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ABSTRACT 

In this thesis, we study the relationship between the angular momentum and 

shape of galactic disks, satellite galaxies, dark matter halos, and large scale struc

ture using A'^-body simulations in the context of current models of galaxy forma

tion. 

In warped galactic disks, the angular momenta of the inner and outer disk 

are misaligned. We have calculated the torques a misaligned halo imparts on an 

embedded galactic disk. They are very strong, with tilting timescales significantly 

less than a Hubble time. A'^-body simulations of disks subject to torques of this 

strength indicate that the disk tilts in response and develops a trailing warp of 

the same magnitude as that of the Milky Way. The warp starts where the disk 

surface density drops below 70 Mq pc~^ and moves out through the disk on a 

timescale of 500 Myr. 

We have investigated whether the warp of the Milky Way's disk is caused 

by nearby satellite galaxies. The misaligned angular momentum that causes the 

warp is almost perfectly anti-aligned with that of the orbital angular momen

tum of the Sgr dSph, and is of the same magnitude. We estimate the probability 

that this is a chance configuration to be 1.4%. This suggests that Sgr is respon

sible for the warp. However, we have performed A/^-body simulations of such 

disk-satellite interactions and found that the warps excited by Sgr with its cur

rent mass and orbit are much smaller than the warp of the Milky Way. We have 

investigated a range of satellite masses and orbits, and found that inclined or

bits, eccentric orbits, and especially more massive satellites are more efficient at 

exciting warps. 

The source of misaligned angular momentum is ultimately the surrounding 
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dark matter halo and large scale environment. Therefore, several aspects of halo 

alignment in cosmological dark matter simulations have been studied. We have 

analyzed several late snapshots of such a simulation and found rotation of the 

triaxial figure of galaxy and group mass dark matter halos. The figure is found 

to rotate about the minor axis in most cases. The rate of figure rotation follows a 

log-normal distribution centred on Qp = 0.148 h km s~^ kpc~^. 

The halos have triaxial shapes that become more spherical at larger radii, with 

minor-to-major axis ratios distributed around cfa = 0.6. The principal axes of 

individual halos show strong internal alignment. The angular momentum also 

shows relatively good internal alignment, and is usually oriented along the mi

nor axis. However, this alignment is not perfect, and the median misalignment 

is large enough to cause galactic warps as described earlier. Comparison of dif

ferent halos reveals that the minor axes of halos show a strong tendency to point 

perpendicular to filaments and sheets. Major axes show a weaker tendency to 

point along filaments. These alignments are much stronger for group mass halos 

than for galaxy mass halos. The angular momenta of galaxy mass halos tend to 

point along filaments and sheets, while those of group mass halos point perpen

dicular to the surrounding mass distribution. 
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CHAPTER 1 

INTRODUCTION 

In this thesis, we study the relationship between the angular momentum and 

shape of galactic disks, satellite galaxies, dark matter halos, and large scale struc

ture using A'^-body simulations in the context of current models of galaxy forma

tion. 

The formation of galaxies has long been a subject of interest and debate in as

trophysics. The current model, which is well supported by observations on scales 

from individual galaxies at the small end to the Cosmic Microwave Background 

(CMB) at the large end, envisions a hierarchical assembly of halos made of colli-

sionless dark matter. Inside of each halo lies the condensed baryonic component, 

presumed to be the luminous galaxy. The scenario has been laid out in detail by 

White & Rees (1978). As the universe expands, each density enhancement grows 

linearly through gravitational instability (Zeldovich, 1970). Eventually the halo 

reaches a sufficient density that its self-gravity overwhelms the cosmological ex

pansion, and the halo turns around and begins to collapse. Starting at the center 

and moving outward, shells of material that were initially distinct cross, leading 

to mixing of the halo material and virialization. Baryons, which are initially well-

mixed with the dark matter, cool if the cooling time is sufficiently short, forming 

a condensed baryonic core where star formation can occur. 

The initial spectrum of density perturbations for the Cold Dark Matter (CDM) 

model has sufficient power at small scales that the growth of structure is "bottom-

up" or hierarchical: small structures form first around short-wavelength peaks 
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in the density field. Larger structures form later from the material surrounding 

longer-wavelength peaks in the density field. Some of the material surrounding 

these larger-scale peaks is smoothly accreted, but much of the material has it

self previously collapsed into smaller structures, leading to the picture of larger 

galaxies formed from the agglomeration of smaller galaxies. Recent A'^-body 

simulations indicate that the central concentrations of pre-existing smaller halos 

maintain their distinct identity at least temporarily, even after they are accreted 

into larger halos, resulting in a large population of subhalos within each virial-

ized halo (Klypin et al., 1999; Moore et al., 1999). 

The role of angular momentum within this framework is a topic of consid

erable interest, but one that is not yet well understood. In a universe with no 

primordial vorticity, angular momentum originates from cosmological torques 

due to the surrounding matter (Stromberg, 1934; Hoyle, 1949), and manifests it

self as shear flows during the linear evolution of density perturbations (Peebles, 

1969; Doroshkevich, 1970; White, 1984). As each halo collapses and virializes, 

its angular momentum gets evenly redistributed. The baryons initially share the 

same phase space and specific angular momentum distribution as the dark mat

ter. However, as they cool, angular momentum conservation requires that they 

settle into rotationally-supported disks oriented perpendicular to their angular 

momentum vector. When two halos with previously-condensed baryonic disks 

merge, the disks spiral together through dynamical friction, transferring some 

angular momentum from the gas to the dark matter. In addition, angular mo

mentum can be transferred between the disks and dark matter by tidal torques. 

This basic picture provides a good overview of the origin of angular momen

tum in galaxies, but it does not answer a large number of important questions. In 

particular, the alignment between the angular momentum of the baryonic disk. 
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the angular momentum of the smooth component of the dark matter halo, the an

gular momentum of the subhalos within each dark matter halo, the shape of the 

dark matter halo, and the location of surrounding large scale structure is strongly 

affected by non-linear processes, and therefore requires non-linear techniques 

such as full A'^-body simulations to study (Porciani et al., 2002a). 

In this thesis, I investigate two aspects of angular momentum alignment in 

galaxy formation: the origin of galactic warps, and the orientation and internal 

alignment of the shape, angular momentum, and figure rotation of galaxy and 

group mass dark matter halos. 

Part I: Warped Galactic Disks 

The disk of the Milky Way is warped like an integral sign, rising above the plane 

on one side and falling below the plane on the other The Sun lies along the 

line of nodes of the warp, where tilted outer rings cross the inner plane. This 

warp is seen both in maps of neutral hydrogen (e.g., Diplas & Savage, 1991) and 

in the stellar distribution (Reed, 1996; Drimmel et al., 2000; Lopez-Corredoira 

et al., 2002b). The Milky Way is far from unique in this regard; the planes of 

most external galaxies are warped to some degree (Bosma, 1981; Briggs, 1990; 

Christodoulou et al., 1993; Reshetnikov & Combes, 1998; Schwarzkopf & Dettmar, 

2001), despite the tendency of warps to disperse when isolated (Kahn & Woltjer, 

1959; Hunter & Toomre, 1969). This has driven many authors to search for univer

sal mechanisms to excite or maintain warps (see Binney, 1992, for a review). Many 

of these proposed mechanisms rely on the dark halo to either stabilize warps as 

discrete bending modes within the halo (Sparke & Casertano 1988; Kuijken 1991; 

but see also Binney et al. 1998), or to provide the torque necessary to create the 

warp (Ostriker & Binney, 1989; Debattista & Sellwood, 1999; Ideta et al., 2000). 
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Other proposed mechanisms include the infall of intergalactic gas (Kahn & Wolt-

jer, 1959; Lopez-Corredoira et al., 2002a), magnetic fields (Battaner et al., 1990), 

and interactions with satellite galaxies (Huang & Carlberg, 1997). 

Each of these mechanisms can, in particular circumstances, produce warps 

that appear similar to observed galactic warps. Although no single mechanism 

appears universal enough to account for all warps, the evolution toward a bend

ing mode (even when no discrete mode exists) appears sufficiently similar to ob

served warps (Hofner & Sparke, 1994) that warping may be a generic response 

of disks to the individual perturbations they experience. In this case, we should 

examine individual warped galaxies for specific evidence of particular perturba

tions that explain their warps rather than search for a universal mechanism that 

may not exist. 

A warp is fundamentally a misalignment between the angular momenta of 

the inner and outer disk. Angular momentum is transferred by torques, so the 

evolution of warped galaxies depends essentially on the torques they experience, 

and how the disks react to those torques. In Chapter 2, we calculate the torques 

a galactic disk might experience due to misalignment of the disk with the dark 

matter halo, and use A'^-body simulations to study the warping response of the 

disk to torques of this magnitude. In Chapter 3, we study another source of mis

aligned angular momentum: infailing satellite galaxies. We compare the angular 

momentum of the Milky Way warp to that of all the nearby satellite galaxies in 

search of interesting correlations, and perform A/^-body simulations of a variety of 

satellite-disk interactions to investigate the warping caused by satellite galaxies. 
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Part II: Properties of Cosmological Dark Matter Halos 

It is suggested above that galactic warps may be caused by a misalignment be

tween the angular momentum of the disk and the orientation of its triaxial halo, 

or a misalignment between the angular momentum of the disk and the angu

lar momentum of the lumpy component of the dark matter halo in the form of 

satellite galaxies. It is therefore important to study the alignment of angular mo

mentum within halos and its relation to the three-dimensional structure of the 

halos, as misalignments may be responsible for torques that affect the embedded 

galactic disk. In addition, the results of these studies can provide insight into the 

galaxy formation process, and provide important constraints on other studies of 

galaxy formation and evolution. 

The ellipticity of the dark halo of the Milky Way and other galaxies can be 

measured using a variety of methods: the orbits of tidal streams (Law et al., 2004), 

the anisotropy of stellar velocities (Oiling & Merrifield, 2000), the flaring of the 

gas disk (Oiling & Merrifield, 2000), the projected shape of X-ray gas (Buote et al., 

2002), the kinematics of polar ring galaxies (Sackett et al., 1994), and weak grav

itational lensing (Hoekstra et al., 2004). These results suggest that galaxy halos 

have a wide range of flattenings. 

Halos formed in cosmological simulations are also generally not spherical, 

but have an ellipsoidal shape due to the anisotropic velocity dispersion imparted 

by the external tidal field on protohalo material (Eisenstein & Loeb, 1995). While 

there have been several studies of the shapes of halos in numerical simulations 

(Frenk et al., 1985; Dubinski & Carlberg, 1991; Katz, 1991; Warren et al., 1992; 

Cole & Lacey, 1996; Bullock, 2002; Jing & Suto, 2002), they have often suffered 

from poor resolution, non-cosmological initial conditions, or initial conditions 

based on cosmologies that are no longer consistent with observations. There has 
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been relatively little work done on how those shapes evolve with time; "figure 

rotation", where the orientation of the halo principal axes rotate, may have a 

considerable influence on the structure of embedded galactic disks (Bureau et al., 

1999; Tremaine & Yu, 2000; Bekki & Freeman, 2002; Masset & Bureau, 2003). 

Cosmological simulations have also been used to study the alignment of an

gular momentum within dark matter halos (Dubinski, 1992; Warren et al., 1992; 

Bullock et al., 2001). It has generally been found that the angular momentum is 

relatively well aligned within halos, and that it is most often aligned with the mi

nor axis of the mass distribution, with considerable halo-to-halo variation. How

ever, these studies have been performed with relatively low resolution, and in 

background cosmologies that do not match current observations; this has moti

vated us to test these results with modern simulations. 

The alignment of the shape and angular momenta of nearby halos act as a 

test of the theory of structure formation, inform our understanding of the origin 

of halo shapes and angular momenta, and are important systematic uncertain

ties in weak lensing measurements that must be calibrated. While there have 

been several theoretical studies of the alignment of halos with each other, those 

based on linear theory (Lee & Pen, 2000,2001; Pen et al., 2000) are suspect due to 

the importance of non-linear effects in determining the orientation of halo angu

lar momentum (Porciani et al., 2002a), while those based on A'^-body simulations 

have not had sufficient resolution to detect effects for any but the most massive 

clusters (Barnes & Efstathiou, 1987; West et al., 1991; van Haarlem & van de Wey-

gaert, 1993; Splinter et al., 1997; Onuora & Thomas, 2000; Hatton & Ninin, 2001; 

Faltenbacher et al., 2002; Kasun & Evrard, 2004). 

We have performed a large high-resolution ACDM A'^-body simulation to study 

these effects. In Chapter 4, we examine the figure rotation of triaxial dark matter 



22 

halos formed in this simulation. In Chapter 5, we present an extensive study of 

the shapes of the dark matter halos, the internal alignment of their principal axes 

and angular momenta, and the alignment of these properties with external halos. 
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CHAPTER 2 

TORQUES AND MISALIGNED DISK GALAXIES 

2.1 Introduction 

There is observational and theoretical evidence that dark matter halos are flat

tened with minor-to-major c/a axis ratios ranging as low as 0.3. Cosmological 

simulations show that while the angular momentum and minor axis of a flat

tened halo are usually correlated, the alignment is not perfect for a large number 

of halos (see § 5 and references therein for a full discussion of the alignment of 

the shape and angular momentum of dark matter halos). Recent high-resolution 

simulations suggest that the angular momentum of the baryons may not even be 

aligned with that of the dark matter (van den Bosch et al., 2002; Sharma & Stein-

metz, 2004), and that therefore the disks that form from those baryons are usually 

misaligned with the minor axis of the halo matter distribution. 

It has been suggested that warped disks may result from such misalignment 

between the disk and a flattened dark matter halo (Dekel & Shlosman, 1983; 

Toomre, 1983). A warped disk is a stable solution inside an oblate halo if it is 

a discrete normal mode of the system (Toomre, 1983; see also Lynden-Bell, 1965). 

Calculations of such normal modes, assuming that the disk can be approximated 

by a series of spinning concentric rings, have been performed in the linear (Sparke 

& Casertano, 1988) and non-linear (Kuijken, 1991) regimes. These discrete modes 

exist if the disk is abruptly truncated; however, if the surface density declines 

more gradually, in accordance with observations, there are no discrete modes. 

Such discrete modes do exist if the halo is prolate rather than oblate, elongated 
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perpendicular to the disk (Ideta et al., 2000). However, alignment between a 

halo's angular momentum and its major axis is uncommon (§ 5); even if the an

gular momenta of the baryons that form a disk are misaligned with the angular 

momentum of the halo by 20° (Sharma & Steinmetz, 2004), it is unlikely that there 

exists a large population of galaxies with disks lying near the symmetry plane of 

a prolate halo. Furthermore, all of the aforementioned studies assume that the 

halo potential can be assumed to be static. Binney et al. (1998), following on an 

idea of Nelson & Tremaine (1995), have found that the halo responds to the pres

ence of a warped disk, destroying the normal modes and causing the warp to 

disperse. 

These studies have all assumed that warps are steady-state uniformly precess-

ing phenomena. However, this may not be the case; Hipparcos measurements of 

the Galactic warp indicate that it is not uniformly precessing (Drimmel et al., 

2000). This should not be unexpected: the orientations of halo shapes change 

with time (§ 4), and the orientations of galactic disks change with time as they ac

crete angular momentum (Quinn & Binney, 1992). Therefore, even if the equilib

rium configuration of the disk is not warped, the disk may spend a large fraction 

of its time out of equilibrium, in a warped state. 

An important ingredient of any non-equilibrium explanation for galactic warps 

is an understanding of the dynamical response of disks to the torques they expe

rience. In this chapter, we present a simple model of the torques misaligned halos 

exert on disk galaxies and the reaction of disks to these torques, to determine if 

they appear similar to observed warped galaxies. 
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Figure 2.1; Two views of a circular orbit with angular velocity vector oj tilted from 

the xi/'plane toward the x-axis by an angle 6. 0 is the azimuthal angle around the 

orbit. A torque r directed along the a;-axis produces forces F, as in equation (2.1). 

2.2 Torques from misaligned halos 

2.2.1 Framework for torqued orbits 

2.2.1.1 Introduction to torque 

We introduce a simplified model to establish a framework in which the reaction 

of galactic disks to torques can be studied. Consider a star in the disk on a circular 

orbit in the xy-plane about the origin with angular velocity uj(r) = V(,{r)/r (see 

Figure  2 .1) .  We apply  a  to rque  a long  the  rc -ax is  by  acce le ra t ing  the  s ta r  in  the  y  

and 2 directions around the x-axis with an antisymmetric pseudo-tensor Tij. If 

the acceleration in the i direction is and the j-position of the star is then the 

applied acceleration is 

O-i — TijVj (2.1) 
i 
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(2.2) 

where 

0 0 0 

0  0  —T{r )  

0 r(r) 0 

This is an angular acceleration (or equivalently a specific torque) around the x-

axis of magnitude a/r = T(r). Since the angular acceleration is the time derivative 

of the angular velocity, the x-component of the angular velocity increases in re

sponse to the torque,  and the angular momentum of the star  slews toward the x 

axis, tilting the orbit around the y-axis (Bardeen & Petterson, 1975). 

2.2.1.2 Tilting timescale 

For an orbit in the xy-plane, the angular momentum is initially aligned with the 

z axis {oj = a;o(r) z). The torque adds angular momentum in the x direction at a 

constant rate: 

t - M -  ( 2 . 3 )  

If the radius of the orbit stays constant, then the angular velocity grows as 

u!{t)  — tT{r)  X + u}o{r)  z .  (2.4) 

As the torque adds angular momentum along the x axis, the orbit tilts toward 

the x axis by an angle 6, where 

Uo{r)  
(2.5) 

The rate of tilting at small angles is 

dO r(r) 

dt  Ci;o(r) '  

with a characteristic timescale to tilt one radian of 

(2.6) 

^tilt — 
r(r) ' 

(2.7) 
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This timescale is a useful quantity for characterizing the strength of the torque. 

The form of equation (2.7) can also be motivated by noting that wo is equivalent 

to the specific angular momentum and r is the specific torque, which is the rate 

of change of the specific angular momentum. Note that for a flat rotation curve 

where (Vq = Vc/r, itiit is a monotonically increasing function of r if r(r) falls off 

faster than i.e. for a torque that decreases with radius faster than r"^, the 

inner regions of the disk should always tilt faster than the outer regions, resulting 

in a trailing warp. 

2.2.2 Expected torques from misaligned flattened hales 

We calculate the magnitude of the torque for a disk misaligned in a flattened halo 

with the radial dependence of an NFW profile (Navarro et al., 1996) but flattened 

along the z axis: 

P{x ,  y ,  z )  = ^ (2.8) 
(m/rj (1 + m/rs) 

for modified radius m? = x'^ + jq^ where q is the c/a axis ratio. The force 

from this distribution on a given point is calculated using equation (2-88) of Bin-

ney & Tremaine (1987). For reference, we also calculate the torques inside flat

tened isothermal profiles, as in equation (2-54a) of Binney & Tremaine (1987). 

The torques are calculated by evaluating the forces at opposite points along a fic

titious disk centred at the origin and inclined by an angle 6 to the xy plane (see 

Figure 2.1). The acceleration at radius r due to a torque of magnitude r is orthog

onal to the symmetry plane, is of opposite sign on opposite sides of the disk, and 

is of magnitude F = rr. Given the forces on two test points Fi and F2 at opposite 

sides of the disk, we calculate the component of the force perpendicular to the 

plane of the disk Fj_i and Fj_2. The torque is 

F  [ 1  —  F l o  
r = (2.9) 
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The angular velocity ou is determined at each point from the radial force; u> = 

^jPr/r where the radial force Fr is defined to be positive when it is directed to

ward the center of the halo. The average value of co for the two points across the 

disk is used. The tilting timescale is given by equation (2.7). 

Figure 2.2 illustrates the torques derived using this method for halos with a 

cross-section of properties expected for galactic halos. The fiducial NFW model 

has flattening q = 0.7, virial velocity Vc — 175kms~^ (corresponding to v^ot = 

205kms~^ at a galactocentric radius of 10 kpc), and a disk inclined 20° to the 

symmetry plane of the halo. All NFW halos have concentration parameters C200 = 

15 (Navarro et al., 1997). The different panels show the effect of varying the disk 

angle by 10°, the axis ratio from 0.5 to 0.9, and the virial velocity by 75 km s"^ 

compared to the fiducial model. The bottom-right panel of Figure 2.2 shows the 

torques inside an isothermal profile with a range of axis ratios. The magnitude of 

the torque in the isothermal case is similar to that in the NFW case, but falls off 

less rapidly with radius. 

Figure 2.2 demonstrates that the torque from a misaligned flattened halo is 

significant to its evolution on a cosmological timescale, as the tilting timescale 

ttiit is less then the Hubble time over the entire length of the disk for all halos 

modelled. The torques scale approximately as the density, and therefore fall off 

with radius as T(r) oc with /? ranging from —1 at small radii to —3 at large radii 

for NFW halos and ranging from 0 to —2 for isothermal halos. The typical torque 

follows the relation 

T(r) = To f—^ , (2.10) 
Wo/  

where Tq = 10"^" (3 = —2.5, and ro = 1 kpc. The angular velocity u){r) 

varies as u{r) oc r" where a ranges from —0.5 to —2 in NFW halos, and is —1 at 

most radii in isothermal halos. Therefore, the tilting timescale ttnt/ as calculated 
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Figure 2.2: The symbols indicate the torques experienced by disks misaligned in

side flattened halo profiles, expressed in terms of the tilting timescale ttiit- The 

lines are power law fits for log i? > 0.1. Note that stronger torques have shorter 

timescales and appear lower in these graphs. Top-left: Torques inside NFW halos 

with virial velocities V200 = 175 km flattenings g = 0.7, and concentration pa

rameters C200 = 15, for disks misaligned by 10°, 20°, and 30° from the symmetry 

plane. Top-right: Torques inside NFW halos with virial velocities ^200 = 100, 175, 

and 250kms~^ flattenings q — 0.7, and concentration parameters C200 = 15, 

for disks misaligned by 20° from the symmetry plane. Bottom-left: Torques in

side NFW halos with virial velocities 1^200 = 175kms~^, flattenings q = 0.5, 0.7, 

and 0.9, and concentration parameters C200 = 15, for disks misaligned by 20° 

from the symmetry plane. Bottom-right: Torques inside isothermal halos with 

virial velocities ^200 = 175kms~^, flattenings q = 0.5, 0.7, and 0.9, and core radii 

Rc = 1 kpc, for disks misaligned by 20° from the symmetry plane. 
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using equation (2.7), rises approximately linearly with radius. For example, in 

an isothermal halo r(r) cx while w(r) oc so itiit = a;(r)/r(r) oc r. The 

timescale is shorter in the inner regions of the disk, and therefore the inner disk 

tilts faster than the outer disk in response to torques from misaligned halos: the 

torque increases more rapidly toward the center than does the disk's ability to 

resist the torque due to its angular momentum. 

The further the halos and disks are misaligned, the stronger the torque is; 

however, the torque profile is mostly unchanged for angles beyond 20°. Increas

ing the virial velocity, and therefore the mass of the halo, increases the magnitude 

of the torque. Because the concentration C200 is held constant amongst these mod

els, changing the virial velocity also changes the scale radius which can be 

seen as the shift in the radius of the knee in the torque profiles of the top-right 

panel of Figure 2.2. The flattening of the halo has a large effect on the magnitude 

of the torque, with torques strengthening as the halo departs further from spher

ical symmetry. The torques fall off more slowly in the isothermal halos than in 

the NFW halos, but are of similar magnitude over most of the disk radius. 

2.3 Reaction of self-gravitating disks to an external torque 

While there have been many studies of the effects of torques on massive disks, al

most all are based on the assumption that the prevalence of warps is due to their 

stability, and therefore seek to solve the winding problem (Kahn & Woltjer, 1959; 

Hunter & Toomre, 1969) by finding a solution that precesses uniformly (Lynden-

Bell, 1965; Sparke & Casertano, 1988; Kuijken, 1991; Ideta et al., 2000) or reaches 

a uniform configuration in the presence of a given steady torque (Ostriker & Bin-

ney, 1989; Debattista & Sellwood, 1999; Lopez-Corredoira et al., 2002a). The other 

possible solution, that warps are transient but frequently excited, has not been 
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thoroughly investigated. A lone exception is Hofner & Sparke (1994), who found 

that in the linear regime of tilt angles and static oblate halos, disks which are ini

tially inclined evolve toward discrete warp modes (whether or not they exist over 

the entire disk) from the inside out, settling on a timescale that depends on the 

group velocity of vertical bending waves. 

The evolution of a massless disk is easily found from equation (2.5). This leads 

to a disk with a curved inner region, becoming flat in the outer regions where ttiit 

is large. Real warped galaxies appear quite the opposite, with a disk that lies 

flat in its inner regions and warps beyond the Holmberg radius (Briggs, 1990). It 

is therefore clear that the self-gravity of galactic disks is very important to their 

dynamics. This is not surprising, as "maximal disk" models, where the mass-

to-light ratios of the disks (M/L) are as large as is consistent with the rotation 

curves, provide good fits to most rotation curves (Broeils & Courteau, 1997; Bell & 

de Jong, 2001; Bolatto et al., 2002; Simon et al., 2003). Sackett (1997) demonstrates 

that the Milky Way itself is consistent with having a maximal disk. Although 

Courteau & Rix (1999) have used the residuals of the Tully-Fisher relation (Tully 

& Fisher, 1977) to estimate that disks provide only 40% of the dynamical mass 

at 2.2 exponential scale lengths, and the rotation curves of the majority of low 

surface brightness galaxies imply that their disks are substantially sub-maximal 

(de Blok & McGaugh, 1997; Zavala et al., 2003), the prevalent phenomena of spiral 

arms and bars, which are disk instabilities, require that self-gravity be important 

to the dynamics of many disks (Athanassoula et al., 1987). 

The self-gravity of the disk acts to keep the disk flat. Ostriker & Binney (1989) 

examined the effect of a slewing disk potential on a set of self-gravitating rings 

and found that regions of high surface density react like a solid body. Since the 

surface density of the disk is highest in the central regions, the central parts of 
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the disk will be kept locally flat, resulting in disks that closer resemble observed 

warped galaxies. L6pez-Corredoira et al. (2002a) take this into account by de

veloping a form for the internal torque Tint- Here we do not use their Tint, but 

rather integrate the orbits numerically. While this does not provide us with an 

explicit set of differential equations for 9{r, t), it frees us from such assumptions 

of theirs as circular orbits, the constancy of a;(r), the existence of an equilibrium 

configuration, and the lack of a dark matter halo. 

In this section, we perform A'^-body simulations of self-gravitating disks sub

ject to torques from the surrounding halo, as calculated in § 2.2.2, and investigate 

the nature of the transient warps that develop. 

2.3.1 The simulations 

The initial conditions for the simulations were constructed using the method 

of Hernquist (1993), for disk masses of 1 x 10^° M©, 3 x 10^° MQ, and 5.6 x 

10^° MQ, scale length = 3.5 kpc and vertical scale height = 325 pc in a 

static spherically-symmetric NFW halo potential with concentration parameter 

C200 = 15 and virial velocity 11200 = 175KMS~^ These disks were then allowed to 

relax under the force of gravity until they appeared to be in equilibrium. The halo 

masses were varied such that the mass of the disk plus halo was 4.1 x 10^^ MQ in 

each case. 

The models were evolved using the GRAPESPH code (Steinmetz, 1996), where 

interparticle gravitational forces are computed using direct summation with GRAPE-

3 hardware (Okumura et al., 1993). A Plummer softening (Plummer, 1911; Aarseth, 

1963) of 0.3 kpc has been used. The models were evolved for 2 Gyr, which took 

5000-7000 timesteps depending on the model. The torque was applied as an ex

ternal force of the form (2.10), with tq = 10~^° s~^ at ro = 1 kpc. Simulations 

were performed with torque slopes of /? = —2.0, —2.5, and —3.0. The torque was 
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Figure 2.3: x-z projection of a simulated disk galaxy with mass 3 x 10^° Mq after 

1 Gyr in a torque of tq = 10~^° at ro = 1 kpc and /3 = —2.5. 

capped at T = To inside r < ro in order to prevent extremely small timesteps for 

particles at very small radii where the torquing force diverges. 

The disks contained 16384 particles. The 3 x 10^° MQ simulations were also 

performed with 32767 particles to see if the resolution was sufficient. The results 

for the high resolution simulations were identical to those for the lower resolution 

simulations to well within the angular errors computed in § 2.3.3 except for in 

the spherical shells which contained very few particles and had already been 

neglected from the analysis on those grounds. 
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Figure 2.4: Open squares show the radial dependence of the tilt of the disk shown 

in Figure 2.3, computed in spherical shells 2 kpc wide. The solid line is an analytic 

estimate of the warp of a massless disk, and the solid diamonds are an A'^-body 

simulation of the same disk but with the self-gravity of the disk turned off. 

2.3.2 Warped disks 

Figure 2.3 shows the simulation of a 3 x 10^° MQ disk with 32767 particles subject 

to a /? = —2.5 torque for 1 Gyr. The main plane of the disk is flat and clearly 

tilted toward the positive x-axis. Beyond 10 kpc, the disk no longer remains flat 

but warps back toward the original plane; this appears similar to many observed 

warped disks. The particles which appear to be filling in the area between the 

main disk and the warp are projections and are actually in front of or behind the 

galaxy at large radii. 
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We bin the simulation particles into spherical shells of thickness 2 kpc and 

calculate their degree of tilt using the moment of inertia tensor. Figure 2.4 shows 

a plot of the radial profile of the tilt of the disk shown in Figure 2.3. Also shown 

are a non-gravitating disk subject to the same torque and an analytic estimate 

of the behaviour of a massless disk in this torque. There are three important 

regimes: the central flat disk, the warp, and the effectively massless outer region. 

The central 11 kpc is tilted uniformly 17° from the original plane (we ignore the 

innermost point because the torque is capped inside ro) and corresponds to the 

visually flat part of the disk. The effect of the disk's self-gravity is to prevent the 

inner regions of the disk from tilting as much as they would otherwise, while 

pulling the outer regions of the disk to more inclined orbits. At the warp radius 

r^=ll kpc, the disk is no longer flat, and the disk warps back toward the original 

plane. Finally, from 17 kpc to 23 kpc (the final extent of the disk), the disk follows 

the analytic prediction, acting like a massless disk. This result agrees qualitatively 

with that of Ostriker & Binney (1989), who found that regions of high surface 

density remain flat when torqued, and the position of a warp is determined in 

part by a drop in surface density. 

A useful diagnostic for the strength of a warp is the total amount of angu

lar momentum which is misaligned with that of the flat central disk. We have 

calculated this warped angular momentum for the highest-mass disk simulation 

(which is most similar to the Milky Way) at 1 Gyr, and found that the misaligned 

component has a magnitude of 2.0 x 10^^ MQ kpc km S~^ To facilitate comparison 

between galaxies with different mass distributions, it is useful to normalize the 

misaligned angular momentum by the total angular momentum in the warped 

region of the disk; we find that a fraction 0.17 of the angular momentum is mis

aligned. 
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2.3.3 Warp evolution 

We now investigate how the disk evolves over time under the influence of the 

torque. The general form of the warp is as above, but as the disk evolves under 

the influence of the torque, the warp radius moves out through the disk at a rate 

that depends on the mass of the disk. At early times, typically before 200 Myr, 

the inner disk does not act like a solid body, and the tilt profile lies below the 

prediction for the massless disk. 

We developed an algorithm to automatically detect the warp radius. The par

ticle positions were stored every 40 timesteps. For each of these outputs, the tilt 

angles were calculated in spherical shells as in Figure 2.4. We did a bootstrap 

analysis to estimate the error in these angles: for each spherical shell, we drew 10 

random sets from the particles in that shell, calculated the tilt of each bootstrap 

set, and then used the standard deviation of those angles as an estimate of the 

error in the tilt of that bin. The error depended on the number of particles in the 

shell, but was typically less than 1°. 

Shells with errors greater than 0.5° were not analyzed, as these generally had 

few particles and were dominated by numerical noise. For each remaining shell 

with radius r and tilt we calculated the deviation Ad between the simulation 

tilt ^sim and the tilt expected for a massless disk at that radius. The central radius 

r of the radial bin with the highest Ad was then considered to be the warp radius 

r^. This is the radius at which the difference between the tilt of the massive 

disk and the tilt of an equivalent massless disk is maximized. For example, in 

Figure 2.4, the highest AO occurs at r = 11 kpc where the data point = 17° 

and the predicted line ^pj-ed ~ ^ corresponds exactly to the radial bin at 

the end of the plateau in Figure 2.4. Examining a few randomly chosen outputs 

from each simulation showed that in each case this automated agreed with our 



37 
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Figure 2.5: Radial bins at which the disks exhibit their warps as the simulations 

evolve in time. Points are plotted every 10^ years. Because the particles were 

binned into spherical shells 2 kpc wide, the warp radii appear quantized. The 

lines are linear least square fits.  This figure shows the simulations with (3 = 

—2.0 torques and disk masses 1.0 x 10^'' MQ, 3.0 x 10^° Mq, and 5.6 x 10^° MQ 

represented by the squares, circles, and triangles respectively. 



38 

Warp radius for  dis l<s in (S =  —2.5 torque 

30 

5.5x 1 0 

2C 

o-

5x10'  

Time [yrs 

Figure 2.6: As in Figure 2.5 but for simulations with P = —2.5 torques. 
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Figure 2.7: As in Figure 2.5 but for simulations with [3 = —3.0 torques. The warp 

takes time to develop, resulting in the noise apparent early in the simulations, 

which were not included in the straight line fits. 



40 

intuition, except at early times when there was no solid disk and the automated 

was dominated by noise. 

Figures 2.5,2.6, and 2.7 show the evolution of the warp radius for simulations 

with differing torque slopes (3. The squares, circles, and triangles correspond 

to simulations with disk masses of 1, 3, and 5.6 x 10^° MQ respectively. The 

warp radii appear "quantized" because of the 2 kpc-wide radial bins used to 

calculate the tilt (see, e.g. Figure 2.4). One point was plotted every 10® years, 

linearly interpolating from the neighbouring simulation outputs. The early 

times before the warp has developed show up as noise in the upper-left region 

of some of the figures, particularly Figure 2.7. To quantify the growth of the 

warp, straight lines were fit through the profiles. While one might think that the 

lines ought to be constrained to pass through the origin, since there is no warp at 

t = 0, the data do not support this. This is because the warp instability requires 

that the surface density of the disk be below a certain critical surface density, 

as we demonstrate later. We examined Figures 2.5-2.7 by eye and excluded the 

obviously noisy early times from the fits; in practice, this meant excluding t  < 

5 X 10® yr for the /? = —3.0, Md = 1.0 x 10^° Mq simulation and i < 2 x 10® 

yr for the (5 = —3.0, = 3.0 x 10^° MQ simulation. We ended the simulations 

after 2 Gyr, the time when the warp radius reached the edge of the particle disk 

in some simulations, at which point the algorithm to find simply detects the 

edge of the disk. The fits are shown as the solid, dashed, and dotted lines for the 

simulations with disk masses of 1, 3, and 5.6 x 10^° MQ respectively. The warp 

radius moves out through high mass disks faster than low mass disks, while the 

effect of the torque slope is somewhat ambiguous. 

In a massive disk, particles at different radii are coupled to each other gravita-

tionally and act to keep the disk locally flat. This suggests that the crucial factor 
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Figure 2.8; Surface densities at the warp radii as the simulations evolve. As the 

warp moves out through the disk, the local surface density at the warp radius 

falls according to equation (2.12). The squares, circles, and triangles show sim

ulations with disk masses of 1, 3, and 5.6 x 10^° MQ respectively in a /3 = —2.5 

torque. The solid line is the fit given by equation (2.13). Compare this with Fig

ure 2.6, which shows the radial evolution of the warp for the same set of simula

tions. The local surface density at the warp is similar for all models at all times. 
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Figure 2.9: As in Figure 2.8, but for 3.0 x 10^° MQ disk simulations with different 

torque slopes p. 
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that determines where the warp develops is the local surface density of the disk. 

Ostriker & Binney (1989) examined the effect of a slewing disk potential on a set 

of self-gravitating rings and found qualitatively that regions of high surface den

sity react like a solid body, but that warps can occur where the surface density is 

lower. Hofner & Sparke (1994) noted that in most cases the group speed of bend

ing waves in a disk of surface density E(r) and angular rotation velocity u>{r) 

0, = (2.11) 
u { r )  

and therefore the time for a warp to settle at a given radius is inversely propor

tional to the surface density at that radius. 

To test this, we translate the warp radii of the simulations into local surface 

densities using 

SK) = (2-12) 

for a disk of mass and exponential scale length rg. Figure 2.8 shows the surface 

density at the warp radius as a function of time for the three disks of different 

mass in a /? = —2.5 torque (i.e. for the same simulations shown in Figure 2.6), 

while Figure 2.9 shows the same relation for a 3.0 x 10^° MQ disk in torques 

with varying (3. The surface density at the warp radius falls as the warp moves 

out through the disk. The local surface densities at the warp at a given time are 

quite similar for all disk masses, and are almost indistinguishable for all torque 

slopes. It appears that the local surface density is the most important parameter 

for determining how far the warp settles in a given time. 

The evolution of the warp is well described by a decaying exponential 

S(r^,t) = (2.13) 

with ETUP = 70 MQ PC~^ and = 480 Myr, shown as the straight line in Fig
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ures 2.8 and 2.9. For such a result to hold, the timescale should depend only 

on global properties of the galaxy independent of disk mass or torque; in partic

ular, it can only depend on the virial velocity of the galaxy W200 = 175 km 

the exponential scale length of the disk Vd = 3.5 kpc, and/or the vertical scale 

height = 325 pc. An interesting timescale that matches this is the characteristic 

timescale for bending waves (Hofner & Sparke, 1994) one disk scale length away 

from 

^ (2.14) 
Cg TTG^IDQC 

which is 490 Myr in these cases. 

is the extrapolation of equation (2.13) to t = 0, and is the critical surface 

density above which the disk does not develop a warp. At higher surface den

sities, the self-gravity of the disk is always sufficient to keep the disk flat. It is 

interesting that the extrapolation tot = 0, when there is no torque, gives a finite 

well-defined value for the warp surface density. This is why the linear r^{t) fits 

do not go through the origin and suggests that at this surface density the disk 

is marginally unstable to warping. Therefore, we do not expect to see warps oc

curring at surface densities higher than 70 MQ pc""^. In the Milky Way, the warp 

begins at or slightly beyond the solar circle (Binney, 1992), while Hipparcos de

terminations of the Milky Way surface density in the solar neighbourhood give 

Eo = 40 Mq pc~^ (Creze et al., 1998). It is encouraging that this is less than In 

external galaxies, warps begin between 25 and 26.5 mag arcsec"^ (Briggs, 1990), 

which for a mass to light ratio in 5 of 1 Mq /Lq gives surface densities of between 

1.8-7.0 Mq pc~^, ignoring projection effects and extinction. This is also consistent 

with a picture in which warps only can occur at surface densities below 
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2.4 Conclusions 

When studying disks in misaUgned halos, almost all previous work has assumed 

that it is possible to study the system in isolation and find the equilibrium con

figuration. Even Hofner & Sparke (1994) and Ideta et al. (2000), who studied 

the time dependence of such configurations, studied the evolution from isolated 

initial conditions. However, we have argued that in a cosmological context, the 

orientations of both halos and disks change on short enough timescales that there 

is often misalignment between halos and disks regardless of the tendency for iso

lated disk-halo systems to align themselves. We have studied the effects of such 

torques on disks, and found that the disks warp in a manner similar to the ob

served Milky Way warp. We have discovered that such warps begin at the radius 

where the surface density of the disk drops below 70 Mq pc~^, regardless of the 

disk mass, and move linearly through the disk at a rate of one scale length per 

500 Myr, a timescale characteristic of the timescale of bending waves in the outer 

(warped) region of the disk. Therefore, if disks and halos are often misaligned, 

as we have suggested, then such misalignments will produce realistic-looking 

warps. 
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CHAPTER 3 

WARPS FROM SATELLITE-DISK INTERACTIONS 

Some of the contents of this chapter were previously published in Bailin (2003). 

3.1 Evidence for coupling between Sgr and the Milky Way warp 

3.1.1 Introduction 

The closest warped galaxy to us is our own, the Milky Way. Ideally, a description 

of warped galaxies should at least be able to explain the Milky Way warp, about 

which we have more information than about any other galaxy. In particular, if 

warping is a generic response of disks to the individual perturbations they expe

rience, the likelihood of identifying the cause of the Milky Way warp is higher 

than of identifying the cause of other galactic warps due to the proximity of the 

satellite galaxies that are likely to perturb the disk. 

The Magellanic Clouds have often been proposed as the perturbation respon

sible for the Milky Way's warp. While Hunter & Toomre (1969) found that the 

tidal distortion from the clouds alone is not sufficient to cause the observed warp, 

Weinberg (1998) proposed that orbiting satellites could set up wakes in the Milky 

Way's halo which could provide the necessary torque. Tsuchiya (2002) performed 

self-consistent simulations of such a system and confirmed that for a sufficiently 

massive halo (2.1 x 10^^ MQ), the magnitude of the torque can be increased 

enough to cause a warp of the same magnitude as the Milky Way's. 

The Magellanic Clouds orbit about the center of the Galaxy in a direction or

thogonal to the line of nodes, i.e., near the line of maximum warp. Garcia-Ruiz 
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et al. (2002) demonstrated that the warp caused by a satellite will rock back and 

forth with its line of nodes oriented along the satellite's orbit. A simple way of 

understanding this result is to recognize that a torque is a transfer of angular 

momentum, and therefore the disk will acquire angular momentum along the 

same axis as the orbital angular momentum of the satellite which is providing 

the torque, and tilt toward that axis. Therefore, the Magellanic Clouds are not 

suitable candidates for producing the Milky Way warp. 

The orbital plane of the Sagittarius dwarf galaxy (Ibata et al., 1994) does inter

sect the line of nodes, suggesting that it may be a good candidate for producing 

the Milky Way warp (Lin, 1996). It is located behind the Galactic bulge and is 

on a nearly polar orbit (Ibata et al., 1997). Ibata & Razoumov (1998) have per

formed simulations which suggest that the passage of a sufficiently massive Sgr 

(5 X 10® Mq) through the disk could produce a warp. Alternatively, its gravi

tational tides or the tides of a wake it produces in the dark halo could exert a 

warp-inducing torque on the disk. 

If Sgr is responsible for the warp, its angular momentum will be coupled to 

that of the warp. In this section, we calculate the orbital angular momentum of 

Sgr, along with the warped component of the Milky Way disk's angular momen

tum. We show that they have the same magnitude and are anti-aligned. As there 

is no a priori reason to expect them to be within orders of magnitude of each other, 

this is evidence that Sgr may be coupled to the warp, and therefore responsible 

for it. 

3.1.2 The angular momentum of satellite galaxies 

The position, distance, and motion of Sagittarius are given in Table 3.1, along with 

estimates of its mass and orbital angular momentum. Estimates of the angular 

momentum range between 1.7 and 8.6 x 10^^ Mq kpckms"^, and are directed 
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Table 3.1. Properties of the Sagittarius dwarf 

Parameter Value 

Data from Ibata et al. 1997 

Galactic coordinates I = 5.6°, b = —14° 

Galactocentric distance 16 ± 2 kpc 

Space motion {U,  V ,  W)  (232,0,194) ± 60 km s~^ 

Galactocentric radial velocity 150 ± 60 km s~^ 

Galactocentric tangential velocity 270 ± 100 km s~^ 

Derived angular momentum: 

Assumed mass (10® MQ) 

Angular momentum (10^^ MQ kpc km 

Direction 

0.4 2.0 

1.7 ±0.6 8.6 ±3.4 

I = 276°, b - -7° 
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toward I = 276°, b = —7°. 

The major uncertainty in this calculation is the determination of the mass. 

Ibata & Lewis (1998) argued that in order for the satellite to have survived to 

the present day, it must have a massive extended dark matter halo and a total 

M/L ~ 100 in solar units (Ibata et al., 1997). However, Helmi & White (2001) 

found viable models with more moderate masses ranging from 4.66 x 10® MQ 

for a purely stellar model to 1.7 x 10® Mq for their model with an extended dark 

matter envelope (see also Jiang & Binney, 2000, who find that if the original mass 

of Sgr was large enough for dynamical friction to be important, the majority of 

the mass would have been stripped off after a Hubble time leaving a current 

mass of 1-3 x 10® MQ). The properties of Helmi & White (2001)'s models seem 

most in agreement with the expected properties of dwarf spheroidal galaxies, 

and therefore we adopt 0.4-2.0 x 10® MQ as the range of possible masses of the 

Sagittarius dwarf; the lower end of this range is favoured by the tidal stream 

models of Law et al. (2004). 

Table 3.2 shows the magnitude and direction of the angular momenta of Sgr 

and the 6 other Galactic satellites with measured proper motions, along with that 

of the Milky Way warp which is calculated in § 3.1.3. The masses and galactocen-

tric radii are also shown for reference. The orbital angular momenta of the Large 

Magellanic Cloud (LMC) and the Small Magellanic Cloud (SMC) were calculated 

using data from Kroupa & Bastian (1997). For the remaining satellites, the mass 

was taken from Mateo (1998) and the velocity vector from the tabulated refer

ence. Two recent measurements of the proper motion of the Fornax dSph give 

quite different values (Piatek et al., 2002; Dinescu et al., 2004). The reason for this 

discrepancy is unclear, so both values are tabulated in Table 3.2. 

The results of Table 3.2 can be appreciated visually in Figure 3.1. Each line 



Table 3.2. Angular momenta of the Milky Way warp and some Milky Way 

satellites 

Object Mass 

(Mo) 

Galactocentric radius Angular momentum 

(kpc) (-^0 kpc km s~^) 

Direction 

(deg) 

Reference 

Milky Way warp 1.7-8.6 X 10^2 1 = 90, b = : 0 §3.1.3 

Sgr dSph 0.4-2.0 X 10® 17 2.0-9.8 X 10^2 1 = 276, b = -7 1,2 

LMC 2 X 10^° 48 2 X 10" 1 = 184, b = = 9 3 

SMC 2 X 10'' 54 3 X 10^3 II 

V
 

o
 

o
 

CM II -1 3 

Fornax dSph 7 X 10^ 140 3 X 10^2 1 = 189, b = 20 4,5 

2 X 10^2 1 = 127, b = -7 4,6 

Ursa Minor dSph 2 X 10^ 66 3 X 10^^ 1 = 187, b = -17 4,7 

Carina dSph 1 X 10^ 101 1 X 10" / = 314,6 = 52 4,8 

Sculptor dSph 6 X 10® 78 1 X 10" II II -7 4,9 

References. — (1) Ibata et al. 1997; (2) Helmi & White 2001; (3) Kroupa & Bastian 1997; (4) Mateo 1998; (5) Piatek 

et al. 2002; (6) Dinescu et al. 2004; (7) Schweitzer 1996; (8) Piatek et al. 2003; (9) Schweitzer et al. 1995 
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Figure 3.1: The galactocentric ar\gular momentum of each satellite listed in Ta

ble 3.2, projected onto the galactic plane, as viewed from the North Galactic Pole 

(NGP). The length of each vector (including the unseen z component) is log L—10, 

where L is the magnitude of the angular momentum in units of Mq kpc km s~^. 

The galactic center is at the origin, while the sun lies below the origin. For-P and 

For-D refer to the Fornax values derived by Piatek et al. (2002) and Dinescu et al. 

(2004) respectively. The Milky Way warp and Sgr are both plotted at the mean of 

the minimum and maximum values tabulated in Table 3.2. 
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shows the galactocentric direction of the angular momentum vector of a satel

lite, projected onto the Galactic plane, as viewed from the North Galactic Pole 

(NGP). The Galactic center is at the origin, while the sun lies below the origin. 

The length of each vector (including the unseen 2: component) is log L — 10, where 

L is the magnitude of the angular momentum in units of MQ kpc km s"^ This 

diagram clearly shows that Ursa Minor and possibly Fornax (if the Piatek et al. 

(2002) value for its proper motion is more accurate) are on similar orbits to the 

Magellanic Clouds (Lynden-Bell, 1976; Lynden-Bell & Lynden-Bell, 1995; Palma 

et al, 2002). 

3.1.3 The angular momentum associated with the Milky Way warp 

We calculate the component of the disk angular momentum which is due to the 

warp in the Milky Way's disk, i.e., that which is not directed toward the South 

Galactic Pole (SGP). Because the line of nodes is straight, this component has the 

same orientation at all radii. If the disk rises a height h{R) above the plane at 

cylindrical radius R, then the total angular momentum in the disk which is due 

to the warp is 

The mass distribution of the disk is taken from Dehnen & Binney (1998) (here

after DB98). The disk surface density for a given component in these models is 

given by 

where is the normalization, Rd is the scale length of the component, and 

is introduced to allow the ISM to have a central depression^. R^ = 4 kpc for 

the gas disk and Rm = 0 for the stellar disk. The relative contributions to the 

^Note that equation (1) of DB98 has a typo which is fixed above (W. Dehnen 2002, private 
communication) 

(3.2) 



Table 3.3. Disk parameters 

Parameter Model 

12 3 4 

Data from DB98: 

Stellar disk scale length (kpc) 2.0 2.4 2.8 3.2 

ISM disk scale length Rd^isu (kpc) 4.0 4.8 5.6 6.4 

Surface density at solar circle So {Mq pc~^) 43.3 52.1 52.7 50.7 

Derived warp angular momenta'^(10^^ Mq kpc km s-i) 

Stellar disk 1.10 2.16 3.36 4.73 

ISM disk 0.52 1.10 1.78 2.57 

Total 1.62 3.26 5.14 7.30 

^Direction is / = 90° ± 10°, 6 = 0° 
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surface density Eq at the solar circle Rq = 8 kpc are 0.25 for the ISM and 0.75 

for the stars. DB98 distinguish between thin and thick disk components of the 

stellar disk. However, the difference between their vertical scale heights does not 

affect the angular momentum, and while the radial scale length of the thick disk 

is poorly known, the fraction of disk mass in the thick disk is sufficiently small 

(less than 10% in the DB98 models) that any difference between the radial distri

bution of the thin and thick disks will have a much smaller effect on the angular 

momentum than the model-to-model differences. Therefore, we treat the stellar 

disk as a single component. DB98's models 1-4, which differ primarily in disk 

scale length, Rd, are all acceptable fits to the observations, and therefore provide 

a reasonable range of mass distributions with which to estimate the angular mo

mentum. Table 3.3 gives the essential parameters for the four models. 

The circular velocity, Vc, of the disk from 3 kpc to the solar circle is ~ 200 km s~ ̂  

(e.g., Merrifield, 1992). While most measurements at R > Rq show a rising rota

tion curve, Binney & Dehnen (1997) argue that a constant rotation curve is con

sistent with the data when the correlations between errors are taken into account. 

We adopt Vc — 200 km s~^ at all radii. The uncertainty in the angular momentum 

due to uncertainties in the mass models dominates over any error in the circular 

velocity. 

The height of the warp above the plane as a function of radius, h{R) ,  appears 

to differ for the stars and for the gas. Drimmel et al. (2000) fit Hipparcos mea

surements of OB stars and find 

with the warp starting at = 6.5 kpc and scaled by i?;i = 15 kpc. Binney & 

(3.3) 
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Merrifield (1998) approximate the m = 1 mode of the ISM warp as 

i { R  —  R w ) / a ,  R >  
h{R)  =  (3.4) 

0 R < Rw 

where R^ = 10.4 kpc and a = 5.6 when converted to = 8 kpc (Tsuchiya, 

2002). Binney & Merrifield (1998) also fit an m = 2 mode, but the net angular 

momentum of any even m mode is aligned with the angular momentum of the 

flat disk, so it does not contribute. 

We use equation (3.3) for the stellar disk and equation (3.4) for the gas disk. 

The results are shown in Table 3.3. The majority of the warp angular momentum 

is contained in the range 10 ^ i? ^ 25 kpc in all models. The Sun lies within 10° 

of the line of nodes, so is directed toward 80° ^ I ^ 100°, b = 0°. 

To facilitate comparison with simulations of warped disks that do not neces

sarily have the same mass or angular momentum distribution, it is convenient to 

normalize by the total angular momentum in the disk between 10 and 30 kpc, 

Ltot = J 2tiR'^VcT,{R) dR (for Ltot, > Lyj). L^/Ltot varies from 0.13 for Model 1 

to 0.19 for Model 4. We note that both the total magnitude of the warp angular 

momentum and the misaligned fraction are comparable to the values found for 

the Milky Way mass disk in § 2.3.2. 

3.1.4 Discussion 

Table 3.2 shows the angular momenta of the Milky Way and the seven dwarfs 

(Grimm & Grimm, 1857). These are also shown visually in Figure 3.1. The mag

nitude of the angular momentum of Sagittarius is strikingly similar to that of the 

Milky Way warp, while the direction of the angular momentum is almost exactly 

opposite. There is no a priori reason to expect any relation; the angular momenta 

of the other satellites with known orbits span three orders of magnitude and a 

full range of galactic longitude, although there is a strong tendency for the satel
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lites to have polar orbits with low values of |6| (Lynden-Bell, 1976; Lynden-Bell 

& Lynden-Bell, 1995; Hartwick, 2000; Palma et al., 2002). The only other satellite 

whose angular momentum is of a similar magnitude is Fornax, but its orienta

tion is unrelated to that of the warp for both measurements of its proper motion. 

Therefore, the coincidence of the two angular momentum vectors is probable ev

idence that they are dynamically coupled, i.e., that Sagittarius is the perturber 

responsible for the Galactic warp. 

In order to determine how much of a coincidence this is, we calculate the 

chance of a randomly-oriented vector lying within 10° of being anti-aligned with 

the warp angular momentum (as the error in the orientation of the Milky Way 

line of nodes is 10°, and the orbital angular momentum of Sgr lies within this 

10° cone), and find that it is 1.5%. It is more difficult to assess the probability of 

finding a satellite with the same magnitude of angular momentum as the warp. 

In order to do this, we take all of the masses, radii, and perpendicular velocities 

of the satellites tabulated in Table 3.2, and calculate the angular momentum from 

each combination. We use the mean of the high and low masses for Sgr, and the 

Piatek et al. (2002) value for Fornax velocity. Out of the 343 combinations, 23 

give values of the angular momentum that lie between the high and low values 

calculated for the Milky Way warp, giving a probability of 7%. Therefore, the 

probability that the angular momentum of any one satellite is both anti-aligned 

with that of the Milky Way warp and of the same magnitude is 0.1%, and the the 

probability of finding at least one such satellite in a sample of 7 is 0.7%. ITowever, 

it is difficult to objectively interpret such a posteriori probabilities. There may be 

other configurations that would also have been suggestive of a coupling. For 

example, if the angular momentum of Sgr were perfectly aligned with with that of 

the warp, rather than anti-aligned, we would also have concluded that they were 
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coupled. We can take this particular case directly into account by doubling the 

calculated probability; we therefore conclude that there is a 1.4% chance that the 

relationship we have found between the angular momenta of Sgr and of the warp 

arises from chance. However, we urge caution when interpreting this number 

due to the possible existence of other suspicious configurations which we have 

not thought of. 

While it is clear that there should be a relationship between the orientation of 

the angular momentum of a perturbing satellite and of the excited warp (Garcia-

Ruiz et al., 2002), the relationship between the magnitude of the angular mo

menta is less clear. However, the satellite cannot donate more than its total angu

lar momentum to the disk. Therefore, the satellite can only donate an amount of 

angular momentum comparable to its orbital angular momentum before its orbit 

must decay dramatically and be accreted by the Galaxy. Assuming that most of 

the donated angular momentum goes into the warp, the equilibrium configura

tion is for the satellite and warp to have comparable amounts of angular momen

tum due to the coupling. 

There are three possibilities for the nature of the coupling. The first is a direct 

gravitational tidal torque by the satellite itself (Hunter & Toomre, 1969), the sec

ond is the gravitational torque of a wake in the Galactic dark matter halo (Wein

berg, 1998; Tsuchiya, 2002), and the third is an impulsive deposition of momen

tum to the gas disk by passage through it (Ibata & Razoumov, 1998). The direct 

tidal torque for a satellite of mass m and distance r scales as m/r^. Therefore, the 

direct tidal effect of Sgr is no stronger than that of the LMC, whose direct tidal 

torque is not sufficient to induce the warp (Hunter & Toomre, 1969). This means 

that the gravitational torque of Sgr itself cannot be the coupling mechanism. 

If the primary perturber is instead a wake in the halo, the strength of the 
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torque scales as mwake/^'wake- Th^ mass of the wake scales as the mass of the satel

lite and as the density of the halo at the wake radius (Weinberg, 1998). The wake 

develops at half the satellite's orbital radius (Tsuchiya, 2002). Therefore, for an 

isothermal halo, the strength of the torque scales as m/r®. In this case, the effect 

of Sagittarius is 10-50 times stronger than that of the LMC. It is plausible that 

in Tsuchiya (2002)'s lower mass simulation, in which the LMC did not excite a 

warp, a satellite with Sagittarius's parameters would have. Further simulations 

which better reproduce the observed Sgr-MW system could confirm or falsify this 

suggestion. 

Ibata & Razoumov (1998) suggest that the impulsive deposition of momen

tum to the gas disk could excite the warp. The mass they use for Sgr, 5 x 10® 

is quite large, and they find very little warping in their 1 x 10® Mq simulation. 

However, they only model a single interaction. In order for the angular mo

menta to reach equilibrium, as they appear to have done, there must be repeated 

or continual encounters. Helmi & White (2001) find orbital periods of ~ 1 Gyr 

for Sagittarius, indicating that it has passed through the disk several times. Fur

ther simulations that follow the evolution of the system over many encounters 

are necessary to better understand the predictions of this model; meanwhile, it 

cannot be ruled out. 

3.1.5 Summary 

The orbital angular momentum of the Sagittarius dwarf galaxy and the compo

nent of the Milky Way disk angular momentum due to the Galactic warp are al

most perfectly anti-aligned, and both have a magnitude of 2-8 x 10^^ MQ kpc km S~^ 

We estimate the probability that this configuration arises by chance to be 1.4%. 

Such a coincidence suggests that they are a coupled system, i.e., that Sgr is re

sponsible for the warp. The direct gravitational tidal torque of Sgr cannot cause 
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the warp. Interaction via a gravitational wake in the Milky Way's dark matter 

halo, and impulsive deposition of momentum into the disk by passing through 

it are still both possible coupling mechanisms. More simulations of each of these 

models are necessary to discriminate between their effects. 

3.2 Satellite-disk simulations 

3.2.1 Introduction 

§3.1 presents circumstantial evidence that the Sagittarius dSph galaxy may be 

responsible for the warp of the Milky Way. However, the simulations of satellite-

disk interactions that have been performed to date cannot test this hypothesis. 

In this section, we present a set of A'^-body simulations designed to study the 

interactions between satellites and warps, and test the scenario presented in § 3.1. 

We first present the details of the simulations, then discuss the physical principles 

that guide the evolution of the system, and finally examine the results of the 

simulations to discover the relationship between the nature and orbit of satellites 

and the warps they cause. 

3.2.2 Summary of simulations 

The simulations were run using the parallel version of the GADGET N-body code 

(Springel et al., 2001), and only take into account gravitational forces. Observed 

galactic disks contain not only collisionless stars but also gas that experiences 

hydrodynamic forces. The warp mechanism is purely gravitational, so hydro-

dynamic forces are not required to accurately model the transfer of angular mo

mentum from the satellite to the disk. However, the internal reaction of a gaseous 

disk may differ from that of a disk made up of collisionless particles due to pres

sure forces and viscous damping. To estimate the effect of the pressure forces, 

we note that the sound speed in an isothermal gas at 10^ K is ~ 10 km s"^ 
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The radial range over which the warp occurs is from 10 kpc to 30 kpc. There

fore, the timescale over which the outer disk comes to pressure equilibrium is 

~ 10® yr, which, as we shall see, is several times longer than the timescale over 

which the disk warps, and so neglecting pressure forces should not change the 

magnitude of the excited warps. The other possible hydrodynamic effect is vis

cous damping. However, the vertical shear due to the warp is certainly smaller 

than the shear due to differential rotation of the disk. Therefore, the lack of sig

nificant accretion flows in the outer regions of galactic gas disks implies that the 

the dissipation due to viscosity is much too small to affect the results. 

The simulations were run using the parallel version of the GADGET N-body 

code (Springel et al., 2001). The galaxy model is based on the Milky Way models 

of DB98, particularly model 3 which has a disk scale length of 2.8 kpc. The disk 

vertical scale height and the bulge scale length were both set to 0.1 times the disk 

scale length, or 280 pc. The models were created using the method of Hernquist 

(1993), with a Toomre Q parameter in the disk of 1.5 (Toomre, 1964). The models 

were oriented such that the angular momentum was directed along the —z axis, 

i.e. the rotation is clockwise as seen from the NGP, along the +z axis. The location 

of the sun is along the x axis at Cartesian coordinates (-8,0,0) kpc. The angular 

momentum of Sgr in this model is directed along the —y axis, i.e. at h — 0°, 

I = 270°. 

The models consist of 1048576 halo particles, 969438 disk particles and 79138 

bulge particles (see Table 3.4). The satellite consists of a single particle containing 

the entire satellite mass. Because the primary interest of this work was to see 

whether the Sagittarius dSph galaxy could excite the Galactic warp, we chose two 

satellite models that bracket the range of estimated masses and sizes of Sgr. The 

first, labelled "SI", is based on Helmi & White (2001)'s model which includes a 
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Table 3.4. Mass components of the disk galaxy models. 

Component Total mass N Particle mass Softening 

(lOi«M0) (lO^Mo) pc 

Halo 89.565 1048576 85.4158 550 

Disk 4.45166 969438 4.5920 200 

Bulge 0.36489 74138 4.6108 200 

Total 94.38155 2097152 

Medium satellite (SI) 0.2 1 2 X 10^ 2000 

Small satellite (S2) 0.04 1 4 X 10^ 5000 

Large satellite (S3) 1.0 1 1 X 10® 2000 

dark halo, and has a mass of 2 x 10® MQ and a radius (represented by its softening 

length) of 2 kpc, while the second, labelled "S2", is based on the Helmi & White 

(2001) constant mass-to-light model, and has a mass of 4 x IO^Mq and a radius 

of 5 kpc. We have also created a more massive satellite model, S3, with a mass of 

1 X 10^°MQ. This could represent the LMC or Sgr before it lost significant mass 

through its tidal interaction with the Milky Way, and also helps elucidate how the 

satellite mass affects the strength of the coupling between satellites and the warp. 

Because the satellite is represented by a single particle, its internal degrees of 

freedom are not taken into account. This is only expected to have small effects on 

the results because even if the satellite were rotating at break-up speed, its inter

nal angular momentum would be more than an order of magnitude smaller than 

its orbital angular momentum, so the internal rotation cannot be an important 
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reservoir of angular momentum in the system unless the satellite is disrupted. 

Observed satellite galaxies do lose mass and eventually disrupt in the tidal field 

of the parent galaxy, losing approximately 30-40% of their mass per orbit (Tay

lor & Babul, 2001, 2004). Even then, the stripped stars continue in their original 

orbital path about the parent galaxy, so their gravitational effects are still felt by 

the disk, though no longer in phase with the body of the satellite. Treating the 

satellite as a single particle simplifies the interpretation of the physical processes 

in our simulation; however, it also means our results are only valid during the 

time before which a fully self-consistent satellite would disrupt or lose most of its 

mass, i.e. for only a couple of orbits. 

The initial orbital parameters were chosen to mimic those of Sgr; however, a 

wide range of additional orbits were simulated in order to understand the effect 

of the orbital eccentricity, and inclination. The initial conditions of the simula

tions are listed in Table 3.5. Orbits were either polar, inclined 45° prograde to the 

disk rotation, or inclined 45° retrograde to the disk rotation, and either had the 

same apo- and perigalactica as Sgr, or were on relatively circular orbits with the 

same angular momentum (the "r20" models). In addition, one model was run 

with no satellite ("undist"). The orbital parameters of the satellites, based on the 

first perigalactic and apogalactic passages, are given in Table 3.6. 

Some of the simulations were performed on the Astrophysikalisches Institut 

Potsdam beowulf cluster octopus, and some on the University of Arizona High 

Performance Computing Center alpha supercomputer aura, each using 16 pro

cessors. Each simulation was evolved from i = 0 to i = 4 Gyr. The time step 

criterion was 

where e is the force softening length, a is the acceleration, and r j  was set to a con-

(3.5) 



Table 3.5. Initial position and velocity of satellites in the simulations. 

Name Satellite Initial position Initial velocity Inclination 

(kpc) (km s~^) 

undist 

Sl-iO SI (-70,0,0) 62 polar 

Sl-i+45 SI (-70,0,0) 62 prograde 

Sl-i-45 SI (-70,0,0) 62 retrograde 

S2-i0 S2 (-70,0,0) 62 polar 

S2-i+45 S2 (-70,0,0) 62 prograde 

S2-i-45 S2 (-70,0,0) 62 retrograde 

S3-i0 S3 (-70,0,0) 62 polar 

S3-i+45 S3 (-70,0,0) 62 prograde 

S3-i-45 S3 (-70,0,0) 62 retrograde 

Sl-r20-i0 SI (-20,0,0) 220 polar 

S2-r20-i0 S2 (-20,0,0) 220 polar 



Table 3.6. Initial orbital parameters of the satellites in the simulations. 

Name Apogalacticon Perigalacticon Semi-major axis Eccentricity Period 

(kpc) (kpc) (kpc) (Gyr) 

Sl-iO 70.0 12.7 41.4 0.693 1.15 

Sl-i+45 70.0 12.8 41.4 0.690 1.15 

Sl-i-45 70.0 12.9 41.5 0.688 1.15 

S2-i0 70.0 13.1 41.5 0.685 1.20 

S2-i+45 70.0 13.2 41.6 0.683 1.20 

S2-i-45 70.0 13.2 41.6 0.682 1.20 

S3-iO 70.0 11.6 40.8 0.717 1.00 

S3-i+45 70.0 11.7 40.9 0.713 1.00 

S3-i-45 70.0 11.6 40.8 0.717 1.00 

Sl-r20-i0 28.5 20.0 24.3 0.175 0.60 

S2-r20-i0 29.2 20.0 24.6 0.186 0.65 
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servative value of 0.01 to ensure that vertical oscillations were not artificially am

plified by integration errors. This resulted in an average timestep of 8 x 10"^ Gyr. 

The typical simulation therefore had ~ 5 x 10"^ timesteps, and took approximately 

27 days on the beowulf cluster or 5 days on the alpha. Snapshots were output ev

ery 0.05 Gyr. Because mass loss and tidal disruption, which do not occur in our 

simulations, would have a significant impact on the satellite after a couple of or

bits, we only analyze each simulation up to the apogalacticon after the second 

perigalactic passage. 

These simulations are similar in spirit to the simulations Tsuchiya (2002) uses 

to examine the effects of the LMC on the Milky Way. However, there are some 

important differences. First, as we are most concerned with the effect of Sgr on 

the Milky Way disk, our fiducial model has a satellite with a lower mass on an 

orbit closer to the parent galactic disk; however, we also explore a wide range of 

satellite masses and orbits (including satellites of LMC mass) to fully probe the 

physics of the interaction. Secondly, we have been very conservative with our 

numerical parameters to ensure that our simulations are accurate representations 

of the physical system; our models contain twice as many disk and halo particles 

as Tsuchiya (2002), ensuring that we have the 10® particles in the halo required 

to resolve the wake (Weinberg, 1998), and our average timestep is an order of 

magnitude smaller than that used by Tsuchiya (2002). In addition, we use a single 

A'^-body algorithm, a tree code, rather than the mixture of tree and Self-Consistent 

Field algorithms used by Tsuchiya (2002). Finally, we note that our halo, based 

on the Milky Way models of DB98, is slightly more massive than the low halo 

mass model of Tsuchiya (2002) (his "model S")-
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Lretro 

I^disk 

Figure 3.2: Diagram demon.strating the precession of a satellite on a prograde, 

retrograde, or polar orbit around the flattened disk potential. 

3.2.3 Precession and sinking 

The satellite interacts with the galaxy, transferring angular momentum. There 

are two main processes by which the satellite and galaxy transfer angular mo

mentum. The first is the sinking of the satellite. Dynamical friction transfers 

orbital energy (and consequently angular momentum) from the satellite into the 

halo and disk (Byrd et al., 1986; Bontekoe & van Albada, 1987; Cora et al., 1997; 

Colpi et al., 1999; Taylor & Babul, 2001, 2004). This transfer of angular momen

tum causes the disk to tilt (Huang & Carlberg, 1997). The angular momentum 

transferred has the same direction as the satellite's angular momentum, and mag

nitude Lshrink- ^shrink depends on the rate at which the satellite sinks and on the 

magnitude of the satellite's initial angular momentum. The rate at which the 

satellite sinks is a function of the mass of the satellite, its velocity, the local halo 

density, and the velocity dispersion of the halo (Chandrasekhar, 1943; Cora et al., 

1997). For a given halo model, it therefore depends on the satellite mass and its 

galactocentric radius. 

The second process that affects the angular momentum of the satellite is pre

cession of the satellite in the non-spherical potential of the disk. The orbit pre-

cesses clockwise for retrograde orbits, counter-clockwise for prograde orbits, and 
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not at all for polar orbits, as viewed from the NGP. Figure 3.2 demonstrates this 

for the orbits in our simulations. We refer to the magnitude of the change in an

gular momentum due to precession as Lprecess- The angular momentum acquired 

by the galaxy is opposite in direction to Lprecess/ arid is therefore directed along 

—X (+®) for satellites on prograde (retrograde) orbits that are initially directed 

toward —y. Through two-body interactions, the disk also donates some of its 

—1/2 angular momentum to the satellite, so after their first disk passage, the satel

lites which were initially on polar orbits become very slightly prograde, resulting 

in very slight precession for the lowest mass satellites. I^precess depends on the 

inclination of the satellite orbit, the flattening of the potential (which is a strong 

function of radius, as the relatively spherical halo dominates at large radius while 

the disk dominates at small radius), and the magnitude of the satellite's initial an

gular momentum. 

These two processes transfer angular momentum from the satellite to differ

ent galactic components. In particular, the dynamical friction force comes from 

both the disk and the halo, while the precession of the satellite's orbit is due to 

the flattened potential of the disk. Therefore, by Newton's Third Law (Newton, 

1687), Lshrink is initially transferred partially to the halo and partially to the disk, 

while Lprecess IS transferred entirely to the disk. 

When examining the simulations, we found an additional source of angular 

momentum; the halo. Because the method of Hemquist (1993) involves sam

pling the velocity distribution randomly, it is possible to end up with a small net 

component of angular momentum which is misaligned with the disk due to shot 

noise. In the case of our initial conditions, 0.26% of the halo angular momentum 

is misaligned with the disk. However, due to the large mass of the halo, this 

amounts to 3.6 x 10^^ MQ kpc km S~^, comparable to that in the satellite. In most 
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of the simulations, the effects of the satellite were dominant, but in some simula

tions the coupling between the disk and the satellite was small, and therefore the 

disk tilted slightly and warped due to the presence of this additional halo com

ponent. We use the undisturbed simulation to calibrate out the effect of this, as 

discussed in § 3.2.5. 

3.2.4 Tilting and warping disks 

There are four physical effects that govern the evolution of the disk in the pres

ence of the satellite: tilting of the disk due to Lp^ecess^ tilting and warping of the 

disk due to I^shrink/ warping of the disk due to a slewing potential, and differential 

precession of the warped outer disk. The direction that the disk tilts can be de

duced from the direction of the angular momentum it acquires. As demonstrated 

b y  F i g u r e  3 . 2 ,  t h e  i n i t i a l  o r i e n t a t i o n  o f  t h e  d i s k  a n g u l a r  m o m e n t u m  i s  — W e  

now examine in detail each of these physical effects. 

3.2.4.1 Tilting due to Lprecess 

The satellite precesses in the flattened potential of the disk. The potential of the 

entire disk is responsible, and therefore the exchange of angular momentum oc

curs uniformly across the disk. For prograde satellites, the satellite acquires +Lx 

and the disk acquires —Lx, while for retrograde satellites, the satellite acquires 

—Lx and the disk acquires +Lx. Therefore, to first order, the disk tilts uniformly 

about the +y axis for prograde satellites and about the —y axis for retrograde 

satellites. 

3.2.4.2 Tilting and warping due to Lghrink 

Dynamical friction transfers angular momentum from the satellite to the disk and 

halo. In all cases, this is directed toward —Ly, and therefore the disk and halo both 

tilt about the —x axis. Dynamical friction is a local process, so the effects of the 



69 

satellite are strongest at radii through which it orbits. In none of our simulations 

does the satellite pass into the inner disk; therefore, the outer disk acquires a 

proportionally larger fraction of Lshrink and tilts further. 

3.2.4.3 Warping of the disk due to a slewing potential 

Ostriker & Binney (1989) determined that if the potential of the disk slews about 

an axis ft, the angular momenta of rings within the disk tilt toward Cl. The effec

tive torque of the tilting disk potential is proportional to its surface density, and 

therefore falls off exponentially with radius. As a result, the inner disk responds 

faster and the disk warps. 

This acts as a secondary response for both processes discussed above. For ex

ample, if the disk tilts about the +y {—y) axis due to precession of a prograde 

(retrograde) satellite, the inner disk acquires +Ly {—Ly) due to this effect. Sim

ilarly, if the disk and halo tilt about the —x axis due to Lshrink/ the inner disk 

acquires —L^ due to this effect. 

3.2.4.4 Differential precession 

When the disk is warped, the outer disk precesses about the plane of the inner 

disk counter-clockwise when viewed from the NGP. The rate of precession is a 

function of radius and of warp amplitude. This differential precession quickly 

damps the warp in the absence of the above processes (Kahn & Woltjer, 1959; 

Hunter & Toomre, 1969). 

3.2.5 Simulation results 

Here we examine the angular momentum in the simulations. For most purposes, 

we split the disk up into two radial regions: the inner disk, with radii between 0-

10 kpc, and the outer disk, with radii between 10-30 kpc. In § 3.1.3, we found that 

most of the warped angular momentum in the Milky Way is contained between 
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Figure 3.3: Evolution of the x (solid) and y (dashed) components of the angular 

momentum of the undisturbed simulation, as a fraction of the total angular mo

mentum. Thick lines represent the innermost 10 kpc of the disk, while the thin 

lines represent the outer 10-30 kpc of the disk. 

10 and 25 kpc, so we expect the difference between our outer and inner regions to 

represent the difference between the warped and unwarped regions of the disk. 

The disk in the undisturbed simulation tilts slightly due to small amounts of 

misaligned angular momentum in the halo. In Figure 3.3, we plot the evolution 

of the X and y components of the angular momentum of the inner and outer re

gions of the disk in the undisturbed simulation, as a fraction of the total angular 

momentum in each region of the disk. This is equivalent to the angle in radians 
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30 -:••>() 10  0  

Figure 3.4: Log-spaced contours of the projected density of the bulge and disk in 

the undisturbed simulations, viewed edge-on from two orthogonal directions at 

time t = 1.8 Gyr, when the angular momenta of the inner and outer disk are most 

misaligned (see Figure 3.3). A very slight warp is apparent on the left edge of the 

x-z projection beyond 20 kpc, and in the y-z projection between 12 and 18 kpc. 

that each region of the disk is tilted. These changes produce only an extremely 

mild warp; Figure 3.4 shows a contour plot of the disk at t = 1.8 Gyr, when the 

difference between the angular momentum in the inner and outer disk is partic

ularly large (and is in the time span analyzed in most of the simulations with 

satellites). The global tilt of the disk in this and all following projected images 

(which is extremely small in the undisturbed simulation, but can be quite large 

in the simulations with satellites) has been removed to enhance our ability to 

discern any warp that may exist. These images show a very small warp due to 

the exchange of angular momentum between the disk and the halo (Debattista 

& Sellwood, 1999). When examining all future simulations, we subtract out the 

undisturbed simulation. In particular, we define 

r inner T inner 
-inner -^undist,t 

-'uiidist 

and 

for i = x,y. 

L. outer 
T outer T outer 

•'-'undist,i 

r outer r outer ' 
^ ^undist 

(3.6) 

(3.7) 
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The magnitude of the warp is well described by the difference in magnitude 

between and We define the warp angular momentum as Lw/ which 

has magnitude 

L y j  =  ̂ (L°uter _ L^nner)2 ^ (pouter _ Linner)2^ 0  

and is oriented toward galactic latitude 6 = 0° and galactic longitude I, where 

r outer r inner 

= (3.9) 
pouter ^mner 

Note that L^, is the fraction of the angular momentum which is misaligned, so in 

order to compare Lyj with the warp angular momentum calculated in § 3.1.3, 

we must multiply by the total outer disk angular momentum which is 

initially 1.6x 10^^ Mq kpc km s~^ but increases to 2.2x 10^^ MQ kpc km s~^ during 

the course of the simulation due to redistribution of mass throughout the disk. 

3.2.5.1 Orbital inclination 

We compare the Sl-iO, Sl-i+45, and Sl-i-45 simulations to study the effects of 

orbital inclination on the propensity for satellites to excite warps. In Figure 3.5, 

we plot the x and y components of the angular momenta and The 

primary effects of Lprecess are clearly seen: in the prograde simulation, the disk 

acquires a significant amount of —L^ whenever the satellite passes through the 

disk, while in the retrograde simulation the disk acquires +L^. As a secondary 

effect, the slewing potential induces the angular momentum to tilt toward the 

slewing vector, acquiring +Ly in the prograde case and —Ly in the retrograde 

case, with the inner disk tilting further than the outer disk. The evolution in the 

polar simulation is entirely due to Lghrink/ which does not cause as much evolution 

of and The disk acquires a small amount of —Ly directly, particularly 

in its outer region, and also feels the effect of the slewing potential, resulting in a 
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Figure 3.5: Evolution of the the x  (solid) and y  (dashed) components of the an

gular momenta L'""®'' (thick lines) and (thin lines) of the galactic disks 

in the prograde (left), polar (middle), and retrograde (right) simulations with 

intermediate-mass satellite SI. Each simulation is plotted until the apogalacti-

con after its second perigalactic passage. Perigalactic passages occur at t = 0.60 

and t = 1.70 Gyr. 
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Figure 3.6: Evolution of the warp angular momentum of the galactic disks 

in the prograde (dashed), polar (solid), and retrograde (dotted) simulations with 

satellite SI. In the top panel, we plot the magnitude of L^,, while in the bottom 

panel we plot the galactic longitude I that it is directed toward. Note that these 

can wrap around the I = 180° point. Each simulation is plotted until the apogalac-

ticon after its second perigalactic passage. Perigalactic passages occur at t = 0.60 

and t = 1.70 Gyr. 
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small decrease in Lx, particularly for the irmer disk. These effects are also seen in 

the prograde and retrograde simulations. 

In Figure 3.6, we have plotted the magnitude of the warp angular momentum 

Ly,, and its orientation. The warp is excited at the first perigalactic passage at 

t = 0.60 Gyr, reaching its maximum ~ 200 Myr later, or one disk rotation period 

at i? = 10 kpc. Afterwards, it oscillates and slowly declines until the satellite 

approaches a second time at t ~ 1.70 Gyr, when the pattern repeats. The orien

tation of the warp is similar for all satellites after the first perigalactic passage. 

This is a direct result of the processes discussed in § 3.2.4: I/ghrink causes the outer 

disk to acquire —Ly with respect to the inner disk in all cases, which on its own 

would result in a warp orientation of I — 270°. The secondary effect of Lghrink is 

that the inner disk acquires —L^ with respect to the outer disk, which results in 

an increase in I, i.e. it trails slightly behind the satellite orbital angular momen

tum with respect to the galactic rotation. The direct effect of Lprecess is a uniform 

tilt of the disk, which causes no warp at all, while the secondary effect is that 

the inner disk acquires -\-Ly (—Ly) for the prograde (retrograde) satellite, which 

slightly decreases (increases) /, and therefore the warp angular momentum leads 

(trails) the polar value with respect to the galactic rotation (although the effect on 

the orientation is small, since the primary effect of ^shrink already dominates the 

Ly component). However, it also results in a larger value of for the prograde 

simulation, where the effects of Lprecess and Lshrink have the same sign, than for 

the retrograde simulation, where they have opposite signs. Between perigalac

tic passages, differential precession damps the warp causing the rise in galactic 

longitude and decline in amplitude of L^- The second passage of the satellite 

is qualitatively similar to the first; however, the satellite spends more time at 

smaller radii due to its shrunken orbit, and therefore the effects are significantly 
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Figure 3.7: Log-spaced contours of the projected density of the bulge and disk 

in the prograde (top), polar (middle), and retrograde (bottom) simulations for 

satellite SI at the time when reaches its first maximum. This occurs at t = 

0.80 Gyr for Sl-i+45 (the prograde simulation), and t = 0.85 Gyr for Sl-iO and 

Sl-i-45. The left panels are the x-z projections, while the right panels are the y-z 

projections. The global tilt of the disk has been removed. 

stronger. 

After the first perigalactic passage. Figure 3.6 indicates that the peak of 

is around t = 0.80 Gyr for all three simulations. Projected images of the three 

simulations at the snapshot where is maximized are shown in Figure 3.7. The 

orientation of the warp is I = 265°, 282°, and 271° for the prograde, polar, and 

retrograde simulations respectively, suggesting that the disk warps up at negative 

y!down at positive y in all cases with a very small warp up at positive x/down 

at negative x for the polar and possibly the retrograde simulation (which has a 
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Figure 3.8: Log-spaced contours of the projected density of the bulge and disk 

in the prograde (top), polar (middle), and retrograde (bottom) simulations for 

satellite SI at the time when peaks after the second perigalacticon. This occurs 

att — L95 Gyr for Sl-i-45 (the retrograde simulation), and t = 1.85 Gyr for Sl-iO 

and Sl-i+45. The left panels are the x-z projections, while the right panels are the 

y-z projections. The global tilt of the disk has been removed. 

larger value of I for most other snapshots around the same time). A warp up at 

negative y is clearly seen in all simulations, with a maximum amplitude of about 

1 kpc. There are also very slight warps down at negative x in all simulations and 

up at positive x in the polar and retrograde simulations. The amplitude is much 

smaller than in the y-z projection, never larger than 0.5 kpc. 

The warp amplitudes rise to a much higher level after the second perigalactic 

passage. There are several peaks in for each simulation after the second pas

sage, as differential precession and vertical bending waves transfer the angular 
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momentum through the disk. We examine the first snapshot where images of the 

simulation show a clear warp. This is t — 1.95 Gyr for the retrograde simulation, 

and t = 1.85 Gyr for the polar and prograde simulations. Projected images of the 

disks are shown in Figure 3.8. The qualitative discussion regarding the warp ori

entation after the second perigalacticon is the same as after the first: the warp is 

directed toward lower galactic longitude for prograde satellites and higher galac

tic longitude for retrograde satellites. However, the effects are strongly amplified 

due to the smaller orbital radius of the satellite the second time around, and pre

cession modifies the orientation on quite short timescales. In particular, the orien

tation of the warp is I = 276°, 329°, and 84° for the prograde, polar, and retrograde 

simulations respectively. Therefore, we expect a warp up at negative y/ down at 

positive y for the prograde and polar simulations, an exact opposite orientation 

for the y-z projection of the warp in the retrograde simulation, and a warp up at 

positive a:/down at negative x for the polar simulation. The y-z projections bear 

out this picture (though the polar simulation appears more like a U-shaped warp, 

rising on both sides), while all three simulations warp up slightly at positive x 

(and, for the polar and retrograde satellites, down at negative x). The amplitude 

of the warp appears larger than after the first satellite passage, although it still 

never rises much beyond 1 kpc, and appears more like the moderate warps seen 

in most disk galaxies (Schwarzkopf & Dettmar, 2001). Note that at late times, 

the warp of the Sl-iO simulation, which was constructed to be similar to the true 

orbit of Sgr, settles to I ^ 90°, similar to the warp of the Milky Way. However, the 

magnitude of the warp angular momentum peaks at 2 x 10^^ MQ kpc km an 

order of magnitude smaller than the magnitude of the warp angular momentum 

Ly, found in § 3.1.3. 
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Figure 3.9: As in Figure 3.5, but for the low-mass satellite S2. Perigalactica occur 

at t = 0.60 and t = 1.75 Gyr. 
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Figure 3.10: As in Figure 3.6, but for the low-mass satellite S2. Perigalactica occur 

at i = 0.60 and t = 1.75 Gyr. 
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3.2.5.2 Satellite mass 

To determine the effect of the satellite mass on its ability to warp the disk, we 

compare the low mass simulations S2-i0, S2-i+45, and S2-i-45, and the high mass 

simulations S3-i0, S3-i+45, and S3-i-45 to the analogous SI simulations discussed 

above. First we focus on S2, which is representative of the low end of the mass 

estimates for Sgr. We plot the x and y components of and L°"'®4n Figure 3.9 

and the magnitude and orientation of in Figure 3.10. A comparison with Fig

ures 3.5 and 3.6. reveals that the behaviour is very similar to that of the higher 

mass satellite, but scaled down by a factor of roughly 5, the factor by which the 

masses differ. We also find that the difference between the inclined simulations 

and the polar simulation is larger in the SI simulations than in the S2 simula

tions. This suggests that Lp^ecess is more efficiently transferred to the disk for 

higher mass satellites. 

The angular momentum transferred in a single perigalactic passage is not suf

ficient to warp the disk for the S2 models, and no warp is visible in projections of 

the S2 models during the first orbit. Because the S2-i0 simulation was constructed 

as a plausible model of Sgr if it is at the lower end of the currently discussed mass 

range (which appears to be favoured by recent detailed models of the Sgr stream; 

Law et al., 2004), it is interesting to ask whether this simulation ever produces a 

visible warp in the disk. After the second perigalactic passage. Figure 3.10 sug

gests that Lyj rises to the level of the SI simulations after their first perigalacticon, 

where a small warp is visible. We therefore show in Figure 3.11 projected im

ages of the low mass simulations when peaks after the second perigalacticon. 

This occurs at t = 2.10, 2.05, and 2.15 Gyr for the prograde, polar, and retro

grade simulations respectively. The warp angular momentum is directed toward 

I — 207°, 136°, and 140° for the prograde, polar, and retrograde simulations re-
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Figure 3.11: Log-spaced cor\tours of the projected density of the bulge and disk 

in the simulations with low mass satellite S2 on a prograde (top), polar (mid

dle), and retrograde (bottom) orbit when peaks after the second perigalactic 

passage {t = 2.10, 2.05, and 2.15 Gyr for the prograde, polar, and retrograde sim

ulations respectively). The left panels show the x-z projection, while the right 

panels show the y-z projection. The global tilt of the disk has been removed. 
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spectively, suggesting that the disk warps up at negative x/down at positive x 

in all cases, up at positive y/down at negative y in S2-i0 and S2-i-45, and up at 

negative y/down at positive y in S2-i+45. Instead, S2-i+45 warps up at negative 

X, S2-i0 warps down at negative x, and S2-i-45 has regions that warp each direc

tion at negative x. All of the disks warp down at negative y. It appears that for 

small warp amplitudes, the strong differential precession hinders the use of the 

Lyj as an effective measure of the warp orientation; it is also likely that for such 

small amplitudes, subtraction of the undisturbed simulation may leave artifacts 

comparable in magnitude to the physical effects of the satellite as suggested by 

comparing the amplitudes of and in the undisturbed simulation (Fig

ure 3.3) and in the S2 simulations (Figure 3.9). However, we find that it may still 

be possible for Sgr to excite a small warp even if it is on the lower end of the 

discussed mass range, providing it has orbited the Galaxy a sufficient number of 

times. 

We have also performed simulations with the very massive S3 satellite. Fig

ures 3.12 and 3.13 plot the x and y components of and and the mag

nitude and orientation of L^, respectively. Projections of the disk at the peak of 

are shown in Figure 3.14. The evolution of the disk is quite violent, and the 

approximation that the satellite is not disrupted would clearly be violated during 

the second perigalactic passage, so we only analyze the first orbit. The physi

cal effects discussed in § 3.2.4 are particularly clear for the high mass satellite: 

^shrink adds —Ly to the disk, especially the outer disk; the slewing potential due 

to I/shrink adds —La: to the disk, especially the inner disk; Lp^ecess adds —L^ {+Lj;) to 

the disk uniformly in the prograde (retrograde) case; the slewing potential due to 

Lprecess adds + Ly {—Ly) to the disk, especially the inner disk, in the prograde (ret

rograde) case; and precession causes a gradual increase in the galactic longitude 
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Figure 3.12: As in Figure 3.5, but for the high-mass satellite S3. Perigalactica occur 

att = 0.60 and t = 1.45 Gyr. 
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Figure 3.13: As in Figure 3.6, but for the high-mass satellite S3. Ferigalactica occur 

att — 0.60 and t = 1.45 Gyr. 
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Figure 3.14: Log-spaced contours of the projected density of the bulge and disk 

in the simulations with high mass satellite S3 on a prograde (top), polar (middle), 

and retrograde (bottom) orbit when Ly, peaks after the first perigalactic passage 

{t = 0.75 Gyr for the prograde and retrograde simulations and t = 0.80 Gyr for 

the polar simulation). The left panels show the x-z projection, while the right 

panels show the y-z projection. The global tilt of the disk has been removed. 
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of the warp angular momentum. The end result is that the warp angular momen

tum is directed toward somewhere between 270 and 360° (higher for retrograde 

satellites, lower for prograde satellites), i.e. it trails slightly behind the satellite 

orbital angular momentum with respect to galactic rotation, trailing further for 

retrograde satellites and less for prograde satellites. At the snapshots shown in 

Figure 3.14, the warp angular momentum is directed toward I = 273°, 291°, and 

304° for the prograde, polar, and retrograde simulations respectively. The y-z 

projections show warps up at negative y/down at positive y, as expected. The 

disks in the prograde and retrograde simulations both warp up at positive x and 

down at negative x, as expected. The prograde simulation, which is not expected 

to show any warp in the x-z projection, warps up at positive x between 8 and 

15 kpc, followed by a sharp warp down beyond 15 kpc, which combine to give 

no net x component of L^. However, in all cases the impression of the disk is 

that it is quite disturbed, rather than warped. The total magnitude of the warp 

angular momentum peaks at 8 x 10^^ MQ kpc km still smaller than the an

gular momentum calculated for the Milky Way warp in § 3.1.3 despite the fact 

that the simulated disks appear significantly more disturbed than the Milky Way 

disk. This may suggest that the mass and angular momentum distribution of the 

simulated disks do not match that distributions adopted for the Milky Way in 

§ 3.1.3. However, which is the fraction of the angular momentum which is 

misaligned, should be much less dependent on the distributions, as should the 

value of L^/Ltot calculated for the Milky Way. Even when we compare these 

numbers, we find that warp of the Milky Way (L^/Ltot = 0.16 =1= 0.03, see § 3.1.3) 

is several times stronger than in any of our high mass simulations (which peak at 

= 0.04). 

It is interesting to directly compare the Sl-iO, S2-i0, and S3-i0 simulations. In 
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Figure 3.15: As in Figure 3.5, but for the simulations with a low mass (left), inter

mediate mass (middle), and high mass (right) satellite on a polar orbit. Note that 

the right-most panel has a different vertical scale. The first perigalacticon occurs 

at t = 0.60 Gyr for all simulations, while the second occurs at t = 1.75,1.70, and, 

1.45 for simulations S2-i0, Sl-iO, and S3-i0 respectively. 
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Figure 3.16: As in Figure 3.6, but for the simulations with a low mass (dotted), 

intermediate mass (solid), and high mass (dashed) satellite on a polar orbit. The 

first perigalacticon occurs at ^ = 0.60 Gyr for all simulations, while the second oc

curs at if: = 1.75, 1.70, and, 1.45 for simulations S2-i0, Sl-iO, and S3-i0 respectively. 
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Figure 3.17: Log-spaced contours of the projected density of the bulge and disk 

in the low mass (top), intermediate mass (middle), and high mass (bottom) sim

ulations with polar orbits at the peak of after the first perigalactic passage 

{t = 0.80 Gyr for S2-i0 and S3-i0, t = 0.85 Gyr for Sl-iO). The left panels are the 

x-z projections, while the right panels are the y-z projections. The global tilt of 

the disk has been removed. 

Figure 3.15, we plot the x and y components of and while we plot the 

magnitude and orientation of in Figure 3.16. All satellites are on polar orbits, 

so the disks are only affected by the primary and secondary effects of Lghrink- The 

amount of angular momentum transferred to the disk scales roughly as the mass 

of the satellite — note the difference in vertical scale for the rightmost panel of 

Figure 3.15. 

In Figure 3.17 we show projections of the three simulations at the time when 

peaks after the first perigalactic passage. The galactic longitude of Ly^ for 
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all of these simulations at this snapshot is I « 285°, so we expect the disk to 

warp up for negative y/down for positive y, and a slight warp up at positive 

x/ down at negative x. The low mass satellite has no discernible effect on the disk. 

The intermediate mass satellite excites a small warp in the expected direction. 

The disk interacting with the high mass satellite displays a warp in the expected 

direction as part of its overall disturbed appearance. 

3.2.5.3 Orbital eccentricity 

Using the "r20" simulations, we examine how the orbital eccentricity affects the 

disk warping. The satellites in the Sl-r20-i0 and S2-r20-i0 simulations have the 

same orbital angular momenta as in the Sl-iO and S2-i0 simulations, but are on 

low eccentricity orbits compared to the high eccentricity of the fiducial Sl-iO sim

ulation. Therefore, they spend a larger fraction of their time at relatively small 

radii, but do not penetrate as far into the galaxy. 

In Figure 3.18, we plot the x and y components of and for these 

simulations. In all cases, the three effects seen are the transfer of ^shrink from 

the satellite to the disk (in particular, the outer disk), the inner disk acquiring 

—Lj; due to the slewing potential, and precession rotating the —Ly component 

into +Lx (see Figure 3.2, remembering that the disk is prograde, by definition). 

Figure 3.19 shows the magnitude and orientation of the warp angular momentum 

L^. Once the warp is initially excited, it is maintained at roughly the same level, 

which is comparable to that seen after the first perigalactic passage of a satellite 

on the corresponding high eccentricity orbit. The variation between apo- and 

perigalacticon is not nearly as large, so the orientation of the angular momentum, 

which changes somewhat with orbital phase, may be strongly dependent on the 

particular phase of our initial conditions. Still, we note that the orientation is 

most often toward I « 270°. 
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Figure 3.18: As in Figure 3.5, but for satellites on low-eccentricity polar orbits. 

The left panel represents the low mass satellite S2, while the right panel repre

sents the intermediate mass satellite SI. The perigalactica are at i = 0.00, 0.60, 

and 1.20 Gyr for Sl-r20-i0 and t = 0.00, 0.65, and 1.25 Gyr for S2-r20-i0. 
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Figure 3.19: As in Figure 3.6, but for satellites on low-eccentricity polar orbits. 

The perigalactica are at t = 0.00, 0.60, and 1.20 Gyr for Sl-r20-i0 and t — 0.00, 

0.65, and 1.25 Gyr for S2-r20-i0. 
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Figure 3.20: Log-spaced contours of the projected density of the bulge and disk 

in the Sl-r20-i0 simulation at time i = 0.15 Gyr. The left panels are the x-z projec

tions, while the right panels are the y-z projections. The global tilt of the disk has 

been removed. 
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As before, the low mass satellite does not excite a visible warp. The warp 

angular momentum initially peaks att — 0.15 Gyr in the Sl-r20-i0 simulation; 

Figure 3.20 shows a plot of the simulation at this point. Based on the orientation 

I « 270°, we expect the disks to warp up at negative j//down at positive y. A 

clear warp down at positive y is visible. 

3.2.6 Discussion 

The relationship between the properties of satellite galaxies and the warps they 

excite is complicated. In our simulations, we have identified the following trends: 

• Angular momentum is transferred between the satellite and the disk be

cause the satellite orbit shrinks and because the satellite precesses if it is on 

an inclined orbit. The angular momentum due to precession is transferred 

evenly throughout the disk, tilting it uniformly, while the angular momen

tum due to the shrinking orbit is transferred more efficiently to the outer 

disk, tilting it further and warping the disk. 

• A secondary effect of the tilting potential is a tilt of the disk angular mo

mentum toward the slewing vector (Ostriker & Binney, 1989). This effect is 

stronger for the inner disk, causing the disk to warp. 

• The warp reaches its maximum amplitude approximately one disk rotation 

period after the perigalactic passage. Differential precession then dissipates 

the warp within a couple of disk rotation periods, but it is renewed with 

each subsequent perigalactic passage. The warp is often asymmetric, with a 

much larger amplitude on one side than the other, as seen in the Milky Way 

and about one third of external warped galaxies (Schwarzkopf & Dettmar, 

2001). 
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The orientation of the warp has a complicated dependence. As a general 

rule, the warp angular momentum trails slightly behind the satellite angu

lar momentum with respect to the galactic rotation when the satellite is on 

a polar orbit (/ « 285° if the satellite angular momentum is directed to

ward I = 270°), while the warp angular momentum leads (trails) this value 

when the satellite is on a prograde (retrograde) orbit. However, precession 

quickly scrambles these relationships, and the disk in the polar Sl-iO simu

lation has a warp directed toward I « 90° at late times. 

Satellites on highly eccentric orbits excite warps at perigalacticon. These 

warps slowly dissipate, but can be enhanced by further perigalactic pas

sages. Satellites on low eccentricity orbits quickly reach an equilibrium 

warp amplitude that is comparable to the warp excited by the same satel

lite after one perigalactic passage on a highly eccentric orbit with the same 

angular momentum. 

The warps occur in the outer regions of the disk, typically between 15 and 

20 kpc, while the Milky Way warp starts at much smaller radius. 

Larger satellites are much more efficient at exciting warps than smaller 

satellites. In particular, a satellite with a mass of 1 x 10^° MQ has a large 

effect on a Milky Way mass disk (though this might more properly be con

sidered disruption of the disk than warping), a satellite with a mass of 

2 X 10® MQ can excite a small warp in the disk, and a satellite with a mass 

of 4 X 10® MQ can only excite a very mild warp after several perigalactica. 

The degree of warping is roughly proportional to the satellite mass; the total 

magnitude of the warp angular momentum is typically « 1% of the orbital 

angular momentum of the satellite. Therefore, Sgr, with its current mass 
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and orbit, is too small to be responsible for the Milky Way warp. The LMC 

is significantly larger, and we find that the Milky Way warp angular mo

mentum is ~ 1% of the orbital angular momentum of the LMC. However, 

the orientation of the warp leads the LMC, which is only expected if the 

LMC is on a prograde orbit; in fact, the LMC is on a retrograde orbit. There

fore, it is not yet clear if any of the Milky Way satellites are responsible for 

its warp. 

• The magnitude of the warp angular momentum in all of our simulations is 

less than the angular momentum calculated for the Milky Way's warp in 

§ 3.1.3. This is even true for our high-mass S3 models, in which the disk 

appears severely disrupted, far more disrupted than the observed plane of 

the Milky Way. This may suggest that the mass models adopted in § 3.1 and 

§ 3.2 are mismatched. We attempt to compensate for this by comparing the 

simulation's to the Milky Way's L^/Ltoi, which should be much less de

pendent on the adopted mass and angular momentum distributions. Even 

when we do this, the warp of the Milky Way appears several times larger 

than any warp seen in our simulations. 



97 

CHAPTER 4 

FIGURE ROTATION OF COSMOLOGICAL DARK MATTER HALOS 

This chapter has been accepted for publication as Bailin & Steinmetz (2004a). 

4.1 Introduction 

Although there have been many theoretical studies of the shapes of cosmological 

dark matter halos (e.g. Dubinski & Carlberg, 1991; Warren et al., 1992; Cole & 

Lacey, 1996; Jing & Suto, 2002), there has been relatively little work done on how 

those figure shapes evolve with time, in particular, whether the orientation of 

a triaxial halo stays fixed, or whether the figure rotates. While the orientation 

of the halo can clearly change during a major merger, it is not known whether 

the orientation changes in between cataclysmic events. Absent any theoretical 

prediction one way or the other, it is usually assumed that the figure orientation 

of triaxial halos remain fixed when in isolation (e.g. Subramanian, 1988; Johnston 

et al., 1999; Lee & Suto, 2003) 

Early work at detecting figure rotation in simulated halos was done by Du

binski (1992) (hereafter D92). While examining the effect of tidal shear on halo 

shapes, he found that in all 14 of his 1-2 x 10^^ Mq halos, the direction of the ma

jor axis rotated uniformly around the minor axis. The period of rotation varied 

from halo to halo, and ranged from 4 Gyr at the fast end to 50 Gyr at the slow end, 

or equivalently the angular velocities ranged between 0.1 and 1.6 km s~^ kpc~^ 

^ It is difficult to draw statistics from this small sample size, especially since the 

^It may be more intuitive to think of angular velocity in units of radians Gyr~^ rather than 
the common unit of pattern speed, km kpc~^. Fortunately, the two units give almost identical 
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initial conditions of this simulation were not drawn from cosmological models, 

but were performed in a small isolated box with the linear tidal field of the exter

nal matter prescriptively superimposed (Dubinski & Carlberg, 1991). Given that 

the main result of D92 is that the tidal shear may have a significant impact on 

the shapes of halos, it is clearly important to do such studies using self-consistent 

cosmological initial conditions. 

Recent studies of figure rotation come from Bureau et al. (1999) (BFPM99) and 

Pfitzner (1999) (P99). P99 compared the orientation of cluster mass halos in two 

snapshots spaced 500 Myr apart in an SCDM simulation {Cl = 1, A = 0, /i = 0.5). 

He detected rotation of the major axis in ~ 5% of them, and argued that the true 

fraction with figure rotation is probably higher. BFPM99 presented one of these 

halos which was extracted from its cosmological surroundings and left to evolve 

in isolation for 5 Gyr. During that time, the major axis rotated around the minor 

axis uniformly at all radii at a rate of 60° Gyr~^, or about 1 km kpc~^. 

There may be observational consequences to a dark matter halo whose figure 

rotates. BFPM99 suggested that triaxial figure rotation is responsible for the spiral 

structure of the blue compact dwarf galaxy NGC 2915. Outside of the optical 

radius, NGC 2915 has a large H I disk extending to over 22 optical disk scale 

lengths (Meurer et al., 1996). The gas disk shows clear evidence of a bar, and a 

spiral pattern extending over the entire radial extent of the disk. BFPM99 argue 

that the observed gas surface density is too low for a bar or spiral structure to 

form by gravitational instability, and that there is no evidence of an interacting 

companion to trigger the pattern. They propose that the pattern may instead be 

triggered by a rotating triaxial halo. 

Bekki & Freeman (2002) followed this up with Smoothed Particle Hydrody-

numerical values. 
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namics (SPH) simulations of a disk inside a halo whose figure rotates, and showed 

that a triaxial halo with a flattening of 6/a = 0.8 and a pattern speed of 3.84 km 

kpc~^ could trigger spiral patterns in the disk, or warps when the figure rota

tion axis is inclined to the disk symmetry axis. Masset & Bureau (2003) (hereafter 

MB03) found that in detail, the observations of NGC 2915 are better fit by increas

ing the disk mass by an order of magnitude (for example, if most of the hydrogen 

is molecular, e.g. Pfermiger, Combes, & Martinet, 1994), but that a triaxial halo 

with b/a « 0.85 and a pattern speed of between 6.5 and 8.0 km kpc~^ also 

provides an acceptable fit. 

MB03 concluded that if the halo were undergoing solid body rotation at this 

rate, its spin parameter would be A ~ 0.157, which is extremely large (only 

5 X 10~^ of all halos have spin parameters at least that large). However, this argu

ment may be flawed because the figure rotation is a pattern speed, not the speed 

of the individual particles which constitute the halo, and so it is in principle inde

pendent of the angular momentum; in some cases the figure may even rotate ret

rograde to the particle orbits (Freeman, 1966). Schwarzschild (1982) discusses in 

detail the orbits inside elliptical galaxies with figure rotation. He finds that mod

els can be constructed from box and X-tube orbits, which have no net streaming 

of particles with respect to the figure (though they have prograde streaming at 

small radius and retrograde streaming at large radius), and so result in figures 

and particles with the same net rotation. He also constructs models that include 

prograde-streaming .Z-tube orbits, which result in a figure that rotates slower 

than the particles. Stable retrograde Z-tube orbits also exist, but Schwarzschild 

(1982) did not attempt to include them in his models, so it may also be possible 

for the figure to rotate faster than the particles. While these results demonstrate 

the independence of the figure and particle rotation, it is not clear if they can be 
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translated directly to dark matter halos. Dark matter halos may have different 

formation mechanisms and may be subject to different tidal forces than ellipti

cal galaxies, and the different density profile may also have a large effect on the 

viable orbital families (Gerhard & Binney, 1985). 

There are other consequences of triaxial figure rotation. A rotating potential 

introduces an oscillating force on particles moving within the potential. Disk 

stars that have orbital frequencies in resonance with this oscillating force may ex

perience very large changes in their orbit due to the figure rotation. For instance, 

Tremaine & Yu (2000) examined the behaviour of disks in halos with retrograde 

figure rotation. In these disks, stars can get trapped in the Binney resonance, 

where fls — 0,2 = Op, for vertical and azimuthal frequencies ^2 and 0,3 respec

tively, and a halo pattern speed of Op (Binney, 1981). If the pattern speed falls 

slowly toward zero, stars trapped in this resonance are pulled out of the disk 

and into polar orbits, while if the figure rotation smoothly proceeds from retro

grade to prograde, the stars trapped in this resonance are flipped 180° and end 

up on retrograde orbits. Figure rotation may also erase or modify any intrinsic 

alignments between the orientation of neighbouring halos (see § 5). 

If there are observational consequences to dark halo figure rotation, such as 

those found by Bekki & Freeman (2002) and Tremaine & Yu (2000), they can be 

used as a direct method to distinguish between dark matter and models such as 

Modified Newtonian Dynamics (MOND) that propose to change the strength of 

the force of gravity (Milgrom, 1983; Sanders & McGaugh, 2002). Many of the 

traditional methods of deducing dark matter cannot easily distinguish between 

the presence of a roughly spherical dark matter halo and a modified force or in

ertia law. However, a major difference between dark matter and MOND is that 

dark matter is dynamical, and so tests that detect the presence of dark matter in 
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motion are an effective tool to discriminate between these possibilities. Among 

the tests that can make this distinction are the ellipticities of dark matter hales 

as measured using X-ray isophotes, the Sunyaev-Zeldovich effect (Sunyaev & 

Zeldovich, 1980), and weak lensing (Buote et al., 2002; Lee & Suto, 2003, 2004; 

Hoekstra et al., 2004); the presence of bars with parameters consistent with being 

stimulated by their angular momentum exchange with the halo (Athanassoula, 

2002; Valenzuela & Klypin, 2003); and spatial offset between the baryons and the 

mass in infalling substructure measured using weak lensing (Clowe, Gonzalez, 

& Markevitch, 2004). Rotation of the halo figure requires that dark matter is dy

namic, and therefore observable structure triggered by figure rotation potentially 

provides another test of the dark matter paradigm. 

In this chapter, we use cosmological simulations to determine how the figures 

of ACDM halos rotate. The organization of the chapter is as follows. § 4.2 presents 

the cosmological simulations. § 4.3 describes the method used to calculate the 

figure rotations, which are presented in § 4.4. Finally we discuss our conclusions 

in § 4.5. 

4.2 The simulations 

The halos are drawn from a large high resolution cosmological N-body simu

lation performed using the GADGET2 code (Springel et al., 2001). We adopt a 

"concordance" cosmology (e.g. Spergel et al., 2003) with Qq = 0.3, Oa = 0.7, 

f^bar = 0.045, h — 0.7, and erg = 0.9. The only effect of fibar is on the initial power 

spectrum, since no baryonic physics is included in the simulation. The simulation 

contains 512^ = 134, 217, 728 particles in a periodic volume 50 h~^ Mpc comoving 

on a side. All results are scaled into /i-independent units when possible. The full 

list of parameters is given in Table 4.1. 



Table 4.1. Parameters of the cosmological simulation. 

Parameter Value 

N 512^ 

Box size Mpc comoving) 50 

Particle mass (10'^ MQ) 7.757 

Force softening length {h~^ kpc) 5 

Hubble parameter h {Hq = 100 h km s~^ Mpc~^) 0.7 

QO 0.3 

0.7 

(TG 0.9 

S^BAR 0.045 
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Because of the large size of the files and limited available shared-memory, 

the simulation was split into 8 overlapping slabs segregated in the Cartesian z 

coordinate. Slab AO was still too large, so it was split again into 4 overlapping 

slices segregated in a:. The boundaries of the regions are listed in Table 4.2. To 

overcome problems at the edges of the slabs, only those groups whose centres of 

mass lie within the central 50% of each sliced dimension are used. For example, 

in slab Al, whose particles span a range in z from -12500 to 0 kpc, we only use 

thosehalos whose centres of mass lie in the range—9375 < 2; < —3125. Columns 4 

and 5 of Table 4.2 list the boundaries of this central region for each slab. The 

overlapping slabs provide complete coverage of the simulation volume. 

The minimum distance between the edge of a slab and the center of mass of 

a group is 3125 h~^ kpc comoving, much larger than the radius of any collapsed 

structure expected; the mass of a structure with virial radius ryir is 

M = ^TRACPERITR^IR, (4-1) 

where Ac is the enclosed overdensity for a virialized halo and scales as A,. = 

178R2^^^ if = 1 (Eke, Navarro, & Frenk, 1998). For the adopted cosmology, 

AC = 103.5. Therefore, in order to encounter the edge of its slab, a halo would 

need to have a mass of at least 3 x 10^^ ^0/ over an order of magnitude larger 

than the largest halo found. If there were a halo with an intrinsic mass larger than 

this whose center of mass lay as close as possible to a slab boundary, it would still 

be detected but would be assigned a mass of « 3 x 10^® h~^ MQ rather than its 

true mass. Therefore, the lack of any detected halo whose mass is within an order 

of magnitude of this is proof that there are no halos affected by slicing up the 

simulation volume. 

A friends-of-friends algorithm is used to identify halos (Davis et al., 1985). We 
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use the standard linking length of 

b = 0.2n-^/^ (4.2) 

where n = N/V is the global number density. 

Measuring the figure rotation requires comparing the same halo at different 

times during the simulation. We analyze snapshots of the simulation at lookback 

times of approximately 1000, 500, 300, and 100 h~^ Myr with respect to the 2; = 

0 snapshot. The scale factor a of each snapshot, along with its corresponding 

redshift and lookback time, is listed in Table 4.3. 

4.3 Methodology 

4.3.1 Introduction 

The basic method is to identify individual halos in the final z = 0 snapshot of 

the simulation, find their respective progenitors in slightly earlier snapshots, and 

measure the rotation of the axes through their common plane as a function of 

time. 

Precisely determining the direction of the axes is crucial and difficult. When 

merely calculating axial ratios or internal alignment, errors on the order of a few 

degrees are tolerable. However, if a pattern speed of 1 km s~^ kpc~\ as observed 

in the halo of BFPM99, is typical, then a typical halo will only rotate by 4° in 

between the penultimate and final snapshots of the simulation. Therefore, the 

axes of a halo must be determined more precisely than this in order for the figure 

rotation to be detectable. In fact, we should strive for even smaller errors to see 

if slower-rotating halos exist. It would have been difficult for P99 to detect ha

los rotating much slower than the halo presented in BFPM99; although the error 

varies from halo to halo (for reasons discussed in section 4.3.3), Figure 5.23 of P99 



Table 4.2. Boundaries of the slabs in the cosmological simulation. 

Slab Boundary in x Boundary in z Central Region in x Central Region in 2; 

{h ^ kpc) {h ^ kpc) {h ^ kpc) {h ^ kpc) 

bxxx-AOa -25000 - 0 -25000 -•-12500 -18750 --6250 -21875 - -15625 

hxxx-AOh 0 - 25000 -25000 ---12500 6250--18750 -21875 - -15625 

bxix-AOc -12500 -12500 -25000 - -12500 -6250 -6250 -21875 - -15625 

bxx;c-AOd 12500 - -12500 -25000 -• -12500 18750 -- -18750 -21875 - -15625 

bxxx-Al -25000 - 25000 -12500 - 0 -25000 - 25000 -9375 - -3125 

bxxx-A2 -25000 - 25000 0 -12500 -25000 -25000 3125- 9375 

bxxx-A3 -25000 - 25000 12500 -• 25000 -25000 - 25000 15625 - 21875 

bxxx-BO -25000 - 25000 -18750-- -6250 -25000 -25000 -15625 ---9375 

hxxx-Bl -25000 - 25000 -6250 --6250 -25000 -25000 -3125 --3125 

hxxx-V>l -25000 - 25000 6250-18750 -25000 - 25000 9375- 15625 

bxxx-B3 -25000 - 25000 18750- -18750 -25000 -25000 21875- -21875 

Note. — The periodic box extends from -25000 h ^ kpc to 25000 h ^ kpc in each dimen

sion. Slabs AOd and B3 span the periodic boundary in x and 2; respectively. All units are 
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Table 4.3. Snapshots used to calculate figure rotations. 

Snapshot Name Scale Factor Redshift Lookback Time 

(a) (^) (/i-i Myr) 

b090 0.89 0.1236 1108 

b096 0.95 0.0526 496 

b098 0.97 0.0309 296 

blOO 0.99 0.0101 98 

bl02 1.0 0.0 0 

shows that most of his halos had orientation errors of between 8° and 15°, corre

sponding to a minimum resolvable figure rotation of ~ 0.6 km s~^ kpc~^ for a 2a 

detection in snapshots spaced 500 Myr apart. 

A major difficulty in determining the principal axes so precisely is substruc

ture. The orientation of a mass distribution is usually found by calculating the 

moment of inertia tensor 7^ = arid then diagonalizing 7^ to find 

the principal axes. However, this procedure weights particles by r^. Therefore, 

substructure near the edge of the halo (or of the subregion of the halo used to 

calculate the shape) can exert a large influence on the shape of nearly spherical 

halos, especially if a particular subhalo is part of the calculation in one snapshot 

but not in another, such as when it has just fallen in. This is particularly problem

atic because subhalos are preferentially found at large radii (Ghigna et al., 2000; 

De Lucia et al., 2004; Gill et al., 2004; Gao et al., 2004). Moving substructures can 

also induce a false measurement of figure rotation due to their motion within the 
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main halo at approximately the circular velocity. 

To mitigate this, we first use particles in a spherical region of radius 0.6 Tvir sur

rounding the center of the halo, rather than picking the particles from a density 

dependent ellipsoid as in Warren et al. (1992) or Jing & Suto (2002). We find that 

those methods allow substructure at one particular radius to influence the over

all shape of the ellipsoid from which particles are chosen for the remainder of the 

calculation, and therefore bias the results even when other measures are adopted 

to minimize their effect. The choice of a spherical region biases the derived axis 

ratios toward spherical values, but does not affect the orientation. Secondly, the 

particles are weighted by 1/r^ so that each mass unit contributes equally regard

less of radius (Gerhard, 1983). Both D92 and P99 take similar approaches, but 

using radii based on ellipsoidal shells. Therefore, we base our analysis on the 

principal axes of the reduced inertia tensor 

4 = (4-3) 
k ^k 

In the majority of halos, the substructure is a small fraction of the total mass, 

usually less than 5% of the total mass within 60% of the virial radius (De Lucia 

et al., 2004, Figure 8), so its effect is much reduced. There are still some halos 

which have not yet relaxed from a recent major merger, in which case the "sub

structure" constitutes a significant fraction of the halo. To find these cases, the 

reduced inertia tensor is separately calculated enclosing spheres of radius 0.6, 

0.4, 0.25, 0.12, and 0.06 times the virial radius to search for deviations as a func

tion of radius (see § 4.3.4.1 for details). These radii are always with respect to the 

z = 0 value of Tyir-

We find that only halos with at least 4 x 10^ particles, or masses of at least 

~ 3 X 10^^ MQ have sufficient resolution for the orientation of the principal 

axes to be determined at sufficient precision (see § 4.3.3). There are 1432 halos in 
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Figure 4.1: Histogram of the fraction of the final mass that comes from the b096 

(z w 0.05, solid line) and b090 (z « 0.12, dashed line) halo which contributes the 

most mass. 

the z = 0 snapshot satisfying this criterion, with masses extending up to 2.8 x 

lO^'' h-^ M0. 

4.3.2 Halo matching 

To match up the halos at z = 0 with their earlier counterparts, we use the individ

ual particle numbers provided by GADGET which are invariant from snapshot 

to snapshot, and find which halo each particle belongs to in each snapshot. The 

progenitor of each z = 0 halo in a given 2; > 0 snapshot is the halo that contributes 

> 90% of the final halo mass. Sometimes no such halo exists; in these cases, the 

b096 

b090 
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halo has only just formed or underwent a major merger and so is not useful for 

our purposes. Figure 4.1 shows a histogram of the fraction of the final halo mass 

that comes from the b096 {z « 0.05) halo which contributes the most mass. There 

are also some cases where two nearby objects are identified as a single halo in an 

earlier snapshot but as distinct objects in the final snapshot. We therefore impose 

the additional constraint that the mass contributed to the final halo must also be 

> 90% of the progenitor's mass. In the longer time between the earliest snapshot 

b090 and the final snapshot bl02, a halo typically accretes a greater fraction of its 

mass, and so a more liberal cut of 85% is used for this snapshot (see the dashed 

histogram in Figure 4.1). 492 of the halos that satisfied the mass cut did not have 

a progenitor which satisfied these criteria in at least one of the z > 0 snapshots 

and so were eliminated from the analysis, leaving a sample of 940 matched halos. 

4.3.3 Error in axis orientation 

There are two sources of errors that enter into the determination of the axes: 

how well the principal axes of the particle distribution can be determined, and 

whether that particle distribution has a smooth triaxial figure. Here we estimate 

the error assuming that it is not biased by substructure. The halos for which this 

assumption does not hold will become apparent later in the calculation. 

For a smooth triaxial ellipsoid represented by N particles, the error is a func

tion of N and of the intrinsic shape: as the axis ratio b/a or c/b approaches unity, 

the axes become degenerate. To quantify this, we have performed a bootstrap 

analysis of the particles in a sphere of radius 0.6 r^ir of each z = 0 halo (Heyl 

et al., 1994). If the sphere contains N particles then we resample the structure by 

randomly selecting N particles from that set, with no constraint against selecting 

duplicate particles, and determine the axes from this bootstrap set. We do this 

100 times for each halo. The dispersion of these estimates around the calculated 
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axis is taken formally as the "\a" angular error, and is labelled ^boot-

As expected, the two important parameters are N and the axis ratio. We focus 

here on the major axis, for which the important axis ratio is 6/a (the results for the 

minor axis are identical with the minor-to-intermediate axis ratio cjh replacing 

hjd). The top panels of Figures 4.2 and 4.3 show the dependence of the bootstrap 

error on N and hja respectively for all halos with M > 10^^ MQ. The solid 

lines are empirical fits: 

The form of equation (4.4) is not surprising; if a smooth halo was randomly sam

pled, we would expect the errors to be Poissonian with an dependence. 

However, the cosmological halos are not randomly sampled. Individual particles 

"know" where the other particles are, because they have acquired their positions 

by reacting in the potential defined by those other particles. Therefore, the errors 

may be less than expected from a randomly sampled halo. To test this, we con

struct a series of smooth prolate NFW halos (Navarro, Frenk, & White, 1996) with 

b/a axis ratios ranging from 0.5 to 0.9, randomly sampled with between 3 x 10^ 

and 3 x 10^ particles, and perform the bootstrap analysis identically for each of 

these halos as for the cosmological halos. Because the method for calculating axis 

ratios outlined in § 4.3.1 biases axis ratios toward spherical, the recovered 6/a of 

these randomly sampled halos is larger than the input value, and ranges from 

0.65 to 0.95. The errors for these randomly sampled smooth halos are shown as 

asterisks in Figures 4.2 and 4.3. 

The top panel of Figure 4.2 shows a rise in the dispersion of the error for 

N ^ 4000, with many halos having errors greater than the 0.1 radians necessary 

(4.4) 

and 

(4.5) 
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Figure 4.2: Angular bootstrap error ^boot as a function of the number of parti

cles N within the central 0.6 rvir of each halo. Points are the cosmological halos, 

and asterisks are randomly sampled smooth NFW halos. (Top): Angular error 

^boot- The solid line is the fit 0err,w from equation (4.4). (Middle): Ratio between 

the angular error and the error expected for the halo given its axis ratio b/a, i.e. 

0boot/^err.6/a- The solid line is ^err.Ar from equation (4.4) renormalized to the typical 

error of 0.02 radians. (Bottom): Ratio between the angular error and the analytic 

estimate 0err from equation (4.6). 
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Figure 4.3: Angular bootstrap error ^boot as a function of the axis ratio b/a of 

each halo. Points are the cosmological halos, and asterisks are randomly sam

pled smooth NFW halos. (Top): Angular error ^boot- The solid line is the fit den,b/a 

from equation (4.5). (Middle): Ratio between the angular error and the error ex

pected for the halo given the number of particles N, i.e. Ohoot/deiT,N- The solid 

line is 0err,6/a from equation (4.5) renormalized to the typical error of 0.02 radi

ans. (Bottom): Ratio between the angular error and the analytic estimate 0err from 

equation (4.6). 
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to detect the figure rotation of the halo presented in BFPM99. Therefore, we only 

use halos with N > 4000, or equivalently masses M > 3.1 x 10^^ h~^ MQ. 

The bootstrap error appears to be completely determined by N and b/a. The 

residuals of ^boot with respect to 6'err.iv are due to 0err,6/a and vice versa. This is 

shown in the middle panels of Figures 4.2 and 4.3. In the middle panel of Fig

ure 4.2 we have divided out the dependence of ^boot on the axis ratio, making 

apparent an extremely tight relation between the residual and N, while in the 

middle panel of Figure 4.3 we have divided out the dependence of ^boot on N, 

showing the equally tight relation between the residual and b/a. It is apparent 

from comparing the points and asterisks that the errors in the cosmological halos 

are slightly smaller than for randomly sampled smooth halos. 

Combining equations (4.4) and (4.5), and noting that the typical error is ^boot ~ 

0.02 radians, we find the bootstrap error is well fit by 

The bottom panels of Figures 4.2 and 4.3 show the residual ratio between the 

bootstrap error ^boot and the analytic estimate Oerr- The vast majority of points lie 

between 0.8 and 1.0, indicating that Oerr overestimates the error by ~ 10%. Equa

tion (4.6) breaks down as b/a approaches unity; these halos are nearly oblate and 

so do not have well-defined major axes. It also becomes inaccurate at very low 

b/a due to low-mass poorly-resolved halos. Even in these cases, the error esti

mate is conservative, but to be safe we have eliminated axes with h/a < 0.35 or 

h/a > 0.95 from the subsequent analysis, regardless of the nominal error. The 

randomly-sampled smooth halos follow equation (4.6) extremely well, so the 

non-Poissonianity of the sampling in simulated halos reduces the errors by 10%. 

Calculating the bootstraps is computationally expensive, so equation (4.6) is 

used for the error in all further computation. Because this estimate is expected to 

2 ^ / N l - b / a  

1 
(4.6) 
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be correct for smooth ellipsoids, cases where the error is anomalous are indica

tions of residual substructure. 

4.3.4 Figure rotation 

Ideally one would fit the figure rotation by comparing the orientation of each 

of the axes at each snapshot to that of a unit vector rotating uniformly along a 

great circle, and minimize the to find the best fit uniform great circle trajectory. 

However, this requires minimizing a non-linear function in a four-dimensional 

parameter space, a non-trivial task. 

We adopt two simpler and numerically more robust methods for measuring 

the figure rotation. The first method, referred to as the "plane method", involves 

fitting the major or minor axis measurements at all five snapshots to a plane, and 

then measuring the rotation of the axis along the plane. This fully takes the errors 

and measurements at all snapshots into account. However, it presupposes that 

the figure rotation axis is perpendicular to the plane containing the major or mi

nor axis. The second method, referred to as the "quaternion method", involves 

comparing all of the axes at two snapshots to find the axis through which the fig

ure has rotated. This method gives a figure rotation axis that is not constrained to 

have any particular relation to the major or minor axis. However, by construction 

it measures the rotation from a single reference frame to another single reference 

frame, and therefore can only include information from two snapshots at a time. 

It is also not possible to take into account the errors in the axis determinations 

— in particular, for prolate halos, where the error in the determination of the 

intermediate and minor axes are much larger than the error in the major axis, 

physical rotation of the major axis can be masked by spurious fluctuations in the 

two degenerate axes. 

The strengths and weaknesses of these two methods complement each other 
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<t> Figure rotation axis 

Major axes 

X Best fit plane 

Figure 4.4: Diagram that demonstrates how we fit a plane to the major axis mea

surements at all snapshots (thick lines) and then find the increase of phase (f) as 

a function of time. The figure rotation axis is perpendicular to the best fit plane, 

and defined such that 0 increases around it counter-clockwise with time. 

well. We adopt the plane method as our primary method of measuring the figure 

rotation. The quaternion method is used to check for bias in the derived figure 

rotation axes. 

4.3.4.1 Plane method 

For the plane method, we first solve for the plane z = ax + by that fits the major 

axis measurements of the halo best at all timesteps, assuming the error is neg

ligible. The change of the phase of the axes in this plane as a function of time 

are then fit by linear regression. A schematic diagram of this process is shown in 

Figure 4.4. We follow the same procedure for the minor axes when appropriate, 

as discussed in § 4.4. 

The degree to which the axes are consistent with lying in a plane is checked 
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by calculating the out-of-plane 

(4.7) 
^ i "eiii 

where u is the number of degrees of freedom and A9i is the minimum angular 

distance between the major axis at timestep i and the great circle defined by the 

best fit plane. 

Because the axes have reflection symmetry, it is impossible to measure a change 

in phase of more than tt/2. The phases are adjusted by units of tt such that the 

difference in phase between adjacent snapshots is always less than 7r/2. If the 

figure were truly rotating by 90° or more in between the snapshots, it would be 

impossible to accurately measure this rotation since the angular frequency would 

be larger than the Nyquist frequency of our sampling rate (Nyquist, 1928). Any 

faster pattern speeds would be aliased to lower angular velocities, with an aliased 

angular velocity of ^Nyq — {^p — ^Nyq), where fip is the intrinsic angular velocity of 

the pattern and f^Nyq is the Nyquist frequency. For snapshots spaced 500 h~^ Myr 

apart, the maximum time between the snapshots we analyze, the maximum de

tectable angular velocity is 3.8 h km kpc~^ We do not expect the figure to 

change so dramatically as we have excluded major mergers. However, this can 

be checked post facto by checking whether the distribution of measured angu

lar velocities extends up to the Nyquist frequency; if so, then there are likely 

even more rapidly rotating figures whose angular frequency is aliased into the 

detectable range, fooling us into thinking they are rotating slower. If the mea

sured distribution does not extend to the Nyquist frequency, then it is unlikely 

that there are any figures rotating too rapidly to be detected (see § 4.4). 

The best fit linear relation for the phase as a function of time is found by linear 

regression. Because the component of an isotropic angular error projected onto 

a plane is half of the isotropic error, we divide the error of equation (4.6) by two 
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before we perform the regression. The slope of the linear fit gives the pattern 

speed Qp of the figure rotation. The error is the la limit on the slope. 

Once we have calculated the pattern speed for each halo, we can eliminate 

the cases where substructure has severely impacted the results. In these cases, 

the signal is dominated by a large subhalo at a particular radius, so the derived 

pattern speed will be significantly different when the sphere is large enough to 

include the subhalo from when the subhalo is outside the sphere. We have calcu

lated the pattern speed using enclosing spheres of radius 0.6, 0.4, 0.25, 0.12, and 

0.06 of the virial radius. The fraction of mass in subhalos can be estimated via 

the change in the pattern speed Qp at adjacent radii. Because the reduced inertia 

tensor is mass-weighted, the figure rotation of a sphere with a smooth compo

nent rotating at smooth plus a subhalo containing a fraction fg of the total mass 

moving at the circular velocity Vc at radius R Tvir is approximately 

fip ~ (1 — smooth + fs-^—) (4.8) 
Ih Tyjl-

where the difference due to the presence of the subhalo is 

Ar2p = 
R Tvir \  

GM{< R rvir) 
R^ r: 3 

vir 

(4.9) 

If the density profile is roughly isothermal, the enclosed mass is 

M(< R Tvir) = ^TrAcPcriti? (4.10) 

Solving equations (4.9) and (4.10) gives an expression for the fraction of the mass 

in substructure given a jump of AS7p in the measured pattern speed when crossing 

radius R r^ir-

f, = . (4.11) 

V 3^^'^cPcrit 

The term in the square root is equal to 0.72 h km kpc~^. For each halo, we 

compute the value of fs due to the jump AQp between each set of adjacent radii, 
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Figure 4.5: Log-weighted projected density of 4 halos with a range of subhalo 

fractions fg. The subhalo fractions are 0.166 (top-left), 0.065 (top-right), 0.045 

(bottom-left), and 0.016 (bottom-right). Axes are in units of kpc from the 

halo center. All halos have masses in the range 2 - 3 x 10^^ h~^ MQ. 
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i.e. for R = 0.4,0.25,0.12, and 0.06, and adopt the largest value of /« as the sub

structure fraction of the halo. Figure 4.5 shows log-weighted projected densities 

of 4 halos in the mass range 2 - 3 x 10^^ h~^ MQ with a variety of values of f^, 

ranging from 0.166 at the top-left to 0.016 at the bottom right. After examining 

a number of halos spanning a range of fs, we adopt a cutoff of fs < 0.05 for 

undisturbed halos. This eliminates 289 of the 940 halos, leaving 651 undisturbed 

halos. 

A further 158 halos were eliminated because the angular error approached 

7r/2 in at least one of the snapshots. This includes the halos with b/a < 0.35 or 

b/a > 0.95 discussed in § 4.3.3. We also eliminate cases where the reduced from 

the linear fit of phase versus time indicates that the intrinsic error of the direction 

determination is much lower than suggested by equation (4.6), indicating that 

the model of the halo as a smooth ellipsoid is violated (10 halos with xl < 0-1). 

and those cases where the phase does not evolve linearly with time (134 halos 

with xl > 10). Finally, we eliminate halos where the axes do not lie on a common 

plane, i.e. the 32 halos where xlop > 10. Therefore, the final sample consists of 

317 halos. 

A sample halo is shown in the first five panels of Figure 4.6. It was chosen ran

domly from the halos with relatively low errors and typical pattern speeds. It has 

amass of 1.9 x 10^^ MQ, and a pattern that rotates at 0.32 ±0.01 hkm kpc"\ 

It has a spin parameter A 0.047, and axis ratios of b/a = 0.86 and c/a = 0.77 

at z = 0. The derived substructure fraction is = 0.045, and the out-of-plane 

xlop — 8-5. The solid line shows the measured major axis in each snapshot, which 

rotates counterclockwise in this projection. The phase of its figure rotation as a 

function of time is shown in the bottom-right panel of Figure 4.6. The zero point 

is arbitrary, but is consistent from snapshot to snapshot. The linear fit is also 
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Figure 4.6: (Upper-left five panels): Projection onto the best fit plane of the inner 

0.6 Tvir of a sample halo at the five snapshots we analyze. Axes are in units of 

h~^ kpc from the halo center. From left to right, top to bottom, the snapshots 

are at 1108, 496, 296, 98, and 0 h~^ Myr before z = 0. The solid line is the major 

axis, which rotates counterclockwise by 20° from beginning to end. (Bottom-right): 

Phase of the major axis in the rotational plane of the sample halo. The zero point 

is arbitrary, but identical in all snapshots. The solid line is the linear fit, with a 

slope of 0.33 h radians Gyr~^ 



121 

shown, which has a reduced of 2.9. 

4.3.4.2 Quaternion method 

For the quaternion method, we directly measure the rotation between the axes at 

two snapshots. If the major, intermediate, and minor axes for snapshot j are a^, 

hj, and Cj respectively, we construct a rotation matrix Rj that transforms vectors 

into the principal axis frame: 

Rj = 

^ '^j,y ^ 

^j,y (4.12) 

\ ^j,y ) 

The matrix expressing the rotation from snapshot j to snapshot k is A = 

RjRk- This rotation matrix can be represented as a quaternion^. Defining T = 

2\/l + Tr A, the components of the quaternion q are given by 

qw = T/A 

Qx = (^32 -  A23)/T 

Qy = (^13 - A3i )/T 

Qz = (A21 — Ai2)/T. 

The angle of rotation between the snapshots is then 6 = 2 arccos q^, and the un-

normalized figure rotation axis is (qx,Qy,Qz)-

4.4 Results 

Figure 4.7 shows the measured figure rotation speeds of the major axes for all of 

the halos in the sample, as a function of their error using the plane method. Halos 

with measured pattern speeds less than twice as large as the estimated error (the 

dashed line) are taken as non-detections. 278 of the 317 halos have detected figure 

^see, for example, the Matrix and Quaternion FAQ at 
http://vamos.sourceforge.net/matrixfaq.htm 
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Figure 4.7: Measured pattern speed of the rotation of the major axis. The x-axis 

is the error in the pattern speed. The solid line indicates where the measured 

pattern speed is equal to the estimated error, while the dashed line is the 2a limit. 

The horizontal dotted line indicates the Nyquist limit. 
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Figure 4.8: Histogram, of the pattern speeds of the figure rotation, expressed in 

log VLp. The thin histogram contains all halos that have 2a detections of figure 

rotation, i.e. those above the dashed line of Figure 4.7, and is incomplete at Vlp < 

0.126 h km kpc~^ or equivalently logfip < —0.9. The thick histogram contains 

only those halos with errors less than 0.01 h km kpc~^ and is incomplete at 

Vlp < 0.015 h km kpc"^ or logfip < —1.8. The dashed curves are Gaussian fits 

to the histograms. The vertical dotted line indicates the Nyquist limit. 
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Figure 4.9: Fractional histogram of pattern speeds of the figure rotation, ex

pressed linearly in Qp. The thin histogram contains all halos that have 2cr de

tections of figure rotation (incomplete at Qp < 0.126 h km s~^ kpc~^), while the 

thick histogram contains halos with errors less than 0.01 h km kpc~^and is 

complete down to ftp = 0.015 h km kpc~^. The dashed curve is the log normal 

fit given by equation (4.14). 
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rotation. A histogram of the pattern speeds is presented in Figure 4.8, expressed 

in log flp. The thin histogram contains all halos with 2 a detections, while the thick 

histogram contains those with the smallest errors, less than 0.01 /i km s"^ kpc"^ 

The largest upper limit due to a non-detection in the main sample is Jlp < 0.126 

(log rip < —0.9), so the thin histogram is incomplete below this level, while the 

low error sample contains only one upper limit, Qp < 0.015 (log Clp < —1.8), so the 

thick histogram is complete down to this level. The dashed curves are Gaussian 

fits to the histograms. The fit to the thin histogram, which has the largest sample 

size but is incomplete at low flp, peaks at logilp = —0.80 and has a standard 

deviation of 0.29, while the thick curve, which contains fewer halos but is less 

biased toward large values of Qp, peaks at logfip = —0.84 and has a standard 

deviation of 0.34. We give more weight to the thick histogram, whose points all 

have very small errors, and propose that the true distribution peaks at log Q,p = 

—0.83 with a standard deviation of 0.36. Expressed as a log normal distribution, 

the probability is 

where Qp^ = = 0.148 h km s~^ kpc~^ and the natural width a = 0.36 In 10 = 

0.83. This fit is shown in Figure 4.9, compared to the fractional distribution of 

halos in the full (thin) and low error (thick) samples, and encompasses both the 

large number of halos with low flp seen when the errors are sufficiently small, 

and the tail at high fip seen when the sample size is sufficiently large. 

For comparison, the halo in BFPM99 has a pattern speed o f 2  h  km s"^ kpc"^ 

This lies slightly above the top end of our distribution; the maximum pattern 

speed in our sample is 1.01 h km s~^ kpc~^. Based on the log normal fit of equa

tion (4.14), we estimate the fraction of halos with Qp > 2 h km kpc~^ to be 

10"^. Therefore, this halo is unusual, but it is not unreasonable to find a halo 

(4.14) 
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with such a pattern speed in a large simulation. Given the size of the errors in 

P99, and that he found very few halos with figure rotation, it should not be sur

prising that P99 could only detect pattern speeds at the upper end of the overall 

distribution. The different adopted cosmologies may also influence the results 

(note, however, that this comparison is performed in /i-independent units). Our 

results are also mostly consistent with D92, who finds pattern speeds of between 

0.1 and 1.6 km kpc~^ in a sample of 14 halos. We have trouble reproducing 

the most rapidly rotating halos in D92, but this may be a product of the heuristic 

initial conditions in D92 compared to the cosmological initial conditions we use. 

Another useful reference value is t'2oo/'"2oo/ the orbital frequency at r2oo/ which 

has a value of 1.0 h km kpc"^. This is the same for all halos, because the only 

timescale in a purely gravitational system is 1/ ̂ /p, and the mean density p inside 

r2oo is the same for all halos by definition. 

In order to account for the spiral structure in NGC 2915, a triaxial figure would 

need to rotate at 7 ± 1 km s~^ kpc"^ (MB03). This is almost an order of magnitude 

faster than the fastest of the halos in our sample, and the log normal fit from 

equation (4.14) suggests that the fraction of halos with fip > 6 km kpc~^ is 5 x 

10"''. Therefore, the figure rotation of undisturbed ACDM halos can not explain 

the spiral structure of NGC 2915. SPH simulations of gas disks inside triaxial 

halos with pattern speeds of 0.77 km s~^ kpc~^, comparable to the fastest pattern 

speeds in our sample, show very weak if any enhancement of spiral structure 

compared to a static halo (Bekki & Freeman, 2002, Figure 2f). Therefore, it is 

unlikely that triaxial figure rotation can be detected in extended gas disks. 

The dotted line in both Figures 4.7 and 4.8 shows the Nyquist frequency of 

3.8 h km s~^ kpc~^. If the measured distribution of pattern speeds extended up 

to the Nyquist frequency, the intrinsic distribution would likely extend above the 
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Nyquist frequency, and the results would be affected by frequency aliasing. How

ever, the measured distribution does not approach the Nyquist frequency. There

fore, any halo whose figure rotation is aliased would need to be wildly anoma

lous, with a pattern speed many times faster than any other halo in our sample. 

We consider this unlikely. Figure 4.10 shows the pattern speeds as a function of 

the error, as in Figure 4.7, except that it only uses snapshots b096 through bl02, 

so the maximum time between snapshots is 200 Myr, and the corresponding 

Nyquist frequency is 7.6 h km kpc~^ shown again as the dotted line. The top 

of the distribution does not change between Figures 4.7 and 4.10, demonstrating 

that the results are not affected by aliasing. 

We investigate how the figure rotation axis relates to two other important 

axes. Both D92 and P99 claim that the major axis rotates around the minor axis. 

The direction cosine between the rotation axis and the minor axis is plotted both 

as a function of the pattern speed and as a histogram in Figure 4.11. We confirm 

that the axis about which the major axis rotates aligns very well with the minor 

axis. 

Measuring the rotation of the major axis using the plane method precludes 

finding halos with figure rotation about the major axis, which is a theoretically 

stable configuration. Therefore, the first and last snapshots are compared using 

the quaternion method. A comparison between the derived rotation axes, for 

those halos with 2u detections of figure rotation, is shown in Figure 4.12. The 

axes agree in the majority of the halos. There are three halos where the axes are 

anti-aligned. Examination of these halos reveals that in these cases, the figure ro

tation from snapshots b096 through bl02 is smooth, but snapshot b090 is anoma

lous (these halos have high values of xl, though not high enough to have been 

excluded from the sample). More interesting are the halos where the alignment 
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Figure 4.11: (Top): Histogram of the direction cosine between the minor axis of the 

halo and the figure rotation axis, for halos with 2<j detections of figure rotation. 

Because the minor axis has reflection symmetry, this is always positive. (Bottom): 

Direction cosine as a function of the magnitude of figure rotation. 
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Figure 4.12; Histogram of the alignment between the figure rotation axis deter

mined using the plane method and the figure rotation axis determined using the 

quaternion method (see § 4.3.4.1), for all of the halos with 2a detections of figure 

rotation using the plane method. 
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Figure 4.13: Histogram of the alignment between the figure rotation axis deter

mined using the quaternion method and the halo major axis, for the halos where 

the agreement between the plane and quaternion methods is poor (the alignment 

of the axes is between -0.1 and 0.5). 
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Figure 4.14: Histogram of the alignment between the figure rotation axis deter

mined using the quaternion method and the major axis, for halos where we found 

no detectable figure rotation using the plane method. 
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tial major axis rotators. The x-axis is the error in the pattern speed. The solid line 

indicates where the measured pattern speed is equal to the estimated error, while 
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between the two determinations of the figure rotation axis lie between -0.1 and 

0.5. In virtually all of these cases, the quaternion figure rotation axis is aligned 

with the major axis (see Figure 4.13). Some of the upper limits in Figure 4.7 may 

also be halos with rotation about the major axis. The quaternion figure rotation 

axes for most of the halos with upper limits are distributed randomly but there 

is an excess of ~ 9 halos where the figure rotation axis aligns with the major axis 

(see Figure 4.14). We have constructed a sample of potential major axis rotators 

consisting of the 75 halos from Figure 4.12 where the alignment lies between -

0.1 and 0.5 plus the 17 "upper limit" halos where the quaternion figure rotation 

axis aligns with the major axis to better than 0.8 (of which we expect statistically 

that ~ 9 are real; examination of the results reveals that 10 are real). We use the 

plane method to calculate the figure rotation of these halos, but investigate the 

evolution of the minor axis instead of the major axis. Out of the 92 halos, 37 have 

very large errors in the minor axis determination in one of the snapshots, and so 

are excluded. These are prolate halos where the quaternion method measures the 

fluctuations between the degenerate axes rather than true figure rotation. The 

pattern speeds for the remaining 55 halos are shown in Figure 4.15. We detect 

figure rotation about the major axis in 41 of the halos. Although the statistics are 

poorer, the range of pattern speeds for these halos is similar to the range of pat

tern speeds seen for the halos showing figure rotation about the minor axis. We 

conclude that 247 halos show minor axis rotation, 41 show major axis rotation, 

and 29 show no detectable figure rotation. 

The rotation axis is compared to the angular momentum vector of the halo 

in Figure 4.16. Because the angular momentum is usually relatively well aligned 

with the minor axis of halos (Warren et al., 1992), it is no surprise that the rota

tion axis is also well aligned with the angular momentum vector. Because the 
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alignment between the minor axis and angular momentum of halos is not perfect 

(see § 5), some of the halos with perfectly aligned figure rotation and minor axes 

have less perfect alignment between the figure rotation axis and the angular mo

mentum vector, seen as the bump in Figure 4.16 that extends down to a direction 

cosine of 0.6; the tail of the distribution extends all the way to anti-alignment. 

This indicates that the halos with retrograde figure rotation required for the po

lar ring and counter-rotating disk mechanism of Tremaine & Yu (2000) are rare 

but exist. The alignment between the rotation axis and the angular momentum 

vector is also plotted as a function of the pattern speed in the lower panel of Fig

ure 4.16. There is no trend for the halos with slow figure rotation, but all but two 

of the halos with flp > 0.4 h km s~^ kpc~^ have figure rotation axes and angular 

momentum vectors that are well aligned, with a direction cosine of 0.65 or higher. 

We have attempted to see if the pattern speed is correlated with other halo 

properties, in particular its mass and its angular momentum. Figure 4.17 shows 

the pattern speed of the figure rotation versus the halo mass. Error bars are la-

errors, with 2(7 upper limits plotted for halos which lie below the dashed line of 

Figure 4.7. There is no apparent correlation between the halo mass and its pattern 

speed. 

Figure 4.18 shows the pattern speed versus the spin parameter A, where 

(Peebles, 1969). We use the computationally simpler A' as an estimate for A, where 

A' = (4.16) 
V 2 M V R  

(Bullock et al., 2001). There is a tendency for halos with fast figure rotation to 

have large spin parameters; in particular, all but one of the halos with Qp > 

0.4 h km kpc~^ have A > 0.024. These are the same halos which are shown to 
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Figure 4.19: Direction cosine between the angular momentum vector of the halo 

and the figure rotation axis versus the spin parameter A. 

have particularly well-aligned rotation axes and angular momentum vectors in 

Figure 4.16. We have calculated the median value of flp including the upper limits 

for bins of width AA = 0.01. The median rises steadily from 0.12 h km kpc~^ 

for A < 0.02 to 0.44 h km s"^ kpc~^ for A > 0.06. Note that P99 only detected figure 

rotation in halos with A > 0.05 (see his Figure 5.24). 

The degree of alignment between the figure rotation axis and the angular mo

mentum vector may depend on the angular momentum content of the halo. Fig

ure 4.19 shows how this alignment depends on the spin parameter A. There is 

no trend for A < 0.05, but the halos with A > 0.05 show particularly good align-
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merit. This is a natural consequence of the tendency for halos with rapid figure 

rotation to have well aligned figure rotation and angular momentum axes (Fig

ure 4.16), and the correlation between figure pattern speed and spin parameter A 

(Figure 4.18). 

Figures 4.20 and 4.21 show how the figure rotation changes with radius. Fig

ure 4.20 shows how the pattern speeds at different radii are related, while Fig

ure 4.21 shows the alignment of the figure rotation axes between radii. Each 

panel includes only the halos that have at least 4000 particles within the inner 

radius, pass all of the tests of § 4.3.4.1 for both radii, and have 2a measurements 

of figure rotation at both radii. Due to the smaller number of particles in spheres 

of smaller radii, there are progressively fewer halos with good measurements at 

smaller radii. The top panels show that the figure rotation in the outer regions of 

the halo is very coherent. To some degree, this is by construction; the test for sub

structure is equivalent to a cut in Afip between adjacent radii. However, gradual 

drifts of Q.p and changes in the figure rotation axis with radius are still possible. 

The lower panels of Figures 4.20 and 4.21 show that this indeed happens. In par

ticular, while the figure rotation within 0.12 rvir and 0.6 are strongly correlated, 

the pattern speeds within 0.12 rvir are slightly smaller and the alignment of the 

rotation axes is not quite as strong. The bottom panels show that in the innermost 

regions, within 0.06 rvir, the pattern speeds are significantly smaller than for the 

halo as a whole, particularly for those halos with high pattern speeds, and more 

than half of the halos show no alignment between the figure rotation axes. 

We examine three possible explanations for these trends with radius. First, it 

may be that the halos with high pattern speeds are still affected by residual sub

structure in the outer regions. However, the gradual decline for all halos seen as 

the radius shrinks suggests that the mechanism responsible for the difference af-
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Figure 4.20; Pattern speed of figure rotation Qp at 0.4, 0.25, 0.12, and 0.06 of the 

virial radius Tyir (top to bottom) as a function of the pattern speed at 0.6 rvir- Only 

halos where both radii in the comparison contain at least 4000 particles, pass all 

of the tests of § 4.3.4.1, and have 2a detections of figure rotation are included. All 

units are h km kpc~^ The solid line corresponds to equal pattern speeds. 
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Figure 4.21: Histogram of the direction cosine of the alignment between the figure 

rotation axis of the halo as a whole (r < 0.6 Tvir) and of just the inner 0.4,0.25,0.12, 

and 0.06 of the virial radius Tyir (top to bottom). Only halos where both radii in 

the comparison contain at least 4000 particles, pass all of the tests of § 4.3.4.1, and 

have 2a detections of figure rotation are included. 
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fects all halos equally and gradually, rather than affecting a few halos at a specific 

radius. Another piece of evidence that argues against this explanation is that the 

halos with the highest measured pattern speeds do not have preferentially high 

values of fs', they have values evenly spread between 0 and the cutoff of 0.05. 

A second possibility is that the figure rotation, although steady on timescales of 

1 Gyr, may be fundamentally a transitory feature caused by a tidal encounter or 

the most recent major merger. The inner region of the halo has a shorter dynami

cal time, and therefore the effects of such a disturbance will be erased faster in the 

inner regions than the outer regions. This is consistent with the gradual decrease 

in pattern speed with radius and the decrease in alignment. However, the halo 

of BFPM99 has fast figure rotation (faster than any of our halos), and yet shows 

steady figure rotation at all radii for 5 Gyr. We propose instead that the effects of 

force softening are becoming important at the smaller radii. The radius of the in

nermost sphere for the halos plotted in the bottom panels of Figures 4.20 and 4.21 

range from 3-5 force softening lengths, where the effects of the gravitational soft

ening can still be important (Power et al., 2003). The weaker gravitational force 

results in a more spherical potential, consistent with the weaker figure rotation 

and lack of alignment. 

We have calculated the rate of change of the b/a and c/a axis ratios over the 

5 snapshots using linear regression. The evolution of the axis ratios with time 

is linear for almost all halos. Figure 4.22 shows the fractional rate of change, 

(b/a)/(b/a) and (c/a)/(c/a), of the axis ratios as a function of the value of the axis 

ratio in the final snapshot. The median and standard deviation of the distribution 

of {h '/a)/(b/a) are 0.0089 h Gyr~^ and 0.0349 h Gyr~^ respectively. For c/a, they 

are 0.0093 h Gyr"^ and 0.0297 h Gyr~^ respectively. Therefore, there is a weak 

tendency for undisturbed halos to become more spherical with time. Most halos 
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Figure 4.22: Fractional rate of change of the h/a (left) and c/a (right) axis ratio of 

the halos in the sample, as a function of the z = 0 axis ratio. 

require several Gyr before their flattening changes significantly; there are, how

ever, a few outliers with quite significant changes in their axis ratios. Figure 4.22 

demonstrates that there is no trend of {h/a)/(hja) or (c/a)/(c/a) with the value 

of the axis ratio except for the outliers with very high (low) values oihj a, which 

could not have such high (low) rates of change if the values of hja were not very 

high (low) in the final snapshot. We find no trend with any other halo property 

such as mass, spin parameter, pattern speed, substructure fraction, or alignment 

of the figure rotation axis with the angular momentum vector or minor axis. 

4.5 Conclusions 

We have detected rotation of the orientation the "principal axes in most undis

turbed halos of a ACDM cosmological simulation. The axis around which the 

figure rotates is very well aligned with the minor axis in ~ 85% of the cases, and 

well aligned with the major axis in the remaining halos. It is also usually well 

aligned with the angular momentum vector. The distribution of pattern speeds 
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is well fit by a log normal distribution, 

ilpay/Ziv 

ln^(f2p/npp) 
2(T2 

(4.17) 

with fipo = 0.148 h km s~^ kpc~^ and a = 0.83. 

The pattern speed Q.p is correlated with spin parameter A. The median pattern 

speed rises from 0.12 h km s~^ kpc~^ for halos with A < 0.02 to 0.44 h km s~^ kpc~^ 

for halos with A > 0.06, with a spread of almost an order of magnitude around 

this median at a given value of A. The 11% of halos in the sample with the highest 

pattern speeds, Q,p > 0.4 h km s'^ kpc"^ not only have large spin parameters, but 

also show particularly strong alignment between their figure rotation axes and 

their angular momentum vectors. There is no obvious correlation of the figure 

rotation properties with mass. The pattern speed and figure rotation axis is co

herent in the outer regions of the halo. Within 0.12 ryir, the pattern speed drops, 

particularly for those halos with fast figure rotation, and the internal alignment of 

the figure rotation axis deteriorates. This is probably an artifact of the numerical 

force softening. 

BFPM99 hypothesized that the spiral structure in NGC 2915 is due to figure 

rotation of a triaxial halo. The required pattern speed of 7± 1 km kpc~^ (MB03) 

is much higher than the pattern speeds seen in the simulated halos, and is esti

mated to have a probability of 5 x 10"^. We therefore conclude that the figure 

rotation of undisturbed ACDM halos is not able to produce this spiral structure. 

Halos with large values of A tend to have more substructure (Barnes & Efstathiou, 

1987), so there is a deficiency of halos with very high A in our sample. Because 

rip correlates with A, we cannot exclude the possibility that there exist halos with 

very high A whose figures rotate sufficiently quickly. However, halos with such 

high A are themselves very rare (MB03), and if such halos fall out of our sample 

due to the presence of strong substructure, the effects of the substructure on the 
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gas disk of NGC 2915 would be of more concern than the slow rotation of the halo 

figure, a possibility BFPM99 rule out due to the lack of any plausible companion 

in the vicinity. 

More generally, Bekki & Freeman (2002) found very weak if any enhancement 

of spiral structure in disk simulations with triaxial figures rotating at 0.77 km s~^ 

kpc"^, a value similar to the highest pattern speed seen in our sample. Therefore, 

it is unlikely that triaxial figure rotation can be detected by looking for spiral 

structure in extended gas disks. 

The mechanism of Tremaine & Yu (2000) for creating polar rings and counter-

rotating disks requires halos with retrograde figure rotation whose pattern speed 

slowly drops to zero or smoothly reverses direction. While our temporal sam

pling is not sufficient to detect slow changes in the pattern speed, we note that 

halos with figure rotation retrograde to their angular momentum do exist. 

We have found that the axis ratios of undisturbed halos tend to become more 

spherical with time, with median fractional increases in the h/a and c/a axis ratios 

of » 0.009 h Gyr~^. The distributions of {b '/a)/(b/a) and (c/a)/(c/a) are relatively 

wide, with standard deviations of ~ 0.03 h Gyr~^ A few outliers have axis ratios 

that change quite significantly over the span of 1 Gyr. The rate of change of the 

axis ratios is not correlated with any other halo property. 
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CHAPTER 5 

INTERNAL AND EXTERNAL ALIGNMENT OF THE SHAPES AND 

ANGULAR MOMENTA OF ACDM HALOS 

This chapter has been submitted for publication as Bailin & Steinmetz (2004b). 

5.1 Introduction 

The three-dimensional structure of the dark matter halos that host galaxies, groups, 

and clusters is an important aspect of their nature that can provide insight into 

their formation and affect the luminous structures within. The orientation of the 

halo shapes and angular momenta, both internally and with respect to surround

ing halos, provide important constraints on other studies of galaxy formation and 

evolution. 

Halos formed in cosmological simulations are generally not spherical, but 

have an ellipsoidal shape. There have been several studies of the shapes of halos 

in low resolution A'^-body simulations based on the standard cold dark matter 

(CDM) paradigm (Frenk et al., 1988; Dubinski & Carlberg, 1991; Warren et al., 

1992 (hereafter W92); Cole & Lacey, 1996). These studies have found that halos 

are usually triaxial, with a preference for prolate figures at small radii and more 

oblate figures at large radii, and have minor-to-major axis ratios ranging from 

0.3 to almost unity. Dubinski & Carlberg (1991), in simulations of the formation 

of isolated galaxies where the effects of the external tidal field were prescrip-

tively superimposed, found that the projected two-dimensional ellipticities peak 
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around e = 0.5, where 

e = 1 - 5, (5.1) 

for a projected axis ratio of q. W92 found that while this is true in the inner 

regions, the location of the peak falls to e = 0.25 beyond 50 kpc. The behaviour 

of the axis ratios with radius is controversial; Dubinski & Carlberg (1991) and 

W92 find that the axis ratios increase (become more spherical) with radius, while 

Frenk et al. (1988) and Cole & Lacey (1996) find that they decrease with radius. 

W92 have also studied the internal alignment of the ellipsoid principal axes. They 

found that both the major and minor axes of halos are extremely well aligned out 

to 40 kpc. 

More recently, several authors have performed large high resolution simula

tions using the currently-favoured ACDM cosmology (Bullock, 2002; Jing & Suto, 

2002 (hereafter JS02); Kasun & Evrard, 2004 (hereafter KE04)). Bullock (2002) 

finds that the c/a axis ratios are a strong function of halo mass, and range from 

0.55 at 10^'^ MQ to 0.7 around 10^^ MQ, with a distribution that is peaked 

but has a large tail to small axis ratios. He also finds that the inner 30 h~^ kpc of 

halos are more spherical than the outer regions, i.e. the axis ratios decrease with 

radius. On the other hand, JS02 find c/a axis ratios that increase with radius, de

crease slightly with mass, and are weU fit by a Gaussian centred at c/a = 0.55 

with a width of 0.11. They find that the major axes of halos are relatively well 

aligned — typically cos dn ~ 0.8, where is the angle between the major axis at 

small or large radius compared to that at an intermediate radius. The alignment 

of the middle axes is somewhat poorer, but JS02 argue that this is due to the in

clusion of nearly prolate halos whose axes are degenerate and therefore not well 

determined. KE04 find more spherical shapes in their very large sample of high 

mass halos (M > 3 x 10^^ MQ), possibly due to the spherical outer boundary 



149 

they impose, with c/a ^ 0.65. 

The shapes of dark matter hales can have important observational conse

quences (for a good review, see Sackett, 1999). On galactic scales, they can affect 

the coherence of tidal streams. Some authors have claimed that the thinness of 

the tidal stream associated with the Sagittarius dwarf spheroidal indicates that 

the halo of of the Milky Way is nearly spherical, with c/a 0.8 (Ibata et al., 

2001; Johnston et al., 2004; Martmez-Delgado et al., 2004). However, more re

cent studies suggest that the material that makes up the stream was stripped 

from the satellite too recently to have had time to undergo differential preces

sion, which severely weakens the constraints on the halo shape (Helmi, 2004a,b). 

Helmi (2004b) claims that the stream is best fit by a prolate halo elongated per

pendicular to the disk with c/a w 0.6. Law, Johnston, & Majewski (2004) also 

find that the velocities of stars in the leading stream can only be fit with a pro

late halo, but that the precession of the leading stream with respect to the trailing 

stream can only be fit with an oblate halo. These contradictory results suggest 

that evolution of the satellite orbit or other effects of a live Milky Way potential 

(as opposed to the static potential that has been used in all of these studies) are 

important for determining the shape of the Milky Way halo using the Sgr stream. 

Other measures of the Milky Way ellipticity using the flaring of the gas disk at 

large radius or the anisotropy of stellar velocities suggest that the halo is oblate 

with a flattening of c/a ~ 0.8 (Oiling & Merrifield, 2000). The shapes of the ha-

los of external galaxies can be measured using the flaring of the gas layer (Oiling 

& Merrifield, 2000), the projected shape of X-ray gas (Buote et al., 2002), or the 

kinematics of polar ring galaxies (Sackett et al., 1994). These methods suggest 

that galaxy halos have a wide range of flattenings from c/a ~ 0.3-0.8. A new 

method for measuring the shapes of external galaxy halos is weak gravitational 



150 

lensing. By measuring the azimuthal variation of the shear with respect to the 

position angle of the visible lens galaxy (Natarajan & Refregier, 2000), Hoekstra 

et al. (2004) detected an average projected halo ellipticity of (e) = 0.33 for halos 

with an average mass of8xl0^^/i~^MQ. This detection also implies that the ori

entation of the visible and dark mass in galaxies must be similar. On group and 

cluster scales. X-ray observations and the Sunyaev-Zeldovich effect (Sunyaev & 

Zeldovich, 1980) can be directly used as a probe of halo ellipticities (Lee & Suto, 

2003, 2004). 

The orientation of the angular momentum in halos has also been studied in 

cosmological numerical simulations. Early low-resolution studies (Barnes & Efs-

tathiou, 1987; Frenk et al., 1988; Cole & Lacey, 1996) gave conflicting results due 

to the difficulty of measuring the direction of the angular momentum with few 

particles. Other CDM studies (Dubinski, 1992; W92) have found that the direc

tion of the angular momentum at different radii is usually the same, but that the 

distribution of alignments has a tail that stretches all the way to anti-alignment. 

This result is verified by recent high-resolution ACDM simulations (Bullock et al., 

2001). CDM studies have also found that the angular momentum is most often 

aligned with the minor axis and perpendicular to the major axis, although there 

is some scatter (Dubinski, 1992; W92). This result has not yet been thoroughly 

tested in high-resolution ACDM simulations. 

Internal misalignment of the angular momentum can have a number of ob

servational consequences. It may cause galactic warps (Ostriker & Binney, 1989; 

Debattista & Sellwood, 1999; Lopez-Corredoira et al., 2002a; see also § 3), or man

ifest itself in anisotropic distributions of the orbits of satellite galaxies (Holmberg, 

1974; Zaritsky et al., 1997; Aubert et al., 2004; Knebe et al., 2004). 

Going beyond individual halos, the shapes and angular momenta of nearby 
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halos can be correlated due to initial conditions or dynamical evolution. This 

subject has attracted increased interest recently due to the emergence of weak 

gravitational lensing as a method to measure the projected mass density in front 

of background galaxies. Intrinsic correlations between the projected shapes of 

luminous galaxies act as spurious background signals in weak lensing, so pre

dicting their magnitude is important. At a more fundamental level, the degree of 

correlation between structures can be tested against models, and can inform our 

understanding of the origin of halo shapes and angular momenta. 

Measurements of halo alignments and correlations come from two sources: 

cluster orientations and large galaxy surveys. The study of the alignment of clus

ter orientations was pioneered by Binggeli (1982), who used the locations of the 

constituent galaxies to determine that the major axes of clusters separated by less 

than 15 h~^ Mpc tend to point toward each other. While some authors have not 

found any such correlation (e.g. Struble & Peebles, 1985), larger samples of both 

galaxies and clusters, along with improved error estimates, have confirmed this 

result (e.g. Flin, 1987; Rhee & Katgert, 1987; Plionis, 1994). The cluster potential is 

better probed by X-ray emitting gas (Sarazin, 1986; Lee & Suto, 2003,2004). While 

early studies using X-ray contours found no alignment of clusters with the large 

scale structure (Ulmer et al., 1989), more and better data have confirmed that the 

orientation of both the substructure and the main cluster potential tends to point 

toward neighbouring clusters (West et al., 1995; Chambers et al., 2002) 

While the principal axes of clusters can be determined from optical or X-ray 

photometry, the angular momentum direction is very difficult to determine. In 

disk galaxies, on the other hand, the angular momentum direction of the baryons, 

presumed to be perpendicular to the orientation of the disk, can be measured 

much more easily than the shape of the dark matter halo. Although there may 
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be some misalignment between the angular momentum of the baryons and dark 

matter (van den Bosch et al., 2002; Sharma & Steinmetz, 2004), spiral galaxies still 

provide the best targets for looking for angular momentum alignments and cor

relations. Studies with small samples of spiral galaxies (less than a few hundred) 

have generally found no correlation between the orientation of the angular mo

mentum and the large scale structure (Han et al., 1995; Cabanela & Dickey, 1999; 

see however Navarro, Abadi, & Steinmetz, 2004). With a sample of 618 lenticular 

and disk galaxies in the local supercluster, Kashikawa & Okamura (1992) found 

that while the full sample was consistent with an isotropic distribution of angu

lar momenta, those galaxies within 2 h~^ Mpc of the supergalactic plane tend to 

have spin vectors pointing in the plane, while those above or below the plane 

tend to have spin vectors that point toward or away from the plane. Navarro 

et al. (2004) also find a clear excess of galaxies whose angular momenta lie in 

the supergalactic plane. Larger samples of galaxies provide further evidence of 

alignments between spin and the large scale structure: Pen, Lee, & Seljak (2000) 

have found that the spin directions of the 12,122 spiral galaxies in the Tully cat

alog are positively correlated at separations less than 3 h~^ Mpc, while Brown 

et al. (2002) have measured intrinsic alignments between galaxy orientations at a 

range of angular separations in the 2x10® galaxies of the SuperCOSMOS survey. 

Many recent theoretical studies of halo alignment have been motivated by 

predicting the intrinsic alignment signal for weak lensing measurements. These 

studies jump straight to correlations of the ellipticities of luminous galaxies as a 

function of angular separation on the sky (e.g. Croft & Metzler, 2000; Heavens 

et al., 2000; Catelan et al., 2001; Crittenden et al., 2001). While these studies are 

useful for those making weak lensing observations, they do not provide any di

rect measurement of the intrinsic spatial alignments that can provide physical 
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insight into the galaxy formation process. 

Linear tidal torque theory (Doroshkevich, 1970; White, 1984) can be used to 

predict the directions of the angular momentum vectors and their correlations 

with the surrounding structure (Pen et al., 2000; Lee & Pen, 2000, 2001; Porciani, 

Dekel, & Hoffman, 2002a,b). These studies have found that the angular momenta 

of halos tend to lie perpendicular to the large scale structure, and that the corre

lation of the halo spin vectors with each other exists but is very weak. While tidal 

torque theory does a reasonable job of predicting the evolution of the magnitude 

of the angular momentum (Sugerman et al., 2000), Porciani et al. (2002a) have 

tested the predictions of spin directions against A'^-body simulations, and found 

that the spin axes of iV-body halos show significant misalignment compared to 

the tidal torque predictions, with a mean misalignment of ~ 50° at 2; = 0. There

fore, A'^-body simulations that take the full non-linear dynamics into account are 

necessary. 

Some early numerical work at predicting the intrinsic alignments using sim

ulations with power law or CDM power spectra found that the major axes of 

cluster mass halos tend to point toward other nearby clusters over scales of ~ 

15 Mpc, and that there is a very weak tendency for the major axes to be 

correlated with each other over the same range of separations (Barnes & Efs-

tathiou, 1987; West et al., 1991; van Haarlem & van de Weygaert, 1993; Splinter 

et al., 1997). More recent high resolution A/^-body simulations in a ACDM cos

mology have been studied to search for alignments of the major axes (Onuora & 

Thomas, 2000; KE04), the angular momentum vectors (Hatton & Ninin, 2001), or 

both (Faltenbacher et al., 2002; hereafter F02). These studies have found a strong 

tendency for the major axes of cluster mass halos to point toward other clusters 

out to several tens (or even hundreds) of Mpc and to correlate with each other 
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out to 20 h~^ Mpc. The situation for the angular momentum is murkier. Hatton 

& Ninin (2001) have found that the angular momenta of halos tend to lie parallel 

to the large scale structure, while F02 have found that they lie perpendicular to 

the large scale structure, in agreement with the prediction from the linear theory 

(Lee & Pen, 2001). Correlations of halo angular momentum vectors with each 

other are weak at best. 

In this chapter, we present an extensive study of the shapes of galaxy and 

group-mass halos in a large high resolution ACDM A^-body simulation. We study 

the internal alignments of all of the principal axes and the angular momentum. 

We also study the alignment of all of these quantities with the large scale struc

ture, and how they are correlated in halos of different separations. This work 

improves upon earlier studies of the internal structure of halos by using large 

high resolution simulations in a currently-favoured ACDM cosmology, by study

ing both the alignment of the angular momentum and the shape, and by using a 

method that allows us to quantify our errors and therefore feel confident about 

the source of any measured misalignments. Previous external alignment studies 

have all been restricted to massive clusters; we improve upon this significantly 

by reaching down to galaxy mass halos, by studying the mass dependence of the 

correlations, by studying the alignments of both the principal axes and the an

gular momenta, and by including the oft-neglected intermediate and minor axes. 

The structure of the chapter is as follows. In § 5.2 we present the details of the 

simulation and describe the method used to measure the principal axes and an

gular momentum vectors of the halos. § 5.3 presents the overall shapes of the 

halos and how they change with radius. We discuss the internal alignment of the 

principal axes and angular momenta in § 5.4, while we explore the alignment of 

these quantities with external halos in § 5.5. We present a brief discussion of what 
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these results imply for the origin of halo shapes and angular momenta in § 5.6, 

and summarize the results in § 5.7. 

5.2 Methodology 

5.2.1 The simulation 

The simulation used here is the same as the one used in § 4. It consists of 512^ 

A'^-body particles in a periodic box of length 50 Mpc, in a low density flat 

universe {Q, = 0.3, Q,a = 0.7, h — 0.7, ag = 0.9). The particle mass is 7.757 x 

10^ H~^ MQ, and the force softening length is 5 kpc. Halos were found using 

the standard friends-of-friends (FOF) algorithm with a linking length of 0.2 times 

the mean inter-particle separation. 

In order to accurately measure the direction of the principal axes, many par

ticles are needed. The direction of an axis can generally be determined to within 

an angle of 
1 fr 

9err- = —7= radians, (5.2) 
2 V ^ l - r  ^  ^  

where N is the number of particles used and r is the relevant axis ratio: 6/a for 

the major axis, c/b for the minor axis, and max(6/a, c/b) for the intermediate axis 

(see § 4). For the purposes of measuring internal alignments, we would like the 

angular errors to be less than 10°. This requires on the order of 200 particles. 

Since each halo is split up into 6 radial shells, and this accuracy is required in 

each shell, each halo should have over 1200 particles. For convenience, we adopt 

a cutoff of 10^^ MQ for the mass of the halo, or 1289 particles. 

There are 3869 halos in the sample with masses extending from 10^^ MQ 

to 2.8 X LO '̂̂  MQ. 451 of the halos have masses in the range 10^  ̂- 10^  ̂h~  ̂ MQ, 

while 62 of the halos have masses greater than 10^  ̂ h~  ̂ MQ. 
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5.2.2 Measuring the axes 

A standard technique to measure halo triaxiality in simulations is to use an itera

tive approach, where the particles are initially chosen to lie in a sphere or spheri

cal shell, an ellipsoid is fit to these particles, and particles are chosen for the next 

iteration based on the new ellipsoid (e.g. W92). While this works for simulations 

that have sufficiently low resolution that overmerging erases substructure, we 

find in agreement with JS02 that in high resolution simulations, the presence of 

substructure prevents this technique from converging for a large fraction of halos. 

JS02 have adopted a novel approach aimed at directly measuring isodensity 

contours. They assign SPH-like densities to halo particles, and then measure the 

principal axes and axis ratios of particles with densities near the nominal density 

of the isodensity contour. Due to the presence of substructure, this procedure 

often picks out disconnected shells in addition to the particles that define the 

isodensity contour of the smooth distribution. JS02 use the FOF algorithm to 

select the largest structure that fulfils the density criterion and therefore eliminate 

the substructure. 

While this algorithm works well for very high-resolution halos, such as those 

JS02 use to demonstrate the technique (all of which contain N > 6 x 10^ (Jing & 

Suto, 2000)), we have run into difficulties using it on more moderate resolution 

halos. In particular, we find that it is not possible to find an optimal FOF link

ing length for eliminating substructure; if the linking length is too large, many 

"contours" contain obvious disconnected substructures, while reducing the link

ing length sufficiently to eliminate this problem reduces it to the point where in 

many halos, the single ellipsoid corresponding to the smooth distribution is bro

ken up by the algorithm into several disconnected pieces. JS02's algorithm also 

uses a relatively small number of particles to determine the shape. The error in 
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the determination of the direction of the principal axes of a particle distribution 

goes as (see eq. [5.2]). Measuring the internal alignment of a halo requires 

small well-understood errors, and therefore as many particles as possible. 

We take the following approach, similar to that taken by Frenk et al. (1988). 

The center of mass is calculated iteratively in spheres centred on the center of 

mass of the sphere in the previous iteration, starting with a sphere containing all 

of the particles. The radius of each successive sphere is reduced by 90%, and the 

procedure is iterated 25 times, by which point it has converged. The particles of 

each halo are transformed into this center of mass frame, and the velocities are 

transformed into the center of velocity frame. Each halo is then divided up into 

six concentric spherical shells with outer radii R of 1.0,0.6,0.4,0.25,0.12, and 0.06 

times the virial radius rvir- These radii are chosen to allow easy comparison to the 

isodensity contours of JS02. The outer radius of each shell also forms the inner 

radius of the next larger shell, except for the innermost "shell", which is actually 

a sphere extending to the halo center. One would like to use the inertia tensor to 

measure the principal axes of the mass distribution. However, the inertia tensor 

can be dominated by substructure in the outer part of the shell. Therefore, we 

weight particles by 1/r^ so that each mass unit contributes equally regardless of 

radius (Gerhard, 1983). Within each shell, we calculate this reduced moment of 

inertia tensor 

(5.3) 
k 

which we then diagonalize. The axis ratios a, b, and c are the square roots of the 

eigenvalues {a > b > c), and the eigenvectors give the directions of the principal 

axes. There are no particles in common between radial shells, so the measure

ments of the axes at different radii are completely independent. We also calculate 

the angular momentum of the particles in each shell. 
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To calculate the error in the axis and angular momentum determinations, we 

perform a bootstrap analysis of the particles in each radial shell (Heyl et al., 1994). 

If the shell contains N particles, we resample the shell by randomly selecting 

N particles from that set allowing for duplication and determine the axes and 

angular momentum from this bootstrap set. We do this 100 times for each radial 

shell. The dispersions of these estimates of the axis ratios, directions of the axes, 

magnitude of the angular momentum, and direction of the angular momentum 

around the measured values are taken formally as the "la" error of each of these 

quantities. 

Using spherical shells, rather than the ellipsoids defined by the isodensity 

contours as in JS02, does not affect the orientation of the principal axes. It does, 

however, bias the derived axis ratios toward spherical. To calibrate the magni

tude of this bias, we have constructed prolate Poisson-sampled NFW (Navarro, 

Frenk, & White, 1996) and singular isothermal halos with 10^ particles each that 

have known c/a axis ratios ranging from 0.3-1. The NFW halos had concen

tration parameters Cvir = 10. In Figure 5.1 we plot the input c/a axis ratio for 

each combination of radial bin and density distribution as a function of the c/a 

ratio measured for the halos constructed using the method described above. The 

points for different radii and density distributions are virtually indistinguishable; 

the only important parameter is the input axis ratio. The solid line is an empirical 

fit to these points: 

( c / a ) t r u e  =  ( ' ^ / ® ) m e a s u r e d -  ( 5 - 4 )  

The relationship for bjais identical. The corrected axis ratios (6/a)true and (c/a) true 

are used throughout the remainder of this paper. 
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Figure 5.1: Measured versus input c / a  axis ratio of randonily-sampled NFW 

and singular isothermal halos. At each input axis ratio, there are 12 indepen

dent points, representing the results for each of six radial bins and two different 

density profiles, but they are virtually indistinguishable. The solid line is the 

empirical fit of equation (5.4). 
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Figure 5.2: Histogram of the minor-to-major c / a  axis ratio for each halo in the 

simulation, as measured in the R = 0.4 rvk shell. 
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Figure 5.3: Median of the h/a (left), cja (middle), and c/6 (right) axis ratios for 

each radial shell. Crosses, asterisks, and diamonds represent the mass ranges 

10^^ - 10^^ h~^ MQ, 10^^ - LO'^^ h~^ MQ, and 10^^ - 3 x 10^^ h~^ MQ respectively. 

Error bars represent the Icr width of the distribution. The error in the median is 

typically 0.002 for the crosses, 0.005 for the asterisks, and 0.01 for the diamonds. 

Crosses and diamonds are offset in radius for clarity. 

5.3 Shapes 

Dark matter halos are well approximated by ellipsoids (JS02) and are well de

scribed by the intermediate-to-major and minor-to-major axis ratios b/a and c/a. 

Figure 5.2 is a histogram of the c/a axis ratios as measured in the R = OA shell 

for all of the halos in our sample. Unlike JS02, we find that they are not quite 

Gaussian, but rather have a tail toward very flattened halos as seen by KE04, al

though the tail is not as extreme as that seen by Bullock (2002). The distribution of 

h/a and c/a values measured at other radii have a similar shape. The lack of very 

flattened halos in JS02 may be a result of their exclusion of halos deemed to be 

interacting. The axis ratios we find are intermediate between the quite flattened 

halos found by JS02 and the more spherical halos found by KE04. 

Early studies suggested that the coldness of the Sgr stream indicates that the 

dark matter halo of the Milky Way has c/a 0.8 (Ibata et al., 2001; Johnston et al., 

2004; Martlnez-Delgado et al., 2004). Only 5% of the halos shown in Figure 5.2 
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have axis ratios so large. While this is not negligible, it is uncomfortably small, 

and forces us into the anti-Copernican situation of living in an exceptional galaxy 

(Copernicus, 1543). However, new models of the Sgr stream that are more care

ful about matching observations of the body of the dwarf find that the stars that 

constitute the stream were stripped from the body of the satellite too recently 

to have had time to undergo differential procession, thereby severely weaken

ing the constraints on the halo ellipticity (Helmi, 2004a,b); current models are 

unable to simultaneously fit the velocities of stars in the leading stream and the 

orbital planes of the leading and trailing streams (Law et al., 2004). It should 

also be noted that our simulations do not take into account the effects of baryonic 

physics. There is some evidence that baryon cooling leads to more spherical ha-

los (Dubinski, 1994; Kazantzidis et al., 2004). Therefore systems in which most of 

the baryons have cooled, such as disk galaxies like the Milky Way, may have dark 

matter shapes that are more spherical than those presented here. Observations of 

external galaxies using a variety of methods find halo flattenings that range from 

0.3 to 0.8, in agreement with our results (Sackett, 1999). 

The radial dependence of the axis ratios is shown in Figure 5.3. There are three 

distinct regions of the halo. Over most of the halo, the axis ratios increase with 

radius (i.e. the halos become more spherical). Near the virial radius, infalling un-

virialized structure causes the axis ratios to drop. In the central 6% of the virial 

radius, the axis ratios rise. However, this is probably an artifact of the numerical 

softening, as shown in § 4. Further evidence that this is a numerical effect comes 

from examining the location of this increase in sphericity for halos of different 

mass. The increase occurs at a larger fraction of the virial radius for low mass ha

los, i.e. at a similar physical radius. This complicated and non-monotonic radial 

dependence may explain the discrepancy between studies that have found that 
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flattening increases with radius (Frenk et al., 1988; Cole & Lacey, 1996; Bullock, 

2002) and those that have found that it decreases with radius (Dubinski & Carl-

berg, 1991, W92, JS02). The mass dependence of the axis ratios is shown by the 

different symbols in Figure 5.3. The highest mass halos have smaller axis ratios 

at all radii than the smaller halos (W92; Bullock, 2002; JS02; KE04). Our halos 

extend down to masses an order of magnitude smaller than any other study; the 

difference between the most massive halos (the diamonds) and the galaxy mass 

halos is more pronounced than the difference between different masses of galaxy 

halos. The high mass halos show particularly strong flattening near the virial 

radius. 

As seen in Figure 5.3, the c/b ratio falls steadily with radius, indicating a tran

sition from prolate figures in the center to oblate figures at large radii (Dubinski 

& Carlberg, 1991; W92). Triaxiality can be quantified by the parameter T: 

(Franx et al., 1991). Purely prolate halos have T = 1 while purely oblate halos 

have r = 0. We have measured T at three radii: i? = 1.0 where infalling 

material results in substantial flattening, i? = 0.6 where the halos are at their 

least flattened, and i? = 0.12 rvir, where the interior of the halos are at their most 

flattened. Histograms of T at these radii are shown in Figure 5.4. The interior 

regions of halos clearly tend to be prolate (solid histogram). As the flattening de

creases at larger radii, many of the halos become more oblate (dashed histogram), 

although still more are prolate than oblate. Near the virial radius, there is a small 

shift back toward prolate shapes (dotted histogram). Figure 5.5 shows the full 

relationship between h/a and c/a for all of the halos in our sample, measured 

at i? = 0.4 Tvir, where the values are most typical for the halo as a whole. The 

preponderance of prolate and triaxial halos over oblate halos is clearly seen. 
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Figure 5.4: Histogram of the triaxiality T of all halos. The solid, dashed, and dot

ted histograms represent the halos measured at 0.12,0.6, and 1.0 rvir respectively. 
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Figure 5.5: Intermediate axis ratio h/a as a function of minor axis ratio c/a for 

all of the halos, measured at R = 0.4 ryir- The inner and outer contours enclose 

68% and 90% of the halos respectively. The thick lines have constant values of the 

triaxiality parameter T. The separations between the prolate, triaxial, and oblate 

populations occur at T = 1/3 and 2/3. 
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Figure 5.6: Projected ellipticity e of each halo seen from two random orientations, 

measured at i? = 0.4 
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Weak lensing measurements have recently begun to probe the two-dimensional 

projected ellipticity of the lensing mass distribution (Hoekstra et al., 2004). For 

each halo in our sample, we have calculated the projected axis ratio q using the 

method of Stark (1977) for two random orientations, and calculated the elliptic

ity e using equation (5.1). A histogram of the results for the R = 0.4 rvir shell 

is shown in Figure 5.6. The mean and median of the distribution of ellipticities 

are emean = 0.24 and emedian = 0-23 respectively, with a la width of 0.13. This is 

consistent with the lower limit of (e) = 0.33lo 09 found by Hoekstra et al. (2004) 

from stacked weak lensing measurements around galaxies. It is smaller than the 

ellipticities found by Croft &. Metzler (2000) (note that they quantify ellipticity as 

e = (1 — g^)/(l + q^), in which units our mean ellipticity is e = 0.27). However, 

most of the halos used in their study have higher masses than the galactic-mass 

halos studied here, and they included relatively poorly-resolved halos which may 

skew the results toward higher ellipticities. 

5.4 Internal alignment 

5.4.1 Principal axes 

We compare the alignment of the principal axes within each halo to see whether 

the approximation of the halo as a set of concentric ellipsoids is justified (JS02). 

In order to determine whether the axes are aligned, the directions of the axes 

must be well determined, otherwise we may claim misalignments that are due 

to measurement error. Therefore, we restrict ourselves in this section to axes 

whose bootstrap error is less than 0.2 radians. The number of halos satisfying 

this criterion at each radius for each axis is given in Table 5.1. 

To understand the effect of the error on the determination of the alignment, 

imagine two axes which are intrinsically perfectly aligned, but are each measured 



168 

Table 5.1. Number of halos with axes determined to within 0.2 radians 

Radius 

(^vir) 

Major axis Intermediate axis Minor axis 

0.06 904 388 621 

0.12 2370 1005 1628 

0.25 2942 1762 2540 

0.4 2545 1488 2421 

0.6 2322 1363 2324 

1.0 2973 2231 2944 

with an error of 0.2 radians (note that this is the worst possible case — the median 

error of the sample is 0.1 radians). Due to the measurement error, these axes will 

appear to be misaligned by an angle 6'spurious- The component of an isotropic error 

in any particular plane, such as the plane containing both of the measured axes, 

is half of the isotropic error, so we divide the isotropic error of 0.2 radians by two 

and add the error of each axis in quadrature to find the typical ^spurious ~ 0.14. 

Therefore, the cosine of the angle between the two axes, which is intrinsically 1.0, 

is measured to be cos ̂ spurious = 0.99. If the axes are intrinsically perpendicular, in 

which case the effect of ^spurious on the direction cosine is maximized, the error in 

the direction cosine is 0.14. Most halos have well aligned axes (see below), so the 

error is negligible. 

Figure 5.7 shows histograms of the alignment between the major axis of the 
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Figure 5.7; Histograms of the direction cosine between the major axis of the halo 

at R — 0.4 Tvir and the major axis at i? = 1.0, 0.6, 0.25, 0.12, and 0.06 Tvir (top to 

bottom). Due to the symmetry of the axes, this is always positive. Each histogram 

contains all halos where the major axes at both radii are determined to within 

0.2 radians. If the axes were isotropic, this distribution would be uniform. 
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Figure 5.8: Median alignment of the major (a-left) and minor (b-right) axes at 

different radii. The alignment is with respect to the R = 0.06 (black/solid), 

R — 0.12 (red/dotted), R = 0.25 (green/short-dashed), R = 0.4 (cyan/dot-

dashed), R = 0.6 (blue/dot-dot-dot-dashed), and R = 1.0 Tvir (magenta/long-

dashed) shell. For each pair of radii, only halos where the direction of the axis is 

determined to within 0.2 radians at both radii are used. 

R = 0.4 Tvir shell and the major axis of the outer (top two panels) and inner (bot

tom three panels) regions of the halo. The alignment is very good at all radii. The 

relative alignment of the major and minor axes as a function of radius is shown 

in Figure 5.8. Each line shows the median alignment with respect to a different 

fiducial radius, recognizable as the radius where the median is exactly unity. The 

axes are extremely well aligned within 0.6 rvir- Near the virial radius, some halos 

show deviations, but there is still usually very good alignment, especially for the 

minor axis. The alignment is better than that seen by JS02. This confirms their 

suggestion that many of the halos in which they measured poor alignment were 

nearly prolate or oblate. Such halos have large errors in their direction determi

nation, and so are not included in our sample. 

Figure 5.9 examines the internal alignment of the major axis as a function of 
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Figure 5.9: Median alignment of the major axis, as in Figure 5.8a, but only 

for halos with masses of 10^^ - 10^^ h~^ MQ (left), 10^^ - 10^^ h~^ MQ (mid

dle), and 10^^ - 3 X 10^'' MQ (right). The alignment is with respect to the 

R = 0.06 (black/solid), I? = 0.12 (red/dotted), R = 0.25 (green/short-dashed), 

R — 0.4 (cyan/dot-dashed), R = 0.6 (blue/dot-dot-dot-dashed), and i? = 1.0 RVIR 

(magenta/long-dashed) shell. For each pair of radii, only halos where the direc

tion of the axis is determined to within 0.2 radians at both radii are used. 
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Table 5.2. Number of halos with angular momentum directions determined to 

within 0.4 radians 

Radius Halos 

0.06 702 

0.12 1686 

0.25 2820 

0.4 3060 

0.6 3094 

1.0 3229 

halo mass. The inner 0.4 rvir of the halos are equally well aligned for halos of all 

masses. However, the outer half of the halo is better aligned with the rest of the 

halo in high mass halos than in low mass halos. JS02 saw a similar effect and 

suggested that it was because the low mass halos are intrinsically rounder and 

therefore have larger errors. We rule out this explanation, as halos with large er

rors are not included in our sample for any mass. Therefore, the better alignment 

within high mass halos appears to be a real physical effect. 

5.4.2 Angular momentum 

The direction of the angular momentum cannot be determined as precisely as 

the direction of the principal axes. In order to have a reasonably large sample 

of halos, we use angular momentum vectors whose bootstrap error is less than 

0.4 radians. This is twice as large as the limit adopted for the principal axis di

rections. The number of halos that satisfy this criterion at each radius is given in 
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Figure 5.10: Histograms of the direction cosine between the angular momentum 

of the halo at i? = 0.4 and the angular momentum at i? = 1.0, 0.6, 0.25, 

0.12, and 0.06 Tyir (top to bottom). Each histogram contains halos whose angular 

momentum direction is determined to within 0.4 radians at both radii of the com

parison. If the orientations were isotropic, this distribution would be uniform. 
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Table 5.2. Following the logic of § 5.4.1, the error in the direction cosine of two 

vectors with errors of 0.4 radians is 0.04 if they are perfectly aligned and 0.28 if 

they are perpendicular. The median errors of the samples are half of these worst-

case scenarios. The alignment is shown to be good (see below), so the effect of 

the errors is negligible. 

Figure 5.10 shows histograms of the relative alignment of the angular momen

tum of the i? = 0.4 r^ir shell with the outer regions of the halo (upper two panels) 

and the inner regions of the halo (lower three panels). The alignment is very good 

at most radii. 

The relative alignment of the angular momentum as a function of radius is 

shown in Figure 5.11. Each line shows the median alignment of the angular mo

mentum with respect to a different fiducial radius, recognizable as the radius 

where the median is exactly unity. The alignment gets progressively worse as the 

radii get further separated; the median cosine between the angular momenta in 

the innermost and outermost regions is 0.64. However, the angular momentum 

vector at intermediate radius, such as at 0.4 r^ir, is generally representative of its 

direction at all radii. 

Figure 5.12 examines the internal alignment of the angular momentum as a 

function of halo mass. The patterns seen in Figure 5.11 generally hold for all 

masses, although the alignment between the very innermost and outermost re

gions is slightly worse for the highest mass halos. 

5.4.3 Alignment between the angular momentum and the halo shape 

We investigate here the alignment between the angular momentum of a halo at a 

given radius and the principal axes of the mass distribution at that radius. If we 

compare an angular momentum vector whose error is 0.4 radians with a principal 

axis whose error is 0.2 radians, the error in the direction cosine is 0.02 if they are 
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Figure 5.11: Median alignment of the angular momentum vector at different 

radii. The alignment is with respect to the R = 0.06 (black/solid), R — 0.12 

(red/dotted), R = 0.25 (green/short-dashed), R = 0.4 (cyan/dot-dashed), R = 

0.6 (blue/dot-dot-dot-dashed), and R = 1.0 rvir (magenta/long-dashed) shell. 

For each pair of radii, only halos where the direction of the angular momentum 

vector is determined to within 0.4 radians at both radii are used. 
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Figure 5.12: Median angular momentum alignment as in Figure 5.11, but only 

for halos with masses of 10^^ - 10^^ h~^ MQ (left), 10^^ - 10^^ h~^ MQ (mid

dle), and 10^^ - 3 X 10^^ h~^ MQ (right). The alignment is with respect to the 

R = 0.06 (black/solid), R = 0.12 (red/dotted), R = 0.25 (green/short-dashed), 

R = 0.4 (cyan/dot-dashed), R = 0.6 (blue/dot-dot-dot-dashed), and R = 1.0 RVIR 

(magenta/long-dashed) shell. For each pair of radii, only halos where the direc

tion of the angular momentum vector is determined to within 0.4 radians at both 

radii are used. 
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Figure 5.13: Histograms of the alignment between the angular momentum vector 

and the major axis of the R = 1.0, 0.6, 0.4, 0.25, 0.12, and 0.06 Tvir (top to bottom) 

shell of each halo where the error in the major axis direction is less than 0.2 ra

dians and the error in the angular momentum direction is less than 0.4 radians 

at that radius. Due to the symmetry of the axes, the direction cosine is always 

positive. If the orientations were random, this distribution would be uniform. 
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perfectly aligned and 0.22 if they are perpendicular. The median errors are half of 

those values. Therefore, in the cases where the alignment is good, the effect of the 

errors is negligible. In the cases where the vectors are perpendicular or isotropic, 

we must take the errors into account when drawing conclusions. 

Figures 5.13, 5.14, and 5.15 show histograms of the cosine between the di

rection of the angular momentum vector and the major, intermediate, and minor 

axis respectively. Only those halos with both angular momentum direction errors 

of less than 0.4 radians and axis direction errors of less than 0.2 radians are used. 

The angular momentum vector tends to be perpendicular to the major and inter

mediate axes, and parallel with the minor axis. Because of the different effects of 

the error on parallel and perpendicular vectors, the tendency of the angular mo

mentum to be perpendicular to the major axis is as significant as the trend for it to 

be parallel to the minor axis, despite the different appearance of the histograms. 

The angular momentum tends to lie perpendicular to the intermediate axis, but 

this trend gets weaker with radius. 

These results are consistent with those of Barnes & Efstathiou (1987), Dubinski 

(1992), and W92. Of these, only W92 quantify any change with radius; they found 

slightly better alignment at larger radii, in contrast to the results presented here. 

However, both of the radii at which they performed the comparison were well 

within the virial radius, well inside the radii where we see the alignment drop. 

These relationships are summarized in Figure 5.16, which shows the median 

alignment between the angular momentum vector and each of the principal axes. 

The angular momentum tends to lie parallel with the minor axis and perpendic

ular to both the major and intermediate axes. These trends are strongest in the 

central 0.25 Tyir of the halo, deteriorating slightly in the outer regions. The median 

cosine of 0.9 corresponds to a misalignment between the angular momentum and 
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Figure 5.16: Median alignment between the angular momentum vector and the 
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each halo as a function of radius within the halo. 
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Figure 5.17: As in Figure 5.16, but only for halos with masses of 10̂  ̂-10̂  ̂h MQ 

(left), 10^^ - 10^^ h~^ MQ (middle), and 10^^ - 3 x 10^^ /i"^ MQ (right). 



183 

minor axis of 25°, comparable to the misalignment between the disk and halo po

tential we investigated in § 2.2.2. Figure 5.17 shows how these trends depend on 

the halo mass. For high mass halos, the alignment is slightly worse and has less 

of a dependence on the location within the halo. 

5.5 External alignment 

5.5.1 Introduction 

In this section, we compare the orientation of the principal axes and angular mo

menta of individual halos with the location of mass around them and the orien

tation of those properties in surrounding halos. For each halo, the volume is split 

into 7 radial bins. The nearest bin spans separations from 0 to 390.625 kpc. 

The outer radii double for each subsequent bin, while the inner radius is equal 

to the outer radius of the interior bin. The largest bin has an outer radius of 

25 Mpc, extending to the edge of the periodic box. The properties of the ha

los in the i? = 0.4 r^ir shell are characteristic of their overall properties over a 

large range of radii (see § 5.4). Therefore, we use the principal axes and angular 

momenta measured at this radius for all halos in this section. 

We follow the nomenclature of Splinter et al. (1997), and use "alignment" to 

refer to the tendency of a vector (such as a principal axis or an angular momen

tum vector) to point toward or away from other halos, and "correlation" to refer 

to the tendency of vectors in different halos to point in the same direction. 

A visual impression of how the axes and angular momenta align can be seen 

in Figure 5.18, which shows the axes and angular momentum vectors of all of 

the halos in a slab containing one quarter of the simulation. If the axis or vector 

lies mostly in the z direction, it appears much shorter in the xy projection shown. 

Figure 5.19 shows the properties of only the high mass halos, M > 10^  ̂ MQ, 
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Figure 5.18: Projection in xy of the major (top-left), intermediate (top-right), and 

minor (bottom-left) axes, and unit angular momentum vectors (bottom-right) of ha-

los in a slab of depth Az = 12.5 h~^ Mpc (one quarter of the simulation volume). 

The three-dimensional length of each line or vector is 1.5 h~^ Mpc, including the 

unseen z component. 



185 

- 2 0  - 1 0  0  1 0  

X ( / !" '  Mpc) 

2 0  - 2 0  - 1 0  0  1 0  

X {h~^ Mpc) 

20 

Figure 5.19: As in Figure 5.18, but for only those halos with masses greater than 

10^^ MQ. The three-dimensional length of each line or vector is 2 h~^ Mpc, in

cluding the unseen z component. Dots show the positions of all halos, regardless 

of mass. 
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with the location of the other halos shown as dots. Because of the filamentary 

nature of the large scale structure (e.g. Colberg et al., 1999), positive alignment 

indicates that a quantity tends to point along filaments. 

5.5.2 Axis alignments 

We compare here the alignment of the principal axes of the halos with the location 

of surrounding structure. Methods of measuring these alignments vary in the 

literature, as does the nomenclature for a given metric. We adopt an internally-

consistent nomenclature and which are defined to be the mean value of 

the direction cosine between direction x and direction y, and the mean of the ab

solute value of the direction cosine respectively. We note names other authors use 

for the same quantities when applicable. For example, to measure the alignment 

of the major axis, whose direction is defined by the unit vector a, with the large 

scale structure, we calculate the alignment 

C|ar|(r) = (|a • f|) = ^ ̂  \ai • fy I, (5.6) 
ij 

where the sum over i is over all halos in the primary sample, the sum over j is 

over all halos in the secondary sample, f ̂  is a unit vector in the direction of the 

displacement from halo i to halo j, and N is the number of terms in the double 

sum. The primary sample consists of all halos whose major axis is determined to 

within 0.2 radians, while the secondary sample consists of all halos. We define the 

alignments ^\br\ and for the intermediate axis b and the minor axis c similarly. 

Note that the primary samples used to define ^|ar|, and ^|cr| are not identical, 

as the set of halos with good major axis determinations is deficient in very oblate 

halos, the set of halos with good minor axis determinations is deficient in very 

prolate halos, and the set of halos with good intermediate axis determinations is 

deficient in both very prolate and very oblate halos. 
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Figure 5.20: Histograms of the direction cosine |a • f | between the major axes of 

halos in the primary sample and the displacement from each primary halo to all 

surrounding halos, binned by radial separation between the centers of the halos. 

The direction cosine is always positive due to the symmetry of the axes. If the 

axes were randomly oriented, the distributions would be uniform. The radial 

bins consist of halos separated by (top to bottom): 12.5 - 25, 6.25 - 12.5, 3.125 -

6.25,1.5625 - 3.125, 0.78125 -1.5625, 0.390625 - 0.78125, and 0 - 0.390625 Mpc 

respectively. The primary sample consists of halos whose major axes are deter

mined to within 0.2 radians. 
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Figure 5.20 shows histograms of the distribution of direction cosines |a f| 

for halos at a variety of separations. If the axes were randomly oriented, the 

distributions would be uniform. If |a f | > 0.5 then the axes tend to be parallel 

to the lines connecting halos, while if |a f| < 0.5 then the axes tend to point 

perpendicular to the lines connecting halos. The distribution is mostly isotropic, 

but there is an excess of halos with |a f | > 0.5. We quantify this by calculating 

the mean, (note that this is similar but not identical to the quantity w{r) used 

byKE04). 

Figure 5.21 shows ^|ar| for the halos. Each bin is plotted at the geometric mean 

between its inner and outer radius, except for the innermost bin which is plotted 

at l/\/2 times its outer radius. The inner bin has no formal inner radius, but in 

practice is limited by twice the radial extent of the typical halo, or 250 h~^ kpc. 

Halos whose centers of mass are closer to each other than this are merging, and 

are detected as a single object by the group finder. We find that the alignment is 

well fit by a power law over a wide range of separations. The fit is shown as the 

solid line in Figure 5.21, and is given by 

|̂AR|(R) = +̂MIR", (5.7) 

where r is the separation in units of h~^ Mpc, the alignment at 1 Mpc is 

mi = 0.015, and the slope is a = —0.64. F02 find even stronger alignment for 

their cluster-mass halos, as do KE04 (except at the very smallest separations, 

which is at the spatial limit of their simulations). To see whether the halo mass 

is important, we recalculate restricting the primary sample to those halos 

with masses greater than 10^^ h~^ MQ. This is the tendency for the major axes of 

group or cluster mass halos to point along the filaments. The results are shown 

as the diamonds in Figure 5.21. The group and cluster mass halos are much more 

strongly aligned than the full sample (which is dominated by galaxy mass ha-
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Figure 5.21: Mean alignment between the major axes of halos in the primary 

sample and the displacement from the primary halos to all surrounding halos. 

This is the tendency for the major axes to point along filaments. Only halos where 

the major axis is determined to within 0.2 radians are used for the primary sam

ple. The different symbols are for primary samples consisting of all such halos 

(crosses) or of only those with masses greater than LO'^^ h~^ MQ (diamonds). The 

diamonds are shifted slightly to the right for clarity. The values are binned by 

radial separation between the centers of the halos. The ordinate for each bin is 

the outer radius of the bin divided by v^/ which is the geometric mean radius of 

the bin for all but the central bin. Error bars represent the la Poisson sampling 

error in the mean. Values greater than 0.5 indicate that the axes lie parallel to 

the filaments, while values less than 0.5 indicate that the axes lie perpendicular 

to the filaments. The solid line is the power law fit for the full sample given by 

equation (5.7). The dotted line is the value expected for random orientations. 
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los). The alignment is constant out to 3 Mpc, after which it drops until it 

agrees with the results of the full sample by 6 Mpc. The orientation of clusters 

is influenced in large part by the accretion of substructure (van Haarlem & van 

de Weygaert, 1993). The substructure is accreted along filaments, and therefore 

groups and clusters tend to be strongly aligned with surrounding halos to larger 

radii. KE04 find stronger alignments out to even larger separations. Their sim

ulations are performed in a much larger (Hubble volume) box, which contains 

power on longer wavelengths than exist in our smaller simulation volume (and 

allows them to measure alignments at separations far exceeding our entire box 

length). Alternatively, it may be a consequence of the higher mass of their ha

los; while there is virtually no overlap in the range of halo masses between this 

work and KE04, we find that the alignment is a strong function of halo mass. As 

KE04 do not present independent results for their lowest mass halos (which are 

the closest match to our "high mass halo" sample), we cannot tell which of these 

factors dominates the difference between the results. 

The intermediate axes are also aligned with the filaments. The mean align

ment as a function of radius is shown in Figure 5.22. While the innermost bins 

show no alignment, there is clear evidence of alignment at separations of 1 Mpc 

and beyond. The solid line is a power law fit to the outer 5 points, i.e. for 

r > 781 kpc, and is given by 

(\br\ = ^ + mir", (5.8) 

where mi = 0.008 and a = —0.7. The high mass halos again show constant 

alignment out to several Mpc. 

As both the major and intermediate axes tend to point along filaments, the 

minor axis must tend to lie perpendicular to the filaments. This trend can be 

clearly seen in the bottom-left panels of Figures 5.18 and 5.19 as sequences of 
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Figure 5.22: As in Figure 5.21, but for the intermediate axis, ^\br\. The solid line is 

the power law fit for the outer 5 points of the full sample, i.e. for r > 781 h~^ kpc, 

and is given by equation (5.8). 
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Figure 5.23: As in Figures 5.21 and 5.22, but for the minor axis, ^|cr|- The solid 

line is the power law fit for the full sample, excluding the innermost bin, i.e. for 

r > 391 h~^ kpc, and is given by equation (5.9). 
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parallel lines running along the filaments. Figure 5.23 shows .^|cr|- The solid line 

is a power law fit for the full sample excluding the innermost bin, i.e. for r > 

391 h~^ kpc, and is given by 

= (5.9) 

where the alignment at 1 Mpc is mi = 0.027 and a = —0.7. The minor axes 

of group and cluster mass halos show even stronger alignment, as seen by the 

diamonds in Figure 5.23. 

The relative strength of the alignment for the different axes is well described 

by mi, the value of the power law fit at a separation oil h ̂  Mpc. This is 0.015, 

0.008, and 0.027 for the major, intermediate, and minor axes respectively. There

fore it is the minor axis, not the major axis, that is most influenced by the presence 

of surrounding material. This also explains how both the major and intermedi

ate axes can be positively aligned with the filament: if the minor axis of a halo 

lies perpendicular to the filament, then both the major and intermediate axes 

are constrained to lie within a plane that contains the filament. Therefore, they 

are both more likely to point along the filament then a randomly-oriented three-

dimensional axis, and therefore both show positive alignment (for example, if all 

of the minor axes were perfectly perpendicular to the filament and there were no 

difference between the major and intermediate axes, then ^|cr| would vanish and 

both and ^\br\ would equal 2/7r w 0.64). The geometry of the environment 

is not strictly linear, especially at larger scales. However, despite these compli

cations, the relationships we have found provide useful quantitative predictions 

that can be tested when full three-dimensional observations of halo shapes are 

available. 
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5.5.3 Axis correlations 

We compare here the tendency for the principal axes of neighbouring halos to 

point in the same direction. The procedure we use is completely analogous to 

that used to calculate the alignments in § 5.5.2. The correlation between the major 

axes is defined as 

= (|a • a|) = ^ ̂  |ai • a^l, (5.10) 
ij 

where the sum is over all unique pairs (i, j )  because the measurement is symmet

ric with respect to each pair of halos. If the major axes lie parallel to each other, 

|a • a| > 0.5, while if they lie perpendicular to each other, |a • a| < 0.5. Only ha

los whose major axes are determined to within 0.2 radians are used for both the 

primary and secondary sample. 

Figure 5.24 plots the mean correlation of the major axes as a function 

of the halo separation (this is identical to the quantity defined as u{r) in KE04). 

Although almost all bins are individually consistent with isotropy, they all lie 

above 0.5, and taken together are evidence that the directions of the major axes 

are correlated. We fit a power law and find 

^\aa\{r) = ^ + mir'^, (5.11) 

where r is the separation in units of h~^ Mpc, the correlation at 1 Mpc is mi = 

0.004, and the slope is a = —1.2, although the large errors introduce considerable 

uncertainties in these values. The correlations found by both F02 and KE04 are 

considerably stronger than those found here. We have recalculated ^|aa| using 

only halos with masses greater than 10^^ h~^ MQ to see if the behaviour of high 

mass halos differs from those of lower mass, but due to the small number of halos 

in our sample in this mass range, the errors are too large draw any conclusions. 

In Figures 5.25 and 5.26, we plot the mean correlations of the intermediate and 
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Figure 5.24: Mean correlation ^|aa| of the major axes of halos for which the di

rection of the major axes is determined to within 0.2 radians for both halos. The 

solid line is the power law fit, and is given by equation (5.11). The dotted line 

is the expected value for random orientations. Error bars represent the la Pois-

son sampling error in the mean. Values greater than 0.5 indicate that the major 

axes are parallel to each other, while values less than 0.5 indicate that the axes are 

perpendicular to each other. 
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minor axes of the halos, and ^|cc| • The error bars are too large to robustly detect 

any correlation, though the preponderance of bins in Figure 5.26 with ̂ |cc| > 0.5 is 

suggestive. A larger sample of halos simulated at equally high spatial resolution 

is required to see if this is real. 

5.5.4 Angular momentum 

We investigate the tendency for the angular momentum to point toward or away 

from nearby halos, for it to lie parallel or perpendicular to the filamentary struc

ture, and for the angular momentum vectors of neighbouring halos to point in 

the same direction. To measure the tendency of halo angular momenta to point 

toward or away from other halos, we calculate the alignment 

where Lj is a unit vector in the direction of the angular momentum vector for 

ha lo  i ,  and  Vi j  i s  a  un i t  vec to r  i n  t he  d i r ec t i on  o f  t he  d i sp l acemen t  f rom ha lo  i  

in the primary sample to halo j in the secondary sample. The primary sample 

consists of all halos where the direction of the angular momentum is determined 

to within 0.4 radians, while the secondary sample consists of all halos. Figure 5.27 

shows the results. There may be a weak tendency for the angular momentum to 

point toward local density enhancements on scales of 0.5 - 3 h~^ Mpc, but the 

size of the error bars makes such a result tentative. The high mass halos show no 

alignment. 

Kashikawa & Okamura (1992) and Navarro et al. (2004) have found that galax

ies within the local supercluster have their spins pointing within the supercluster 

plane, while those at least 2 h~^ Mpc from the plane have spins that point toward 

or away from the plane. To see if the behaviour of simulated halos in low and 

high density regions differs, we have split the sample into those halos that have 

(5.12) 
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Figure 5.27: Mean alignment between the angular momentum vector of a 

halo and the location of surrounding halos, as a function of radial separation. 

Only halos where the direction of the angular momentum is determined to within 

0.4 radians are used for the primary samples. The different symbols are for pri

mary samples consisting of all such halos (crosses), or of only those with masses 

greater than 10^^ MQ (diamonds). The diamonds are shifted slightly to the 

right for clarity. Error bars represent the la Poisson sampling error in the mean. 

Positive values indicate that the angular momentum tends to point toward local 

density enhancements, while negative values indicate that the angular momen

tum points away from them. The dotted line is the expected value for random 

orientations. 
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Figure 5.28: Mean alignment iir as in Figure 5.27, with primary samples selected 

by local density. Crosses designate halos that have 3 or fewer neighbouring halos 

within 2 Mpc, while diamonds designate halos with 4 or more neighbouring 

halos within 2 Mpc. The solid line is the power law fit for the low density 

sample at r > 781 kpc, and is given by equation (5.13). 
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3 or fewer neighbouring halos within 1 Mpc (the low density sample), and 

those that have 4 or more neighbours within 2 Mpc (the high density sample). 

There are 2155 and 1714 halos in the low and high density samples respectively. 

In Figure 5.28, we have plotted the alignment against separation for the two 

samples. By construction, there are very few pairs (and therefore large error bars) 

at small separations in the low density sample, but beyond 1 Mpc there is a 

clear detection of positive alignment in this sample. The alignment is well fit by 

a power law of the form 

= mir", (5.13) 

where r is the separation in units of Mpc, the correlation at 1 h~^ Mpc is 

mi = 0.01, and the slope is a = —0.6. The high density sample shows no coherent 

tendency for the angular momentum vectors to point toward or away from den

sity enhancements. The low and high density samples do not show significant 

deviations from the full sample for any of the other statistics studied. 

The tendency for the angular momentum vectors to lie parallel versus per

pendicular to the filaments is measured by 

«iiri(0 = (It • fl) = ;̂  E • f«l. (5.14) 

defined as Ly in Hatton & Ninin (2001), or 

u j { r )  =  (|L • i ^ ̂  |Li • r^f - ̂  (5.15) 
h3 

as used by Lee & Pen (2001). If iC|Lr| > 0.5 or u j{r )  >  0 then the angular momentum 

vectors lie parallel to the filaments, while if C|Lr| < 0.5 or a;(r) < 0 then the angular 

momentum vectors point perpendicular to the filaments. In Figures 5.29 and 

5.30, we plot ^\Lr\ and oj(r) respectively. The solid line in Figure 5.30 shows the 

prediction of Lee & Pen (2001) from linear tidal torque theory. On scales less 
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Figure 5.29: Mean alignment between the angular momentum vector of pri

mary halos and the location of all surrounding halos. Only halos where the direc

tion of the angular momentum is determined to within 0.4 radians are used for 

the primary samples. The different symbols are for primary samples consisting of 

all such halos (crosses), or of only those with masses greater than 10^^ MQ (di

amonds). The diamonds are shifted slightly to the right for clarity. Error bars rep

resent the la Poisson sampling error in the mean. Values greater than 0.5 indicate 

that the angular momentum vectors point parallel to the filaments, while values 

less than 0.5 indicate that the angular momentum vectors point perpendicular to 

the filaments. The dotted line is the expected value for random orientations. 
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Figure 5.30: Alignment u}{r )  between the angular momentum vector of a primary 

halo and the location of all surrounding halos. Only halos where the direction 

of the angular momentum is determined to within 0.4 radians are used for the 

primary samples. The different symbols are for primary samples consisting of 

all such halos (crosses), or of only those with masses greater than 10̂  ̂ h~̂  MQ 

(diamonds). The diamonds are shifted slightly to the right for clarity. Error bars 

represent the Icr Poisson sampling error. Positive values indicate that the an

gular momentum vectors tend to point parallel to the filaments, while negative 

values indicate that the angular momentum vectors point perpendicular to the 

filaments. The dotted line is the expected value for random orientations, while 

the solid line is the prediction from linear tidal torque theory (Lee & Pen, 2001). 
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than 3 h~^ Mpc, the angular momentum tends to lie parallel to the filaments. 

The values are consistent with those found by Hatton & Ninin (2001). However, 

both Lee & Pen (2001) and F02 find that the angular momenta of halos tend to 

lie perpendicular to the filaments. This discrepancy may lie in the different mass 

ranges probed. The halos of Hatton & Ninin (2001) cover a very similar mass 

range to those in this work, while the sample of F02 consists entirely of cluster 

mass halos (their smallest halo has a mass of 1.4 x 10^"^ h~^ nearly the mass of 

our largest halo). We have recalculated and Lo{r) using only halos with masses 

greater than 10^^ h~^ MQ in the primary sample and plotted them as diamonds in 

Figures 5.29 and 5.30. The behaviour is radically different; the angular momenta 

of groups and clusters tend to point perpendicular to the filaments. 

The correlations between the angular momentum vectors of halos are calcu

lated analogously. In particular, the tendency for halo angular momenta to point 

in the same direction versus in the opposite direction as the angular momenta of 

other halos is defined as 

where the sum is over all unique pairs { i , j ) .  This is equivalent to the quantity 

defined is r]{r) in Porciani et al. (2002a). As seen in Figure 5.31, we detect no 

deviations from random. We also measure the tendency for halo angular mo

mentum vectors to be either parallel or perpendicular to each other. We define 

two quantities to measure this. 

which is the same as the quantity defined as //(r) in Hatton & Ninin (2001), and 

(5.16) 

(5.17) 

(5.18) 
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Figure 5.31: Mean correlation of the angular momentum vectors of halos as 

a function of their separation. All halos where the direction of the angular mo

mentum is determined to within 0.4 radians are used. Error bars represent the 

la Poisson sampling error in the mean. Positive values indicate that the angular 

momenta tend to point in the same direction, while negative values indicate that 

the angular momenta tend to point in opposite directions. The dotted line is the 

expected value for random orientations. 

Separat ion {h ' '  Mpc 



206 

0.510 

0.505 

_i 

• 0.500 

0.495 

0.490 

Figure 5.32; Mean correlation ^ILL\ between the angular momentum vectors of ha-

los as a function of their separation. All halos where the direction of the angular 

momentum is determined to within 0.4 radians are used. Error bars represent the 

la Poisson sampling error in the mean. Positive values indicate that the angular 

momentum vectors tend to lie parallel to each other, while negative values indi

cate that the angular momentum vectors tend to lie perpendicular. The dotted 

line is the expected value for random orientations. 
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Figure 5.33; Correlation 77(r) between the angular momentum vectors of halos 

as a function of their separation. All halos where the direction of the angular 

momentum is determined to within 0.4 radians are used. Error bars represent 

the Icr Poisson sampling error. Positive values indicate that the angular momen

tum vectors tend to lie parallel to each other, while negative values indicate that 

the angular momentum vectors tend to lie perpendicular. The dotted line is the 

expected value for random orientations. The solid line is the linear tidal torque 

prediction (Pen et al., 2000). 
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which is the same as Pen et al. (2000)'s r]{r )  and Porciani et al. (2002a)'s The 

quantities and r]{r) are shown in Figures 5.32 and 5.33 respectively. We 

detect no deviations from isotropy. Due to the size of the error bars, these results 

are consistent with the non-detections and weak tendencies toward alignment 

found by other authors (Pen et al., 2000; Hatton & Ninin, 2001; Porciani et al., 

2002a; F02). We do not find any difference if we restrict the sample to halos of 

any particular mass range. 

5.6 Discussion 

The differences between the properties of galaxy mass halos compared to those 

of group and cluster mass halos suggest that different factors determine their ori

entations. For example, the orientation of the major axis of a cluster is strongly 

affected by the direction of the most recently accreted subhalo, as seen in simu

lations (van Haarlem & van de Weygaert, 1993; Tormen, 1997) and observations 

(Ebeling et al., 2004). If these are accreted from filaments, then there should be a 

strong alignment of cluster principal axes with the filaments, as we have found. 

We find that the tendency of the minor axes to lie perpendicular to the filaments 

is much stronger than the tendency of the major axes to lie parallel to the fila

ments. While previous authors have neglected the minor axis, it appears that 

the effect of these mergers on the minor axis is stronger than their effect on the 

major axis. Another possibility is that the initial alignment of the major axis is 

stronger, but that figure rotation scrambles this alignment. In § 4, we found that 

most halos show slow figure rotation about the minor axis, with a median pat

tern speed of ~ 0.15 h km kpc~^, suggesting that the major axis of a typical 

halo can change by 90° in a Hubble time. The much weaker alignment for galaxy 

mass halos suggests that either the orientation of the axes is less affected by re
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cent mergers (although we find no relationship between the pattern speed and 

halo mass, the lower mass hales are on average dynamically older, and therefore 

figure rotation may have had a longer time to modify their orientation), or that 

the direction of the accretion is more isotropic (Vitvitska et al., 2002). Aubert et al. 

(2004) find that the accretion onto halos at masses down to 5 x 10^^ MQ is quite 

anisotropic; however, 97% of our "galaxy" mass halos lie below this limit. 

The differences between the angular momentum alignments for high and low 

mass halos are also intriguing. Angular momentum is usually thought to either 

arise from the tidal torquing of an asymmetric protohalo (White, 1984), or by 

the accretion of substructure on non-radial orbits (Tormen, 1997; Vitvitska et al., 

2002). In a sense, these are not distinct scenarios; accreted subhalos are proto-

galactic material that has been tidally torqued. However, the relation between 

the direction of the angular momentum and surrounding matter may differ de

pending on the dumpiness of the accretion and other non-linear effects (Porciani 

et al., 2002a). 

It is interesting to compare our results for collisionless dark matter halos with 

the results of Navarro et al. (2004) for simulations that include baryonic physics. 

The main results of Navarro et al. (2004) are that the angular momenta of bary

onic galactic disks in gasdynamical simulations tend to align with the interme

diate axis of the local baryon distribution on scales of ~ 2 Mpc, and that 

observed edge-on disk galaxies in the local supercluster have their spin axes ly

ing within the supergalactic plane, as expected in such a scenario. We find that on 

the scale of an individual halo, the angular momentum of the dark matter aligns 

with its minor axis. However, we find that the angular momentum of the dark 

matter in galaxy mass halos is parallel to the large scale structure, as expected 

if the spin vector lies within local sheet-like structures as suggested by Navarro 
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et al. (2004). We also find that in low density regions, halo spins point toward 

nearby filaments, and are therefore aligned with the intermediate axis of the local 

density field. Therefore, despite the common presence of misalignments between 

the angular momenta of the baryons and the dark matter in individual galaxies 

(Sharma & Steinmetz, 2004), each retains some memory of the large scale struc

ture which provided the initial torques. 

In the group and cluster mass hales, on the other hand, the angular momen

tum shows a strong tendency to point perpendicular to the large scale structure. 

These objects tend to occur at the intersections of large filaments, and have been 

built up by the recent accretion of smaller halos. These halos are accreted along 

the filaments, and therefore add angular momentum perpendicular to the fila

ments (note that this confirms the suggestion of Mailer et al. (2002) that accretion 

along a preferred axis is required to explain the distribution of spin parameters 

seen in simulated halos). This process appears to dominate the direction of the 

angular momentum for halos of mass greater than 10^^ h~^ MQ. Unlike for galaxy 

mass halos, for which we can confirm that the angular momenta of the dark mat

ter and baryons share similar relationships to the large scale structure in simu

lations, we do not have high resolution gasdynamical simulations of these more 

massive objects with which to compare. It may be possible to determine the rota

tion axis of baryons in these systems observationally. In theory, the spin vector of 

a relaxed cluster can be deduced from the presence of a redshift gradient of the 

galaxies in the cluster; however, confusion due to structure along the line of sight, 

the small magnitude of the rotation compared to the intrinsic velocity dispersion, 

ambiguity in the orientation of the ellipsoidal shape, intrinsic distance gradients, 

the lack of a large sample of substructureless relaxed clusters, and the uncertain 

relationship between the angular momentum of the cluster galaxies and that of 
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the smooth X-ray emitting gas that dominates the baryonic mass make this mea

surement difficult. The rotation of the X-ray gas itself, however, may be measured 

using the kinematic Sunyaev-Zeldovich effect in future Cosmic Microwave Back

ground (CMB) surveys (Chluba & Mannheim, 2002; Cooray & Chen, 2002). 

5.7 Summary 

We have studied the internal shapes and angular momenta of galaxy and group 

mass dark matter halos formed in a ACDM A'^-body simulation, and studied how 

they are correlated with the large scale structure and the properties of neighbour

ing halos. 

Internally, halos are triaxial with b / a  and c j a  ratios of 0.75 ± 0.15 and 0.6 ±0.1 

respectively. The distribution of axis ratios has a tail to low values. The two-

dimensional projected ellipticities cover a broad range of values from 0 to 0.5, 

with a mean of 0.24, consistent with the weak lensing results of Hoekstra et al. 

(2004). The axis ratios rise between 0.12 and 0.6 rvir, beyond which they drop. 

Within 0.12 r^i^, the measurement is probably compromised by the force softening 

in the simulations. Halos are most often prolate in the inner regions, but tend to 

a more even mix of prolate and oblate at large radii. 

The internal alignment of the halos within 0.6 rvir is very good, particularly for 

the minor axis, with a slight decrease in alignment in the outermost regions. High 

mass halos have particularly well-aligned axes. The orientation of the angular 

momentum is also relatively constant, though it changes more noticeably as a 

function of radius than do the axes. At any given radius, the angular momentum 

vector tends to be aligned with the minor axis and be perpendicular to the major 

axis. It also shows a weaker tendency to be perpendicular to the intermediate 

axis. The alignment between the angular momentum and the principal axes gets 
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weaker at larger radii. The properties of the halo at 0.4 are quite characteristic 

of their values at most other radii. 

The minor axes of halos show a strong tendency to lie perpendicular to the 

filaments. As a consequence, the major (and, to a lesser degree, intermediate) 

axes tend to point along filaments. Figure rotation about the minor axis may be 

responsible for the smaller degree of major axis alignment. These alignments fall 

off with distance as a power law. In all cases, the alignment for group and cluster 

mass halos extends to much larger separations than for galaxy mass halos. The 

major axes show a weak correlation with those of other nearby halos. There is no 

robust detection of a correlation for the other axes. 

The angular momenta of halos in low density environments tend to point to

ward local density enhancements, in agreement with the results of Kashikawa & 

Okamura (1992) for galaxies 2 h~^ Mpc or more away from the local supergalac-

tic plane. The angular momenta of galaxy mass halos show a weak tendency to 

point along filaments on scales up to 3 Mpc, but those of group and cluster 

mass halos show a very strong tendency to point perpendicular to the filaments. 

We detect no correlations of the angular momentum directions of nearby halos 

with each other, but due to the size of the error bars, this is consistent with pre

vious linear and A'^-body studies that predict weak correlations. Comparisons 

with recent gasdynamical simulations and observations of edge-on disk galaxies 

in the local supercluster suggest that both the baryons and dark matter in galax

ies share a memory of the orientation of the large scale structure that provided 

the initial torque. Groups and clusters, on the other hand, appear to acquire most 

of their angular momentum from the accretion of subhalos along filaments. This 

may be tested with large samples of galaxy redshifts within relaxed clusters, or 

by kinematic Sunyaev-Zeldovich studies in future CMB experiments. 
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CHAPTER 6 

CONCLUSIONS 

6.1 Summary 

We have used numerical A'^-body simulations to study several aspects of the 

alignment between the angular momentum of the disk, halo, and surrounding 

structure in galaxy formation. 

The angular momenta of the inner and outer disks in warped galaxies are 

misaligned with each other. Angular momentum is transferred by torques, so 

the cause of this misalignment is related to how a massive galactic disk reacts to 

torques. We have calculated the torques a misaligned dark matter halo imparts on 

a disk, and found that the tilting timescale for the disk is quite short, significantly 

shorter than a Hubble time. We have performed A^-body simulations of galactic 

disks subject to torques of this strength. The inner disk reacts more quickly to the 

torque, tilting as a solid body while the outer disk follows behind, resulting in a 

trailing warp. Galactic disks are marginally unstable to warping when the local 

surface density drops below 70 MQ PC~^; this is the radius at which the warp first 

develops, regardless of the disk mass. Vertical bending waves transmit the warp 

to the end of the disk on a timescale of 500 Myr. The warped angular momentum 

in these simulated disk is similar to the warped angular momentum observed in 

the Milky Way. 

Satellite galaxies may provide another source of misaligned angular momen

tum that can trigger warps. We have compared the misaligned angular momen

tum responsible for the Milky Way warp to that of the Sagittarius dSph galaxy 
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and 6 other nearby satellites. There is a striking coincidence between the magni

tude and direction of the warp and Sagittarius: they both have a magnitude of 

between 2 - 8 x 10^^ MQ kpc km S~^ (depending on the assumed mass model), and 

are almost perfectly anti-aligned. We estimate the probability that this is a chance 

corvfiguration to be 1.4%. This suggests that they are coupled, and that Sgr is 

responsible for the Milky Way warp. We have performed a series of A'^-body sim

ulations of satellite-disk interactions in order to test this hypothesis, and found 

that the key parameters that determine whether a satellite can efficiently excite 

a warp are the orientation of the orbit (inclined orbits excite warps more easily 

than polar orbits), the satellite mass, and the number of perigalactic passages (for 

eccentric orbits). The warps excited by satellite galaxies are asymmetric. The 

orientation of the warp with respect to the satellite orbit is quickly scrambled 

by the processes of differential precession and the vertical bending waves which 

dissipate the warp. Even our most disturbed model disks have only a fraction 

of the warp angular momentum that we calculate for the Milky Way, which may 

suggest that the mass models are mismatched. However, even when we normal

ize by the total angular momentum, which should reduce any discrepancy due 

to mismatched mass models, we find that the warp of the Milky Way is several 

times stronger than in any of the simulated disk-satellite systems. The typical 

warp angular momentum excited by a satellite galaxy is ~ 1% of the satellite's 

orbital angular momentum. Therefore, Sgr with its current mass on its current 

orbit cannot provide the torque necessary to explain the Milky Way warp, de

spite the promising coincidence of its angular momentum. 

The torques that warp galaxies may come from misalignments between the 

angular momentum of the disk and the angular momentum or shape of its dark 

matter halo. Therefore, we have studied the properties of galaxy and group-



215 

mass dark matter halos formed in cosmological simulations. We have studied 

the triaxial shapes of the halos, and found that the minor-to-major axis ratios are 

typically c/a = 0.6, and are more spherical at larger radii throughout most of 

the halo, but become more flattened again near the virial radius. We have de

tected rotation of the triaxial figure in most undisturbed halos, with the rotation 

axis coinciding with the minor axis in 85% of the halos and the major axis in 

15% of the halos. The pattern speeds follow a log normal distribution centred on 

r2p = 0.148 h km kpc"^ which is not sufficiently fast to account for the spiral 

structure in NGC 2915 as had been hypothesized. 

The shapes of halos are internally very well aligned, particularly for high mass 

halos. The angular momentum is relatively well aligned within the halo, and 

tends to align with the minor axis. However, the median misalignment between 

the angular momentum and minor axis is still « 25°; misalignment of this mag

nitude between the angular momentum of a galactic disk and the minor axis of 

its halo can produce realistic-looking warps. The alignment between the angular 

momentum of the halo and its shape becomes poorer at larger radii. The minor 

axes of halos show a strong tendency to lie perpendicular to large scale filaments, 

while the major axes show a weaker tendency to lie along the filaments. These 

alignments are much stronger for group and cluster mass halos than for galaxy 

mass halos. The angular momenta of halos in low density environments tend to 

point toward local density enhancements. The angular momenta of galaxy mass 

halos tend to point parallel to the large scale structure, while those of group and 

cluster mass halos point perpendicular to the surrounding mass distribution. 

The Milky Way satellites do not appear to be sufficiently massive to account 

for the warp of the disk. On the other hand, torques from misaligned dark mat

ter halos are sufficiently strong to warp the disk by the observed amount. Mis
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alignments of the required degree between the angular momentum and shape of 

cosmological dark matter hales are seen in cosmological simulations. Although 

such misalignments are expected to quickly dissipate if isolated, the figures of 

dark matter halos rotate; this figure rotation may be responsible for sustaining 

the misalignment between the shape of the disk and halo, and therefore for the 

prevalence of warped galaxies. 

6.2 Outlook 

There are still many unanswered questions regarding the alignment of angular 

momentum within galaxies and the effects misalignment may have on observed 

galactic disks. In this section, we pose several questions prompted by our results, 

and outline what future work can be done to begin to answer them. 

• How are warps produced in cosmological galactic disks? 

We have argued that tidal torques in a cosmological context, in the form 

of halos whose shape or angular momentum is misaligned with that of the 

galactic disk, provide a plausible mechanism for exciting galactic warps. We 

have found that the necessary misalignments between the angular momen

tum and the shape of dark matter halos exist in /V^-body simulations, and 

are of the appropriate magnitude. However, galactic disks are not formed 

in purely gravitational simulations. The ideal way to check this scenario is 

with extremely high-resolution cosmological simulations that include hy

drodynamics and other relevant non-gravitational physics, where the disks 

of individual galaxies are well enough resolved for warps to be detected. 

The current resolution of cosmological simulations with large enough box 

sizes to sample a representative volume of the universe is not high enough; 

even in simulations that focus on single galaxies, warps are just barely de-
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tectable^ but simulations of only a handful of such galaxies exist. Using 

such multimass resimulation techniques, it is currently feasible to assemble 

a representative sample of high resolution disks from which warp statis

tics can be drawn and the responsible environmental effects can be directly 

found. Soon, computing power will reach a sufficient level where resim-

ulations will not be necessary, and we will be able to draw these statistics 

directly from completely self-consistent cosmological simulations. In the 

meantime, we recommend going to the beach (Gottbrath et al., 1999). 

• What is the intrinsic distribution of satellite orbits around the Milky Way and other 

galaxies, and what effects might they have on the ability of satellites to warp galac

tic disks? 

The initial conditions of our simulations in Chapter 3 are motivated by the 

orbits of observed Milky Way satellites, especially Sgr. The Milky Way satel

lites tend to be on polar orbits, the so-called "Holmberg effect", which has 

also been seen in samples of external galaxies by several authors (Zaritsky 

et al., 1997; Sales & Lambas, 2004). If galactic disks tend to lie perpendicular 

to large scale sheets (Navarro et al., 2004), this may explain such an over

abundance of satellites in the polar regions of galactic disks. However, cos

mological simulations suggest that infalling substructures are preferentially 

accreted near the equatorial plane, with their angular momenta aligned rea

sonably well with the halo angular momentum (Tormen, 1997; Aubert et al., 

2004; Benson, 2004; Knebe et al., 2004), and an analysis of SDSS galaxies also 

finds an overabundance of satellites in the plane of disk galaxies (Brainerd, 

2004). Therefore, the true intrinsic distribution of satellite orbits is still an 

^see, for example, http: / /www. aip. de/People/MSteinmetz /Movies/AVI/spiral^as . avi, 
in particular during and after satellite passages at 2 < 0.5. 
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open question, both theoretically and observationally. It may be that obser

vations of the Milky Way environment have preferentially missed satellites 

on equatorial orbits (the recently-discovered Cards Major structure may be 

one such satellite; Martin et al., 2004), dynamical processes may preferen

tially destroy satellites on equatorial orbits (e.g. Penarrubia et al., 2002), the 

samples of external galaxies may be compromised by projection effects, or 

the cosmological simulations may be incorrect. Until the intrinsic distribu

tion of satellite orbits is understood, simulations like those presented in 

Chapter 3 must either use the observed distribution of Milky Way satel

lite orbits for the initial conditions (as we have done), or the distribution 

of substructure orbits found in cosmological simulations. On the observa

tional side, this problem can be attacked by conducting a thorough census 

of the Galactic environment using all sky surveys such as SDSS^, 2MASS^, 

RAVE^, and GASS®. Better proper motions of the known satellites, which 

will improve as the time baseline grows longer and as astrometric missions 

such as GAIA^ fly, will also reduce the uncertainties in the orbital param

eters considerably. On the theoretical side, an improved treatment of star 

formation, feedback, the intergalactic radiation field, and of course better 

resolution, may help resolve the discrepancy. 

• What additional physics may affect the results of satellite-disk simulations? 

The disk simulations in Chapters 2 and 3 only include the effects of gravity. 

Observed galactic disks can contain large amounts of gas which experience 

^ h t t p : / / w w w . s d s s . o r g /  

^ h t t p : / / w w w . i p a c . c a l t e c h . e d u / 2 m a s s /  

* h t t p : / / w w w . a i p . d e / R A V E  

''a recently-commenced all sky survey at Parkes for overlooked H I clouds in the environment 
of the Galaxy and the Local Group (B. Gibson, private communication) 

^ h t t p : / / a s t r o . e s t e c . e s a . n l / G A I A /  
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hydrodynamic forces in addition to the gravitational forces we have mod

elled. Although our proposed warp mechanisms are entirely gravitational, 

and therefore the torques imposed on the disk are independent of the gas 

content of the disk, the response of a gaseous disk to these torques may dif

fer somewhat from that of an A^^-body disk (Ibata & Razoumov, 1998). Fur

thermore, the satellites have been modelled as single particles without any 

internal degrees of freedom. Simulations with self-consistent satellites will 

allow us to model the tidal disruption of the satellite and more confidently 

follow the simulations for a longer period of time. 

• What further effects might halo figure rotation have on the embedded galaxy? 

The magnitude of the figure rotation determined in Chapter 4 is not suf

ficient to explain the spiral structure of NGC 2915. However, it may be 

partly responsible for the misalignment between baryonic disks and the 

shape of their dark matter halos, and therefore indirectly responsible for 

galactic warps. Simulations such as those performed by Bekki & Freeman 

(2002) and MB03 should be performed for the range of pattern speeds we 

have found to discover whether figure rotation of this magnitude has any 

directly observable effects. In addition, calculations of the figure rotation 

with much finer time resolution would allow us to discover if changes in 

the figure rotation rate, such as those required by the Tremaine & Yu (2000) 

polar ring and counter-rotating disk mechanism, occur. 

• What determines the figure rotation? 

We have demonstrated that the magnitude of the figure rotation is corre

lated with the spin parameter of the halo, while the figure rotation axis is 

usually aligned with the minor axis but occasionally aligned with the major 
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axis. However, the factors in each halo's history that determine the figure 

rotation are still not understood. Clues to this may come from a detailed 

look at each halo's formation history, to see if there are correlations between 

the figure rotation and the parameters of recent major or minor mergers. 

There may also be environmental factors such as the strength and direction 

of the local tidal field. These studies can be complemented by detailed sim

ulations of the effects of mergers and the tidal field on initially static triaxial 

halos. 

I look forward to tackling some of these issues in the future. 
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