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ABSTRACT 

One of the important factors in developing an emis

sion control strategy for a coal fired steam generator is 

the characterization of the insitu variability of the coal 

being used in, the furnace. Development of a model to cor

rectly capture the insitu variability of the coal is thus 

fundamental to the analyses of emission control strategies. 

A simulation model of a portion of the Upper Freeport 

coal seam in Western Pennsylvania was developed using the 

recently developed technique called conditional simulation. 

This model was constructed so that it has the same mean, 

variance, and distribution of values as the real deposit, and 

most importantly, has the same spatial correlations as the 

real deposit. 

Validation of the model confirmed that the statisti

cal characteristics of the model closely matched the charac

teristics of the real deposit. A.second validation of the 

model showed that when the model is "mined" according to an 

actual daily mining sequence, the resulting daily variability 

corresponded extremely well to what was observed during the 

actual mining. This second verification served not only to 

validate the model but also served as a practical 

x. 
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demonstration that the model can be successfully used to 

predict day by day variation in the quality of run of mine 

coal. 

One potential use of conditional simulation to "test" 

how well a mine plan works in actual mining was illustrated 

by an example where four mine plans were tested on their 

ability to correctly estimate coal production and sulfur 

content on a yearly basis. In each case, the simulated de

posit was mined out according to the mine plan. The result

ing comparison of "actual" production and estimated 

production clearly shows the adequacy or inadequacy of each 

one. 



CHAPTER 1 

INTRODUCTION 

Coal is the dominant source of fuel for the electric 

utility industry. Almost 70% of the U.S, production of coal 

is burned for steam generation. When coal is burned, the 

major products of combustion are a large amount of heat, 

large quantities of carbon dioxide and nitrogen oxide, ash, 

and lessor quantities of SOg (.sulfur dioxide). In order to 

limit the amount of SOg entering the atmosphere, the 

Environmental Protection Agency has imposed strict standards 

on the amount of SOg that can be emitted from coal fired 

steam generation plants. 

Current emission standards specify that emissions of 

SOg not exceed 1.2 lbs of SOg per million Btu when averaged 

over a 3 hour period. This standard has forced electric 

utilities and other coal users to carefully evaluate the 

quality of coal used in their plants. The chief parameters 

governing the amount of S02 emissions are the amount of 

sulfur in the coal and the calorific or Btu content of the 

coal. Since much of the coal mined in the Eastern United 

States has too high a sulfur content to be burned and meet 

emission standards, utilities have also investigated vari

ous methods to reduce the emissions of SOg. Major options 

1 
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to reduce SOg emissions are; the removal of SOg from the 

flue gas, removal of sulfur from the coal by cleaning the 

coal, and reducing the average sulfur content of the coal by 

blending of high sulfur coal with low sulfur coal. 

Development of a cost effective emission control 

strategy is difficult due to the large number of variables 

that must be considered and the uncertainties that exist in 

many of the variables. The quality of the coal reserves is 

a most important factor in developing an emission control 

strategy. The coal must be characterized not only by mean 

values of sulfur and Btu content, but also by the expected 

variation in these quality characteristics. Variation of 

coal quality over short time periods (a few hours) is impor

tant because most emission regulations set a limit that can

not be exceeded at any time. Variation in coal quality over 

longer periods such as months or years can influence the 

amount of flexibility needed in the emission control 

strategy. 

Variability in coal quality entering a generating 

station is influenced by many factors. Among these are the 

number of mines supplying coal to the plant, the nature of 

any blending and/or cleaning that occurs at the plant, and 

the serial variability of the coal produced from each mine. 

The variability of run of mine coal from each mine is, in 

turn, affected by the particular mining methods used to 
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extract the coal and by the inherent insitu variability of 

the coal. 

Clearly the evaluation of an emission control 

strategy must start with a careful evaluation of the coal 

reserves that are going to be burned. This evaluation of 

coal reserves must include both estimates of average values 

of the coal quality parameters and quantification of the ex

tent and pattern of variation exhibited by each variable. 

Conventional methods of modeling insitu coal characteristics 

such as contouring or kriging are designed to estimate mean 

values at all locations in the deposit. The techniques used 

to make these models produce a model that is smoother than 

the real deposit; thus, these models are unsuitable as models 

of the true variability exhibited by the deposit. A second 

model is needed to study the variation in coal quality 

within a deposit. The second model must possess the same 

extent and pattern of variability as the real deposit. Such 

a model can be produced by simulation. 

Objective of Study 

The purpose of this study is to develop a simulation 

model of a coal deposit. The simulation model produced must 

reproduce the mean and variance of assay values in the real 

deposit. It must have the same spatial correlations and it 

must reproduce the correct distribution of assay values. 

The methodology used to make a simulation of a 
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three-dimensional ore deposit has recently been developed 

by Journel (1974). 

This work is one portion of a research program being 

done at the University of Arizona in conjunction with the 

owners of the Homer City generating station in Pennsylvania. 

The overall purpose of this research program is to develop 

and evaluate emission control strategies for the Homer City 

plant. During initial work on this study, it became appar

ent that to meet emissions limits, it would be necessary to 

develop the technology to predict and control the varia

bility of coal entering the burners of the generating sta

tion. The conditional simulation model of a coal deposit 

developed in this study is the basic model for studying 

insitu coal characteristics and determining what the varia

bility of run of mine coal is on an hour by hour, day by 

day, or year by year basis. 

Organization 

This study is composed of six chapters. Chapter 

Two reviews the theoretical basis of conditional simulation. 

The actual construction and validation of the conditional 

simulation model are discussed in Chapters Three and Four. 

Use of the conditional simulation model is illustrated in 

Chapter Five. Summary and conclusions are presented in 

Chapter Six. 



CHAPTER 2 

THE THEORETICAL BASIS OF CONDITIONAL SIMULATION 

This chapter describes the methodology used to make 

a simulation of a three-dimensional ore deposit. 

The basis of conditional simulation is that grade 

values in a three-dimensional ore deposit can be represented 

by a three-dimensional random function. Until the method of 

turning bands was proposed by G. Matheron in 1973, simula

tion of a three-dimensional random function was extremely 

difficult, if possible at all, at any reasonable cost. The 

techniques available to simulate one-dimensional random 

functions were not suitable or realistic to use on three-

dimensional problems, Matheron's solution to making 

three-dimensional simulations was to reduce the three-

dimensional problem to a set of one-dimensional simulations 

that are easily made. These one-dimensional simulations are 

then combined by a technique called the turning bands method, 

to form the desired three-dimensional simulation. 

The explanation of conditional simulation will start 

with a description of how one-dimensional simulation can be 

made. Next, the transition to three dimensions is explained. 

Finally, conditioning of the simulation to the sample data 

is explained. The explanations presented in this chapter 

5 
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are, wiien possible, made at a low level of mathematical 

sophistication so that raining engineers who have not had 

courses in stochastic processes, time series analysis, or 

functional analysis, can understand the methodology used. 

Generation of Correlated Random 
Variables in One Dimension 

A simple way of generating a sequence of correlated 

random variables is to use a moving average process as 

illustrated below. 

A series of correlated random variables denoted by 

XCt) can be calculated from a set of independent random 

variables denoted T(t) by the moving average process defined 

by Equation 2.1. 

XCt) = £ f(k) TCt+k) (2.1) 
k=-m 

fCk) = k -m £ k <_ m 

f(k) = 0 otherwise. 

The smoothing effect of this moving average is 

easily shown. Start with a sequence of independent random 

numbers drawn from a uniform distribution between -0.5 to 

0.5. The mean of this distribution is zero and the variance 

is one-twelfth CO.083). Ten such random numbers are listed 

below. 
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0.19 -0.26 -0.30 -0.14 +0.20 +0.37 -0.37 -0.00 +0.15 -0.28 

CD (2) (3) (4) (5) (6) (7) (8) (9) (10) 

Figure 2.1 shows a plot of the above numbers plus the next 

twenty random numbers. 

1 1 1 11 

1 

1 

1 

1 

Figure 2.1. Thirty Plotted Random Variables 

Now, by using the above simple moving average and 

letting m equal 3, the random variable X(5) is calculated as 

follows. 

XC5) = C-3)C-0.26)+C-2X-.30)+(-l)(-14)+C0)(.20) 

+Cl)C.37)+C2)O.37)+C3)(0.0) 

X(5) = 1.15 

The first ten correlated variables are listed below. 

0.08 1.15 1.06 -.89 -2.4 -1.69 -.19 -.37 1.83 

(4) (5) (6) (7) (8) (9) (10) (11) (12) 

1.59 

(13) 
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Figure 2.2 below shows the results for the first thirty 

values of X(t). 

3.0  .  

II 1 1 1 . 1 1  l l  
, 

1 
1 1 

1 

-3 .0  

Figure 2.2. Thirty Correlated Random Variables 

Notice that there is a tendency for similar values 

to be grouped together, hence, a certain amount of correla

tion has, in fact, been introduced by the moving average 

procedure. This is, of course, what was desired. For 

instance, X(5) and XC6) should be related because four of 

the six random numbers used in their calculations are the 

same for each. For the same reasoning, XC5) and X(.16) need 

have no similarity since none of .the same random numbers 

were used to calculate each one. 

Confirmation of the correlations between the simu

lated values is demonstrated by the variogram shown in 

Figure 2.3 which was calculated for the sequence of values 

shown in Figure 2.2. 
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3.0 

Wag) 2.0 

1.0  

-1 L J L J L 
1 2 3 4 5 6 7 8 

lag 

Figure 2.3. Yariogram of One-Dimensional Values 

The variogram shows that the correlation between 

variables decreases with increasing lag, until at lag 7, the 

variables are independent. 

These experimental results can be easily verified. 

Th.e covariance between X(t) and X(t+h) is given by 

Equation 2.2. Note that E[XCt)] equals zero. 

C(h) = EfXCt) • X(t+h)] ( 2 . 2 )  

By substituting Equation 2.1 into Equation 2.2, we have the 

following equation. 

C(h) = E 
/ +3 

,^k=-3 
fCk) TCt+k) ) • a 

J — 3  
fCj) TCt+h+j) »)' (2.3) 

Now, since TCt+k) and T(t+h+j) are independent, the expecta

tion E[T(_t+k) • T(t+h+j)] equals zero unless t+k = t+h+j, in 

which case E[TCi)2] = a2. This only happens when k = h+j. 
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Tims, we can simplify Equation 2.3 to get the following 

equat ion. 

+3 
C(h) = a2 Yj fCk) • f(k-h) (2.4) 

k=-3 

Using this equation, the values C(0) to C(7) were calculated 

and listed below. Remember, the value of a2 is one-twelfth 

CO.083) and f(k) = k for -3 < k < 3. 

C(0) = 2.33 C(4) = -1.16 

C(l) = 1.33 C(5) = -1.0 

C(2) = .42 C(6) = -.75 

C(3) = -.33 C(7) = 0.0 

The variogram and covariance function are related by 

Equation 2.5, hence, we can compute the theoretical vario

gram and compare it with the experimental one. 

y(h) = CC0) - C(h) (2.5) 

Figure 2.4 shows the excellent agreement between the 

theoretical and experimental variograms. 
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3.0 

y(lag) 2.0 

1 . 0  

1 2 3 4 5 6 7 8 

lag 

Figure 2.4. Comparison of Theoretical and Experimental 
Variograms 

Otiier characteristics of the simulated values can be 

seen in Figure 2.5. Since the simulated values are calcu

lated basically by a weighted sum of independent random 

variables, the distribution of the simulated values should 

approximate a Gaussian distribution. As seen in Figure 2.5, 

the simulated values do appear to approximate a Gaussian 

distribution. 

Since the moving average process simply sums inde

pendent random variables, the distribution of X(_t) should 

tend towards a normal distribution due to the Central Limit 

TlLeorem. The histogram shown below is symmetric and visually 

appears to be quite similar to a normal distribution. 

This example shows that the moving average process 

generates a series of random variables that are serially 

correlated and that the experimental results compare closely 

theoretical 

experimental 

• ' 1 ' * ' 
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to the theoretical prediction of the covariance and the 

distribution type. 

% 

> »  2 5  
u 
c 
<D 

20 or 
<u 
s. 

ai 
> 

a> 
cc 

1 5  

10 

- 3 . 2 5  - 1 . 2 5  . 7 5  2 . 7 5  

Figure 2.5. Histogram of One-Dimensional Simulated Values 

What is really needed to simulated ore deposits is a 

procedure that will reproduce both the distribution and the 

particular form of the variogram for a specific deposit. 

By rewriting Equations 2.1 and 2.4 slightly, more general 

forms of the moving average process and the covariance 

function are obtained. 

XCt) = Z *00 • TCt+k) 
k=—<oo 

( .2.6) 

CKfa-) = o2 £ f(k) • fCk-k) 
k=-eo 

(2.7) 
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Both X(t) and C1(h) are now seen to depend upon the 

weighting function f(k). The problem of generating random 

variables X(t) having a particular covariance function C(h) 

can be solved if the appropriate function f(k) can be 

determined. 

1978) provides a basis for determining f(k) for a particular 

covariance function. This theorem says essentially that a 

covariance function can be expressed as Fourier transform. 

In Equation 2.7, the covariance function is expressed as the 

discrete form of a convolution product of the weighting 

function fCk) and its transpose (Journel and Huijbregts, 

1978, p. 504). By expressing Equation 2.7 in a continuous 

form and using the property that a Fourier transform of a 

convolution is the product of the Fourier transform of f(u) 

and itself, the following equation can be formed. 

Now, by finding the inverse Fourier transform 

denoted y""1, the weighting function f(u) can sometimes be 

determined. 

Although the theoretical solution exists, the prac

tical problem of actually computing f(u) is not easy and, 

A theorem from Bochner (Journel and Huijbregts, 

/[cHb)] = [fCfCu))]2 C2.8) 

(2.9) 
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in some cases, not possible. Fortunately, for the three 

most common covariance (or variogram) models, e.g. spheri

cal, exponential, Gaussian, the weighting functions have 

been calculated by Journel and Huijbregts (1978, p. 507). 

Examples of One-Dimensional Covariance Models 

The one-dimensional covariance function corre

sponding to the three-dimensional spherical variogram 

model is given below. 

C^h) = K 1 - -^ + — 
a _ 5 

a . 

= 0 h > a 

h < a (2.10) 

How C^Ch) is derived is explained in the next section. 

The weighting function used to generate simulated values 

having the above covariance function is given below 

(Journel and Huijbregts, 1978, p. 507). 

= ^ 12K u a .... a f(u) = - f < u < f (.2.11) 

= 0 otherwise. 

In this function, a refers to the range of the spherical 

variogram and K is the desired variance of the simulated 

values. 

Verification that the above weighting function is 

appropriate is easily shown. Start with the definition of 
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the one-dimensional covariance as a convolution and simply 

perform the integration using the weighting function shown 

in Equation 2.11. 

w 

Cl(h) = f f(u) • f(u+h)du 
—00 

m //2 " h (u)(u+h)du 
a3 -a/2 

1 2 K  ~ b  

a3 -a/2 

12K 

a3 

J ^u2+uh^du 

[t + T . 

a/2 - h 

a/2 

12K |~2a3 a2h , h31 
a3 [ 24 ~ 4 6 J 

„ K _ St + 22d] 

The one-dimensional covariance model corresponding 

to the exponential variogram model is given below (.Journel 

and Huijbregts, 1978, p. 507). 

CHh) = KCl-Xh)e"Xh C2.12) 

The appropriate weighting function is given in Equation 2.13 

CJournel and Huijbregts, 1978, p. 508). 

fCu) = 2(via)(l-Au)e~Xu u>0 C2.13) 

fCu) =0 u < 0 
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The final model that has been worked out is the one-dimen

sional Gaussian covariance 

1 _ 2h^e~hZ/a2 h > 0 (2.14) 

which has the following weighting function (Journel and 

Huijbregts, 1978, p. 508). 

_ 2ui 

f(u) = ( 16K )u e ^ -oo < U < oo 

\a3ViTj 

Going from One-Dimensional to 
Three-Dimensional Random Variables 

In the previous section, it was shown that a simple 

moving average could be used to generate one-dimensional 

correlated random variables for the three variogram models 

commonly found in ore deposits. 

In this section, Matheron's unique solution to the 

problem of simulating three-dimensional random variables 

with imposed covariance using one-dimensional correlated 

random variables is explained. 

When making a variogram study of a deposit, it is 

always useful to study the geology of the deposit and the 

mechanisms that formed the ore deposit in order to under

stand the spatial characteristics of the deposit. An ore 

deposit is not formed by just one process, but instead, may 

be the result of many different processes acting in various 

CKh) = K 
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manners and at various times. Take a fairly simple example, 

for instance, a placer deposit formed in a river channel. 

As shown in Figure 2.6, the deposit may consist of numerous 

interbedded sand lenses. 

continuity or correlation parallel to the direction of 

deposition than perpendicular to it or vertically within the 

lens. The continuity of the grade of the lenses should be 

greater within a horizontal zone of the deposit than verti

cally within the deposit. The overall spatial variability 

of grade is thus the sum total of all the directional char

acteristics due to the manner of deposition of the ore 

minerals within the sand lenses, and the different character

istics of each sand lens deposited during the formation of 

the placer. We can thus view the three-dimensional covari-

ance Cor variogram) as the sum of the various directional 

Figure 2.6. Idealistic Placer Deposit 

The grade of ore within a sand lens should show more 
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covariances for each process that aided in the formation 

of the deposit. 

The above idea can be explained by considering two 

points x and x+h as shown in Figure 2.7. For the moment, 

restrict the discussion to two dimensions. Let y(~) and 

y(v} be independent realizations of one-dimensional random 

functions with covariance C1 (h~) and C1 (hv), respectively, 

on vectors~ and 'v. 

.X•I\. 1 -7 Z(x) = (-2.39+1.32) = 
12 

---, I 
Z(x+h) 1 (1.59-1.04) I = - = 

I I 12 

Figure 2.7. Using Two One-Dimensional Lines to Make a 
Two-Dimensional Simulation 

-.75 

.777 

Assume for now that the grades at x and x+h are a 

function of the two random functions y(_1..1) and y(v). Specif-

ically, let Z(x), the grade at point x, be given by the sum 

Z(x) = 
1 [y(<x,~>) + y(<x,v>)] 

12 
(2.15) 



where <x,u> refers to the projection of point x on vector y, 

and y(<x,y>) the value of the random variable at <x,y>. The 

projection <x,y> is used to indicate which value from line ]x 

is to be included in the sum given by Equation 2.15. Sample 

calculations are shown in Figure 2.7. Notice that if x and 

x+h were exactly East-West of one another, the difference in 

the grades ZCx) and Z(x+h) would be entirely due to the 

process that is represented by the values on line v. The 

covariance of Z(.x) is a function of the one-dimensional 

covariances C1 (hu) and C1(hv) and is given by the simple 

summation of 

C(h) = C1(<h,u>) + C1(<h,v>) (2.16) 

where <h,v> is the projection of vector v onto vector h. 

Thus, if h is parallel to v, the covariance between x and 

x+h will be mainly due to the process acting in the direc

tion v, and vice versa. 

More lines can be used to improve the simulation. 

For instance, in Figure 2.8, four lines are included. 
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Z(x) 1 (-0.43+0.25-1.37 = -

Figure 2.8. 

14 

+1.94) = .195 

Z(x+h) 1 (0.12+0.16+1.83 = -
14 

-0.42) = .845 

Using Four One-Dimensional Lines to Make a 
Two-Dimensional Simulation 

Z(_x) is again defined as the sum of the perpendic-

ular projections of x onto each of the one-dimensional 

lines. 

Z{_x) = 1 n 
I: 

Iii' i=l 
y(<k,i>) (2.17) 

Since Equation 2.17 is a sum of independent random varia

bles having covariance C1 (0), the term~ is included to 
Iii 

insure the variance of Z(x) will be also C1 (0). The co-
I 

variance of Z(x) is given by Equation 2.18. 
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CCh) = | 
n 

C1(<h,i>) (2.18) 
i=l 

As the number of lines used goes to infinity, the covariance 

CCh) tends toward the desired three-dimensional covariance. 

i/2 sphere 

The simulation will more accurately reflect the im

posed covariance C(h) the greater the number of lines that 

are used. There are, however, practical limits to the num

ber of lines used. The lines should be uniformly distributed 

over the unit sphere. In three dimensions, it turns out 

that 15 is the largest number of lines that can be exactly 

evenly distributed over the sphere. These 15 lines are ob

tained by connecting the midpoints of opposing edges of an 

icosahedron (Journel an(£ Huijbregts, 1978, p. 503). The 

icosahedron is shown in Figure 2.9. It is sufficient to 

integrate over half the sphere since y and -y determine the 

same line. 

C1(<h,u>)du (2.19) 

Figure 2.9. Icosahedron 



22 

The method of simulation outlined above is referred 

to as the Method of Turning Bands (Journel and Huijbregts, 

1978, p. 500). The name requires some explanation. The 

term "bands" refers to the distance between the values simu

lated on the one-dimensional lines. The term "turning" 

refers to rotating the lines in space so that they are 

evenly distributed in space. 

One last point needs to be considered. Given a 

three-dimensional covariance C(h), what is the one-dimen

sional covariance Cx(t) that, when integrated over the half 

sphere, will give C(h)? In the three-dimensional case, 

Equation 2.19 can be rewritten as shown below. 

.. 2 it jr/2 / \ 
CCh) = J d9 / C^|h cos <j>|j sin <|> d 4> (2.20) 

Making the substitution t = Jh cos <f»| and integrating out <J> 

gives 

l rh 
CCh) = I J C1(t )dt (2.21) 

Now, by taking the antiderivative of Equation 2.21, the 

means of finding the desired one-dimensional covariance 

C1Ch) is given. 

C1 Ct) = 3|~hah(h)^ (2.22) 
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Example of Determining One-Dimensional Covariance 

The covariance corresponding to the common spherical 

variogram is given below. 

C(h) = K 

= 0 

l 3h . h3 

" 2a 2a3j 

otherwise. 

h < a 

Applying Equation 2.22 gives the one-dimensional covariance 

C1(h) corresponding to the spherical variogram. 

CKh) = 
hlK(1 " i + £ 

K 3 (h-
3h 

3h2 + _h^_ 

2a 2a3 ) 
CHti) = K 

= 0 

ah 

1 3h + 2hl_ 

" a a3 
h < a 

otherwise. 

In the previous section, it was shown that this covariance 

is the convolution of the following weighting function: 

fCu) -4 12K u a a 
2 < u < 2 

= 0 otherwise. 
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Summary of Turning Bands Method 

The last two sections have explained how the turning 

bands method produces a simulation of a stationary three-

dimensional random function. The three-dimensional random 

function being simulated has the following characteristics: 

1. Imposed covariance 

2. Mean equal zero 

3. Gaussian distribution 

4. Stationary 

The method can be used to simulate any stationary 

three-dimensional random function as long as: 

1. the one-dimensional covariance (^(h) corresponding 

to the specified three-dimensional covariance can be 

determined, and 

2. the weighting function fCu) can be determined. 

In practice, most ore deposits exhibit covariance 

functions that can be modeled by either the spherical, expo

nential, or Gaussian models, or by a combination of these 

models; thus, the above limitations usually pose no problems. 

Controlling these simulations so that they have a specified 

mean and correct distribution is explained in the next 

section. 
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Controlling the Distribution of Simulated Values 

One of the necessary requirements of the simulation 

model of a deposit is that it correctly reflect the distri

bution of the assay grades in the deposit. The Turning 

Bands Method produces simulated values by adding together 

15 independent realizations defined on lines (Equation 2.13). 

Since the values making up the lines are approximately nor

mally distributed, the sum of 15 independent values should 

also be normally distributed due to the Central Limit 

Theorem. More specifically, the simulated values produced 

by Equation 2.13 should be normally distributed with zero 

expected value and variance equal to the variance of the 

one-dimensional lines, C1(0). 

For deposits having a normal distribution of assay 

grades, the simulation model must be adjusted to have the 

correct mean grade. This is done by simply adding the mean 

to each simulated value. 

In most cases, however, the distribution of assay 

grades is not well approximated by a normal distribution. 

In these cases, the simulated values have to be transformed 

to reproduce the correct distribution of assay grades. This 

can be done by finding the transformation function that con

verts the original assay grades to a standard normal distri

bution. Let Zq(x) represent the real assay grades, and y(x) 
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the corresponding normally distributed value. The trans

formation function, <Ku) > shown below, transforms the 

standard normal variable u(x) to Z(x). 

Z(x) - <f>[u(x)] (2.23) 

Likewise, the inverse of <j>Cu) transforms Z(x) to y(.x). 

]a(x) = (j)"1 [Z(x)] (2.24) 

For example, certain deposits have assay grades that are 

lognormally distributed. The inverse transformation func

tion <|)""1(Z) relating y(x) to Z(x) is thus 

uCx) = log[Z(x)] 

and, therefore, <f>(.y) is simply 

ZCx) = e"(x>. 

In many cases, the appropriate transformations may 

not be obvious and more generalized methods are used to make 

the transformations. Simple graphical means can be used if 

the histogram of the available data is representative of the 

distribution of the grades in the deposit. Figure 2.10 

shows an example of the one-to-one correspondence between 

the cumulative frequency of the assay values and the cumu

lative normal distribution function. Another approach is to 
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approximate <f>Il-»(x)] by Hermite polynomials (Kim, Myers, and 

Knudsen, 1977). 

100_ 

90-

80-

70. 

40-

20. 

10-

0 1 2 3 4 5 6 7 2 3 1 0 1 2 3 4 

I Sulfur Normalized Values 

Figure 2.10. Graphical Transformation Function 

In general, the Turning Bands Method will be used to 

simulate the transformed grades y(x) rather than the grades 

Z(x). The covariance imposed on the simulation must, there

fore, be the covariance of the transformed grades y(x). 

Then, when the simulation is finally transformed to repre

sent ZCx), the covariance of Z(x) will be correctly repro

duced. 
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If the simulation is to be conditioned to the sam

ple data, the conditioning must be done before the final 

transformation to Z(x), and the conditioning of y(x) must 

be done with the transformed sample grades. 

Conditioning the Simulation to 
the Available Sample Points 

The Turning Bands Method provides realizations de

noted Z (x) of a random function RF Z(x) that has the same 
s 

mean, variogram, and distribution as the real deposit. 

These simulations thus model the most important character

istics of the deposit. However, by conditioning the model 

so that the simulated values match the sample values at the 

data locations, certain additional characteristics of the 

deposit are added to the model (Journel, 1974, p. 674). 

Chief among these is credibility, since the model now looks 

like the deposit at all the places where both values can be 

observed, i.e., the sample points. Conditioning also adds 

a certain robustness to the model because certain local 

characteristics otherwise unmodeled are imparted to the 

model. 

The effects of conditioning the simulation can be 

seen in the plots shown on Figure 2.11. The upper plot 

shows the exact thickness [Z(x)] of coal measured along a 

hypothetical coal seam. For illustration purposes, assume 

that this hypothetical coal seam is the real deposit. A 
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Figure 2.11. Comparison of Reality and Conditional 
Simulation Along a Hypothetical Coal Seam 
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simulation of this coal seam was made and is shown on the 

middle plot together with the "real" deposit. The real 

values are denoted Z(x) and the simulated values Z (x). 
s 

The simulated data appear to model the general character

istics of the deposit fairly well, but of course, do not 

match the real values at each and every point. The last 

plot shows the real deposit again and the simulation after 

conditioning to the six data points shown. 

The conditioning essentially forces the simulation 

to pass through the data points. The resulting conditional 

simulation [Z (x)] looks more like the real deposit than cs 

the nonconditional simulation [Z (x)]. In addition to s 

lending relevance to the model, other characteristics are 

imparted to the model by conditioning. For example, local 

drifts in the sample data will be reproduced within the same 

zone in the conditional simulation model. This fact can be 

used to advantage if some specific characteristics need to 

be modeled. For instance, assume we want the thickness of 

coal to be very thin in one area of the model, say to test 

the influence of an unexpected low coal area due to 

channeling on the production capacity of the mine. The low 

coal area can be included by using fictitious conditioning 

points in the area where the low coal is desired. Figure 

2.12 shows an example of this. 
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Figure 2.12. Conditioning with Pseudo Sample Values 

Requirements of the conditional simulation model 

Z (x) are that it has the same mean, variogram, and distri-wb 

bution as the real deposit, and that at the sample points 

xa, it has the same values as the sample values, i.e., 

= Z(x„). To condition the simulation model, several 
C& a a 

properties of kriging are utilized. Some of these can be 

sh-own by examining Figure 2.13, which shows a profile of 

true thickness, ZCx), and a profile of kriged estimates 
$ 

Z^(x). The first property to note is that the kriged esti

mates pass through the sample values ZCx ) at the sample 

positions xQ. This is due to kriging being an exact estima-
cL 

tor, hence, the best estimate of a sample grade is the 
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sample grade. The second property to note from the figure 

is that the kriged profile is much smoother than the true 

thickness and that the two profiles meet at the known sample 

points. The difference between the profiles, [ZCxJ-Z^Cx)], 

* 
is of special interest because [Z(x)-Zk(x)], the kriging 

error, is orthogonal to (independent of) the estimate Z^(x) 

(Journel and Huijbregts, 1978, p. 495). This fact suggests 

that one way to make a conditional simulation is to simulate 

* * 
the error [Z(x)-Zk(x)] and add it to the kriged values Zk(x). 

To be valid, however, the error that is simulated would have 

to be isomorphic to the real error [Z(x)-ZjsCx)] . 

M — 

THICK 

7t M M 3* 

Figure 2.13. Profiles of True Thickness and Kriged Thickness 

Simulating [Z(x)-Z^(x)] can be done by taking a non-

conditional simulation Z (x) and constructing a kriged 
s 
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estimate zgk(x) using the simulated values at the same 

sample positions, xa, as the real data. 

$ 
This error [Zg(x)-Zs^(x)] has the same properties as 

Z(x)-Zk(_x), and in addition, Zs(x)-Zgk(x) is an independent 
* 

realization of Z(x)-Zj£(x). 

The conditional simulation, Z (x) is formed by the 
OS 

equation below. 

Z*sCx) = z£(x) + [Z*(x)-Z*k(x)] (2 .25)  

* 
It can be easily seen that Z (x) passes through the known 

CS 

data points xa. At each data point xa, the kriged value 

Zk(xa) equals the value of the data point Z(xa), 

ZCxa> = ZkCxa> 

and the kriged value Z . (x ), resulting from the simulated 
SK cl 

values, equals the simulated value at the points x„, 
ci 

Z fx ) = Z*. fx ) . 
s z.1 skv slj 

Thus, the conditionally simulated value equals the value of 

the data point x., 
SL 

Z* (x) = ZCx ). 
cs a 

This process is illustrated by the plots shown in 

Figure 2.14. The top plot shows a nonconditional simulation, 

ZgCx), and a kriged profile, Zgk(x), made from the simulated 
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Figure 2.14, Conditioning the Simulation 
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values located at the six sample points shown. The middle 

plot shows a kriged profile, Zfc(x), made from the real sam

ple values located at the six sample points shown on the 

plot. The difference [Zg(x)-Zsk(x)] from the upper plot is 

added to the profile Z^(x) shown in the middle plot to get 

the final conditional simulation Z (x) shown in the bottom cs 

plot. The resulting conditional simulation is the same as 

shown earlier in Figure 2.11. 

Simulation of Anisotropic Covariance Functions 

The Turning Bands Method produces a simulation that 

has an isotropic three-dimensional covariance function. 

Most ore deposits, however, do not exhibit isotropic covari

ance functions. Two solutions are available to solve this 

apparent problem. The general solution depends on the fact 

that any three-dimensional covariance (anisotropic or iso

tropic) can be modeled as a nested sum of isotropic covari

ances in dimensions one, two, or three. This is possible 

because every linear combination of covariances with positive 

coefficients is a covariance (Journel and Huijbregts, 1978, 

p. 162). Thus, for example, an anisotropic covariance may 

be modeled by Equation 2.26. 

C(h) = Ci^hx2 +hy2 +hz2^ + C2(hz) (2.26) 

where Ci is an isotropic covariance in three dimensions and 

Ca(hz) is isotropic in only one dimension. The random 
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function Z(x) in this example would be interpreted as the 

sum of two independent random functions 

2 
ZCx) = £ T.(x) 

i=0 1 

where Tj refers to a realization of a random function with 

isotropic three-dimensional covariance and T2 represents a 

realization of a one-dimensional random function. The simu

lation of this random function would thus be done in two 

individual steps and the results simply added together. 

The second solution is possible if the deposit has 

a geometrical anisotropy, and a linear transformation of 

coordinates can transform the geometrical anistropy to iso

tropic. In this special case, the deposit is modeled using 

an isotropic covariance, and then the models' coordinates 

are transformed to restore the geometrical anisotropy. 

Simulation of Non-stationary Random Functions 

Some ore deposits display a definite trend or drift 

in the assay values. For example, some deposits show a pro

gressive decrease in grade with depth. In such cases, the 

deposit should probably be considered as a realization of a 

non-stationary random function. 

Non-stationary random functions can be simulated if 

the random function Z(x) can be interpreted as a sum of a 
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drift component, M(x), and a stationary residual, R(x), 

(Journel and Huijbregts, 1978, p. 500) as shown by 

Equation 2.27. 

Z(x) = M(x) + R(x) (2.27) 

The deposit can then be simulated by modeling the 

drift and simulation of the residuals using the Turning 

Bands Method. Practical problems exist with this approach, 

due to the difficulty of modeling the drift. 

A second approach is possible if the drift is 

localized or restricted to a certain section of the deposit. 

In such cases, the drift may be simulated by conditioning 

the simulation to true or fictitious data in the zone 

(Journel and Huijbregts, 1978, p. 500). An example of this 

technique was shown in Figure 2.11 earlier. This condition

ing will force the simulation to follow the pseudo or 

fictitious data points. 



CHAPTER 3 

DEVELOPMENT OF COMPUTER PROGRAMS AND PROCEDURE 
TO CONSTRUCT A CONDITIONAL SIMULATION MODEL 

In this chapter, the structure and design of the 

computer programs written to construct a conditional simula

tion model are described. The description of the computer 

programs is limited to a general discussion of the specific 

functions each program performs in the construction of the 

model. 

Desired Characteristics of the Model 

The conditional simulation model must reproduce the 

most essential statistical characteristics of the real 

deposit. Specifically, the model should have: 

1. the same mean as the real deposit, 

2. the same variance and variogram function, 

3. the same empirical distribution, and 

4. be conditioned to the real data. 

The Turning Bands Method produces a simulation that 

is nonconditional to the sample data and that has approxi

mately a Gaussian distribution of simulated values. Clearly, 

the sequence of construction of a conditional simulation 

must involve several steps if the model is to reproduce the 

above desired characteristics of the true deposit. For 

38 
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simple deposits, the procedure of making a conditional simu

lation can be divided into the following basic steps. 

1. Make a nonconditional simulation of the deposit. 

This model has values that have a Gaussian distribu

tion with mean equal to zero and variance equal to 

one. 

2. Transform the model to correct mean and variance. 

3. Condition the model to the sample data, 

4. Transform the model so the simulated values have 

the appropriate distribution. 

For simple deposits, the above sequence should be sufficient. 

For more complex models, the above sequence might have to be 

expanded to correctly model the deposit. 

Development of Computer Programs Used 
to Make Conditional Simulation Models 

Development of a set of computer programs used to 

make a conditional simulation model was guided by the 

general need to divide the construction into a sequence of 

discrete steps as outlined above. The particular tasks 

assigned to each program were carefully chosen to provide 

flexibility in modeling, so that even very complex deposits 

can be modeled. 

The final design of the computer programs resulted 

in a set of seven programs that are jointly referred to as 

the CSIM system. These programs are listed and briefly 

described below. 
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Programs for CSIM Model Construction 

Program CSIM01 - This program initializes the model. 

Program CSIM03 - This program makes a noncondi-

tional simulation. 

Program CSIM05 - Three types of transformations can 

be made with this program. In 

addition, the nugget affect can be 

added to the model with this 

program. 

Program CSIM07 - This program conditions the model 

to the available sample data. 

Program CSIM08 - This program adds two models to

gether. It is used for complex 

deposits that cannot be described 

with a simple spherical model. 

Programs for Calculation of Statistics and Display of the 
Model 

Program CSIM04 - This program calculates basic sta

tistics, plots histograms, and 

calculates variograms of the model. 

Program CSIM06 - This program makes single digit 

printer plots of the CSIM model. 

The model actually consists of a three-dimensional 

array where each element in the array represents a precise 

physical volume of ground in the deposit. The value of each 
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element is the simulated attribute, such as the % ash or the 

% sulfur of that volume of ground. Detail in the model is a 

function of the volume of ground represented by each element 

of the array. The smaller the volume of ground represented 

by each element, the more detail the model has. 

The number of simulated values used to model a de

posit depends on the size of the deposit and on the spacing 

between grid points of the model, The physical relationship 

between the grid of simulated values for a two-dimensional 

simulation and the actual deposit is shown in Figure 3.1. 

The area shown in this figure to be modeled is 4,000 ft by 

4,000 ft. Using a grid spacing of 20 ft, a total of 40,000 

grid points would be necessary to model the area shown. 

The large number of grid points needed to model even 

a very small portion of a deposit presents practical prob

lems in the design of the computer programs to construct the 

model and to access an entire model in core; therefore, some 

method of partitioning the model must be used so that only a 

small portion of the model need be in core at any one time. 

The option chosen for the computer programs developed in 

this study is to partition the model into blocks where each 

block represents 100 by 100 by 1 arrays of grid points 

C10,000 points). Each of these blocks is then stored on a 

direct access disk file and only one block at a time is held 

in core during program execution. 
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Figure 3.1. Plan Map of Area Modeled 

Dividing the deposit into blocks having a given 

volume, rather than rows or columns, was done primarily 

because one of the end uses of the model will be to determine 
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the average quality of coal mined within a certain volume. 

This calculation can most efficiently be done if the grid 

points representing the block are all in core at the same 

time. If row or column storage had been chosen, much more 

input/output time would be used during program execution. 

Description of Program CSIM03 

Program CSIM03 is the only program in the CSIM sys

tem that is totally unique to the system. The other major 

programs, CSIM05 and CSIM07, are adaptations of standard 

geostatistical programs. Program CSIM07 is basically a 

kriging program and Program CSIM05 performs simple trans

formations. These programs will not be described here. 

Program CSIM03 (see Appendix A) generates a non-

conditional simulation by the Turning Bands Method. The 

computer program was written so that the simulation produced 

by CSIM03 would have the following properties. 

1. Second order stationarity 

2. Simulated values having an approximate Gaussian dis

tribution with mean equal to zero and variance equal 

to one 

3. Model exhibiting a spherical variogram with speci

fied range and sill value equal to one 

There are several reasons for producing a simulation 

model that can be considered a unit model. The most impor

tant reason is that most deposits exhibit assay values that 
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do not have a Gaussian distribution. Thus, at some stage, 

the values in the simulation model must be transformed to 

the appropriate distribution. This is most easily done if 

the simulation model, before transforming, has a mean of 

zero and variance equal to one. A second reason to con

struct a unit model is the possibility that the model can 

be saved and utilized for several deposits having the same 

variogram type but with different means, variances, and 

distribution types. 

Program CSIM03 is programmed to produce a three-

dimensional simulation, but as presently coded, only 

two-dimensional simulations are produced. Full three-

dimensional simulations can be obtained by increasing the 

array size of the Fortran variable IB, which is presently 

(100, 100, 1). The third index of this array determines 

how many points will be simulated in the vertical direction. 

Programming the Turning Bands Method is relatively 

straightforward because the method can be divided into two 

distinct steps. The first step is to generate fifteen 

lines of one-dimensionally correlated random variables. In 

the second step, the one-dimensional random variables are 

combined to form a three-dimensional simulation. 
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Step One. Algorithm to Generate Correlated Random 
Variables in One Dimension 

One-dimensionally correlated random variables de

noted X(t) can be generated by the moving average procedure 

described in Chapter Two and repeated in the following 

equation. 

NR 
XCt) = C • £ f(k) • T(t+k) (3.1) 

k=-NR 

The nuniber of random variables X(t) to generate for 

each of the fifteen lines depends on the size and shape of 

the deposit and on the grid spacing used in the model. 

Since each line has a different orientation in space, a 

different number of variables XCt) are needed for each line. 

For each line, the number of random variables to 

generate can be determined by first calculating the length 

of the line needed to completely span the deposit. This 

length is then divided by the grid spacing to give the num

ber of random variables needed. For example, in Figure 3.2, 

the length of the line necessary to span the deposit is the 

distance between points A and B. These points are the per

pendicular projections of the vertices labeled 1 and 3 onto 

the one-dimensional line. 
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(NPE,NPN,NPTV) 

(0,0,0) 

Figure 3.2. Determining Length of Vector that Spans the 
Deposit 

The algorithm used in Program CSIM03 to calculate 

the number of random variables can be summarized by the 

following steps. 

1. Calculate the coordinates of each vertice of the 

model. The coordinates are calculated in units 

corresponding to the grid spacing. For instance, 

in Figure 3.2, the lower left vertice would have 

coordinates (0,0,0) while the upper right coordinate 

would be (NPE, NPN, NPTV) where NPE refers to the 

number of grid points in the East-West direction, 

NPN is the number of points in the North-South 

direction, and NPTV is the number of points verti

cally. 

2. For each of the fifteen vectors, Steps 3 and 4 

below are done. 
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3. Calculate the perpendicular projection of each 

vertice of the model onto the vector. 

4. The number of points to simulate is given by the 

difference between the maximum and minimum values 

of the projections calculated in Step 3. 

The Fortran code for the above algorithm is shown 

in Figure 3.3. 

C 
C  M A T R I X  V  C O N T A I N S  C O O R D I N A T E S  O F  T H E  V E R T I C E S  O F  T H E  
C  M O D E L  B E I N 6  S I M U L A T E D .  
C 

V ( 1 , 5 ) = P E  
V ( 1 , 6 ) = P E  
V ( 1 , 7 ) " P E  
V ( 1 # 8 ) = P E  
V ( 2 / 3 )  = P N  
V  C 2 # 4 ) = P N  
V ( 2 # 7 ) = P N  
V ( 2 #  8 ) = P N  

C  
G  F I N D  T H E  M I N  A N D  M A X  I N T E R S E C T I O N S  O F  V E C T O R  A  W I T H  
C  T H E  M O D E L  

D O  7 0  L = l # 1 5  
M I N ( L ) = 2 0 0 0 0  
M A X = - 2 0 0 0 0  
D O  1 0  I  =  l » 8  

L R - ( A ( 1 > L ) * V ( 1 * I ) + A ( 2 « L ) * V ( 2 > X ) + A ( 3 » L ) * V ( 3 » I ) )  
I F ( L R . L E  . M I N ( L ) )  M I N ( L ) = L R  
I F t L R . G E  . M A X )  M A X  =  L R  

1 0  C O N T I N U E  
C  -
C  C A L C U L A T E  T H E  N U M B E R  O F  P O I N T S  T O  G E N E R A T E  F O R  T H I S  L I N E  
C  A N D  G E N E R A T E  T H A T  M A N Y  1 - D  P O I N T S  
C  

N U M ( L )  = M A X - M I N ( L )  + 2  
N T 0 T = N U M ( L )  + 2 * N R  

Figure 3.3. Fortran Code for Determining Number of 
Correlated Random Variables to Calculate 
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Having determined the number of values of X(t) to 

calculate, the values are then calculated using Equation 3.1. 

In this equation, the number of random numbers T(t) included 

in the calculation of each value of X(t) is two times the 

variable NR. This variable is a function of the range of 

influence (see Equation 2.11) of the variogram and the grid 

spacing and is calculated as shown in Equation 3.2. 

NR • 2 • Gridspacing <3.2) 

The random numbers T(t) are generated by a Fortran 

algorithm developed by Schrage (1979, p. 132). This random 

number generator has excellent characteristics and an ex

tremely large cycle length. The Fortran code is portable 

and can be used to generate the same sequence of random 

numbers on a wide variety of computers. 

The constant C in Equation 3.1 is included to ensure 

that the variance of the random variables X(_t) is equal to 

one. In Chapter 2, it was shown that the variance of X(t) 

calculated without the constant C is given by Equation 2.4, 

which is repeated here as Equation 3.3. 

NR 
Var XCt) = £ f(k) . fCk) (3.3) 

k=-NR 

For example, if NR = 3 and fCk) = k, then the vari

ance of XCt) is calculated as shown below. 
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NR 
Var X(t) = a2 k2 and °2 ~ I/12 

k=-NR 

= 1/12 [9+4+1+0+1+4+9] 

= 28/12 

= 7/3 

For this example, the value of C needed in Equation 3.1 

would thus be /3/7. The general formula for the constant C 

is given in Equation 3.4. 

l 36 
C = \CNR) (NR+1) (2NR+1) (3.4) 

The actual calculation of the random variables X(t) 

is done by simply evaluating Equation 3.1. The Fortran code 

used to evaluate Equation 3.1 is shown in Figure 3.4. The 

Fortran variable DLINE refers to the random variables X(t). 

After the variables for each line are calculated, they are 

written sequentially to a temporary storage file. 

Step Two. Forming the Three-Dimensional Simulation 

The second step of the Turning Bands Method is to 

combine the one-dimensional random variables into a three-

dimensional simulation. Each simulated value in the three-

dimensional model is formed by summing the perpendicular 

projections of each one-dimensional line onto the individual 

point x as shown by Equation 3.5. 



20 DO 30 I=1»NT0T 
RANVAL(I)=RAND(ISEED)-0.5 

iO CONTINUE 
^0 Ni=NR+l 

NT1=NT0T-NR 
DO 50 J = N1# NT1 

JN = J +NR 
JN1=J-NR 
DO 50 I=JN1>JN 

DIS-J-I 
DUNE (J)=DLINE(J)+DIS*RANVAL{I)*CONT 

50 CONTINUE 
WRITE(ICQR)(DLINE(I);I*N1;NT1) 
DO 60 1=1,10000 

DLINE(I)=0*0 
60 CONTINUE 
70 CONTINUE 

Figure 3.4. Fortran Code for Calculation of One-
Dimensionally Correlated Random Variables 

i 15 

Z(x) = T Y<k,i> (3. 
/15 i=i 

xt. 

In this equation, Y<k,i> is the k value of line i. The 

value of k is determined by calculating the perpendicular 

projection of the point x onto the vector i. Figure 3.5 

illustrates the mechanics of Equation 3.5 when only four 

lines are included. 
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Z(x) = -±- [0.12+0.16+1.83-0.42] 

.845 

0.12 

1 .83  

Figure 3.5. Example of Calculations Used in Turning Bands 
Method 

The perpendicular projection of point x onto a line 

can be found by using the dot product of two vectors. Let C 

be the vector from the origin to point x, and A be the unit 

vector of the line. The perpendicular projection of x on 

line a is given by Equation 3.6. 

L = A • C (3.6) 

This is illustrated in Figure 3.6. In this example, when 

x is projected onto co, it intersects co at 4.9 units from 

the origin. 
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(2 ,5 )  

Figure 3.6. Perpendicular Projection of a Point to a Line 

Implementing Step Two is quite easy. Since the 

model is divided into blocks, each block can be read into 

memory individually and all the simulated values for that 

block calculated before the next block is read in. The 

Fortran code implementing Step Two is shown in Figure 3.7. 

In the code shown in Figure 3.7, the variable A 

contains the unit vectors for each of the 15 one-dimensional 

lines. Variable C contains the coordinates of the point 

being simulated. The array B contains the final simulated 

values. Each element of array B is formed by the sum of 

15 values, one from each of the 15 lines. This sum is 

divided by the square root of 15 so that the variance of the 

simulated values is equal to one. 
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C  
C  L O O P  T H R O U G H  T H E  M O D E L  B L O C K  B Y  B L O C K  
C— 

0 0  1 0 0  N L * 1 ; N B N  
D O  1 0 0  N E  a l »  N B E  

K B L Q C K = N E + ( N L - 1 ) * N B E  
C  
C  R E A D  I N  O N E  B L O C  F R O M  C S I M  M O D E L  
C  

C A L L  T A K O U T ( K B L Q C K > I V A R )  
C 
C  R E A D  I N  " N U M  ( L ) "  V A L U E S  F O R  V E C T O R  A .  
C  *  

D O  9 0  L = l # 1 5  
R E  A D ( I C O R ) ( D L I N E ( I ) ; I  =  l >  N U M ( L ) )  

C  ,  
C  N O W  L O O P  T H R U  P O I N T S  I N  T H E  B L O C K  
C  

D O  8 0  K S 1 * N P T V  
D O  8 0  J * 1 , N P T  

D O  8 0  1 = 1 / N P T  
C ( 1 ) = I + ( N E - 1 ) * N P T  
C ( 2 ) = J + ( N L - 1 ) * N P T  
C ( 3 ) = K  
R L = A ( 1 , L  ) * C ( 1 )  +  A ( 2 * L ) * C C 2 ) + A ( 3 » L ) * C ( 3 )  
L R 2 = R L  +  S I G N ( 0 . 5 » R L )  
L R = L R 2 - M I N ( L ) + 2  
B ( I , J , K ) = B ( I , J , K ) + D L I N E ( L R ) / S Q 1 5  
C O N T I N U E  

C O N T I N U E  
R E W I N D  I C O R  

80 
9 0  

Figure 3.7. Fortran Code for Turning Bands Algorithm 



CHAPTER 4 

CONDITIONAL SIMULATION OF A COAL DEPOSIT 

The coal deposit simulated in this study is a 

portion of the Upper Freeport Coal Seam located in Western 

Pennsylvania near the town of Homer City. The general 

geology and statistical characteristics of the Upper 

Freeport Coal Seam will be reviewed prior to describing the 

construction and validation of the simulation model. 

Geology of the Upper Freeport Coal Seam 

The Upper Freeport Coal Seam is one of the many coal 

seams forming the bituminous coal field of the Appalachian 

Plateau Province in Western Pennsylvania. The Upper Freeport 

Coal Seam is Pennsylvanian (Allegheny) in age. 

The Upper Freeport Coal Seam was originally deposited 

as peat in a large swamp either in,an estuary or possibly a 

large freshwater lake (Clark, 1979, p. 30). Several events 

during the deposition of peat have affected the character

istics of the coal seam throughout the deposit. During 

deposition of the peat in the swamp, a channel system was 

intermittently active and caused sediments to be deposited 

in the swamp from time to time. The result of this inter

mittent sedimentation is pronounced splitting and partings 
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in the coal seam, especially in the central zone of the 

swamp. The splitting is less pronounced away from the 

central channel system. 

Peat formation was stopped when almost the entire 

swamp was flooded and sediments were deposited over the peat. 

This first peat bed is referred to as the main bench of the 

Upper Freeport Coal Seam and is present throughout the area 

studied. The coal varies from 24 to 60 inches thick, 

averaging about 48 inches. 

Although most of the swamp remained flooded, peat 

continued to accumulate along the margins of the swamp. 

Coal formed from this peat is referred to as the upper bench 

of the Upper Freeport Coal Seam. This bench is present only 

in the Eastern portion of the area studied and varies from 

8 inches to 30 inches CClark, 1979, p, 20). 

Finally the entire swamp was flooded or submerged 

and covered with fine grained sediments resulting in a shale 

or sandy-shale roof in most areas of the deposit. The last 

event to affect the coal seam was. the start of a channel 

system. In certain areas, the channel system scoured into 

the shales forming the roof of the coal and, in some cases, 

scoured into the coal itself. The end result of the 

channeling is a sandstone roof in some areas and want areas 

if the coal had been completely eroded away. 
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The portion of the Upper Freeport Coal Seam is shown 

in Figure 4.1. The coal reserves controlled by the Homer 

City Owners are shown by the polygonal outline. The pluses 

indicate locations of drillholes intersecting the coal seam. 

The hachured line is the approximate edge of the upper bench 

of the coal seam. To the northeast, both the main and upper 

benches are present and result in a thicker coal seam. 

Inasmuch as this thicker coal has mostly been already mined 

out, this area is not included in further analyses or in the 

simulation. 

Statistical Analysis 

Three characteristics of the coal seam were analyzed 

in this study. The thickness of coal and the sulfur content 

of the coal are the only variables that will be included in 

the conditional simulation model constructed. For complete

ness, however, the ash content of the coal was also included 

in the statistical analyses. Industry practice assumes that 

the BTU content of coal is directly proportional to the ash 

content, therefore, the statistics of the BTU content of the 

coal can be directly determined from the ash statistics. 

Basic statistics of the thickness, ash, and sulfur 

values for the drillhole samples are summarized in Table 4.1. 
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Figure 4.1. Plan Map of Upper Freeport Coal Seam 
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Table 4.1. Summary Statistics for Coal Characteristics 

Characteristic 
Number of 
Assays 

Sample 
Mean 

Sample 
Variance 

Sample 
Std. Dev. 

Thickness 170 49.3 36.0 6.0 

Sulfur 135 2.62 1.49 1.22 

Ash 126 16.2 17.4 4.2 

The histogram of coal thickness shown in Figure 4.2 

appears almost symmetric except for an apparent truncation 

of the data at 60 inches. This truncation results mainly 

from the subjective determination of the boundary of the 

upper bench of the coal seam and the possible misclassifica-

tion of whether one or two benches of coal were present at 

any particular location. 

>-

rj o 

?-i 

8-

£ Si
tu > s i-t S 
< 2-
_i 

30.000 40.000 60.000 60.000 70.000 

SEAM THICKNESS 
ea.000 

Figure 4.2. Histogram of Seam Thickness Values 
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The histogram of sulfur values in Figure 4.3 shows 

several important aspects of the distribution of sulfur. 

First, the distribution appears to be truncated at about 

0.85% S. Secondly, there are several modes, one at about 

1.25% S, and at 3.0% S, and a minor one at 4% Sulfur. 

Finally, the data is skewed to the right. These aspects can 

possibly be accounted for by the relative differences in 

amounts of sulfur in organic materials and the amount of 

sulfur from inorganic materials. 

§ 
8-1 

3 
£ 

.50O 1.50O 2.600 3.SO0 4.500 6.500 

SULFUR CONTENT 

Figure 4.3. Histogram of Sulfur Content 

t 

Plants use sulfur in their growth processes and much 

of this sulfur is bound organically during peat accumulation 

and coal formation (Cecil et al., 1978, p. 42). The amount 

of organically bound sulfur is probably between 0.5 and 1.0%. 
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The amount of this sulfur is important because organically 

bound sulfur cannot be removed from the coal by coal 

cleaning processes. 

Inorganic sulfur occurs predominantly as pyrite or 

marcasite and, to a lesser extent, in the form of other 

metal sulfides. The amount of inorganic sulfur in the coal 

is sometimes affected by the nature of the roof. Areas 

having a sandstone roof sometimes show a higher sulfur con

tent due to the downward perculation of solutions rich in 

iron sulfides (Clark, 1979, p. 21). Due to several distinct 

origins of sulfur in coal, it can be argued that sulfur from 

each source is likely to have different distributions and, 

thus, the combined sulfur distribution may be bimodal as 

implied in the histogram shown in Figure 4.3. 

The ash content of coal is largely a function of the 

amount of detrital sediments washed into the swamp during 

peat formation (Staub, 1979). The histogram of ash content 

is shown in Figure 4.4. Clark (1979, p. 21) regards ash 

values of 10% to 13% as normal or. usual values for the Upper 

Freeport Coal Seam. Values greater than 13% probably re

flect areas of the coal seam where shale partings are 

thicker or more abundant. In certain portions of the Upper 

Freeport Coal Seam, a definite relationship between the 

amount of ash and thickness of coal exists. This is shown 

by Figure 4.5 which compares the ash content for various 
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Figure 4.4. Histogram of Ash Content 
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Figure 4.5. Comparison of Ash Content Versus Thickness 
of Coal for Lucerne #8 Mine 
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coal thicknesses in an area to the west of the study area. 

In the study area, the tendency to have a larger ash content 

in areas of thick coal is not as apparent as shown by 

Figure 4.6. This lack of a relationship is further evi

denced by the low linear correlation shown in Table 4.2. 

% Ash 

30  J  

20 

10-

1 1 
6 

35-40  40-45  45-50  50-55  55-60  Thickness 
( Inches)  

Figure 4.6. Comparison of Ash Content Versus Thickness 
for Area Shown on Figure 4.1 

Table 4.2. Correlation Matrix 

Thickness 

Ash 

Sulfur 

•1 

0.276 

0.099 

Thickness 

1 

0.614 

Ash. 

1 

Sulfur 



63 

In Table 4.2, sulfur and ash show the greatest 

amount of correlation. This can be partially explained by 

the fact that shale partings in the coal often contain 

pyrite. A coal that has high ash content is, therefore, 

likely to have a high sulfur content. This is shown .in 

Figure 4.7 which compares the sulfur content of coal having 

various amounts of ash. 

% 
S u l f u r  

6 -

4  •  

3  .  

1 - T 
8 - 1 4  1 4 - 1 8  1 8 - 2 2  2 2 - 2 6  %  A s h  

Figure 4.7. Comparison of Ash Content Versus Sulfur Content 
for Area Shown on Figure 4.1 



Normal izati'on of the Sulfur Values 

The conditional simulation model must reproduce the 

distribution of each variable being simulated. Since the 

Turning Bands Method produces only normally distributed 

values, if the variable being simulated has some other form 

of distribution, a transformation must be found to reproduce 

the correct distribution. 

The thickness of coal can be approximated by a nor

mal distribution, thus, no transformation is needed. Sulfur, 

however, displays a skewed distribution. A logarithmic 

transformation was tried, but the transformed values were 

not well modeled by a normal distribution. A transformation 

function, consisting of Hermite polynomials, was next 

attempted (Kim, Myers, and Knudsen, 1977, p. 70). Figure 

4.8 shows the resulting histogram of transformed sulfur 

values. An inverse of this transformation function is used 

to transform the normally distributed simulation values to 

the correct distribution of the original values. 

Variogram Analysis 

Experimental variograms were calculated to determine 

the spatial continuity of each of the variables. No aniso-

tropy was observed in any of the variables. Figures 4.9, 

4.10, and 4.11 show the resulting experimental variograms 

for thickness, sulfur, and ash, respectively. 
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Figure 4.10. Variogram of Sulfur Content 
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Figure 4.11. Variogram of Ash Content 
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The experimental variograms each show quite dis

tinctive features. The variogram of thickness shows a maxi

mum range of influence of 4,300 feet, while the variogram 

for sulfur shows a range of about 8,500 feet. The nugget 

effect is quite large for all three variables. The true 

nugget may be smaller than indicated, but no closely spaced 

data is available to more accurately determine che nugget. 

The ash variogram is not as nicely behaved as the thickness 

or sulfur variograms. The jagged appearance may be due to 

the fact that ash is largely related to the amount of shale 

included in the coal, both as partings and at the top or 

bottom of the seam. The characteristics of the ash should 

be quite complex because each of the partings probably has 

different spatial characteristics, depending on what caused 

the parting. In some cases, difficulty in defining the top 

and bottom of the seam can cause eratic amounts of shale to 

be included. This may cause an increase in the nugget 

effect. 

Spherical variogram models were fitted to the thick

ness and normalized sulfur variogram. The fitted models are 

plotted with the experimental variograms in Figure 4.9 and 

4.10. Parameters of the fitted spherical variogram models 

are given in Table 4.3. 

A theoretical variogram was not fitted to the ash 

variogram because ash will not be modeled in the simulation 

models developed in this chapter. 
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Table 4.3. Parameters of Spherical Variogram Models 

Sill Nugget C Value Range 
Variable Co + C Co C a 

Thickness 35. 10. 25.0 4300' 

Sulfur 1.45 .30 1.15 8500' 

Construct ion of the Conditional Simulation Model 

A conditional simulation model of the Upper Freeport 

E Seam was made for an area encompassing a particular coal 

mine. The model was specifically sized to include areas of 

the mine actually in production during 1978 and 1979, so 

that the model could be validated with actual production 

records of that period. The model covers an area of 12,000' 

x 12,000', as shown in Figure 4.12, and consists of 90,000 

simulated values on a 40' x 40' grid. 

Details of model construction and model validation 

will only be presented for the simulation of sulfur content, 

although the conditional simulation models used in this 

chapter and in Chapter 5 contain both sulfur and thickness 

values. 
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Figure 4.12. Map Showing Area Modeled by Conditional 
Simulation 

Outline of Model Construction 

The conditional simulation of sulfur is fairly 

straightforward because the variogram of normalized sulfur 

values can be modeled by a simple spherical variogram. 

Parameters of the variogram of normalized sulfur values are 

given below. 
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Sill Value 1.00 

Nugget Effect = 0.23 

C Value = 0.77 

Range 8500* 

The above parameters, together with the transforma 

tion function, are the main input items needed for the model 

construction. The sequence of steps used in construction of 

the model are discussed next. 

Step One. Nonconditional Simulation of Sulfur 

values was made by executing Program CSIM03. The major in

put parameter to this program is the range of influence 

(8500'). 

Step Two. Adjusting the Variance and Adding the Nugget 
Effect 

This step has two purposes. First, the noncondi

tional model is transformed so that the variance of the 

simulated values is equal to the C value of the normalized 

variogram. Secondly, a nugget effect is added to the model. 

Input parameters to Program CSIM05 are given below. 

The nonconditional simulation of normalized sulfur 

C Value of Variogram =0.77 

Nugget Effect = 0.23 

Mean Cof normalized 

sulfur values) = 0.00 
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At the end of this step, the simulated values should 

have a mean equal to zero and variance equal to one. 

Step Three. Conditioning the Model 

The model is conditioned to the normalized sulfur 

data by executing Program CSIM07. Input to CSIM07 consists 

of the variogram parameters of the normalized sulfur data, 
v •• 

and the normalized sample data. 

Step Four. Final Transformation of the Model 

The final step in the model-building is to transform 

the simulated values to the original distribution of sulfur 

values by executing Program CSIM05 again. The inverse of 

the transformation function originally used to transform the 

sulfur values to a normal distribution is input to Program 

CSIM05. 

Sample Output of the Final Model 

The completed model contains 90,000 simulated sulfur 

values. Since the model is so large, it is partitioned into 

a series of blocks, each containing 10,000 simulated values 

and corresponding to a 3,000' x 3,000' area of the coal 

deposit. Summary statistics and histograms for each of 

these blocks are shown in Figure 4.13. The average value of 

sulfur in these blocks varies from a low of 1.99% to a high 

of 3.61%. The variance of the individual, simulated values 

varies from 0.54C%)2 to 1.66(_%)2. The histograms are all 
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quite different from one another. Most show positive skew-

ness, and Block #3 is bimodal. 

Validation of the Model 

Since the conditional simulation model should repro

duce the essential characteristics of the deposit, the re

sults of the geostatistical study also serve as a base for 

comparison of the model. 

Figure 4.14 shows the basic statistics and histo

grams for both the original sample data and the CSIM model. 

The mean grade of the model, 2.83, is slightly higher than 

the mean of the sample data, 2.62. The variance of the 

simulated values is 1.24 versus 1.49 for the samples. 

Neither of these apparent discrepancies is signifi

cant. Tbe CSIM model covers an area of 4 square miles, 

whereas the sampling data comes from an area of about 50 

square miles. The variance of simulated values should 

correspond more closely to the variance of sulfur grades 

within a 4 square mile area, than to the variance of samples 

within a 50 square mile area. Using the variogram model of 

the deposit, the value of the variance of a sample within a 

12,000' x 12,000' area was calculated to be a2 (Q/12 000' 

x 12 000') = 1*22* This value is extremely close to the 

variance sh.own by the model, hence, there is no discrepancy 

in the variance of the model. 
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STATISTICS FOR SULFUR DATA 

MEAN = 2.62 
VARIANCE = 1.49 
STO. DEV. = 1.22 
SKEWNESS = 0.45 
No. Assays 136 

STATISTICS FOR CSIM MODEL 

MEAN = 2.83 
VARIANCE = 1.24 
STD.DEV. = 1.11 
SKEWNESS = 0.36 
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Figure 4.14. Comparison of Sample Values with Simulated 
Values 

Similar reasoning can be used to test the difference 

shown by the mean of the model. If the entire deposit was 

split into 12,000' x 12,000' blocks, each block would likely 

have different mean grades and the mean grades would be dis

tributed about the overall mean grade of the deposit. The 

variance of the mean grade of 12,000' x 12,000' blocks is 

a2 (.12,000 ' x 12,0001 /deposit) = °-28' "akinS the assump-

tion that the mean grades are approximately normally dis

tributed, it follows that about 68% of the grades should be 

within one standard deviation of the overall mean grade. 



Since cr = ~ = .52, the mean of the CSIM model is well 

within one standard deviation of the mean. 
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The histogram of simulated sulfur values is smoother 

than the histogram of sample values. The bimodal nature of 

the sample values is not reproduced by the histogram of the 

entire CSIM model, although the bimodal characteristics are 

reproduced in some local areas of the simulation model (see 

Block .#3 in Figure 4.13). The differences between the dis

tribution of sample values and the simulated values is 

probably not significant because the model area is much 

smaller than the entire deposit, and it is not known whether 

the bimodal nature of the sulfur distribution is really 

apparent throughout the deposit. 

One of the most important characteristics which the 

CSIM model should reproduce is the spatial correlations ex

hibited by the sulfur. Variograms calculated for the model 

are compared against the variogram calculated from the 

sample data in Figure 4.15. 

The N-S variogram of the CSIM model corresponds 

closely to the variogram ·of the sulfur sample, while the E-W 

variogram of the model has greater slope than the variogram 

of sulfur samples. The difference in the E-W variogram from 

the sample data variogram is probably not significant, 

although no convenient statistical test is available to test 

the significance of the difference. 
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Figure 4.15. Experimental Variograms for Real Data and 
Simulated Data 

model to the observable statistical characteristics of the 

data, the conditional simulation model appears to have 

adequately simulated the real deposit. 

Validation of the Model by Simulation of Mining 

of run of mine coal produced during 1978 and 1979 provides . 

another base for validation of the simulation model. If the 

conditional simulation model is a reasonable representation 

of the true deposit, then the production results obtained 

by applying the same mining system as actually used in the 

real deposit should be very similar to the actual production 

data. 

Based on the general excellent agreement of the 

Production data on the average daily sulfur content 
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In order to make the comparison between actual pro

duction data and that obtained from the conditional simula

tion model, the existing mining system had to be modeled. 

E. Baafi (Kim, Knudsen, and Baafi, 1980, p. 61) developed a 

mining simulation for this purpose and performed the actual 

validation reported on here. 

The existing mining system of the coal mine was 

simulated on the conditional simulation model for about two 

(2) months. 

Figure 4.16 portrays serial plots of sulfur grades 

of actual run-of-mine coal and for the simulation results 

for sixty (60) consecutive days. A visual inspection of 

Figure 4.16 suggests that the pattern of variability of sul

fur levels at the mine head and the results from the condi

tional simulation model are not significantly different. 

The first order autocorrelations for the data depicted in 

Figure 4.16 are 0.66 for the ROM data and 0,64 for the simu

lated data. The first order autocorrelation is a measure of 

correlation that exists between a sulfur value at a time 

t (St) and one following it, i.e., at time (t+1) CS^+1). 
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Figure 4.16. Serial Plots of ROM and Simulated Coal Sulfur 
Grades 

The statistical summary of ROM and the simulation 

sulfur data are given in Table 4.4. 

Table 4.4. Summary of ROM and Simulated Coal Sulfur 
Statistics 

Sample 
No. of Minimum Maximum Sample Standard 

Source of Data Samples Value Value Mean Deviation 

Simulation 62 2.87% 3.52% 3.21% 0.152% 

Run-of-t he-mine 80 2.67% 3.55% 3.12% 0.177% 
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Table 4.4 and Figure 4.16 suggest that the statistics of the 

simulated sulfur model grade values are practically indif

ferent from the ROM values as provided by the company. 

Both methods of validation of the conditional simu

lation model indicate that the model has effectively cap

tured the essential characteristics of the true deposit. 



CHAPTER 5 

USE OF CONDITIONAL SIMULATION IN MINE PLANNING 

Conditional simulation shows great potential to help 

engineers solve difficult mine planning problems. For 

example, assume a utility produces about 60% of the coal for 

its generating station from captive mines that happen to be 

high sulfur mines. The remaining 40% is purchased from 

independent suppliers and must be a low sulfur coal, so that 

when the coals are blended, the generating station meets 

emission regulations. Obviously, the ability to predict the 

quality of coal from the captive mine on a monthly basis, 

for example, can give the utilities much flexibility in pur

chasing the remaining amount of coal. 

Variations in coal quality over shorter time frames 

can pose equally difficult problems. Coal cleaning plants 

perform most efficiently when given feed having uniform 

characteristics. The variability actually observed in run of 

mine coal can affect the efficiency and performance of the 

plant, especially if the plant was not designed to handle 

the variability or the variability was greater than expected. 

This chapter presents one example of the use of 

conditional simulation. 
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Prediction of Year to Year Sulfur Variability 

Motivation of this example was to show how the 

amount of development drilling affects the yearly predictions 

of coal quality. Accurate prediction of year to year varia

tion of run of mine coal can give a utility flexibility in 

contracting for the additional coal necessary to operate a 

generating station at full capacity, 

Methodology 

The simulated coal deposit used in this study covers 

30,000' x 30,000' in plan, or about 20,000 acres. The 

simulation grid used was 100' x 100', resulting in 90,000 

simulated values. One hundred and fifteen drillhole samples 

were used to condition the deposit. 

Three stages of development drilling were simulated 

using ttLe CSIM model. After the first stage of drilling, a 

hypothetical mine plan was prepared for six years with a 

yearly production of 800,000 tons.. Production was to come 

from one shortwall section, and two room and pillar sections. 

In addition, three sections were included for shortwall 

development. 

After the second and third stages of development 

drilling, new year by year estimates of coal production and 

sulfur content were prepared using the results of the new 
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drilling. The mine plan was not altered after the first 

stage of drilling. 

The final step was to mine out the deposit to deter

mine how well each of the mine plans actually performed. 

Stage One Drilling. The initial drilling was chosen 

to be on a 5000' x 5000' grid. Thirty-six holes were neces

sary to cover the coal deposit. In addition to the initial 

drilling grid, an additional two fences of drillholes were 

drilled for the sole purpose of variogram determination. 

Figure 5.1 shows a plan map of the first stage drilling. 

The fences are probably longer than necessary. In actual 

practice, the holes would be sequentially drilled, and the 

drilling stopped when a variogram was obtained. 

Variograms calculated using the results of stage one 

drilling are shown in Figure 5.2. Spherical models were 

fitted to these variograms and included on the plots of 

Figure 5.3 

Stage One Kriging. The deposit was divided into 

2000' x 2000' blocks. The thickness and sulfur content of 

each block were kriged using the variograms derived from the 

Stage One drilling. The resulting kriged model was used as 

the basis of the hypothetical mine plan. Figure 5.3 shows 

the resulting yearly plans superimposed on the kriged map of 

sulfur values. The individual mining sections were placed 

so that uniform sulfur content would be maintained for the 

six years. 
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Figure 5.1. Stage One Drilling 
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Figure 5.2. Variograms from Stage One Drilling 
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Table 5.1 shows the resulting yearly estimates. The 

mine plans based on the 5000' drilling grid and 2000' kriged 

blocks will be referred to as Case 1. 

Table 5.1. Estimated Coal Production for Case 1 

Year Sulfur Thickness Tons 

1 2.36 49.9 842100 

2 2.32 49.0 827100 

3 2.31 48.7 822100 

4 2.24 50.2 846000 

5 2.30 50.5 850900 

6 2.32 48.4 817700 

Stages Two and Three Drilling. The second drilling 

campaign consisted of drilling an additional twenty-five 

holes. The holes were placed in the center of the first 

grid, thus resulting in an approximately 3500" x 3500' grid. 

The final drilling campaign consisted of an addi

tional eighty-three drillholes needed to complete a 2500' 

x 2500' grid. Figure 5.4 shows the completed 2500' drilling 

grid. 

At the end of each stage of drilling, variograms 

were calculated using all available drilling. The final 

variograms after Stage Three are shown in Figure 5.5. 

The thickness variogram changed very little from the 

Stage One drilling to the Stage Three drilling. The sulfur 

variogram, however, changed significantly. At the end of 
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Stage One drilling, the sill of the sulfur variogram was 

estimated to be 0.75, while at the end of Stage Three, the 

sill value had increased to 1.4 and the range of the vario

gram had increased from 2500 feet to 8000 feet. 

Stages Two and Three Kriging. At the end of each 

stage of drilling, the deposit was then kriged using the new 

variogram models. The individual kriged blocks were again 

2000' x 2000' in plan. v 

The mine plan was not developed at the end of each 

stage of drilling in order to allow meaningful comparison of 

the effect of additional sample information on the accuracy 

of yearly estimates. Yearly estimates of mine production 

were, therefore, updated after each drilling campaign. The 

estimates resulting from Stage Two drilling will be referred 

to as Case 2, and the estimates from Stage Three as Case 3. 

Stage Three Kriging of 1000' Blocks. The 2000' x 

2000' block was initially chosen on a fairly arbitrary 

basis. A general rule of thumb is that the block size 

should be greater than 1/4 the grid size. With the initial 

drilling being done on a 5000' grid, the 2000' block seemed 

suitable. 

Rather than change the block size at each drilling 

campaign, it was held constant to allow meaningful comparison 

of the resulting mine plans. At Stage Three, however, a 

second kriged model was prepared using a 1000' x 1000' block 

size. The 1000' blocks have a certain appeal because the 
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size of the yearly production blocks corresponds more 

closely to the 1000' block size. Yearly estimates made 

using the 1000' blocks are referred to as Case 4, 

Accuracy of Yearly Estimates 

At each stage of drilling, estimates of yearly coal 

production and sulfur content were made using the kriged 

models. Error bounds were calculated for each yearly esti

mate using the variogram models obtained at each drilling 

stage. Figure 5.6 shows the relationship between the com

puted error bound for yearly estimates and the size of the 

drilling grid. 

ee. 
s 
u l  

CO </> UJ 

GRID SIZE 
5000' 5500* 25C0' 

« £ 1.0 

UJ 

01 i i i 

0 50 100 150 
NUMBER OF HOLES WITHIN 
30,000' BY 30,00G' BLOCK 

Figure 5.6. Error Bound for Yearly Estimates 
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Testing of the Mine Plan 

The real test for any mine plan is how well the plan 

works in actual mining. With the development of conditional 

simulation, the mine plan can now be tested on the simulated 

deposit. 

Each of the four mine plans developed during this 

study were tested on their ability to correctly estimate the 

production and sulfur content on a yearly basis. In each 

case, the simulated deposit is mined out according to the 

mine plans. The resulting "actual" production can then be 

compared to the estimated production and estimated quality 

characterist ics. 

In Figure 5.7, the year by year estimates of sulfur 

content in the run of mine coal are presented for the four 

mine plans prepared in this study. The estimates developed 

from the 5000' grid show a quite uniform sulfur content over 

the six years of production. The reason for this uniformity 

is that the mine plan was designed using the kriged model 

based on the 5000' grid. The design goals were a constant 

production and uniform sulfur content. 

Case 2 also predicts, a uniform sulfur content, but 

notice that the grade is greatly different from Case 1. The 

reason for this is the chance occurrence of two low sulfur 

assays right in the middle of the shortwall section. Since 

the shortwall accounts for about 60% of production, the 
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lower sulfur assays greatly affected the estimation of 

overall sulfur content. 

Starting with Case 3, the predicted yearly sulfur 

content showed increased variation. Notice that the predic

tions made in Case 3 and Case 4 are quite alike, as they 

should be, since both used the same drillhole data. 

The final graph, shown in Figure 5.7, is the actual 

year to year sulfur content produced when the deposit was 

mined according to the mine plan. Prom Figure 5.7, it is 

easily seen that Cases 3 and 4 produced much better year to 

year estimates than Cases 1 or 2. 

A comparison, such as shown in Figure 5.7, gives a 

clear picture of the adequacy or inadequacy of each case. 

The amount and extent or pattern of errors is quickly 

realized. 

Figure 5.8 shows a summary of the errors made on a 

year by year basis for each case for both thickness of coal 

and sulfur content. 

In all cases, the thickness of coal, and hence, the 

estimates of yearly production had very small average errors 

The increased drilling of Stages Two and Three produced only 

minor improvements in the accuracy of the yearly estimates. 

Prediction of yearly sulfur content was less success 

ful. Errors in prediction of sulfur ranged from an average 

of 30% for Case 1 to about 8% for Case 3. The improvement 
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in yearly estimates of sulfur was substantial as the density 

of sampling increased. 
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Figure 5.8. Summary of Yearly Prediction Errors 

Notice that Case 4 gave slightly poorer estimates of 

both sulfur and thickness than Case 3. The hoped for in

crease in accuracy as a result of using 1000' x 1000' blocks 

was not only unachieved, but slightly poorer results were 

obtained. This emphasizes the point that, although it 

appears that more detail or definition is being included in 

the kriged model when small blocks are used, in fact, the 

smaller blocks are less well known due to the higher kriging 



variance for a 1000' x 1000' block than a 2000' x 2000' 

block. 



CHAPTER 6 

CONCLUSIONS 

The major objective of this research was to develop 

a simulation model of a coal deposit that captures the in

herent insitu variability of the coal. This model would 

subsequently be used to determine the variability of run of 

mine coal on a day by day, week by week, or year by year 

basis. 

Results of the validation of the model clearly indi

cate that the conditional simulation model produced by the 

Turning Bands Method does correctly model the insitu varia

bility of the deposit. The model displays the same mean, 

variance, and distribution of values as the real deposit. 

Most importantly, the model reproduced the same spatial 

correlations as the real deposit as indicated by the fact 

that the model displays the same variogram as the real 

deposit. 

A second validation of the model showed that when 

the model is "mined" according to an actual daily mining 

sequence, the resulting daily variability corresponded ex

tremely well to what was observed during the actual mining. 

This second verification served not only to validate the 

model but also served as a practical demonstration that the 

98 
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model can be used to predict day to day variation in the 

quality of run of mine coal. 

In Chapter 5, one example was presented to illustrate 

the use of conditional simulation. This example showed that 

the model could be used to simulate the differences between 

estimated coal quality and actual coal quality on a year by 

year basis. The unique sspect of the results was that dif

ferences were given year by year so that any correlations or 

patterns in the differences are easily observed. 

Suggestions for Future Research 

The conditional simulation p.odel produced by the 

Turning Bands Method is a good representation of the coal 

quality in a coal deposit. One potential limitation to the 

method is that the method only reproduces the first two 

moments of the deposit being simulated. For mining prob

lems, this limitation is very minor from a practical point 

of view because in almost no cases is there sufficient in

formation to deduce the higher moments. Further research in 

methods of simulating a three-dimensional process may be 

warranted if the correct representation of higher moments 

becomes necessary. 

The immediate need for further research is to expand 

the applications and usefulness of this tool. A few spe

cific suggestions for future research are given below. 
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1. Risk analysis is an important tool in economic 

analysis. The conditional simulation model could be 

used to provide simulated coal quality on a daily, 

monthly, or yearly basis. Such input would reflect 

the serial correlation of the coal quality and, 

therefore, provide a more realistic model of coal 

quality which is an important variable in the eco

nomic analysis. 

2. The efficiency of long term mine plans is difficult 

to analyze. The conditional simulation model could 

be mined out according to the long range plans. If 

the results were not satisfactory, then the plan 

could be modified or, if necessary, new data might 

have to be acquired before completing the new plan. 

The new mine plan could then be tested again using a 

second simulation of the deposit. 

3. The conditional simulation model is an ideal model 

for teaching and mine planning. For example, a 

student's mine plan could be graded not only by the 

usual subjective means, but also by how well it 

works on the simulated deposit. Several universi

ties have already incorporated the use of simulated 

deposits in their coursework. 



APPENDIX A 

FORTRAN LISTING OF PROGRAM CSIM03 

101 



102 

PROGRAM CSIM03(1NPUT,OUTPUT,TAPE5=INPUT,TAPE6=0UTPUT, 
1TAPt7,TAPE8,TAPE9) 

C********************************************************** 
C THIS PROGRAM ~AS WRITTEN BY 
C HARVEY P.KNUDSEN 
c 
C DEPARTMENT OF MINING AND GEOLOGICAL ENGINEERING 
C UNIVERSITY OF ARIZONA 
C TUCSON, ARIZONA 85712 
c 
C LAST MODIFICATION: JULY 1979 
c 
C PROGRAM CSIM03 GENERATES A 3-D SIMULATION 
C WITH DESIRED COVARIANCE FUNCTION. 
c 
C -· PRIOR TO EXECUTING THIS PROGRAM PROGRAM CSIM01 MUST 
C HAVE BEEN EXEC~TED IN ORDER TO INITIALIZE THE CSIM MODEL. 
c 
C INPUT DATA CONSISTS OF THE FOLLOWING: 
C l.NAME OF MASTER FILE 
C 2.Dt$IRED RANGE OF INFLUENCE OF THE VARIOGRAM 
c 
C OUTPUT CONSISTS OF THE FOLLOWING: 
C 1. THREE DIMENSIONAL SIMULATiuN. SIMULATED DATA IS 
C NORMALLY DISTRIBUTED NCO,l), AND HAS VARIOGRAM WITH 
C u~ER SPECIFIED RANGE. 
C 2. PRINTOUT OF INPUTTED PARAMETERS 
C********************************************************** 

COMMON /CSIMOD/ 6ClOQ,l00,1),IBC100,100,l) 
COMMON . /PAREM/ NBLOC,NBN,NBE,NPT,NPTV,YNORT,XEAST,YLPT,XLPT, 

1 NSIM,NVAL,NPACK(3),NAMEC3),NDECC3) 
COMMON /INOUT/ IPT,IOUT,MASTR,ICOR,IMOD 
COMMON /FILES/ MA~FIL,CSFIL 
EQUIVALENCE (RANVAL,B),(OLINE,IB) 
DIMENSION DLINEC10000)jRANVAL(10000) 
DIMENSION A(3,15),C(3),V(3,8) 
DIMENSION NUMC15l,MINC15) 
CHARACTER *7 CSFIL,MASFIL 
CHARACTER *10 DAY,DATE,CDAY 
DATA IPT,IOUT,MASTR,ICOR,IMOD/5,6,7,9,8/ 
DATA V,SQ15,DLINE/24*l.0,3.89729883346,10000*0.0/ 
DATA A/O.OOOOOO,l.OOOOOO,O.OOOOOO, 

1 l.ooooou, o.oooooo, o.oooooo, 
lO.oooooo,o.oooooo,l.uooooo,-o.s69ol7,-o.sooooo, o.309017, 
zo.8o90l7,o.sooooo,o.3o90l7,o.3090l7, o.809017, o.sooooo, 
3 o.sooooo,o.3090!7,o.ao9ol7,o.sooooo,-o.3o9017,o.ao9017, 
40.3090l7,-o.ao9ol7,o.sooooo,-o.3o9ol7,-o.8o9o17,o.sooooo, 
s-o.sooooo,-o.309017,o.ao9017,-o.sooooo,o.309017,o.8090l7, 
6-0.3090l7,o.ao90l7,o.,ooooo,-o.ao9ol7,o.sooooo,o.3o9o17, 
70.809017,-o.sooooo, o.309017t 

c-------------------------------------------------------
c DESCRIPTlON uF INPUT CARDS 
C Cul. FORMAT NAME DESCRIPTION 
c **** ****** **** *********** 
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C CARD ONE. FILE SPECIFICATION CARD. 
C 1~10 A10 MASFIL MASTER FILE NAME 
C CARO TWO. WEIGHTI~G FUNCTION PARAMETERS 
C 1 11 IVAR VARIAdLE BEING SIMULATED 
C (1,2,0R 3) 
C 2 Il IDBUG DEBUG OUTPUT? Cl=YES,O=NOl 
C 11-20 F10.0 RANGE DESIRED RANGE OF VARIOGRAM 
C 21-30 F10.0 GRDSP GRID SPACING CUSUALLY SAME AS XLPTJ 
C 31-40 IlO !SEED BEGINNI~G RANDUM NUMBER SEED 
c--------------------------------------------------------
c MAJOR VARIABLE USED IN CSIM PROGRAMS 
C TITLE TITLE OF MODEL 
C CSFIL FILE NAME OF CSIM MODEL 
C MASFIL FILE NAME OF MASTER FILE 
C ~VAL NUMBER OF VALUES FOR EACH DATA POINT 
C NPACK PACKING MuLTIPLIERS 
C N~N NUMBER OF BLOCKS IN NORTH DIRECTION 
C Nat NUMBER OF BLOCK~ IN EAST DIRECTION 
C NBLOC NUMtiER OF 6LOCKS .IN MODEL 
C YNORT CUOROI~ATE OF ~OuTHERNMOST RuW OF MODEL 
C XtAST CORRDI~ATE OF wESTERNMOST COL OF MODEL 
~ YLPT UlSTAN~E BETWEEN MODEL POINTS IN NORTH DIR. 
C XLPT DlSTAN~c BeTWEEN MODEL POINTS IN EAST DIR. 
C NrT NUMdtR uF POlNTS IN BLOCK IN E-W OIR 
C NPTv NUMdER OF POINTS IN BLOCK IN VERT OIR. 
C A MATRIX OF 1~ VECTORS OF ICOSAHEDRON 
C V COuRD. OF CURN~RS OF CSIM MODEL 
C RANvAL UNIFORM RANDUM NUMdcRS 
C DLINE CuRRELATED RANDOM 1-D VARIABLES 
~ NuM(L) NUMBER OF VA~IABLES ON LINE L 
C RANGE RANGe uF THE SPHERICAL VARIOGRAM 
: C ~ VALUeS OF TH~ SPHtRICAL VARIOGRAM 
~ GRUSP GR!D SPACING OF THE SIMULATED POINTS 
C CuNT CONSTANT Tu CORRECT FOR BIAS IN 1-D SIMULATION 
c------------------------------~-------------------------
~ ----~--------------.-.-----------------.--------------------
C READ lN NAME OF MASrER FILE 
c--------------------------------------------------------

RtAD<rPr,2ooo>MASfiL 
2000 FORMAT(A7J 

OPEN(MASTR,ACCESS= 1 SEQUENTIAL 1 ,FILE=MASFIL> 
CALL KMAST (CDAY) 

~ . 
v-----------~--------------------------------------------: RcAU IN PARAMeTERS 1.,., AND CO~~ST 

c--------------------------------------------------------RcAD(IPT,20lvJIVAR,rosuG,RANGE,GRDSP,ISEED 
~Olv FU~MAT<2I1,8X,2FlO.O,Ilu) 

c--------------------------------------------------------
~ CALCULATE CONSTANTS 

c--------------------------------------------------------
NR = RANGE/(Z.J*GROSP) 
CuNT=$QRT(3b.O/CNR*(NR+1J*<2*NR+1))) 

~**** ~ALL OAfE(OAY) 
DAY = uATE(J 



w~ITtCIOUT,20lO)DAY,MASFIL,CSFIL,CDAY 
2020 fORMATC 1 1EXECUTIJN OF PROGRAM CSIM03 1 ,/ 1 TODAYS DATE '' 

l AlO,// 1 FILE NAMES ACCESSED IN TODAYS RUN 1 /1 
2 'MASTER FILE -- 1 ,A7,/, 1 MODEL FILE ---•,A?,/, 
3 • fiLe CREATION DATE 1 ,Al0) 

WRITiCIOUT,2030)NAMECivARJ 
l030 fORMATC~HJ,Al0, 1 I~ BEING SIMULATED IN THI~ RUN 1 ) 

· wR1TE<IOUT,2040)RANGc,GRDSP,NR,CONT,ISEED 
2040 FuRMATt 1 0INPUT PARAMtTERS 1 /, 1 RANGE =•,F?.O,/ 

1 • GR~D S?ACING = 1 ,F7.0,t,• CALCULATED CONSTANTS•,/, 
2 t NR = 1 ,15,/, 1 CONSTANT = 1 ,E11.5,/, 
3 1 StGlNNlNG RANDOM NUMdER SEED =1 ,Il5) 

c-·------------------------------------------------------c CALCULATE NUMBtR OF POINTS IN N-S, E-w, AND vERT 
C DiRECTION 
c--------------------------------------------------------

PE=NB~*NPT 
PN=NtiN*NPT 
Pl=NPTV 

:--~------------------------------------------------------
C MATKIX V CONTAINS COORDINATES OF THE VERTICES OF THE 
: MODeL BEING ~!MuLATtO. 

c---------------------------------------------------------
Vt1,~>=PE 
V(l,bJ=PE 
Vtl,7l=PE 
Vtl,8J=PE 
V(2,3l=PN 
V(2,4>=PN 
V(2,7)=PN 
Vl~18J=PN 

c---------------------------------------------------------
; fiND THt MIN AND MAX INT~RSECTIONS OF VECTOR A WITH 
C THE MODEL 
~-------------------------------------------------~-------

OPENCICOR,ACCcSS= 1 SEQUENTIAL 1 ,fORM= 1 UNFORMATTED 1 ) 

OJ 7v L=~,i5 
MIN<Ll=20000 
MAX=-20000 
DO !0 I=l,d 
LR=(A(l,L)*V(1,IJ+A(2,L)~V<2,I)+A(3,Ll*V(3,!)) 

IFlLR.LE.MINCL)l MIN(Ll=LR 
IF(LR.bE.MAXl MAX=LR . 

lu CONTINUt 
c---------------------------------------------------------c CALCULATE THE NuMBER uF POINTS TO GENERATE FOR THIS LINE 
~ AND GENERATE THAT MANY 1-0 POINTS 
c---------------------------------------------------------NuM<L> =MAX-MlN(L) +2 

NTuT=NUM(Ll +2*NR 
lF(NTOT.LE.lOOOO)GO TO 20 
wR1TtCIOuT,2045)L,NTOT 

2045 FORMAT( 'EXCEEDiNG MODEL CAPACITY-LlNE 1 ,I5, 1 NTOT 1 ,I6) 
STOP 
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C****~* PuT RANDUM N0M6ER GENERATOR IN HERE 
lO DO 30 i=l,NTOT 

RANVAL(l)=RANDCISEEDJ-0.5 
30 
40 

~0 

bO 

71J 

207u 

2015 

CONTINUE 
Nl=NR+l 
NTl=NTOT-NR 
DO 50 J=Nl,NTl. 

JN=.J+NR 
JNl=J-NR 
OU 50 l=JNl,JN 

DI~=J-1 
OLINE{J)=OLINE(J)+DIS*RANVAL(l)*CONT 
CONTINUE 

kRITt(ICOK)(OLINE<I>,I=Nl,NTl) 
DO bO 1=1,10000 

DLINE(l)=O.O 
CONTINUE 

wRlTE(IuuT,2015)ISEED 
CONTINUE 

REWIND !COR 
IF<IDBUG.EQ.l) WRIT~CiuUT,2070) (I,NUMCI),MIN(1),I=l,l5) 
FORMAT{315) 
wRlTEC!OUT,2015)ISEED 
fQRMAT( 1 ENDING RANDUM NUMBER S~ED =1 ,112) 
OPtN(lMOD,ACCESS= 1 01RECT 1 ,FILE=CSFIL,RECL=lOOOOl 

c--------------------------------------------------------
C L~OP THROUGH THE MOU~L BLOCK BY BLOCK 
c--------------------------------------------------------

00 100 NL=l,NBN 
Du 100 NE=l,NBE 

KdLOCK=NE+CNL-~l*NBE 

c-----------------------~--------------------------------
~ ReAD IN uNE BLOC FRuM CSIM MODEL ... 
------~---------~---------------------------------------... 

CALL TAKuUTCKBLOCK,IVAR) 
wRITECIOUT,ZOlb)KBL~CK 

20lb FJRMAT( 1 BLOCK''!~, 'TAKE~ FROM MODEL') 
~--------------------------------------------------------
C R E AD l i~ 11 N U M ( L l " V A L u E ~ 1- 0 R V E C T 0 R A • ,.. 
~------~-------------------------------------------------

DO 90 L=l,l5 
RtADCLCORlCOLlNE<IJ,I=l,NUM(L)) 

c--------------------------------------------------------c NJW LOOP THRu POINTS IN THE BLOCK 
c--------------------------------------------------------

00 80 K=.1.,NPTV 
DO bO J=l,NPT 

DO 80 l=l,NPT 
CCll=I+CNE-ll*N~T 
C(2)=J+(NL-l)*NPT 
C(3)=K 
RL=A(l,L)*C(l)+A(2,L>*C(2)+A(3,L)*C(3) 
LR2=RL + SIGN(O.S,RL) 
LK=LR2-MIN(L)+2 
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IFCLR.LE.OlGO TU 8u 
8(I,J,Kl=B(I,J,Kl+DLINE<LR)/SQ15 

90 CONTINuE 
~0 CONTINUE 

REWIND !COR 
c--------------------------------------------------------
~ PuT THlS oLOCK BACK IN THE MODEL 
:--------------------------------------------~-----------

C**** 
C20&0 
100 

CALL PUTINCKoLO~K,IVAR) 

WRITEClOUT,20d0lKBLOCK 
fORMAT(' BLOCK 1 ,15, 1 wRITTEN TO DISK') 

CONTINUe 
CLO~E(MA~TR) 

CLOSE (iMOD> 
~TOP 

END 

SUBROUTINE RMAST(CUAY) 
c-------------------------------------------------------c SUokOuTINE RMAST ACCtSSES THe M00ELS MASTER FILE 
C AND READS IN THE MODEL PAKAMtTcRS. 
w-------------------------------------------------------
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COMMON /PAREM/ NBLOC,NaN,NBE,NPT,NPTV,YNORT,XEAST,YLPT,XLPT, 
1 NSIM,NVAL,NPACK(3J,NAME(3),NDEC(3) 

COMMON /INOUT/ lPT,IOUT,MASTR,ICQK,IMOD 
COMMON /FILE~/ MA~fiL,CSFIL 
COMMON /MlS~/ TITLE(8) 
CHARA~TER *7 CSFIL,MASFIL 
CHARACTER *10 DAY,OATE,CDAY 
RtAOCMA~TR,2000>TITLE 

20JO FuRMAT(8Al0) 
RtADlMA~TR,20uJ) COAY 
RtAO(MASTR,~OlO>C~FlL,MASFIL 

2~10 fURMAl(A7,jX,A7) 
RtAUCMA~TR,ZO~O>NBLOC,NBN,NBE,NPT,NPTV,NSlM 

~0~0 fuRMAf(ollJJ 
RtAU(rtASTR,iJ30)YNORT,XEAST,ZELEV,YLPT,XLPT,ZLPT 

2030 fORMATCoFlO.O> . 
RtAOCMA~TR,2040)NVAL,NJEC,NPACK,NAME 

~040 FURMAT{4!5,3I1J,3Al0) 
RETURN 
c~D 
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~UBROUflNE TA~OUT<KdLOCK,IVAR> 

c--------~-----------------------------------------------c ~UoROuTINE TAKJUT REMOVES FROM THE CSlM MuDEL ONE 
C BLOCK uF DATA AND PUT~ lT IN TO ARRAY Id. 
c----------------~---------------------------------------

~OMMON /PAREM/ NdLOC,NdN,NBE,NPT,NPTV,YNORT,XEAST,YLPT,XLPT, 
1 N~IM,NVAL,NPACK(3),NA~c(3),NDEC(3) 

COMMJN /INOUT/ IPT,IOUT,MASTR,ICOR,IMOD 
COMMON /FILES/ MA~F!L,CSFIL 
CUMMON /CSIMOD/ B<lOO,lOO,l),lo(lOO,lOO,l) 
CHARA~TER *7 C~FIL,MASFIL 
DIV=lO**NDEC(!VAR) 
RtAD<IMOD,REC=KdLOCK>Ia 

~****~ FUR DEBUGGING. 
C WRITttlOuT,4774) K8LOCK, !6(1,1,1), IB(l,l,l) 
~4774 FORMAT(lX, 1 I= •,IlJ,2X, 1 IB = 1 ,2110) 

DO 10 K=11i 
DO lO !=1,100 

00 10 J=l,lJO 
1B1=Id(L,J,K) 
DU 5 L=NVAL,IVAR,-1 

IB2=1Bl/NPACKCL) 
ld1=I~l-1B2*NPACK(L) 

; CONTINUE 
6(!,J,Kl=ld2/DlV 

!0 CONTINUE 
RtTuKN 
ENu 

~UBROUT1NE PUTIN(KBLOCK,IVAR) 
c--------------------------------------------------------
C SUBROUTINE PUTIN TRANSFERS THE BLOCK OF DATA IN 
C ARRAY lB AND PUTS IT INTO THE CSIM MODEL. 
:--------------------------------------------------------

lO 
C**** -v 

C4774 

COMMON /PARtM/ NBLuC,NdN,NBE,NPT,NPTV,YNORT,XEAST,YLPT,XLPT, 
~ NSlM,NVAL,NPACK(3),NAMEC3),NDECC3) 

·CuMMON /INOUT/ lPT,IOUT,MASTR,ICOR,IMOD 
CJMMJN /FILE~/ MA~FlL,CSFlL 
~OMMuN /C~lMOD/ 8(100,100,1),!6(100,100,1) 
:HARACTER *7 CSFIL,MASFIL . 
NPAC= 10**NDECtlVAR) 
N~ACl=NPAC~(!VAR> 

OJ iO K=1,l 
DO 10 J=1,lJu 

DO 10 1=1,100 
ITtMP=B(I,J,K>*NPAC 
1~(I,J,K)=iTEMP*NPACl 

CONTINUE 
FOR DEBUGGING. 

WKllc(IOuT,4774) ~BLO~K, IBCl,l,l), 16(2,1,1) 
fORMAT(1X, 1 l = •,ll0,2X, 1 IB = 1 ,2110) 
WRlTc<IMOO,REC=KBLOCK)IB 
ReTURN 
tND 



fUNCTION RANDC!X) 
c--------~------------------------------------------c ~AND IS A PORTABLf RANDOM NUMB~R GENERATOR BASED 
C uN THe RECURSION IX = LX*A MOD P. 
c 
c 
~ 

FURTRAN CODf ~AS ~RITTEN SY LINUS SCHRAGE 
REFeRENCE ANU DOCuMENTATION IS IN 
ACM TRA~SACTIONS JANUARY 1980 

----------~-----------------------------------------

c 

c 

c 

1NTEGER A,P,IX,Bl5,dlo,XHI,XALO,LEFTLO,FHI,K 
DATA A,Bl5,s~o,P/16d07,32768,o5536,2147463647/ 
GET 1~ HI ORD~R BITS OF IX 
XHI = IX/816 
GtT 16 LD ORDER BIT$ OF IX AND FORM LO PRODUCT 
XALu=(IX-XHl*Blo)*A 
b~T ~~ HI ORDEK oiTS Of Lu PRODUCT 
L~FTLO = XALJ/dlo 
fORM THE 31 rliGHEST SITS OF FUtL PRODUCT 
Frll = XH!*A + LEFTLO 
GET uVcRFLJ PAST Jl~T BIT OF FULL PRODUCT 
K = Frll/Bl' 
A~~EMBLc ALL THE PARTS A~D PRE~UBTRACT P 
IHE PARcNTHtSES ARE c~SENTIAL 

IX=(((XALU-LtFTLO*B16)-P)+(FHI-K*Bl5)*816)+K 
ADD P dA~K IN IF NcC~t5SARY 
lf(lX.LT.OJlX =IX+P 
MULTIPLY TY 1/(~*31-1> 
RA~D =~LUAT(IXJ*4.6566l2675E-10 
ktT0RN 
END 
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