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ABSTRACT

One of the important factors in developing an emis-
sion control strategy for a coal fired steam generator is
the characterization of the insitu variability of the coal
being used in the furnace. Development of a model to cor-
rectly capture the insitu variability of the coal is thus
fundamental to the analyses of emission control strategies.

A simulation model of a portion of theAUpper Freeport
coal seam in Western Pennsylvania was developed using the
recently developed technique called conditional simulation.
This model was constructed so that it has the same mean,
variance, and distribution of values as the real deposit, and
most importantly, has the same spatial correlations as the
real deposit.

Validation of the model confirmed that the statisti-
cal characteristics of the model closely matched the charac-
teristics of the real deposit. A second validation of the
model showed that when the model is '"mined'" according to an
actual daily mining sequence, the resulting daily variability
correspouaded extremely well to what was observed during the
actual mining. This second verification served not only to

validate the model but also served as a practical



xi
demonstration that the model can be successfully used to
predict day by day variation in the quality of run of mine
coal.

One potential use of conditional simulation to '"test"
how well a mine plan works in actual mining was illustrated
by an example where four mine plans were tested on their
ability to correctly estimate coal production and sulfur
content on a yearly basis. 1In each case, the simulated de-
posit was mined out according to the mine plan. The result-
ing comparison of "actual' production and estimated
production clearly shows the adequacy or inadequacy of each

one.



CHAPTER 1
INTRODUCTION

Coal is the dominant source of fuel for the electric
utility industry. Almost 70% of the U.S, production of coal
is burned for steam generation. When coal is burned, the
major products of combustion are a large amount of heat,
large quantities of carbon dioxide and nitrogen oxide, ash,
and lessor quantities of SO2 (sulfur dioxide). In order to
limit the amount of SO2 entering the atmosphere, the
Environmental Protection Agency has imposed strict standards
on the amount of SO2 that can be emitted from coal fired
steam generation plants.

Current emission standards specify that emissions of
SO2 not exceed 1.2 lbs of SO2 per million Btu when averaged
over a 3 hour period. This standard has forced electric
utilities and other coal users to carefully evaluate the
quality of coal used in their plants. The chief parameters
governing the amount of SO2 emissions are the amount of
sulfur in the coal and the calorific or Btu content of the
coal. Since much of the coal mined in the Eastern United
States has too high a sulfur content to be burned and meet
emission standards, utilities have also investigated vari-
ous methods to reduce the emissions of SOZ' Major options

1



to reduce SO2 emissions are; the removal of SO2 from the
flue gas, removal of sulfur from the coal by cleaning the
coal, and reducing the average sulfur content of the coal by
blending of high sulfur coal with low sulfur coal.

Development of a cost effective emission control
strategy is difificult due to the large number of variables
that must be considered and the uncertainties that exist in
many of the variables. The quality of the coal reserves is
a most important factor in developing an emission control
strategy. The coal must be characterized not only by mean
values of sulfur and Btu content, but aiso by the expected
variation in these quality characteristics. Variation of
coal quality over short time periods (a few hours) is impor-
tant because most emission regulations set a limit that can-
not be exceeded at any time, Variation in coal quality over
longer periods such as monthé or years can influence the
amount of flexibility needed in the emission control
strategy.

Variability in coal quality entering a generating
station is influenced by many factors. Among these are the
number of mines supplying coal to the plant, the nature of
any blending and/or cleaning that occurs at the plant, and
the serial variability of the coal produced from each mine.
The variability of run of mine coal from each mine is, in

turn, affected by the particular mining methods used to



extract the coal and by the inherent insitu variability of
the coal.

Clearly the evaluation of an emission control
strategy must start with a careful evaluation of the coal
reserves that are going to be burned. This evaluation of
coal reserves must include both estimates of average values
of the coal quality parameters and quantification of the ex-
tent and pattern of variation exhibited by each variable.
Conventional methods of modeling insitu coal characteristics
such as contouring or kriging are designed to estimate mean
values at all locations in the deposit. The techniques used
to make these models produce a model that is smoother than
the real deposit; thus, these models are unsuitable as models
of the true variability exhibited by the deposit. A second
model is needed to study the variation in coal quality
within a deposit. The second model must possess the same
extent and pattern of variability as the real deposit. Such

a model can be produced by simulation.

Objective of Study

The purpose of this study is to develop a simulation
model of a coal deposit. The simulation model produced must
reproduce the mean and variance of assay values in the real
deposit. It must have the same spatial correlations and it
must reproduce the correct distribution of assay values.

The methodology used to make a simulation of a



three-dimensional ore deposit has recently been developed
by Journel (1974).

This work is one portion of a research program being
done at the University of Arizona in conjunction with the
owners of the Homer Cify generating station in Pennsylvania.
The overall purpose of this research program is to develop
and evaluate emission control strategies for the Homer City
plant. During initial work on this study, it became appar-
ent that to meet emissions limits, it would be necessary to
develop the technology to predict and control the varia-
bility of coal entering the burners of the generating sta-
tion. The conditional simulation model of a coal deposit
developed in this study is the basic model for studying
insitu coal characteristics and determining what the varia-
bility of run of mine coal is on an hour by hour, day by

day, or year by year basis.

Organization

This study is composed of six chapters. Chapter
Two reviews the theoretical basis of conditional simulation.
The actual construction and validation of the conditional
simulation model are discussed in Chapters Three and Four.
Use of the conditional simulation model is illustrated in
Chapter Five. Summary and conclusions are presented in

Chapter Six.



CHAPTER 2
THE THEORETICAL BASIS OF CONDITIONAL SIMULATION

This chapter describes the methodology used to make
a simulation of a three-dimensional ore deposit.

The basis of conditional simulation is that grade
values in a three-dimensional ore deposit can be represented
by a three~dimensional random function. Until the method of
turning bands was proposed by G. Matheron in 1973, simula-
tion of a three-dimensional random function was extremely
difficult, if possible at all, at any reasonable cost. The
techniques available to simulate one-dimensional random
functions were not suitable or realistic to use on three-
dimensional problems, Matheron's solution to making
three-dimensional simulations was to reduce the three-
dimensional problem to a set of one-dimensional simulations
that are easily made. These one-dimensional simulations are
then combined by a technique calléd the turning bands method,
to form the desired three-dimensional simulation.

The explanation of conditional simulation will start
with a description of how one-dimensional simulation can be
made. Next, the transition to three dimensions is explained.
Finally, conditioning of the simulation to the sample data
is explained. The explanations presented in this chapter

5



are, when possible, made at a low level of mathematical

sophistication so that mining engineers who have not had
courses in stochastic processes, time series analysis, or
functional analysis, can understand the methodology used.

Generation of Correlated Random
" Variables in One Dimension

A simple way of generating a sequence of correlated
random variables is toc use a moving average process as
illustrated below.

A series of corrélated random variables denoted by
X(t) can be calculated from a set of independent random

“variables denoted T(t) by the moving average process defined

by Equation 2.1.

m

X(t) = > f£(k) T(t+k) (2.1)
k=-m : '

f(k) = k -m < k <m

f(k) = 0 otherwise.

The smoothing effect of this moving average is
easily shown. Start with a sequence of independent random
numbers drawn from a uniform distribution between -0.5 to
0.5. The mean of this distribution is zero and the variance
is one-twelfth (0.083). Ten such random numbers are listed

below.
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0.19 -0.26 -0.30 -0.14 +0.20 +0.37 -0.37 -0,00 +0,15 -0.28

(1) (2 (3) (4 (B3) (B) (7 (8 (9) (10)

Figure 2.1 shows a plot of the above numbers plus the next

twenty random numbers.

.50

] |
.25

.00 ' . [ 1 l ‘ I i I
|| | I ll ] Il. T l ll || | |
-.25

-.50 |

Figure 2.1. Thirty Plotted Random Variables

Now, by using the above simple moving average and
letting m equal 3, the random variable X(5) is calculated as

follows.

X(5) = (—3)(—0.26)+(—2)(—.305+(—1)(—14)+(0)(.20)
+(1)(.37)+(2)(~.37)+(3)(0.0)
X(5) = 1.15

The first ten correlated variables are listed below.

0.08 1.15 1.06 -.89 -2.4 -1.69 -.19 -,37 1.83 1.59
(4) () (B (7 (8 (9) (10) (11) (12) (13)



FPigure 2.2 below shows the results for the first thirty

values of X(t).

S|
00 L | ]

At
Al

]
-
o
N

Figure 2.2, Thirty Correlated Random Variables

Notice that there is a tendency for similar values
to be grouped together, hence, a certain amount of correla-
tion has, in fact, been introduced by the moving average
procedure. This is, of course, what was desired. For
instance, X(5) and X(6) should be related because four of
the six random numbers used in their calculations are the
same for each. For the same reasoning, X(5) and X(16) need
have no similarity since none of the same random numbers
were used to calculate each one.

Confirmation of the correlations between the simu-
lated values is demonstrated by the variogram shown in
Figure 2.3 which was calculated for the sequence of values

shown in Figure 2.2,



3.0¢

Y(lag) 2.0

-

Figure 2.3. Variogram of One-Dimensional Values

The variogram shows that the correlation between
variables decreases with increasing lag, until at lag 7, the
variables are independent.

These experimental results can be easily verified.
The covariance between X(t) and X(t+h) is given by

Equation 2.2. Note that E[X(t)] equals zero.

C(h) = E[X(t) + X(t+h)] (2.2)

By substituting Equation 2.1 into Equation 2.2, we have the

following equation.

+3 +3
Cth) = E (Z £(k) T(t+k)) . (Z £(3) T(t+h+j))] (2.3)

k=-3 j=—3
Now, since T(t+k) and T(t+h+j) are independent, the expecta-
tion E[T(t+k) +« T(t+h+j)] equals zero unless t+k = t+h+j, in

which case E[T(i)2] = ¢2. This only happens when k = h+j.
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Thus, we can simplify Equation 2.3 to get the following
equation.
+3
C(h) = 02 3, f£(k) « f(k-h) (2.4)
Using this equation, the values C(0) to C(7) were calculated
and listed below. Remember, the value of g2 is one-twelfth

(0.083) and £(k) = k for -3 < k < 3.

C(0) = 2.33 Cc(4) = -1.16
C(1) = 1.33 C(5) = -1.0
C(2) = .42 C(6) = =.75
C(3) = -.33 C(7) = 0.0

The variogram and covariance function are related by
Equation 2.5, hence, we can'compute the theoretical vario-

gram and compare it with the experimental one.
y(h) = C(0) - C(h) (2.95)

Figure 2.4 shows the excellent agreement between the

theoretical and experimental variograms.
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theoretical
3.0} /
Y(lag) 2.0| /
experimental
1.0
1 2 3 4 5 6 7 8
lag

Figure 2.4. Comparison of Theoretical and Experiméﬁtal
, Variograms

Other characteristics of the simulated values can be
seen in Figure 2.5. Since the simulated values are calcu-
lated basically by a weighted sum of independent random
variables, the distribution of the simulated values should
approximate a Gaussian distribution. As seen in Figure 2.5,
the simulated values do appear to approximate a Gaussian
distribution.

Since the moving average process simply sums inde-
pendent random variables, the distribution of X(t) should
tend towards a normal distribution due to the Central Limit
Theorem. The histogram shown below is symmetric and visually
appears to be quite similar to a normal distribution.

This example shows that the moving average process
generates a series of random variables that are serially

correlated and that the experimental results compare closely
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to the theoretical predictibn of the covariance and the

distribution type.

n
(3,
T

]
(=]
¥

-~
D
'

Relative Frequency
pre
[ ]

(3]
v

—
-3.25 -1.25 .75 2.75

Figure 2.5. Histogram of One-Dimensional Simulated Values

What is really needed to simulated ore deposits is a
procedure that will reproduce both the distribution and the
particular form of the variogram for a specific deposit.

By rewriting Equations 2.1 and 2.4 slightly, more general
forms of the moving average process and the covariance

function are obtained.

©

X(t) = kZ £f(k) - T(t+k) : (2.6)
Ci(h) = 02 ),  f£(k) » f£(k-h) (2.7)

K=o
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Both X(t) and C!(h) are now seen to depend upon the
weighting function f(k). The problem of generating random
variables X(t) having a particular covariance function C(h)
can be solved if the appropriate function f(k) can be
determined.

A theorem from Bochner (Journel and Huijbregts,
1978) provides a basis for determining f(k) for a particular
covariance function. This theorem says essentially that a
covariance function can be expressed as Fourier transform.
In Equation 2.7, the covariance function is expressed as the
discrete form of a convolution product of the weighting
function f£(k) and its transpose (Journel and Huijbregts,
1978, p. 504). By expressing Equation 2.7 in a continuous
form and using the property that a Fourier transform of a
convolution is the product of the Fourier transform of f(u)

and itself, the following eqﬁation can be formed.

flerm) = [rczaan]? (2.8)

Now, by finding the iﬁverse Fourier transform
denoted f~!, the weighting function f(u) can sometimes be

determined.

f(u) = f [f‘l(cl (u))]‘%‘ (2.9)

Although the theoretical solution exists, the prac-

tical problem of actually computing f(u) is not easy and,
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in some cases, not possible. Fortﬁnately, for the three
most common covariance (or variogram) models, e.g. spheri-
cal, exponential, Gaussian, the weighting functions have

been calculated by Journel and Huijbregts (1978, p. 507).

Examples of One-Dimensional Covariance Models

The one-dimensional covariance function corre-
sponding to the three-dimensional spherical variogram

model is given below.

3
cl(h) =K[1-§?-+2h] h<a (2.10)
a a3
= 0 h > a

How Cl(h) is derived is explained in the next section.
The weighting function used to generate simulated values
having the above covariance function is given below

(Journel and Huijbregts, 1978, p. 507).

f(u)

= u - % < u < % (2.11)'
= 0 otherwise.

In this function, a refers to the range of the spherical
variogram and K is the desired variance of the simulated
values.

Verification that the above weighting function is

appropriate is easily shown. Start with the definition of



15
the one-~dimensional covariance as a convolution and simply
perform the integration using the weighting function shown

in Equation 2.11.

o

Cl(h) = [ £(u) + f(u+h)du
-=CQ
| /2 = h
= 12K f (u) (u+h)du
a3 -a/2
/2 - h
= lEE_ <u2+uh>du
ad -3/2
_ 12K [ua u? ] a/2 - h
=== \F + 5 h
al -a/2
= 12K |2a% _ a%h _ h3
3 | 24 ) 6
3
- [1 _a, 23_]
a ag

The one-dimensional covariance model corresponding
to the exponential variogram model is given below (Journel

and Huijbregts, 1978, p. 507).

h

Cl(h) = K(l-Ah)e™? (2.12)

The appropriate weighting function is given in Equation 2.13

(Journel and Huijbregts, 1978, p. 508).

z<VKA>(1-Au)e"‘“ u>0 (2.13)
0 u<a

f(u)
fCu)
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The final model that has been worked out is the one-dimen-

sional Gaussian covariance

2\ _h2/a2
Cl (h) =K< _ 2h’),-h%/a h >0 (2.14)
22
which has the following weighting function (Journel .and

Huijbregts, 1978, p. 508).

2u?

- =
f(u,=ﬁK_)ue a <y <o
ad\/m

Going from One-Dimensional to
Three-Dimensional Random Variables

In the previous section, it was shown that a simple
moving average could be used to generate one-dimensional
correlated random variables for the three variogram models
commonly found in ore deposits.

In this section, Matheron's unique solution to the
problem of simulating three-dimensional random variables
with imposed covariance using one-~dimensional correlated
random variables is explained. |

When making a variogram study of a deposit, it is
always useful to study the geology of the deposit ard the
mechanisms that formed the ore deposit in order to under-
stand the spatial characteristics of the deposit. An ore
deposit is not formed by just one process, but instead, may

be the result of many different processes acting in various
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manners and at various times, Take a fairly simple example,
for instance, a placer deposit formed in a river channel.

As shown in Figure 2.6, the deposit may consist of numerous

interbedded sand lenses.

Figure 2.6. Idealistic Placer Deposit

The grade of ore within a sand lens should show more
continuity or correlation parallel to the direction of
deposition than perpendicular to it or vertically within the
lens. The continuity of the grade of the lenses should be
greater within a horizontal zone of the deposit than verti-
cally within the deposit. The oferall spatial variability
of grade is thus the sum total of all the directional char-
acteristics due to the manner of deposition of the ore
minerals within the sand lenses, and the different character-
istics of each sand lens deposited during the formation of
the placer. We can thus view the three-dimensional covari-

ance (or variogram) as the sum ©f the various directional
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covariances for each process that aided in the formation
of the deposit.

The above idea can be explained by considering two
points x and x+h as shown in Figure 2.7. For the moment,
restrict the discussion to two dimensions. Let y(u) and
y(v) be independent realizations of one-dimensional random
functions with covariance Cl(hp) and C!(hv), respectively,

on vectors p and v.

. :”P‘
i:gx
T
9
12
35 ,
T e M S R G R S Sy 1
4s | Z(x) = — (-2.39+1.32) = -.75
b 38 | 2
-4 :5 x
. | 1
22 ! | Z(x+h) = — (1.59-1.04) = 777
N ' "E
10y ! !
-4.51
Sx t l
:" &' 'xv&har [ 4
1) ll' L UL ) 1 .'l 19
ARG I b RS

Figure 2.7. Using Two One-Dimensional Lines to Make a
Two-Dimensional Simulation

Assume for now that the grades at x and x+h are a
1

function of the two random functions y(u) and y(v). Specif-

ically, let Z(x), the grade at point x, be given by the sum

1

Z(x) = [v(<x,u>) + y(<x,v>)] (2.15)

1
/2
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where <x,u> refers to the projection of point x on vector u,
and y(<x,u>) the value of the random variable at <x,u>. The
projection <x,p> is used to indicate which value from line u
is to be included in the sum given by Equation 2.15. Sample
calculations are shown in Figure 2.7. Notice that if x and
x+h were exactly East-West of one another, the difference in
the grades Z(x) and Z(x+h) would be entirely due to the
process that is represented by the values on line v. The
covariance of Z(x) is a function of the one-~dimensional
covariances Cl(hu) and Cl(hv) and is given by the simple

summation of

C(h) = Cl(<h,u>) + Cl(<h,v>) (2.16)

where <h,v> is the projection of vector v onto vector h.
Thus, if h is parallel to v,'the covariance between x and
x+h will be mainly due to the process acting in the direc-
tion v, and vice versa.

More lines can be used to improve the simulation.

For instance, in Figure 2.8, four lines are included.
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a T(x) = - (-0.4340 . 25-1.87
§ va
E +1.94) = .185
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Figure 2.8. Using Four One-Dimensional Lines to Make a
Two-Dimensional Simulation

Z(x) is again defined as the sum of the perpendic-
ular projections of x onto each of the one-dimensional

lines.

n ;
Z(x) = 2. y(<k, 1) (2.17)
i=1

S [

Since Equation 2.17 is a sum of independent random varia-

bles having covariance Ccl(0), the term 55 is included to
n

insure the variance of Z(x) will be also C!(0). The co-

variance of Z(x) is given by Equation 2.18.
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1 B
C(h) = = Cl(<h,i>) (2.18)
i=1
As the number of lines used goes to infinity, the covariance

C(h) tends toward the desired three-dimensional covariance.

C(h) = 5= 1) cl (<h,u>)du (2.19)
1/2 sphere

The simuiation will more accurately reflect the im-
posed covariance C(h) the greater the number of lines that
are used. There are, however, practical limits to the num-
ber of lines used. The lines should be uniformly distributed
over the unit sphere. In three dimensions, it turns out
that 15 is the largest number of lines that can be exactly
evenly distributed over the sphere. These 15 lines are ob-
tained by connecting the midpoints of opposing edges of an
icosahedron (Journel and Huijbregts, 1978, p. 503). The
icosahedron is shown in Figure‘2.9.‘ It is sufficient to

integrate over half the sphere since yu and -u determine the

3

Figure 2.9. Icosahedron

same line.
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The method of simulation outlined above is referred
to as the Method of Turning Bands (Journel and Huijbregts,
1978, p. 500). The name requires some explanation. The
term "bands" refers to the distance between the values simu-
lated on the one-dimensional lines. The term "turning"
refers to rotating the lines in space so that they are
evenly distributed in space.

One last point needs to be considered. Given a
three-dimensional covariance C(h), what is the one-dimen-
sional covariance Cl(t) that, when integrated over the half
sphere, will give C(h)? In the three-dimensional case,

Equation 2.19 can be rewritten as shown below.

2% w/2
C(h) = 5= Of 48 Of c1<|h cos cbl) sin ¢ d ¢  (2.20)

Making the substitution t = ]h cos ¢| and integrating out ¢
gives

1 (" o 2.21

CCh)=-ﬁof cl(t)dt (2.21)

Now, by taking the antiderivative of Equation 2.21, the
means of finding the desired one-dimensional covariance

Cl(h) is given.

cir) = AR L] (2.22)
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Example of Determining One-Dimensional Covariance

The covariance corresponding to the common spherical

variogram is given below.

3h h3
C(h) = K[l - = +-———] h < a
2a 22.3
=0 otherwise.

Applying Equation 2.22 gives the one-dimensional covariance

Cl(h) corresponding to the spherical variogram.

et - 2 - 2)

1 =
C*(h) 5h
2 4
K a( -3 +-£_)
- 2a8
5h
3
cl(h) = K[l ~38h , 2h ] h < a
a 3
a
= 0 otherwise.

In the previous section, it was shown that this covariance

is the convolution of the following weighting function:

it
=]
|

£(u) % <u <

o

=0 otherwise.



24

Summary of Turning Bands Method

The last two sections have explained how the turning
bands method produces a simulation of a stationary three-
dimensional random function. The three-dimensional random
function being simulated has the following characteristics:

1. Imposed covariance

2 Mean equal zero

3. Gaussian distribution

4 Stationary
The method can be used to simulate any stationary

three-dimensional random function as long as:

1. the one-dimensional covariance C!(h) corresponding
to the specified three-dimensional covariance can be
determined, and

2. the weighting function f(u) can be determined.

In practice, most ore deposits exhibit covariance
functiéns that can be modeled by either the spherical, expo-
nential, or Gaussian models, or by a combination of these
models; thus, the above limitations usually pose no problems.
Controlling these simulations so that they have a specified
mean and correct distribution is explained in the next

section.
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Controlling the Distribution of Simulated Values

One of the necessary requirements of the simulation
model of a deposit is that it correctly reflect the distri-
bution of the assay grades in the deposit. The Turning
Bénds Method produces simulated values by adding together
15 independent rgalizations defined on‘lines (Equation 2.13).
Since the values making up the lines are approximately nor-
mally distributed, the sum of 15 independent values should
also be normally distributed due to the Central Limit
Theorem. More specifically, the simulated values produced
by Equation 2,13 should be normally distributed with zero
expected value and variance equal to the variance of the
one-dimensional lines, C1(0).

For deposits having a normal distribution of assay
grades, the simulation model must be adjusted to have the
‘correct mean grade. This is done by simply adding the mean
to each simulated wvalue.

In most cases, however, the distribution of assay
grades is not well approximated by a normal distribution.

In these cases, the simulated values have to be transformed
to reproduce the correct distribution of assay grades. This
can be done by finding the transformation function that con-
verts the original assay grades to a standard normal distri-

bution. Let Zo(x) represent the real assay grades, and p(x)
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the corresponding normally distributed value. The trans-
formation function, ¢(u), shown below, transforms the

standard normal variable u(x) to Z(x).

Z2(x) = ¢[u(x)] (2.23)

Likewise, the inverse of ¢(u) transforms Z(x) to u(x).
B(x) = ¢71[Z(x)] (2.24)

- Por example, certain deposits have assay grades that are
lognormally distributed. The inverse transformation func-

tion ¢ (Z) relating u(x) to Z(x) is thus

u(x) = logl[Z(x)]

and, therefore, ¢(uy) is simply

(x) = eu(x).

In many cases, the appropriate transformations may
not be obvious and more generalized methods are used to make
the transformations. Simple graphical means can be used if
the histogram of the available data is representative of the
distribution of the grades in the deposit. Figure 2.10
sﬁows an example of the one-to-one correspondence between
the cumulative frequency of the assay values and the cumu-

lative normal distribution function. Another approach is to
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approximate ¢[u(x)] by Hermite-polynomials (Kim, Myers, and
Knudsen, 1977).
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Figure 2.10. Graphical Transformation Function

In general, the Turning Bands Method will be used to
simulate the transformed grades u(x) rather than the grades
Z(x). The covariance imposed on the simulation must, there-
fore, be the covariance of the transformed grades u(x).
Then, when the simulation is finally transformed to repre-
sent Z(x), the covariance of Z(x) will be correctly repro-

duced.
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If the simulation is to be conditioned to the sam-
pie data, the conditioning must be done before the final
transformation to Z(x), and the conditioning of u(x) must
be done with the transformed sample grades.

Conditioning the Simulation to
the Available Sample Points

The Turning Bands Method provides realizations de-
noted Zs(x) of a random function RF Z(x) that has the same
mean, variogram, and distribution as the real deposit.
These simulations thus model the most important character-
istics of the deposit. However, by conditioning the model
so that the simulated values match the sample values at the
data locations, certain additional characteristics of the
deposit are added to the model (Journel, 1974, p. 674).
Chief among these is credibility, since the model now looks
like the deposit at all the places where both values can be
observed, i.e., the sample points. Conditioning also adds
'a certain robustness to the model because certain local
characteristics otherwise unmodeled are imparted to the
model.

The effects of conditioning the simulation can be
seen in the plots shown on Figure 2.11. The upper plot
shows the exact thickness [Z(x)] of coal measured along a
hypothetical coal seam. For illustration purposes, assume

that this hypothetical coal seam is the real deposit. A
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simulation of this coal seam was made and is shown on the
middle plot together with the "real'" deposit. The real
values are denofed Z(x) and the simulated values ZS(x).

The simulated data appear to model the general character-
istics of the deposit fairly well, but of course, do not
match the real values at each and every point. The last
plot shows the real deposit again and the simulation after

conditioning to the six data points shown.

The conditioning essentially forces the simulation
to pass through the data points. The resulting conditional
simulation [ZCS(x)] looks more like the real deposit than
the nonconditional simulation [Zs(x)]. In addition to
lending relevance to the model, other characteristics are
imparted to the model by conditioning. For example, local
drifts in the sample data will be reproduced within the same
zone in the conditional simulation model. This fact can be
used to advantage if some specific characteristics need to
be modeled. For instance, assume we want the thickness of
coal to be very thin in one area of the model, say to test
the influence of an unexpected low coal area due to
channeling on the production capacity of the mine. The low
coal area can be included by using fictitious conditioning
points in the area where the low coal is desired. Figure

2.12 shows an example of this.
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Figure 2.12. Conditioning with Pseudo Sample Values

Requirements of the conditional simulation model
ch(x) are that it has the same mean, variogram, and distri-
bution as the real deposit, and that at the sample points

X it has the same values as the sample values, i.e.,

9°
ch(xa) = Z(xa). To condition the simulation model, several
properties of kriging are utilized. Some of these can be
shown by examining Figure 2.13, which shows a profile of
true thickness, Z(x), and a profile of kriged estimates
Z;(x). The first property to note is that the kriged esti-
mates pass through the sample values Z(xa) at the sample
positious X, - This is due to kriging being an exact estima-

tor, hence, the best estimate of a sample grade is the
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sample grade. The second property to note from the figure
is that the kriged profile is much smoother than the true
thickness and that the two profiles meet at the known sample
points. The difference between the profiles, [Z(x)—ZZ(x)],
is of special interest because [Z(x)—Z;(x)], the kriging
error, is orthogonal to (independent of) the estimate Z;(x)
(Journel and Huijbregts, 1978, p. 495). This fact suggests
that one way to make a conditional simulation is to simuiate
the error [Z(x)—ZZ(x)] and add it to the kriged values Zk(x).

To be valid, however, the error that is simulated would have

to be isomorphic to the real error [Z(x)-Z;(x)].

THICK

Figure 2.13. Profiles of True Thickness and Kriged Thickness

Simulating [Z(x)-Z;(x)] can be done by taking a non-

conditional simulation Zs(x) and constructing a kriged
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estimate Z:k(x) using the simulated values at the same
sample positions, X, as the real data.

This error [Zs(x)-Z:k(x)] has the same properties as
Z(x)-Z,(x), and in addition, Z_(x)-Zy (x) is an independent
realization of Z(x)—Z;(x).

The conditional simulation, Z:S(x) is formed by the

equation below.
Z:S(x) = Z;(x) +‘[z;(x)-z:k(x)] (2.25)

It can be easily seen that Z:S(x) passes through the known
data points xa. At each data point Xy the kriged value

Z:(xa) equals the value of the data point Z(xa),
Z =z
(x,) = 2,.(x))

and the kriged value Z:k(xa)’ resulfing from the simulated

values, equals the simulated value at the points X,

*
Zscxa) = Zskcxa)’

Thus, the conditionally simulated value equals the value of

the data point X,

*
ch(x) = Z(xa).

This process is illustrated by the plots shown in
Figure 2.14. The top plot shows a nonconditional simulation,

*
Zs(x), and a kriged profile, Zsk(x), made from the simulated
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values located at the six sample points shown. The middle
plot shows a kriged profile, Z;(x), made from the real sam-
ple values located at the six sample points shown on the
plot. The difference [Zs(x)-Z;k(x)] from the upper plot is
added to the profile Z;(x) shown in the middle plot to get
the final conditional simulation Z:S(x) shown in the bottom
plot. The resulting conditional simulation is the same as

shown earlier in Figure 2.11.

Simulation of Anisotropic Covariance Functions

The Turning Bands Method produces a simulation that
has an isotropic three-dimensional covariance function.
Most ore deposits, however, do not exhibit isotropic covari-
ance functions. Two solutions are available to solve this
apparent problem. The general solution depends on the fact
that any three-dimensional covariance (anisotropic or iso-
tropic) can be mddeled as a nested sum of isotropic covari-
ances in dimensions one, two, or three. This is possible
because every linear combination of covariances with positive
coefficients is a covariance (Journel and Huijbregts, 1978,
p. 162). Thus, for example, an anisotropic covariance may

be modeled by Equation 2.26.

C(h) = cl< hx2+hy2+hz2>. + Cp(hz) (2.26)

where C; is an isotropic covariance in three dimensions and

Co(hz) is isotropic in only one dimension. The random
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function Z(x) in this example would be interpreted as the

sum of two independent random functions
2
Z(x) = . T, (%)
i=0

where T; refers to a realization of a random function with
isotropic three-~dimensional covariance and T, represents a
realization of a one-dimensional random function. The simu-
lation of this random function would thus be done in two
individual steps and the results simply added together.

The second solution is possible if the deposit has
a geometrical anisotropy, and a linear transformation of
coordinates can transform the geometrical anistropy to iso-
tropic. In this special case, the deposit is modeled using
an isotropic covariance, and then the models' coordinates

are transformed to restore the geometrical anisotropy.

Simulation of Non-stationary Random Functions

Some ore deposits display a definite trénd or drift
in the assay values. For example, some deposits show a pro-
gressive decrease in grade with depth. In such cases, the
deposit should probably be considered as a realization of a
non-stationary random function.

Non-stationary random functions can be simulated if

the random function Z(x) can be interpreted as a sum of a
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drift component, M(x), and a stationary residual, R(x),
(Journel and Huijbregts, 1978, p. 500) as shown by

Equation 2.27.
Z(x) = M(x) + R(x) (2.27)

The deposit can then be simulated by modeling the
drift and simulation of the residuals using the Turning
Bands Method. Practical problems exist with this approach,
due to the difficulty of modeling the drift.

A second approach is possible if the drift is
" localized or restricted to a certain section of the deposit.
In such cases, the drift may be simulated by conditioning
the simulation to true or fictitious data in the =zone
(Journel and Huijbregts, 1978, p. 500). An example of this
technique was shown in Figure 2.11 earlier. This condition;
ing will force the simulatioﬁ to follow the pseudo or

fictitious data points,



CHAPTER 3

DEVELOPMENT OF COMPUTER PROGRAMS AND PROCEDURE

TO CONSTRUCT A CONDITIONAL SIMULATION MODEL

In this chapter, the structure and design of the
computer programs written to construct a conditional simula-
tion model are described. The description of the computer
programs is limited to a general discussion of the specific
functions each program performs in the construction of the

model.

Desired Characteristics of the Model

The conditional simulation model must reproduce the
most essential statistical characteristics of the real
deposit. Specifically, the model should have:

1. the same mean as the real deposit,

2 the same variance and variogram function,
3. the same empirical distribution, and

4, be conditioned to the real data.

The Turning Bands Method pro@uces a simulation that
is nonconditional to the sample data and that has approxi-
mately a Gaussian distribution of simulated values. Clearly,
the sequence 6f construction of a conditional simulation
must involve several steps if the model is to reproduce the
above desired characteristics of the true deposit, For

38
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simple deposits, the procedﬁre of making a conditional simu-
lation can be divided into the following basic steps.

1. Make a nonconditional simulation of the deposit.
This model has values that have a Gaussian distribu-
tion with mean equal to zero and variance equal to
one.

2. Transform the model to correct mean and variance.

3. Condition the model to the sample data,

4, Transform the model so the simulated values have
the appropriate distribution.

For simple deposits, the above sequence should be sufficient.
For more complex models, the above sequence might have to be
expanded to correctly model the deposit.

Development c¢f Computer Programs Used
to Make Conditional Simulation Models

Development of a set of computer programs used to
make a conditional simulation model was guided by the
general need to divide the construction into a sequence of
discrete steps as outlined above. The particular tasks
assigned to each program were carefully chosen to provide
flexibility in modeling, so that even very complex deposits
can be modeled. |

The final design of the computer programs resulted
in a set of seven programs that are jointly referred to as
the CSIM system. These programs are listed and briefly

described below.
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Programs for CSIM Model Construction

Program CSIMOl -

Program CSIMO3 -

Program CSIMOS -

Program CSIMO7

Program CSIMOS8

Programs for Calculation
Model

Program CSIMO4 -

Program CSIM06 -

This program initializes the model.
This program makes a noncondi-
tional simulation,.

Three types of transformations can
be made with this program. In
addition, the nugget affect can be
added to the model with this
program,

This program conditions the model
to the available sample data.

This program adds two models to-
gether. It is used for complex
deposits that cannot be described

with a simple spherical model.
of Statistics and Display of the

This program calculates basic sta-
tistics, plots histograms, and
calculates variograms of the model.
This program makes single digit

printer plots of the CSIM model.

The model actually consists of a three-~-dimensional

array where each element

in the array represents a precise

physical volume of ground in the deposit. The value of each
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element is the simulated attribute, such as the % ash or the
% sulfur of that volume of ground. Detail in the model is a
function of the volume of ground represented by each element
of the array. The smaller the volume of ground represented
by each element, the more detail the model has.

The number of simulated values used to model a de-
posit depends on the size of the deposit and on the spacing
between grid points of the model, The physical relationship
between the grid of simulated values for a two-dimensional
simulation and the actual deposit is shown in Figure 3.1.
The area shown in this figure to be modeled is 4,000 ft by
4,000 ft. Using a grid spacing of 20 ft, a total of 40,000
grid points would be necessary to model the area shown.

The large number of grid points needed to model even
a very small portion of a deposit presents practical prob-
lems in the design of the coﬁputer programs to construct the
model and to access an entire model in core; therefore, some
method of partitioning the model must be used so that only a
small portion of the model need be in core at any one time.
The option chosen for the computer programs developed in
this study is to partition the model into blocks where each
block represents 100 by 100 by 1 arrays of grid points
(10,000 points). Each of these blocks is then stored on a
direct access disk file and only one block at a time is held

in core during program execution.
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Figure 3.1. Plan Map of Area Modeled

Dividing the deposit into blocks having a given
volume, rather than rows or columns, was done primarily

because one of the end uses of the model will be to determine
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the average quality of coal mined within a certain volume.
This calculation can most efficiently be done if the grid
points representing the block are all in core at the same
time. If row or column storage had been chosen, much more

input/output time would be used during program execution.

Description of Program CSIMO3

Program CSIMO3 is the only program in the CSIM sys-
tem that is totally unique to the system. The other major
programs, CSIMOS and CSIMO7, are adaptations of standard
geostatistical programs. Program CSIMO7 is basically a
kriging program and Program CSIMOS performs simple trans-
formations. These programs will not be described here.

Program CSIMO3 (see Appendix A) generates a non-
conditional simulation by the Turning Bands Method. The
computer program was written so that the simulation produced
by CSIMO3 would have the following properties.

1, Second order stationarity

2. Simulated values having an approximate Gaussian dis-
tribution with mean equallto zero and variance equal
to omne

3. Model exhibiting a spherical variogram with speci-
fied range and sill value equal to one

There are several reasons for producing a simulation
model that can be considered a unit model. The most impor-

tant reason is that most deposits exhibit assay values that
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do not have a Gaussian distribution. Thus, at some stage,
the values in the simulation model must be transformed to
the appropriate distribution. This is most easily done if
the simulation model, before transforming, has a mean of
zero and variance equal to one. A second reason to con-
struct a unit model is the possibility that the model can
be saved and utilized for several deposits having the same
variogram type but With different means, variances, and
distribution types.

Program CSIMO3 is programmed tb produce a three-
dimensional simulation, but as presently coded, only
two-dimensional simulations are produced. Full three-
dimensional simulations can be obtained by increasing the
array size of the Fortran variable IB, which is presently
(100, 100, 1). The third index of this array determines
how many points will be simulated in the vertical direction.

Programming the Turning Bands Method is relatively
straightforward because the method can be divided into two
distinct steps. The first step is to generate fifteen
lines of one-dimensionally correlated random variables. 1In
the second step, the one-dimensional random variables are

combined to form a three-dimensional simulation.
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Step One. Algorithm to Generate Correlated Random
Variables in One Dimension

One-dimensionally correlated random variables de-
noted X(t) can be generated by the moving average procedure
described in Chapter Two and repeated in the following

equation.

NR
X(t) =C « )  £(k) o T(t+k) (3.1)

The number of random variables X(t) to generate for
each of the fifteen lines depends on the size and shape of
the deposit and on the grid spacing used in the model.

Since each line has a different orientation in space, a
different number of variables X(t) are needed for each line.

For each line, the number of random variables to
generate can be determined by first calculating the length
of the line needed to complefely span the deposit. This
length is then divided by the grid spacing to give the num-
ber of random variables needed. TFor example, in Figure 3.2,
the length of the line necessary to span the deposit is the
distance between points A and B. These points are the per-
pendicular projections of the vertices labeled 1 and 3 onto

the one-dimensional line,
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(NPE,NPN,NPTV)

2 3 \\

(0,0,0) U

Figure 3.2. Determining Length of Vector that Spans the

Deposit

The algorithm used in Program CSIMO3 to calculate

the number of random variables can be summarized by the

following steps.

1.

Calculate the coordinates of each vertice of the
model. The coordinates are calculated in units
corresponding to the grid spacing. For instance,
in Figure 3.2, the lower left vertice would have
coordinates (0,0,0) while the upper right coordinate
would be (NPE, NPN, NPTV) where NPE refers to the
number of grid points in the East-West direction,
NPN is the number of points in the North-South
direction, and NPTV is the number of points verti-
cally.

For each of the fifteen vectors, Steps 3 and 4

below are done.



3. Calculate the perpendicular projection of each
vertice of the model onto the vector.

4, The number of points to simulate is given by the
difference between the maximum and minimum values
of the projections qalculated in Step 3.
The Fortran code for the above algorithm is shown

in Figure 3.3.

MATRIX V CONTAINS COORDINATES OF THE VERTICES OF THE
MODEL BEING SIMULATED.

ODOOO

V(l,5)=PE
V(1,6)=PE
V{(1,7)=PE
V(ls8)=PE
V(2,3)=PN
V(254)=PN
V(2,7)=PN
Vi(2,8)=PN

FIND THE MIN AND MAX INTERSECTIONS OF VECTOR A WITH
THE MODEL

QOO0

D0 70 L=1,15

MIN(L)=20000

HAX==-20000

DO 10 I=1,8

LR=CACLyL)*V(L, 1) +A(2,L)%V 2, 1) +A(3,L)%V(351))
IF(LRWLELMIN(L)) MIN(L)=LR
IF(LR.GE.MAX) MAX=LR
0 CONTINUE

CALCULATE THE NUMBER OF POINTS TO GENERATE FOR THIS LINE
AND GENERATE THAT MANY 1-D POINTS

OO

NUMIL) =MAX-MIN(L) +2
NTOT=NUM(L) +2%NR

Figure 3.3. Fortran Code for Determining Number of
Correlated Random Variables to Calculate
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Having determined the number of values of X(t) to
calculate, the values are then calculated using Equation 3.1.
In this equation, the number of random numbers T(t) include&
in the calculation of each value of X(t) is two times the
variable NR. This variable is a function of the range of
influence (see Equation 2.11) of the variogram and the grid
spacing and is calculated as shown in Equation 3.2,

— Range
NR = 5— Gridspacing (3.2)

The random numbers T(t) are generated by a Fortran
algorithm developed by Schrage (1979, p. 132). This random
number generator has excellént characteristics and an ex-
tremely large cycle length. The Fortran code is portable
and can be used to generate the same sequence of random
numbers on a wide variety of computers.

The constant C in Equation 3;1 is included to ensure
that the variance of the random variables X(t) is equal to
one. In Chapter 2, it was shown that the variance of X(t)
calculated without the constant C is given by Equation 2.4,
which is repeated here as Equation 3.3.

NR
Var X(t) = > f£(k) .« £(k) (3.3)
k=-NR

For example, if NR = 3 and f(k) = k, then the vari-

ance of X(t) is calculated as shown below.
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; NR | .
Var X(t) =02 ) k2 and o2 = 1/12
k=-NR

1/12 [9+4+1+0+1+4+9]

28/12

7/3

For this example, the value of C needed in Equation 3.1

would thus be V3/7. The general formula for the constant C

is given in

The

Equation 3.4.

_ 36
C = \(RNEy ("R+D) (2NRFI) (3.4)

actual calculation of the random variables X(t)

is done by simply evaluating Equation 3.1. The Fortran code

used to evaluate Equation 3.1 is shown in Figure 3.4. The

Fortran variable DLINE refers to the random variables X(t).

After the variables for each line are calculated, théy are

written sequentially to a temporary storage file.

Step Two.
The
combine the
dimensional
dimensional

projections

Forming the Three-Dimensional Simulation

second step of the Turning Bands Method is to
one-dimensional random variables into a three-
simulation. Each simulated value in the three-
model is formed by summing the perpendicular

of each one-dimensional line onto the individual

point x as shown by Equation 3.5.
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20 DO 30 I=1,NTOT
‘ RANVAL(I)=RAND(ISEED)=0.5
30 CONTINUE
40 Ni=NR+1
NT1=NTOT=NR
DO 50 J=N1sNT1
JN=J+NR
JN1=J=NR
DO 50 I=JN1lsJN
DIS=J-1I
DLINE(J)=DLINE(J)+DIS*RANVAL(I)*CONT
50 CONTINUE
WRITE(ICOR) (DLINE(I)»I=N1sNT1)
DO 60 I=1510000
DLINE(I)=0.0
60 CONTINUE
70 CONTINUE

Figure 3.4. Fortran Code for Calculation of One-
Dimensionally Correlated Random Variables

15
Z(x) = Z Y<k,i> (3.5)

2
=

kth value of line i. The

In this equation, Y<k,i> is the
value of k is determined by éalculating the perpendicular
projection of the point x onto the vector i.. Figure 3.5
illustrates the mechanics of Equation 3.5 when only four

lines are included.
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L [0.12+0.16+1.83-0.42]
'z

= .845

:figure 3.5. Example of Calculations Used in Turning Bands
Method
The perpendicular projection of point x onto a line
can be found by using the dot product of two vectors. Let C
be the vector from the origiﬁ to point x, and A be the unit
vector of the line. The perpendicular projection of x on

line a is given by Equation 3.6.
L=A-C ' (3.6)

This is illustrated in Figure 3.6. In this example, when
X is projected onto w, it intersects w at 4.9 units from

the origin.



52

: w A = [.707]

.707
N C = [2.0}
\\ . 5.0
i o(2,5) L = AT . C

1 ! 1 3 .V L

.7071T [2.0
‘7071 |s.0

Figure 3.6. Perpendicular Projection of a Point to a Line

Implementing Step Two is Quite easy. Since the
model is divided into blocks, each block can be read into
memory individually and all the simulated values for that
block calculated before the next block is read in. The
Fortran code implementing Step Two is shown in Figure 3.7.

In the code shown in Figure 3.7, the variable A
contains the unit vectors for each of the 15 one-dimensional
lines. Variable C contains the coordinates of the point
being simulated. The array B contains the final simulated
values. Each element of array B is formed by the sum of
15 values, one from each of the 15 lines., This sum is
divided by the square root of 15 so that the variance of the

simulated values is equal to one.
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LOOP THROUGH THE MODEL BLOCK BY BLOCK

[g X a X gl

00 100 NL=1,NBN
DO 100 NE=1sNBE '
KBLOCK=NE+(NL=1)*NBE

READ IN ONE BLOC FROM CSIM MODEL

CALL TAKOUT(KBLOCK,IVAR)

READ IN "NUM(L)"™ VALUES FOR VECTOR A,

OO0 OO0

D0 90 L=1,15
READCICOR) (DLINE(I)sI=1,NUM(L))

NOW LOOP THRU POINTS IN THE BLOCK

QOO0

D0 80 K=lsNPTV
D0 80 J=1,NPT
DO 80 I=1,NPT
C(L)=I+(NE~1)%NPT
C(2)=J+(NL=2)*NPT
C(3)=K
RL=A{1,L)*C(LI+A(2,L)I*C(2)+A(3,L)%C(3)
LR2=RL + SIGN(0.5,RL)
LR=LR2-MIN(L)+2
. B(IsJdsK)=B(IsJsK}+DLINE(LR)/SQL5
80 CONTINUE
90 CONTINUE
REWIND ICOR

Figure 3.7. Fortran Code for Turning Bands Algorithm



CHAPTER 4

CONDITIONAL SIMULATION OF A COAL DEPOSIT

The coal deposit simulated in this study is a
portion of the Upper Freeport Coal Seam located in Western
Pennsylvania neaxr the town of Homer City. The general
geology and statistical characteristics of the Upper
Freeport Coal Seam will be reviewed prior to describing the

constriction and validation of the simulation model.

Geology of the Upper Freeport Coal Seam

The Upper Freeport Coal Seam is one of the many coal
seams forming the bituminous coal field of the Appalachian
Plateau Province in Western Pennsylvania. The Upper Freeport
Coal Seam is Pennsylvanian (Allegheny) in age.

The Upper Freeport Coal Seam was originally deposited
as peat in a large swamp either in an estuary or possibly a
large freshwater lake (Clark, 1979, p. 30). Several events
during the deposition of peat have affected the character-
istics of the coal seam throughout the deposit. During
deposition of the peat in the swamp, a channel system was
intermittently active and caused sediments to be deposited
in the swamp from time to time. The result of this inter-

mittent sedimentation is prdnounced splitting and partings

54



55
in the coal seam, especially in the central zone of the
swamp. The splitting is less pronounced away from the
central channel system.

Peat formation was stopped when almost the entire
swamp was flooded and sediments were deposited over the peat.
This first peat bed is referred to as the main bench of the
Upper Freeport Coal Seam and is present throughout the area
studied. The coal varies from 24 to 60 inches thick,
averaging about 48 inches.

Although most of the swamp remained flooded, peat
continued to accumulate along the margins of the swamp.

Coal formed from this peat is referred to as the upper bench
of the Upper Freeport Coal Seam. This bench is present only
in the Eastern portion of the area studied and varies from

8 inches to 30 inches (Clark, 1979, p. 20).

Finally the entire swamp was flooded or submerged
and covered with fine grained sediments resulting in a shale
or sandy-shale roof in most areas of the deposit. The last
event to affect the coal seam was. the start of a channel
system. In certain areas, the channel system scoured into
the shales forming the roof of the c¢nal and, in some cases,
scoured into the coal itself. The end result of the
channeling is a sandstone roof in some areas and want areas

if the coal had been completely eroded away.
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The portion of the Upper Freeport Coal Seam is shown
in Figure 4.1. The coal reserves controlled by the Homer
City Owners are shown by the polygonal outline. The pluses
indicate locations of drillholes intersecting the coal seam.
The hachured line is the approximate edge of the upper bench
of the coal seam. To the northeast, both the main and upper
benches are present and result in a thicker coal seam.
Inasmuch as this thicker coal has mostly been already mined
out, this area is not included in further analyses or in the

simulation.

Statistical Analysis

Three characteristics of the coal seam were analyzed
in this study. The thickness of coal and the sulfur content
of the coal are the only variables that will be included in
the conditional simulation model constructed. For complete-
ness, however, the ash content of the coal was also included
in the statistical analyses. Industry practice assumes that
the BTU content of coal is directly proportional to the ash
content, therefore, the statistics of the BTU content of the
coal can be directly determined from the ash statistics.

Basic statistics of the thickness, ash, and sulfur

values for the drillhole samples are summarized in Table 4.1.
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Figure 4.1. Plan Map of Upper Freeport Coal Seam
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Table 4.1. Summary Statistics for Coal Characteristics

Number of Sample Sample Sample
Characteristic Assays Mean Variance Std. Dev.
Thickness 170 - 49.3 36.0 6.0
Sulfur 135 2.62 1.49 1.22
Ash 126 16.2 17.4 4.2

The histogram of coal thickness shown in Figure 4.2
appears almost syﬁmetric except for an apparent truncation
of the data at 60 inches. This truncation results mainly
from the subjective determination of the boundary of the
upper bench of the coal seam and the possible misclassifica-
tion of whether one or two benches of coal were present at

any particular location.

RELATIVE FREQUENCY
?

i
J0. 200 49 . 000 60. 020 6. 200 70.000 82. 000

SEAM THICKNESS

Figure 4.2. Histogram of Seam Thickness Values
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The histogram of sulfur values in Figure 4.3 shows

several important aspects of the distribution of sulfur.
First, the distribution appears to be truncated at about
0.85% S. Secondly, there are several modes, one at about
1.25% S, and at 3.0% S, and a minor one at 4% Sulfur.
Finally, the data is skewed to the right. These aspects can
possibly be accounted for by the relative differences in
amounts of sulfur in organic materials and the amount of

sulfur from inorganic materials.
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SULFUR CONTENT
Figure 4.3, Histogram of Sulfur Contexnt

Plants use sulfur in their growth processes and much
of this sulfur is bound organically during peat accumulation
and coal formation (Cecil et al., 1978, p. 42). The amount

of organically bound sulfur is probably between 0.5 and 1.0%.
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The amount of this sulfur is important because organically
bound sulfur cannot be removed from the coal by coal
"cleaning processes.

Inorganic sulfur occurs predominantly as pyrite or
marcasite and, to a lesser extent, in the form of other
metal sulfides. The amount of inorganic sulfur in the coal
is sometimes affected by the natﬁre of the roof. Areas
having a sandstone roof sometimes show a higher sulfur con-
tent due to the downward perculation of solutions rich in
iron sulfides (Clark, 1979, p. 21). Due to several distinct
origins of sulfur in coal, it can be argued that sulfur from
each source is likely to have different distributions and,
thus, the combined sulfur distribution may be bimodal as
implied in the histogram shown in Figure 4.3.

The ash content of coal is largely a function of the
amount of detrital sedimentslwashed into the swamp during
peat formation (Staub, 1979). The histogram of ash content
is shown in Figure 4.4. Clark (1979, p. 21) regards ash
values of 10% to 13% as normal or usual values for the Upper
Freeport Coal Seam. Values greater than 13% probably re-
flect areas of the coal seam where shale partings are
thicker or more abundant. 1In certain portions of the Upper
Freeport Coal Seam, a definite relationship between the
amount of ash and thickness of coal exists. This is shown

by Figure 4.5 which compares the ash content for various
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Figure 4.4. Histogram of Ash Content
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Figure 4.5. Comparison of Ash Content Versus Thickness
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coal thicknesses in an area to the west of the study area.
In the study area, the tendency to have a larger ash content
in areas of thick coal is not as apparent as shown by
Figure 4.6. Tais lack of a relationship is further evi-

denced by the low linear correlation shown in Table 4.2.

% Ash
30 4

&

10 -

35-40 40-45 245-50 50-55 55-60 Thickness
(inches)

Figure 4.6. Comparison cf Ash Content Versus Thickness
for Area Shown on Figure 4.1

Table 4.2. Correlation Matrix

Thickness -1
Ash 0.276 1
Sulfur _ 0.099 0.614 1

Thickness Ash Sulfur
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In Table 4.2, sulfur and ash show the greatest
amount of correlation. This can be partially explained by
the fact that shale partings in the coal often contain
pyrite. A coal that has high ash content is, therefore,
likely to have a high sulfur content. This is shown in
Figure 4.7 which compares the sulfur content of coal having

various amounts of ash,

Sulfur

8-14 14-18 18-22 22-26 % Ash

Figure 4.7. Comparison of Ash Content Versus Sulfur Content
for Area Shown on Figure 4.1



Normalization of the Sulfur Values

The conditional simulation model must reproduce the
distribution of each variable being simulated. Since the
Turning Bénds Method produces only normally distributed
values, if the variable being simulated has some other form
of distribution,’a transformation must be found to reproduce
the correct distribution.

The thickness of coal can be approximated by a nor-
mal distribution, thus, no transformation is needed. Sulfur,
however, displays a skewed distribution. A logarithmic
transformation was tried, but the transformed values were
not well modeled by a normal distribution. A transformation
function, consisting of Hermite polynomials, was next
attempted (Kim, Myers, and Knudsen, 1977, p. 70). Figure
4.8 shows the resulting histogram of transformed sulfur
values. An inverse of this transformation function is used
to transform the normally distributed simulation values to

the correct distribution of the ofiginal values.

" Variogram Analysis

Experimental variograms were calculated to determine
the spatial continuity of each of the variables. No aniso-
tropy was observed in any of the variables, Figures 4.9,
4.10, and 4.11 show the resulting experimental variograms
for thickness, sulfur, and ash, respectively,
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The experimental variograms each show quite dis-
tinctive features. The variogram of thickness shows a maxi-
mum range of influence of 4,300 feet, while the variogram
for sulfur shows a range of about 8,500 feet. The nugget
effect is quite large for all three variables. The true
nugget may be smaller than indicated, but no closely spaced
data is available to more accurately determine ‘the nugget.
The ash variogram is not as nicely behaved as the thickness
or sulfur variograms. The jagged appearance may be due to
the fact that ash is largely related to the amount of shale
included in the coal, both as partings and at the top or
bottom of the seam. The characteristics of the ash should
be quite complex because each of the partings probably has
different spatial characteristics, depending on what caused
the parting. In some cases, difficulty in defining the top
and bottom of the seam can cause eratic amounts éf shale to
be included. This may cause an increase in the nugget
effect.

Spherical variogram models were fitted to the thick-
ness and normalized sulfur variogram. The fitted models are
plotted with the experimental variograms in Figure 4.9 and
4,.10. Parameters of the fitted spherical variogram models
are given in Table 4.3.

A theoretical variogram was not fitted to the ash
variogram because ash will not be modeled in the simulation

models developed in this chapter.
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Table 4.3. Parameters of Spherical Variogram Models

Sill Nugget C Value Range

Variable Co + C Co C a
Thickness 35. 10. 25.0 4300
- Sulfur 1.45 .30 1.15 8500

Construction of the Conditional Simulation Model

A conditional simulation model of the Upper Freeport
E Seam was made for an area encompassing a particular coal
mine. The model was specifically sized te include areas of
the mine actually in production during 1978 and 1979, so |
that the model could bé validated with actual production
records of that period. The model covers an area of 12,000
x 12,000', as shown in Figure 4.12, and comnsists of 920,000
simulated values on a 40' x 40' grid.

Detailsgof model construction and model validation
will only be presented for the simulation of sulfur content,
although the conditional simulation models used in this
chapter and in Chapter 5 contain both sulfur and thickness

values,
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Figure 4.12. Map Showing Area Modeled by Conditional
Simulation
Outline of Model Construction
The conditional simulation of sulfur is fairly
straightforward because the variogram of normalized sulfur
values can be modeled by a simple spherical variogram.
Parameters of the variogram of normalized sulfur values are

given below.
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Sill Value = 1.00
Nugget Effect = 0.23
C Value = 0.77
Range = 8500

The above parameters, together with the transforma-
tion function, are the main input items needed for the model
construction. The sequence of steps used in construction of

the model are discussed next.

Step One. Nonconditional Simulation of Sulfur

The nonconditional simulation of normalized sulfur
values was made by executing Program CSIMO3. The major in-
put parameter to this program is the range of influence
(8500').
Step Two. Adjusting the Variance and Adding the Nugget

Effect

This step has two purposes. First, the noncondi-
tional model is transformed so that the variance of the
simulated values is equal to the C value of the normalized
variogram. Secondly, a nugget effect is added to the model.

Input parameters to Program CSIMOS are given below,

C Value of Variogram = 0.77
Nugget Effect = 0,23

Mean (of normalized

sulfur values) 0.00
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At the end of this step, the simulated values should

have a mean equal to zero and variance equal to one.

Step Three. Conditioning the Model
The model is conditioned to the normalized sulfur
data by executing Program CSIMO7. Input to CSIMO7 consists
of the va{;ogram parameters of the normalized sulfur data,

and the normalized sample data.

Step Four. Final Transformation of the Model

The final step in the model-building is to transform
the simulated values to the original distribution of sulfur
values by executing Program CSIMOS again. The inverse of
the transformation function originally used to transform the
sulfur values to a normal distribution is input to Program

CSIMOS.

Sample Output of the Final Model

The completed model contains 90,000 simulated sulfur
values. Since the model is so large, it is partitioned into
a series of hlocks, each containihg 10,000 simulated values
and corresponding to a 3,000' x 3,000' area of the coal
deposit. Summary statistics and histograms for each of
these blocks are shown in Figure 4.13. The average value of
sulfur in these blocks varies from a low of 1.99% to a high
of 3.61%. The variance of the individual, simulated values

varies from 0.54(%)%? to 1.66(%)2. The histograms are all
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quite different from one another. Most show positive skew-

ness, and Block #3 is bimodal.

Validation of the Model

Since the conditional simulation model should repro-
~duce the essential characteristics of the deposit, the re-
sults of the geostatistical study also serve as a base for
comparison of the model.

Figure 4.14 shows the basic statistics and histo-
grams for both the original sample data and the CSIM model.
The mean grade of the model, 2.83, is slightly higher than
the mean of the sample data, 2.62. The variance of the
simulated values is 1.24 versus 1.49 for the samples.

Neither of these apparent discrepancies is signifi-
cant. The CSIM model covers an area of 4 square miles,
whereas the sampling data comes from an area of about 50
square miles. The variance of simulated values should
correspond more closely to the variance of sulfur grades
within a 4 square mile area, than to the variance of samples
within a 50 square mile area. Using the variogram model of
the deposit, the value of the variance of a sample within a
12,000' x 12,000' area was calculated to be o2 (0/12,000"
x 12,000') = 1,22. This value is extremely close to the
variance shown by the model, hence, there is no discrepancy

in the variance of the model.
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STATISTICS FOR SULFUR DATA _ STATISTICS FOR CSIM MODEL
| MEAN = 2.62 . MEAN = 2.83

VARIANCE = 1.49 VARIANCE = 1.24

STD.DEV. = 1.22 STD.DEV. = 1.1
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Figure 4.14. Comparison of Sample Values with Simulated
Values

Similar reasoning can be used to test the difference
shown by the mean of the model. If the entire deposit was
split into 12,000' x 12,000' blocks, each block would likely
have different mean grades and the mean grades would be dis-
tributed about the overall mean grade of the deposit. The
variénce of the mean grade of 12,00Q0' x 12,000' blocks is
a2 (12,000 x 12,000'/deposit) = 0.28. Making the assump-
tion that the mean grades are approximately normally dis-
tributed, it follows that about 68% of the grades should be

within one standard deviation of the overall mean grade.



77
Since ¢ = V.28 = .52, the mean of the CSIM model is well
within one standard deviation of the mean.

The histogram of simulated sulfur values is smoother
than the histogram of sample values. The bimodal nature of
the sample values is not reproduced by the histogram of the
entire CSIM model, although the bimodal characteristics are
reproduced in some local areas of the simulation model (see
Block #3 in Figure 4.13). The differences between the dis-
tribution of sample values and the simulated values is
probably not significant because the model area is much
smaller than the entire deposit, and it is not known whether
the bimodal nature of the sulfur distribution is really
apparent throughout the deposit.

One of the most important characteristics which the
CSIM model should reproduce is the spatial correlations ex-
hibited by the sulfur. Variograms calculated for the model
are compared against the variogram calculated from the
sample data in Figure 4.15.

The N-S variogram of the CSIM model corresponds
closely to the variogram of the sulfur sémple, while the E-W
variogram of the model has greater slope than the variogram
of sulfur samples. The difference in the E-W variogram from
the sample data variogram is probably not significant,
although no convenient statistical test is available to test

the significance of the difference.
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Figure 4.15. Experimental Variograms for Real Data and
Simulated Data
Based on the general excellent agreement of the
model to the observable statistical characteristics of the
data, the conditional simulation model appears to have

adequately simulated the real deposit.

Validation of the Model by Simulation of Mining

Production data on the average daily sulfur content
of run of mine coal produced during 1978 and 1979 provides.
another base for validation of the simulation model. If the
conditional simulation model is a reasonable representation
of the true deposit, then the production results obtained
by applying the same mining system as actually used in the
real deposit should be very similai to the actual production

data.
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In order to make the comparison between actual pro- |
duction data and that obtained from the conditional simula-
tion model, the existing mining system had to be modeled.

E. Baafi (Kim, Knudsen, and Baafi, 1980, p. 61) developed a
mining simulation for this purpose and performed the actual
validation reported on here.

The existing mining system of the coal mine was
simulated on the conditional simulation model for about two
(2) months.

Figure 4.16 portrays serial plots of sulfur grades
of actual run-of-mine coal and for the simulation results
for sixty (60) coansecutive days. A visual inspection of
Figure 4.16 suggests that the pattern of variability of sul-
fur levels at the mine head and the results from the condi-
tional simulation model are not significantly different.

The first order autocorrelations for the data depicted in
Figure 4.16 are 0.66 for the ROM data and 0,64 for the simu-
lated dats., The first order autocorrelation is a measure of
correlation that exists between a sulfur value at a time

t (St) and one following it, i.e., at time (t+1) (St+1).



80

Run-of-the-Mine -----

Simulation

lllll’rlll'lllllllll'l(ll
20 30 . 40 5o €9

10

DAYS

Serial Plots of ROM and Simulated Coal Sulfur

Grades

Figure 4.16.

The statistical summary of ROM and the simulation

sulfur data are given in Table 4.4.

Summary of ROM and Simulated Coal Sulfur

Statistics

Table 4.4,

Sample
Standarc

Minimum Maximum Sample

No. of

Source of Data Samples

Value Mean Deviatioi:

Value

0.152%
0.177%

3.21%

3.12%

3.52%
3.55%

2.87%
2.67%

62

Simulation

80

Run~of-the-mine
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Table 4.4 and figure 4.16 suggest that the statistics of the
simulated sulfur model grade values are practically indif-
ferent from the ROM values as provided by the company.
Both methods of validation of the conditiomnal simu-
lation model indicate that the model has effectively cap-

tured the essential characteristics of the true deposit.



CHAPTER 5
USE OF CONDITIONAL SIMULATION IN MINE PLANNING

Conditional simulation shows great potential to help
engineers solve difficult mine planning problems. For
example, assume a utility produces about 60% of the coal for
its generating station from captive mines that happen to be
high sulfur mines. The remaining 40% is purchased from
independent suppliers and must be a low sulfur coal, so that
when the coals are blended, the generating stétion meets
emission regnlations. Obviously, the ability to predict the
quality of coal from the captive mine on a monthly basis,
for example, can give the utilities much flexibility in pur-
chasing the remaining amount of coal.

Variations in coal quality over shorter time frames
can pose equally difficult problems. Coal cleaning plants
perform most efficiently when given feed having uniform
characteristics. The variability‘actually observed in run of
mine coal can affect the efficiency and performance of the
plant, especially if the plant was not designed to handle
the variability or the variability was greater than expected.

This chapter presents one example of the use of

conditional simulation.
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Prediction of Year to Year Sulfur Variability

Motivation of this example was to show how the
amount of development drilling affects the yearly predictions
of coal quality. Accurate predicéion of year to year varia-
tion of run of mine coal can give a utility flexibility in
contracting for the additional coal necessary to operate a

generating station at full capacity,

Methodology

The simulated coal deposit used in this study covers
30,000' x 30,000' in plan, or about 20,000 acres. The
simulation grid used was 100' x 100', resulting in 90,000
simulated values. One hundred and fifteen drillhole samples
were used to condition the deposit.

Three stages of deveiopment drilling were simulated
using the CSIM model. After the first stage of drilling, a
hypothetical mine plan was prepared for six years with a
yearly production of 800,000 tons. Production was to come
from one shortwall section, and two room and pillar sections.
In addition, three sections were included for shortwall
development.

After the second and third stages of development
drilling, new year by year estimates of coal production and

sulfur content were prepared using the results of the new
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drilling. The mine plan was not altered after the first
stage of drilling.

The final step was t6 mine out the deposit to deter-
mine how well each of the mine plans actually performed.

Stage One Drilling. The initial drilling was chosen

to be on a 5000' x 5000' grid. Thirty-six holes were neces-
sary to cover the coal deposit. In addition to the initial
drilling grid, an additional two fences of drillholes were
drilled for the sole purpose of variogram determination.
Figure 5.1 shows a plan map of the first stage drilling.

The fences are probably longer than necessary. In actual
practice, the holes would be sequentially drilled, and the
drilling stopped when a variogram was obtained.

Variograms calculated using the results of stage one
drilling are shown in Figure 5.2. Spherical models were
fitted to these variograms aﬁd included on the plots of
Figure 5.3

Stage One Kriging. The deposit was divided into

2000' x 2000' blocks. The thickness and sulfur content of
each block were kriged using the variograms derived from the
Stage One drilling. The resulting kriged model was used as
the basis of the hypothetical mine plan. Figure 5.3 shows
the resulting yearly plans superimposed on the kriged map of
sulfur values. The individual mining sections were placed
so that uniform sulfur content would be maintained for the

six years.
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Table 5.1 shows the resulting yearly estimates. The
mine plans based on the 5000' drilling grid and 2000' kriged

blocks will be referred to as Case 1.

Table 5.1. Estimated Coal Production for Case 1

- Year Sulfur Thickness Tons
1 2.36 49.9 842100
2 2.32 49.0 827100
3 2.31 48.7 822100
4 2.24 50.2 846000
5 2.30 50.5 850900
6 2.32 48 .4 817700

Stages Two and Three Drilling. The second drilling

campaign consisted of drilling an additional twenty-five
holes. The holes were placed in the center of the first
grid, thus resulting in an approximately 3500' x 3500' grid.

The final drilling campaign consisted of an addi-
tional eighty-three drillholes needed to complete a 2500'
x 2500' grid. Figure 5.4 shows the completed 2500' drilling
grid. |

At the end of each stage of drilling, variograms
were calculated using all available drilling. The final
variograms after Stage Three are shown in Figure 5.5.

The thickness variogram changed very little from the
Stage One drilling to the Stage Three drilling. The sulfur

variogram, however, changed significantly. At the end of
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Stage One drilling, the sill of the sulfur variogram was
estimated to be 0.75, while at the end of Stage Three, the
sill value had increased to 1.4 and the range of the vario-
gram had increased from 2500 feet to 8000 feet.

Stages Two and Three Kriging. At the end of each

stage of drilling, the deposit was then kriged using the new
variogram models. The individual kriged blocks were again
2000' x 2000' in plan. N
The mine plan was not developed at the end of each
stage of drilling in order to allow meaningful comparison of
the effect of additional sample information on the accuracy
of yearly estimates. Yearly estimates of mine production
were, therefore, updated after each drilling campaign. The
estimates resulting from Stage Two drilling will be referred
to as Case 2, and the estimates from Stage Three as Case 3.

Stage "Three Kriging of 1000' Blocks. The 2000' x

2000' block was initially chosen on a fairly arbitrary
basis. A general rule of thumb is that the block size
should be greater than 1/4 the grid size. With the initial
drilling being done on a 5000' grid, the 2000' block seemed
suitable.

Rather than change the block size at each drilling
campaign, it was held constant to allow meaningful comparison
of the resulting mine plans. At Stage Three, however, a
second kriged model was prepared using a 1000' x 1000' block

size. The 1000' blocks have a certain appeal because the
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size of the yearly production blocks corresponds more
closely tb the 1000' block size. Yearly estimates made

using the 1000' blocks are referred to as Case 4,

Accuracy of Yearly Estimates

At each stage of drilling, estimates of yearly coal
production and sulfur confent were made using the kriged
models. Error bounds were calculated for each yearly esti-
mate using the variogram models obtained at each drilling
stage. Figure 5.6 shows the relationship between. the com-
puted error bound for yearly estimates and the size of the

drilling grid.
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NUMBER OF HOLES WITHIN
36,000’ By 30,00C’ BLock

Figure 5.6. Error Bound for Yearly Estimates
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Testing of the Mine Plan

The real test for any mine plan js how well the plan
works in actual mining. With the development of conditional
simulation, the mine plan can now be tested on the simulated
deposit.

Each of the four mine plans developed during this
study were tested on their ability to correctly estimate the
production and sulfur content on a yearly basis. 1In each
case, the simulated deposit is mined out according to the
mine plans. The resulting '"actual" production can then be
compared to the estimated production and estimated quality
characteristics.

In Figure 5.7, the year by year estimates of sulfur
content in the run of mine coal are presented for the four
mine plans prepared in this study. The estimates developed
from the 5000' grid show a qﬁite uniform sulfur content over
the six years of production. The reason for this uniformity
is that the mine plan was designed using the kriged model
based on the 5000' grid. The design goals were a constant
production and uniform sulfur content. |

Case 2 also predicts. a uniform sulfur content, but
notice that the grade is greatly different from Case 1. The
reason for this is the chance occurrence of two low sulfur
assays right in the middle of the shortwall section. Since

the shortwall accounts for about 60% of production, the
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lower sulfur assays greatly affected the estimation of
overall sulfur content.

Starting with Case 3, the predicted yearly sulfur
content showed increased variation. Notice that the predic-
tions made in Case 3 and Case 4 are quite alike, as they
should be, since both used the same drillhole data.

The final graph, shown in Figure 5.7, is the actual
year to year sulfur content produced when the deposit was
mined according to the mine plan. From Figure 5.7, it is
easily seen that Cases 3 and 4 produced much better year to
year estimates than Cases 1 or 2.

A comparison, such as shown in Figure 5.7, gives a
clear picture of the adequacy or inadequacy of eagh case.
The amount and extent or pattern of errors is quickly
realized.

Figure 5.8 shows a sﬁmmary of the errors made on a
year by year basis for each case for both thickness of coal
.and sulfur content.

In all cases, the thickness of coal, and hence, the
estimates of yearly production had very small average errors.
The increased drilling of Stages Two and Three produced only
minor improvements in the accuracy of the yearly estimates.

Prediction of yearly sulfur content was less success-
ful. Errors in prediction of sulfur ranged from an average

of 30% for Case 1 to about 8% for Case 3. The improvement
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in yearly estimates of sulfur was substantial as the density

of sampling increased.
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Notice that Case 4 gave slightly poorer estimates of

both sulfur and thickness than Case 3. The hoped for in-

crease in accuracy as a result of'using 1000' x 1000' blocks

was not only unachieved, but slightly poorer results were

obtained. This emphasizes the point that, although it

appears that more detail or definition is being included in

the kriged model when small blocks are used, in fact, the

smaller blocks are less well known due to the higheg kriging



variance for a 100Q'

block.

x 1000'

block than a 2000'

x 2000'
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CHAPTER 6
CONCLUSIONS

The major objective of this research was to develop
a simulation model of a coal deposit that captures the in-
herent insitu variability of the coal. This model would
subsequently be used to determine the variability of run of
mine coal on a day by day, week by week, or year by year
basis.

Results of the validation of the model clearly indi-
cate that the conditional simulation model produced by the
Turning Bands Method does correctly model the insitu varia-
bility of the deposit. The model displays the same mean,
variance, and distribution of values as the real deposit.
Most importantly, the model reproduced the same spatial
correlations as the real deposit as indicated by the fact
that the model displays the same variogram as the real
deposit.

A second validation of the model showed that when
the model is "mined" according to an actual daily mining
sequence, the resulting daily variability corresponded ex-
tremely well to what was observed during the actual mining.
This second verification served not only to validate the
model but also served as a practical demonstration that the
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model can be used to predict day to day &ariation in the
quality of run of mine coal.

In Chapter 5, one example was presented to illustrate
the use of conditionai simulation. This example showed that
the model could be used to simulate the differences between
estimated coal quality and actual coal quality on a year by
year bqsis. The unique 2spect of the results was that dif-
ferences were given year by year so that any correlations or

patterns in the differences are easily observed.

Suggestions for ruture Research

The conditional simulatiox wndel produced by the
Turning Bands Method is a good representation of the coal
quality in a coal deposit. One potential limitation to the
method is that the method only reproduces the first two
moments of the deposit being simulated. For mining prob-
lems, this limitation is very minor from a practical point
of view because in almost no cases is there sufficient in-
formation to deduce the higher moments. Further research in
methods of simulating a three-dimensional process may be
warranted if the correct representation of higher moments
becomes necessary.

The immediate need for further research is to expand
the applications and usefulness of this tocl. A few spe-

cific suggestions for future research are given below.
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Risk analysis is an important tool in economic
analysis. The conditional simulation model could be
used to provide simulated coal quality on a daily,
monthly, or yearly basis. Such input would reflect
the serial correlation of the coal quality and,
therefore, provide a more realistic model of coal
quality which is an important variable in the eco-
nomic analysis.
The efficiency of long term mine plans is difficult
to analyze. The conditional simulation model could
be mined out according to the long range plans. If
the results were not satisfactory, then the plan
could be modified or, if necessary, new data might
have to be acquired before completing the new plan.
The new mine plan could then be tested again using a
second simulation of'the deppsit.
The conditional simulation model is an ideal model
for teaching and mine planning. For example, a
student's mine plan could be graded not only by the
usual subjective means, but also by how well it
works on the simulated deposit. Several universi-
ties bave already incorporated the use of simulated

deposits in their coursework.



APPENDIX A

FORTRAN LISTING OF PROGRAM CSIMO3
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PROGRAM CSIMO3(INPUT,OUTPUT,TAPES=INPUT,TAPE6=0UTPUT,
1TAPE7,TAPES, TAPEY)

W R e e e

C
&
c
c
C
C
C
C
c
c
C
C
C
C
(%
c
c
¢
C
C
¢
C
C
C
C

(==———— - ——

¢
¢

c

THIS PROGRAM WAS WRITTEN BY
HARVEY P.KNUDSEN

DEPARTMENT OF MINING AND GEOLOGICAL ENGINEERING
UNIVERSITY OF ARIZONA
TUCSON» ARIZONA 85712
LAST MODIFICATION: JULY 1979

PROGRAM CSIMO3 GENERATES A 3-D SIMULATION
WITH DESIRED COVARIANCE FUNCTION.

" PRIOR TO EXECUTING THIS PROGRAM PROGRAM CSIMOl1 MUST

HAVE BEEN EXECUTED IN ORDER TO INITIALIZE THE CSIM MODEL.

INPUT DATA CONSISTS OF THE FOLLOWING:
1.NAME OF MASTER FILE
2.DESIRED RANGE OF INFLUENCE OF THE VARIOGRAM

OUTPUT CONSISTS OF THE FOLLOWING:

l. THREE DIMENSIONAL SIMULATION. SIMULATED DATA IS
NORMALLY ODISTRIBUTED N(Os1)» AND HAS VARIOGRAM WITH
USER SPECIFIED RANGE.

2. PRINTOUT OF INPUTTED PARAMETERS

23223 S S e S RS 2 R R R R R R R R R R R

COMMON /CSIMOD/ B(100,100,1),1IB(100,100,51)
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COMMON /PAREM/ NBLOCsNBNsNBEsNPT,NPTV,YNORT,XEAST,YLPTsXLPT,

1 NSIMsNVALSNPACK(3)sNAME(3)sNDEC(3)

COMMON /INOUT/ IPT,IOUT,MASTR,ICOR, IMOD

COMMON /FILES/ MASFIL,CSFIL

EQUIVALENCE (RANVAL,sB)s» (DLINE,IB)

DIMENSIUON DLINE(10000),RANVAL(10000)

DIMENSION A(3515),C(3),V(3,8)

DIMENSION NUM(15),MIN(L5)

CHARACTER *7 CSFILsMASFIL

CHARACTER *10 DAY,DATE,CDAY

DATA IPT,IOUTsMASTR,ICOR,IMOD/5+657+958/

DATA V,S5Q15,DLINE/24%1.0,3.89729883346,10000%0.0/

DATA A/0.000000,1.000000,0.,000000,
1 1.000000, 0.000000s 0.000000,
10.,000000,0.,00000051,000000,-0.809017,-0.500000, 0.309017,
20.8090L7,0.500000,0430901L7,0.309017, 0.809017, 0.500000,
3 0.50000050.,309017,0.809017,0.5000005,-0.309017,0.809017,
40.309017,-0.809017,0.500000,-0.309017,-0.809017,0.500000,
5-0,500000,-0.309017,0.809017,-0.500000,0.309017,0.809017»
6-0.309017,0.809017,0.5000005,-0.809017,0.,500000,0.309017,
70.809017,-0.500000, 0.309017/

DESCRIPTION JF INPUT CARDS .
CJdL. FORMAT NAME DESCRIPTION
*xkE  kEkxEk kEks ExFEFRkRRRE
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C CARD ONE. FILE SPECIFICATION CARD.

(o 1-10 Al0 MASFIL MASTER FILE NAME

C CARD TWO. WEIGHTING FUNCTION PARAMETERS

C it [l IVAR VARIABLE BEING SIMULATED

C (1,2,0R 3)

c 2 I1 I1DBUG DEBUG OUTPUT? (1=YES,0=NO)
c 11-20 F10.0 RANGE DESIRED RANGE OF VARIOGRAM
c .21-30 F10.0 GRDSP GRID SPACING (USUALLY SAME AS XLPT)
o 31-40 I10 ISEED BEGINNING RANDUM NUMBER SEED
c_----_--_--- Pp— e —

o MAJOR VARIABLE USED IN CSIM PROGRAMS

C TITLE TITLE OF MODEL

C CSFIL FILE NAME OF CSIM MODEL

c MASFIL FILE NAME OF MASTER FILE

C NVAL NUMBER OF VALUES FOR EACH DATA POINT

¢ NPACK PACKING MULTIPLIERS

C NBN NUMBER OF BLOCKS IN NORTH DIRECTION

& NB& NUMBER OF BLUCKS IN EAST OIRECTION

(o NBLGC NUMBER OF BLOCKS IN MODEL

¢ YNGRT CUORDINATE OF SOUTHERNMOST Ruw OF MODEL

¢ XEAST CORRDINATE OF wESTERNMOST COL OF MODEL

L YLPT UISTANCE BETWEEN MODEL POINTS IN NORTH DIR.
C XLPT DISTANCc BeTWEEN MODEL POINTS IN cAST DIR.
C NPT NUMBER OF POLNTS IN BLOCK IN E-W OIR

C NPTV NUMBER OF POINTS IN BLOCK IN VERT DIR.

¢ A MATRIX OF 15 VECTORS OF ICOSAHEDRON

c v COuRD. OF CURNERS OF CSIM MODEL

¢ RANVAL UNIFURM RANDUM NUMBERS

C DLINE CURRELATED RANDOM 1-D VARIABLES

¢ NUM(L) NUMBER OF VARIABLES ON LINE L

C RANGE RANGE UF THE SPHERICAL VARIOGRAM

< c ¢ VALUcS OF THe SPHERICAL VARIOGRAM

C GRLSP GR1D SPACING OF THE SIMULATED POINTS

o CUNT CONSTANT Tu CORRECT FOR BIAS IN 1-D SIMULATION
[ mmr e — e e e e o e e - e e e e e

O S S Sy SIS S

( READ IN NAME OF MASTER FILE

b -------------------------------- - — - —— ———— —— ——— —— — — ——

ReEAD(IPT,2000)MASFIL

2000 FURMAT(AT7)
OPEN(MASTR,ACCESS='SEQUENTIAL',FILE=MASFIL)
CALL RMAST (CDAY)

Y€
o
n
>
C
-
=z
©
>
x
>
=
(24
-
m
p.el
w
=
-
>
=<
o
O
o
=z -
(%)
—

(emmmmeme—— ——e—eccc e e ———
NR = RANGE/(2.J9%GRDSP)
CUNT=35QRT(36.0/(NR*(NR+1)*(2%¥NR+1)))

Cx&kx LALL DATE(DAY)

DAY = DATE()
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WKITE(IQUT,2020)DAY,MASFILsCSFIL,CDAY
2020 FORMAT('LEXECUTION OF PROGRAM CSIMO3',/*' TODAYS DATE ',
AlUs// ' FILE NAMES ACCESSED IN TODAYS RUN'/,
' MASTER FILE =='5A7s/,% MODEL FILE ===',A7,/,
* FILt CREATIUN DATE ',Al0)
WRITe(IOUTs2030)NAME(IVAR)
2030 FORMAT(LHO»Al05'I> BEING SIMULATED IN THIS RUN!')
"WRITE(IQUT»2040)RANGESGRDSPsNRsCONT, ISEED
2040 FURMAT('OINPUT PARAMETERS!'/s' RANGE =VyF7.0s/
L ¢ GR1D SPACING ='4F7.05/s" CALCULATED CONSTANTS's />
2 ' NR =1,159/5% CONSTANT =',ELll55/>
3' BEGINNING RANDOM NUMBER SEED =',I15)
[t o i e e —— ST e s e
C CALCULATE NUMBER OF POINTS IN N-S» E-Ws, AND VERT
c DIRECTION
(mmmm——————————— e e e e e — e e —— - ——————————————————
PE=NBE*NPT
PN=NBN®NPT
PL=NPTV
MATRIX V CONTAINS COURDINATES OF THE VERTICES OF THE
MODclL BEING SIMULATED.
V(1s5)=PE
VI1,6)=PE
V(1l,7)=PE
V(il,8)=PE
V(253)=PN
V(2,4)=PN
V(2,7)=PN
V(zs8)=PN

w N -

OOOo 0

FIND THE MIN AND MAX INTERSECTIONS OF VECTOR A WITH
THE MODEL

OO, O

OPEN(ICORSACCESS="SEQUENTIAL',FCRM="UNFORMATTED!')
DJ 70 L=4is15
MIN(L)=20000
MAX=-20000
D3 10 I=1,38
LR=(A(LyL)*V(L1,I)+A(2,L)%V(2,I)+A(3,L)%V(3,1))
IF(LRGLESMINC(L)) MIN(L)=LR
IF(LR.GE+MAX) MAX=LR
lu CONTINUE

- - - - - = - - -

c

< CALCULATE THE NJUMBER UF POUINTS TO GENERATE FOR THIS LINE
C AND GENERATE THAT MANY 1-D POINTS

>

NUM(L) =MAX-MIN(L) +2
NTOT=NUM(L) +2%*NR
IF(NTUT.LE.10000)G0O TO 20
WRITE(IOUT»2045)L,NTAT
2045 FORMAT('EXCEEDLING MODEL CAPACITY-LINE',I5,' NTOT'!,16)
STOP
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CHx%%&% PUT RANDUM NUMBER GENERATOR IN HERE
20 DO 30 [=1,NTOT :
RANVAL(LI)=RAND(ISEED)=0.5
30 CONTINUE
40 NLi=NR+1
NT1=NTOT-NR
DO 50 J=NL,NTL
JN=u+NR
JN1=J-NR
DU 50 I=yNlsJN
DIS=J-1
: DLINE(J)=DLINE(J)+DIS*RANVAL(I)%CONT
50 CONTINUE
wRITE(ICOR)(DLINE(I)»I=N1,NT1)
DO 60 1=1,10000
DLINE(I)=0.0

60 CONTINUE
< WRITE(IOQUT,»2015)ISEED
70 CONTINUE

REWIND ICOR

IF(IDBUG.EQel) WRITE(IUUT»2070) (IsNUM(I))MIN(L)»I=1515)
2070 FORMAT(3I5)

WRITE(10UT»20L5)ISEED
2015 FORMAT(' ENDING RANDUM NUMBER SEED =',112)

OPEN(IMODs ACCESS='DIRECT',FILE=CSFIL,RECL=10000)

C LOOP THROUGH THE MOOcL BLJCK BY BLOCK
C _________________________________ - - - — - —— — ——— - ——— - ——
g DO 100 NL=1sNBN
Du 100 NE=isNBE

KBLOCK=NE+(NL-L)*NBE
(LT S s e S e e S e e o e e e T T e,
& Rc AD IN UNE BLOC FRUM CSIM MODEL

CALL TAKUUT(KBLOCK,IVAR)

WRITE(IOQOUT»2015)KBLUCK

20le FURMAT(!' BLOCK'»I5s 'TAKEN FROM MODEL')
B I R T e e e e e L5
(o READ 1N "NUM(L)"™ VALUES> FOR VECTUOR A.

D0 90 L=1,15

READ(ICOR) (DLINE(I)»I=1sNUM(L))

C ---------- - . - on e -—
G NJW LOUOP THRU POINTS IN THE BLOCK
C ———————— - - e - - - -

DO 80 K=isNPTV
DO 80 v=1sNPT
DO 80 I=1,NPT

C(l)=I+(NE-1)*NPT
C(2)=J+(NL-1)*NPT
C(3)=K
RL=A(LsL)*C(1)+A(2,L)*C(2)+A(3,L)*C(3)
LR2=RL + SIGN(O.5,RL)
LR=LR2=-MIN(L)+2
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IF(LR.LE.D)GO Tu 80
B(IsJsK)=B(I,JsK)I+DLINE(LR)/SQ15

CONTINUJUE
CONTINUE
REWIND ICGR

PuT THILIS B8LOCK BACK IN THE MODEL

CALL PUTIN(KBLOLKsIVAR)
WRITE(IOUT»2080)KBLOCK

FORMAT(' BLOCK '»[5,¢% WRITTEN TO DISK'")
CONTINUE

CLOUSE(MASTR)

CLOSE (iMOD)

>TOP

END

SUBROUTINE RMAST(CuAY)

SUBROUTINE RMAST ACCESSES THe MOOELS MASTER FILE
AND READS IN THE MODEL PARAMETERS.

COMMON /PAREM/ NBLOCsSN3NsNBESNPTHNPTV,YNORT,XEAST,YLPTH,XLPT,

L NSIMsNVALSNPACK(3),NAME(3),NDEC(3)

2000

2ulu
2020
2030

2040

CUMMON /INOUT/ IPT,IOQOUT»MASTR,ICORsIMOD
COMMON /FILES/ MASFILSCSFIL

CUMMON /MiSC/ TITLE(B)

CHARACTER *7 CSFILsMASFIL

CHARACTER #*10 DAY,DATE,CDAY
ReEAC(MA>TR,2000)TITLE

FURMAT(B8A1l0)

RcAD(MA>TR,2000) CODAY
READ(MASTR<010)CSFILYMASFIL
FORMAI(A753X5A7)
READ(MASTR»Z20ZOINBLOC,NBNyNBESNPTSNPTV,NSIM
FURMAT(6I1lV)

REAUD(MASTRs» ¢U30)YNURT, XEAST,ZELEV,YLPTs XLPT,ZLPT
FORMAT(6F10.0)
READ(MASTR,2040)NVALSNOECSNPACK yNAME
FURMAT(415,311053A10)

RETURN

eND
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SUBRUOUTINE TAKDUT(KBLOCK,IVAR)

SUBROUTINE TAKJUT RtMUVES FROM THE CSIM MJDEL ONE
BLOCK UF DATA AND PUTsS LT IN TO ARRAY I3.

COMMON /PAREM/ NBLOCsNBNyNBEsSNPTsNPTV,YNORT»XEASTsYLPT,XLPT,

1 NSIMsNVALsNPACK(3)sNAME(3)sNDEC(3)

LEkREE

o
c4?74

10

COMMON /INDUT/ IPT,IOQUT»MASTR,ICOR,IMOD
CUMMON /FILES/ MASLFIL,CSFIL
CUMMON /CSIMOD/ B(100,10051),1I8(100,5,100,51)
CHARACTER *7 COFILsMASFIL
Div=10%*NDeC(IVAR)
READ(IMODSREC=KBLOCK)I>
FUR DEBUGGING.
WRITE(IOUT»4774) KBLOCKs IB(1ls151)y IB(2s1,1)
FORMAT(LXs! I = ¢,10i0s2Xs'IB = ',2I10)
DO 10 K=1,1
DO 10 1=1,100
DO 10 u=1,100
IBl=I8(Ls»JsK)
DU 5 L=NVAL,IVAR,-1
I182=IBLl/NPACK(L)
I8l=IB81-1B2*NPACK (L)

CONTINUE
8(IsJsK)=182/D1IV
CONTINUE
Re TURN
END

SUBRUOUTINE PUTIN(KBLOCKsIVAR)

SUBROUTINE PUTIN TRANSFERS THE BLOCK OF DATA IN
ARRAY IB AND PUTs IT INTO THE CSIM MODEL.

OO

COMMON /PAREM/ NBLUC,NBNyNBESNPTSNPTV,YNORT» XEAST,»YLPTsXLPT,

i NSIMsNVALSNPACK(3)sNAME(3),NDEC(3)

10

"CUMMON /INOUT/ LPT»IOUT,MASTR,ICOR,IMOD
CUMMUN /FILES/ MASFILSCSFIL
COMMUN /CSIMUOD/ B(1005,i0051)5IB8(100,100,51)
CHARACTER *7 CSFIL,MASFIL
NPAC= 10%%NDEC(IVAR)
NPACL=NPACK(IVAR)
DU 10 K=1,1
DO 10 J=1,y100
D0 10 I=1s100
ITEMP=B(IsJsK)*NPAC
18(I,JsK)=L{TEMP®NPACL
CONTINUE

C*%%%¥ FUR DEBUGGING.

\-

Ca4l74

WR1Tc(IOUT»4774) KBLOCKy IB(lsisl)y IB(2s1s1)
FORMAT(LXy!' 1 = %,1i0s2Xs'IB = ',2110)
WRiTe(IMOD,REC=KBLOCK)IB

Re TURN

END
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FUNCTION RAND(IX)

RAND IS A PORTABLE RANDOM NUMBER GENERATOR BASED
UN THe RECURSION IX = [X*¥A M3JD P.

FURTRAN CUDtc WAS WARITTEN BY LINUS SCHRAGE
REFERENCE ANU DOCUMENTATION IS IN
ACM TRANSACTIONS JANUARY 1980
INTEGER AsPsIX,)BL55s31i6sXHIyXALOsLEFTLO,FHINK
DATA AyBi5,Bi0sP/16307,327685,65536,2147483647/
GET 1o HI ORDER BITS OF IX
XHI = [X/B1b6
GET 16 LO JRDER BITS OF IX AND FORM LO PRODUCT
XALu=(IX-XHL*B8l6)*A
6GeT 1> HI ORDER BITS OF LJ PRODUCT
LEFTLO = XALJ/3d1lo
FORM THE 31 HIGHEST 8ITS OF FULL PRODUCT
FH1L = XHi%*A + LEFTLO
GET JVcRFLJ PAST 3157 BIT OF FULL PRODUCT
K = FHi/Bi)b
ASSEMBLE ALL THE PARTS AND PRESUBTRACT P
IHE PARCNTHESES ARE E>5SENTIAL
IX=(((XALO-LEFTLO*B1l6)-P)+(FHI-K*¥B15)%B16)+K
ADD P BACK IN LF NECCESSARY
IF(IXeLTo0)LIX =1IX+P
MULTIPLY TY L1/(2%31-1)
RAND =FLUAT(IX)*4.6566L2375E-10
KeTURN
END
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