coincide. Unfortunately for large models like the one considered here

the H_ design algorithm hinfopt from the Robust Control Toolbox is not very accurate,

and in this panicular case it produces consistently optimistic results.

163

0.4

0.3

02

0.1

20

-0.1

•0.2

•0.3

-0.4

-0.4 0.3 -0.2 -0.1 0.1 0.2 0.3 0.4 0

Figure 6.9. The best mapping

164

6.3 Major Results

1. The statistically improved exhaustive search (Algorithm 3), proposed in the Chapter 3,

delivered tremendous speedup of 167 times in the problem of optimal mapping of

three collocated actuators / sensors on a round plate (plus a fourth actuator in the

center).

2. The ignored symmetry of the problem and inherent errors of the finite-element model

resulted in non-synunetrical optimal mappings.

3. The low accuracy of the H_ design procedure hinfopt for large dynamic models

resulted in actual lower limits being slightly lower than the optimistic lower limit.

165

7 CONCLUSIONS

The problem of H.-optimal mapping of actuators and sensors on flexible structures,

considered in this study, was solved using the following basic assumptions;

1. The problem of deformation suppression in flexible structures is stated as the four-

block disturbance attenuation problem, which is a standard problem in //_-control

theory.

2. Only systems with number of DOF much larger than the number of actuators and

sensors are considered, and in this case the closed-loop performance may be a

more limiting requirement than the internal stability constraint.

The actual lower limit of deformation suppression in flexible structures with

performance index is defined as the norm of the disturbance-deformation path of the

closed-loop system with H_ optimal feedback controller. Actuator and sensor mapping

optimization based on the actual lower limit, i.e. on the //_ performance index, requires

evaluation of the actual lower limit of deformation suppression within the search loop.

This is a computationally inefficient procedure, because

(a) most of the evaluated mappings do not meet the target limit of deformation

suppression;

(b) computational cost of the actual lower limit evaluation is high.

166

Theoretical concepts developed in this study are supported by three test problems:

deformations suppression in a simply supported beam, the UCLA Large Space Structure

(LSS, see Safonov et al, 1991), and a hinged round plate as a model of a telescope mirror

(based on model from Volpe and Robertson, 1973). A comparison of the three models,

depicted by Table 7.1, suggests that these are large control problems, that the number of

DOF is much larger than the number of actuators / sensors, and that the computational

time required for the //.-optimal mapping with standard exhaustive search would be very

large in two cases, and possibly unfeasible in the third case.

Table 7.1. Comparison of the three test problems.

Flexible structure

Beam LSS Plate

State-space model order 60 116 116

Number of actuators 2 3 4

Number of sensors 2 5 4

Number of available locations of

collocated actuators / sensors
30 18 58

Number of possible mappings 900 1,140 29,260

Approximate computation time of

exhaustive search with the actual

lower limit, seconds
6.75-10'= 1 day l.M0®=13 days 3.1-10^=1 year

Required computer memory, MB 15 10 55

167

An optimistic lower limit of deformation suppression is proposed in this study,

which is defined as the minimum achievable norm of the disturbance-deformation path

with the relaxed (removed) constraint of the internal system stability. The optimistic lower

limit is computed in a form of frequency sweep based on the frequency-response matrices

of the four-block model, in contrast to the actual lower limit, which is computed based on

the state-space matrices. The most remarkable property of this procedure is that in search

loops with large numbers of possible mappings it may be much cheaper than the actual

lower limit. This is proven by a comparison of the CPU time and number of flops for the

two limits, evaluated for the three test problems (Tables 7.2 and 7.3).

Table 7.2. Average CPU time required for evaluation of one mapping, in seconds.

Rexible structure

Beam LSS Plate

Actual lower limit 75 980 1050

Optimistic lower limit 2.8 2.2 10

Table 7.3. Average cost of evaluation of one mapping, in Mflops.

Flexible structure

Beam LSS Plate

Actual lower limit 2,1(X) 22,000 29,000

Optimistic lower limit 70 8 350

168

If the optimistic lower limit is larger than some target limit for a given a given

lllapping of actuators and sensors, then the actual lower limit is also larger than this target

limit. Hence the primary use of the optimistic lower limit is to fmd and eliminate obviously

n.nacceptable mappings and pave the road for the actual lower limit evaluation. The use of

tre optimistic lower limit as the sole criterion of selection will produce erroneous results.

Comparisons of the relative difference between the actual and optimistic lower limits for

tlr three test problems are shown in Table 7 .4. The fact that the actual lower limit

sometimes is slightly smaller than the optimistic lower limit (especially see Case 3 for the

plate in Chapter 6) is explained by the fact that the large models considered here may

cross the line where the two Riccatti equation design algorithm can provide acceptable

tccuracy.

rable 7 .4. Relative difference between the actual and optimistic lower limits, computed as

(actual - optimistic) I optimistic.

Flexible structure

Beam LSS Plate

~verage 0.89 2.5 -0.032

Min 0.005 0 -0.064

Max 1.54 72.6 0.014

The hybrid use of the actual and optimistic lower limits in a goal function improves

tre speed of the exhaustive search. The speedup is inversely proportional to the number of

mappings which are not discarded after the optimistic lower limit evaluation. The speedup

169

is sensitive to the selection of the target limit of deformation suppression, set at the

beginning of the search. An algorithm for tuning the target limit is proposed based on the

statistical properties of the relative difference between the actual and optimistic lower limit

defined over the set of possible mappings. Further improvements are achieved with the

search based on genetic algorithm (GA), incorporating the same statistical enhancements.

Comparisons of the speedups achieved with the statistically improved exhaustive search

and GA for serial computer architecture are shown in Table 7.5.

Table 7.5. Average speedup with serial computer architecture.

Flexible structure

Beam LSS Plate

Algorithm 3 (statistically improved

exhaustive search) 3.5 9.4 64

Algorithm 5 (statistically improved GA) 10.6 19 n/a

Because the enhancements to the exhaustive search and GA are based on

experimental estimates of statistical properties of certain variables, the mapping

optimization algorithm is not guaranteed to find the best mapping. Optimization accuracy

is described by the probability to find a mapping within 1%, 2%, or 5% range of the best

mapping. A comparison of appropriate results is shown in Table 7.6. the results are

adequate with proper tuning of the statistical enhancement algorithm.

170

Table 7.6. Probability of the search accuracy within 5% range.

Flexible structure

Beam LSS Plate

Algorithm 3 (statistically improved

exhaustive search) 0.99 1.0 1.0

Algorithm 5 (statistically improved GA) 0.98 0.95 N/a

Parallel realization of the exhaustive search and GA is possible thanks to the fact

that evaluation of any particular mapping is to certain degree independent from other

mappings. A parallel implementation of the search was attempted on a shared-memory

machine (SGI Origin 2000) with message-passing protocol (MPI). Matlab codes were

translated into C+-H executables with the help of Matcom V3 compiler. An analysis of the

speedups from the parallel organization of the code (Table 7.7) suggests that the

exhaustive search scales much better than the GA. This is because the properties of GA

during the search process change significantly toward the end of the process which can no

longer efficiently benefit fi-om the parallel CPUs.

Table 7.7. Average speedup with 4/14 parallel CPUs.

Flexible structure

Beam LSS Plate

Algorithm 3 (statistically improved

exhaustive search) 3.9/12 3.9/12 n/a

Algorithm 5 (statistically improved GA) 2.5-3.5 / 3.5 2.5/4 n/a

171

APPENDIX A. PROOF OF THEOREM 2.1

Let the FRM Gd)m) with dimensions mzXmu, mz<mu, have the following SVD at a

frequency w:

where

G12 = U12 • I 12 . V, 2·,

r12 = rank(G12) S mu,

L' 12 =diag{a12 J, a 12 i >0, for 1SiSr12 •

U12 is a mzxr1z matrix containing r12left singular vectors of G1z;

Vtz is a muxr1z matrix containing rtz right singular vectors of Gtz.

(A.l)

Similarly, let the FRM G21 (jm) with dimensions myXmw, my<mw, have the following SVD

at a frequency w:

where

G2, = Uz, · rz, · Vz,·,

r21 = rank(G21) S mY,

I 21 = diag { C121J, a2li > 0, for 1 S i S r21 .

U21 is a myxrz1 matrix containing r21 left singular vectors of Gz 1;

V21 is a mwxrz1 matrix containing rz1 right singular vectors of G21 .

The following three lemmas are necessary to prove the theorem 2.1.

Lemma Al. At any given frequency (J), the problem

(A.2)

172

(A.3)

has the following solution:

(A.4)

Lemma A2. At any given frequency ro, one easy way to construct the optimal matrix

Q(jro) (A.4) from Lemma A1 is:

(A.5)

Lemma A3. When evaluated at s = jro, the TFM Q(s), given by the formula

(A.6)

has the same FRM Q(jro) (A.5) as in lemma A2.

Proof of Theorem 2.1.

The definitions of the actual lower limit of deformation suppression (Definition

2.2, page 14) and Expression (2.15) for the closed-loop TFM of the disturbance-

deformation path Tzw(s) can be combined to give the following equivalent expression:

(A.7)

Recalling that the H~ norm of an operator can be determined through its behavior with

s=jro, the latter definition (A.7) can be re-formulated as the following optimization

problem:

173

tactual= min [supqG11 (jm)+G12 (jm)·Q(jm) ·G 21 (jm)]]. (A.8)
QeRH, _ ll)

The optimistic lower limit will be different from the latter in that the Q stability constraint

(QE RH+_) is removed:

and obviously

t optimistic ~ t actual •

According to Lemma Al, at every frequency ro there IS a solution to the

minimization over Q, given optimal G12(jm)·Q(jm)·G21(jm):

(A.lO)

hence the following formula is true

t aprimistic =sup a[Gi l (jm) -[u!z · u;z]Um) ·Gil (jm) · [vzl · Vz~]Um)]. (A.ll)
(J)

Lemmas A2 and A3 give tools to construct first the FRM of the optimal controller

parameter Q(jm):

Q(jm) = -G1~ (jm) · G11 (jm) · G;1 (jm).

and then the real-rational TFM of this parameter Q(s):

Q.E.D.

174

Note. Q(s) above contains both causal Q+ and anti-causal Q_ components, which are

unique and can be computed based on the Nehari theorem (Zhou et al, 1995). However

generally speaking it is true that

and usually it is not true that

Proof of Lemma Al.

The following definitions are necessary.

1. 1[,.., 11 +G12 ·Q ·G2111 = minl[,.., 11 ·w+G12 ·Q ·G21 ·wll= minllzll, ~ 2 w~~~ w~~
(A.l2)

where z =Gil · w +G12 ·Q ·G21 · w .

where wu and w .L are the detectable and non-detectable components of w, and V 21

spans the row space of the matrix G21 , i.e. the subspace of disturbances, detectable

with measurementsy.

where zu and z.i are the detectable and non-detectable components of z, and U12 spans

the column space of the matrix G12, i.e. the subspace of deformations, suppressible

by controls u.

175

Now the matrix G\ \ can be split into four components, depending on the input and

output subspaces of those components, with the components given by Table A1 (see also

the flowchart in Figure A. 1). Obviously, the following equality is true:

Gn Q G, , Q G, , [v , , -v;j, (A. 13)

because Uiz spans the column space of Gn, and V21 spans the row space of G21.

A comparison of (A. 12), (A. 13) and Gjl^ from the table A1 suggests, that it may

be possible to eliminate G/}' completely from the expression (A. 12) by a proper choice of

the parameter Q:

c,, • e• G,, = -c;," =-[{/„ t/,;].o„.[n,.n;],

O:, +G„ e c,, =G® +c;,» +c;," =c„ -g™ =c„ -[(/„ t^.-j G,, [t'n v;,].

Thus

^mrnJlG,, +C,, e G,,!, =||c„ -[{/,, f/;.] C,. [v,, ,

G,. e o„ = -c;;' •t/.-J c,, [v., v,;].

Q.E.D.

Proof of Lemma A2.

Assume that FRM of the parameter Q is Q(ja)) = -G*~ { j c t }) G^i { jQ)) G2 i (jo)) , as

suggested by Lemma 2. Recall that the Moore-Penrose pseudoinverse of a matrix can be

computed through the SVD of this matrix. Then the following is true:

176

Then the expression G12 Q G21 can be evaluated in the following way:

On e-c., =-c,, [(V,, i/.-.j c,, (v,,.e;; t/;,)]c„ =

-(f= -2;n •>'1;)•[(>'.. Sri f i) C„ (n, 2:;: 'Vn) =

Q.E.D.

Proof of Lemma A3.

Recall the definition of pseudoinverse for a "thin" matrix A {nxm), n>m:

A " = (A ' A) ' ' A * .

This is the case of G12 , mz>ma :

G*, { j c t)) = {G' . i j co) G,,G' . i jQ)) =

(G;^ i-jco) • G,, (jO))] • 0^2

This suggests to consider Gijijco) as the mapping of TFM

G;-(^) =(G,'1(-j) Gj,(5))'' G.^C-i)

to the imaginary axis s=j(i).

Similarly, using the defmition of the pseudoinverse for a "fat" matrix B (nxm),

ncm:

B* =B'

one ends up with

177

Gn Uoi) = G,*, UO)) • (G;i Uco) • G,*i { jO)))~ =

i - jo)) • [G .J jco) • G j j i - j co))

- I

-I

\-i

and the corresponding TFM:

G* i s) = Gl i - s) • (C,.(5) • Gl i - s)) '

For the final step recall that a system with TFM G{s) has an adjoint system with

TFM

G-{s)=G^{-s) .

Hence the following formulae are valid:

(*12 (-y) =(Gj2(.s) G,, (5))

C * (^) = G - i s) (g,, i s) • G - (5))"',

and finally

Q = -{^12 -^ i :) -^12 •

Q.E.D.

Tabic A.l. Componenis of C„ =C,'J' +C,','^ +0,',"

Detectable disturbance —> Suppressible deformation

Non-detectable disturbance —> Suppressible deformation [/^-V„ v;,]

Detectable disturbance -> Non-suppressible deformation

Non-detectable disturbance —> Non-suppressible deformation c;," =[/ . , -V„ I/;,] c,. [/^ -v„ V,;]

179

Figure A. 1. Input / Output subspace interpretation of the Lemma AI

Figure A.2. Feedback control flowchart

180

APPENDIX B. COMPUTER SPEED BENCHMARKS

A one-tirae overhead of the optimistic lower limit (Table 3.2), i.e. the

computation of the four frequency-response matrices for 121 test frequencies for the plate

model (Section 6), was used to benchmark the computers and compilers used in this

study. The average CPU time required to complete the computation was obtained from 10

runs of the corresponding code. The results are shown in the table B.l.

Table B.l. Computer benchmarks: CPU time associated with the frequency

responses evaluation for the plate model (Chapter 6).

Computer / Operating System CPU time, seconds

MaUabS.l
(Mathworks, Inc.)

Matcom V3
(Mathtools, Inc.)

I. Pentium Pro 200 / Windows NT4.0 92 59' / 28-

2. Pentium Pro 200 / Linux (kernel 2.0.32) n/a 56^

3. IBM RS/6000 / AJX4 (fln4.u.arizona.edu) 141 n/a

4. SGI Origin 2000 / IRIX (super.arizona.edu) n/a 38' /25^

1. MS Visual C-H- v. 5.0 compiler, optimization option G6.

2. Matcom Pentium Accelerator, and MS Visual C++ v. 5.0 compiler, optimization

option G6.

3. GCC 2.7.2 C/C++ compiler, optimization option 02 with Intel x86 specific code.

4. CC v. 7.0 (SGI native C/C++ compiler), optimization option 02.

5. BLAS libraries, CC v. 7.0, - optimization option 02.

181

APPENDIX C. ORGANIZATION OF THE PARALLEL

COMPUTATIONS

The exhaustive search algorithms and GA, described in the chapter 3, where

implemented on the SGI Origin 2000 supercomputer with native C compiler with BLAS

libraries and MPICH version of the message-passing protocol. Organization of the code

was shaped by the considerations and solutions listed in the Table C.I.

As the result of these, the parallel implementation tends to be very smart, as

suggests the Table C.2. Time spent into the serial pan (search process) is negligible

compared to the time spent in the parallel part. Interprocess communications' effect on

the computational time is so small, that it is not detected at all. This guarantees high

confidence of Matlab simulations of parallel code in Chapters 4-6.

182

Table C. 1. Considerations and solutions for the parallel implementation

No. Concept Solution

1. Minimize the time spent in

serial process.

1. Separate the search algorithm (serial part)

and goal function evaluation (parallel part)

in two different processes (search process

and server process). Use the out-of-state

server concept of platform.

2. Avoid serial parts in the server (parallel)

process, by avoiding master processes.

2. Minimize the interprocess

communication time.

Send only mapping codes, not the whole model.

3. Use as much of the Matlab

prototype code, as possible.

Use Matcora V3 (Matlab to C-M- compiler) to

generate C-h- code and to minimize direct C-h-

prograraming.

4. Provide robust interprocess

communications with minimum

programming effort.

Avoid MPI messaging, pass the mapping code

through the standard .mat files

5. Provide robust synchronization

of the search and server

processes.

1. Avoid command messages via pipes. Use

the events and event loop concepts. Use

names of the .mat files as events.

2. Control each branch of the server process

separately.

183

Table C.2. Computational time profiles: parallel realization of mapping

optimization for the LSS.

Number Search process time Server process (parallel), in seconds

(serial), in seconds Model optimistic limit actual limit

1 8 17 3,290 246,000

2 9 17 1,650 124,000

3 9 17 1,100 84,000

4 9 17 830 64,000

5 9 17 670 52,000

6 9 17 550 43,000

10 10 17 340 28,000

184

REFERENCES

[1] S.E. Aidarous, M.R. Gevers, M.J. Istalle (1976). Optimal pointwise discrete control
and controllers. Int. J. Contr. 24.4: 493-508.

[2] A. Aghasarian, S. Chemishkian (1995). |i-analysis of a beam figure control system.
Proc. American Control Conference. Seattle, WA. 4: 2848-2852.

[3] A. Arabyan, S. Chemishkian (1995). SVD-based control of a beam figure. Proc.
American Control Conference. Seatde. 4: 1413-1417.

[4] A. Arabyan, S. Chemishkian, Y. Meroyan (1996). Optimal positioning of actuators
for active vibration control in flexible structures. Proc. ll''" Conference on System
Engineering. Las Vegas, NV: 150-154.

[5] A. Arabyan, S. Chemishkian, Y. Meroyan (1997, submitted). Limits of vibration
suppression in flexible structures. Dynamics and Control.

[6] A. Arabyan, S. Chemishkian (1998). Lower limits of deformation suppression in
flexible structures. SCf'' IEEE Southeastern Symposium on System Theory.
Morgantown, WV.

[7] A. Arabyan, S. Chemishkian (1998, submitted). H_-Limits of deformation
suppression in flexible structures. lEE Proceedings - Control Theory and
Applications.

[8] A. Arabyan, S. Chemishkian (1998, submitted). H_-optimal mapping of actuators
and sensors in flexible structures. Conference on Decision and Control 98.

[9] N.F. Amold (1984). Numerical Solutions of Algebraic Mauix Riccati equations.
PhD dissertation. University of Southern California.

[10] T. Back (1996). Evolutionary algoridims in theory and practice. Oxford : Oxford
University Press.

[11] J.E. Baker (1989). Reducing bias and inefficiency in the selection algorithm,
Inthemational Conference on Genetic Algorithms. San Mateo, CA: 351-358.

[12] M.J. Balas (1982). Trends in Large Space Structure Control Theory: Fondest
Hopes, Wildest Dreams. IEEE Trans. Auto. Contr. AC27: 163-165.

185

[13] H. Baruh, L. Meiroviich (1981). On the placement of actuators in control of
distributed-paranieter systems. Proc. AIAA Dynamics Specialists Conference. New
Korit; 611-620.

[14] S.P. Bhattacharyya, L.H.Keel (1991). Control of Uncertain Dynamic Systems. Boca
Raton, FL: CRC Press.

[15] F.E. Cellier (1991). Continuous system modeling. New York : Springer-Verlag.

[16] S. Chemishkian (1995). Modem control techniques for real-time mirror figure
correction. Proc. 9'* World Congress on the Theory of Machines and Mechanisms.
Milano, Italy. 2: 1360-1364.

[17] W.H. Chen, J.H. Seinfeld (1975). Optimal location of process measurements. Int. J.
Contr. 21.6: 1003-1014.

[18] R.Y. Chiang, M.G. Safonov (1988). Robust Control Toolbox. South Natick, MA:
MathWorks.

[19] K. Choe, H. Baruh (1992). Actuator placement in structural control. J. Guidance,
Control, and Dynamics 15.1: 40-48.

[20] L. Davis (1991). Handbook of Genetic Algorithms. New York, NY: Van Nostrand
Reinhold.

[21] K. Deb, D.E. Goldberg (1989). An investigation of niche and species formation in
genetic function optimization. International Conference on Genetic Algorithms.
San Mateo, CA: 201-209.

[22] M.L. DeLorenzo (1990). Sensor and actuator selection for large space structure
control, J. Guidance, Control, and Dynamics 13.2: 249-257.

[23] J.D. Gardiner, A.J. Laub (1991). Parallel Algorithms for Algebraic Riccati
Equations. Int. J. Control 51.6: 1317-1334.

[24] D.E. Goldberg (1989). Genetic algorithms in search optimization and machine
learning. Massachustets: Addison-Wesley.

[25] D.E. Goldberg, J. Richardson (1987). Genetic algorithms and their applications. 2"^
International Conference on Genetic Algorithms. Hillsdale, N.J.: 151-169.

[26] M. Green, D.J.N. Limebeer (1995). Linear Robust Control. Englewood Cliffs, NJ:
Prentice-Hall.

186

[27] C.S. Greene, G. Stein (1979). Inherent damping, solvability conditions and
solutions for structural vibration control. 18th IEEE International Conference on
Decision and Control. Fort Lauderdale: 230-232.

[28] W. Gropp, E. Lusk, A. Skjellum (1994). Using MPI: Portable Parallel
Programming with the Message-Passing Interface. Cambridge, Mass.: The MIT
Press.

[29] A. Hac, L. Liu (1993). Sensor and actuator location in motion conu-ol of flexible
structures. J. Sound and Vibration 167: 239-245.

[30] A.M.A. Hamdan, A.H. Nayfeh (1989). Measures of modal controllability and
observability for first- and second-order linear systems. J. Guidance, Control, and
Dynamics 17.3: 529-536.

[31] J.H. Holland (1975). Adaptation in Natural and Artificial Systems. Ann Arbor, MI:
The University of Michigan Press.

[32] A.J. Laub, J.D. Gardiner (1988). Hypercube implementation of some parallel
algorithms in control. In Advanced Computing Concepts and Techniques in Control
Engineering (eds. M.J. Denham and A.J. Laub). Berlin, Springer Verlag: 361-390.

[33] W.S. Levine (Ed.) (1996). The control handbook. Boca Raton, FL: CRC Press.

[34] D. Levine (1996). Users guide to the PGAPack parallel genetic algorithm library.
Argonne National Laboratory.

[35] K.B. Lira (1992). Method for optimal actuator and sensor placement for large
flexible structures. Journal of Guidance, Control and Dynamics 15.1: 49-55.

[36] R. Lind, G. Balas, and V. Nalbantoglu (1997). Computing optimal vibration-sensor
configurations. NASA Tech Briefs. December 1997: 89.

[37] R.W. Longman, S.W. Sirlin, T. Li, and G. Sevaston, (1982). The fundamental
structure of degree of controllability and degree of observability. Proceedings of the
AIAA/AAS Astrodynamics Specialists Conference. AAS Paper 82-1434, San Diego,
CA.

[38] M.K. Mackay (1983). Active Control of Large Flexible Structures. PhD Thesis,
University of Southern California.

[39] P.G. Maghami, S.M. Joshi (1993). Sensor-actuator placement for flexible structures
with actuator dynamics. J. Guidance, Control, and Dynamics 16.2: 301-310.

187

[40] J.E. Martin (1978). Optimal allocation of actuators for distributed systems.
J. Dynamic Systems, Measurements and Control, 100.3: 227-228.

[41] Z. Michalewicz (1996). Genetic algorithms + data structures = evolution
programs. Berlin ; New York : Springer-Verlag.

[42] H. Pohlheira (1996). Genetic and Evolutionary Algorithm Toolbox for use with
Matlab (GEATbx). Germany, Technical University of Ilraenau.

[43] E. Rogers, Y. Li (1993). Parallel Processing in a Control Systems Environment.
Cambridge, UK: Prentice Hall International.

[44] H.J. Robertson (1970). Development of an Active Optics concept using a thin
deformable mirror. NASA Report CR 1593. Norwalk, CN: Perkin-Elraer
Corporation.

[45] M.G. Safonov, R.Y. Chiang, H. Rashner (1991). H_ Robust Control Synthesis for a
Large Space Structure. J. Guidance, Control, and Dynamcs 14: 513-520.

[46] J.D. Schaffer, R.N. Caruana, L.J.Eshelman, R. Das (1989). A study of control
parameters affecting online performance of genetic algorithms for function
optimization, Conference on Genetic Algorithms. San Mateo, CA: 235-240.

[47] D. Sparks, Jr., J. Juang (1992). Survey of experiments and experimental facilities
for control of flexible structures. Journal of Guidance, Control, and Dynamics
15: 801-816.

[48] G. Syswerda (1989). Uniform crossover in genetic algorithms. 3^'^ International
Conference on Genetic Algorithms, San Mateo, CA: 125-136.

[49] L.T. Vincent, Y.C. Lin, S.P. Joshi (1989). Positioning and active damping of
flexible beams. J. Guidance, Control, and Dynamics 13.4: 714-724.

[50] L.T. Vincent, Y.C. Lin, S.P. Joshi (1990). Controlling a flexible plate to mimic a
rigid one. Control and Dynamic Systems 35: 87-133.

[51] C.N. Viswanathan, R.W. Longman, P.W. Likins (1984). A degree of controllability
defnitions: fundamental concepts and applications in modal systems. J. Guidance,
Control, and Dynamics 1.1: 220-230.

[52] G.T. Volpe, H.J.Robertson (1973). Modal approach applied to the real-time figure
control of a spacebom telescope mirror. Instrumentation in Astronomy 1: 31-43.

188

[53] S.R. Warren, P.G. Voulgaris, A.B. Lawrence (1995). Robust control of a slewing
beam system. J. Vibration and Control 1.3: 251-271.

[54] K. Zhou, J.C. Doyle, K.Glover (1995). Robust and Optimal Control. Upper Saddle
River, NJ: Prentice-Hall.

[55] D. Whitley (1988). GENITOR: a different genetic algorithm. The Rocky Mountains
Conference on Artificial Intelligence. Denver, CO: 233-240.

IMAGE EVALUATION
TEST TARGET (QA-3)

150mm

IIVWGE. Inc
1653 East Main Street
Rochester. NY 14609 USA
Phone; 716/482-0300
Fax: 716/288-5989

O 1993. /Applied Image. Inc.. All Rights Reserved

