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ABSTRACT 

Some of the most important and challenging problems in computer science and 

operations research are stochastic combinatorial optimization (SCO) problems. 

SCO deals with a class of combinatorial optimization models and algorithms in 

which some of the data are subject to significant uncertainty and evolve over 

time, and often discrete decisions need to be made before observing complete 

future data. Therefore, under such circumstances it becomes necessary to develop 

models and algorithms in which plans are evaluated against possible future scenarios 

that represent alternative outcomes of data. Consequently, SCO models are 

characterized by a large number of scenarios, discrete decision variables and 

constraints. 

This dissertation focuses on computational experimentation with 

practical decomposition algorithms for large-scale SCO. Stochastic mixed-integer 

programming (SMTP), the optimization branch concerned with models containing 

discrete decision variables and random parameters, provides one way for dealing 

with such decision-making problems under uncertainty. This dissertation studies 

decomposition algorithms, models and applications for large-scale two-stage SMIP. 

The theoretical underpinnings of the method are derived from the disjunctive 

decomposition (Z?^) method. We study this class of methods through applications, 

computations and extensions. 

With regard to applications, we first present a stochastic server location 

problem (SSLP) which arises in a variety of applications. These models give rise to 

SMIP problems in which all integer variables are binary. We study the performance 
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of the method with these problems. In order to carry out a more comprehensive 

study of SSLP problems, we also present certain other valid inequalities for SMIP 

problems. 

Following our study with SSLP, we also discuss the implementation of the 

method, and also study its performance on problems in which the second-stage is 

mixed-integer (binary). The models for which we carry out this experimental study 

have appeared in the literature as stochastic matching problems, and stochastic 

strategic supply chain planning problems. Finally, in terms of extensions of the 

method, we also present a new procedure in which the first-stage model is allowed 

to include continuous variables. We conclude this dissertation with several ideas for 

future research. 
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CHAPTER 1 

INTRODUCTION 

1.1 Motivation 

Combinatorial optimization problems are among some of the most important and 

challenging problems in computer science and operations research (Cook et al., 

1998). These optimization problems are characterized by discrete-choice variables. 

Stochastic combinatorial optimization (SCO) deals with a class of combinatorial 

optimization models and algorithms in which some of the data are subject to 

significant uncertainty. Such models are characterized by data that evolve over 

time and often decisions need to be made before observing complete future data. 

Therefore, under such circumstances it becomes necessary to develop models in 

which plans are evaluated against possible future scenarios that represent alternative 

outcomes of data. Consequently, SCO models are of a large-scale nature and are 

characterized by a large number of decision variables and constraints. 

Stochastic programming (SP), the optimization branch concerned with 

models containing random parameters, provides one way for dealing with such 

decision-making problems under uncertainty. In particular, stochastic linear 

programming (SLP) deals with SP models with continuous decision variables, 

while stochastic mixed-integer programming (SMTP) deals with SCO models in 

which some of the decision variables are required to be continuous, discrete, or 

mixed. SMIP is a very young field which has a lot of applications in both science 

and engineering. SP models arise for example in telecommunication (Sen et al.. 
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1994), transportation (Powell, 1988), finance (Carino et al., 1994), electricity power 

generation (Car0e and Schultz, 1998), manufacturing (Eppen et al., 1989), and the 

military (Morton et al., 1996; Baker et al., 2002). Deterministic models often lead to 

myopic decisions under uncertainty that can result in significant losses. SP models 

on the other hand take into account the possible future outcomes and thus hedge 

against unforseen potential losses. Several application cases have been reported in 

the literature where SP models have indeed resulted in better decision making and 

significant savings in profits. 

SMIP models generally arise whenever deterministic IP models result in 

inadequate models under uncertainty. In the general case integer decisions have to 

be made both before and after observing the outcomes of the random variables. For 

example, strategic decisions about production topology and plant sizing in strategic 

supply chain management under uncertainty have to be made prior to the final 

product price and demand realizations at different markets, while operational or 

tactical decisions such as scheduling, and raw material volume supply from vendors 

are generally made after price and demand realizations. 

Despite the large number of applications that lead to SMIP models, very 

few practical algorithms have been developed to date. In fact, computational 

results and algorithms are fairly scant. One may attribute this to the fact that 

integer programming (IP) is generally NP-hard. But in addition to inheriting the 

properties of IP models, SMIP models are generally of a large-scale nature due to 

the uncertainty in the problem data. Therefore, SMIP models present formidable 

algorithmic challenges. Indeed, this calls for novel decomposition algorithms that 

are both scalable and practical. 

The objective of this dissertation is to contribute to tackling the afore­

mentioned challenges of SMIP through new models, algorithms, and computational 

experiments. This dissertation is devoted to all three aspects. 
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1.2 Problem Statement 

Throughout this dissertation we consider the following general two-stage SMIP 

problem: 

Min c^x + E[f{x,uj)], (1.1) 

where c is a known vector in 3?"^, X C 3?"^ is a set of feasible first-stage decisions 

and X define restrictions requiring some first-stage decision variables to be integer, 

E[.] is the usual mathematical expectation operator with 

E [ f { x , u ) ]  =  ̂ p ^ f { x , u ) ,  

w is a multi-variate discrete random variable with a realization (scenario) to with 

probability and sample space U, and for any cv 

f  { x ,  L u )  =  M m  (1.2a) 

s.t. Wy > r{u) — T ( l v ) x ,  (l-2b) 

y > 0 ,  y j  integer, j  e  J ^ .  (1.2c) 

In problem formulation (1-2), q [ u j )  is the cost vector in 3?"^ for scenario l o  and 

J2 is an index set that may include some or all the variables hsted in y € 3?"^. 

Although the second-stage (recourse) variable y depends on the outcome uj, this 

dependence is not explicitly indicated here. This is because the subproblem for 

each outcome to is decoupled from all other outcomes once a vector x is given. Thus 

this formulation emphasizes the loosely coupled nature of two-stage SMIP problems. 

In this dissertation we address instances of problem (1.1-1.2) under the 

following assumptions: 

(Al) is a finite set. 

(A2) X is a closed set and is defined as X = {x G 3?"^ | A x  >  b } .  
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(A3) f { x , L o )  <  oo for all { x , l u )  G  X  x  Q .  

Assumption (A3) requires that the subproblem (1.2) remain feasible for all { x , u j )  G  

X X fl and is referred to as relatively complete (integer) recourse (Wets, 1974). 

Since we assume that the problem data is governed by discrete random 

variables, the formulation (1.1-1.2) can also be written as the so called deterministic 

equivalent problem (DEP) formulation or extensive form as follows: 

Problem (1.3) is a large-scale MIP formulation and potentially can be solved by 

an MIP solver directly. However, in order to adequately capture the uncertainty 

in the problem, the number of scenarios |r2| is generally large. Therefore, problem 

(1.3) may become intractable even for the state-of-the-art commercial MIP solvers. 

Also note that the dependence of the second-stage decision on the scenario is now 

explicitly made in the DEP formulation. 

1.3 Research Scope and Approach 

This dissertation deals with decomposition algorithms for SCO. The starting point 

for this dissertation is the Disjunctive Decomposition (D^) algorithm proposed in 

(Sen and Higle, 2000). The aim of the dissertation is to investigate the potential of 

the method through computational studies, and extend its realm of applications 

by studying a wider class of problems. Accordingly, we begin by reviewing the 

underlying theory, and illustrate the concepts through a simple example problem. 

Computer implementation of the D'^ method is discussed and the associated 

(1.3a) 

s.t. T { u j ) x  +  W y ' ^  >  r i u j ) ,  Vo; e 

y'̂  > 0, y" integer, j G J2, Vcj G Q. 

(1.3b) 

(1.3c) 
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efficiency and convergence issues discussed. A computational study of the method 

is carried out through application to different large-scale SCO models and finally, 

extensions to the current D'^ theory are made. 

This dissertation is oriented towards modeling and computation and its 

contributions will be in the following aspects: 

1. Computer implementation of the D'^ algorithm and the identification of 

the issues associated such an implementation. These issues will potentially 

translate to future algorithms that follow a similar approach. 

2. Proposing a new model for server location under uncertainty (the SSLP) with 

potential use in a variety of application domains. Conducting a computational 

study of the SSLP and demonstrating that significant gains can be made by the 

application of the method to SSLP. As a by-product of this experiment, we 

have developed SSLP test problems that can be used to test the performance 

of other algorithms. These test problems will be made available via SIPLIB 

at http;//www.isye.gatech.edu/~sahmed/siplib/. 

3. Solving some of the largest SCO problem instances reported in the literature 

to date. Some of these problem instances have up to over a hundred thousand 

constraints and over a million binary variables. Furthermore, this research 

has revealed that the convergence of the method on large-scale SCO 

problems is in fact attainable. In addition, the dissertation demonstrates the 

applicability of the D'^ approach to stochastic strategic supply chain planning 

and stochastic matching problem instances from the literature. 

4. Finally, an extension of disjunctive decomposition to two-stage SMIP with 

continuous first-stage is made and a new branch-and-cut procedure is 

proposed. 

http://www.isye.gatech.edu/~sahmed/siplib/
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1.4 Organization of the Dissertation 

This dissertation consists of nine chapters and is organized as follows. The 

first paragraph of each chapter gives a summary of the ideas presented in that 

chapter. This is followed by some background/motivation before the main ideas 

are presented. A problem statement and assumptions are restated in the chapter if 

deemed necessary for continuity and completeness. 

Chapter 2 provides a literature review of SP programming with a focus 

on two-stage SP models. SP properties, algorithmic and computational challenges, 

decomposition algorithms, and applications are discussed. 

Chapter 3 gives a review of theory for D'^ for two-stage SMIP. In particular, 

a summary of the principles of disjunctive programming with set convexification are 

summarized. An illustrative application of the method to the solution of a small 

SCO example problem instance is provided. 

In chapter 4 a computer implementation of three decomposition algorithms 

for SMIP is discussed. These are the algorithm, the Z^^-BAC (branch-and-

cut) algorithm derived by Sen and Sherali (2003) and the decomposition algorithm 

derived by Laporte and Louveaux (1993) for two-stage SMIP with binary first-

stage. Issues with a computer implementation of the algorithm are discussed 

and illustrative pseudo code for various parts of the algorithm is given. 

Chapter 5 reports on the solution of some of the largest stochastic 

combinatorial optimization problems arising in server location under uncertainty. 

Some of these SSLP instances consist of thousands of constraints and up to a million 

binary decision variables. 

Chapter 6 presents a comprehensive study on server location problems 

under uncertainty. Several valid inequalities for the SSLP models are derived and 
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computational experience with using the algorithm to solve several randomly 

generated large-scale problem instances are reported. 

The main goal of chapter 7 is to investigate the performance of the D"^ 

method for cases in which the second stage has continuous variables. This is in 

contrast to the computational experiments with SSLP which is purely binary in 

both stages. In these experiments, we use two problems from the literature; one 

dealing with stochastic strategic supply chain planning, and another with stochastic 

bipartite matching. While the latter is a combinatorial problem, using linear 

programming in the second stage suffices. Hence, we include a report on these 

experimental results in this chapter. 

The current algorithm is convergent under the assumption that the 

first-stage solutions are extreme points of the first-stage feasible set. Chapter 8 

extends the theory to allow for the solution of SMIP problems with continuous 

first-stage. This is one of those cases in which the presence of continuous variables 

in the first-stage tends to make the solution harder for decomposition algorithms. 

Finally, a conclusion is given and contributions of the research and future directions 

along this line of work are given in Chapter 9. 
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CHAPTER 2 

LITERATURE REVIEW 

This chapter provides a hterature review of SP with a focus on two-stage SMIP 

models. Models for two-stage SP problems with recourse, chance constrained 

problems, and multistage SP with recourse are given. The properties of SLP 

and SMIP recourse models and their differences are reviewed and the algorithmic 

challenges pointed out. A review of decomposition algorithms for SP is given with 

a focus on algorithms for SMIP. Finally, several example apphcations of SP are 

discussed. 

2.1 Stochastic Programming Models and Properties 

The need to incorporate uncertainty in mathematical programming models resulted 

in the field of SP. Early work started with Dantzig (1955) and Beale (1955). Their 

model involves an action followed by observation and reaction or recourse. Charnes 

and Cooper (1959) developed an alternative model called chance or probabilistically 

constrained programming. Even though both methods have their roots in statistical 

decision theory (Wald, 1950), SP focuses on methods of solution and analytical 

properties instead of constructing derivatives and updating probabilities. For a 

thorough understanding of SP the books by Kail and Wallace (1994) , Prekopa 

(1995) and Birge and Louveaux (1997), a survey article by Birge (1997) and a 

tutorial paper by Sen and Higle (1999), provide valuable resources. Recent resources 

on SMIP include survey articles by Schultz et al. (1996), Sen (2003) and Ph.D. 
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theses by Stougie (1985), van der Vlerk (1995) and Car0e (1998). 

2.1.1 Two-Stage Recourse Problems 

Consider a model in which a decision vector x associated with a system must be 

chosen in such a way that the consequences of such decisions are evaluated against 

several alternative outcomes of a random variable oj within an optimal choice model. 

The decision x could be a design decision for example. The random variable d) is 

used for modeling data uncertainty in the model while x is referred to as the first-

stage decision. Then the performance of such a system under uncertainty is also 

a random variable. Therefore, measures such as expectation and other moments 

of performance can be naturally considered. In SP the consequences of the first-

stage decisions are measured through an optimization problem referred to as the 

recourse problem, which enables the decision-maker to adapt their decision to the 

random variable realizations. While the SP framework allows a variety of measures 

(Takriti and Ahmed (2002)), the predominant measure is the "expectation". This 

risk measure allows the use of LP-based methodologies. However, several alternative 

nonlinear risk measures have been incorporated with the SP models (see e.g. 

Riis and Schultz (2003), Schultz (2003), Ogryczak and Ruszczynski (2002), and 

Bertsimas and Sim (2003)). 

The general two-stage SMIP recourse model to minimize "expected cost" 

can be written as follows: 

Min c '  X  +  E [ f { x , C u ) ] ,  (2.1a) 

(2.1b) 

(2.1c) 

s.t. Ax > 6, 

x > 0, Xj integer, j G Ji, 
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and for any scenario (realization) uj of cu 

f { x , u > )  = Min q{uj)'^y, 

s.t. W { u j ) y  >  r { L i j )  —  T { u j ) x ,  

y > 0, yj integer, j G J2. 

(2.2a) 

(2.2b) 

(2.2c) 

Problem (2.1) is the first-stage problem while problem (2.2) is the second-

stage problem and is generally referred to as the recourse problem or scenario 

subproblem. In problem (2.1), c is a known vector in 3?"^; £^[.] is the usual 

mathematical expectation operator; constraints (2.1b) are the first-stage constraints 

with A e and b E constraints (2.1c) restrict some of the first-stage 

decision variables to be integer or binary, that is, Ji is an index set consisting of 

some or all of the first-stage variables x E 3?"^. 

In problem (2.2), q{u!) is a cost vector in for scenario tu; y is the 

second-stage decision variable; constraints (2.2b) are the second-stage constraints 

with W{uj) e g ^1712 T{u>) e g^^™•2XTn. constraints (2.2c) restrict 

some of the recourse decision variables to be integer or binary, that is, J2 is an 

index set consisting of some or all of the recourse decision variables y € 3?"^. The 

matrices A and W{uj) are assumed to be rational matrices for all oj. 

Although the second-stage (recourse) variable y continues to depend on the 

outcome w, this dependence is not explicitly indicated in problem (2.2). This is 

because the subproblem for each outcome u is decoupled from all other outcomes 

once a vector x is given. Thus this formulation emphasizes the loosely coupled 

nature of two-stage SP problems. 

Throughout the dissertation we assume that the random variables have 

finite support so that 
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where p^j is the probability of outcome for scenario uj £ Vt. Therefore, problem 

(2.1-2.2) can be rewritten as a large-scale deterministic equivalent problem or DEP 

as follows. 

Note that the dependence of y on a; is now explicitly indicated here since the first-

stage decision variable x couples all the scenarios. Thus x is sometimes referred to 

in the literature as the "linking" or "complicating" variable. 

The matrices W { . )  and T ( . )  are sometimes referred to in the literature as 

the recourse matrix and technology matrix, respectively. If the recourse matrix is 

deterministic, that is, W{uj) = W, the SP problem is said to have fixed recourse. 

If the technology matrix is deterministic, that is, T{lj) = T, the SP problem is 

said to have fixed tenders. The value function f{x,u)) is referred to as the recourse 

f u n c t i o n  d u e  t o  i t s  d e p e n d e n c e  o n  t h e  f i r s t - s t a g e  d e c i s i o n  x .  S i m i l a r l y ,  E [ f { x , L o ) ]  

is referred to as the expected recourse function of the two-stage model. When the 

second-stage problem is feasible for all x € 3?"^ the SP problem is said to possess 

the complete recourse property. When the second-stage problem is feasible for all 

Vt X {Ax > b,x > 0,Xj integer ,j G Ji}, the SP problem is said to possess the 

relatively complete recourse property. 

When the recourse matrix W has a special structure W = [/,—/], the 

second-stage decision variables are continuous and the constraints (2.2b) have 

equality constraints, the resulting SP model is said to possess the simple recourse 

property. Such a problem is referred to as a stochastic program with simple recourse. 

(2.3a) 

s.t. Ax > h, 

T{(jj)x -|- W(uj)y^ > r(u>) \/uj € O, 

X  >  0 ,  X j  i n t e g e r ,  j  E  J i ,  

y'^ > 0, integer, j G J2, Va; G fi. 

(2.3b) 

(2.3c) 

(2.3d) 

(2.3e) 
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An example of such a problem is the news vendor problem, sometimes known as the 

newsboy problem. In this model the vendor must determine how many papers x to 

buy now at a cost c without knowing the demand represented by the random variable 

u, with known distribution and given a selling price p. It is generally assumed that 

there is no salvage value so that the papers bought in excess of the unknown demand 

are discarded, resulting in potential losses. In this case the recourse problem decision 

variables simply measure the deviation from an uncertain target. Accurate solution 

methods for continuous simple recourse models have been derived in Kail and Mayer 

(1996). 

In the SLP models the objective functions and constraints are defined by 

affine/linear functions. SLP models remain the most widely studied and most of 

the applications reported in the literature belong to this class of models. SLP 

problems have been shown to be convex optimization problems (see e.g. Van Slyke 

and Wets (1969)) and therefore, convex analysis methods are applicable to this class 

of convex problems as well. Thus the recourse function, and hence the expected 

recourse function are both convex. Nevertheless, SLP problems lack the desirable 

numerical property of smoothness except under the condition of absolute continuity 

of the random variables (Kali, 1976). 

In SMIP models the recourse function inherits the properties of SLP if 

only the first-stage decisions include integer restrictions. Otherwise, if the integer 

restrictions appear in the second-stage the SMIP is much more challenging. The 

objective function f{x,u) is generally discontinuous and nonconvex in x for all 

(jj E fl, and the expected recourse function is lower semi-continuous under the 

assumption of complete recourse and a weak covariance condition (Schultz, 1993). 
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2.1.2 Chance Constrained Problems 

Sometimes, decisions must be made in such a manner that a chosen design 

must satisfy a reliability constraint. Such decision models lead to the so-

called probabilistic constraints or chance-constrained stochastic programs. These 

constraints are generally of the form: 

P { h { x , u )  > 0} > a, (2-4) 

where, a is the probability for the constraint to hold, and the function h is often 

modeled by a linear function. Such constraints are often used to model system 

reliability. Early work on this class of SP models can be found in Prekopa (1971). 

Several chance constrained models with continuous random variables have 

been studied by Prekopa (1971). In particular, he showed that if the function h 

is hnear/affine in x and the randomness only appears additively, and the random 

variable has log-concave probability density function, then the resulting feasible 

region is convex. The early work for these models was restricted to normally 

distributed random variables. More recently, however. Sen (1992) has shown that 

this does not hold for discrete random variables, and in this case, the set of feasible 

solutions can be represented as a disjunctive set. Finally, the choice of SP model to 

use, a recourse model or a chance-constrained model, or even some combination of 

these models depends on the modeler or decision-maker. 

2.1.3 Multistage Recourse Problems 

Even though the focus of this dissertation is on two-stage SMIP, the ideas presented 

and illustrated herein can be extended to the multistage case. Therefore, we shall 

give a summary of the multistage SMIP model following the formulation given in 

Lulli and Sen (2004). 
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Multi-stage stochastic programs have been studied from several 

perspectives. Birge (1985) presents a nested Benders' decomposition algorithm in 

which the two stage approach is extended in such a way as to allow us to approximate 

the value function by a piecewise Hnear approximation in each stage. Gassmann 

(1990) reports computational results with the nested Benders' decomposition 

algorithm, and subsequently, several applications have been addressed using this 

algorithm. Higle et al. (2002) derive the stochastic scenario decomposition method, 

which is a statistically motivated cutting plane algorithm for multi-stage SP. 

Other decomposition algorithms for multi-stage SP include the scenario aggregation 

method of Rockafellar and Wets (1991) and the diagonal quadratic approximation 

method of Ruszczynski (1993), Mulvey and Ruszczynski (1995) and Rosa and 

Ruszczynski (1996). These algorithms are based on modifications of the augmented 

Lagrangian methods. Rockafellar and Wets (1992) present a dual-based approach 

for multistage SP, and Higle and Sen (2002) use a sampled cutting plane approach 

based on this dual problem. 

Consider a finite horizon sequential decision process under uncertainty. Let 

us denote by T = {1,..., |T|} the decision horizon and assume that the information 

is revealed by a discrete time stochastic process The decision at time t is 

made based on the revealed information at that time. This means that decisions 

will be based on the set of decisions and the outcomes of the random variables in 

the previous stages. So let = {xi, denote the vector of decisions made from 

stage 1 to stage t and let = 1,..., t be the corresponding vector of the random 

variable outcomes. Then a multistage SP can be given as follows; 

Min{ci(tJi).'ri -|- Qi{xi) \ WiXi < /ii(c^i), xi G Xi}, (2.5) 

where, 

Qt{xt) = M.\xi{ct+i{ut+i)xt+i -F (5t+i(^t+i) : (2.6a) 

< ^t+i(^^t+i)) ^t+i £ ^t+i} (2.6b) 
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where, t = 1,|T| — 1, Q\t\ = 0, and denotes the expectation with respect 

to the distribution of Ut+i conditioned on the observation It is assumed that lui 

is known at time t = 1 and that Tt{u^), Wt, Ct{ujt), htiuit) are rational matrices and 

vectors of conformable dimensions. The set denotes restrictions on the decision 

variables requiring some of them to be integer. 

As in the two-stage case, to ensure that problem (2.5) is well defined, we 

can impose the relatively complete recourse assumption. This implies that the 

expectation defining Qt is finite for any policy x^. The assumption of finite support 

for the random vector u implies that Q = with probabilities p^, 

Therefore, we can represent uncertainty by means of scenarios, where a scenario is a 

realization of the random variable (c(t<;), h{uj),T{uj)) corresponding to an elementary 

atom cu G Jl. 

The evolution of all information trajectories over time in a multistage 

stochastic program can be represented by a scenario tree (Birge and Louveaux, 

1997). The scenario tree represents the relationship between scenarios. Let H be 

the node set for the scenario tree. At each node of the tree we have a branch(es) to 

indicate future possible outcomes of the random variable from that node. A scenario 

includes one node at each stage and is represented by a path from the root node to 

a leaf node of the tree. The root node represents the first-stage (stage 1) while the 

leaf nodes represent the final stage (stage |T|). Let the set of scenarios be given 

by 5 = {1, ...jT}. Then the correspondence between nodes of the scenario tree and 

the 2-tuples (t, s) e T x S is given by the surjective map H : T x 5 ̂  K. Now if 

we associate a vector of decisions = {xi{ui^), ...,x\t\{^^)) with each scenario 

s G S, we can write the deterministic equivalent problem (DEP) formulation of the 
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multistage stochastic program (2.5) as follows: 

Min Ep'E (2.7a) 
S=1 t=l 

S.t. W i X i { u ! ^ )  < hi{LLll), Vs e S ,  (2.7b) 

V 5  e S y t e  r ,  ( 2 . 7 c )  

= [E E P^' e 5, Vi G r, (2.7d) 
ueBt u&Bl 

x t { u ' ) e X t ,  y s e S , ^ t e T ,  (2.7e) 

where, Bl represents the set or bundle of scenarios that are indistinguishable from 

scenario s at time t, that is, all scenarios u for which for all r = 1, 

A  bundle of scenarios for any node 7i{ t , s )  of the scenario tree includes all paths 

passing through that node. The constraints (2.7d) state that all scenarios with 

the same history until the t-th stage must share the same decision until this stage. 

Therefore, these constraints are referred to as the nonanticipativity constraints in 

SP literature. They also imply that decisions depend only on information revealed 

in the past and not in the future. The nonanticipativity constraints can also be 

written for each node 7Y(t, s) of the scenario tree as follows 

where, Xn{t,s) is a decision associated with the node T - C { t , s ) .  Next we turn to the 

computational challenges of SP. 

2.2 Computational Challenges 

Let us now briefly summarize some of the algorithmic challenges of SP. The 

main computational challenges can be attributed to the evaluation of the multi­

dimensional integral as was recently proved in Dyer and Stougie (2003). They 

showed that two-stage SP programs are actually T^F-hard, meaning that they have 

X-H{t,s) — E S, \ft E T, (2.8) 
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the same complexity as the most difficult counting problems in combinatorics. The 

complexity class was first defined by Valiant (1979). This class is a set of 

integer-valued functions that express the number of accepting computations of a 

nondeterministic Turing machine of polynomial time complexity. Therefore, the 

notions and #P-hard or #P-completeness express the hardness of problems 

that count the number of solutions. Let N denote the set of nonnegative integers 

and let S be the finite alphabet of the input and output of the Turing machines 

considered. Then Fortnow (1997) defines as follows. 

Definition 1. The class consists of the functions / ; E* N such that there 

exists a nondeterministic polynomial time Turing machine M such that for all inputs 

X G E*, f(x) is the number of accepting paths of M. 

This implies that efficient or polynomial time algorithms for two-stage stochastic 

program solutions are not likely to be found. Even in the case of discrete random 

variables the total number of outcomes or scenarios may be too large for evaluating 

the expected value function. Thus one has to resort to approximations of the value 

function as explained momentarily. 

In SMTP integrality requirements on (some of) the first-stage and/or 

second-stage decision variables introduce further computational complexity. Integer 

programming is generally NP-hard and therefore, SMIP models inherit this 

property. However, Dyer and Stougie (2003) have shown that #P-hardness of the 

evaluation of the integrals involved remains the dominating factor in the overall 

complexity of SMIP problems. Once there are integrality requirements on the 

second-stage decision variables, the evaluation of one f{x,uj) requires the solution 

of an NP-hard problem. Furthermore, the convexity properties of the continuous 

recourse and expected recourse functions no longer hold. As pointed out earlier in 

Section 2.1.1, f{x,io) is generally discontinuous and nonconvex in x for every cu E ^ 

(Schultz, 1993). Hence successful SLP solution methods are difficult to adapt for 
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the solution of SMIP problems. 

The two main approaches to generating approximations of the scenario 

outcomes are data-aggregation and data-selection. Note that these approximations 

have to do with approximations of the value function and not approximations of the 

feasible set. In data-aggregation the algorithms lead to successive approximation 

methods in which finer discretizations of the sample space are created based 

on the solution of an aggregated stochastic program. Methods based on data-

aggregation can be found in Frauendorfer (1992) and Edirisinghe and Ziemba (1996) 

for two-stage stochastic programs and Frauendorfer (1994) for multistage stochastic 

programs. 

Data-selection methods arise in sample-based methods. Romish and 

Schultz (1991) and Shapiro (1991) use a fixed point and perform a statical analysis 

of the output. Shapiro and Homem de Mello (1998) suggest solving a sequence of 

sample approximations with increasing sample size to obtain asymptotic results. 

However, as the sample size gets larger (and therefore the approximating problem) 

each iteration may become computationally demanding. Higle and Sen (1991) 

and later, Higle and Sen (1996) and Higle and Sen (1999) derive a stochastic 

decomposition algorithm (SD) to speed up the computations associated with such a 

method, whereby approximations generated earlier in the iterations are sequentially 

updated. 

2.3 Algorithms for Stochastic Programming 

There are two fundamental approaches to solution methods for SP; direct methods 

using SP structure and decomposition approaches. Direct approaches are largely 

for SLP and include extreme-point methods (Kail (1979), Strazicky (1980), Birge 

(1995)), interior point methods (Lustig et al. (1991) and Lustig et al. (1994)), and 

column splitting method (Carpenter et al., 1991). Since the focus of this dissertation 
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is on decomposition approaches, we shall review some of the decomposition methods 

that have shown potential for solving large-scale problems. The basic idea behind 

decomposition approaches is to decompose the large-scale SP into a master program 

and subproblems for each scenario, and then solving the smaller pieces of the 

problem separately in a decomposition-coordination setting. 

The decomposition approaches can be divided into two categories based on 

how the SP problem is decomposed. Resource-directive decomposition methods 

decompose the large-scale SP problem stage-wise or time-wise. On the other 

hand, price-directive methods decompose the SP problem scenario-wise. Stage-

wise decomposition scales well with the number of scenarios in the two-stage case. 

However, the scalability of stage-wise decomposition with respect to multistage 

SLP problems remains unclear (Sen, 2003). In this dissertation we follow stage-

wise decomposition for two stage SMIP and therefore, our review on decomposition 

algorithms will be focused as such. Before reviewing the algorithms for SMIP, 

we first state the L-shaped method for SLP since it provides a framework for the 

algorithmic setting in this dissertation, and then point out other SLP methods. 

2.3.1 Decomposition Algorithms for SLP 

The size of an SP model grows linearly with the number of possible realizations of 

the random parameters. Further, this number also increases exponentially with the 

number of decision stages in the model in the multistage case. Consequently, the 

algorithmic developments in this area focused on exploiting the SP model structure. 

This in turn led to the development of the L-shaped method (Van Slyke and Wets, 

1969) for SLP. The L-shaped method is essentially a Dantzig-Wolfe decomposition 

(Dantzig and Madansky, 1961) of the dual or Benders' decomposition (Benders, 

1962) of the primal. These methods deal with hnear models and are cutting-plane-

based (see e.g. Kelley (I960)). 



32 

The L-shaped method, derived by Van Slyke and Wets (1969), forms the 

fundamental decomposition algorithm on which many other SP methods are based. 

The name comes from the dual-block angular structure of the linear case for problem 

(2.3). In this approach a master program in x and r] is built, where the variable 

77 represents the expected recourse function evaluations. Thus the assumption of 

finite support is taken in order to make this approach possible. The master program 

takes the form; 

Constraints (2.9c) are the so-called feasibility cuts while constraints (2.9d) are called 

optimality cuts. The feasibility cuts determine {x | E[f{x,u})] < +00} and the 

optimality cuts provide linear supports of E[f{x,uj)] on its domain of finiteness. 

The L-shaped algorithm can be summarized as follows. 

The L-Shaped Algorithm 

Step 0. Initialization: 

Min c~^x + T], 

s.t. Ax > b, 

D e x  > d e ,  i =  1, ...,r, 

E e x  +  r ] > e ^ ,  £  =  I , . . . ,  s ,  

x  >  0 ,  7 /  e  3 ? ,  

(2.9a) 

(2.9b) 

(2.9c) 

(2.9d) 

(2.9e) 

and for each scenario u E Q the subproblem to solve is 

f { x , u } )  =  Min q'^y, (2.10a) 

(2.10b) 

(2.10c) 

s.t. Wy > r(ui) — T{ui)x, 

y > 0, 

Set s <— 0, t <— 0 and <— 0. 
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Step 1. Solve the master program 

Set k  ^  k  +  1 .  Solve master program (2.9). 

Let {x^,rj^) be an optimal solution. If no constraint (2.9d) is present, 

7]'^ is set to —GO and not considered in the computation of x^. 

Step 2: Solve scenario sub problems 

Solve scenario subproblem (2.10b) for all (u; 6 

If for some u) subproblem is infeasible 

Let be the associated dual rays and define 

-Dr+i = u^Tiuj) and = (T^r{uj) to generate a feasibility 

cut (2.9c). 

Set r r + L Add feasibility cut to master program 

and return to Step 1. 

else 

Let be the associated dual multipliers and define 

es+i = and e,+i = E..enP'^7r'=(a;)r(cj) 

to generate an optimality cut (2.9c). 

Let — Eg+ix^ 

Step 2: Termination 

If 'if' >w^, stop. The solution x^ is optimal. 

Otherwise set s •!— s + 1, and add optimality cut to master program 

and return to Step 1. 

Birge and Louveaux (1988) have proposed a multi-cut approach for this method in 

which the optimality cut is disaggregated for each scenario. This requires a variable 

ri{uj) for all e in the master program for approximating the function value 
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of each scenario subproblem. The L-shaped method has also been generalized to 

multistage SLP as a nested decomposition method by Birge (1985) and Gassmann 

(1990). Also, Laporte and Louveaux (1993) extended the L-shaped method to 

models with integer decision variables and derived the integer L-shaped method. 

In many practical SP problems the number of scenarios is generally large. SP 

models often include some approximation of an underlying probability distribution. 

When the number of scenarios is very large and the underlying probability 

distribution is known, it is common to resort to sampling. Two main methods 

that embed sampling into the L-shaped method are the approaches by Dantzig and 

Glynn (1990) and Dantzig and Infanger (1991) and by Higle and Sen (1991) and 

Higle and Sen (1996). 

The first approach is based on large samples to derive the cuts. In this approach, 

f{x, (jj) is sampled in the L-shaped method instead of actually computing E[f{x^ (D)]. 

Dantzig and Infanger (1991) report on the solution of experiments with large-scale 

problems. The results improve significantly with importance-sampling variance 

reduction techniques. In order to form confidence intervals on the optimal values, 

however, Infanger (1991) makes several assumptions. 

The second approach, called stochastic decomposition (SD), generates many 

cuts with increasing samples based on previous samples. These cuts are updated 

and/or dropped as the algorithm continues processing. The authors assume 

complete recourse and a known lower bound on f{x,u) (generally 0). They also 

a s s u m e  t h a t  t h e  s e t  o f  d u a l  s o l u t i o n s  a r e  b o u n d e d  a n d  t h e  s e t  X  =  { x \  A x  >  b , x  >  

0} and Q are also compact. This approach has been applied to solve large-scale 

network design problems (Sen et al., 1994). 
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2.3.2 Decomposition Algorithms for Two-Stage SMIP 

Decomposition algorithms for integer SP models started to appear only recently. 

In SMIP, the type of integrality restrictions (binary, mixed-binary, general integer, 

mixed-integer) and where it appears (first-stage, second-stage) in the model greatly 

determines the type of decomposition algorithm suitable for the model. Therefore, 

we can categorize algorithms for SMIP based on the integrality restrictions on the 

decision variables in the model as in Sen (2003): (a) simple integer recourse models 

with random RHS, (b) binary first-stage, arbitrary second-stage, (c) binary first-

stage, 0-1 MIP second-stage with fixed recourse, (d) binary first-stage, MIP second-

stage, (e) continuous first-stage, integer second-stage and fixed tenders, and (f) 0-1 

MIP in both stages with general random data. 

(a) Simple Integer Recourse Models with Random RHS 

Imposing integer restrictions on the second-stage SLP simple recourse model and 

rewriting the equality constraints into inequality constraints results in the simple 

integer recourse (SIR) model. This model has been extensively studied by Klein 

Haneveld et al. (1995) and Klein Haneveld et al. (1996). Let i denote the row index. 

Under the assumptions that all data elements in the problem are deterministic 

except the right-hand side, and that ri{Cj) has finite support and that the technology 

matrix t has full rank, these researchers have shown that it is possible to compute 

the convex hull of the expected recourse function by using enumeration over each 

dimension i. However, the resulting problem only provides a lower bound since the 

first-stage feasible set XnX is not used in the convexification process. Consequently, 

branch-and-bound may be necessary to close the gap. More recently, van der 

Vlerk (2002) has extended this approach to general recourse models with totally 

unimodular recourse matrices. 
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(b) Binary First Stage, Arbitrary Second Stage 

This class of SMIP models has pure 0-1 decision variables in the first-stage. 

Assuming relatively complete recourse and that a lower bound L on the expected 

recourse function is known or can be computed, Laporte and Louveaux (1993) 

derive valid inequalities that can be applied to the expected recourse function. They 

propose the earliest decomposition algorithm for this type of SMIP model which is 

illustrated in Birge and Louveaux (1997). Their approach follows the algorithmic 

setting of Benders' decomposition (Benders, 1962) (and consequently the L-shaped 

method (Van Slyke and Wets, 1969)) in that, at each iteration k, a master program 

is solved whose solution x'' is passed on to the scenario subproblem MIPs. All the 

scenario subproblem MIPs are solved exactly at each iteration of the algorithm. 

The optimality cut proposed by Laporte and Louveaux (1993) has been shown 

to be ge n e r a l l y  w e a k .  I t  i s  o n l y  s h a r p  a t  t h e  p o i n t  a n d  t h a t  i t s  v a l u e  i s  a t  m o s t  L  

at all other feasible solutions. Nevertheless, Birge and Louveaux (1997) show how 

to improve the optimality cut when more information is available on E[f{x^,Lb)]^ 

such as other bounds. 

(c) Binary First Stage, 0-1 MIP Second Stage with Fixed Recourse 

We now turn to SMIP models with pure binary first-stage and mixed-binary second-

stage and fixed recourse matrix W. Under the assumption of relatively complete 

recourse. Sen and Higle (2000) propose the common-cut-coefficient theorem and a 

(D^) algorithm for this class of problems. The methodology follows a sequential 

convexification of the recourse function problem in the context of Benders' 

decomposition, and is motivated by the need to avoid solving every subproblem 

from scratch in each iteration. The cuts are generated in both stages in this 

approach. The cuts in the second-stage, referred to as the D'^ cuts, are generated 

using disjunctive programming (see e.g. Balas (1979)). Under the theorem, one 
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cut generated for one scenario can easily be translated for the other scenarios. These 

cuts can also be derived using the reformulation-linearization technique (RLT) of 

Sherali and Fraticelli (2002). This SP solution approach forms the basis for this 

dissertation and is described in greater detail in the ensuing chapters. 

(d) Binary First Stage, MIP Second Stage 

The approach described in the last case extends to this case under relatively 

complete recourse and fixed recourse assumptions. However, the properties of 

branch-and-bound algorithms are now incorporated into the approach. Recently, 

Sen and Sherali (2003) proposed a with branch-and-cut or £)^-BAC algorithm 

for this class of SMIP problems. The essence of the method is to use 

information provided by the branch-and-bound tree on the second-stage to derive 

approximations of the value function of the second-stage MIP via disjunctive 

programming. This approach is also described in detail in the dissertation. 

(e) Continuous First Stage, Integer Second Stage and Fixed Tenders 

So far with the exception of the SIR models, all the models considered have binary 

first-stage. For the case with continuous first-stage and mixed-integer second-stage 

the situation is more complex. Finite termination of the method when the first-stage 

is continuous is far from obvious. Ahmed et al. (2004) derive a finite branch-and-

bound algorithm for this class of SMIP models that is based on global optimization. 

They assume pure integer recourse and fixed tenders {Tiu) = T) but the recourse 

matrix is allowed to be random. 

The main observation in this approach is that the value function of a pure 

IP with integer W is constant over hyper-rectangles ("boxes"). Furthermore, if 

the set X = {x \ Ax > 6, a; > 0} is bounded, then there are finitely many such 
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hyper-rectangles. In fact, this observation was used by Schultz et al. (1998) to 

design an enumerative scheme for the first-stage decisions while the second-stage 

decisions were obtained using polynomial ideal theory. To fit the problem into a 

global optimization setting they transform the problem into the space of "tender 

variables" x — Tx. Then the transformed problem becomes: 

Min¥?(x), (2.11a) 

where =  { x \ T x  =  x ,  x  e  X }  and (/? is defined as the sum of 

= Min{c'^a; | Tx = x, a; G X} and $(x) = ^p^h{r{u) - x), 

where h{r{Lo) — x) denotes the value function resulting from the value of a pure IP 

with right-hand side r{Lu) — x-

(f) 0-1 MIP in Both Stages writh General Random Data 

Unlike the previous cases considered, this case has mixed-binary in both stages 

with general random data. There is no special structure associated with the random 

elements and therefore, it is easier to cast this SMIP model into the large-scale DEP 

formulation (2.3). This model was studied by Car0e (1998) who devised a branch-

and-cut method in which the cuts are based on disjunctive programming. Car0e 

(1998) derives lift-and-project cuts of Balas et al. (1993) in the DEP setting. The 

cuts are in the {x,y{uj)) space and are derived for each scenario. Other types of 

cuts can also be used. 

The basic idea of the method is as follows. The LP relaxation of the DEP is 

first solved to optimality to get a solution (x,y(w)}a;en)- If the solution satisfies 

the integrality restrictions then an optimal solution has been found and the method 

stops. Otherwise, a fractional variable solution is chosen and used for cut derivation, 

which involves forming and solving another LP for each scenario u E fl. After 



39 

all the cuts are generated they are added to the DEP LP relaxation and the 

process repeated. Branching is embedded in this method just as in deterministic 

integer programming. Since lift-and-project cuts are generally costly in terms of 

computation time, Car0e (1998) suggests translating a cut derived for one scenario 

to another scenario if possible. This is possible under the assumption that the 

t e c h n o l o g y  a n d  r e c o u r s e  m a t r i c e s  a r e  f i x e d ,  t h a t  i s ,  T ( u j )  =  T  a n d  W { u j )  =  W .  

Finally, let us point out that among the recent work that seem promising 

towards the development of practical algorithms for SMIP is Car0e (1998) and Car0e 

and Schultz (1999), who use the scenario decomposition approach of (Rockafellar 

and Wets, 1991) to develop a branch-and-bound algorithm and Norkin et al. (1998), 

who propose a stochastic branch-and-bound method for minimizing the expected 

value of an arbitrary function over a finite set. 

2.4 Applications of Stochastic Programming 

Due to the fact that many real-life problems have inherent uncertainty in them, 

applications for SP are vast. In this section we simply highlight a few of the 

applications where both SLP and SMIP have seen significant success and provide 

references for further reading. Unlike SLP models, most SMIP models started 

appearing in the literature only in the last few years. This has mainly been due 

to lack of practical algorithms to tackle these problems. For instance, Bertsimas 

(1994) presents a variety of SP problems with discrete decision variables but these 

problems are reduced to deterministic-equivalent or near equivalent problems. A lot 

of practical problems, such as capacity planning and strategic supply chain planning 

under uncertainty often involve discrete decision variables. Thus applications 

for SMIP will continue to grow as more practical solution methods for these 

problems are derived and implemented. Next we discuss applications of SP to 

telecommunication, transportation, finance, manufacturing and electricity power 
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generation. 

2.4.1 Telecommunication 

The system traffic, performance and reliability of telecommunications systems 

planning and operations naturally involve uncertainties. Therefore, SP naturally 

renders itself a viable approach to problems that arise in this field. Sen et al. (1994), 

for example, applied the SP planning methodology to an industrial-sized network 

planning problem for Sonet-Switched Network (SSN), and demonstrated improved 

network performance due to the SP model. This particular problem involves making 

network design and configuration decisions that require consideration of random 

point-to-point demands with high variance forecasts in the network. The authors 

used the stochastic decomposition (SD) method to solve the problem. 

Another problem in telecommunications system that is amenable to the SP 

approach is the server location problem under uncertainty. These problems find 

many real-life applications in situations where facilities or "servers" have to be 

located at some given potential sites in order to provide some service to some 

potential "clients". In such problems uncertainty appears not only in the client 

demands, but also in the client availability and server location costs. For example, 

Wang et al. (2003) study the facility location problem for immobile servers with 

continuous stochastic demands. They present several models and provide heuristics 

for their solutions. Riis et al. (2004) study a server location problem for the 

deployment of mobile switching centers in a telecommunications network and report 

on the solution of a real large-scale problem instance using the SP approach. 
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2.4.2 Transportation 

Many transportation models are commonly formulated as SP models from the 

Ferguson and Dantzig (1956) model. In particular, dynamic vehicle allocation has 

been one of the prominent areas in which SP has been applied. Dynamic vehicle 

allocation involves routing a set of vehicles (e.g. trucks, freight cars, planes) to meet 

demand along routes and to position them for anticipated future demands (loads). 

The objective is to maximize the total returns over given time horizons. See for 

example Powell (1988), Powell (1990), Frantzeskakis and Powell (1990) and Powell 

(1996) for various SP dynamic vehicle allocation models. Over the last few years, 

Powell and Gittoes (1996) and Powell et al. (2004) have developed approximations 

and an adaptive labeling algorithm that effectively approximate the value function 

at each time period and yield a form of dynamic approximation. 

Other SP models in transportation include the widely studied stochastic vehicle 

routing problem. See for example Laporte et al. (2002) propose the integer 

L-shaped method for the capacitated vehicle routing problem with stochastic 

demands, Kenyon and Morton (2003) study the stochastic vehicle routing with 

random travel times, and Laporte et al. (1994) propose an exact solution for the a 

priori optimization of the probabilistic traveling salesman problem. 

2.4.3 Electricity Powrer Generation 

Another common area of application and source of developments for SP methods 

has been electricity power generation. The problem, usually referred to as the unit 

commitment, aims at finding a fuel cost optimal scheduling of startup/shutdown 

decisions and operation levels for power generation units over some given time 

horizon. (Car0e, 1998) and Car0e and Schultz (1998) study a unit commitment 
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problem in the presence of uncertainty in the load profiles and develops a two-

stage SMIP model with integer first-stage and mixed-integer recourse. They apply 

a Lagrangian-based decomposition algorithm to solve a problem with real data for 

a German utility company. The problem has a total of 20,000 integer and 150,000 

continuous decision variables with up to 180,000 constraints. 

Other examples include Pereira and Pinto (1985) and Pereira and Pinto (1991), 

who use decomposition procedures for models of the Brazilian power system, and 

Takriti et al. (1996), who apply the progressive hedging algorithm to a model of 

the Michigan power system designed for daily scheduling. They report achieving 

a convergence to near optimal solutions quickly with potential savings over a 

deterministic procedure of almost $150,000 in generation costs for one sample week. 

The recent deregulation of the electricity market has also led to the development 

of new SP models in this area. For example, Sen et al. (2003) develop a SP-based 

model for power portfolio optimization called DASH. This model is designed to 

help decision-makers to coordinate production decisions with opportunities in the 

wholesale power markets. They report that their model selects portfolio positions 

that perform well on a variety of scenarios generated through statistical modeling 

and optimization. 

2.4.4 Finance 

Finance problems inherently involve uncertainty due to the future time nature 

of financial returns and are therefore, amenable to the SP approach. The goal 

of SP is to provide a strategy for making decisions that hedge against unforseen 

scenarios and thus avoid potential losses. An excellent example of SP appHcation 

to finance is the Russel-Yasuda Kasai Model reported in Carino et al. (1994), which 

won second prize in the 1993 Franz Edelman Award Competition for Management 

Science Achievement. In the model decisions are made for a Japanese insurance 
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company on how to optimally invest in assets to meet an uncertain liability stream 

over time. The investment returns are also random and the model includes legal 

constraints about the use of income to meet liabilities. The authors model the 

problem as a multistage SLP problem and report that the model yield $79 million 

in its first year of use. For a list of other successes of application of SP to finance 

see an article in Business Week (Coy, 1996) 

Other finance models in finance are presented in Markowitz (1952) and Kusy 

and Ziemba (1986). For more recent work in this field see papers by Rockafellar 

and Uryasev (2000) and Rockafellar and Uryasev (2002) and a book by Uryasev 

and Pardalos (2001). 

2.4.5 Manufacturing 

Manufacturing usually involves complex operations in which randomness cannot be 

ignored. The demand and supply aspects of manufacturing are often characterized 

by randomness. In fact, the uncertainty inherent in manufacturing operations make 

this area also particularly amenable to SP models. In recent years there has been a 

lot of interest in applying the SP approach to tackle problems especially in capacity-

planning and expansion and strategic supply chain management under uncertainty. 

Eppen et al. (1989) provide a capacity-planning model at General Motors 

formulated as a SLP whose goal is to determine capacity for various products at 

a number of plants. They maximize an expected profit objective with a downside 

risk constraint. Ahmed and Garcia (2003) study the dynamic capacity acquisition 

and assignment problem under uncertainty using the SP approach. Given a set of 

resources and tasks, this problem seeks to find a minimum cost schedule of capacity 

acquisitions for the resources and the assignment or resources to tasks over a given 

planning horizon. This problem arises, for example, in the integrated planning 

of locations and capacities of distribution centers (DCs), and the assignment of 
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customers to the DCs, in supply chain applications. The randomness in the problem 

appear in the assignment costs and the processing requirements for the tasks. 

They formulate a SMIP model and apply a decomposition based branch-and-bound 

method (Ahmed et al., 2004) to solve numerous instances of the problem. 

Apphcation of SP to strategic supply chain management under uncertainty 

seems to have gained interest only in the last few years. Strategic supply chain 

planning involves the determination of production topology, plant sizing, product 

selection, product allocation among plants and vendor selection for raw materials. 

The goal is to maximize the expected profit over a given time horizon for the 

investment depreciation and operations costs. Uncertainty in strategic supply chain 

planning may appear in the product net price, product demand, raw material supply 

cost and production cost. Some recent work in this area include that of Escudero 

et al. (1996), MirHassani et al. (2000), Ahmed et al. (2003), and (Alonso-Ayuso 

et al., 2003). In particular, (Alonso-Ayuso et al., 2003) follow a two-stage SP 

approach for the problem and derive a branch-and-fix coordination (BFC) method 

and report on the solution of large-scale SMIP problem instances. 

2.4.6 Other Applications 

There are many other applications for SP. For instance, with the rise in global 

terrorism, we expect to see new SP models to address some of the problems involved 

for example, in both anti-terrorism and counter-terrorism, and in the prevention and 

counteraction of cyber attacks. These problems are amenable to the SP approach 

due to the inherently uncertainty in the problem data. Other SP applications 

include military applications (Morton et al., 1996; Baker et al., 2002), network 

interdiction (Cormican et al., 1998; Woodruff, 2002), and airport security (Simms, 

1997). 



45 

CHAPTER 3 

A SUMMARY AND ILLUSTRATION OF DISJUNCTIVE 

DECOMPOSITION WITH SET CONVEXIFICATION 

This chapter has been published as Sen et al. (2002) and has been included in this 

dissertation for convenience in providing the needed background. In this chapter the 

disjunctive decomposition (i?^) algorithm for two-stage Stochastic Mixed Integer 

Programs (SMIP) is reviewed. This method uses the principles of disjunctive 

programming to develop cutting-plane-based approximations of the feasible set 

of the second-stage problem. At the core of this approach is the Common Cut 

Coefficient Theorem, which provides a mechanism for transforming cuts derived 

for one outcome of the second-stage problem into cuts that are valid for other 

outcomes. An illustrative application of the method to the solution of a small 

SMIP illustrative example is provided. 

SMIP comprise one of the more difficult classes of mathematical programming 

problems. Indeed, this class of problems combines the extremely large scale nature 

of stochastic programs and the inherent computational difficulties of combinatorial 

optimization. The main difficulty in solving two-stage stochastic mixed-integer 

programs is that the recourse costs are represented as the expected value of a 

mixed-integer program whose value function is far more complicated than the value 

function of a linear program. In general, the expected recourse function is non-

convex and possibly discontinuous. In this chapter the Disjunctive Decomposition 

(Z?^) algorithm with set convexification for two stage SMIP proposed by Sen and 

Higle (2000) is illustrated. 
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The method uses the principles of disjunctive programming to develop a cutting-

plane-based approximation of the feasible set of the second-stage problem. This 

task is streamlined via the Common Cut Coefficients (C^) Theorem (Sen and Higle, 

2000), which provides a simple mechanism for transforming cuts derived for one 

instance of the second-stage problem into cuts that are valid for another instance. 

This significantly reduces the effort required to approximate the convexification of 

the feasible set, a task that must be undertaken for each possible outcome of the 

random variables involved. In this chapter, the D'^ algorithm and the manner in 

which the Theorem is used to reduce the computational effort are illustrated. 

Because the methodology is related to, but distinctly different from, the work of 

Car0e (1998), we also use this forum to highlight the relationship between the two 

approaches. 

This chapter is organized as follows. In Section 3.1 the results of Sen and 

Higle (2000) are summarized, and identify connections between their work and 

that of Car0e (1998). In Section 3.2 the application of the Algorithm is 

illustrated through a simple numerical example with both first and second-stage 

binary variables. Finally, a discussion and our conclusions are found in Section 3.3. 

3.1 Background 

In this section the main results from Sen and Higle (2000) that are critical to 

the illustration of the D'^ algorithm are given. In particular, the theorem is 

reviewed the details of its application discussed. For a more thorough explanation of 

disjunctive decomposition concepts, proofs, and the derivation of the D'^ algorithm, 

the reader is referred to Sen and Higle (2000). Throughout this chapter the following 

SMIP problem is considered: 

Min X  +  E [ f i x , C j ) ] ,  
x e x n b  ' •  

(3.1) 
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where X C is a set of feasible first-stage decisions, B C 3?"^ is the set of binary 

vectors, w is a random variable defined on a probability space {n,A,V), and for 

any lu E 

It is assumed that X is a convex polyhedron, Q is a finite set, and that f{ x , u ! )  <  oo 

for all {x,iu) E X X Q. Moreover, it is assume that by using appropriately 

penalized continuous variables, the subproblem (3.2) remains feasible for any 

restriction of the integer variables 2;. Note that the inclusion of integer variables 

in the second-stage problem, (3.2), is the primary source of the computational 

and algorithmic challenges associated with (3.1). In particular, in order to 

evaluate the SMIP objective cx + E[f{x,uj)], it is necessary to solve (implicitly 

or approximately) the MIP (3.2) for each uj E Q. Moreover, the structural 

difficulties associated with MIP objective functions are well documented (see, e.g., 

Blair and Jeroslow (1982) and Blair (1995)). These difficulties are compounded by 

the fact that the expected value operations associated with the SMIP objective 

function amounts to a convex combination of the complicated individual MIP 

objective functions. The Theorem exploits the specific structure of (3.2), thereby 

permitting a computationally streamlined development of SMIP objective function 

approximations. 

3.1.1 Common Cut Coefficients 

f { x , u j ) =  M i n g j u  +  g j z ,  

s.t. WuU -I- W z Z  —  r { u ) )  —  T { u j ) x ,  

u E W^,zE 

(3.2a) 

(3.2b) 

(3.2c) 

In an effort to develop approximations of the SMIP objective, we begin with an 

approximation of the convex hull of feasible integer points for (3.2). This set can 
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be expressed as a disjunction, 

5 = U '5'^' 
heH 

where i? is a finite index set, and the sets { S h } h e H  are polyhedral sets represented 

as 

S h = ^  { y \  W h y  > r h , y >  0} 

Within our setting, we have y  =  { u , z )  as in (3.2) and r u  includes r { w )  —  T [ w ) x .  

More formally, we note that the constraints in (3.2), 

WuU + WzZ > r{u) — T{uj)x 

vary with the first-stage decision, x, and the scenario uj. Consequently, the 

disjunctive representation of the set depends on {x,uj) G X x Q, 

<S(x,a;) = IJ 5/i(x,a;), (3.3) 
h e h  

where 

S h { x , u j )  =  { y  I W h u U + W h z Z  >  r h { x , L u ) , u , z  > 0}. 

A convex relaxation of the nonconvex set (3.3) can be represented by a collection 

of valid inequalities of the form 

• k I u  +  - k I z  >  7 r o i x , u ; ) .  

While the disjunctive representation depends on ( X , L J ) ,  the Theorem, which is 

stated below, ensures that as the argument changes, cut validity can be maintained 

by a shift in the right-hand-side element without altering the gradient of the cut. 

In the following we use n2 = n^. 

Definition 1. (The Theorem). Consider the stochastic program with fixed 

r e c o u r s e  a s  s t a t e d  i n  ( 3 . 1 ) ,  ( 3 . 2 ) .  F o r  { x , u j )  G  X  x  O ,  l e t  Y ( x , u i )  =  { y  =  ( u , z )  |  

Wy > r{uj) — T{u)x,u € W^,z E B^'}, the set of mixed-integer feasible solutions 

for the second-stage mixed-integer linear program. Suppose that {Chidh}h^H, is a 
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finite collection of appropriately dimensioned matrices and vectors such that for all 

{ x , u j )  G  X  X  Q  

Y { x , o j )  C Cky>dH}. 
h € h  

Let 

S h { x , u j )  =  { y  e  I  W y  >  r { u )  - T { u j ) x , C h y  >  4}, 

and let 

5 = 0  • S h { x , u j ) .  
h&H 

L e t  { x , 0 )  b e  g i v e n ,  a n d  s u p p o s e  t h a t  S h { x , u ) )  i s  n o n e m p t y  f o r  a l l  h  E  H  a n d  v r ^ y  >  

TTQ{X,LU) is a valid inequality for S{x,u)). There exists a function, ttq ; X x ^ 3? 

such that for all {X,LU) E X X fl, tt^j/ > 7ro(x,a;) is a valid inequality for S{x, cu). 

Proof. See Sen and Higle (2000). 

The C® Theorem ensures that a vahd inequaHty for the set S { x , u )  of the form 

TT^y > no{x,0) can be translated to an inequahty, n'^y > tvo{x, uj) that is vahd 

for the set S{x,uj). The cut coefficients, tt, are common to both sets. Thus, 

one may derive the left hand side coefficients, vr, which may be applied to all 

scenario problems. The right hand side 7ro(a;,a;) is derived as necessary for each 

pair {x,uj) using a strategy from reverse convex programming in which disjunctive 

programming is used to provide facets of the convex hull of reverse convex sets (Sen 

and Sherali, 1987). Given the valid inequalities, ir'^y > iroixju), a lower bound 

approximation for the scenario subproblem objective function is given by: 

f ( . x , u )  >  f o { x , u )  =  Min g'^y (3.4a) 

s.t. W y  >  r { u j )  —  T { u j ) x  (3.4b) 

> 7ro(a;,tu) (3.4c) 

y > 0 (3.4d) 

(3.4e) 
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We note that a version of Theorem 1 appears in Car0e (1998), although there 

are some critical distinctions between Sen and Higle (2000) and Car0e (1998). 

Specifically, while Sen and Higle (2000) work within the context of the temporal 

decomposition indicated in (3.1,3.2), Car0e (1998) works within the context of the 

"deterministic equivalent problem", 

Accordingly, Car0e (1998)'s cuts may be translated from one scenario to another, 

while being restricted to the higher dimension of (x,u^,Zuj) as compared to the 

(uuj, z^) dimension restriction of the Sen and Higle (2000) cuts. It follows that these 

c u t s  p e r m i t  b o t h  a  t e m p o r a l  a n d  s c e n a r i o  d e c o m p o s i t i o n  ( i . e . ,  w . r . t  t o  x  a n d  t o ) ,  

while Car0e (1998)'s are restricted to only scenario decomposition (i.e., w.r.t a;). 

Another recent paper, Sherali and Fraticelli (2002) also uses cuts in this higher 

dimensional space. Their approach uses the reformulation-linearization technique 

(Sherali and Adams, 1990) to construct their approximation. 

3.1.2 Convexification of the Right-Hand-Side Function 

As discussed in Sen and Higle (2000), the function TrQ(x,uj) is piecewise hnear and 

concave in the first argument. That is, 

for a specified collection Consequently, it is necessary to 

develop a convexification of the function in order to facihtate the solution of the 

lower bounding approximation (3.4). This is accomplished using reverse convex 

programming techniques, in which disjunctive programming concepts are used to 

obtain the convex hull of reverse convex sets (Sen and Sherali, 1987). 

s.t. T { u j ) x  +  W u U i ^ j  +  W z Z u i  =  r { L o )  \ / u !  E  f l  

x  e  e  z ^  e  " i i u e n .  

t r o { x , u ; )  =  m i n { u h { u j )  - 7/^(0;)"'"a;} 
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To begin, let the epigraph of 7ro(-,a;), restricted to x e X be defined as 

n x ( i ^ )  =  { { d , x )  \  X  e  X , d  >  T r o { x , L j ) } ,  

where X is a polyhedral set such that 

X  =  { x  \  A x >  b } ,  

where A G and b G 

Also let 

E h { u j )  =  x )  \  9  >  -  I h i w Y X ,  A x > b , x >  0}. (3.5) 

Then nx('^) can be defined in disjunctive normal form as 

U x H  =  U  E h { u j ) .  
h ^ h  

Thus the epigraph of function ttq can be represented as the union of half-spaces, 

which is a disjunctive set. In order to convexify this set, the notion of reverse polars 

from the theory of disjunctive programming (Balas, 1979) is applied. These sets 

(reverse polars) characterize the set of all valid inequalities of a disjunctive set, 

with the extreme points providing facets of the (closure of the) convex hull of the 

disjunctive set. The specific construction that is adopted is provided below, and 

will be referred to as the epi-reverse polar because it represents the reverse polar of 

the epigraph of ttq. 

In the following, it is assumed that for all x £ X, 0 > 0 in (3.5). As long as X is 

bounded, there is no loss of generality with this assumption, because the epigraph 

can be translated to ensure that 0 > 0. The epi-reverse polar of this set, n^(a;), is 
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defined as 

n^(a;) ={cro(w) e 9^,cr(t(;) G 3?"^5(a;) G 3R such that 

VheH, 3 Th e W"\roh e R 

cro(a;) > Toh Wh e H 

J2^oh = l (3.6) 
h  

O j i u )  >  A j  +  T o h % j { u j )  y h  e  H , j  =  

5(w) < + Tohuhiui) yh e H 

T/i > 0,To/i > 0, V/i G-ST}. 

Note that the epi-reverse polar only allows those facets of the convex hull of nx(w) 

that have positive coefficient for the variable d. If are given then 

conv(nxH) = {(19, x) I V(cro(a;),c7(w),5(cj)) G n^(a;) 

a o { u )  a o [ u j )  

Let denote the set of extreme points of the epi-reverse 

polar, and let and 7^(0') = For each { x , u )  E  X  x  Q ,  let 

TTc{x,uj) = Maxigi{^'i(c<;) — 7i(a;)"^x}. Then for each w G Jl, 7rc(-,u;) is a convex 

function. Moreover, the epigraph of 7rc{x,u!) restricted to X is the closure of the 

convex hull of nx('^). We refer to ttc{-,ll}) as the convex hull approximation of 

7ro(-,w), and note that 7ro(x,Lo) = tTc{x,u}) whenever x is an extreme point of X. 

3.1.3 An Algorithmic Context for the Theorem 

As a preview of the algorithm, let us consider the scenario subproblems in a 

temporal decomposition of the SMIP, (3.1). If we let x'^ denote the first-stage 

solution associated with the algorithmic iteration, the subproblems are of the 
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form: 

/''(x,cj) = Min g'^y 

s.t. W'^y > r\uj) - T\uj)x 

y e w l '  

(3.7) 

Of course, in the first iteration we have 

Min g^y 

s.t. W y  > r { u j ) — T { o j ) x  

the LP relaxation of (3.2). Thus, the problem is initialized with = W ,  r ^ { u j )  =  

r{uj), and T^{uj) = T{lu) as in (3.2). As iterations progress, cutting planes of the 

form 

are added to the subproblem, thereby refining the approximation of the convex 

hull of integer solutions. As such, the vector is appended to the matrix 

and the element identified is appended to (lo), (oj)). Let 

y'^{io) e argmin{(7'''y | W'^y > r'^{uj) — T^{u)x^, y G 3?"^}. If z''{u)), the value 

assigned to integer variables in y^{io) is integer for all cu, then no update is necessary, 

and = l^^r^+l(a;) = r''{uj), and = r'=(a;). 

On the other hand, suppose that the subproblems do not yield integer optimal 

solutions. Let j{k) denote an index j, for which Zj{lo) is non-integer for some 

a; G il, and let Zj(fc) denote one of the non-integer values To eliminate 

this non-integer solution, a disjunction of the following form may be used; 

Tr*"?/ > 7 r c { x ' ' , u j )  = Max{^'i(w) — 7i(a;)'^x''} 
i & i  

s k i ^ x  ,  c j )  iSoj(fc)(3^ )''-') l^_J (^ ) ^) 

where 

s o j ( k ) ( x ' , u j )  =  { y e  I w ' y  > r'=(o7) - r^(a;)x^ (3.8a) 

(3.8b) 
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and 

s , , ( ^ k ) i x \ i u )  =  { y e  I >  r ' ^ i c j )  -  t \ u j ) x '  

^ j { k )  ^ \ ^ 3 { k ) \  

(3.9a) 

(3.9b) 

The index j { k )  is referred to as the "disjunction variable" for iteration k .  Our 

assumptions ensure that the subproblems remain feasible for any restriction of the 

integer variables, and thus both (3.8) and (3.9) are non-empty. Also, since the 

disjunction is based on an either-or-condition, H = {0,1} is used. It should be 

noted that when the integer restrictions are binary, the right hand side of (3.8b) is 

zero, and the right hand side of (3.9b) is one. This is precisely the disjunction used 

in lift-and-project cuts of Balas et al. (1993). 

Let Ao,i denote the vector of multipliers associated with (3.8a), and Ao,2 denote 

the scalar multiplier associated with (3.8b). Let Ai_i and Ai,2 be similarly defined 

for (3.9a) and (3.9b), respectively. Assuming that the sets defined in (3.8) and (3.9) 

are non-empty for all a; e f2, the following problem may be used to generate the 

common cut coefficients, tt'^, in iteration k: 

Max E[KQ[Cb)] — E[y^{il i)]'K 

S.t. Tij > Xl̂ Ŵ  - /j=Ao,2 Vj 

vr, >A^iW^'= + /j=Ai.2 Vj 

- T\u)x'') - Xl2[zjik)\ ^uj en (3.10) 

ttoH < A^i(r'=(a;) - T''{iu)x'') + Va; G 

— 1 < TTj < 1, Vj, — 1 < 7ro{Lu) <1, \/u e Q. 

-̂ 0,1, AO,2; Ai_I, AI_2 > 0 

where Ij = 
0, j  7 ^  j { k )  

1,  otherwise. 
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In subsequent chapters we shall refer to problem (3.10) as C^-SLP. The validity 

of the cut coefficients generated above follows from the disjunctive cut principle 

(Balas, 1979) which requires the multipliers (A) to be chosen in such a way that 

the cut coefficients are greater than the aggregated columns as specified above. 

Since the coefficients tt are independent of cu, the above LP generates common 

cut coefficients. This LP/SLP is formulated following the standard approach of 

generating valid inequalities in disjunctive programming (Sherali and Shetty, 1980), 

and it optimizes some measure of distance of the current solution y^{io) from the 

cut. It is interesting to note that this problem is a simple recourse problem, and 

may be interpreted as a stochastic version of the linear program used to generate 

the lift-and-project cuts. 

Since the disjunction used for cut formation has H = {0,1}, the epigraph 

7ro(x,a;) is a union of two polyhedral sets. Therefore, for each cj G Jl, the following 

parameters are derived from an optimal solution of (3.10), 

and 

[7,.(a;)]T = Xl,T\u), \/h e H 

are used to update the approximation of the polyhedron defined via (3.6), which we 

denote as 11^(w)''. This polyhedron represents the epi-reverse polar, which provides 

access to the convexification of ttq. Correspondingly, for each cj € the following 

LP is used to approximate 7ro(x,a;): 

Max 5 { u j )  —  0 * 0 ( 0 ; )  —  

s.t. (0-0(0;), cr(w), 5(a;)) e (n^(u;))'= 
(3.11) 
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In subsequent chapters we shall refer to problem (3.11) as RHS-LP. With an optimal 

solution to (3.11), {aQ{u),a^{iu),S'^{uj)), we obtain and 

For each ui e Q, these coefficients are used to update the right-hand-side functions 

= [r''{uj),u''{uj)], and = [T''(u;)''';7''(a;)]'''. Similarly, the solution 

to (3.10) is used to update the constraint matrix, — [(M^'^)"'"; tt'']''". 

The master program is defined as: 

Min c^x + F^{x) 

s.t. Ax > b (3-12) 

X E X n B 

where -F'^(-) is a piecewise linear approximation of the subproblem objective 

function, E[f{x,uj)] in the iteration. 

3.1.4 Disjunctive Decomposition with Set Convexification 

The Basic Algorithm (Sen and Higle, 2000) can be stated as follows: 

Basic Algorithm 

0. Initialize. Vi oo. e > 0 and x^ E X are given, /c <— 1, <— W, 

and r ^ { u j )  =  r ( u ) .  

1. Solve one LP Subproblem for each uj E Q. For each co E fi, use the matrix W'^ 

as well as the right hand side vector r''{Lu) — T^{uj)x'^ to solve (3.7). If 

satisfy the integer restrictions, 

Vfe+i < —  Minjc"'"®'® +  E [ f { x ' ' , L u ) ] ,  14}, and go to step 4. 

2. Solve Multiplier/Cut Generation LP/SLP and Perform Updates Choose a 

d i s j u n c t i o n  v a r i a b l e  j { k ) .  

(i) Formulate and solve (3.10) to obtain and define 

(ii) Using the multipliers Ag, Aj and the value Zj(k) obtained in (i) solve (3.11) 

for each outcome u). The solution defines u^{uj) and which are used to 
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update the right hand side functions; = [r''{Lu), and = 

[r^(a;)T;7'=(a;)]T. 

3. Update and Solve one LP Subproblem for each ui E Q For each u E Q solve (3.7) 

using and r^~^^{uj) — If y^{uj) satisfies the integer restrictions for 

all LU E Q, Vk+i <— Minjc^x'' + E[f{x^,Lu)], T4}. Otherwise, V^+i <— V^. 

4. Update and Solve the Master Problem Using the dual multipliers from the most 

recently solved subproblem for each u E Vl (either step 1 or step 3), update the 

approximation by adopting a standard decomposition method (e.g Benders 

(1962)). Let G argmin{c^a; + F'^{x) \ x € X}, and let Vk denote the optimal 

value of the master problem. If 14 — f^ < e, stop. Otherwise, k k+1 and repeat 

from step 1. 

3.2 An Illustration of the D"^ Algorithm 

Consider the following two-stage SIP example problem with two scenarios: 

Min —I.bxi — Ax2 + E[f{xi,x2,ui)] 

s.t. xi,x2 e {0,1} 

where, 

f{xi,x2,uj)= Min -16yi - 19y2 - 23^3 - 28^4 

s.t. -2yi - 3y2 - 4y3 - 5^/4 > + Xi 

~ 6 y i  -  l y 2  -  3 y 3  -  2 y 4  >  +  x 2  

2/1,2/2,2/3,2/4 € {0,1} 

The first-stage variables are x  =  [ x i , x 2 ] ' ^ ,  while the second-stage variables are 

y — [2/1,2/2,2/3,2/4]^- There are two scenarios uJi = [5,2]"'' and U2 = [10,3]''", each 

occurring with probability 0.5. This instance is motivated by the example in Schultz 
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et al. (1998), where the second-stage involves general integer variables. To ensure 

that the subproblems remain feasible for any restriction on the integer variables, 

we include an artificial variable, denoted r, which is penalized in the objective at 

a rate of 100. Thus, we recast the problems as 

Min -1.5xi - 4x2 + 0.5/i(xi, + 0.5/2(xi, X2,uj2) 

s.t. Xi,a:2e{0,1} 

where 

and 

fi{xi,X2,L0i) = Min -16yi - 19^2 - 237/3 - 28^4 + lOOi? 

s.t. -2yi - 3^2 - 4y3 - 5y4 + i? > -5 + Xi 

—6yi — ly2 — 3y3 — 2^4 + r> — 2 + a;2 

2/1,2/2,^3,^4 e {0,1}, -R > 0 

h{x i ,  X2,UJ2)  — Min -16yi - 19y2 - 23y3 - 28y4 + 100-R 

s.t. -2yi - 3y2 - 4y3 - 5y4 + i? > -10 + x^ 

-6yi - ly2 - 3y3 - 2y4 + i? > -3 + 2:2 

y i , y 2 , y 3 , y 4  e  { 0 , 1 } ,  r > o  

In this problem we have the following input data: 
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W = 
1 to

 1 C
O

 

-4 -5 1  

-6 - 1  -3 -2 1  

- 1  0 0 0 0 

0 - 1  0 0 0 

0 0 - 1  0 0 

0 0 0 - 1  0 

t (o j )  =  

iu i )  = 

-1 

0 

0 

0 

0 

0 

-5 

-2  

-1 

- 1  

- 1  

-1 

0 

-1  

0 

0 

0 

0 

for both scenarios, 

and r(iL>2) — 

-10 

-3 

-1 

-1 

- 1  

-1 

Note that with A and b as defined above, binary solutions are extreme points 

X = {x : Ax > b,x > 0}, as required. We can now start the algorithm. 
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Iteration 1 (A: = 1) 

Stev  0  

The algorithm is initialized with the following master program: 

Min —1.5x1-4x2 

s.t. ~Xi > —1 

-X2 > -1 

xi,x2 e {0,1}. 

The initial master program yields x^ = [1,1]^. The upper and lower bounds are 

initialized as vq = oo and vq = —5.5, respectively. For the first iteration of the 

algorithm we set Vi = Vq, = W, T^{uj) = T{ijo), and r^{lu) = r(cj). 

Stev  1  

For step 1 of the algorithm we use xi = 1,X2 = 1 and solve the linear relaxation of 

the second-stage subproblem for uii and Ld2, which we call LPi and LP2, respectively; 

:/i(l, = Min -16yi - 19y2 -23^3 - 28^4-|-lOOi? 

s.t. -2y i  -  3y2 -  4^3 -  5y4 + -R > -4 

-6yi - l?/2 - 3y3 - 2^4 + ^ > -1 

-y i  > - 1  

-2/2 > -1 

-ys > -1 

-y4 > -1 

yi,y2,y3,y4,R> 0. 
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-^'-^2 :/2(1,1,<^2) = Min -16yi - 19^2 - 23y3 - 28^4 + lOOi? 

s.t. -2yi - 3y2 - ̂Uz - 5^4 + -R > -9 

- Q y i  -  l y 2  -  S y s  - 2 y 4  +  R >  - 2  

-yi > -1  

-y2 > -1 

-y3 > -1 

-y4 > -1 

yi,y2,y3,y4:R> 0. 

The optimal solution for LPi is y{uji) = [0,1,0,0]"'', R{uJi) = 0. and for LP2 is 

y(c^2) = [0,l,0,0.5]T,/?(a;2) = 0. 

Step  2  

Since y{cu2) does not satisfy the integer restrictions, we choose y^ as the "disjunction 

variable" and create the disjunction j/4 < 0 or ^4 > 1 for LP2- We formulate (3.10), 

which yields the vector for updating and the data for (3.11) whose optimal 

solution is used to update the right-hand side of the second-stage constraints. An 

optimal solution for (3.10) is vr^ = [1,-1,1, —1, l]""", Ao,i = [0,0,0,1, 0,0]"'", Ao,2 = 1, 

Ai_i = [0,1, 0,0,0,0]""", and Ai_2 = 1- We obtain W'^ by appending tt^ to W^-. W"^ = 

[W'l 

1 - 1  1  - 1 1  

(3.11) for both ui  and u2 .  The optimal solution for lo i  is ̂ (a;i) = —0.5, cro(a;i) = 0.5, 

and a{uji) = [0,0]""". Based on this solution we update r^(a;i) and T^{uJi) as follows; 

. Using the solution from (3.10), we formulate and solve 

r^{uj i )  = 
[ri(a;i)] r(^i)] 

0 0 

LP (3.11) is 5{uj2) = —1, cro(u;2) = 0.5, and a{iU2) = 

r^{LU2) and T^(lu2) as follows: r '^{uj2) = ^ ^ 
- 2  

For lu2 the optimal solution of 

0,-0.5]"''. Similarly, we update 

, T'iu;2) = 
r(^2)] 

0 -1 



62 

This completes Step 2 of the algorithm. 

Stey  3  

Solving (3.7), we obtain y{uji) = [0,1,0,0]"'", = 0, and y(a;2) = [0,1,0.2,0.2]"'", 

R{lu2) = 0. The dual solutions are 

d{uji) = [0,14, 0,0,5,0,0]""" and d{uj2) = [0,10.2, 7.6,0,1.2,0,0]"*". V2 <— Vi, because 

the integer restrictions are not satisfied. 

Stey  i  

Using the dual solution for each subproblem from Step 3, we formulate the 

"optimality cuts" as in Benders' decomposition (Benders, 1962). The resulting 

cuts are 02;i — 14x2 + 6'i > —33 for ui and Oxi — 17.8x2 + 02 > —47 for uj2- Since 

the two scenarios are equally likely, the expected values associated with the cut 

coefficients yield Oxi — 15.9x2 + 0 > —40 as the optimality cut to add to the master 

program: 

Min —1.5xi — 4x2 + ^ 

s.t. —Xi > —1 

-X2 > —1 

Oxi - 15.9x2 + 0 > -40 

xi,x2 e {0,1}. 

Solving the master program we get = [1,0]^, 9 =  -40 and an objective value 

of -41.5. Therefore, the lower bound becomes V2 — —41.5. The upper bound 

remains the same, = Vi = 00, as before. This completes the first iteration of the 

algorithm. Since V2 > V2 k ^ 2, and we begin the next iteration. 

Iteration 2 

Stey 1 



We start the second iteration by solving the following updated subproblems with 

= [1,0]"'': 

LPi • /i(l,0,a;i) = Min —IQyi — 19^2 ~ 23^3 — 28^4 + lOOi? 

s.t. -2yi - 3^2 - 4^3 - 5y4 + i? > -4 

-Qyi - 2/2 - Sys - 2y4 + i? > -2 

- 2/2 - 2/3 - J/4 + ^ > -1 

> -1 

-y2 > -1 

-ys > -1 

-y4 > -1 

yi,y2,y3,y4,-R > 0. 

and 

-^^2 :/2(l,0,a;2) = Min -16yi - 19y2 - 23y3 - 28y4 + lOOi? 

s.t. -2yi - 3y2 - 4y3 - 5y4 + i? > -9 

-6yi  -  y2 -  3y3 -2y4 + R> -3 

2/1 - y2 - ys - y4 + -R > -2 

-yi > -1 

-y2 > -1 

-ys > -1 

-Vi  >  -1 

yi,y2,y-i,y4,R > 0. 

The optimal solution for LPi is y{uJi) = [0.108108,1,0.027027,0.135135]^ and for 

LP2 is y{u2) = [0,1,0,1]"^. 

Stey 2 
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We obtain by appending to = . Using 

Since y{uJi) does not satisfy the integer restrictions, we choose as the "disjunction 

variable" and create the disjunction 2/4 < 0 or 1/4 > 1 for LPi. We formulate 

and solve (3.10), which yields the data used to update and to formulate 

(3.11) whose optimal solution is used to update the right-hand side of the second-

stage constraints. Solving LP (3.10) we obtain tt^ = [0,-0.5,0,-0.5,1]''", Ao,i = 

[0,0,0,0,0.5,0,0]^, Ao,2 - 0.5, Ai,i = [0,0.125,0,0.375,0,0,0]^, and Ai,2 = 0.125. 

0 -0.5 0 -0.5 1 

the solution of (3.10) we formulate and solve (3.11) for both ui and uj2- The 

optimal solution for loi is (5(a;i) = —0.25, ao{ io i )  = 0.5, and cr(wi) = [0,0]"''. Based 

[^2 
on this solution we update r'^{uJi) and T'^{loi) as follows: r®(wi) = 

0 0 

For lu2 the optimal solution of LP (3.11) is 5{uj2)  = —0.5, cro(a;2) = 0.5, and (t{lu2)  = 

[0,0]"^. Similarly, we update r'^{t02) and T^(cu2) as follows: r^{uj2) = ^ ^ 

-0.5 

- 1  

THi02)  =  
[THu;2)]  

0 0 
This completes Step 2 of the algorithm. 

Stev  3  

Solving (3.7) we obtain y{ijji) = [0.055556,1,0.22222,0]"'', i? = 0, and y{uj2) = 

[0,1,0,1]''', i? = 0. The dual solutions are d{(jJi) = [5,1,0,2,0,2,0,0]^ and 

d{oo2) = [0,7.667,0, 0, 0,11.333, 0,12.667]'''. V3 •<— V2 because the integer restrictions 

have not been met. 

Stev  i  

Using the dual solution for each subproblem from step 3, we formulate the 

"optimality cuts" as in Benders' decomposition (Benders, 1962). The resulting cuts 

are —5xi — lx2 + 9i > — 30 for a;i and Oxi-7.667x2-1-02 > ~47 fora;2. The expected 
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value associated with the cut coefficients yields —2.5x1 4.334x2 + 0 > —38.5 as 

the optimality cut to add to the master program: 

Min —1.5x1 — 4x2 + ^ 

s.t. —Xi > —1 

-X2 > -1 

Oxi - 15.9x2 + e>-40 

-2.5xi - 4.334x2 + 9 > -38.5 

xi,x2 e {0,1}. 

Solving the master program we get x^ = [0,0]^, 0 =  —38.5 and an objective value 

of -38.5. Therefore, the lower bound becomes V2 = —38.5. k <— 3, and we begin the 

next iteration. 

Iteration 3 

Step  1  

We start the third iteration by solving the following updated subproblems with 
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= [0,0]^; 

i-Pi :/i(0,0,ti;i) = Min -16yi - 19y2 - 23y3 - 28y4 + lOOi? 

s.t. -2yi - 3y2 - 4j/3 - 5^4 + i? > -5 

-6yi - 2/2 - Sys - 2^4 + i? > -2 

yi - y2 - ys - ̂4 + > -1 

Oyi - 0.5y2 - Oys - 0.5y4 + R> -0.5 

-yi > -1 

-y2 > -1  

-2/3 > -1 

-Vi > -1 

yi,y2,y3,y4,R> 0. 

and 

LP2 • /2(0,0,0)2) = Min —16yi — 19^2 — 23y3 — 28y4 + lOOi? 

s.t. -2yi - 3y2 - 4y3 - 5y4 + i? >-10 

-6yi - y2 - 3y3 - 2y4 + i? > -3 

2/1 - y2 - 2/3 - J/4 + -R > -2 

Oyi -  0.5y2 -  ly3 -  0.5y4 + R> -1 

-yi > - 1  

-y2 > -1 

-ya > -1 

-y4 > -1 

yi, 2/2, 2/3,1/4,^ > 0. 

The optimal solution for LPi is y{uji) = [0,0,0,1]"^, R{uJi) = 0 and for 

LP2 is y{u!2)  = [0,1,0,1]''', R{lu2)  = 0. The dual solutions are d(u} i )  = 
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[0,7.6667,0,25.333,0,0,0,0]^ and = [0, 7.667,0,0,0,11.333,0,12.667]^. We 

now have an incumbent integer solution x = [0,0]"'", y(tJi) = [0,0,0,1]"'', y{(jJ2) = 

[0,1,0,1]"^, 9 = 0.5(-28) + 0.5(-47) = -37.5. V4 ^ Min{-37.5, ̂ 3} = -37.5. We 

go to step 4 of the algorithm. 

Stev  I  

Using the dual solution for each subproblem from Step 3, we formulate the 

"optimality cuts" as in Benders' decomposition (Benders, 1962). The resulting 

cuts are Oxi — 7.667x2 + > —28 for ui and Oxj — 7.667x2 + O2 > —47 for UJ2, and 

the expected values yield Oxi — 7.667^2 + 9 > —37.5. as the optimality cut to add 

to the master program: 

Min — 1.5xi — 4^2 + 9 

s.t. —xi > —1 

-X2 > -1 

Oxi - 15.9x2 + 0 > -40 

-2.5x1 - 4.334x2 + 9 > -38.5 

Oxi - 7.667x2 + 9 > -37.5 

xi,x2 e {0,1}. 

Solving the master program we get x^ = [IjO]""", 9 = —36 and an objective value 

of -37.5. Therefore, the lower bound becomes Vz = —37.5. Since the upper bound 

(V3 = —37.5) and the lower bound are now equal, the algorithm terminates and we 

have an optimal solution: x = [0,0]"*", y(a;i) = [0,0,0, l]""", y((x;2) = [0,1,0,1]"^ and 

objective value —37.5. It so happens that both [0, 0]^ and [1,0]^ are optimal for the 

master problem, but optimality can only be concluded for the point [0,0]^, since 

that is the incumbent. 

It is interesting to note that while the cuts used in LPi and LP2 in iteration 3 

were obtained at x^ = [1,1]^ and x^ = [1,0]"'', integer solutions = [0, 0, 0, l]""" 

and y{uj2) = [0,1,0,1]"'') were obtained with the first relaxations solved at x^ = 
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[0,0]"'^. The credit for this should go to the Theorem. 

3.3 Summary 

This chapter has presented the main results on set convexifications for large scale 

Stochastic Integer Programming and has given an illustration of the decomposition 

method called the D'^ algorithm. At the heart of this method is the Theorem, 

which allows both a temporal and scenario decomposition of the SMIP. We have 

used a simple example to illustrate the application of the algorithm. In this 

example the D"^ algorithm converges to an optimal solution in three iterations. The 

example clearly illustrates how the second-stage convexifications are sequentially 

carried out and how they impact the first-stage objective function. 

The primary focus in this chapter is the generation of cutting planes within a 

temporal decomposition of two-stage SMIPs. We note, however, that cutting planes 

alone are typically inadequate for solving large mixed-integer programs. Thus, our 

ultimate goal is to use cuts such as those discussed in this chapter within a Branch-

and-Cut (BAG) setting, where a careful generation of cuts is necessary to further 

enhance the success of BAC-type algorithms for solving SMIP problems. Therefore, 

the next chapter describes an algorithm in which the algorithm is incorporated 

into a branch-and-cut setting. 
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CHAPTER 4 

COMPUTER IMPLEMENTATION OF THE ALGORITHM AND 

RELATED DECOMPOSITION 

ALGORITHMS 

In this chapter we present details of a computer implementation of the algorithm 

derived by Sen and Higle (2000). Due to the dynamic nature of the various parts of 

the algorithm, implementation of such an algorithm is not an easy undertaking, but 

one that requires careful coding. The issues associated with the implementation are 

discussed and parts of the algorithm are illustrated using pseudo-code fragments. 

Two other algorithms are also implemented and briefly discussed. These are the 

disjunctive decomposition with branch-and-cut or Z)^-BAC algorithm for two-stage 

SMIP presented by Sen and Sherali (2004), and the first decomposition algorithm 

for SMIP presented by Laporte and Louveaux (1993). We refer to the this algorithm 

as the algorithm. 

The rest of the chapter is organized as follows. In the next section the 

algorithmic setting of the algorithm is given and in Section 4.2 the D'^ algorithm 

is formally stated. In Section 4.3 details of the Z?^-BAC algorithm are given. The 

algorithm is discussed in Section 4.4. Details of a computer implementation 

of the algorithm are provided in Section 4.5. Finally the chapter ends with a 

summary. 
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4.1 Algorithmic Setting 

The D"^ algorithm is derived in Sen and Higle (2000) and illustrated in Sen 

et al. (2002). In the algorithm there is a master program that forwards a 

first-stage decision x'^ to the scenario subproblem in iteration k. Given and 

the  convex approximat ions  developed in  the  previous  i te ra t ions  k  — 1 ,  the  k^^  

convex approximations of the scenario subproblems are developed and an updated 

representation of the second-stage objective function is obtained and passed back 

to the master program. In algorithmic iteration k the master program takes the 

following form: 

The variable r j  represents the expected recourse function evaluations. Constraints 

(4.1b) are the first-stage constraints, constraints (4.1c) are the Benders-type 

(Benders, 1962) optimality cuts, and constraints (4. Id) are the binary restrictions 

on the first-stage decision variable. In constraint (4.1c) the right-hand side 

a* = E[xIj^ { loY{ to ) ]  and /3* = {loY{u ) ]  for t  = 1,...,A;. The vector 

denotes an appropriately dimensioned vector of dual multipliers associated with the 

constraints of the LP relaxation of the scenario subproblem, which can be given as 

follows: 

Min c 'x  + 7] 

s.t. Ax > b,  

f f x  +  r]> a!"^  t  =  l , . . . , k  

X e 

(4.1a) 

(4.1b) 

(4.1c) 

(4.1d) 

f ^ {x ,u )  =  Min qiuj^y, 

s.t. Wy > r{uj )  — T{uj )x ,  

> Trl ix ,u j ) , t  e  0fe ,  

ye ^ R -

(4.2a) 

(4.2b) 

(4.2c) 

(4.2d) 
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The set 0^ is the set of disjunctive decomposition cuts or D^-cuts derived up to 

iteration k. In order to derive the common-cut-coefficients tt a simple recourse SLP 

(the C^-SLP, problem 3.10, Ch. 3) is solved. The function 7rc(x,a') is derived by 

solving another LP (the RHS-hV, problem 3.11, Ch. 3) for each scenario. 

Let be a matrix resulting from augmenting {(vr^)'''}teefc to matrix W and 

p^{x ,u j )  be  the  resu l t  of  augment ing  to  the  le f t  hand s ide  r{u j )  — 

T{ L O ) X .  Thus subproblem (4.2) can be rewritten in compact form as follows: 

f ^{x ,u)= Min q{uyy ,  (4.3a) 

s.t. W'^y  >  p'^{x ,Lu) ,  (4.3b) 

yeWl'. (4.3c) 

4.2 The D'^ Algorithm 

The algorithm can be stated as follows: 

Algorithm D'^ 

begin 

Vi ^ oo; 

choose e > 0; 

so lveJps  ^  true;  

x^ <— Min{c^a;|Aa; > 6, x G X fl B}] 

fc 1; 

^  W; 

T\u) ̂  T(a.); 

r^{uj )  =  r{u)- ,  

do 

for a; ^ 1 to |f2| 



Use matrix W'', right-hand side vector — T^{lo )x^ 

to formulate subproblem (4.3); 

if so lveJps  =  true]  

Solve (4.3) for scenario u] 

Let the objective value be 

Store  so lu t ion  y ' ' {co) ;  

else 

Solve subproblem MIP for scenario w; 

Let the objective value be 

end (if-else) 

end (for) 

if so lveJps  =  false  or to |n| satisfy the integer 

restrictions 

Vfc+i ^ Min{c"^x'= + 

else 

Choose a disjunction variable j(fc) from to | f 2 | -

Let its floor and ceiling be lyj{k)\ and \yj{k)], 

respectively; 

Formulate and solve the C^-SLP (Problem 3.10, Ch. 3); 

Obtain solution Aqi, Aq2, and Af 2! 

Update recourse matrix ^ ] 

for (x; <— 1 to 

Use the multipliers Aqi , Aqj , AJ j  and the values 

[yj{k)\ and to formulate and solve the 

RHS-LP (Problem 3.11, Ch. 3) for scenario cu]  

Get solution and compute and 7*^(0;) 

and update the right hand side functions; 

^ z^^(w)] and 

= [T^(a;);7'=(a;)^]; 
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Solve (4.3) using and r^+^{Lo) - {uj)x''. 

Store solution y'=(a;); 

end (for) 

if {y^{uj )}^^  1 to n satisfy the integer restrictions 

Vk+i  <-  Min{c '^x '=  +  E[f{x^ ,Lb) \ ,Vk] ,  

^  E[f{x \u) \ ,  

end (if) 

end (if-else) 

Derive an optimality cut of type (4.1c) using the dual 

solutions from the currently solved subproblem LPs (4.3); 

Append the cut to the master program (4.1) 

and solve to get x^^^] 

Let Vk denote the optimal value of the master problem; 

if x^ — 

so lveJps  <— fa lse]  

else 

so lveJps  t rue]  

vifhile Vk-Vk> e; 

end (Algorithm) 

Note that no explicit branch-and-bound is done in the algorithm. All the MIPs 

(that is, master problem (4.1) and subproblem MIPs for (4.3)) are given to an MIP 

solver and are solved exactly. The scenario subproblem MIPs are generally NP-

hard problems and may be difficult to solve. In addition, for large scale problems 

the number of these MIPs can be very large. Therefore, our approach avoids 

solving subproblem MIPs for upper bounding unnecessarily at every iteration of 

the algorithm. Instead we only solve subproblem MIPs when the first-stage solution 

stops changing, usually as the algorithm nears termination. 
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Subproblem MIP solves can also be initiated when the percent gap between the 

lower and upper bound remains constant for a preset number of iterations. At all 

other iterations we solve subproblem LP relaxations (4.3), which are much faster 

and the sequential addition of "D^-cuts" to the feasible region of the second-stage 

problem leads to the convexification of the region leading to potentially integral 

solutions. To fully close the gap between the lower and the upper bound for certain 

problem instances, we add the optimality cut of Laporte and Louveaux (1993) stated 

in the Section 4.4 just after we solve the scenario subproblem MIPs. This usually 

happens in the final iteration of the algorithm. 

4.3 The D^-BAC Algorithm 

We now briefly describe and state the D^-BAC algorithm. We refer the reader 

to Sen and Sherali (2004) for the derivation of the algorithm. In this approach 

the second-stage integer subproblems are solved using a "truncated" branch-and-

bound (TB&B) tree, thus allowing for subproblem MIP "partial" solves. Realizing 

the fact that the subproblems are generally NP-hard, the decomposition method 

may get bogged down in attempts to solve subproblems to optimality, even while 

the particular first-stage solution is no where near the neighborhood of an optimal 

solution. Thus the essence of the D^-BAC approach is to allow for partial solves of 

the integer subproblems, so that ultimately the partial solves start to yield optimal 

solutions. 

The fundamental idea in this approach is the observation that a branch-and-

bound (B&B) tree together with the LP relaxations at the nodes embodies a 

disjunction and provides important information that can be used in approximating 

subproblem MIP value functions. By using the disjunctive principle (Balas, 1979), 

Sen and Sherali (2004) obtain linear inequalities or cuts that are used to build value 

function approximations for the subproblem MIPs. 
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Let Q(uj )  denote the set of terminal nodes of the TB&B that have been generated 

for subproblem associated with scenario u. For any node q E Q(u^), let Zqi{u) 

and Zqh{uj) denote vectors whose elements are used to define lower and upper 

bounds, respectively, on the second stage integer variables. Then the subproblem 

LP relaxation for node q in algorithmic iteration k can be written as follows: 

Min q^y, (4.4a) 

s.t. W^y > r^(w) - T\ U J ) X \  (4.4b) 

y>0,  (4.4c) 

y  >  (4.4d) 

-y  > -Zgh{uj ) .  (4.4e) 

The corresponding dual LP is: 

Max - T''{iu)x''] + i>qi{LjyZgi{u) - ijgh{ujyZgh{uj), (4.5a) 

s.t. dg{cj)W'' + ipqi{(jjy - ipqh{u}V < , (4.5b) 

9q{u)  > 0, i ^q l iu)  > 0, i jqh{ i^ )  > 0, (4.5c) 

where the vectors i^qi{ijj) and ipqh{iu) are appropriately dimensioned vectors. 

In this approach each scenario subproblem has its own TB&B tree and the 

optimal dual multipliers for at each terminal node of the tree are used to obtain a 

lower bounding function on the subproblem MIP objective function. Without loss 

of generality it is assumed that the LP subproblems at the nodes are always feasible 

and that the nodes are fathomed when their lower bounds exceed the best upper 

bound obtained. The lower bounding functions at the nodes provide a disjunctive 

description of an approximation to the MIP value function. Such a lower bounding 

function may be obtained by requiring that x E X and that the following disjunction 

holds true: 

r]  >  9q { U Y [r ' ' {u})  -T ' ' { U ) X ]  +  1pql { U J Y Zql{uj )  -  ilqh{ujyZqh { U J )  

for at least one q e (5(i^). (4.6a) 
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Note that disjunction (4.6a) is valid since any optimal solution of the second-stage 

must  be associated with at  least  one of  the nodes q G Q{io)-

For each q G Q{ U J )  we can associate an epigraph 

I V > -  ig{<^Vx,Ax  >b,x>0,r]>0}  

with 

Zgi{u)  - Zgh{c^)  

and 

The validity of (4.6a) implies that the epigraph of the subproblem (MIP) value 

function for scenario w G Q is a subset of the following disjunctive set: 

nfc(a;) = {(r/,x) G UggQ(^)£;^(w).} 

A convexification of this set is used to derive lower bounding functions for use in 

the master program. This is achieved by applying the disjunctive cut principle to 

this disjunction. The epi-reverse polar of 11^(0;), which is denoted by n|.(cj), is as 

follows: 

n|.(ct;) ={cro(a;) G K,cr(a;) G 5R"SC(<^) S K | Vg G <5(^),3 Tq{uj) > 0,rog(w) G 3?+ 

s . t .  aQ{uj )  >  TQq{u)  Vq  G Q{uj )  

= 1 

qeQ{i^)  

CTjiuj)  > tJ{u)Aj + Tog{uj) 'yg^{u) Vg G Q{uj) , j  = 1,..., ri i  

CM < rq{u) '^b + TQq{Lo) i? '^{Lj)  \ /q G Q{io) 

Tg(t<^) > 0,ro,(w) > 0, VgG(5('^)}-

(4.7) 

In order to get an optimality cut to add to the master program, an epi-reverse 

polar LP that characterizes the disjunction is formed and solved for each scenario 
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subproblem. We shall refer to this LP as the ERP-LP and is given as follows: 

Max — rf {uj)ctq{uj ) — a{i j j )  
(4-8) 

s.t. (cro(w),(j(a;),CH) e 0^(0;). 

Let (aQ(cj), cr''(u), (^(<^)) denote an optimal solution of the ERF-LP (4.8). Then a 

disjunctive cut that provides a lower bound on the subproblem MIP value function 

is given by 

a^(cj)7j(u;) + > ('(cj). (4.9) 

The optimality cut to be included in the master program at iteration k is therefore 

given by 

It is appropriate to note here that the novelty of this approach is the fact 

that disjunctive programming is used to approximate the value function of MIP 

problems. In the algorithm, disjunctive programming is used to provide tight 

relaxations of the set of feasible integer points. Consequently, applying this branch-

and-bound approach to the method results in a branch-and-cut method for 

SMIP. The D^-BAC algorithm can be summarized as follows: 

Algorithm D^-BAC 

0. Initiahze. Let e > 0 and e  X f l  B  he  given. Set <— 00, A: -t— 1, 

^  W,  T^(u)  ̂  T{uj ) ,  and r^u)  = r{c j ) .  

1, Apply the algorithm to solve one LP subproblem for each cj € 

For each u E Q, use the matrix W'^ as well as the right hand side vector 

r^{u;) — to solve (4.2) as in the algorithm and generate and 

add cuts to each scenario subproblem if possible. 

2. Update the approximation. For each u E Q partially "solve" one MIP 

subproblem us ing  branch-and-bound and  form and solve  the  ERP-LF 
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(4.8), and after processing all uj, derive an optimality cut. If 

satisfies integral restrictions for all a; e then V^+i Minjc^x + 

E[f{x'',u!)], Vfc}. Add the optimality cut to the master program. 

3. Solve the master program and check the stopping criterion. Let € 

argmin{c"''x + r]^) | x € X fl S}, and let Vk denote the optimal value of 

the master problem. liV^ — Vk < e, stop. Otherwise, fc <— A: + 1 and 

repeat from step 1. 

As far as implementation is concerned, we propose to allow for partial solves 

only when it is beneficial to do so. Otherwise, as pointed out earlier, and as shown 

by the computational experiments in Chapter 7, the algorithm may get bogged down 

in attempts to "dive" deep into the TB&B tree even for first-stage solutions that 

are not anywhere near the neighborhood of an optimal solution. Thus one may 

activate the TB&B process by specifying the number of nodes to explore when, 

for example, there is no significant improvement in the algorithmic lower bound. 

Finally, one can view the algorithm as a special case of the D^-BAC algorithm 

outlined above in that, in the algorithm we do not "dive" into the TB&B, but 

simply stay at the root node. 

4.4 The Algorithm 

Laporte and Louveaux (1993) derive an optimality cut for the piecewise linear 

approximation of the expected value function as follows. Let L be the lower bound 

on the value of the recourse function as defined earlier in Section 4.1. For a fc"' 

first-stage feasible solution x'^, lei Xi = 1, i G Sk and = 0, z ^ 5/0, let 

= E[f^{x^,il})] be the corresponding expected second-stage value. Then the 
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optimality cut is defined as 

> ) > ( / ' -  L){J2 x.-T. ̂•) - (/' - - 1) + ^ {4^u) 
ieSfc 

where \Sk \  is the cardinahty of Sk-  The quantity {Y2ieSk^ i  ~~ takes the 

value \Sk \  only when x  is the feasible solution. In this case the right hand side 

takes that value f''. Otherwise, it is always less than or equal to l^fcl and the right 

hand side takes a value less than or equal to L. Hence, it follows that the cut is sharp 

at x'' and that its value is at most L at all other binary solutions. Nevertheless, 

Laporte and Louveaux (1993) show how to improve the optimality cuts when more 

information is available on E[f{x'',Lj)], such as other bounds. The algorithm 

can be stated as follows: 

Algorithm 

0. Initialize. Let e > 0 and x^  E X  H B  he  given. Set Vi •<— oo, fc 1; 

compute  L.  

1. Solve one MIP Subproblem for each u £ Q. For each a; G fi, use the 

matrix W as well as the right hand side vector r{ui) — T{u)x'' to solve 

subproblem MIP. Set 

Vfc+i  ^  Min{c'^x'' + E[f{x ' ' , ( j j ) ] ,Vk}  and ^ E[f{x ' ' ,Lu)] .  

2. Update and Solve the Master Problem. Using L, x'^ and f'^ derive an 

optimality cut (4.11). Append the cut to the master program (4.1). Let 

G argmin{c^x +  T ] )  \  x  E X  D B} ,  and let Vk denote the optimal 

va lue  of  the  mas ter  problem.  I f  Vk — Vk< e ,  s top .  Otherwise ,  k  <— k+1 

and repeat from step 1. 

Like the algorithm, no explicit branching is done this algorithm and the 

master and subproblem MIPs are solved exactly by the CPLEX MIP solver. 
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Note that in the algorithm subproblem MIPs are solved at every iteration of 

the algorithm. This together with the generally weak optimality cut (4.11) does 

have an adverse effect on the performance of this algorithm as our computational 

experiments show. 

4.5 Computer Implementation 

All the three decomposition algorithms were implemented in the C programming 

language and work in conjunction with the general-purpose programming system 

CPLEX 7.0 ILOG (2000) for solving all the LP and MIP problems. In this section 

we highlight some important issues to consider when implementing the D'^ algorithm 

and provide some pseudo-code for the main steps of the algorithm. 

4.5.1 Implementation Issues 

The C programming data structures were used to store and handle all the program 

data and took advantage of the dynamic memory allocation capabilities of C. Due 

to computational efficiency and memory considerations, all the problem matrix data 

such as A, r(cu)'^ and T{ujY are stored in sparse matrix format arrays. The 

data , r{ijjY and T{ujY grow at every iteration of the algorithm whenever a 

cut is generated. Thus care must be taken in how the data is stored in order to 

avoid program efficiency and memory problems. 

The master problem is stored as a CPLEX LP object to which optimality cuts 

are added at every iteration k of the algorithm. Similarly, the second-stage scenario 

subproblem LP and MIP are kept as CPLEX LP/MIP objects, respectively, but the 

right hand side {r^ iu) — T^(u)) is computed and reset for each scenario ui E ^ before 

optimization. The cut coefficients ir'' are appended to the subproblem LP/MIP 

object as well as the matrix array stored separately. This matrix is needed 
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for forming tlie C^-SLP (Problem 3.10, Ch. 3). The right hand side coefficients at 

iteration k are added to the arrays and for each scenario cu E Q, 

respectively. 

We create a CPLEX LP object for the C^-SLP (Problem 3.10, Ch. 3) only 

when needed and free it after optimizing the SLP and getting the optimal solution. 

To select a disjunction variable our implementation scans the scenarios in order and 

chooses a variable whose solution is the most fractional for the first scenario with 

a  f rac t iona l  so lu t ion .  That  i s ,  for  a lgor i thmic  i te ra t ion  k  and the  f i r s t  scenar io  u 

with a fractional solution y{uj), the disjunction variable index j{k) is determined by 

{j{k) = j : avgmm^{\yj{u) - 0.5|}}. 

In order to guarantee algorithmic convergence, the C^-SLP (Problem 3.10, Ch. 

3) must be formed with the constraint matrix composed of the original constraint 

matrix W and all the tt's that were generated by using those disjunction variables 

whose indices are smaller than the index for the disjunction variable chosen in this 

iteration (see Sen and Higle (2000) for the proof of convergence). All the other tt's 

are excluded from the C^-SLP (Problem 3.10, Ch. 3) constraint matrix. Thus we 

keep track of the disjunction variable at which each cut is generated by using an 

array to store the disjunction variable index for each tt'". 

In forming the C^-SLP (Problem 3.10, Ch. 3) objective function coefficients 

when the second-stage LP solutions do not satisfy integer requirements for at least 

one scenario, Sen and Higle (2000) propose to use the expected value of the solutions. 

However, to guarantee that the cut generated actually cuts off the current 

fractional solution, the conditional expectation with respect to the scenarios with 

a fractional solution for the selected disjunction variable should be used. This is 

critical to the algorithm since the D'^ cut generated and added to the scenario 

subproblem influences the choice of the first-stage solution via the optimality cut 

(4.1c). 
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Similar to the creation of the CPLEX LP object for the C^-SLP (Problem 

3.10, Ch. 3), the CPLEX LP object for the RHS-LP (Problem 3.11, Ch. 3) is 

dynamically created for each scenario, optimized, and then freed at each iteration 

of the algorithm. Thus we avoid unnecessary use of computer memory to store 

potentially several CPLEX LP objects. All the appropriate solution data from 

each CPLEX LP are extracted before freeing the object. Next we provide some 

pseudo-code for some selected steps in the D"^ algorithm. 

4.5.2 Illustrative Pseudo-Code 

We highlight the major steps of the algorithm and decompose and store various 

pieces of data in a manner that is commensurate with the necessary computations. 

To differentiate between mathematical and programming constructs, we adopt the 

use of a typewriter font when referring to the later. We also use the bold font for 

function names. 

The first step of the algorithm after initialization is to optimize all the scenario 

subproblem LPs. In this step it is necessary to compute and set the right hand side 

r^{uj)—T^{uj)x^ for each scenario subproblem CPLEX LP object. After optimization 

of each scenario subproblem we need to store the optimal primal and dual solutions 

for use in the formation of the C^-SLP (Problem 3.10, Ch. 3) and potentially, in 

comput ing  the  Benders- type  opt imal i ty  cu t  (4 .1c) .  For  each  a lgor i thmic  i te ra t ion  k  

let us define the sparse matrix format arrays as follows: 

mat_r[i^] = r^[uj) 

mat_T[Li;] = 

rhsEcj] = r^{uj) — T^{uj)x^. 

Let solnY denote the sparse matrix format array for storing the optimal primal 

solutions {y'^('^)}f=i and let duals denote the array for the scenario subproblem 
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LP dual solution respectively. Let the pointer to the subproblem CPLEX 

LP object be given by sub_lp. Let us also index the scenarios by i and denote the 

total number of scenarios by S = |fi|. In all that follows (matrix x vector) and 

(vector X vector) multiplications are carried out in the usual manner. The array 

X stores the first-stage solution x. The pseudo-code for a procedure for updating 

and solving scenario subproblem LPs can be stated as follows: 

procedure solvesubprobLPs(sub_lp, x, niat_r, inat_T, solnY, duals) 

{ 

exp_obj = 0.0; 

for (i = 0; i < S; i++){ 

rhs[i] = inat_r[i] - mat_T[i]xx; 

setSubprobLP_rhs(sub_lp, rhs [i]); 

optimizeLP(sub_lp); 

exp_obj += getObj (sub_lp); 

getprimalSoln(sub_lp, solnY[i]); 

getdualSoln(sub_lp, duals); 

computeUpdateBendersCut(duals); 

} 

} 

The procedure solvesubprobLPs solves the LP relaxation of the subproblem 

for each scenario by first resetting the right-hand side of the LP according to 
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the scenario right hand side data and then calhng an LP solver to optimize the 

problem. Note that for scenario subproblems with randomness in the objective 

function, the random objective coefficients have to be reset for each scenario within 

the for loop. The procedure for updating and solving the scenario subproblem MIPs 

solvesubprobMIPs is the same solvesubprobLPs except that we impose integer 

restrictions on the scenario subproblem relaxation. 

The next step of the algorithm is to check whether the solution satisfies integer 

requirements. If it does then we simply form an optimality cut to add to the master 

program. Otherwise, we need to select a disjunction variable and form the C^-SLP 

(Problem 3.10, Ch. 3) to get the left-hand side coefficients of the D"^ cut and the 

multipliers for forming the RHS-LP (Problem 3.11, Ch. 3) for each scenario. 

To form the objective function of the C^-SLP (Problem 3.10, Ch. 3) it is 

imperative that the computation of the objective coefficients be conditioned on 

the subproblem scenarios with a fractional solution for the disjunction variable 

component. The objective function of the C^-SLP (Problem 3.10, Ch. 3) is given 

by Max i?[7ro(a))] — E[y''{cu)]7T (see Sen and Higle (2000)). Let us denote the arrays 

for storing the optimal solutions of the variables ttq by pi_0 and the variables tt by 

pi. Also let the corresponding objective coefficient arrays be denoted by pi_0_coef s 

and pi_coef s, respectively, and let the scenario probabilities be stored in the array 

scen_probs. Let d = j{k) be the disjunction variable index in iteration k and let 

EPS be the zero tolerance for the integer requirement on the binary solution. A 

procedure for computing the conditional C^-SLP (Problem 3.10, Ch. 3) objective 

coefficients can be given as follows: 

procedure computeCSLPobjCoefs(solnY, pi_0_coefs, pi_coefs, 

scen_probs, d) 
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sum_prob = 0.0; 

for (i = 0; i < S; i++){ 

if(solnYEi][d] > EPS && solnY[i][d] < 1-EPS) 

suni-prob += scen_probs [i] ; 

} 

for (i = 0; i < S; i++){ 

if(solnY[i][d] > EPS && solnY[i][d] < 1-EPS) 

pi_0_coef s [i] = scen_probs [i]/sum_prob; 

else 

pi_0_coefs[i] = 0.0; 

} 

for (j =0; j < n2; j++) 

pi_coefs[j]= 0.0; 

for (i = 0; i < S; i++){ 

if (solnY[i] [d] > EPS && soliiY[i] [d] < 1-EPS){ 

for (j =0; j < na; j++) 

pi_coefs[j] += pi_0_coefs[i]*solnY[i] [j] ; 

} 

} 
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} 

Now let us consider the procedure for forming and solving the RHS-LP 

(Problem 3.11, Ch. 3). Let the optimal solution to the C^-SLP (Problem 3.10, 

Ch. 3) be stored in the arrays pi = lainbda_01 = Aqi, lajiibda_ll = 

and the coefficients lambda_02 = A02 and lambda_12 = X\2- Note that the array 

pi stores the common-cut coefficients while the arrays lambda_01 and lambda_ll 

store the multipliers for the computation of ^'i(w), and 7i(w) to be 

used in forming the RHS-LP (Problem 3.11, Ch. 3) for each scenario u E Cl. 

Let us denote the arrays to store these multipliers by nuBar_0 [a;], nuBar_l [a;], 

gammaBar_0 [a;] and ganimaBar_l [ct;], respectively. A procedure for updating the 

subproblem constraint matrix W'' (denoted mat_W) can be named: 

procedure append(mat_W, pi) 

Let the floor and ceiling on the disjunction variable d = j [k )  in iteration k  be 

denoted by yBar_floor = [yj{k)j and yBar_ceil = \yj{k)\, respectively. Let the 

arrays for storing an optimal solution to the RHS-hP (Problem 3.11, Ch. 3) be 

denoted by sigma_0 = o-q(lij), sigma = cr''(cj) and delta = 5''(<^), respectively. 

Then a procedure for forming and solving the RffS-LP (Problem 3.11, Ch. 3) for 

scenario i can be given by: 

procedure forniAndSolveRHSLP(rhs_lp, x, lambda_01 [i] , lambda.il [i] , 

lainbda_02 [i] , lainbda_12 [i] , gammaBar.O [i] , gammaBar_l [i] , 

yBar-floor, yBar_ceil, d) 

{ 
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nuBar_0[i] = lambdaj^ [i] xrhs [i] - lainbdao2 [i] xyBar.floor; 

nuBar_l [i] = lambdaj^ [i] xrhs [i] - lambda^j ti] xyBar_ceil; 

gammaBar.O [i] = lambdaj^ [i] xmat_T [i] ; 

gaminaBar_l [i] = lambda^^^ [i] xmat_T[i] ; 

formRHSLP_rhs(rhs_lp, x, nuBar_0 [i] ,nuBar_l [i] , gammaBar_0 [i] , 

gammaBar_l[i]); 

optimizeLP(rhs_lp) ; 

getprimalSoln(rhs_lp, sigma_0 [i] ) ; 

getprimalSoln(rhs_lp, sigma[i]); 

getprimalSoln(rhs_lp, delta[i]); 

} 

Next, we need a procedure for updating the scenario subproblem right-hand 

side. Such a procedure given an optimal solution to the RHS-LP (Problem 3.11, 

Ch. 3) for scenario i can be stated as follows: 

procedure updateRhs( sigina_0[i], sigmaEi] , delta[i]) 

{ 

nu[i] = delta [i]/sigma_0 [i] ; 

for (j = 0 ;  j < ni; j ++) 

gamma[i] [j] = sigma[i] [j]/sigma.O [i] ; 
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append(rhs[i], nu[i]); 

append(mat_T[i] , gamina[i]); 

} 

The remaining important part of the algorithm is the computation of the aggregated 

Benders-type optimality cut given in equation (4.1c). Let the coefficients associated 

with the variable x of the cut be stored in the array beta and the right hand side 

coefficient be stored in alpha. A procedure for generating the optimality cut can 

be given as follows: 

procedure computebenderscutCoefs(duals_0, mat_r, mat_T, beta, alpha) 

{ 

alpha = 0.0; 

f o r  ( j  =  0 ;  j  <  n i ;  j + + )  

beta[j] = 0.0; 

f o r  ( i  =  0 ;  i  <  S ;  i + + )  {  

alpha += scen_prob [i] *duals [i] xmat_r [i] ; 

f o r  ( j  =  0 ;  j  <  n i ;  j + + )  

betaCj] += scen_prob [i] *duals [i] xmat_T [i] ; 

} 

} 
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We now turn to the D'^-BAC algorithm and highlight the branch-and-bound 

part of the algorithm as required in Step 2 of the algorithm. For each u E Cl we 

need to partially solve one subproblem MIP using a TB&B procedure. The optimal 

dual  solut ions f rom the terminal  nodes of  the  TB&B tree are  used in  forming ERP-

LP (4.8). The optimal solution of ERP-IjP for all outcomes u) E are then used to 

derive an optimality cut to add to the master program. Let us define the following 

program variables; 

maxjiumnodes: maximum number of nodes to explore in the TB&B tree. 

f athomedjiumnodes: number of fathomed nodes in the TB&B tree. 

branch_index: branching variable index. 

best_bound: current best bound for the TB&B tree. 

var_f loor: floor of the branching fractional solution. 

var_ceil: ceiling of the branching fractional solution. 

bblist_ptr: pointer to list of subproblem LPs that have not been explored. 

bbdata_ptr: pointer to a data structure for storing optimality cut data. 

In the implementation we keep the list of node subproblem LPs that have not 

been explored as a linked list and bblist_ptr is the pointer to this list. A procedure 

for performing the TB&B step for a given scenario s can be written as follows (the 

names of the functions describe the operations to perform): 

Procedure TBB(bblist_ptr, bbdata_ptr, subdata_ptr, stochdata_ptr, 

max_aumnodes, s) 

f athomed_numnodes = 0; 

best_bound = oo; 
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initialize(bblist_ptr, bbdata_ptr, subdata_ptr, s); 

do 

{ 

removeFrontNode(bblist_ptr, front_node) ; 

setSubprobBraiichConstr(sub_lp, front_node) ; 

setSubprobRhs (sub_lp, stochdata_ptr, s) ; 

CPXsolve(sub_lp); 

CPXgetsolution(sub_lp, sub_obj, soln_y[s], dualEs]) 

fractional = isFractionalSolution(soln_y[s] , branch_index) ; 

if(fractional == false) 

{ 

updateBestBound(bbdata_ptr sub_obj , best_boimd) ; 

fathomThisNode(bbdata_ptr, dual[s]); 

f athomed_numnode s++; 

} 

else 

{ 

if(sub_obj > best_bomid) 

{ 

fathomThisNode(bbdata_ptr, dual[s]); 
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f athomed_riuinnodes++; 

} 

else 

{ 

var_floor = getfloor(soln_y[s] , branch_index); 

var_ceil = getceil(soln_y[s], branch_index); 

newnode = createNode(front_node, branch_index, 

var-floor); 

addNode(bblist_ptr, newnode); 

newnode = createNode(front_node, branch_index, 

var_ceil); 

addNode(bblist_ptr, newnode); 

} endif 

} endif 

nuin_nodes = f athomed_numnodes + bblist.size; 

} while (bblist_ptr. size > 0 && num_nodes < maxjiumnodes) ; 

4.6 Summary 

This chapter has presented details of a computer implementation of the D"^ 

algorithm. The issues associated with the implementation are discussed and critical 

parts of the algorithms illustrated using pseudo-code fragments. Due to the fact 
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parts of the data in the algorithm grow with algorithmic iterations, we took 

advantage of the C programming data structures to store and handle all the program 

data in sparse matrix format and to use the dynamic memory allocation capabilities 

of C. Computational studies of the implemented algorithm will be reported in the 

following chapters. 



93 

CHAPTER 5 

COMPUTATIONAL RESULTS FOR STOCHASTIC 

COMBINATORIAL OPTIMIZATION PROBLEMS 

Combinatorial optimization problems have applications in a variety of sciences and 

engineering. In the presence of data uncertainty, these problems lead to stochastic 

combinatorial optimization problems which result in very large scale combinatorial 

optimization problems. In this chapter, we report on the solution of some of the 

largest stochastic combinatorial optimization problems consisting of over a million 

binary variables. While the methodology is quite general, the specific application 

with which we conduct our experiments arises in stochastic server location problems. 

The main observation is that stochastic combinatorial optimization problems are 

comprised of loosely coupled subsystems. By taking advantage of the loosely 

coupled structure, we show that decomposition-coordination methods provide 

highly effective algorithms, and surpass the scalability of even the most efficiently 

implemented backtracking search algorithms. 

One example of a SCO problem is the network design problem that determines 

which nodes and arcs should be built so as to provide network services at least 

"cost." Despite several decades of advances in CS/OR, combinatorial optimization 

problems continue to evoke parallels with galactic dimensions. For instance, a 

combinatorial optimization problem (e.g. network design) with 1000 variables can 

lead to a search space with 2^°°° decision states! This is sometimes referred to as 

"combinatorial explosion." Moreover, these notorious problems belong to the class 

of NP-hard problems for which "good" algorithms are unlikely. It is no surprise 
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that combinatorial optimization remains a "Grand CS/OR Challenge" problem. 

It turns out that the challenge of combinatorial optimization is magnified many-

fold in cases where data is uncertain. For instance, a network design problem 

in which customer locations are unknown leads to a stochastic combinatorial 

optimization (SCO) problem. Even the smallest of practical SCO problems lead to 

an astronomical number of decision states, and easily exceed current computational 

capabilities. As one might expect, SCO problems provide an even grander challenge. 

In this chapter, we report on the solution of instances with the largest data sets 

for SCO problems to date. These instances, one of which contains over a million 

binary (0-1) variables, represent data for stochastic server location problems (SSLP) 

in which servers have to be located prior to demand realization. 

These problems (SSLP) are said to have had a significant role in the economic 

downturn associated with the telecommunications sector of the U.S. economy. 

Unfortunately, the lack of algorithms for solving SSLP has prompted industry 

to use planning models that are based on one (deterministic) forecast. The 

telecommunications sector is now awash in unused server capacity that has resulted 

from a combination of inaccurate forecasts, and an over-reliance on deterministic 

planning. In a volatile economy, planning models should recognize that forecasts 

can be error prone, and should seek plans that are robust to forecasting errors. 

One approach that provides robust plans is known as stochastic programming 

(SP) (Birge and Louveaux, 1997) and incorporates multiple scenarios within a 

planning model. Over a decade ago. Sen et al. (1994) used the SP planning 

methodology to an industrial-sized network planning problem for Sonet-Switched 

Networks (SSN), and demonstrated improved network performance due to the 

SP model. Subsequently, others have reported solving the SSN instance using 

advanced computing architectures such as grid-computing (Linderoth and Wright, 

2003). However, the types of algorithms used to solve SSN are based on stochastic 

linear programming, and do not allow binary variables. Networks that are being 
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implemented today consist of high speed optical fiber cables, and high speed 

optical switches which are very capital intensive. In addition, service providers like 

AT&T are unsure of customer demand (Doverspike, 2003). Network design models 

under these circumstances lead to SSLP, which is the class of models studied here. 

Unfortunately, network designers have not had access to algorithms that can solve 

SSLP of realistic dimensions. 

This chapter begins with a statement of the stochastic server location problem 

(SSLP) as a stochastic combinatorial optimization model. We then proceed 

with a brief summary of previous computational experience with SCO models. 

Following this, we present our experimental setup and our computational results 

with SSLP. These experiments demonstrate that new decomposition methods (e.g. 

D'^ algorithm) provide a powerful tool for stochastic combinatorial optimization. 

5.1 Stochastic Server Location Problems 

The stochastic server location problems (SSLP) we study find applications in a 

variety of domains such as network design for electric power, internet services, 

telecommunications, and water distribution. In particular, consider a set of 

possible customer buildings in a metropolitan area for which a service provider is 

interested in installing optical fibers and switching equipment in the most profitable 

manner. Due to the uncertainty regarding the customer base for high speed services, 

telecommunications providers often adopt a very conservative approach to capital 

investment, leading to potential losses in revenue (Doverspike, 2003). Such problems 

are common in practice and can be formulated as the SSLP. Because of the variety 

of application domains for SSLP Wang et al. (2003), we use the names server and 

client in a generic sense. 

Figure 5.1 gives an illustration of the stochasticity in the SSLP. The figure shows 

two scenarios, 1 and 2. For scenario 1 we have 4 potential server locations and 12 
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potential clients (see panel a) of Figure 5.1). In panel b), which depicts the clients 

that materialize in scenario 1, only 8 out of the 12 potential clients are available for 

service. Panel c) of this figure shows the optimal server locations if we only plan 

for scenario 1. For scenario 2 we again have 4 potential server locations and 12 

potential clients. However in this scenario, only 6 out of the 12 potential clients 

are available for service (see panel b)). In this case the optimal server locations are 

at the two sites shown in panel c). Although Figure 5.1 shows the optimal server 

locations and client-server assignments for each scenario, the goal of the SSLP is 

to find the overall optimal server locations (see panel d)) which accommodate all 

foreseeable scenarios. In this case the overall optimal solution is not optimal for 

either of the two scenarios. In the next subsection we formally give two model 

formulations for the SSLP. 
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5.2 Model Formulation 

Let X and J be index sets for the dients and servers, with \I\ = n and \J\ = m. 

Let Z denote a given set of zones. For i El and j E J' vfe define the following; 

Data: 

Cj-. Cost of locating a server at location j 

Qij-. Revenue from client i being served by server at location j 

dif Client i resource demand from server at location j 

u: Server capacity 

v: An upper bound on the total number of servers that can be located 

Wz'. Minimum number of servers to be located in zone z E Z 

Jz- The subset of server locations that belong to zone z 

h{bj\. Client availability vector for scenario u E Q, with elements h'^{Lu) , i  E T 

p^: Probability of occurrence for scenario cj E fi 

Decision variables: 

1, if client i is present in scenario cj,a; € 

0, otherwise. 

1, if a server is located at site j, 

0, otherwise. 
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1, if client i is served by a server at location j under scenario u, 

0, otherwise. 

The essence of the SSLP may be described as follows. Suppose that we place 

a server at location j. Then, this allocation costs Cj, and provides enough capacity 

to serve up to u amount of resource to clients. The revenue generated by serving 

client i from location j,  is denoted %•. There is also a shortage cost (penalty) qjo 

for each unit of demand that remains unserved among the clients assigned to server 

j. If client i is served by a server at location j, it uses dij units of resource from the 

server. Note that the dependence of resource utilization (dij) on the client-server 

pair allows us to model losses occurring from assigning client i to server j. Such 

considerations are important in certain networks like electricity and water. In cases 

where the losses are negligible (at least for planning purposes), one could use the 

same value of dij for all j, as long as i is fixed. 

As far as operational considerations are concerned, we allow only one server 

to be installed at each location and each client can only be served by one server. 

There is also a requirement that a minimum number of servers denoted Wz, z £ Z he 

located in a given area or zone. Finally, the problem is to choose locations of servers 

and client-server assignments that maximize the total expected revenue subject to 

the given constraints. The SSLP can be stated as follows: 
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Min I'joy^o ) (5- la) 
j e J  wen VieX j & J  j & J  J 

s . t .  ^ ^ X j < v ,  (5.1b) 
ieJ 

Xj > Wz, "iz E Z (5.1c) 
j^Jz 

- y^Q < uXj, Vj e  J ,  L U  e n ,  (5. Id) 
iei 

^ V i j  =  h'{uj ) ,  y i  e l ,  UJ e n ,  (5.1e) 
j&J 

:r, G{0,l}, Vj e J, (5. If) 

y - e { 0 , i } ,  ^ i e l , j e j , i u e n .  (5.ig) 

V j o  > 0, Vj e  J ,  CO e n .  (5.ih) 

Formulation (5.1a-5.1h) is the so called deterministic equivalent problem (DEP) 

in Stochastic Programming. When one solves this problem, one obtains a 

recommendation to locate servers in locations that will hedge against a variety of 

scenarios in which certain clients do not materialize. The variables are decisions 

that will be implemented in the future, when scenario ui is finally observed. The 

location variables (x) are referred to as first-stage decisions, and the assignment 

variables are referred to as recourse (or second-stage) decisions. Unlike the 

first-stage variables, the latter are dependent on the scenario cj. 

The constraints provide a mechanism to impose the operational requirements. 

Thus constraints (5.1b) satisfy the requirement that only up to a total of v available 

servers can be installed. The zonal requirements that specify how many servers are 

necessary in each zone are given by constraint (5.1c). Constraints (5.Id) dictate that 

a server located at site j can serve only up to its capacity u. We have introduced a 

variable ™ constraint to accommodate any overflows that are not served due 

to limitations in server capacity. These overflows result in a loss of revenue at a rate 
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of qjQ. Unlike the deterministic version of such problems, the inclusion of an artificial 

variable may allow a client to be assigned to servers that are not located. However, 

penalty costs associated with such an assignment may result in such high costs as 

to preclude it in an optimal solution, unless server capacity is so limited that some 

clients have to be turned away. For cases in which the server capacities are severely 

restricted, linear overflow costs may not provide an appropriate modeling tool and 

an extension of this model may be necessary. Since most of our experiments will be 

conducted on instances with sufficient server capacity, overflows will be zero, and 

linear overflow costs will suffice. 

Continuing with a description of the rest of the model, the requirement that 

each available client is served by only one server is given by constraints (5.1e). 

Constraints (5.If) and (5.1g) are the binary restrictions on the decision variables. 

Finally, constraints (5.1h) are the nonnegativity requirements on the overflow 

variables. 

If we denote the number of scenarios by S, where S = |11|, and the number of 

zones by \Z\, then this DEP formulation has m(l + nS) variables and m + \Z\ + 

{m + n)S constraints. The number of scenarios can be very large in general and 

therefore, this formulation is a large scale problem and can get out of hand very 

quickly. Hence, the need to decompose it. For example, for a problem instance 

with 10 potential servers, 50 potential clients and 2000 scenarios, with no zonal 

constraints, we have 1,000,010 binary variables and 120,010 constraints! 

The above formulation can be considered as a basic model from which other 

SSLP models can be extended. For instance, we can easily make an extension to a 

SSLP with multiple server types each with a different capacity. Thus we can simply 

define new variables for each server type and add new constraints on the server type 

requirements to the model. In any event, the additional constraints would depend 

on the specific apphcation at hand. 
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We will now decompose the DEP into a two stage SMIP with complete recourse 

and binary variables in both stages. The two stage SSLP can be formally stated as 

follows: 

Min " ^ ^ C j X j  —  E [ f { x , u ) ]  (5.2a) 

s . t .  X j  <  V ,  (5.2b) 
i&J 

X j  >  W z ,  \ / z  E  Z  (5.2c) 
jeJz 

X j  e  {0,1}, Vj e J ,  (5.2d) 

where i?[.] is the usual mathematical expectation with 

E[f{x,u) ]  =  ̂ Pu; f {x ,u j ) ,  

and for any x  satisfying the constraints (5.2b - 5.2d) and w G Q we define 

f { x , u j )  =  Min -EE q i j  V i j  + ̂  q j o V j o  (5. 3a) 
iex ieJ j € j  

s.t. 'Y^dijUij - Ujo < uxj, Vj G J ,  (5.3b) 

= (5.3c) 
ieJ 

V i j  € {0,1}, Vi e T, j e J ,  (5.3d) 

V j o  > 0, Vj e J .  (5.3e) 

As before, the Xj's are the first-stage decision variables. We observe that 

although the second-stage (recourse) variables j/^'s continue to depend on the 

outcome w, this dependence is not explicitly indicated here. This is because the 
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subproblem for each outcome lu  is decoupled from all other outcomes once a vector x 

is given. This formulation emphasizes the loosely coupled nature of SCO problems, 

and while this decomposition framework has been extensively used for stochastic 

linear programming (Cook et al., 1998), its use for SCO problems has been limited. 

Readers familiar with the current state of computations with SCO should feel free 

to proceed to section 5.4. 

5.3 Previously Solved SCO Instances 

Before presenting our computational results, it is appropriate to briefly examine 

previous computational experiments with SCO problems. This section also serves 

to illustrate the variety of applications in which uncertainty must be accommodated 

within combinatorial optimization. Table 5.1 gives a summary of some of the largest 

SCO instances that have been reported. The headings are as follows: "Scens" is 

the number of scenarios in the DEP instance, "Vars" is the number of total decision 

variables, "Bins" is the number of binary decision variables, "Ints" is the number of 

general integer decision variables, and "Constrs" is the number of constraints in the 

problem instance. The first three instances are available on the SIP test problem 

hbrary (http://www.isye.gatech.edu/~sahmed/siplib/). The sizes of the instances 

shown are for the corresponding DEP formulation. 

Problem dcap243_500 is a two-stage stochastic integer program arising in 

dynamic capacity acquisition and allocation under uncertainty. The problem has 

complete recourse, mixed-integer first-stage variables, pure binary second-stage 

variables, and discrete distributions. The formulation and computational results 

for this class of problems are reported in (Ahmed and Garcia, 2003) and Ahmed 

et al. (2004), respectively. 

SEMI4 is a two-stage multi-period stochastic integer problem that arises in 

http://www.isye.gatech.edu/~sahmed/siplib/


Table 5.1: Summary of Previously Reported SCO Problems (DEP) 
Name Scens Vars Bins Ints Constrs 

dcap243_500 500 18,018 18,006 9,012 
SEMI4 4 39,820 612 23,370 
SIZESIO 10 825 110 341 
SSCh_c5 23 3,768 114 3,933 
SGAP_28 45 2,745 2,745 2,835 
SVRP.lOO a 10,000 10,000 b 
E160-2_FRP 15 16,753 16,753 32,455 

a: The recourse function has a closed-form expression 
b: IP formulation has exponentially many constraints 

dcap243_500 - Ahmed and Garcia (2003) and Ahmed et al. (2004) 
SEMI4 - Barahona et al. (2001) 
SIZESIO - Jorjani et al. (1995) 
SSCh_c5 - Alonso-Ayuso et al. (2003) 
SGAP_28 - Albareda-Sambola et al. (2002) 
SVRP_100 - Laporte et al. (2002) 
E160-2-FRP - Alonso et al. (2000) 
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planning semiconductor tool purchases. This model, which has mixed-integer first-

stage variables and continuous second-stage variables, was solved by researchers 

at IBM (Barahona et al., 2001). Problem SIZESIO is an instance of a two-stage 

multi-period stochastic mixed-integer program arising in the product substitution 

applications. The problem formulation and data are given in Jorjani et al. (1995). 

Problem SSCh_c5 is an instance of a strategic supply chain planning problem 

under uncertainty with continuous and binary variables. This problem appears in 

(Alonso-Ayuso et al., 2003) as problem c5. SGAP_28 is an instance of a stochastic 

generalized assignment problem and is reported in Albareda-Sambola et al. (2002) 

as problem instance number 28. The reformulation of this problem has both 

continuous and binary variables. Problem SVRP_100 is a stochastic vehicle routing 

problem (SVRP) in which the first-stage decisions chart a route for each vehicle and 

the second-stage calculates an expected penalty cost for not completing a route in 

case of excess demand Laporte et al. (2002). The last instance in the table is a full 

recourse policy model for the air traffic flow management problem (TFMP) under 

uncertainty in airport arrival and departure and airspace due to weather conditions 

Alonso et al. (2000). 

An examination of the data in Table 5.1 reveals that the total number of integer 

variables in these SCO problems is not more that 20,000 for the DEP formulation. 

One may consider SCO instances of this size as representing the current state of 

the art. 

5.4 Computational Testing 

In this section, we report our computational experience in using the D'^ algorithm 

to solve instances whose DEP formulations are an order-of-magnitude larger than 

those discussed in the previous section. We compare our computational results with 

those obtained by the ILOG CPLEX 7.0 programming system (ILOG, 2000). It is 
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widely recognized that the latter is among the more efficient commercial systems 

that implement B&B (backtracking search). 

5.4.1 Problem Instance Generation 

A number of instances of problem (5.2-5.3) were generated randomly as follows. 

Problem data were randomly generated from the uniform distribution while scenario 

data were generated from the Bernoulli distribution. The server location costs were 

generated randomly from the uniform distribution in the interval [40, 80] and the 

client demands were generated in the interval [0, 25]. The client-server revenue were 

set at one unit per unit of client demand. The overflow costs qjo, for all j G J', 

were fixed at 1000, which was a high enough penalty cost to warranty no overflows 

in the optimal solution. 

The scenario data were generated as follows. The availability of a potential 

client in each scenario was generated from the Bernoulli distribution with p = 0.5, 

with a 1 indicating the presence (availability) of the client and a 0 indicating the 

absence (unavailability) of the client. For each problem instance the different sets 

of scenarios were generated using different random seeds to allow for independent 

scenarios. Each scenario was given an equal probabihty of occurrence and contained 

the outcomes for all the clients in the problem instance. All scenarios were checked 

to make sure that there were no duplicate scenarios in a given problem instance. 

The degree of difficulty of an instance can be controlled by the ratio (r) of the 

total server capacity to the maximum possible total demand. This ratio is defined 

by r = v-u/ where the numerator is the total server capacity 

and the denominator is the total maximum demand. It reflects how much total 

server capacity is available to satisfy possible maximum overall client demand. A 

value of r > 1.0 means that the servers can satisfy the total client demand while 

a value of r < 1.0 implies that server capacity may be insufficient to satisfy client 
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demand. Instances in which the server capacity is highly hmited, piecewise hnear 

overflow costs may be more appropriate. 

As a mnemonic, the instances were named SSLP_m_n, where m = number 

servers and n = number of chents. The number of servers ranged through m = 5,10, 

and 15 while the number of clients were set at n = 25, 30,45, and 50. The number of 

scenarios considered range from 5" = 5 to S' = 2000. In particular, we report results 

on the problem instances SSLP_5_25, SSLP_5_50, SSLP_10_50, and SSLP_15_45, and 

briefly mention about the other instances. 

5.4.2 Computational Results 

The D"^ algorithm was implemented in C, with all small models (LP and MIP) solved 

by using the ILOG CPLEX 7.0 (ILOG, 2000) callable library. As a benchmark we 

applied the CPLEX MIP solver to the large scale DEP formulation (5.1) for each of 

the two-stage problem instances with the CPLEX parameters set at the following 

values: "set mip emphasis 1" (emphasizes looking for feasible solutions), "set mip 

strategy start 4" (uses barrier at the root), and "branching priority order on x" 

(first branches on any fractional component of x before branching on y ). Bob Bixby 

(ILOG CPLEX) participated in the choice of these parameter settings. A CPU time 

limit of 10, 000 sees was imposed and any problem instance run taking more than 

this time limit was considered terminated. All the problems that took less than 

this time limit converged to an optimal solution and the percentage gap between 

the lower bound and the upper bound was equal to 0%. In all our computational 

experiments the 0-1 master programs were solved to optimality at each iteration. 

All the experiments were run on a Sun 280R with 2 UltraSPARC-III-f CPUs 

running at 900 MHz. The results for the first set of experiments are summarized in 

Tables 5.2 through 5.5. The numbers of variables and constraints shown are that 
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of the DEP formulation. While most of the column headings in the tables are self-

explanatory, we should clarify the term % Zjp Gap. Entries in this column indicate 

the percentage difference between the optimal value of the SCO instance, and its 

continuous relaxation (which can be solved using stochastic linear programming). 

The number of algorithmic iterations are given in the column "Iters". Another 

observation from the tables is that the number of cuts added to the second-stage 

SMTP is less than the number of algorithmic iterations. This is because D'^ cuts 

are not generated in those iterations where all second-stage subproblem relaxations 

yield binary solutions. Finally, each CPU time (sees) shown in the tables records 

an average of three runs for the problem instance. 

Table 5.2: Computational Results for Problem Instance SSLP_5-25 
D'̂  D'̂  D'̂  CPLEX 

Scens Bins Constrs % Zip Gap Iters Cuts CPU CPU 

5 630 151 33.11 16 1 0.13 0.12 
10 1,255 301 21.25 17 5 0.22 0.46 
25 3,130 751 23.47 17 10 0.42 1.82 
50 6,255 1,501 24.03 17 6 0.53 4.58 

100 12,505 3,001 24.93 17 10 1.03 14.69 

The experimental results for problems SSLP_5_25 and SSLP_5_50 are given in 

Tables 5.2 and 5.3, respectively. Note that for all problem instances, the gap between 

t h e  S L P  o b j e c t i v e  o f  t h e  D E P  a n d  t h e  S M I P  o b j e c t i v e  i s  o v e r  2 0 % .  H e n c e  t h e  

stochastic linear programming (continuous) relaxation of these SSLP instances does 

not provide very good approximations, and combinatorial optimization becomes 

necessary. The algorithm performs better than CPLEX for all the problem 

instances except the smallest instance of the second problem. We expect CPLEX 

to perform better on smaller problem instances since there is some overhead in 

decomposing small sized problems. 

Table 5.4 shows the results for the problem SSLP_10_50, which is much larger 

and takes substantially much more time to solve. As expected CPLEX has the 



Table 5.3: Computational Results for Problem Instance SSLP_5_50 
CPLEX 

Scens Bins Constrs % Zip Gap Iters Cuts CPU CPU 

5 1,255 276 21.75 28 6 0.52 0.30 
10 2,505 551 22.37 26 4 0.50 0.79 
25 6,255 1,376 22.57 26 4 0.58 3.52 
50 12,505 2,751 20.74 33 11 1.64 10.35 

100 25,005 5,501 20.48 32 13 3.95 33.25 
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smallest CPU time on the smallest instance but fails to solve the rest of the 

problems. On the other hand, the method solves all the problems in a 

reasonable amount of time. The last problem instance in the table is the largest 

and has 1,000,010 variables and 120,010 constraints! As shown in Figure 5.2 the 

performance of the algorithm is linear with increasing problem size. This is a 

desired algorithmic behavior for scalabihty. We also got similar results by increasing 

the number of clients to 75 (problem SSLP_10_75) but the computation times are 

about 1.4 times larger on average for all the scenarios. 

Table 5.4: Computational Results for Problem Instance SSLP_10_50 
W CPLEX 

Scens Bins Constrs %Zjp Gap Iters Cuts CPU CPU % Gap 

5 2,510 301 10.49 209 189 78.25 80.53 
10 5,010 601 11.38 264 257 171.49 > 10,000 0.19 
25 12,510 1,501 10.81 286 281 248.81 > 10,000 0.34 
50 25,010 3,001 10.89 252 250 295.95 > 10,000 0.44 

100 50,010 6,001 11.07 300 299 480.46 > 10,000 9.02 
500 250,010 30,001 10.75 309 307 1902.20 > 10,000 38.17 

1,000 500,010 60,001 11.07 322 321 5410.10 > 10,000 99.60 
2,000 1,000,010 120,001 11.01 308 307 9055.29 > 10,000 46.24 

Figure 5.3 shows a typical graph of convergence of upper and lower bounds 

when applying the method to SSLP_10_50. We note that the bounds have been 

translated so that they are nonnegative. The results shown are for problem instance 

SSLP_10_50 with 100 scenarios. As can be seen in the figure, the lower bound 

increases close to the optimal value in less than half the total number of iterations. 

However, good upper bounds are calculated only after first-stage solutions stabilize 

and this causes the method to continue for the remaining iterations without 

changing the lower bound significantly. Once no changes are detected in the first-

stage solution, a good upper bound is calculated by solving the MIP subproblems. 

This immediately lowers the upper bound. Moreover, a cut proposed in (Laporte 

and Louveaux, 1993) is added without any additional computation, and the method 

typically stops after this iteration. For smaller instances however (e.g. SSLP_5_25), 
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the cuts are sufficient to provide Hnear relaxations which yield binary solutions 

for all scenarios. As the size of m and n increase, it becomes difficult for the linear 

relaxation to provide binary solutions, and solving the MIP becomes necessary to 

improve the upper bound. 

In Table 5.5 we report the results for problem SSLP_15_45 with the number 

of scenarios ranging over the set 5,10 and 15. These instances are evidently much 

more challenging to solve since CPLEX could not even solve the smallest instance. 

The D'^ algorithm solves all the problem instances but takes much longer than the 

time it takes to solve instances of problem SSLP_10_50. These results show that 

while an increase in the number of scenarios do not affect the scalability of the 

algorithm in an adverse way, increases in the size of the master problem, (5.2a) -

(5.2d), as well as the size of the subproblems, (5.3a)- (5.3e), do have an adverse 

effect on scalability. 

Table 5.5: Computational Results for Problem Instance SSLP_15_45 
D'̂  D'̂  D'̂  CPLEX 

Scens Bins Constrs YoZjp Gap Iters Cuts CPU CPU % Gap 

5 3,390 301 6.88 146 145 110.34 > 10,000 1.19 
10 6,765 601 6.53 454 453 1,494.89 > 10,000 0.27 

15 10,140 901 5.62 814 813 7,210.63 > 10,000 0.72 

Table 5.6 gives the results obtained for an experiment aimed at studying the 

effect of the ratio of the total server capacity to the total maximum client demand 

on the computational effort required by algorithm. In particular, we consider 

the performance of the algorithm on the problem instance SSLP_10_50 with 100 

scenarios for different values of r ranging from 0.9 to 2.0. The CPLEX solver could 

not solve any of the DEP instances and so we excluded the results from Table 5.6. 

Decreasing r results in increased computation times, an indication that tightly 

constrained instances are more computationally demanding. The algorithm 

solves all the problem instances, but it takes substantially longer to solve the 
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Table 5.6; Problem Instance SSLP_10_50 with 100 scenarios for different values of 
r 

Ratio r  Yo Z ip  Gap Iters D'̂  Cuts Time 
0.90 3.35 618 617 7896.97 

1.00 6.03 543 542 5296.02 
1.25 8.38 348 347 900.77 
1.50 11.07 300 299 480.46 
1.75 14.19 236 227 240.85 
2.00 17.45 243 198 207.09 
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instances with r < 1.00. Despite the fact that the instances associated with 

r = l,r = 0.9 resulted in instances with smaller gaps between an SLP relaxation, 

and the SMIP instance, tighter capacity constraints lead to several iterations in 

which the first-stage solution leads to overflows in the second-stage. Therefore, the 

algorithm has to overcome this "infeasibility" by generating possibly more first-stage 

solutions (implying more algorithmic iterations) before converging to the optimal 

solution. 

5.4.3 Computational Experiment for SSLPs with Replications 

A computational experiment to assess the performance of the algorithm on 

SSLP instances with replications was conducted. Five replications for SSLP with 

a fixed number of server locations (m), potential clients (n) and scenarios, were 

randomly generated with each problem instance generated as described in Section 

5.4.1. To ensure independence of the random elements, different random seeds 

were used for generating all the random data for all the problem instances. The 

Table 5.7; Computational Results for SSLPs with Replications 
Iters Cuts D'^ CPU Time (sees) 

m n Scens Mean Dev Mean Dev Min Max Mean Dev 
5 25 50 20.60 2.51 10.00 2.55 0.53 0.82 0.73 0.12 
5 25 100 20.60 2.88 13.00 2.00 1.03 1.84 1.48 0.32 
5 50 50 25.00 5.15 5.80 3.03 0.68 1.64 0.98 0.39 
5 50 100 25.60 4.16 10.60 7.09 1.25 3.95 1.89 1.15 
10 50 50 233.40 25.75 229.40 27.19 138.71 295.95 228.89 63.14 
10 50 100 243.00 45.31 240,60 45.63 228.68 480.00 318.12 100.93 
10 50 500 298.40 18.53 297.20 18.39 1616.12 1902.20 1753.88 126.42 
10 50 1000 298.40 19.93 297.20 20.29 3307.67 5410.10 3948.13 864.08 
10 50 2000 308.60 11.82 307.60 11.82 8530.37 9571.04 8975.60 389.12 
15 45 5 147.00 7.35 136.50 8.10 58.94 181.53 119.19 50.47 
15 45 10 303.40 156.58 297.20 160.58 1306.46 2988.65 1930.00 921.65 

15 45 15 739.33 64.86 738.33 64.86 5244.14 7210.63 6208.23 983.80 

computational results for the experiment are reported in Table 5.7. The mean and 

standard deviation (Dev) for the iterations, D'^ cuts and CPU times for the five 

replications are reported. The minimum (Min) and maximum (Max) CPU times are 



115 

also reported. As shown in the table the number of D"^ iterations, cuts and mean 

CPU times increase with the number of scenarios as well as problem size as observed 

in the previous experiments with no replications. However, the results show that 

there is some variability in computation times among problem replications for some 

cases as indicated by the standard deviations. Note that the CPU times for SSLP 

instances with no replications are actually larger than the mean times reported in 

Table 5.7 except for the first two problem instances and the problem instance with 

m = 15, n = 45 and 5 scenarios. In fact these CPU times are the maximum in most 

of the cases. 

5.4.4 Experiment with the Method 

We applied the method described in Chapter 4 to some of the SSLP instances. 

Table 5.8 gives the computational results. The problem instances are named 

SSLPm.n.^", where m is the number of potential server locations, n is the number 

of potential clients, and S is the number of scenarios. As can be seen in table 

the algorithm and the CPLEX MIP solver applied to the DEP fail to solve 

the larger instances within the time limit. In particular, the CPLEX MIP solver 

has smaller CPU times than the algorithm on the first four (smaller) problem 

instances. However, unhke CPLEX, the algorithm is able to solve SSLPIO.50.50 

and SSLPIO.50.100 to optimality. 

The algorithm performs about twice as fast as the algorithm on the first 

four problems instances, and over six times as fast on the next two. The relative 

better performance of the D'^ method can be attributed to the theorem (Sen and 

Higle, 2000). Furthermore, scenario subproblems MIP solves are not performed at 

every iteration of the algorithm, but only when necessary. 
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Table 5.8: Computational Results for SSLP Instances 
D'^ D'^ L'^ CPU(secs) GajT 

Instance Iters Cuts Iters TP' DEP DEP 
SSLP5.25.50 17 6 32 053 76.72 458 
SSLP5.25.100 17 10 32 1.03 379.70 14.69 
SSLP5.50.50 33 11 32 1.64 174.66 10.35 
SSLP5.50.100 32 13 32 3.95 568.87 33.25 
SSLPIO.50.50 252 250 1024 295.95 1978.38 >10,000 0.44% 
SSLPIO.50.100 300 299 1024 480.46 2780.76 >10,000 9.02% 
SSLPIO.50.500 309 307 1024 1902.20 >10,000 >10,000 38.17% 
SSLPIO.50.1000 322 321 1024 5410.10 >10,000 >10,000 99.60% 
SSLPIO.50.2000 308 307 1024 9055.29 >10,000 >10,000 46.24% 
SSLP15.45.5 146 145 146 110.34 >10,000 >10,000 1.19% 
SSLP15.45.10 454 453 454 1,494.89 >10,000 >10,000 0.27% 
SSLP15.45.15 814 813 814 7,210.63 >10,000 >10,000 0.72% 
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5.4.5 Preliminary Experiment with the D^-BAC Method 

The final computational experiment involves the application of the D^-BAC 

algorithm to the SSLP instances. We conducted preliminary experiments to assess 

the performance of the algorithm by varying the number of nodes to explore in the 

truncated branch-and-bound (TB&B) tree. The current branch-and-bound tree 

follows a breadth-first strategy with node selection always favoring the node with 

the best objective value. 

We report on one computational experiment in which the maximum number 

of nodes to explore in the truncated branch-and-bound tree was set at 3. 

Whenever there was no significant improvement in the lower bound (< 0.001%) 

for two consecutive iterations of the algorithm, the branch-and-bound process was 

activated. Otherwise, no branch-and-bound was performed. Table 5.9 shows the 

results of the experiment. 

Table 5.9: Preliminary SSLP Results Using D^-BAC Algorithm 
Instance D'^-BAG Iters D'^ Cuts Total Nodes CPU(secs) GAP 
SSLP5.25.50 19 8 123 0.57 
SSLP5.25.100 19 12 282 1.30 
SSLP5.50.50 33 11 111 1.26 
SSLP5.50.100 28 11 216 2.45 
SSLPIO.50.50 287 285 9405 329.23 
SSLPIO.50.100 277 274 21399 468.77 
SSLPIO.50.500 322 318 177525 2773.88 
SSLPIO.50.1000 368 366 492231 9599.14 
SSLPIO.50.2000 147 147 617898 > 10,0000 100.00% 
SSLP15.45.5 126 122 663 41.38 
SSLP15.45.10 420 417 7140 1501.00 
SSLP15.45.15 607 596 16806 6466.12 

The results in the table show an increase in computation times for some 

instances and a decrease for others compared to the results obtained for the 

algorithm shown in Table 5.8. There is a decrease in computation time 
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for SSLP5.50.50, SSLP5.50.100, SSLP15.45.5, and SSLP15.45.15. Note that 

SSLPIO.50.2000 could not be solved within the specified computation time limit. 

Nonetheless, there is some decrease in computation time for problem instances 

SSLP15.45.5 and SSLP15.45.15, which have the largest first-stage and second-stage 

decision variable dimensions. Also note that the number of algorithmic iterations 

as well as the number of cuts added in this case has decreased significantly 

compared to the method. 
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Figure 5.4: Convergence of the and D^-BAC Algorithms for SSLPIO.50.100 

The convergence of upper and lower bounds for the D"^ and the D^-BAC 

algorithms for problem instance SSLPIO.50.100 are given in Figure 5.4. We note 

that the bounds have been translated so that they are nonnegative. As can be seen 

in the figure, the lower bound increases close to the optimal value in well less than 

half the total number of iterations for both algorithms. This happens a little earlier 

for the algorithm than for the i^^-BAC algorithm. However, good upper bounds 

are calculated much earlier for the £>^-BAC algorithm due to the branch-and-bound 
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process for each scenario subproblem, which seem to generate optimaUty cuts that 

cause the first stage solution to stabilize much faster. For the algorithm good 

upper bounds are calculated only after first-stage solutions stabilize, usually in the 

final iteration of the algorithm. After finding improved lower bounds both methods 

continue for the remaining iterations without changing the lower bound significantly. 

Nevertheless, due to early upper bounding, the D^-BAC method has a very small 

percent gap early on than the algorithm. 

5.4.6 SSLPs with Zonal Constraints 

All the SSLP instances studied so far do not have the zonal constraints. Therefore, 

we generated a second set of SSLP instances with the zonal constraints added. The 

zonal constraints were generated arbitrarily as follows. For the problem instances 

with 5 potential server locations two zones were created with Zi = {1,2,3} and Z2 = 

{4,5}, where 2 = {zi, Z2}- For problem instances with 10 potential server locations 

three zones were created with zi = {1,2,3}, Z2 = {4,5,6,7} and Z3 — {8,9,10}. 

Finally, for problem instances with 15 potential server locations five zones were 

created with zi = {1,2,3}, Z2 = {4,5,6}, Z3 = {7,8,9}, 24 = {10,11,12} and 

Z5 = {13,14,15}. We required that at least one server be installed in each zone for 

a l l  t h e  p r o b l e m  i n s t a n c e s ,  t h a t  i s ,  —  l , V z  E  2 .  

The computational results for the SSLP instances are reported in Table 5.10. 

The problem instances are named SSLPs.m.n.S, where s is the problem number, 

m is the number of potential server locations, n is the number of potential clients, 

and S is the number of scenarios. The method solves all the problems and 

has significantly less CPU times compared to CPLEX for all the instances except 

SSLP2.15.45.5. CPLEX fails to solve six of the problem instances but solves all the 

smaller instances as well as SSLP2.15.45.5 and SSLP2.15.45.10. Finally, we note 

that SSLP instances with zonal constraints have significantly reduced CPU times 
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Table 5.10; Computational Results for Problem Set 2 
W D'' CPLEX (PEP) 

Instance Constrs % Z j p  Iters Cuts CPU CPU Gap (%) 
SSLP2.5.25.50 1503 23.60 12 4 0.23 2.32 
SSLP2.5.25.100 3003 22.98 14 5 0.66 7.82 
SSLP2.5.50.50 2753 21.09 21 3 0.76 6.61 
SSLP2.5.50.100 5503 21.60 17 3 1.28 20.16 
SSLP2.10.50.50 3004 12.45 122 121 54.62 >10800 0.42 
SSLP2.10.50.100 6004 12.37 112 111 85.69 >10800 0.60 
SSLP2.10.50.500 30004 12.50 150 149 499.11 >10800 33.92 
SSLP2.10.50.1000 60004 12.53 134 133 986.07 >10800 75.92 
SSLP2.10.50.2000 120004 12.60 134 133 2346.47 >10800 116.51 
SSLP2.15.45.5 306 4.90 46 45 6.98 0.89 
SSLP2.15,45.10 606 3.11 54 53 12.71 865.85 
SSLP2.15.45.15 906 3.05 69 68 507.00 >10800 0.54 
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compared to the instances with none. This is an indication of decrease in problem 

difficulty as a result of the addition of the zonal constraints. 

5.4.7 SSLPs with Unequal Scenario Probabilities 

All the scenarios in the original SSLP instances have equal probabilities of 

occurrence. To study SSLPs with unequal scenario probabilities we generated 

a third set of SSLP instances by assigning randomly generated probabilities to 

each scenario for all the SSLP instances. The new probabilities for all 

were randomly generated as follows. First, for each scenario a; G Q a probability 

0 < < 1 was generated from umform{Q,l). Then the probability of outcome 

for each scenario ui E Vt was computed using the formula ^ , where 

= 1 as required. We used a different random seed for each problem 

instance to allow for independence among the problem sets. 

Table 5.11: Computational Results for Problem Set 3 
D'^ D' CPLEX (PEP) 

Instance % Zip Iters D'^ Cuts CPU CPU Gap (%) 
SSLP3.5.25.50 22.99 17 9 0.61 5.73 
SSLP3.5.25.100 25.77 17 10 1.21 15.65 
SSLP3.5.50.50 20.76 32 9 2.00 10.14 
SSLP3.5.50.100 20.77 27 11 4.57 34.07 
SSLP3.10.50.50 11.15 265 263 278.68 >10800 0.83 
SSLP3.10.50.100 11.19 247 244 351.14 >10800 0.98 
SSLP3.10.50.500 10.93 266 264 1402.37 >10800 32.29 
SSLP3.10.50.1000 11.07 260 258 2895.93 >10800 67.02 
SSLP3.10.50.2000 10.97 288 286 7212.39 >10800 45.93 
SSLP3.15.45.5 7.14 102 100 27.88 1244.91 
SSLPS.15.45.10 6.06 181 179 137.91 >10800 1.95 
SSLP3.15.45.15 4.49 195 193 931.84 >10800 1.79 

Table 5.11 gives the results for the SSLP instances. The method solves 

all the problem instances in reasonable time and has smaller CPU times for all 

the problem instances compared to CPLEX. CPLEX solves the first four (smaller) 
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problem instances and SSLP3.15.45.5 but fails to solve the rest of the instances. 

Note that the assignment of random probabilities instead of the same probability 

for all the scenarios results in some improvement in CPU times for all the problem 

instances but the first four. The CPLEX MIP solver does not show improvement 

in the CPU times for the first four problem instances but is able to solve problem 

instance SSLP3.15.45.5 to optimality. These results reveal that indeed scenario 

probabilities have a significant effect on problem difficult for the SSLP. The case in 

which all scenarios are weighed equally shows more difficult in solving the problem 

instances compared to one in which they are not. 

5.5 Summary 

This chapter presents computational results with some of the largest stochastic 

combinatorial optimization (SCO) instances to date. While the methods discussed 

in this chapter are applicable to a variety of SCO problems, our computational 

results are presented for the stochastic server location problem (SSLP). These and 

other SCO problems result in very large scale instances which are comprised of 

loosely coupled subsystems. By taking advantage of the loosely coupled structure 

of SCO problems, we show that the divide-and-conquer paradigm of decomposition-

coordination methods provide a highly effective algorithm, and surpasses the 

scalability of even the most efficiently implemented backtracking search algorithms. 

The study also reveals that the computational difficulty in solving SSLPs is not 

only dependent on the large number of variables, constraints and scenarios in the 

SSLP instance, but also on the zonal constraints and scenario probabilities. 
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CHAPTER 6 

STOCHASTIC SERVER LOCATION PROBLEMS 

This chapter is a further study of the stochastic server location problem (SSLP) 

introduced in the previous chapter. We model this problem as a two-stage SMIP 

problem in which we make the strategic decision of locating the servers in the first-

stage. The operational/tactical decision of assigning clients to servers is made in the 

second-stage after the availability of the clients is revealed. We derive several valid 

inequalities for the SSLP and report on the computational experience with using the 

(Z>^) algorithm for SMIP to solve several randomly generated large-scale problem 

instances. The study shows that it is always beneficial to use the SMIP model in 

making the strategic decision of obtaining optimal server locations rather than the 

deterministic model in which all potential clients are assumed to be available for 

resource allocation in the future. Real-time or on-line considerations for the SSLP 

are also made. 

As discussed in Chapter 5, SSLPs have a limited number of "servers" with 

limited capacity of some resource that must be located at some given potential 

locations to serve known resource demands of potential "clients". The names server 

and client are used in a generic sense because of the variety of application domains 

for SSLP. The uncertainty in this problem appears in the presence or absence of the 

potential clients for service after the servers are located. Unlike typical stochastic 

facility location problems in which uncertainty is modeled as a continuous random 

variable, the uncertainty in the problem in consideration is unique in that it is 

modeled by discrete Bernoulli-type random variables. This kind of stochasticity 
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has been considered in other problems such as stochastic routing problems studied 

in Berman and Simchi-Levi (1988) and Laporte et al. (1994). Albareda-Sambola 

et al. (2002) present exact solutions to a class of stochastic generalized assignment 

problems in which the randomness is also modeled by random variables with the 

Bernoulli distribution. 

These server location problems under uncertainty have many real-life 

applications. For example, Wang et al. (2003) consider the facility location 

problem for immobile servers with continuous stochastic demands. They present 

several models and provide heuristics for their solutions. Riis et al. (2004) study 

a server location problem for the deployment of mobile switching centers in a 

telecommunications network using the stochastic programming (SP) (Birge and 

Louveaux, 1997) approach. 

We follow the SP approach in which uncertainty is incorporated into the decision 

making problem through a collection of future scenarios. The goal is to make the 

strategic decision of choosing servers to be located in such a way that the system 

performs well under all the selected possible future scenarios. A scenario refers to 

a set of potential clients that do materialize, and any strategic decision is evaluated 

against all foreseeable future scenarios. In contrast, deterministic combinatorial 

optimization models recommend making strategic decisions under the assumption 

that only one scenario is possible in the future. However, stochastic combinatorial 

optimization (SCO) problems such as the SSLP result in very large-scale models 

as a result of the need to accommodate a large number of future scenarios. Each 

scenario is associated with a probability of occurrence, denoted p^, u/ E Q, where fl 

is the entire collection of scenarios. We optimize the expected costs as is common 

in many such SCO models (Birge and Louveaux, 1997). 

The rest of the chapter is organized as follows. In the next section we derive valid 

inequalities or specialized cuts for the SSLP. We report on our computational study 
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involving various instances of the SSLP in Section 6.2. Real-time considerations for 

SSLPs are discussed in Section 6.3 before ending the chapter with a summary. 

6.1 Valid Inequalities 

In this subsection we derive some valid inequalities or specialized cuts for the 

SSLP. These constraints can be used to strengthen the linear programming (LP) 

relaxation of the model, and can be either global or scenario-dependent. Global 

valid inequalities are valid for all scenarios while scenario-based inequalities are 

only valid for a given scenario. We derive both types of valid inequalities based on 

simple polyhedral considerations, minimal cover and lifted cover inequalities. 

6.1.1 Simple Server-Client Constraints 

Since a client i can only be assigned to a server j that has been located, then the 

following simple constraints are valid for the SSLP DEP formulation: 

- V i j  + y'jo > 0, vi G J, Vj ^ J, yu e n. (6.i) 

Constraints (6.1) tighten the linear programming relaxation of the DEP model. 

However, the total number of these constraints may be very large. For example, if 

we denote the number of potential server locations by m, the number of potential 

clients by n, and the number of scenarios by S, then the total number of these 

constraints is equal to mnS. In general S is large and therefore, adding constraints 

(6.1) to the SSLP model can result in a very large problem instance. We note that 

constraint (6.1) has the artificial variable uJq which should have a high penalty in 

the objective function. This is different from common rules used for formulating 

deterministic integer programs. The artificial variable is required due to the fact 

the SSLP model may allow a client to be assigned to servers that are not located 

(see Chapter 5). 
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6.1.2 Minimal Cover Inequalities 

We now develop minimal cover inequalities for the SSLP as follows. Let the resource 

demand constraints (5.Id or 5.3b) for the SSLP without the overflow variables be 

given by 

dijVtj < e J, (6.2) 
i ^ X  

and let for a server j £ J and scenario u> E 

= jj/S e B" : (6.3) 

Now let the set A/" = {1, where i = mn, and assume that dij > 0 \/i G 1 and 

Vj S J. Then C{x^ C AA is a cover if 

i & C { x j )  

Let C { x j )  be a cover and let denote a subset of C { x j )  for which d i j  > 0 for 

all i € C+{xj) . 

Proposition 1. I f  C ^ [ x j )  C  J \ f  i s  a  c o v e r ,  t h e n  t h e  c o v e r  i n e q u a l i t y  

ytj - Vjo < (|C+(^)I - (6.5) 

is valid for Y^{xj)j and thus valid for SSLP. 

Proof. (see Wolsey (1998)) We show that if for some j £ J vector y"*' = 

{ytj}vi€C'{xj) does not satisfy the inequality (6.5), then ^ Yj^(xj). If 

Ei6C+(:.,) > (|C+(a;j)| - l ) x j  then \ C ' { x j )  P \ C + { x j ) \  =  \ C + { x j ) \  and thus 

C + { x j )  C C ' { x j ) .  Then Er=i> Eiec+(x,.) 

Thus, 0 Y^'ixj). • 
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This cover inequahty remains valid for any value (0 or 1) of the first-stage variable 

Xj and for any scenario lu E Vl. Thus the inequality can be viewed as a global 

constraint and it imposes the restriction that if a server j is located in the first-

stage, then the total demand of the clients to be assigned to that server cannot 

exceed the capacity of the server. 

The drawback with generating cover inequalities is that since the number of 

variables and constraints is generally large, there is potentially an exponential 

number of these inequalities that can be generated. Nevertheless, one can adopt 

a procedure in which a fixed number of cover inequalities are generated for each 

knapsack constraint in the problem. The cover inequality (6.5) is minimal if 

C^{xj) \ {?} is not a cover for any i G C^{xj). We outline two procedures for 

generating minimal covers. Minimal Cover 1 and Minimal Cover which differ in 

the way the d^'s for each j £ J are ordered: 

Procedure Minimal Cover 1 

begin 

Set cover <— false, sum <— 0; 

Order the > O's in non-increasing order dij > ... > d(j] 

for i <— 1,..., £ 

sum <— sum + d^j; 

count ^ count +• 1; 

if ( sum > Uj) 

cover = true; 

end = i 
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break; 

end if 

end for 

if {cover = true) 

Minimal cover: ^ [end — l)xj] 

else 

No cover generated; 

end if-else 

end Procedure 

The Minimal Cover 1 procedure either returns a minimal cover for a given knapsack 

constraint or determines that none exists. Additional minimal covers may be 

generated based on the first minimal cover obtained through a simple modification 

of the above procedure. Unlike Minimal Cover 1 procedure, the next procedure 

starts out by rearranging the d^j's in non-decreasing order: 

Procedure Minimal Cover 2 

begin 

Set cover •«— false, sum <— 0, start •<— 0; 

Order the di/s in non-decreasing order dij < ... < d^j] 

for i <— 1,..., f 

if dij > 0; 
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sum •(— sum + dij; 

else 

start ^ start + 1; 

if {sum > Uj) 

cover = true; 

end = i 

break; 

end if 

end for 

if {cover = true) 

sum sum - d s t a r t j ]  

while {sum > Uj) 

start start + 1; 

sum sum — d s t a r t j ]  

end while 

Minimal cover; Yfi^atartytj - " start)xj] 

else 

No cover generated; 

end if-else 

end Procedure 
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The above procedure also either returns a minimal cover for a given knapsack 

constraint or determines that none exists. Again, additional minimal covers may be 

generated based on the first minimal cover obtained through a simple modification 

of the above procedure. 

6.1.3 Lifted Cover Inequalities 

The minimal cover inequalities derived in the previous subsection may not be as 

strong as possible. Therefore, we need a procedure that allows us to find facet-

defining covers. Wolsey (1998) describes a procedure to lift cover inequalities 

resulting in facet-defining inequalities for conv(Y^^(xj)) when C~'~(xj) is a minimal 

cover and dij < ujXj for alH G X for a given j G The basic idea is to find, for 

a given j G J, the best possible values for aij for i E J\f \ such that the 

inequality 

i & C + { x j )  i & A f \ C + { x j )  

is valid for Y^{xj) , and thus valid for SSLP. The cover inequality (6.6) is valid for 

Y^{xj) and dominates the inequality (6.5). Thus we can adopt the procedure for 

lifting cover constraints given in Wolsey (1998) 

6.1.4 Scenario-Based Valid Inequalities 

We now turn to scenario-based valid inequalities based on the resource demand 

constraints and the client availability scenario outcome. We now consider 

strengthening resource demand constraints 

X] d^jytj - < UjXj, Vj G J, (6.7) 
iei 
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for each scenario a; € 12 subproblem. Let C J be the set of clients that actually 

show up for resource allocation in scenario to ^ Q. Then these constraints can be 

strengthened as follows: 

Proposition 2. The following constraints are valid for SSLP DEP formulation: 

For a given server j & J' constraint (6.8) is stronger than the corresponding 

constraint (6.7) since we restrict the resource demands to only those clients that are 

present in the scenario. Thus constraints (6.8) are only valid for each scenario and 

can easily be derived after each scenario realization. Unlike the cuts derived via 

the disjunctive decomposition method, these cuts do not maintain the fixed recourse 

property as required by the method. Therefore, these cuts cannot be used under 

the setting, which is applicable to the two-stage SMIP formulation with fixed 

recourse. 

6.2 Computational Experience 

In this section the results of a computational study are reported. We investigate 

the effect of several parameters on the effort required to solve several randomly 

generated SSLP instances and compare the performance of the CPLEX 7.0 MIP 

solver (ILOG, 2000) on the DEP instances to that of the algorithm on the 

corresponding two-stage problem instances. 

6.2.1 Problem Instance Generation 

(6.8) 

The problem instances we experiment with are some of the randomly generated 

SSLP instances with equal scenario probabilities reported in Chapter 5. Here we 

consider extensions to these instances, which act as the "benchmark", by adding 
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the vahd inequahties derived in Section 6.1. The first problem set is an extension of 

the benchmark test set by adding simple server constraints (6.1) to the problem 

instances while the second problem set has simple server constraints (6.1) and 

minimal cover inequalities (6.5) added. 

The addition of the valid inequalities to the SSLP instances greatly increases 

the number of constraints in the problem. We also note that the valid inequalities 

are generated a priori and added to the SSLP instances before optimization, while 

the cuts are generated sequentially and added to the problem instance during 

the execution of the algorithm. Two minimum cover cuts were generated for 

each demand resource constraint in the SSLP instance using the Minimal Cover 1 

procedure and the Minimal Cover 2 procedure, respectively. Both the procedures 

were implemented in C. 

The problem instances are named SSLPs.m.?7„5 as in the previous chapter, 

where s is the problem set number, m is the number of potential server locations, 

n is the number of potential clients, and S is the number of scenarios. We set 

5 = 2 for the problem set with simple client/server constraints added and s = 3 

for the problem set with both simple client/server constraints and minimal cover 

inequalities added. We omit s for the benchmark problem instances. 

Table 6.1 gives the problem characteristics for the benchmark problem instances. 

The headings of the table are as follows: "Constrs" is the number of constraints, 

"Bins" is the number of binary decision variables, "Cvars" is the number of 

continuous decision variables, and "Dens" is the density of the constraint matrix of 

the SSLP instance. 
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Table 6.1: Set 1 SSLP Instance Dimensions 
DEP SUBPROBLEM 

Instance Const rs Bins Cvars Dens Constrs Bins Cvars Dens 
SSLP5.25.50 1,501 6,255 250 0.0013 30 130 5 0.0715 
SSLP5.25.100 3,001 12,505 500 0.0007 30 130 5 0.0715 
SSLP5.50.50 2,751 12,505 250 0.0007 55 255 5 0.0393 
SSLP5.50.100 5,501 25,005 500 0.0004 55 255 5 0.0393 
SSLPIO.50.50 3,001 25,010 500 0.0007 60 510 10 0.0345 
SSLPIO.50.100 6,001 50,010 1,000 0.0003 60 510 10 0.0345 
SSLPIO.50.500 30,001 250,010 5,000 0.0001 60 510 10 0.0345 
SSLPIO.50.1000 60,001 500,010 10,000 0,0009 60 510 10 0.0345 
SSLPIO.50.2000 120,001 1,000,010 20,000 0.0007 60 510 10 0,0345 
SSLP15.45.5 301 3,390 75 0.0066 60 690 15 0.0340 
SSLP15.45.10 601 6,765 150 0.0033 60 690 15 0.0340 
SSLP15.45.15 901 10,140 375 0.0022 60 690 15 0.0340 
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6.2.2 Computational Results 

All the experiments were run on a Sun 280R with 2 UltraSPARC-III+ CPUs running 

at 900 MHz. To optimize the large-scale SSLP DEP formulation for each of the 

problem instances the CPLEX MIP solver parameters are set at the following values; 

"set mip emphasis 1" (emphasizes looking for feasible solutions), "set mip strategy 

start 4" (uses barrier at the root), and "branching priority order on x" (first branches 

on any fractional component of x before branching on y ). These settings gave us 

the best CPU times. A CPU time limit of 10,800 seconds (3 hrs) was imposed and 

any problem instance run taking more than this time limit was stopped and the 

percent gap from optimality reported. All the problems that took less than this 

time limit converged to an optimal solution and the percentage gap between the 

lower bound and the upper bound was equal to 0%. 

Table 6.2 shows some parameters for analyzing the goodness of the stochastic 

model (see e.g. Birge and Louveaux (1997)) compared with a deterministic one in 

which all potential clients are assumed to be available for resource allocation in the 

future. The headings of the table are as follows. In the first column is the problem 

instance name. The second column shows VSSd, the value of the stochastic solution 

and is expressed as 

VSSd = Zip - EEVd 

where, Zip is the optimal objective value of SSLP (shown in the fourth column), 

EVd is the solution value for the deterministic scenario problem in which all 

potential clients are assumed to be available, and EEVd (shown in the third column) 

is the expected result of using the EVd solution and is expressed as 

EEVd = 

where, Zfp^ is the optimal objective value of scenario G subproblem with the 

first-stage solution being the EVd solution. The fifth column shows the optimal 
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objective value of the LP relaxation of the SSLP problem instance (which can 

be solved using stochastic linear programming), and %Zip Gap is the percentage 

difference between the optimal value of the SSLP instance, and its continuous 

relaxation and can be expressed as 

%Z,p = - Z'P) ^ 100, 
ZLP 

Note that determining the value of the stochastic solution (VSS) using the 

Table 6.2: Stochastic Solutions for SSLP Instances 
Instance % \SSD EEV/p ZIP ZLP % ZIP Gap 
SSLP5.25.50 25.44 -90.660 -121.600 -160.063 24.03 
SSLP5.25.100 23.77 -97.100 -127.370 -169.667 24.93 
SSLP5.50.50 8.32 -285.560 -311.480 -392.995 20.74 
SSLP5.50.100 8.37 -296.600 -323.700 -407.051 20.48 
SSLPIO.50.50 21.93 -284.680 -364.640 -409.194 10.89 
SSLPIO.50.100 23.12 -272.290 -354.190 -398.297 11.07 
SSLPIO.50.500 24.08 -265.048 -349.136 -391.185 10.75 
SSLPIO.50.1000 23.72 -268.287 -351.711 -395.477 11.07 
SSLPIO.50.2000 24.63 -261.718 -347.262 -390.231 11.01 
SSLP15.45.5 77.21 -59.800 -262.400 -280.490 6.45 
SSLP15.45.10 72.44 -71.800 -260.500 -278.689 6.53 
SSLP15.45.15 73.47 -67.269 -253.602 -253.602 5.62 

expected value (EV) as defined in Birge and Louveaux (1997) is not appropriate 

here since the SSLP model requires that the scenario subproblem right hand side 

client availability vector h{uj) for scenario a; £ be a Bernoulli random variable. 

Therefore, computing the expected scenario for determining EV (expected value) 

could violate the (0-1) requirements for the elements of h{uj) (see Chapter 5). 

The VSSD values are positive for all the instances with the % VSS values 

as shown in Table 6.2, an indication that it always pays off to use the stochastic 

model in making the strategic decision of obtaining optimal server locations other 

than the deterministic model where it is assumed that all potential clients will 

be available for resource allocation in the future. For example, for the problem 

instance SSLP.15.45.15 the optimal strategic decision resulting from using the 
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stochastic approach is the installation of five servers (1,4,8,11,15) while that from 

the deterministic model is nine servers (1,4,7,8,11,12,13,14, and 15). Also note 

that for all problem instances, Zjp Gap is fairly large, which implies that the 

stochastic linear programming (continuous) relaxation of these SSLP instances does 

not provide very good approximations to the original problem. 

In Table 6.3 we present the computational results for benchmark problem (SSLP 

instances with no specialized cuts added) as reported in Chapter 5 for convenience. 

In the table the headings are as follows: "Iters" is the number of algorithmic 

iterations for the algorithm, Cuts" gives the number of D'^ cuts generated, 

Time" is the CPU time in seconds to solve the two-stage problem instance 

using the algorithm, "DEP Time" is the CPU time in seconds to solve the DEP 

instance directly using the CPLEX MIP solver, and "Gap" is the percentage B&B 

optimality gap. 

Table 6.3; Computational Results for the Benchmark Problem Set 
D2 CPLEX (DEP) 

Instance Iters Cuts CPU CPU Gap 
SSLP5.25.50 17 6 (153 458 0~ 
SSLP5.25.100 17 10 1.03 14.69 0 
SSLP5.50.50 33 11 1.64 10.35 0 
SSLP5.50.100 32 13 3.95 33.25 0 
SSLPIO.50.50 252 250 295.95 >10,800 0.44 
SSLPIO.50.100 300 299 480.46 >10,800 9.02 
SSLPIO.50.500 309 307 1902.20 >10,800 38.17 
SSLPIO.50.1000 322 321 5410.10 >10,800 99.60 
SSLPIO.50.2000 308 307 9055.29 >10,800 46.24 
SSLP15.45.5 146 145 110.34 >10,800 1.19 
SSLP15.45.10 454 453 1,494.89 >10,800 0.27 
SSLP15.45.15 814 813 7,210.63 >10,800 0.72 

Table 6.4 shows the results for the second problem set. The addition of the 

simple client/server constraints (6.1) results in a significant increase in the total 

number of constraints in each problem instance. For example, the number of 

constraints in the DEP problem instance SSLP2.10.50.2000 with over a million 
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variables increases from 120,001 to 1,120,001! Nevertheless, there is a general 

improvement (about 20% reduction) in the CPLEX CPU times in solving the 

relatively smaller DEP problem instances except SSLP2.5.25.100. Moreover, 

the CPLEX MIP solver is able to solve problem instance SSLP2.15.45.10 to 

optimality, with slightly improved B&B optimality gaps for SSLP2.15.45.5 and 

SSLP2.15.45.15. The performance of CPLEX on DEP instances SSLP2.10.50.1000 

and SSLP2.10.50.2000 deteriorates, probably due to the increase in the problem 

size. 

Table 6.4: Computational Results for SSLP with Simple Client/Server Constraints 
D'^ D'^ D'^ CPLEX (DEP) 

Instance Constrs % Z i p  Iters Cuts CPU CPU Gap 

SSLP2.5.25.50 7751 4.40 12 4 1.46 3.50 0 
SSLP2.5.25.100 15501 4.83 14 5 2.64 18.4 0 
SSLP2.5.50.50 15251 0.94 27 5 4.22 8.24 0 
SSLP2.5.50.100 30501 0.26 26 6 9.00 26.91 0 
SSLP2.10.50.50 28001 1.84 209 206 350.40 >10,800 0.70 
SSLP2.10.50.100 56001 1.78 217 216 535.49 >10,800 1.03 
SSLP2.10.50.500 280001 1.42 231 230 2228.99 >10,800 52.73 
SSLP2.10.50.1000 560001 1.56 259 258 4943.28 >10,800 oo 
SSLP2.10.50.2000 1120001 2.12 236 235 9454.13 >10,800 go 

SSLP2.15.45.5 3676 2.15 49 48 24.01 >10,800 0.98 
SSLP2.15.45.10 7351 3.46 126 125 132.32 8879.89 0 
SSLP2.15.45.15 11026 2.62 334 333 1251.59 >10,800 0.60 

The CPU times for the D"^ algorithm increases in general especially on the 

first four instances (smaller instances) but decreases by an average of 84% on the 

last three instances. The addition of the simple client/server constraints to the 

smaller problem instances results increased CPU times per scenario subproblem LP 

relfixation due to their increased size. However, the addition of the constraints to the 

problem instances with the largest decision space dimensions results in significant 

gains for the algorithm. Note that there is a significant decrease in the % Zip 

values due to the tightening of the feasible region for the LP relaxation. Thus the 

scenario subproblem LP relaxations in the algorithm provide improved objective 
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function values in general. 

Table 6.5 gives the computational results for the third problem set. The table 

heading "Covers" gives the total number of minimum cover constraints in the 

DEP instance. Note that the addition of both simple client/server constraints 

and minimum cover constraints results in a further increase in the total number 

of constraints in the problem instances. The results show some improvement in 

the CPU times for the algorithm on some of the problem instances, with 

significant gains on the last three problem instances (with the largest decision 

space dimensions). The performance of the CPLEX MIP solver deteriorates for 

all the problem instances. In this case the solver cannot solve the DEP instance 

SSLP5.15.45.10 to optimality. We can attribute the apparent problem difficulty to 

the increased problem sizes. 

Table 6.5; Computational Results for SSLPs with Simple Client/Server Constraints 
and Cover Constraints 

D'̂  D'̂  D'-" CPLEX (DEP) 
Instance Constrs Covers %ZiP Iters Cuts CPU CPU Gap 
SSLPS.5.25.50 8901 500 4.40 14 5 1.68 9.67 
SSLP3.5.25.100 17751 1,000 4.83 17 6 1.96 44.05 
SSLP3.5.50.50 17701 500 0.94 26 6 4.07 21.08 
SSLP3.5.50.100 35301 1,000 0.26 26 7 7.66 74.18 
SSLP3.10.50.50 30201 1,000 1.84 216 204 316.77 >10,800 1.02 
SSLP3.10.50.100 60301 2,000 1.78 230 218 589.99 >10,800 1.45 
SSLPS.10.50.500 SOllOl 10,000 1.42 244 233 2386.85 >10,800 121.48 
SSLP3.10.50.1000 602101 20,000 1.56 263 252 4976.73 >10,800 oo 
SSLPS.10.50.2000 1204101 40,000 2.12 255 244 10482.95 >10,800 oo 
SSLP3.15.45.5 3926 150 2.15 60 44 24.23 >10,800 1.52 
SSLP3.15.45.10 7761 SOO 3.46 182 166 256.15 >10,800 0.28 
SSLPS.15.45.15 11596 450 2.62 335 319 2283.50 >10,800 0.57 

We conducted further computational experiments to investigate the effect 

of the lifted minimum cover constraints and the scenario-based constraints on 

the SSLP difficulty. The findings from these experiments are not reported but 

can be summarized as follows. The addition of minimum cover constraints and 

lifted minimum cover constraints without the simple client/server constraints, 
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respectively, resulted in significant gains (over 50 %) in computation times for the 

last three problem instances only. There were no significant gains on the other 

problem instances. The addition of scenario-based constraints to the SSLP instances 

did not result in significant improvements in computation times in general. 

6.3 Real-Time Considerations 

We now consider the real-time application of the algorithm to the SSLP in 

making recourse actions. We place special emphasis on the real-time character of 

the SSLP when the operational/tactical decisions have to be made in real-time or 

on-Une. Note that this takes place after the strategic decision has been made, that 

is, after the servers have been located. The real-time or on-line decision making 

process poses a need for sufficiently short response times while faced with the 

burden of incomplete knowledge. In particular, the scenarios to be realized over 

time are not known with certainty when making the strategic decision. However, 

the operational/tactical decision is made after the scenario information is revealed 

and requires the optimal solution to the second-stage scenario subproblem. 

We note that the scenario subproblem is in essence a resource allocation problem 

in which limited resources have to be allocated to available clients at minimum 

cost or maximum profit. Such problems are common in many real-time or on­

line applications characterized by some uncertainty in the data. For example, 

in real-time distributed computer applications often computer tasks (clients) are 

required to be executed on computers (servers) based on unknown availability 

or load-balance conditions. Scheduling under uncertainty also calls for real-time 

decision making under uncertainty. For example. Sand and Engell (2003) follows 

a two-stage stochastic integer programming approach to real-time scheduling in 

processing industries flexible batch plants. The authors point out that virtually 

all uncertainty conscious models in this particular application area are based on a 
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defensive strategy, which avoids extensive rescheduUng activities. They consider the 

SP approach as one in which the need for recourse actions is not deemed a burden, 

but as optimization potential. 

We now propose how to make timely recourse decisions for the SSLP for real­

time applications. Even though what follows is specific to the SSLP, we note that it 

carries on to other applications. In order to make an operational/tactical decision 

the scenario subproblem has to be solved for the realized scenario. However, when 

making the strategic decision x, the problem is solved using the algorithm, thus 

providing not only the optimal strategic decision x* but also the optimal tactical 

decisions y*^ for each scenario ui E Q. Hence the collection of the optimal tactical 

decisions {y*"}a;en provides optimal policies to be used in making decisions in real­

time or on-line that require short response times. Therefore, the optimal policies 

can be stored in some database after the strategic decision is made. Consequently, it 

is not necessary to solve scenario subproblem in order to make a tactical decision in 

the future when a scenario a; G is revealed. The optimal solution for the scenario 

can simply be looked up or retrieved from the database in significantly less time 

compared to optimizing the scenario subproblem. 

When a scenario w G is realized no computations are necessary. However, 

it may so happen that a scenario u' ^ Q is revealed. The obvious thing to do in 

this case is to simply solve the scenario subproblem "from scratch" for the new 

scenario uj'. The scenario subproblem is an integer program and may potentially 

take longer to solve than the time required to make a quick decision in real-time 

or on-line. Therefore, we propose taking advantage of the information provided by 

the method as a "warm start" for solving the new scenario subproblem. The 

motivation for doing this is the need to make an optimal decision in a timely manner 

as required by the real-time application. 

When solving the two-stage SSLP using the approach, the D'^ algorithm 
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generates the cuts via the common-cut-coefficient theorem (Sen and Higle, 2000) 

and appends them to subproblem LP relaxation. The cuts tightens the scenario 

subproblem LP relaxation feasible set, potentially leading to integral solutions. 

Consequently the second-stage subproblem LP relaxation takes the following form: 

In formulation (6.9) k is the algorithmic iteration index, 0 is the set of algorithm 

iteration indices at which a cut is generated, and the tt'^'s are the so called 

common-cut-coefficients, and are valid for all the scenarios. The right-hand side of 

the cut is determined for each scenario u EVt. Therefore, we suggest dealing with 

problem (6.9) for any new scenario u' ^ Q. First, the right-hand side 7r^(x,a;') is 

computed for each k G Q and then the subproblem is re-optimized with integer 

restrictions imposed. This problem provides a tighter formulation for the new 

scenario and may potentially result in reduced computation time for making an 

optimal tactical decision for the new scenario. We refer the reader to Chapter (Sen 

and Higle, 2000) for details on computing 7r'^{x,uj') for each k E Q. 

6.4 Summary 

This chapter has provided a further study of the SSLP. In order to strengthen 

the LP relaxation of the model, valid inequalities or specialized cuts for the SSLP 

have been derived. The computational results indicate that there is significant 

improvement in computation time for some SSLP instances by the addition of the 

specialized cuts to the model. The study shows that it always pays off to use the SP 

Min q{uj)'^y, 

s.t. W y  >  r { u j )  —  T { u ) x ,  

( 7 r ' = ) ^ y > 7 r , ^ ( x , a ; ) ,  k e Q  

(6.9a) 

(6.9b) 

(6.9c) 

(6.9d) 
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in making the strategic decision of obtaining optimal server locations rather than 

using the deterministic approach in which it is assumed that all potential chents 

will be available for resource allocation in the future. Finally, considerations for 

real-time or on-line operational/tactical decision making under uncertainty for the 

SSLP have been made. 
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CHAPTER 7 

PERFORMANCE OF THE METHOD FOR MIXED-INTEGER 

(BINARY) SECOND STAGE 

The computational results presented in Chapter 5 were based on purely 

combinatorial problems. In this chapter, we study the performance of the 

method on models involving both continuous and binary variables in the second 

stage. The specific classes of models that we use in our computational study are 

bipartite matching and strategic supply chain planning under uncertainty. While 

the former is a purely combinatorial model, it turns out that the data set provided 

in Kong and Schaefer (2004) has the property that the continuous relaxation of the 

combinatorial problem provides a solution to the combinatorial problem. 

Since the studies of this chapter allow continuous variables in the second stage, 

we report our results with the bipartite matching problem in this section. The 

bipartite matching and strategic supply chain planning problems under uncertainty 

are generally referred to as stochastic matching (SM) (Kong and Schaefer, 2004) 

and stochastic strategic supply chain (SSCh) planning (Alonso-Ayuso et al., 2003) 

problems, respectively. 

The models for the two problem classes quite differ in the type of second-

stage decision variables as well as how uncertainty is revealed. The SM model 

has pure binary second-stage while the SSCh model has mixed-binary second-stage. 

However, due to the unimodularity of the recourse matrix and the integrality of 

second-stage right-hand side, the second-stage subproblem LP relaxation for the SM 

model provide integral solutions. Thus we treat the second-stage decision variables 
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as continuous. In the SM problem the uncertainty appears only in the objective 

function, while in the SSCh model it appears in both the objective function and the 

right-hand side data. Recall that the uncertainty in the SSLP appears only in the 

right-hand side data. 

The uncertainty in the two problems dictate that the strategic decisions be 

made "here-and-now" while the operational or tactical decisions are determined 

after more precise information becomes available. This leads to a two-stage decision 

making process as in the SSLP in which the strategic decisions are made in the first-

stage and the operational/tactical decisions are made in the second-stage when the 

uncertainty is revealed. Such types of problems find real life applications in a 

variety of sciences and engineering. However, solving such problems is a difficult 

undertaking due the integrality requirements and the uncertainty in the problem 

data. Furthermore, these problems are characterized by a large-scale nature and 

can easily become intractable even for the state-of-the-art commercial solvers. 

The rest of this chapter organized as follows. In the next section we describe 

the SM model. The SSCh model is described in Section 7.2. We report on our 

computational experience with the algorithms in Section 7.3 and end the chapter 

with a summary. 

7.1 Stochastic Matching 

The second example application problem we consider is the two-stage stochastic 

bipartite matching problem studied by Kong and Schaefer (2004). The SM problem 

is a stochastic extension of the maximum-weight matching problem of Edmonds 

(1965) and can be formally stated as follows. A graph G = {y,E), where V is the 

set of nodes and B is the set of edges, is given. For each edge e £ E there is a 

first-stage edge weight Ce and second-stage weights for each scenario w G Q, with 

corresponding scenario probability p^. The goal is to maximize the total expected 
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edge weight in these matchings. The SM problem formulation can be stated as 

follows: 

Max y~] CeXe + Pu; (7.1a) 
g^e  g^e  

s.t. J] X, + < 1, Vw e V, Vw e (7.1b) 
e€(5('u) eE5(i;) 

X,  e  {0 ,1} ,e  {0 ,1} ,  Ve  e E y u e  n .  (7.ic) 

Constraints (7.1a) dictate that a matching is made either in the first-stage or 

the second-stage, while constraints (7.1c) are the binary restrictions on first-stage 

and second-stage decision variables. Formulation (7.1) is the large-scale DEP 

formulation and can be decomposed into two-stage SMIP as follows; 

Max CeXe + E[f(x,Lu)], (7.2a) 
Xs&{0,l},VeEE 

where the vector x = {xejegs and for each scenario realization cj of w we have: 

f { x , u j )  =  M a x  ^ d e U e ,  (7.3a) 
e€.E 

s.t. J] y, < 1 - Xe , \ / v e V ,  (7.3b) 

He G {0,1}, Ve G E. (7.3c) 

The SM problem arises in many business, investment and industrial 

applications. For example Hauskrecht and Upfal (2001) study a stochastic contract 

matching problem with two decision stages. In the first-stage an allocation problem 

deciding which contracts to buy and sell has to be solved. The second-stage is to 

solve a matching problem to decide the best coverage of sell contracts after observing 

the actual failure configuration. They formulate their problem as a stochastic 

hnear program (SLP) with the ultimate goal of maximizing expected profits and 

give a specific example application of trading communication bandwidth through 
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unreliable satellite and/or ground transmission equipment and its channels. The 

goal is to find the best combination of lease (buy) and sell contracts maximizing 

the expected profit. They take into account the probability of failures, flexibility 

of equipment coverage, profits/costs for selling/buying respective contracts and 

penalties for breaching sell contracts. 

7.2 Strategic Supply Chain Planning Under Uncertainty 

We consider the two-stage stochastic programming (SP) approach for SSCh as 

presented in Alonso-Ayuso et al. (2003). Other recent work in this area include that 

of Escudero et al. (1996), MirHassani et al. (2000) and Ahmed et al. (2003). The 

essence of supply chain planning consists of determining the plant location, plant 

sizing, product selection, product allocation among plants and vendor selection for 

raw materials. The uncertain parameters include product net price and demand, raw 

material supply cost and production cost. The objective is to maximize the expected 

profit over a given time horizon for the investment depreciation and operations costs. 

The two-stage stochastic supply chain planning problem (Alonso-Ayuso et al., 

2003) we consider has the strategic decisions made in the first-stage while the 

operational or tactical decisions are made in the second-stage. The first-stage is 

devoted to strategic decisions about plants sizing, product allocation to plants 

and raw materials vendor selection. The second-stage deals with making tactical 

decisions about the raw material volume supply from vendors, product volume to be 

processed in plants, and stock volume of product and raw materials to be stored in 

plants and warehouses. Further, tactical decisions include component volume to be 

shipped from plants to market sources at each time period along the time horizon. 

All the tactical decisions are made based on the supply chain topology decided in 

the first-stage. 

In making the strategic decisions in the first-stage it is assumed that the 
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information on the strategic decision costs and constraints is known. However, 

the information on the tactical decision costs/revenue and constraints is not known 

a priori. For example there may be randomness in the cost of product/raw materials 

and in the demand at different markets for selling the final products. The model 

given by Alonso-Ayuso et al. (2003) can be summarized as follows: 

where c, q, and q^j are vectors of the objective function coefficients, x,yuj, and 

are the decision variables, and u E Q denotes a scenario with being the collection 

of all the scenarios. The x represents the 0-1 first-stage strategic decision variables 

and the and represent the 0-1 second-stage strategic decision variables and 

the continuous second-stage tactical decision variables for a scenario a; € 

respectively. A and T are the first-stage and second-stage matrices related to 

the X variables, respectively; Wi and W2 are the matrices related to the and 

Zuj variables, respectively; b and r(a;) are the right-hand side vectors for the first-

stage and second-stage for scenario lu E fl, respectively. All the parameters are 

appropriately dimensioned. The first-stage constraints (7.4c) include restrictions 

on the number of allowable plants in the supply chain and investment budgetary 

constraints, while the second-stage constraints (7.4d) include capacity expansion 

constraints and operation related constraints. 

Formulation (7.4) is the DEP model for the stochastic supply chain planning 

problem. Alonso-Ayuso et al. (2003) follows the scenario analysis approach and 

decomposes (7.4) scenario-wise and proposes a branch-and-fix coordination (BFC) 

algorithm presented in Alonso et al. (2000) to solve the problem. In order to be 

commensurate with our approach, we will instead decompose the problem stage-wise 

(7.4a) 

s.t. Ax = b, 

Tx + Wiy^ -I- W2Z^ = r{uj),yu e Q., 

a ; € { 0 , i r \  y c . e { 0 , l } " %  z ^  >  0 ,  V u e Q ,  

(7.4b) 

(7.4c) 

(7.4d) 
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into a two-stage SMIP as follows: 

Max X +  E[f (x ,u j )]  (7.5a) 

(7.5b) 

(7.5c) 

s.t. Ax = b, 

x e { 0 , i r \  

where for each scenario realization a; of w we have the second-stage subproblem 

We again remind the reader that although the second-stage (recourse) variables 

y and z continue to depend on the outcome to, this dependence is not explicitly 

indicated here since the subproblem for each outcome lu is decoupled from all other 

outcomes once a vector x is given. 

7.3 Computational Experiments 

We now report on our computational experience in applying the method to 

solving large scale two-stage SMIP problem instances of the two models from the 

literature. We compare some of our computational results with those obtained 

by the general-purpose programming system CPLEX 7.0 (ILOG, 2000) applied to 

the DEP formulation. All the experiments were conducted on a Sun 280R with 2 

UltraSPARC-III-l- CPUs running at 900 MHz. The problem instances were run to 

optimality or stopped when a CPU time limit of 10,800 seconds (3hrs) was reached. 

The large CPU times are indicative of the large-scale nature and difficulty of solving 

these problems. The CPU time reported for each problem instance is an average of 

three runs. The CPLEX MIP solver is applied to the large scale DEP formulation 

for each of the two-stage problem instances if possible as a bench mark. To get the 

f { x , u j )  = Max + qZz 

s.t. wiy  + w2z  = t {o j )  —Tx 

yG{0 , l f^  2 ;>0 .  

(7.6a) 

(7.6b) 

(7.6c) 
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best CPU times the CPLEX parameters were set at the following values as in the 

SSLP experiments: "set mip emphasis 1" (emphasizes looking for feasible solutions), 

"set mip strategy start 4" (uses barrier at the root), and "branching priority order 

on x" (first branches on any fractional component of x before branching on y ). 

7.3.1 Stochastic Matching 

The SM test set consists of a collection of nine randomly generated two-stage 

stochastic bipartite matching problem instances supplied by Kong and Schaefer 

(2004). These nine problem instances are divided into three groups. Each problem 

instance in the first two groups has 10 vertices in each side of the bipartition, while 

each instance in the last group has 20. The first-stage and second-stage edge weights 

are normally distributed. All weights in the problem instances in the first and third 

groups are restricted to be integral, whereas those in the second are unrestricted. 

Table 7.1 gives the characteristics of the problem instances. Columns "NS", "EWl" 

and "EW2" refer to the number of scenarios, the distribution of the first-stage and 

second-stage edge weights, respectively. Columns "Rows", "Cols", "Nonz" refer to 

the number of rows, columns, and non-zero elements in the DEP formulation (7.1). 

Table 7.1: Stochastic Matching Problem Instance Dimensions 
Instance DEP 

Name NS EWl EW2 Rows Cols Nonz 
SMll 100 A/'(10,15^) Ar(10,15^) 2,000 10,100 40,000 
SM12 200 A^(10,152) A/'(10,152) 4,000 20,100 80,000 
SM13 300 A^(10,152) ^(10,152) 6,000 30,100 120,000 
SM21 100 AA(10,152) A/'(10,152) 2,000 10,100 40,000 
SM22 200 A/'(10, 152) A^(10,152) 4,000 20,100 80,000 
SM23 300 A/'(10,152) A/'(10,152) 6,000 30,100 120,000 
SM31 100 Ar(10,102) A^(10,102) 4,000 40,400 160,000 
SM32 200 A^(10,102) Ar(10,102) 8,000 80,400 320,000 
SM33 300 A^(10,102) ^/•(lo.io^) 12,000 120,400 480,000 
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Computational results for the SM problem instances are given in Table 7.2. The 

table headings are as follows: Iters" is the number of algorithmic iterations for 

the algorithm and Cuts" is the number of Z)^-cuts generated and added 

to each scenario subproblem LP relaxation. The next two columns give the CPU 

time in seconds for the algorithm and the CPLEX MIP solver apphed on the 

corresponding DEP formulation for the two-stage problem instance, respectively. 

The last column gives the optimality % gap for the DEP after the time limit has 

been reached and the CPLEX MIP solver prematurely terminated. 

Table 7.2: Computational Results for Stochastic Matching Problem Instances 
CPU( sees) Gap 

Instance Iters D'^ Cuts D'^ DEP DEP 
SMll 40 0 6.38 6.34 
SM12 28 0 7.88 12.83 
SM13 17 0 7.21 19.30 
SM21 51 0 8.54 8.64 
SM22 38 0 10.50 13.84 
SM23 71 0 15.92 29.00 
SM31 87 0 136.60 777.60 
SM32 98 0 224.24 7688.98 
SM33 102 0 272.15 > 10800 28.45% 

As can be seen in the table, the algorithms solves all the problem instances to 

optimality. The CPLEX MIP solver could not solve the last instance to optimality 

within the given time limit. Nevertheless, its performance on the smallest instances, 

SMll and SM21, is comparable to that of the algorithm. Decomposing relatively 

smaller size problems may not be as beneficial due to the overhead involved in 

the decomposition process. However, we see that for the larger instances the 

algorithm makes substantial gains. We also observe that the performance of the 

D'^ algorithm scales very well with an increase in the number of scenarios in the 

problem instances, a behavior that was revealed even for the SSLP instances. On 

the contrary, solving the DEP with an increased number of scenarios results in a 

significant increase in the computation times. 
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A typical graph of convergence of upper and lower bound is shown in Figure 

7.1 for problem instance SM33. We note that the bounds have been translated 

so that they are nonnegative. As can be seen in the figure, the algorithm 

gets close to the optimal value (less than 1% optimality gap ) just after about 20 

iterations but fully closes the optimahty gap and terminates after 102 iterations. 

The convergence of the algorithm is attainable for all the problem instances. Finally, 

we note that no D^-cuts were generated in all the problem instances. This is due 

to the fact that scenario subproblem LP relaxations of the SM problem provided 

integral solutions due to the unimodularity of the recourse matrix and the integral 

second-stage right-hand side. Thus one can also apply a Benders' type algorithm 

to solve these instances. In this sense, this set of problems do not really test the 

power oi D"^. 

7.3.2 Strategic Supply Chain Planning Under Uncertainty 

The stochastic SSCh test set consists of seven of the ten problem instances reported 

in Alonso-Ayuso et al. (2003), where they apply the BFC approach to the problem 

instances. The instances have the following dimensions; 6 plant/warehouses, 3 

capacity levels per plant, 12 products, 8 subassemblies, 12 raw materials, 24 vendors, 

2 markets per product, 10 time periods, and 23 scenarios. We refer the reader to the 

given reference for further details on the problem instances. For completeness, we 

restate the characteristics of the deterministic model problem instances in Table 7.3 

as reported in Alonso-Ayuso et al. (2003). The columns of the table are as follows: 

"Constrs" is the number of constraints, "Bins" is the number of binary decision 

variables, "Cvars" is the number of continuous decision variables, and "Dens(%)" 

is constraint matrix density. 

The dimensions for the first-stage and second-stage are given in Table 7.4. As 

shown in the table the SSCh model has a lot of continuous decision variables in 
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Table 7.3: Stochastic SSCh Deterministic Model Dimensions 
Case Constrs Bins Cvars Dens(%) 
cl 3,388 107 2,937 0.103 
c2 3,458 108 3,068 0.100 
c3 3,145 103 2,663 0.112 
c4 3,405 105 3,065 0.099 
c6 3,145 103 2,663 0.112 
c8 3,894 114 3,634 0.087 
clO 3,101 103 2,533 0.114 

Table 7.4: Stochastic SSCh First and Second Stage Model Dimensions 
FIRST-STAGE SECOND-STAGE 

Case Constrs Bins Constrs Bins Cvars 
cl 73 71 3315 36 2,937 
c2 73 72 3385 36 3,068 
c3 70 67 3075 36 2,663 
c4 70 69 3335 36 3,065 
c6 70 67 3075 36 2,663 
c8 79 78 3815 36 3,634 
clO 66 67 3035 36 2,533 

the second-stage. The dimensions of the stochastic SSCh DEP model (7.4) for 

the 23 scenarios are given in Table 7.5. As can be seen in the table, the problem 

instances have thousands of constraints and continuous variables and hundreds of 

binary variables. 

Continuous artificial variables were added to the instances with high penalty 

costs (10^^) in the objective function in order to induce relatively complete recourse 

as required by the approach. However, inducing relatively complete recourse for 

problem cases c5, c7 and c9 was not possible. Table 7.6 shows the main results of 

our computational experience. The table headings "Z/p BFC" and "% DifF' give 

the best objective value as determined by the BFC method (Alonso-Ayuso et al., 

2003) and the percentage difference between the best objective values determined 

by the algorithm and the BFC algorithm, respectively. The algorithm was 

terminated when the percent gap between the lower and upper bounds was below 5% 
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Table 7.5: Stochastic SSCh PEP Instance Dimensions 
Case Constrs Bins Cvars Total Vars 
el 76,318 899 67,551 68,450 
c2 77,928 900 70,564 71,464 
c3 70,795 895 61,249 62,144 
c4 76,775 897 70,495 71,392 
c6 70,795 895 61,249 62,144 
c8 87,824 906 83,582 84,488 
clO 69,871 895 58,259 59,154 

and the lower bound remained relatively constant for several consecutive iterations. 

This was done because there was no further improvement in the lower bound even 

after running the algorithm for additional iterations. 

Table 7.6: Computational Results for Strategic SSCh Problem Instances 
Case Zjp Zip  BFC % DifF Iters Cuts CPU Gap 

~cl 184439.00 178366.79 3^29 184 TTT 4558.29 4.139% 
c2 0.00 0.00* 0.00 68 57 1342.34 0.000% 
c3 230268.10 224564.20 2.48 92 85 1179.48 4.461% 
c4 201454.00 197487.36 1.97 160 149 3265.06 4.070% 
c6 231368.93 226578.02 2.07 114 109 1642.74 4.650% 
c8 100523.00 89607.39 10.86 186 180 9650.11 3.234% 
clO 139738.36 139738.36* 0.00 87 81 1083.00 2.364% 

*Optimality has been proven by (Alonso-Ayuso et al., 2003) 

As can be seen in the table, the algorithm solves the problem instances 

to below 5% optimality gap. Note that it was futile to even attempt to solve the 

DEP instances using the CPLEX MIP solver due to the size of the instances. As 

Alonso-Ayuso et al. (2003) points out, the problem instances have large percent 

gaps between the LP relaxation and the integer solution values and coupled with 

the extremely high dimensions of the problem instances, it makes it unrealistic to 

pretend to prove solution optimality. Nonetheless, our algorithm obtains relatively 

improved solution values compared to the ones reported in Alonso-Ayuso et al. 

(2003), even up to 10% gain in the case of c8. For cases c2 and clO our algorithm 

achieves optimality, which has been proven for these two cases by Alonso-Ayuso 
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et al. (2003). However, the algorithm could not close the optimality gap for clO 

completely. Also note that the computation time for case c8 is very large, probably 

an indication of problem instance difficulty. 

In essence, our computational results for the given problem instances confirm 

the computational experience of Alonso-Ayuso et al. (2003). Finally, let us mention 

that these authors have actually justified the use of the SP model for SSCh under 

uncertainty for the problem instances considered. They have shown that it is always 

beneficial to use the SP model instead of obtaining strategic decisions based on the 

average scenario parameters. 
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Figure 7.2: Convergence of the D'^ Algorithm for problem instance c2 

Figures 7.2 and 7.3 show typical graphs of convergence of upper and lower 

bounds when applying the D'^ method to instances cl and c2, respectively. Again 

the bounds have been translated so that they are nonnegative. As can be seen 

in Figure 7.2, the lower bound increases close to the optimal value in less than 

half the total number of iterations. However, good upper bounds are calculated 
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Figure 7.3; Convergence of the D'^ Algorithm for problem instance c3 



157 

only after first-stage solutions stabilize and this causes the method to continue for 

the remaining iterations without changing the lower bound significantly. Once no 

changes are detected in the first-stage solution, a good upper bound is calculated 

by solving the MIP subproblems. Figures 7.3 shows similar results. Even though 

the gap could not be fully closed for cl, the generally fast convergence of upper and 

lower bounds for the algorithm is attractive. 

7.4 Summary 

A computational study of the application of the method to stochastic matching 

and stochastic strategic supply chain planning has been presented. The study 

demonstrates the effective performance of this approach towards solving large-

scale problem instances from these two application areas in which the second 

stage has continuous decision variables. Like the SSLPs, SM and SSCh problems 

result in large-scale problem instances which are comprised of loosely coupled 

subsystems, amenable to the divide-and-conquer paradigm of decomposition-

coordination methods such as the D"^ method. The computational results show 

that the performance of the method is quite attractive. 
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CHAPTER 8 

DISJUNCTIVE DECOMPOSITION FOR STOCHASTIC 

MIXED-INTEGER PROGRAMMING WITH CONTINUOUS 

FIRST-STAGE 

The current method requires that the first-stage solutions be extreme points of 

the first-stage feasible set. This chapter extends the approach to SMIP problems 

where this requirement is not necessary. In particular, a branch-and-cut method for 

two-stage SMIP with continuous first-stage is derived and its convergence proved. 

Finally, a simple example to illustrate the proposed method is provided. 

Throughout this chapter we consider the following two-stage SMIP problem; 

where c is a known vector in 3?"^, X C is a set of feasible first-stage 

decisions, E [ . ]  is the usual mathematical expectation operator with E [ f { x , u } ) ]  =  

Pui f , ci) is a multi-variate discrete random variable and for any scenario 

(realization) u 

Min c ^ x  -1- E [ f { x ,  u ) ]  
x(^X 

(8.1) 

f { x , L u )  = Min q ^ y  (8.2a) 

s.t. Wy > r{iu) — T{uj)x, 

y > 0 ,  V j  binary, j G J2. 

(8.2b) 

(8.2c) 

In problem formulation (8.2), q is the cost vector in and J2 is an index set 

consisting of some or all of the recourse decision variables y G 3?"^. We consider the 

SMIP case in which the first-stage solutions are continuous or mixed-binary and 
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are therefore not restricted to be extreme points of the set X. We maintain that 

assumptions A1-A3 (Chapter 2, Section 1.2) hold and that all integer variables in 

the second-stage are binary. Hence, all second-stage scenario subproblems satisfy 

the facial disjunctive property and thus, sequential convexification is possible for 

any scenario subproblem. In addition, we require the following assumption to hold: 

(A4) The LP relaxation of (8.2) has a positive objective value for all {x,uj). 

Since X is assumed to be compact, it is not too restrictive to assume that a 

uniform lower bound on the second-stage can be easily calculated. Hence without 

loss of generality, the value function can be appropriately translated to satisfy the 

assumption. 

Before we present the new method, let us first consider one complication that 

is brought by the requirement that the first-stage solution x be continuous instead 

of an extreme point of X as is the case in the current and D^-BAC algorithms. 

Let Xc be the following set: 

Xc = { x i , X 2  I - > -2, - X 2  > -2, X i , X 2  >  0} 

and suppose that the first-stage solutions be extreme points of this set vert{Xc). 

Then this set has only four extreme points x = [xi^x^!^^-. x = [0,0]''", x = [0,2]"'", 

X = [2,0]^ and x= [2,2]^. Therefore, in the context of the algorithm only this 

finite set of extreme points would be generated in the first-stage and forwarded to 

the second-stage in the worst-case. Also, the optimal solution of the SMIP must be 

at least one of the four points. 

Consider a case in which the first-stage is contimious and the set is as defined 

earher. Now instead of having only the four extreme points, we have all the points 

{0 < < 2} X {0 < a;2 < 2} to consider (potentially an infinite number of points). 

Since we develop convexifications of the second-stage using inputs from the first-

stage, the introduction of continuous variables in a decomposition method makes it 
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more challenging. 

The next section provides the theoretical bridge between the current method 

and the one we propose. Section 8.2 derives the basic theory for the new approach 

and describes the algorithmic setting. Section 8.3 presents the new branch-and-cut 

algorithm and Section 8.4 gives a detailed example illustration of the new approach. 

Finally, Section 8.5 gives some extension perspectives. 

8.1 Background: Bridging the Gap 

In the algorithm sequential convexification is achieved via the theorem (Sen 

and Higle, 2000), which allows for a cut generated for one scenario subproblem 

to be easily translated into a cut that is valid for another scenario subproblem. The 

D"^ cut has the form -K^y > -Kc{X,(jj), where vr is the common-cut-coefficient vector 

and the right-hand side is a convexification of the function TTO{X,UJ). Both tt and 

7ro(x,tj) are generated by forming and solving the C^-SLP (Problem 3.10, Ch. 3). 

The solution of this SLP provides the TT as well as the coefficient vector multipliers 

that define 7rQ{x,u) for each lu E fl. The convexification of 7ro(a:,ci;) to 7rc{x,ui) is 

achieved by solving the RHS-LP (Problem 3.11, Ch. 3) for each uj E Cl derived via 

a strategy from reverse convex programming in which disjunctive programming is 

used to provide facets of the convex hull of reverse convex sets (Sen and Sherali, 

1987). Consequently, the LP relaxation of (8.2) in the AT-th algorithmic iteration 

of the algorithm has the form 

f ^ { x , u j )  = Min q^y, 

s.t. W y  >  r { u j )  — T{ l j ) X ,  

k e Qk, 

y > 0, 

(8.3b) 

(8.3d) 

(8.3a) 

(8.3c) 
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for all cj G ri. The set Qk is the set of algorithmic indices k at which a cut is 

generated. The scenario subproblem LP (8.3) can be rewritten in compact form as 

follows: 

where, the recourse matrix W augmented by {(7r'^)"'"}fe£eK is denoted by . 

Similarly, the right-hand side vector r{uj) — T{lo)X augmented by {7r^(x, , 

is denoted by p^{x,uj). 

Figure 8.1 shows a two-dimensional graphical illustration of the epigraph of 

functions 'Kq{x,w) and Trc{x,za) for a fixed scenario w. In the figure L and U are 

the lower and upper bounds, respectively, on the decision variable x and X = {L < 

X <U^. The function TToiXj-ai) is a piecewise linear concave function of the first 

argument. Note that for an extreme point x® G X, -Kq^x^,-nj) = tTc^x^.w). 

We shall first state the theorem that addresses the identification of an optimal 

solution to the SMIP problem under the assumption that the master program 

solutions are extreme points of the first-stage feasible set X, for example SMIP 

problems with purely binary first-stage decision variables. The theorem provides 

a "bridging point" towards the derivation of a convexification process for the 

continuous first-stage case. 

Theorem 1. Suppose that X = {x E 3?"^ | Ax > b} and assumptions A1-A4 hold. 

Suppose the algorithm identifies extreme point solutions of the C^-SLP (Problem 

3.10, Ch. 3). Then there exists a K < oo such that for all k > K, f^{x^,ui) = 

f{x^,uj) for all Lo E fl whenever x^ is an extreme point of X. 

f^ix,uj) = Min q^y, (8.4a) 

s.t. W^y > p^{x,u!), 

y > 0. 

(8.4b) 

(8.4c) 

Theorem 1 shows that there are finitely many second-stage scenario subproblem 
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Figure 8.1: Graphical illustration of the functions t^q{x ,w ) and tT C{x ,w 

polyhedra of the form: 

TTi > - I-\2, yj (8.5a) 

7 r j>Xl ,W^ +  l fXi ,2 ,y j  (8 .5b)  

— 1  <  TTj < l ,V j  (8 .5c )  

-^0,1) -^0,2) — 0 (8.5d) 

Furthermore, these polyhedra can have only finitely many extreme points. So 

let {(^oj'^i)}^^ denote the collection of such extreme points from all the possible 

polyhedra, where Ag = [Aq -^; Aq ^]"'', and A® = [A® A® a]"*"- Then for any pair (Ag, A®) 

we can associate the pair (v'Q(u}),JQ(uj)) and (i/f (oj), 7®(a;)) for all 6<j G as suggested 

in Corollary 4 of Sen and Higle (2000). Therefore, for all e G {1, •••, M} we have 

7r^{x,cu) = Min{z/^(a;) ul{u) - 7^(w)'^x}. 

Using the sequential convexification property for facial disjunctive programs, it 



163 

follows that one can recover the closure of the convex hull of the second-stage mixed-

b i n a r y  p o i n t s  b y  a p p e n d i n g  t h e  c o n s t r a i n t s  y  >  7 r o ( x , a ; )  f o r  a l l  e  G  { 1 , M } .  

Consequently the second-stage subproblem LP relaxation takes the following form: 

fQ{x,uj) = Mm q^y, (8.6a) 

s.t. Wy > r{uj) — T{ L O ) X ,  (8.6b) 

(7r®)'^y > 7ro(a;,w), e = 1, (8.6c) 

y&W^.  (8 .6d)  

In general the number of extreme points of (8.5) given by M can be very large. Hence 

Sen and Higle (2000) derive the D"^ algorithm based on limited and sequentially 

revealed information. 

In order to convexify u ) Sen and Higle (2000) use disjunctive programming 

to provide facets of the convex hull of reverse convex sets and define the 

epi-reverse polar denoted n5f(a;) whose extreme points can be denoted by 

{{aQ{Lu),a'^{uj),5'^{uj))}reT- Note that this defines the feasible set for the RHS-

LP (Problem 3.11, Ch. 3). Letting UT-{u) = and 7r(i^) = , they define 

TTc ; X X 3?, where 

7rc(x,Lj) = Max{^'T-(w) — 77.(0;)'''a;}. (8.7) 
r€T 

The function T T C{X ,U ) is referred to as the convex hull approximation of 7ro(x,a;). 

This is because {(a, a;) \ x E X,a > 7rc{x,u)}, the epigraph of Trc{x,Lu) restricted 

to X E X, agrees with clconv(nx(<^)). Thus 7ro(a;,a;) = 7rc{x,Lu) whenever x is an 

extreme point of X. This property always holds for example, for purely 0-1 first-

stage, but may not hold for continuous first-stage in general. The violation of this 

property will guide us towards the derivation of a branch-and-cut algorithm for the 

continuous first-stage case. 
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8.2 Algorithmic Approach 

Let us now consider an iteration K of the algorithm applied to problem (8.1-

8.2). Then the algorithm has iteratively identified 7ro(a;,u;),7rg(x,Ci;)}fc£0^ and 

the master program has the following form: 

Min X + rj (8.8a) 

s.t. Ax > h, (8.8b) 

+ 77 > Ofc, A: = 1,..., A", (8.8c) 

a; > 0, ?7 > 0. (8.8d) 

The variable rj provides a piecewise linear approximation of the subproblem expected 

objective function E[f{x,ui)]. Constraints (8.8c) are the Benders-type (Benders, 

1962) optimality cuts, and constraints (8.8d) are the nonnegativity requirements 

on X and rj. In constraint (8.8c) the right-hand side {CoY{Co)] and 

/3fc = {uY{Gj)] for k = l,...,i^, where ip^{Lo) denotes an appropriately 

dimensioned vector of optimal dual multipliers associated with constraints (8.4b) 

for scenario cj G in iteration k. 

For each algorithmic iteration k G Qk we have a pair {•Kq{x ,u ) , 'k '^[x ,u ))}, where 

'KI{X,U) = Mm{u^{Lv) - "Yoiuyx, x} 

and from the optimal solution of the RHS-liP (Problem 3.11, Ch. 3) we get 

7r^(a;,a;) = u ^ { u j )  -  - f ^ { u j y x .  

Since x is continuous it follows that x is not necessarily an extreme point of X 

and therefore, the condition 7ro(x,t<;) = tTC{x,u) may not hold in general even 

when the solution of (8.4) satisfies the binary restrictions. Consequently, the D'^ 

algorithm may not converge to an optimal solution of problem (8.1-8.2) in general. 

Therefore, our approach will involve recording the pairs {-KQ{x,uj),Tr'^{x,Lu)} during 
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the execution of the D"^ algorithm and then using these data to sequentially identify 

those pairs that violate the condition tTq{x,lu) = 7r^(x,u) for a given cj and k. The 

goal will be to create a branch-and-bound (B&B) tree by partitioning the first-stage 

continuous feasible set X based on the violated pairs. 

A major issue in applying a B&B algorithm over continuous domains is 

that the resulting approach may not be finite. Our approach will however be 

guided by disjunction variables in the second-stage, whose total number is finite. 

Consequently, we will have finitely many subdivisions to consider, leading to the 

finiteness of our B&B method. 

8.2.1 Foundations of the Branch-and-Bound Approach 

Let some first-stage solution x be given. Then we can identify a scenario zu E and 

iteration index K that violates the condition TTQ{X,UJ) = T:^{X,UJ). The idea is to find 

the pair {zu, k) for which the condition is both violated the most and scenario zu 

has a high probability of occurrence p^. This can be accomplished by the following 

criterion: 

Proposition 2. Let 7qo(^) = 

791 ( ^ )  =  A l s o  l e t  X^q = {a; | x > 

Pg^ ( z v ) , x  > 0} andXqi = {x \ > Ug^{'cu),x > 0}. Suppose that X'' denotes 

some subset of the first stage decisions X. Then X'^, can be given as X'' = VqoUVql, 

{•w ,k ) e argmax [p^  {t to{x ,u ) - 7r^(x,w))} (8.9) 

where 

'PqO — n Xqo (8.10) 

and 

Vql — XqCl Xqi (8.11)  
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Proof. Condition (8.9) identifies a pair {w,k) such that 7rQ(x,w) > 7r^(x,w). 

Since 

tTq (x, w) = Min{i>o (cu) - %(zu)'^x, Pi (ot) - 'y'^{wyx) (8.12) 

is a piece-wise linear concave function, it follows that either 

Vq{vo) — 7o(tu)"""® > (nj) — X (8.13) 

or 

pQ (to) — X < (to) — ^1{xxjYX. (8-14) 

By intersecting the half-space defined by (8.13) with Xq and that defined by (8.14) 

with Xq the result follows. • 

Figure 8.2 shows a two-dimensional graphical illustration of the branching 

constraints and the epigraph of the functions 7ro(x,TO) and Trc{x,zu) for a fixed 

scenario TO. In the figure L and U are the lower and upper bounds, respectively, on 

the decision variable x and X = {L < x < U}. The two sets Vqo and Vqi are shown 

in the figure. Note that the branching constraints pass through the intersection of 

the two afiine/linear pieces comprising the function 7ro(x,'cu). 

Proposition 2 allows us to divide the first-stage feasible set into two sets and 

therefore, optimization of the original problem can be carried out over each set. This 

then enables us to devise a B&B procedure for solving problem (8.1-8.2), whereby 

we can further divide each resulting set if necessary following the same logic. 

Let Q denote the set of nodes of the B&B tree for the first-stage and let g e Q 

denote a node of the B&B tree. At the root node of the tree we have the initial 

SMIP problem (8.15 - 8.16). We can then apply the algorithm to this problem 

and after each iteration k we check the condition 'KQ{x^,u}) = •k^{x^,u). If it is 

violated we perform "branching" on the first-stage by invoking Proposition 2 and 
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Figure 8.2: Graphical illustration of the branching constraints 

generating "branching" constraints (8.13) and (8.14). By branching at node q we 

create two sibling nodes qo and qi from the parent node q, and for each sibling node 

we have the parent master program with the corresponding branching constraint 

added, resulting in the set of the first-stage feasible set, where , h G H and 

H = {0,1} . Then the algorithm can be applied to the problem at each sibling 

node and the process repeated. 

Let kg denote the algorithmic iteration for the problem at a node q E Q. With 

q we can associate a sequence of nodes that trace a unique path from the node q to 
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the root node. Let Bq denote this sequence of nodes. For each element t  E Bq, we 

have all algorithmic indices A;(T) as well as indices k{t) that identify the iteration 

k and scenario w used in the branching process. Thus for each k E k{t) we have a 

pair {WJK) with the associated branching constraint coefficients 7^^ = and 

^qh ~ h e H. Then the master program (8.8) at a node q E Q takes the 

following form; 

Min c^x + rj (8.15a) 

s.t. Ax > b, (8.15b) 

Pk^x + r] > ak, k e A;(T), t  E Bq (8.15c) 

h e H ,  k e  k{ t ) ,  t  e Bq, (8.15d) 

X > 0, r/ > 0. (8.15e) 

Constraints (8.15c) are the Benders's type optimality cuts derived up to iteration kq 

for node q. Constraints (8.15d) are the branching constraints added to the master 

program for node q. The nodal master program (8.15) may become infeasible for 

some node q G Q beyond the first branch in the B&B tree. In this case, the node is 

fathomed, and we backtrack. 

Let us now turn to updating the right-hand side for the cut on which 

branching is performed. Since branching is carried out based on this D'^ cut, its 

right-hand side 'n:'^{x,'nj) must be updated to reflect the branching. 

Corollary 3. Let {w,k) be defined as in (8.9). Consider the cut at which 

{zu,k) is determined. Then the RHS 7r^(x,w) for the D"^ cut must be replaced by 

TTQ{X,U) = v1{xu) — X for the branch x > and by 'KQ{X,U) = 

t'Q(ro) — ^Q{wyx for the branch ^^^{zuYx > 

Proof. From Proposition 2, it follows that for the branch x > the 

right-hand side of the cut must be the minimum of the two affine functions. Hence 
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7rQ(a;,a;) = (ro) — x. Similarly, the right-hand side of the cut for the other 

branch is also justified. • 

The master program (8.15) in iteration kg provides a first-stage solution x'^'' to 

feed to the second-stage LP for a; e and node q E Q, which takes the form; 

Constraints (8.16c) are the cuts generated at each node along the path from the 

root node to node q whose RHS has not been updated, while constraints (8.16d) 

have the RHS updated (due to branching). From here on, we shall refer to problem 

(8.15-8.16) as the nodal problem Pg for node q. We shall denote by Vg and Vg the 

lower and upper bounds of the nodal problem as determined by the algorithm. 

We now note that the cuts generated at a node q E Q are valid for all the 

descendant nodes of q. However, they are generally not valid for all the other nodes 

in Q due to the fact that the right-hand side p'^{x,uj) = r^{u!) — T^{uj)x may be 

different for scenario w and iteration index k due to the update performed after 

branching according to Proposition 2. 

8.3 A Branch-and-Cut Algorithm 

We shall now present a formal statement of the basic D"^ with branch-and-cut 

algorithm for problem (8.1-8.2). We shall refer to the algorithm as the D^-

CBAC algorithm, since it is based on the basic algorithm and "C" stands 

for "continuous" and "BAG" for "branch-and-cut". The critical operations in the 

/,^'(x'=',a;) = Min q ^ y ,  

s.t. Wy > r{u) — T{uj)x'''', 

k  e  k { T )  \  «;(r), T  e B q  

k  E  K ( T ) ,  t  e b q  

y > 0. 

8.16a) 

8.16b) 

8.16c) 

8.16d) 

8.16e) 
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algorithm are italicized and are discussed in the following subsection. We use the 

following notation in the description. 

Notation: 

£; List of open nodal problems 

v: Lower bound on the optimum 

V\ Upper bound on the optimum 

Vq\ Lower bound on node q problem optimum 

Vq. Upper bound on node q problem optimum 

fc: Iteration index for root node problem 

kq. Iteration index for node q problem 

X*: Optimal solution 

The Basic D^-CBAC Algorithm 

Step 0. Initialization: 

Let e > 0 and G X be given. Set A; <— 0 and initialize 

V = co^ V — —oo, and add the root nodal problem (8.15-8.16) 

to the list £ of open nodal problems. 

Step 1: Termination 

If £ = 0, terminate with solution x*. 

Otherwise select a nodal problem Pq from the list £ 

of currently open nodal problems, and set £ <— £ \ 

and fc <— A; + 1. 
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Step 2. Apply the D"^ Algorithm to the Nodal Problem 

Apply one iteration of the algorithm to the nodal problem Pq. 

Store the multipliers {Aoi;Ao2}) a-nd {Aj ^;AJ^ 2}• 

These multipliers define 7^(0;)) 

and the corresponding TrQ(x, uj) and for all k  and all w 6 

At the end of the D'^ algorithm iteration one of the following 

must hold: 

(i) Nodal master program (8.15) becomes infeasible; 

(ii) Vk^ - Vk^ < e; 

(iii) Vk^ - Vk^ > e. 

If condition (i) is true 

Fathom this node by infeasibility. Go to Step 1, 

else if condition (ii) is true, update incumbent: 

If Vk^ < V, then V ^ Vk^, v ̂  and x *  ^  X f c ^ .  

Fathom this node by optimality. 

Fathom the node list, that is, £ <— £ \ {Pq \ Vq > V}. 

Otherwise fathom this node by bound. 

Go to Step 1, 

else if condition (iii) is true, 

go to Step 3. 

Step 3: Branching 

Apply Proposition 2 and perform branching to create two nodal 

problems Pq^ and Pq^ of the form (8.15 -8.16) and add to the 

list £ of open nodal problems, that is, set £ <— £ U {Pqg,Pq^}. 

For node selection purposes determine and record Vqg and , 

the objective value of the corresponding 

nodal master program (8.15) after branching. 

Go to Step 1. 
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8.3.1 Algorithm Convergence 

We now prove finite convergence of the £)^-CBAC algorithm. 

Lemma 4. There exists a finite number t such that after t divisions of the first-

stage feasible set X, the branch-and-bound process described in Section 8.3 finds a 

node that can be fathomed. 

Proof. A node is fathomed if we either encounter Vq = Vq or an infeasible nodal 

master program. Let Y{x) = {y \ Wy > r{u) — T{uj)x,y > 0,—yj > —l,j G J2} 

and let Ig denote the set of indices defining the disjunction variables for Bq. Because 

we have the right-hand side equal to 7ro(x,a;) for all k G ^(r), r G Bq, the cuts used 

in the second-stage are facets of y(a:) n {{yj < 0} U {yj > l})jg/^. Since the feasible 

set of the second-stage can be described as a facial disjunctive set, the sequential 

convexification process yields the convex hull of the set as proved by Balas (1979). 

Therefore, after finitely many divisions (t), the branch-and-bound process finds a 

node with either Vq = Vq or an infeasible nodal master program 8.15. • 

Theorem 5. Suppose that assumptions (AI-A4) hold. The proposed D'^-CBAC 

algorithm terminates with an optimal solution to problem (8.1-8.2) after finitely 

many steps. 

Proof. In the proposed Z?^-CBAC algorithm branching can only be done 

finitely many times. This follows from the fact that there are finitely many 

disjunction variables in the second-stage, leading to finitely many right-hand sides 

{tTq (x, uj)}keeK some K < 00 for all w G Consequently, there are finitely many 

divisions of the continuous first-stage feasible set to consider. Then by Lemma 4 

each node q will be fathomed in the course of the algorithm. The optimality of the 
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solution follows from the validity of the lower and upper bounding procedures used. 

Comments on the critical operations of the Z?^-CBAC algorithm are now in 

order. The branching part of the algorithm requires that the multipliers that define 

ttq{x,ljj) and for all k and a; e be recorded. However, this data may 

be large and therefore, we suggest writing them to a file if necessary for computer 

memory considerations. 

In Step 1 of the algorithm we need to select a nodal problem from the list C. We 

propose selecting a nodal problem with the least lower bound Vq. That is, selecting a 

problem Pq such that Vq = miugg^lw^}. This follows the best-node first strategy (see 

e.g (Wolsey, 1998)) and leads to a bound improving selection operation as required 

for the convergence of a B&B algorithm (Horst and Tuy, 1996). 

Since the cuts generated at a given node are not in general valid for all 

nodes in the B&B tree, care must be taken to curtail the proliferation of these cuts. 

We suggest avoiding storing all the cuts explicitly for each node. Instead, the cuts 

can be stored in some data structure that contains each cut with the corresponding 

algorithmic iteration and node number at which the cut was generated. Thus each 

cut would be recorded only once and used for each nodal problem as required. 

When a node is fathomed (by infeasibility, bound or optimahty) all the cuts 

that were generated at that node can be deleted from the list. This also apphes to 

the branching constraints and optimality cuts generated at a node and added to the 

master program. Next we provide an example to illustrate the proposed algorithm. 
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8.4 Example Illustration 

Consider the following simple SMIP problem with two scenarios: 

Min — 2 x  +  E [ f { x , L u ) ]  

s.t. —  X  >  — 2  

X > 0 

where, 

f { x ,  u i )  = Min —Ay 

s.t. —  6 y  >  r { u j )  +  b x  

y binary. 

The first-stage variable is x, while the second-stage variable is y. There are two 

scenarios, lox with r{ui) = —10, and u2 with r{uj2) — —12. The scenarios have equal 

probability of occurrence, that is, = Puj2 — 0-5. Note that the problem satisfies 

assumptions A1-A3. In this problem we have the following data: c = — 2, A — 

[-1], b = [-2], q =: [-4], W = [-6], T(UJI) = T(UJI) = [-5], r(CJI) = -10 and 

r(u-'2) = —12. Note that the first-stage solutions are not necessarily extreme points 

of X = {x : Ax > b,x > 0}. We can now start the D'^-CBAC algorithm as follows. 

Iteration 1 (/c = 1) 

Step 0: Initialization 

The algorithm is initialized with the following root node (Node 0) problem PQ whose 
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master program is; 

Min —2x + rj 

s . t .  —  X  >  — 2  

x,ri > 0. 

Set = W ,  T ^ { u j )  =  T { u j ) ,  and r ^ { u )  = T(a;) for both scenarios and initialize the 

list open nodal problems C ^ CU {-Po}- The overall upper and lower bounds are 

initialized as 1/ = oo and v = —4, respectively. 

Step 1: Termination 

List £ 7^ 0, so we select the initial nodal problem. The initial master program yields 

x^ = 2 and 7/ = 0. The nodal upper and lower bounds are initialized as Vo = oo 

and vq — —4, respectively. 

Step 2: Apply one iteration of the D'^ Algorithm to the Nodal Problem 

Step {i) 

For Step 1 of the algorithm we use x^ = 2 and solve the LP relaxation of the second-

stage subproblem for cui and ^2, which we shall call LPi and LP2, respectively: 

LPi ; fi{2,ui) = Min-4y 

s.t. — 6y > 0 

-y > -1 

y >0, 
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and 

LPi : /2(2,W2) = Min-4y 

s.t. —  Q y  >  — 2  

-y  >  - 1  

y > 0. 

The optimal solution for LPi is y{uji) = 0 and for LP2 is y{uj2) = 0.3333 

Step (m) 

Since y{t02) does not satisfy the integer restrictions, we choose y as the "disjunction" 

variable and create the disjunction —y > 0 or y > 1 for LF2- We formulate the 

C^-LP (Problem 3.10, Ch. 3), which yields the vector for updating and the 

data for the RHS-LP (Problem 3.11, Ch. 3) whose optimal solution is used to 

update the right-hand side of the second-stage constraints. An optimal solution for 

the C^-LP is tt^ = —1, = [0,0],Ao,2 = = [0.25,0], and Ai_2 = 0.5. 

We obtain W"^ by appending to W^: = From the C^-LP 
- 1  

solution we obtain — 0; ~ 7o(a;i)''" = [0], 7j-(a;i)"^ = [—1.25] 

and 1^0(^2) = 0, 1^1(^2) = -2.5, 7o((.J2)"'' = [0], = [—1.25]. In order to 

maintain 'KQ{X,(JO) > 0, we translate vl{uj) and Pf(cu) by +2 and -1-2.5, respectively. 

We then have; 

= min{2 — Ox, 0 -h 1.25a;} 

and 

7ro(x, LU2) = min{2.5 — Ox, 0 -I- 1.25x}. 

Using the above data we formulate the R H S - L P  (Problem 3.11, Ch. 3) for both 

LUi and UJ2- The optimal solution for ui is 5(<x;i) = 0, cro(wi) = 0.55556, a{LUi) = 

—0.555556 and for 102 is 5(ivi) = 0, (To{uji) = 0.5, a{cui) — —0.625. We therefore 
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have = 0, 7^(a;i) = 1, u ^{u j 2 )  = 0 and 7^(wi) = 1-25. Translating back we 

obtain 

' K I { X , u j i )  =  - 2  +  X  

and 

'k ].{x ,u j 2 )  = —2.5 + 1.25a:. 

Note that since = 2 is an extreme point of X ,  we have that 7ro(2,a;i) = 

Tvl{2,LUi) = 2 and 7ro(2,1^2) = = 2.5. Based on the RHS-LF (Problem 3.11, 

[r^(cji)] 
Ch. 3) solution we make the following updates: r^{uJi) = 

, T H 0 J 2 )  =  
[T\co2)] 

-1.25 

[r^(cui)] _ , 
. Similarly we update r (0^2) = 

-1 -2.5 

'his completes Step 2 of the algorithm. 

Step {in) 

Re-optimizing the updated scenario subproblems we obtain y{uji) = 0 with 

/i(2,wi) = 0, and 2/(1^2) = 0 with f2{2,U2) = 0. The dual solutions are dJ(tvi) = 

[0,0,4] and = [0,0,4]. Since both scenarios satisfy integral requirements 

on y we have an incumbent solution x = 2 and we update the upper bound Vq = 

min{Fo, -2 * 2 + 0.5 * (0) + 0.5 * (0) + 4} = 0. 

Step {iv) 

Using the dual solution for each scenario subproblem LP from Step (Hi), we 

formulate the Benders-type optimality cuts. The resulting cuts are —Ax + 9{lui) > 

—8 and —5x + 9{u2) > —10. Since the two scenarios are equally likely, the expected 

values associated with the cut coefficients yield —4.5a; + 6 > —9. Applying the 

translation 77 = 0 + 4 we get —4.5x + 77 > —5 as the optimality cut to add to the 
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master program: 

Min —2x + r\ 

s.t. — X > —2 

—4.5x + ?7 > —5 

x , r ]  > 0 .  

Solving the master program we get = 1.111, rj = 0 and an objective value of 

-2.222. Therefore, the lower bound vq = —2.222. This completes this iteration of 

the algorithm. Since Vq > vq, k <— 2, and begin the next step of the D^-CBAC 

algorithm. 

Step 3: Branching 

We now need to apply Proposition 2 with x'^ = 1.111 (use the translated 

functions 7rQ{x,uj) and 7rl{x,uj)): 

For u>i we have: 

7r^(l.lll,a;i) = min{2 - 0 * 1.5,0 + 1.25 * 1.111} 

= min{2,1.389} 

= 1.389 

7r,^(l.lll,wi) = 0 + 1*1.111 

= 1.111 

Thus 

p^(^o^(l.lll,a;i)-7r^i(l.lll,a;i)) = 0.5 * (1.389 - 1.111) 

- 0.1389. 
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For LO2 we have; 

= min{2.5-0*1.111,0 +1.25 *1.111} 

= min{2.5,1.389} 

= 1.389 

7r^^(l.lll,a;2) = 0 + 1.25*1.111 

= 1.389 

Thus 

p^(7ri(l.lll,cu2)-7ri(l.lll,a;2)) = 0.5 * (1.389 - 1.389) 

= 0. 

In this case we select {w,n) = (a;i,l) since Since 0.1389 > 0 . The branching 

constraint is therefore, 

=» 2 — Ox > 0 + 1.252: 

^ —x > —1.6 

So now we have for the first branch —x > —1.6 with the corresponding cut in 

the subproblem updated to — ^\{uji)x =» —ly > —2 + 1.25a:. For 

the second branch we have x > 1.6 with the corresponding cut updated to 

> ^i('^i) ~ "ly > 0 — Ox or —y > 0. Note that for this branch y is 

fixed at 0. We now create two nodal problems (Pi and P2) whose master programs 

are as follows. 
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Node 1 Master Program: 

Min —2x + rj 

s.t. — X > —2 

—4.5x + r]> —5 

—X > —1.6 

x,ri >0. 

with optimal solution x'^ = 1.111, 77 = 0 and an objective value of-2.222. Therefore, 

the lower bound Vi = —2.222. 

Node 2 Master Program; 

Min —2x + rj 

s.t. — X > —2 

—4.5a; + 77 > —5 

X > 1.6 

X,Tj > 0. 

with optimal solution = 1.6, rj = 2.2 and an objective value of -1. Therefore, the 

lower bound V2 = —1. Set C <r- CU {Pi, P2} to the list of unexplored problems C. 

Step 1: Termination 

List jC 7^ 0. Since vi < V2 we select Pi and set £ \ {Pi}. 

Step 2: Apply one iteration of the Algorithm to the Nodal Problem 

Step (z) 

For Step 1 of the algorithm we use x"^ = 1.111 and solve the LP relaxation of the 
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second-stage subproblem for uji and uj^'-

LPI : = Min-4y 

s.t. — 6y > —4.44445 

-y  >  -1  

-y > -0.61111 

y > 0. 

and 

LPi •• /2(2,W2) = Min-4y 

s.t. — 6y > —6.44445 

-y  >  -1  

-y > -1.11111 

y > 0 .  

The optimal solution for LPi is y(wi) = 0.61111 and for LP2 is y(cj2) == 1 

Step {ii) 

Since y(u>i) does not satisfy the integer restrictions, we choose y as the "disjunction" 

variable and create the disjunction —y > 0 or y > 1. We formulate the C^-SLP 

(Problem 3.10, Ch. 3), which yields the vector vr^ for updating W'^ and the data 

for the RHS-LP (Problem 3.11, Ch. 3) whose optimal solution is used to update 

the right-hand side of the second-stage constraints. An optimal solution for the 

C^-LP is TT^ = -0.777778, = [0,0,0],Ao,2 = 0.777778, = [0.5,0,0], and 

Ai,2 = 2.222223. 

We obtain by appending tt^ to W'^: 
[ W ^ ]  

-0.777778 

solution we obtain z?o(ci-'i) = 0, Pi(wi) = —2.77778, = [C 

. From the C^-LP 

= [-2.5] 
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and Po('^2) = 0, i^i(uj2) — -3.77778, Jq(lu2)~^ = [0], 71(0^2)'^ = [—2.5]. In order to 

maintain 'Kq{x,ijj) > 0, we translate pI(jjj) and by +2.77778 and +3.77778, 

respectively. We then have: 

and 

7ro(a;,a;i) = min{2.77778 — Ox, 0 + 2.5a;} 

7ro(2;,a;2) = min{3.77778 — Ox, 0 + 2.5x}. 

Using the above data we formulate the RHS-hF (Problem 3.11, Ch. 3) for both 

uji and U2. The optimal solution for uii is 5(ix'i) = 0, cro(a;i) = 0.642857, a{LUi) = 

—0.892857 and for U2 is ^(wi) = 0, cro('^i) = 0.569620, cr(tui) = —1.075949. We 

therefore have = 0, 7^(a;i) = 1.38889, = 0 and 7^(u;i) = 1.^ 

Translating back we obtain 

and 

7rlix,L0i) = -2.77778 + 1.38889X 

7rl{x,iU2) = -3.77778 + 1.88889x. 

Note that since x"^ = 1.111 is NOT an extreme point of X, we have that 

7ro(l.111,0^1) > 7r^(2,wi) and 7ro(l.lll,a;2) > 7r^(l.lll,(^2). Based on the 

RHS-LP (Problem 3.11, Ch. 3) solution we make the following updates: 

^(^1) = 

P(^2)] 

-3.77778 

Step (in) 

-2.77778 
T'iio,) = 

[ T ' i u j , ) ]  

-1.38889 
. Similarly we update r^{uj2) = 

, T%UJ2) = R(^2)] 

-1. 

. This completes Step 2 of the algorithm. 

Re-optimizing the updated scenario subproblems we obtain y{ui) = 0.6111 and 

y{u2) = 1. Note that the fractional solution for loi has not been cut off by the 

cut. The dual solutions are dJ{oJi) — [0,0,4,0] and dJ[uJi) = [0,4,0,0]. Since 

scenario Ui does not satisfy the integral requirements Vi remains unchanged. 
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Step ( i v )  

Using the dual solution for each scenario subproblem LP from Step { i n ) ,  we 

formulate the Benders-type optimality cuts. The resulting cuts are —5x + 6{u}i) > 

—8 and Oa; -I- 0{u2) > —4. Since the two scenarios are equally likely, the expected 

values associated with the cut coefficients yield --2.5x + 9 > —6. Applying the 

translation 77 = ^ + 4 we get —2.5X + T] > —2 as the optimality cut to add to the 

master program: 

Min — 2 x  +  r j  

s.t. — X > —2 

—4.5x -f- 77 > —5 

—X + r]> —1.6 

—2.5a; + 77 > —2 

x, 77 > 0. 

Solving the master program we get x"^ = 0.8, 77 = 0 and an objective value of -

1.6. Therefore, the lower bound vi = —1.6. This completes this iteration of the 

algorithm. Since Vi > ui, A; <— 3, and begin the next step of the D^-CBAC 

algorithm. 

Step 3: Branching 

We now need to apply Proposition 2 with x^ — 0.8; 

For 0^1 we only have 7Tq(x,(jJi) to consider since 7rQ(a:,a;i) has already been 

branched on: 

7r^(0.8,a;i) = min{2.77778 - 0 * 0.8,0 + 2.5 * 0.8} 

= min{2.77778,2} 

= 2 
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7R2(0.8,A;I) = 0+ 1.38889*0.8 

= 1.1111 

P^(^^(0.8,WI)-^2^0.8, A;I)) = 0.5 * (2 - 1.1111) 

= 0.4444. 

For u)2 we have: 

7r^(0.8,a;2) = min{2.5 - 0 * 0.8,0 + 1.25 * 0.8} 

= min{2.5,1} 

= 1 

7r^^(0.8,cj2) = 0 + 1.25*0.8 

= 1 

Thus 

Pa;(vro(0.8,a;2) - 7r^(0.8,a;2)) = 0.5 * (1 - 1) 

= 0. 

7ro(0.8,0)2) = min{3.77778 — 0 * 0.8,0 + 2.5 * 0.8} 

= min{3.77778,2} 

= 2 

7r2(0.8,a;2) = 0+ 1.8889* 0.8 

= 1.5111 

Thus 

p.^(7r2(0.8,W2)-7r2(0.8,a;2)) = 0.5 * (2 - 1.5111) 

= 0.24444. 
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In this case we select {vd^k) = (wi,2) since Since 0.4444 > 0.24444 > 0 . The 

branching constraint is therefore, 

-  l l M x  

2.77778 - Ox > 0 + 2.5x 

=^> -a; >-1.1111 

So now we have for the first branch —x > —1.111 with the corresponding cut in 

the subproblem updated to vr^y > z^i(wi) — ^l{uJi)x =4> —0.777778y > —2.77778 + 

2.5a:. For the second branch we have x > 1.111 with the corresponding cut 

updated to — ^\{uJi)x —0.77778y > 0 — Oa; or —y > 0. Note that 

for this branch y is fixed at 0. We now create two nodal problems P^andP^ whose 

master programs are as follows. 

Node 3 Master Program: 

Min ~2x + rj 

s.t. — X > —2 

—4.5a; + 77 > —5 

—X > —1.6 

—2.5a; + 77 > —2 

-a; > -1.111 

x , r ]  >  0 .  

with optimal solution a;^ = 0.8, r] = 0 and an objective value of -1.6. Therefore, the 

lower bound = —1.6. 
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Node 4 Master Program: 

Min — 2 x  +  r j  

s.t. — X > —2 

— 4 . 5 a ;  +  r j  >  — 5  

—X > —1.6 

— 2 . 5 a ;  +  r ]  >  — 2  

X > 1.111 

x , r ]  >  0 .  

with optimal solution x"̂  = 1.111, rj — 0.7775 and an objective value of -1.4445. 

Therefore, the lower bound V4 = —1.4445. Set C *— CU {P3,P4} to the list of 

unexplored problems, which is now C — with V2 = —1, fs = —1.6 and 

Vi = -1.4445. 

Step 1: Termination 

List £ ^ 0. Since < V2 and V3 < V4 we select P3 and set £ \ {Pa} -

Step 2: Apply one iteration of the D'^ Algorithm to the Nodal Problem 

Step ( i )  

For Step 1 of the algorithm we use = 0.8 and solve the LP relaxation of the 
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second-stage subproblem for uji and uj2'. 

LPI : /I(0.8,a;I) = Min-4y 

s.t. — 6y > —6 

- y  >  -1  

-y  >  -1  

-0.77778?/ > -0.77778 

y > 0. 

and 

LPi • /2(0.8,a;2) = Min-4y 

s.t. — 6y > —8 

-y  >  -1  

-y>-1.5 

-0.77778y > -2.66668 

y > 0. 

The optimal solution for LPi is y{oJi) = 1 with /2(0.8,a;i) = —4, and for LP2 is 

y{oj2) = 1 with 72(0.8,1^2) = —4. Since the solutions for both scenarios satisfy 

integral requirements we have an incumbent solution: x = 1.6 and we update the 

upper bound V4 = min{yi, —2 * 0.8 + 0.5 * (—4) + 0.5 * (—4) +4} = —1.6 (Note that 

14 = 0 from the first iteration of the D^-CBAC algorithm). 

The dual solutions are (i'''(ti;i) = [0,0,0,5.142856] and = [0,0,0,4], We 

now go to step { i v )  of the D ' ^  algorithm. 

Step {iv) 

Using the dual solution for each scenario subproblem LP from Step (ii), we 

formulate the Benders-type optimality cuts. The resulting cuts are — 12.8571X -I-
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> —14.2857 and 7.55562; + 0(^2) > —15.1111. Since the two scenarios 

are equally likely, the expected values associated with the cut coefficients yield 

— 10.2064x + 6 > —14.6984. Applying the translation r] = 0 + 4 we get 

— 10.2064a: + 7? > —10.6984 as the optimality cut to add to the master program; 

Min —2x + rj 

s.t. — X > —2 

—4.5a: + ?? > —5 

—X > —1.6 

-2.5a;+ 77 > -2 

-X > -1.111 

-10.2064X + 77 > -10.6984 

x,r] > 0. 

Solving the master program we get x'̂  = 0.8, r/ = 0 and an objective value of -

1.6. Therefore, the lower bound V3 = —1.6. This completes this iteration of the 

algorithm. Since V3 = V3, We fathom this node by optimality and update the 

overall bound V <— V3. 

We now need to scan the problem on the list £ of open problems. We have two 

unexplored nodal problems: jC = {P2,P4,} with V2 = —1 and = —1.4445. Since 

V2 > V and V4 > V we fathom both nodes by bound and set £ •<— £ \ {P2, P4}. 

Step 1: Termination 

List £ = 0. Therefore, the algorithm terminates with x = 0.8 as the optimal 

solution with expected objective value = —1.6 — 4 = —5.6. And this concludes the 

example illustration. 
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8.5 Extensions 

The derivation of the D^-CBAC algorithm focused purely on SMIP with continuous 

first-stage. Next we need to extend this approach to mixed-binary, mixed-integer, 

and pure-integer cases. For the all these three cases if the master program is solved 

as an MIP then we can basically follow the approach outlined in this chapter. 

Whenever tiq{x,u)) ^ Tr^{x,uj) for some x and uj E 0, we can do branching in the 

first-stage based on Proposition 2. Nevertheless, a thorough analysis of such an 

approach is yet to be made. 

On the other hand if the master program is solved as an LP relaxation, then the 

situation becomes a lot more complex. This would require not only branching on 

the continuous variables but also on the first-stage integer decision variables whose 

solution is fractional. The ideas presented in this chapter provides a starting point. 

8.6 Summary 

This chapter has extended the D'^ approach to SMIP with continuous or mixed-

binary first-stage. In particular, a branch-and-cut method is derived and algorithm 

convergence proved. This approach is fairly unique in that branching is done on a 

continuous domain and is guided by the disjunction variables in the second-stage. 

A simple example problem that illustrates the proposed method is given. The ideas 

presented in this chapter should be best construed as conceptual. 



190 

CHAPTER 9 

CONCLUSIONS AND FUTURE WORK 

9.1 Conclusions 

The research in this dissertation has demonstrated the potential apphcation of the 

disjunctive decomposition {D"^) approach towards solving large-scale SCO problems. 

These problems result in very large scale instances which are comprised of loosely 

coupled subsystems. By taking advantage of the loosely coupled structure of SCO 

problems, it is shown that the divide-and-conquer paradigm of decomposition-

coordination methods provide a highly effective algorithm, and surpasses the 

scalability of even the most efficiently implemented backtracking search algorithms. 

Computer implementation of D'^ methods and computational experimentation 

with several instances of SCO problem instances are undertaken. The modeling 

aspect of the research is conducted by deriving a new model for the server location 

problem under uncertainty as well as experimenting with the models from the 

literature. The method is also applied to stochastic matching and stochastic 

strategic supply chain planning problems from the literature. The two models are 

of a large-scale nature, have continuous decision variables in the second stage, and 

are quiet different in how uncertainty is revealed in each one. 

The appropriateness of the approach is determined through computational 

experiments on numerous large-scale problem instances from the three application 

areas. Comparisons of the computation time results with those obtained by a state-

of-art optimization software applied to the DEP are done. The effect of various 
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aspects of the problem on computation time and algorithm convergence are also 

analyzed. Large-scale problem instances comprising of lots of discrete decision 

variables and constraints are solved within reasonable time. The results of the 

study reveal the promising potential of the D'^ approach towards solving large-scale 

SMIP problems. 

In order for the current method to converge, the first-stage solutions are 

required to be extreme points of the first-stage feasible set. This research extends 

the D'^ approach to SCO problems where this requirement is not necessary. In 

particular, a branch-and-cut method for two-stage SMIP with continuous first-stage 

is derived. 

9.2 Contributions of This Research 

This research has made modeling and computational contributions to stochastic 

combinatorial optimization. These contributions include the following: 

1. Computer implementation of the D"^ algorithm and the identification of 

the issues associated such an implementation. These issues will potentially 

translate to future algorithms that follow a similar approach. 

2. Proposing a new model for server location under uncertainty (the SSLP) with 

potential use in a variety of application domains. Conducting a computational 

study of the SSLP and demonstrating that significant gains can be made by the 

application of the method to SSLP. As a by-product of this experiment, we 

have developed SSLP test problems that can be used to test the performance 

of other algorithms. These test problems will be made available via SIPLIB 

at http://www.isye.gatech.edu/~sahmed/siplib/. 

3. Solving some of the largest SCO problem instances reported in the literature 

to date. Some of these problem instances have up to over a hundred thousand 

http://www.isye.gatech.edu/~sahmed/siplib/
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constraints and over a million binary variables. Furthermore, this research 

has revealed that the convergence of the D"^ method on large-scale SCO 

problems is in fact attainable. In addition, the dissertation demonstrates the 

applicability of the approach to stochastic strategic supply chain planning 

and stochastic matching problem instances from the hterature. 

4. Finally, an extension of disjunctive decomposition to two-stage SMIP with 

continuous first-stage is made and a new branch-and-cut procedure is 

proposed. 

9.3 Future Work 

Although this research has contributed towards solving some of the largest SMIP 

problem instances to date, the challenge of solving general SMIP problems is far 

from over. In fact, we are still in the early stages of this field. A lot of research still 

remains to be done in order to meet the "grand challenge" imposed by SCO. The 

following are some of the research areas along this line of work that remain to be 

explored; 

1. This research has illustrated, implemented and experimented with a 

sequential version of the algorithm. In order to get the most out 

of the decomposition algorithm, distributed/parallel implementation and 

computational experimentation of the algorithm is needed. In fact, distributed 

computing may provide the only way to conquer some of the most difficult 

and challenging large-scale SCO problems. Towards this goal, the conference 

paper by (Ntaimo and Yu, 2004) has laid the basic framework for a distributed 

implementation of the algorithm. 

2. Chapter 8 provides a specific direction for future research. This chapter 

has extended disjunctive decomposition to SMIP problems with first-stage 
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solutions that are no longer required to be extreme points of X. The next task 

is to implement the ideas presented in Chapter 8 and conduct computational 

experiments to assess the performance of the proposed method. 

3. A vast majority of important combinatorial optimization problems are NP-

hard and in a lot of cases their solutions require approximation algorithms. 

Other than striving to solve SCO problems to optimality as in this dissertation, 

future research would involve settling for "good" approximate solutions. The 

design and analysis of approximations/heuristics for large scale SCO remains 

an open research area (Stougie and van der Vlerk, 2003). 

4. Finally, in many real life problems decisions have to be made sequentially over 

time under uncertainty. Therefore, there is a need for algorithms that allow for 

optimal decisions to be made accordingly and this leads to the multistage case. 

Another research direction is to extend the D'^ approach to the multistage case. 

This will allow for the development of new algorithms for multistage SMIP. 



194 

REFERENCES 

Ahmed, S. and R. Garcia (2003). Dynamic capacity acquisition and assignment 
under uncertainty. Annals of Operational Research, to appear. 

Ahmed, S., A. King, and G. Parija (2003). A multi-stage stochastic integer 
programming approach for capacity expansion under uncertainty. Journal of 
Global Optimization 26, 3-24. 

Ahmed, S., M. Tawarmalani, and N. V. Sahinidis (2004). A finite branch and bound 
algorithm for two-stage stochastic integer programs. To appear in Mathematical 
Programming. http://www.isye.gatech.edu/so/publications/. 

Albareda-Sambola, M., M. H. van der Vlerk, and E. Fernandez (2002). 
Exact solutions to a class of stochastic generalized assignment problems. 
Research Report 02A11, SOM, University of Groningen, The Netherlands, 
http: / / som.rug.nl. 

Alonso, A., L. F. Escudero, and M. T. Ortuho (2000). A stochastic 0-1 program 
based approach for the air traffic flow management problem. European Journal 
of Operations Research 120, 47-62. 

Alonso-Ayuso, A., L. F. Escudero, A. Garin, M. T. Ortuno, and G. Perez (2003). 
An approach for strategic supply chain planning under uncertainty based on 
stochastic 0-1 programming. Journal of Global Optimization 26, 97-124. 

Baker, S., D. Morton, R. Rosenthal, and L. Williams (2002). Optimizing military 
airlift. Operations Research 50, 582-602. 

Balas, E. (1979). Disjunctive programming. Annals of Discrete Mathematics 5, 3-
51. 

Balas, E., E. S. Ceria, and G. Cornuejols (1993). A lift-and-project cutting plane 
algorithm for mixed 0-1 integer programs. Mathematical Programming 58, 295-
324. 

Barahona, F., S. Bermon, O. Gunluk, and S. Hood (2001). Robust capacity planning 
in semiconductor manufacturing. IBM Research Report RC22196, IBM. 

Beale, E. (1955). On minimizing a convex function subject to linear inequalities. 
Journal of Royal Statistical Society, Series B 17, 173-184. 

Benders, J. F. (1962). Partitioning procedures for solving mixed-variable 

http://www.isye.gatech.edu/so/publications/


195 

programming problems. Numerische Mathematic 4, 238-252. 

Barman, O. and D. Simchi-Levi (1988). Finding the optimal a priori tour and 
location of a traveling salesman with nonhomogeneous customers. Transportation 
Science 22(2), 148-154. 

Bertsimas, D. (1994). A mathematical programming approach to stochastic and 
dynamic optimization problems. Technical Report, Operations Research Center, 
MIT, Cambridge, MA. 

Bertsimas, D. and M. Sim (2003). Robust discrete optimization and network flows. 
Mathematical Programming Series B 98, 49-71. 

Birge, J. R. (1985). Decomposition and partitioning methods for multi-stage 
stochastic linear programs. Operations Research 33, 989-1007. 

Birge, J. R. (1995). Solution Methods for Stochastic Dynamic Linear Progams. 
Stanford University, Stanford, CA: Ph.D. Dissertation. Technical Report SOL 
81-29, Systems Optimization Lab, Stanford University. 

Birge, J. R. (1997). Stochastic programming computation and applications: State 
of the art. INFORMS Journal on Computing 9(2), 111-133. 

Birge, J. R. and F. V. Louveaux (1988). A multicut algorithm for two-stage 
stochastic linear programs. European Journal of Operations Research 34, 384-
392. 

Birge, J. R. and F. V. Louveaux (1997). Introduction to Stochastic Programming. 
New York: Springer. 

Blair, C. (1995). A closed-form representation of mixed-integer program value 
functions. Mathematical Programming 71, 127-136. 

Blair, C. and R. Jeroslow (1982). The value function of an integer program. 
Mathematical Programming 23, 237-273. 

CarinS, D., T. Kent, D. Meyers, C. Stacy, M. Stylvanus, A. Turner, 
K. Watanabe, and W. Ziemba (1994). The Russel-Yasuda Kasai Model: 
An asset/liability model for a Japanese insurance company using multistage 
stochastic programming. Interfaces 24, 29-49. 

Car0e, C. and R. Schultz (1999). Dual decomposition in stochastic integer 
programming. Operations Research Letters 24, 37-45. 

Car0e, C. C. (1998). Decomposition in Stochastic Integer Programming. Dept. of 
Operations Research, University of Copenhagen, Denmark: Ph.D. thesis. 

Car0e, C. C. and R. Schultz (1998). A two-stage stochastic program for 
unit commitment under uncertainty in a hydro-thermal power system. 



196 

Preprint 98-13, Eclitzeit-Optimierung groer Systeme. http;//www.zib.de/dfg-
echtzeit/Publikationen/Preprints/Preprint-98-13.html. 

Carpenter, T., I. Lustig, and J. Mulvey (1991). Formulating stochastic programs 
for interior point methods. Operations Research 39, 757-770. 

Charnes, A. and W. Cooper (1959). Chance constrained programming. Management 
Science 5, 73-79. 

Cook, W. J., W. H. Cunningham, W. R. Pulleyblank, and A. Schrijver (1998). 
Combinatorial Optimization. New York: John Wiley and Sons. 

Cormican, K., D. Morton, and R. Wood (1998). Stochastic network interdiction. 
Operations Research 46, 184-197. 

Coy, P. (1996). The CFO goes 3D. Business Week. October 28. 

Dantzig, G. (1955). Linear programming under uncertainty. Management Science 1, 
197-206. 

Dantzig, G. and P. Glynn (1990). Parallel processors for planning under uncertainty. 
Annals of Operations Research 22, 1-21. 

Dantzig, G. and G. Infanger (1991). Large-scale stochastic linear programs -
Importance sampling and Benders decomposition. In C. Brezinski and U. Kulisch 
(Eds.), Computational and Applied Mathematics I (Dublin, 1991), pp. 111-120. 
North-Holland, Amsterdam. 

Dantzig, G. and A. Madansky (1961). On the solution of two-stage linear programs 
under uncertainty. In J. Neyman (Ed.), Proceedings of the 4th Berkeley 
Symposiom on Mathematical Statistics and Probability, pp. 165-176. Berkeley, 
CA: University of California Press. 

Doverspike, R. D. (2003). Private communication. 

Dyer, M. and L. Stougie (2003). Computational complexity of stochastic 
programming problems. Spor-report 2003-09, Dept. of Mathematics and 
Computer Science, Eindhoven Technical University, Eindhoven. 

Edirisinghe, N. and W. Ziemba (1996). Implementing bounds-based approximations 
in convex-concave two stage programming. Mathematical Programming 19, 314-
340. 

Edmonds, J. (1965). Maximum matching and a polyhedron with 0-1 vertices. 
Journal of research of the national bureau of standards 69B, 125-130. 

Eppen, G., R. Martin, and L. Schrage (1989). A scenario approach to capacity 
planning. Operations Research 37, 517-527. 



197 

Escudero, L., E. Galindo, E. Gomez, G. Garcia, and V. Sabau (1996). SCHUMAN, a 
modeling framework for supply chain management under uncertainty. European 
Journal of Operational Research 119, 13-34. 

Ferguson, A. and G. Dantzig (1956). The allocation of aircraft to routes: An example 
of linear programming under uncertain demands. Management Science 3, 45-73. 

Fortnow, L. (1997). Counting complexity. In L. Hemaspaandra and A. Selman 
(Eds.), Complexity Theory Retrospective 11, pp. 81-107. Berlin; Springer-Verlag. 

Frantzeskakis, L. and W. Powell (1990). A successive approximation procedure for 
stochastic dynamic vehicle allocation problems. Transportation Science 24, 40-
57. 

Frauendorfer, K. (1992). Stochastic two-stage programming. Lecture Notes in 
Economics and Mathematical Systems 392. 

Frauendorfer, K. (1994). Multistage stochastic programming: error analysis for the 
convex case. Zeitschrift fur Operations Research 39, 93-122. 

Gassmann, H. (1990). MSLiP: A computer code for the multistage stochastic linear 
programming problem. Mathematical Programming 47, 407-423. 

Hauskrecht, M. and E. Upfal (2001). A clustering approach to solving 
large stochastic matching problems. Proceedings of the Seventeenth 
International Conference on Uncertainty in Artificial Intelligence, 219-226. 
http://www.cs.pitt.edu/ milos/publications.html. 

Higle, J., B. Rayco, and S. Sen (2002). Stochastic scenario decomposition for multi­
stage stochastic programs, submitted to Operations Research. 

Higle, J. and S. Sen (1991). Stochastic Decomposition: An algorithm for two-stage 
linear programs with recourse. Mathematics of Operations Research 16, 83-112. 

Higle, J. and S. Sen (1996). Stochastic Decomposition: A Statistical Method for Large 
Scale Stochastic Linear Programming. Dordrecht: Kluwer Academic Publishers. 

Higle, J. and S. Sen (1999). Statistical approximations for stochastic linear 
programming problems. Annals of Operations Research 85, 173-192. 

Higle, J. and S. Sen (2002). Duality for multistage convex stochastic programs, to 
appear in Annals of Operations Research. 

Horst, R. and H. Tuy (1996). Global Optimization: Deterministic Approaches (3rd 
ed.). Berlin: Springer-Verlag. 

ILOG, I. (2000). CPLEX 7.0 Reference Manual. Incline Village, NV: ILOG CPLEX 
Division. 



198 

Infanger, G. (1991). Monte Carlo (importance) sampling within a Benders 
decomposition algorithm for stochastic linear programs; Extended version: 
Including results of large-scale problems. Technical report sol 91-6, Systems 
Optimization Lab, Dept. of Operations Research, Stanford University, Stanford, 
CA. 

Jorjani, S., C. H. Scott, and D. L. Woodruff (1995). Selection of an optimal subset 
of sizes. Technical report, Univ. of California, Davis, CA. 

Kail, P. (1976). Stochastic Linear Programming. Berlin: Springer-Verlag. 

Kali, P. (1979). Computational methods for solving two-stage stochastic linear 
programming problems. Journal of Applied Mathematics and Physics 30, 261-
271. 

Kali, P. and J. Mayer (1996). SLP-IOR: An interactive model management system 
for stochastic linear programs. Mathematical Programming, Series B 75, 221-
240. 

Kail, P. and S. Wallace (1994). Stochastic Programming. Chichester England: John 
wiley & Sons. 

Kelley, J. (1960). The cutting plane method for convex programs. Journal of 
SIAM 8, 703-712. 

Kenyon, A. S. and D. P. Morton (2003). Stochastic vehicle routing with random 
travel times. Transportation Science 37(1), 69-82. 

Klein Haneveld, W., L. Stougie, and M. van der Vlerk (1995). On the convex hull of 
the simple integer recourse objective function. Annals of Operations Research 56, 
209-224. 

Klein Haneveld, W., L. Stougie, and M. van der Vlerk (1996). An algorithm for 
construction of convex hulls in simple integer recourse programming. Annals of 
Operations Research 64, 67-81. 

Kong, N. and A. J. Schaefer (2004). A factor | approximation algorithm for 
two-stage stochastic matching problems, submitted to INFORMS Journal on 
Computing, http://www.ie.pitt.edu/ schaefer/SIP.htm. 

Kusy, M. and W. Ziemba (1986). A bank asset and liability management model. 
Operations Research 34, 356—376. 

Laporte, G. and F. V. Louveaux (1993). The integer L-shaped method for stochastic 
integer programs with complete recourse. Operations Research Letters 1, 133-
142. 

Laporte, G., F. V. Louveaux, and H. Mecure (1994). An exact solution for the a 



199 

priori optimization of the probabilistic traveling salesman problem. Operations 
Research 39, 71-78. 

Laporte, G., F. V. Louveaux, and L. van Hamme (2002). An integer L-shaped 
algorithm for the capacitated vehicle routing problem with stochastic demands. 
Operations Research 50, 415-423. 

Linderoth, J. and S. J. Wright (2003). Decomposition algorithms for stochastic 
programming on a computational grid. Computational Optimization and 
Applications 24, 207-250. 

Lulh, G. and S. Sen (2004). A branch-and-price algorithm for multistage stochastic 
programming with application to stochastic batch-sizing problems. Management 
Science 50(6). 

Lustig, I., R. Marsten, and D. Shanno (1991). Computational experience with a 
primal-dual interior point method for linear programming. Linear Algebra and 
its application 152, 191-222. 

Lustig, I., R. Marsten, and D. Shanno (1994). Interior point methods for linear 
programming; Computational state of the art. ORSA Journal on Computing 6, 
1-14. 

Markowitz, H. (1952). Portfolio selection. Journal of Finance 7, 77-91. 

MirHassani, S., C. Lucas, G. Mitra, and C. Poojari (2000). Computational 
solution of capacity planning model under uncertainty. Parallel Computing 
Journal 26(5), 511-538. 

Morton, D., R. Rosenthal, and L. Weng (1996). Optimizion for military airlift. 
Military Operations Research 1, 49-68. 

Mulvey, J. and A. Ruszczynski (1995). A new scenario decomposition method for 
large-scale stochastic optimization. Operations Research 43(3), 477-489. 

Norkin, V., Y. Ermoliev, and A. Ruszczyfiski (1998). On optimal allocation of 
indivisibles under uncertainty. Operations Research 46(3), 381-395. 

Ntaimo, L. and L. Yu (2004). Distributed discrete optimization under uncertainty. 
Proceedings of HE Conference 2004 • 

Ogryczak, W. and A. Ruszczynski (2002). Dual stochastic dominance and related 
mean-risk models. SIAM Journal on Optimization 13, 60-78. 

Pereira, M. and L. Pinto (1985). Stochastic optimization of a multireservior 
hydroelectric system - A decomposition approach. Water Resources Research 21, 
779-792. 

Pereira, M. and L. Pinto (1991). Multistage stochastic optimization applied to 



200 

energy planning. Mathematical Programming 52, 359-375. 

Powell, W. (1988). A comparative review of alternative algorithms for the dynamic 
vehicle allocation program. In B. Golden and A. Assad (Eds.), Vehicle Routing: 
Methods and Studies. North-Holland. 

Powell, W. (1990). Real-time optimization for truckload motor carriers. OR/MS 
Today 17, 28-33. 

Powell, W. (1996). A stochastic formulation of the dynamic assignment problem, 
with an application to truckload motor carriers. Transportation Science 3, 195-
219. 

Powell, W. and D. Gittoes (1996). An approximate labehng algorithm for the 
dynamic assignment problem. In M. B. L. Bianco, P. Toth (Ed.), Advanced 
Methods in Transportation Analysis, pp. 547-584. Springer, New York. 

Powell, W., W. Snow, and R. K.-M. Cheung (2004). Adaptive labeling algorithms 
for the dynamic assignment problem. Transportation Science. 

Pr&opa, A. (1971). Logarithmic concave measures with application to stochastic 
programming. Acta Scientiarium Mathematiarum (Szeged) 32, 301-316. 

Prekopa, A. (1995). Stochastic Programming. Dordrecht, The Netherlands; Kluwer. 

Riis, M. and Schultz (2003). Applying the minimum risk criterion in stochastic 
recourse programs. Computational Optimization and Applications 16, 267-288. 

Riis, M., A. Skriver, and J. Lodahl (2004). Deployment of mobile switching centers in 
a telecommunications network: A stochastic programming approach, to appear. 
http://home.imf.au.dk/riis /. 

Rockafellar, R. and S. Uryasev (2000). Optimization of conditional value-at-risk. 
The Journal of Risk 2(3), 21-41. 

Rockafellar, R. and S. Uryasev (2002). Conditional value-at-risk for general loss 
distributions. Journal of Banking and Finance 26(7), 1443-1471. 

Rockafellar, R. and R.-B. Wets (1991). Scenarios and policy aggregation in 
optimization under uncertainty. Mathematics of Operations Research 16, 119-
147. 

Rockafellar, R. and R.-B. Wets (1992). A dual strategy for the implementation of the 
aggregation principle in decision making under uncertainty. Applied Stochastic 
Models and Data Analysis 8, 245-255. 

Romish, W. and R. Schultz (1991). Distribution sensitivity in stochastic 
programming. Mathematical Programming 50, 197-226. 



201 

Rosa, C. and A. Ruszczynski (1996). On augmented lagrangian decomposition 
methods for multistage stochastic programs. Annals of Operations Research 
Letters 64, 289-309. 

Ruszczynski, A. (1993). Parallel decomposition of multistage stochastic programs. 
Mathematical Programming 58, 201-228. 

Sand, G. and S. Engell (2003). A two-stage stochastic programming 
approach to real-time scheduling. In I. Grossmann and C. McDonald 
(Eds.), Fourth International Conference on Foundations of Computer-
Aided Process Operations, pp. 347-350. Austin, TX : CACHE Corp. 
http;//ametist.cs.utwente.nl/INTERNAL/PUBLICATIONS/ 
DORTMUNDPublications/Dortmund-Publications.html. 

Schultz, R., , L. Stougie, and M. van der Vlerk (1998). Solving stochastic programs 
with integer recourse by enumeration: a framework using Grobner basis. 
Mathematical Progamming 83, 71-94. 

Schultz, R. (1993). Continuity properties of expectation functions in stochastic 
integer programming. Mathematics of Operations Research 18, 578-589. 

Schultz, R. (2003). Integers in stochastic programming. Preprint series; Smd, 543, 
Mathematik - Universitaet Duisburg-Essen. 

Schultz, R., L. Stougie, and M. van der Vlerk (1996). Two-stage stochastic integer 
programming: A survey. Statistica Neerlandica 50, 404-416. 

Sen, S. (1992). Relaxations for probabilistically constrained programs with discrete 
random variables. Operations Research 18, 81-86. 

Sen, S. (2003). Algorithms for stochastic mixed-integer programming models. 
In K. Aardal, G. Nemhauser, and R. Weismantel (Eds.), Stochastic 
Integer Programming Handbook, Chapter 18. Dordrecht, The Netherlands. 
http://www.sie.arizona.edu/MORE/papers/SIPHbook.pdf. 

Sen, S., R. D. Doverspike, and S. Cosares (1994). Network planning with random 
demand. Telecommunications Systems 3, 11-30. 

Sen, S. and J. Higle (1999). An introductory tutorial on stochastic linear 
programming models. Interfaces 29(2), 33-61. 

Sen, S. and J. Higle (2000). The theorem and a algorithm for large scale 
stochastic integer programming: Set convexification. Stochastic E-Print Series. 
ht tp: //do chost. r z. hu-b er lin. de/speps/. 

Sen, S., J. L. Higle, and L. Ntaimo (2002). A summary and illustration of disjunctive 
decomposition with set convexification. In D. L. Woodruff (Ed.), Stochastic 
Integer Programming and Network Interdiction Models, Chapter 6. Dordrecht, 

http://www.sie.arizona.edu/MORE/papers/SIPHbook.pdf


202 

The Netherlands: Khiwer Academic Press. 

Sen, S. and H. Sherah (2004). Decomposition with branch-and-cut approaches for 
two stage stochastic mixed-integer programming, submitted to Mathematical 
Programming. http://www.sie.arizona.edu/MORE/papers/dbacs.pdf. 

Sen, S. and H. D. Sherali (1987). Nondifferentiable reverse convex programs and 
facetial cuts via a disjunctive characterization. Mathematical Programming 37, 
169-183. 

Sen, S. and H. D. Sherah (2003). Decomposition with branch-and-cut approaches 
for two stage stochastic mixed-integer programming, to appear in Mathematical 
Programming. http://www.sie.arizona.edu/MORE/papers/MayRevDbacs.pdf. 

Sen, S., L. Yu, and T. Gene (2003). A stochastic programming 
approach to power portfoUo optimization. submitted. 
http://tucson.sie.arizona.edu/MORE/papers.html. 

Shapiro, A. (1991). Asymptotic analysis of stochastic programs. Annals of 
Operations Research 30, 169-186. 

Shapiro, A. and T. Homem de Mello (1998). A simulation-based approach to 
stochastic programming with recourse. Mathematical Programming 81, 301-325. 

Sherali, H. and W. Adams (1990). A hierarchy of relaxations between the continuous 
and convex hull representations for 0-1 programming problems. SI AM J. on 
Discrete Mathematics 3, 411-430. 

Sherah, H. and B. Fraticelli (2002). A modification of benders' decomposition 
algorithm for discrete subproblems: an approach for stochastic programs with 
integer recourse. Journal of Global Optimization 22, 319-342. 

Sherali, H. and C. Shetty (1980). Optimization with disjunctive constraints. Lecture 
Notes in Economics and Mathematical Systems 181, 411-430. 

Simms, A. E. (Ed.) (1997). A stochastic approach to modeling aviation 
security problems using the KNAPSACK problem. Virginia Tech., Blacksburg, 
Virginia: M.S. Thesis, http://scholar.lib.vt.edu/theses/available/etd-53097-
132255/unrestricted/asimms.pdf. 

Stougie, L. (1985). Design and analysis of algorithms for stochastic integer 
programming. Ph.d. thesis. Center for Mathematics and Computer Science, 
Amsterdam, The Netherlands. 

Stougie, L. and M. H. van der Vlerk (2003). Approximation in stochastic 
integer programming. Research Report 03A14, SOM, Univ. of Groningen, The 
Netherlands, http://www.ub.rug.nl/eldoc/som/a/03A14/03Al4.pdf. 

http://www.sie.arizona.edu/MORE/papers/dbacs.pdf
http://www.sie.arizona.edu/MORE/papers/MayRevDbacs.pdf
http://tucson.sie.arizona.edu/MORE/papers.html
http://www.ub.rug.nl/eldoc/som/a/03A14/03Al4.pdf


203 

Strazicky, B. (1980). Some results concerning an algorithm for discrete recourse 
problem. In M. Dempster (Ed.), Stochastic Programming. New York: Academic 
Press. 

Takriti, S. and S. Ahmed (2002). On robust optimization of two-stage systems. To 
appear in Mathematical Programming. 

Takriti, S., J. Birge, and E. Long (1996). A stochastic model for the unit 
commitment problem. IEEE Transactions on Power Systems 11, 1497-1508. 

Uryasev, S. and P. M. Pardalos (2001). Stochastic Optimization: Algorithms and 
Applications. New York: Kluwer Academic Publishers. 

Valiant, L. (1979). The complexity of enumeration and reliability problems. SI AM 
Journal on Computing 8, 410-421. 

van der Vlerk, M. (1995). Stochastic programming with integer recourse. Ph.d. 
thesis, Rijksuniversiteit Groningen, The Netherlands. 

van der Vlerk, M. (2002). On the convex hull of the simple integer recourse objective 
function. Som research report 02a21, University of Groningen. also, Stochastic 
Programming E-Print Series 2002-10. 

Van Slyke, R. and R.-B. Wets (1969). L-shaped linear programs with application 
to optimal control and stochastic programming. SIAM Journal on Applied 
Mathematics 17, 638-663. 

Wald, A. (1950). Statistical Decision Functions. Mew York: Wiley. 

Wang, Q., E. Batta, and C. M. Rump (2003). Facility location models for immobile 
servers with stochastic demand. Naval Research Logistics. Submitted. 

Wets, R. J.-B. (1974). Stochastic programs with fixed recourse: the equivalent 
deterministic problem. SIAM Review 16, 309-339. 

Wolsey, L. (1998). Integer Programming. New York: Wiley &: Sons. 

Woodruff, D. L. (Ed.) (2002). Stochastic Integer Programming and Network 
Interdiction Models. Dordrecht, The Netherlands: Kluwer Academic Press. 


