INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand comer and continuing from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality $6^{\prime \prime} \times 9^{\prime \prime}$ black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA
800-521-0600

THE PROXIMITY EFFECT IN THE SPECTRA OF QUASI-STELLAR OBJECTS AND THE EVOLUTION OF THE ULTRAVIOLET BACKGROUND FROM $\mathrm{Z}=4$ TO $\mathrm{Z}=0$

by
Jennifer Erin Scott

A Dissertation Submitted to the Faculty of the Department of Astronomy
In Partial Fulfillment of the Requirements
For the Degree of
Doctor of Philosophy
In the Graduate College
The University of Arizona

UMí

UMI Microform 3053910
Copyright 2002 by ProQuest Information and Learning Company. All rights reserved. This microform edition is protected against unauthorized copying under Title 17, United States Code.

ProQuest Information and Learning Company 300 North Zeeb Road
P.O. Box 1346

Ann Arbor, MI 48106-1346

THE UNIVERSITY OF ARIZONA © GRADUATE COLLEGE

As members of the Final Examination Committee, we certify that we have read the dissertation prepared by Jennifer Erin Scott
entitled The Proximity Effect in the Spectra of Quasi-Stellar
Objects and the Evolution of the Ultraviolet Background from $\mathrm{Z}=4$ to $\mathrm{Z}=0$
and recommend that it be accepted as fulfilling the dissertation requirement for the Degree of Doctor of Philosophy

Final approval and acceptance of this dissertation is contingent upon the candidate's submission of the final copy of the dissertation to the Graduate College.

I hereby certify that I have read this dissertation prepared under my direction and recommend that it be accepted as fulfilling the dissertation requirement.

Statement by Author

This dissertation has been submitted in partial fulfillment of requirements for an advanced degree at The University of Arizona and is deposited in the University Library to be made available to borrowers under rules of the Library.

Brief quotations from this dissertation are allowable without special permission, provided that accurate acknowledgment of source is made. Requests for permission for extended quotation from or reproduction of this manuscript in whole or in part may be granted by the head of the major department or the Dean of the Graduate College when in his or her judgment the proposed use of the material is in the interests of scholarship. In all other instances, however, permission must be obtained from the author.

Signed:

Dedication

I dedicate this work to my parents, Nolie Edward and Susan Elizabeth Scott, and to my sister, Maggie Suzannah.

Acknowledgements

First and foremost, I would like to acknowledge and thank my parents, life mentors, and role models, Edward and Susan Scott. Without their love and support and that of my sister Maggie, the task of earning this Ph.D. would have been far more arduous.

I owe my scientific training primarily to my two advisors, Dr. Jill Bechtold and Dr. Matthias Steinmetz, who have taught me nearly everything I know about observational astronomy and theoretical astrophysics, respectively. Their guidance has been indispensible, and I thank them for all the opportunities they have given me. I also thank others at Steward Observatory and elsewhere who provided collaboration, encouragement, or just some food for thought along the way: Drs. Adam Dobrzycki, Varsha Kulkarni, Chris Impey, Buell Jannuzi, Phil Pinto, Romeel Davé, Craig Foltz, Peter Strittmatter, and Raymond White. I thank Dr. Eileen Friel for encouraging me to get a Ph.D., and I thank Miwa Morita for her work on the HST/FOS archive data.

I am grateful to all my fellow grads for providing such excellent examples of how to be a good scientist, but extra thanks must go to the officemates I have had during my years at Steward, especially to Audra Baleisis, Aimee Hungerford, and David Sudarsky. Other current or former UA astronomy or physics grads I thank in particular for great discussions about life, the universe, and everything are Mike Collins, Paul Harding, Eric Hooper, Chris Fryer, Dan M ${ }^{c}$ Intosh, Cathy Petry, Greg Rudnick, and Todd Thompson.

I extend thanks everyone in the Department, Business, and Director's Offices of Steward, especially Michelle Cournoyer, Catalina Diaz-Silva, Joy Facio, Sharon Jones, Kristen Morse, and Susan Warner, for making the many navigations through red tape virtually painless. I thank Carmen Henley for all the comic relief, and I thank Alan Koski, Jeff Fookson, and Patty Esterline for sharing their computer expertise.

I am very grateful to John Birkinbine for his love and support and to his parents, John and Seny, for the wonderful dinners, and for making me so welcome in their home. I am thankful for other Tucson friends: Kyle Bronsdon, Colby Campbell and Margaret Ford, Caren Crutcher, Brian Dilkes, Oscar Fowler, Deborah Koolbeck, Fern Raper, and Amy and Seth Ruskin. And I thank Les Wallach and Henry Tom at Line and Space, LLC, for giving me so many opportunities to think about space in a different way. Others who are far from Tucson but who have remained close to my heart include my grandmother, Vivian M^{c} Gaghie, and my true comrade-in-arms, Cristina Perez.

I am grateful for the financial support of the National Science Foundation through the Graduate Student Research Fellowship and the Zonta Foundation through the Amelia Earhart Fellowship.

Table of Contents

List of Figures 10
List of Tables 13
Abstract 14
Chapter 1. Introduction 16
1.1. Organization of the Dissertation 18
1.2. The Evolution of the Ly- α forest 19
1.3. The Proximity Effect and the Ultraviolet Background 20
1.4. Simulations of Ly- α Forest Spectra and the Proxmity Effect 22
1.5. Conclusions 23
Chapter 2. MMT Data and Absorption Line Statistics at $Z>1.7$ 25
2.1. Observations and Data Reduction 25
2.2. Line Identification Process 26
2.3. Results and Discussion 29
Chapter 3. The Ultraviolet Background at $Z>1.7$ 56
3.1. Data 56
3.1.1. Spectrophotometry 56
3.1.2. QSO Systemic Redshifts 57
3.2. Ly- α Forest Statistics for $z_{a b s} \approx z_{e m}$: The Proximity Effect 58
3.2.1. Spectrophotometry 58
3.2.2. Number of Lines with $z_{a b s} \approx z_{e m}$ 59
3.2.3. Photoionization Model 60
3.2.4. Maximum Likelihood Analysis 62
3.2.5. Systemic QSO Redshifts 65
3.2.6. The HI Ionization Rate 68
3.3. Simulations and the Curve of Growth 69
3.4. Results and Discussion 71
3.4.1. HI Ionization Rate 74
3.4.2. Curve-of-Growth and Other Systematics 74
3.4.3. Comparison with Previous Measurements 76
3.4.4. Comparison with Models for the Background 78
Table of Contents-Continued
Chapter 4. HST/FOS Data and the Ultraviolet Background at $Z<1.7$ 119
4.1. Data Sample 119
4.2. Systemic Redshifts 119
4.2.1. Observations 120
4.2.2. Measurements 121
4.3. Lyman Limit Fluxes 121
4.4. Analysis 122
4.5. Results 125
4.5.1. Simulations 129
4.5.2. HI Ionization Rate 131
4.5.3. Variable Equivalent Width Threshold 132
4.6. Discussion 134
4.6.1. Radio Loudness 134
4.6.2. Non-Zero Ω_{Λ} 135
4.6.3. $\quad d \mathcal{N} / d z$ 136
4.6.4. Comparison with Previous Results 138
4.6.5. Comparison with Models 140
4.6.6. Systematics 141
4.7. Summary 143
Chapter 5. Lognormal Models of the Proximity Effect in Quasar Spectra 188
5.1. The Lyman α Forest 188
5.1.1. The Density and Velocity Fields 188
5.1.2. Comparison with N -body simulations 189
5.1.3. Physical Conditions in the Absorbing Gas 190
5.1.4. Comparison with hydrodynamical simulations 193
5.1.5. The Background Ly- α Forest Model 196
5.2. The Proximity Effect 200
5.2.1. QSO Radiation Field 201
5.2.2. Clustering Near Quasars 202
5.2 .3 . The Spectral Signature of the Proximity Effect 204
5.2.4. Measurement of the Ionizing Background 207
5.2.5. Quasar Systemic Redshifts 209
5.3. Summary and Future Work 211
5.3.1. Measurement of UV Background from Mean Flux 215
Appendix A. Figure 2.2 (Continued) 249

Table of Contents-Continued

Appendix B. Line Lists and Identifications for MMT QSO Spectra269

Appendix C. Notes on Individual MMT Objects 357
C.1. Q 0006+020 $z_{e m}=2.340$ 357
C.2. Q 0027+014 $z_{\text {em }}=2.310$ 358
C.3. Q 0037-018 $z_{e m}=2.341$ 359
C.4. Q 0049+007 $z_{e m}=2.279$ 360
C.5. Q 0123+257 $z_{e m}=2.370$ 361
C.6. Q 0150-203 $z_{e m}=2.148$ 362
C.7. Q 0153+744 $z_{e m}=2.341$ 364
C.8. Q 0226-038 $z_{e m}=2.073$ 365
C.9. Q 0348+061 $z_{e m}=2.056$ 366
C.10.Q 0400+258 $z_{\text {em }}=2.108$ 367
C.11.Q 0747+610 $z_{e m}=2.491$ 368
C.12.Q 0836+710 $z_{e m}=2.218$ 371
C.13.Q 0848+153 $z_{\text {em }}=2.014$ 372
C.14.Q 0936+368 $z_{e m}=2.025$ 372
C.15.Q 0952+335 $z_{e m}=2.504$ 372
C.16.Q 0955+472 $z_{e m}=2.482$ 374
C.17.Q 0956+122 $z_{e m}=3.308$ 375
C.18.Q 1009+299 $z_{e m}=2.633$ 378
C.19.Q 1207+399 $z_{e m}=2.459$ 379
C.20.Q 1210+175 $z_{e m}=2.564$ 379
C.21.Q 1231+294 $z_{e m}=2.018$ 380
C.22.Q 1323-107 $z_{e m}=2.360$ 381
C.23.Q 1329+412 $z_{e m}=1.934$ 382
C.24.Q 1337+285$z_{e m}=2.541$384
C.25.Q 1346-036 $z_{\text {em }}=2.362$ 384
C.26.Q 1358+115$z_{\text {em }}=2.589$385
C.27.Q $1406+492$$z_{\text {em }}=2.161$386
C.28.Q 1408+009$z_{\text {em }}=2.260$387
C.29.Q $1421+330$ $z_{e m}=1.905$ 387C.30.Q 1422+231C.31.Q $1435+638$C.32.Q 1604+290
C.33.Q 1715+535
C.34.Q 2134+004
C.35.Q 2251+244
$z_{\text {em }}=3.623$ 389
$z_{\text {em }}=2.066$ 391
$z_{\text {em }}=1.962$ 392
$z_{\text {ern }}=1.932$ 392
C.36.Q 2254+024$z_{e m}=1.941$394
$z_{\mathrm{em}}=2.359$ 394
C.37.Q 2310+385 $z_{e m}=2.181$ 397$z_{\text {em }}=2.090$396

Table of Contents-Continued

C.38.Q 2320+079 $z_{e m}=2.088$ 397
C.39.Q 2329-020 $z_{e m}=1.896$ 398
C.40.Data from the Literature 398
Appendix D. Figure 4.4 (Continued) 399
References 436

List of Figures

Figure 2.1. FWHM versus wavelength for MMT/Blue Channel spectra 47
Figure 2.2. MMT/Blue Channel spectra 48
Figure 2.3. Redshift histograms, MMT data 49
Figure 2.4. $\log (d \mathcal{N} / d z)$ versus $\log (1+z)$ for $z<2.5$ 50
FIGURE 2.5. $\quad\left(\gamma_{\text {FINDSL }}-\gamma_{\text {simulation }}\right) / \sigma_{\gamma}$ versus Signal-to-Noise ratio 51
Figure 2.6. Histograms of line distributions 52
Figure 2.7. $\log (d \mathcal{N} / d z)$ versus $\log (1+z)$, data resolution, data S / N 53
Figure 2.8. $\log (d \mathcal{N} / d z)$ versus $\log (1+z), 0.16 \AA<W<0.32 \AA$ 54
Figure 2.9. Rest equivalent width distributions 55
Figure 3.1. Spectrophotometry of $z \approx 2$ QSOs 96
Figure 3.1. Spectrophotometry of $z \approx 2$ QSOs (Continued) 97
Figure 3.1. Spectrophotometry of $z \approx 2$ QSOs (Continued) 98
Figure 3.1. Spectrophotometry of $z \approx 2$ QSOs (Continued) 99
Figure 3.1. Spectrophotometry of $z \approx 2$ QSOs (Continued) 100
Figure 3.2. Infrared spectra of $z \approx 2$ QSOs 101
Figure 3.2. Infrared spectra of $\mathrm{z} \approx 2$ QSOs (Continued) 102
Figure 3.2. Infrared spectra of $z \approx 2$ QSOs (Continued) 103
Figure 3.2. Infrared spectra of $z \approx 2$ QSOs (Continued) 104
Figure 3.2. Infrared spectra of $z \approx 2$ QSOs (Continued) 105
Figure 3.3. Lyman limit luminosity versus redshift for $z \approx 2$ QSOs 106
Figure 3.4. Proximity effect line deficit 107
Figure 3.5. χ^{2} of binned data with respect to the ionization model 108
Figure 3.6. Number of lines per coevolving redshift coordinate versus ω, BDO 1 109
Figure 3.7. Likelihood function versus $\log \left[\mathrm{J}\left(\nu_{0}\right)\right]$ 110
Figure 3.8. Number of lines per coevolving redshift coordinate versus ω, max- imum likelihood 111
Figure 3.9. Emission line redshift difference histograms 112
Figure 3.10. Sample simulation spectra 113
Figure 3.10. Sample simulation spectra (Continued) 114
Figure 3.11. Number of lines per coevolving redshift coordinate versus ω, sim- ulations 115
Figure 3.12. Curve of growth effects 116
Figure 3.13. $\log \left[\mathrm{J}\left(\nu_{0}\right)\right]$ versus redshift 117
Figure 3.14. Power law fits to $\log \left[\mathrm{J}\left(\nu_{0}\right)\right]$ versus redshift 118
Figure 4.1. Histograms of HST/FOS QSO and absorption line redshifts 167
Figure 4.2. Emission line spectra of HST/FOS QSOs 168
Figure 4.2. Emission line spectra of HST/FOS QSOs (Continued) 169

List of Figures-Continued

Figure 4.2. Emission line spectra of HST/FOS QSOs (Continued) 170
Figure 4.2. Emission line spectra of HST/FOS QSOs (Continued) 171
Figure 4.3. Histograms of redshift differences for HST/FOS QSOs 172
Figure 4.4. HST/FOS spectra used to measure QSO Lyman limit fluxes 173
Figure 4.5. Lyman limit luminosity versus redshift for objects in HST/FOS and MMT samples 174
Figure 4.6. Proximity Effect Line Deficits for HST/FOS QSOs 175
Figure 4.7. χ^{2} of binned absorption line data with respect to ionization model for HST/FOS QSOs 176
Figure 4.8. Number of lines per coevolving redshift coordinate versus ω, BDO 177
Figure 4.9. Likelihood function versus $\log \left[\mathrm{J}\left(\nu_{0}\right)\right]$ for HST/FOS sample 178
Figure 4.10. Number of lines per coevolving redshift coordinate versus ω, max- imum likelihood 179
Figure 4.11. $\log \left[J\left(\nu_{0}\right)\right]$ versus redshift 180
Figure 4.12. $\log \left[\mathrm{J}\left(\nu_{0}\right)\right]$ recovered from simulated QSO spectra 181
Figure 4.13. HI ionization rate versus redshift 182
Figure 4.14. Histogram of jackknife measurements of HI ionization rate at $Z<1.7$ 183
Figure 4.15. Radio loudness of QSOs in HST/FOS sample 184
Figure 4.16. $\log \left[J\left(\nu_{0}\right)\right]$ versus redshift 185
Figure 4.17. $d \mathcal{N} / d z$ versus redshift 186
Figure 4.18. $d \mathcal{N} / d z$ and Γ versus redshift 187
Figure 5.1. N-body and LN dark matter density distributions 230
Figure 5.2. Cumulative flux decrement distributions for Keck data and LN simulations 231
Figure 5.3. Cumulative flux decrement distributions for SPH and LN simu- lations 232
Figure 5.4. Distributions of hydrogen neutral fraction, HI optical depth, and hydrogen densities for SPH simulations and LN simulations 233
Figure 5.5. Cumulative flux decrement distributions for Keck data and MMT data 234
Figure 5.6. Histogram of mean decrements in simulated spectra 235
Figure 5.7. Differential flux distribution of pixels in the MMT data and LN simulations 236
Figure 5.8. Data and simulated spectra 237
Figure 5.9. Redshift distribution of absorption lines in data and simulated spectra 238
Figure 5.10. Histograms of γ in simulations 239

List of Figures—Continued

Figure 5.11. Comparison of differential flux distributions for random and high density simulations 240
Figure 5.12. Mean flux in $100 \AA$ bins as a function of redshift 241
Figure 5.13. Deficit of absorption lines as a function of luminosity distance from QSOs 242
Figure 5.14. Histogram of 0.32 Aline deficits within $2 \mathrm{~h}^{-1} \mathrm{Mpc}$ 243
Figure 5.15. Histogram of 0.16 Åline deficits within $2 \mathrm{~h}^{-1} \mathrm{Mpc}$ 244
Figure 5.16. Maximum likelihood values of Γ and HM96 scaling factor 245
Figure 5.17. Histograms of $\log (\Gamma)$ and f_{Γ} 246
Figure 5.18. Histogram $\log (\Gamma)$ from ten realizations of the systemic redshift transformation 247
Figure 5.19. Mean flux in $50 \AA$ bins as a function of ω 248

List of Tables

Table 2.1. Summary of $z \approx 2$ QSO Observations 40
Table 2.2. QSO Spectra from the Literature 42
Table 2.3. Maximum Likelihood Estimations of γ, W^{*}, and \mathcal{A}_{0} 44
Table 2.4. Simulation Results for γ 45
Table 3.1. Spectrophotometry Observations of $z \approx 2$ QSOs 82
Table 3.2. Summary of Narrow Emission Line Observations of $z \approx 2$ QSOs 83
Table 3.3. Spectrophotometric Properties of $z \approx 2$ QSOs 84
Table 3.4. Measurements of $J\left(\nu_{0}\right)$ at $z \approx 2$ 87
Table 3.5. Emission Line Redshifts for $z \approx 2$ QSOs 89
Table 3.6. Ionization Rates 94
Table 3.7. Simulation Results 94
Table 3.8. Literature Proximity Effect Measurements of $J\left(\nu_{0}\right)$ 95
Table 4.1. HST/FOS Sample QSOs and Emission Line Redshifts 146
Table 4.2. Emission Line Observations of HST/FOS QSOs 154
Table 4.3. Spectrophotometric Properties of HST/FOS QSOs 155
Table 4.4. Measurements of $J\left(\nu_{0}\right)$ at $Z<1.7$ 163
Table 4.5. Simulation Results 165
Table 4.6. HI Ionization Rates 166
Table 5.1. Mean Flux Decrements in Simulated Spectra 219
Table 5.2. Line Statistics in Simulated Spectra 222
Table 5.3. Mean Ly- α Optical Depth versus Redshift in Simulated Spectra 226
Table 5.4. Ionization Rates and HM96 Scaling Factors 228
Table 5.5. Ionization Rates after Redshift Transformation 229
Table B.1. MMT Line Lists and Identifications 270

Abstract

I present moderate resolution spectra for 39 Quasi-Stellar Objects (QSOs) at $z \approx 2$ obtained at the Multiple Mirror Telescope (MMT). These are combined with spectra of comparable resolution of 60 QSOs from the literature with $z>1.7$ to investigate the distribution of Lyman α ($\mathrm{Ly}-\alpha$) forest absorption lines in redshift and equivalent width. I find $\gamma=1.88 \pm 0.22$ for lines stronger than a rest equivalent width of $0.32 \AA$, where γ is the line redshift distribution parameter, in good agreement with some previous studies. These spectra are used to measure $J\left(\nu_{0}\right)$, the mean intensity of the extragalactic background radiation at the Lyman limit, using the proximity effect signature. I find $J\left(\nu_{0}\right)=7.0_{-4.4}^{+3.4} \times 10^{-22} \mathrm{ergs} \mathrm{s}^{-1} \mathrm{~cm}^{-2} \mathrm{~Hz}^{-1} \mathrm{sr}^{-1}$ at $1.7<z<3.8$.

A sample of 151 QSO spectra from the Faint Object Spectrograph on the Hubble Space Telescope are used to measure $J\left(\nu_{0}\right)$ at low redshift. I find $J\left(\nu_{0}\right)=6.5_{-1.6}^{+38 .} \times$ $10^{-23} \mathrm{ergs} \mathrm{s}^{-1} \mathrm{~cm}^{-2} \mathrm{~Hz}^{-1} \mathrm{sr}^{-1}$ at $z<1$, and $J\left(\nu_{0}\right)=1.0_{-0.2}^{+3.8} \times 10^{-22} \mathrm{ergs} \mathrm{s}^{-1} \mathrm{~cm}^{-2}$ $\mathrm{Hz}^{-1} \mathrm{sr}^{-1}$ at $z>1$, indicating that $J\left(\nu_{0}\right)$ is evolving over $0.03<z<3.8$. This work confirms that the evolution of the number density of Ly- α lines is driven by a decrease in the ionizing background from $z \sim 2$ to $z \sim 0$ as well as by the growth of structure in the intergalactic medium and the formation of galaxies from intergalactic gas. These measurements of $J\left(\nu_{0}\right)$ are in reasonable agreement with the predictions of models based on the integrated quasar luminosity function.

I present simulated $\mathrm{Ly}-\alpha$ forest spectra created using the lognormal approximation to the linear and mildly non-linear evolution of the density and velocity fields. The model spectra give a mean Ly- α forest flux decrement of 0.128 at $\langle z\rangle=2.07$, while the MMT data show $<\mathrm{D}>=0.129$. The photoionization effects of quasars placed in the simulated density fields on the surrounding intergalactic medium are incorporated into the synthetic spectra. This reasonably reproduces the proximity effect signature seen in the data, a $2-3 \sigma$ deficit of absorption lines within $2 h^{-1} \mathrm{Mpc}$ of quasars. I
find that maximum likelihood methods reliably estimate the ionization rate from the UV background radiation if quasars do not preferentially occupy regions of high overdensity. I analyze the extent to which the clustering of mass around quasars and uncertainty in quasar redshifts will bias the measurement of the ionizing background. In both cases, the ionization rates are overestimated by a factor of ~ 3.

Chapter 1

Introduction

Since their postulation (Bahcall \& Salpeter 1965), discovery (Lynds 1971), and first characterization (Sargent et al. 1980, Weymann, Carswell, \& Smith 1981), Lyman- α (Ly- α) absorption lines in the spectra of high redshift quasi-stellar objects (QSOs, or quasars), collectively referred to as the Ly- α forest, have been used to probe the physical conditions in the intergalactic medium (IGM), a significant reservoir of baryons throughout the history of the universe.

Both observations and theoretical calculations have shown that most of this absorption can be attributed to neutral hydrogen in galaxies and large-scale structure along the line of sight (Lanzetta et al. 1995,1996, Stocke et al. 1995, Shull, Stocke, \& Penton 1996, Bi \& Davidsen 1997, Chen et al. 1998, Ortiz-Gil et al. 1999, Impey, Petry, \& Flint 1999, Shull, Penton, \& Stocke 1999, Penton, Stocke, \& Shull 2002). In particular, hydrodynamical models of structure formation in the expanding universe (Cen et al. 1994, Zhang, Anninos, \& Norman 1995, Hernquist et al. 1996, MiraldaEscudé et al. 1996, Theuns et al. 1998a,b, Zhang et al. 1998, Davé et al. 1999, Bryan et al. 1999) have led to a dramatic shift in the conceptual picture of the Ly- α forest. The absorbing structures, once modeled as isolated systems of primordial gas, either freely expanding or bound by pressure or cold dark matter mini-halos, are now thought to arise from a continuous, spatially fluctuating density field within the larger context of hierarchical structure formation.

In models of Ly- α absorbers, they are in photoionization equilibrium with a background radiation field. This background field is treated as uniform on large scales, and this assumption is warranted given the expected "outside-in" progression of hydrogen reionization from underdense to overdense regions. (Miralda-Escudé, Haehnelt,
\& Rees 2000). The total length of the reionization epoch depends on the number and characteristic luminosity of the ionizing sources, but given the lack of observed Gunn-Peterson absorption at $z \lesssim 6.2$ (Becker et al. 2001, Djorgovski et al. 2001) the premise of a uniform background radiation field at $z<4$ is justified.

The most detailed models of the background in the ultraviolet (UV) at high redshift have calculated the integrated emission from the known QSO population and incorporated the effects of reprocessing in an inhomogeneous intergalactic medium (Haardt \& Madau 1996, hereafter HM96, Fardal, Giroux, \& Shull 1998). High redshift galaxies have been detected through Ly- α emission (Hu \& McMahon 1996, Cowie \& Hu 1998, Hu, Cowie, \& M ${ }^{c}$ Mahon 1998, Pascarelle, Windhorst, \& Keel 1998, Thommes et al. 1998, Hu, Mc Mahon, \& Cowie 1999, Kudritzki et al. 2000, Rhoads et al. 2000, Steidel et al. 2000) and through the Lyman dropout technique and subsequent follow-up spectroscopic observations (Steidel et al. 1996a,b, Madau et al. 1996, Lowenthal et al. 1997). Star formation in galaxies has been considered as a source of the UV background in addition to quasars (Madau \& Shull 1996, Shull et al. 1999, Haehnelt et al. 2001, Bianchi, Cristiani, \& Kim 2001), especially in light of recent observations of Lyman continuum emission in a composite spectrum of 29 Lyman break galaxies at a mean redshift of 3.4 (Steidel, Pettini, \& Adelberger 2001). The contribution from these systems is potentially a few times larger than that of quasars at $z \gtrsim 3.5$ (Madau, Haardt, \& Rees 1999, Bianchi, Cristiani, \& Kim 2001), though observations of two Lyman break galaxies with Ly- α equivalent widths more typical of the full $z \sim 3$ spectroscopically selected galaxy sample indicate that escape fractions of these systems at these redshifts may in fact be quite low (Giallongo et al. 2002).

The phenomenon known as the proximity effect refers to a deficit of Ly- α absorption lines in a quasar spectrum near the quasar emission line. This has been interpreted to be the result of enhanced photoionization of neutral hydrogen in the vicinity of the quasar generated by the quasar's own UV emission (Weymann, Car-
swell, \& Smith 1981, Murdoch et al. 1986). The balance between the strength of the background UV radiation field, which mitigates the line density in the global Ly- α forest, and the local quasar radiation field, permits an estimate of the mean intensity of the ambient background at the Lyman limit of hydrogen (Carswell et al. 1987, Bajtlik, Duncan, \& Ostriker 1988, hereafter BDO).

1.1 Organization of the Dissertation

In this dissertation, I present a large sample of QSO spectra and use the proximity effect to measure the mean intensity of the metagalactic UV background radiation field from early cosmic epochs at which the universe was approximately 10% of its present age to the present time. These chapters have appeared as papers in the Astrophysical Journal as part a series entitled "A Uniform Analysis of the Ly- α Forest at $z=0-5$." In this series, my collaborators and I have sought to characterize the evolution of the neutral hydrogen content of the universe and the ambient UV radiation field over this redshift range using QSO spectra. The wavelength regions of interest lie in the rest frame UV part of the electromagnetic spectrum. Distant, high-redshift quasars can thus be observed using ground-based telescopes as the UV is redshifted into the observed optical. Low-redshift objects, however, must be observed from space due to the high UV opacity of Earth's atmosphere. The high- and low-redshift data used in this dissertation were obtained from the Multiple Mirror Telescope (MMT) on Mt. Hopkins in Arizona and the Hubble Space Telescope (HST), respectively. In Chapter 2, Paper I in the Astrophysical Journal series (Scott et al. 2000a), I present the MMT data and analyze the statistics of the Ly- α absorption line distribution at high redshift, $z>1.7$. In Chapter 3, Paper II of the series (Scott et al. 2000b), I use these data to measure the intensity of the UV background radiation field at high redshift. In Chapter 4, Paper V in the series (Scott et al. 2002), I present a measurement of this intensity at low redshift $(z<1.7)$ from the HST data. The papers presented as
chapters in this dissertation have been modified slightly to make them more cohesive than they would be if the papers simply appeared in their published forms. Papers III and IV in the series are not represented as chapters in this dissertation and present the HST/FOS data sample (Bechtold et al. 2002) and analyze the distribution and clustering of absorbers at low redshift (Dobrzycki et al. 2002), respectively. The final chapter of the dissertation, Chapter 5, investigates the theoretical basis for the proximity effect phenomenon observed in the high redshift MMT data presented in the Chapter 2.

1.2 The Evolution of the Ly- α forest

Much recent work has promoted treating the Ly- α forest as spatial fluctuations in the continuous density field of the intergalactic medium (Bi 1993 , Reisenegger \& MiraldaEscudé 1995, Hernquist et al. 1996, Miralda-Escudé et al. 1996, Bi \& Davidsen 1997, Croft et al. 1998,1999, Weinberg et al. 1998). In this work, however, I will continue to interpret the Ly- α forest as a series of discrete lines for comparison to previous work.

The redshift distribution of Ly- α forest lines can be described by a power law: $d \mathcal{N} / d z=\mathcal{A}_{0}(1+z)^{\gamma}$ (Sargent et al. 1980, Weymann, Carswell, \& Smith 1981, Young et al. 1982, Murdoch et al. 1986). Several authors have carried out the analysis of the statistics of the Ly- α forest at high redshift (Lu, Wolfe, \& Turnshek 1991, hereafter LWT, Bechtold 1994, hereafter B94, Williger et al. 1994, Cristiani et al. 1995, Giallongo et al. 1996, Kim et al. 1997). Hubble Space Telescope observations of the low redshift Ly- α forest (Bahcall et al. 1993, 1996, Weymann et al. 1998, Dobrzycki et al. 2002) indicate that this evolution is significantly flatter at redshifts less than 1.7.

In Chapter 2, a homogeneous sample of moderate resolution spectra of QSOs at $z=1.7-4.1$ is used to investigate the number density evolution of Ly- α systems
and how this changes with redshift and with varying equivalent width thresholds. Specifically, the Ly- α forest in the redshift range between 1.7 and 2.0 was targeted because few lines of sight in the literature cover this range, as it extends down to wavelengths of $\sim 3200 \AA$. Improvements in CCD technology allowed us to obtain data in this spectral region. I present new data for 39 objects and supplement this sample with 60 objects from the literature. Metal line systems in these spectra are identified and removed from the final analysis of the Ly- α forest (Murdoch et al. 1986, hereafter MHPB). The resulting Ly- α absorption line sample is comprised of 2079 lines in the range $1.7<z<4.1$ when a variable equivalent width threshold is used, or 1131 lines using a fixed rest equivalent width threshold of $0.32 \AA$.

1.3 The Proximity Effect and the Ultraviolet Background

The number density evolution of Ly- α absorbers in an individual QSO spectrum departs from the basic power law trend near the Ly- α emission line such that the line density decreases with proximity to the QSO emission redshift (Weymann, Carswell, \& Smith 1981, Murdoch et al. 1986). As stated above, the simplest explanation for this proximity effect is enhanced ionization of HI in the vicinity of the QSO by UV photons from the QSO itself. This interpretation, along with the assumptions about the spectrum of the background and the photoionization of the nearby IGM by the QSOs, allows for a measurement of the mean intensity of the ionizing background at the Lyman limit of hydrogen (Carswell et al. 1987, BDO), denoted $J\left(\nu_{0}\right)$. These measurements are compared to estimates of the integrated emission from quasars and star-forming galaxies. The proximity effect measurement of $J\left(\nu_{0}\right)$ at $z=1.7-4.1$ from the MMT data is presented in Chapter 3. The measured UV background at these redshifts is found to be consistent with the expected contribution from the known population of quasars, albeit to within somewhat large uncertainties.

The decline of the quasar space density from $z \sim 2$ to the present (eg. Boyle
et al. 2000) is expected to drive a corresponding decline in the intensity of the UV background. Hydrodynamic simulations of the low redshift IGM (Theuns et al. 1998, Davé et al. 1999) indicate that the evolution of the ionizing background is the primary driver behind the flattening of the redshift distribution of Ly- α lines at $z<1.7$. The growth of structure pulling gas from low density regions into high density regions also contributes to this and other attributes of the evolution of the Ly- α forest. The only previous measurement of the UV background at $z<1.7$ (Kulkarni \& Fall 1993) was based upon a sample of 13 QSOs and fewer than 100 lines, and has correspondingly large error bars. Given the importance of the value of the HI ionization rate to the hydrodynamical evolution of the low redshift universe, performing this measurement with a much larger line sample is worthwhile. I address this question in Chapter 4 by using 151 of the QSO spectra from the HST/FOS archives.

The spectra comprising the MMT and HST/FOS datasets are of moderate resolution, $\sim 1 \AA$ FWHM. In this work, high spectral resolution was sacrificed for the sake of obtaining spectra of many objects, because the proximity effect analysis requires good absorption line statistics and therefore many QSO sight lines. This is difficult to achieve at high resolution, the primary reason for using a large set of moderate resolution spectra such as the one presented here. The full MMT and HST/FOS archival data sets are available online at
http://lithops.as.arizona.edu/ॅjill/QuasarSpectra or
http://hea-www.harvard.edu/QEDT/QuasarSpectra.
Several possible systematic effects that may bias the proximity effect analysis are discussed in Chapters 3 and 4. One important systematic effect is uncertainty in the systemic redshifts of the QSOs. Redshifts measured from low ionization permitted lines (e.g. Balmer lines or Mg II) or forbidden lines (e.g. [OIII] $\lambda \lambda 4959,5007$) lines have been shown to be redshifted with respect to Ly- α and C IV emission by up to $\sim 250 \mathrm{~km} \mathrm{~s}^{-1}$ (Boroson \& Green 1992, Laor et al. 1995). B94 found that increasing the values of the QSO redshifts by $1000 \mathrm{~km} \mathrm{~s}^{-1}$ caused the best fit value of $J\left(\nu_{0}\right)$ to
be decreased by a factor of 3 . I therefore obtained emission line spectra for several objects in both the high redshift and low redshift QSO samples in order to examine redshift differences between Ly- α and [OIII] $\lambda \lambda 4959,5007, \mathrm{Mg}$ II or Balmer emission. In Chapters 3 and 4, I investigate the effect of these shifts on the value of $J\left(\nu_{0}\right)$ derived at $z>1.7$ and $z<1.7$, respectively.

The results of all of the work done to measure the UV background are summarized in Chapter 3 and again in Chapter 4 and are in general agreement with the predictions of models of the UV background which integrate the contribution from known population of quasars and include reprocessing effects in an inhomogeneous intergalactic medium (HM96, Fardal, Giroux, \& Shull 1998).

1.4 Simulations of Ly- α Forest Spectra and the Proxmity Effect

In Chapter 5, I present a large sample of theoretical QSO spectra to compare with the MMT data presented in Chapter 2, specifically to investigate the quasar photoionization model for the proximity effect signature. These theoretical spectra were created using the lognormal approximation, a technique outlined by Bi \& Davidsen (1997, BD97 hereafter). The lognormal approximation allows one to construct density and peculiar velocity fields in the linear and mildly nonlinear regimes relevant to the Ly- α forest from Gaussian random fields under a lognormal transformation. The lognormal transformation is applied to ensure a non-negative density field at all points, and is mathematically motivated by its simple and smooth connection of the linear behavior of fluctuations at early times and on large scales and isothermal hydrostatic equilibrium on small scales (BD97, Coles \& Jones 1991). Gas temperatures are assigned to density points by employing an IGM "equation of state", and the neutral fraction of hydrogen at each point is calculated assuming photoionization equilibrium. The neutral fraction and peculiar velocity at a given point are in turn used to calculate
the optical depth.
The relative simplicity of the lognormal models is advantageous in that the low computational expense allows for the creation of a large number of independent model realizations at many redshifts over long lines of sight. This is particularly important for obtaining good statistics on the Ly- α forest and the deviations from those statistics due to the proximity effect, and this is the primary reason for using the lognormal model rather than results from detailed hydrodynamic simulations.

To simulate the proximity effect, quasars are placed in the simulated density fields and their UV fluxes are included in the ionization balance of the IGM. I use these models to investigate various systematics that may enter into the analysis of the proximity effect to measure the ambient metagalactic UV background, particularly the effects of clustering of matter around quasars and uncertainties in quasar systemic redshifts.

1.5 Conclusions

The primary results of this work are as follows: Proximity effect measurements confirm the evolution in the UV background from $z \sim 2$ to the present epoch that is expected due to the decline in the quasar space density in this redshift range. The measured mean intensity of the background is a factor of ~ 10 lower at $z \sim 0.5$ than at $z \sim 2.5$, though it must be noted that the uncertainties in the proximity effect measurements, particularly at low redshift, are at present large enough that they must be interpreted as a tentative observational corroboration of the models of the UV background. From comparisons with these models, I find that the integrated UV emission from the quasar population can account for the observed UV background, given the measurement uncertainties. No significant contribution from star-forming galaxies is required to explain the observed $J\left(\nu_{0}\right)$ at $z \lesssim 4$. I present the first measurement of $J\left(\nu_{0}\right)$ in the redshift range $z=1-1.7$, the range over which the redshift distribution
of $\mathrm{Ly}-\alpha$ absorbers flattens significantly from a steeper power law at $z \gtrsim 1.7$. Though detailed simulations by other authors show that the decline in the UV background with decreasing redshift at $z<1.7$ is the primary reason for the flattening, the measured value of $J\left(\nu_{0}\right)$ presented in this work indicates that the evolution of structure in the IGM must also contribute to the observed $d \mathcal{N} / d z$ in the Ly- α forest.

The lognormal models of the Ly- α forest and proximity effect demonstrate that quasar photoionization can reasonably produce the observed proximity effect signature. The techniques used to derive $J\left(\nu_{0}\right)$ from the proximity effect are found to be reliable if systematic effects caused by uncertainties in quasar systemic redshifts are properly considered and if quasars do not preferentially inhabit regions of significant overdensity in the underlying IGM density distribution.

Chapter 2

MMT Data and Absorption Line Statistics at $Z>1.7$

2.1 Observations and Data Reduction

A sample of 39 QSOs was observed using the Multiple Mirror Telescope and Blue Channel Spectrograph. The observations are summarized in Table 2.1. Each object's redshift is given in column (3) and the reference for that redshift is given in column (4).

The three instrumental setups used are as follows: (1) the "Big Blue" image tube and photon counting Reticon detector, a $832 \mathrm{I} \mathrm{mm}^{-1}$ grating blazed at $3900 \AA$ in the second order with a CuSO_{4} red blocking filter, and a $1^{\prime \prime} \times 3^{\prime \prime}$ slit; (2) the $3 \mathrm{~K} \times 1 \mathrm{KCCD}$, the $8321 \mathrm{~mm}^{-1}$ grating blazed at $3900 \AA$ in the second order with a CuSO_{4} order blocking filter, and a $1^{\prime \prime} \times 180^{\prime \prime}$ slit; and (3) the $3 \mathrm{~K} \times 1 \mathrm{~K} \mathrm{CCD}$, $8001 \mathrm{~mm}^{-1}$ grating blazed at $4050 \AA$ in the first order, and a $1^{\prime \prime} \times 180^{\prime \prime}$ slit. All these spectra have a spectral resolution of $\sim 1 \AA$ with the exception of the spectra of $1207+399$ and $1408+009$ taken with the $800 \mathrm{I} \mathrm{mm}^{-1}$ grating, which have a resolution of $\sim 2.5 \AA$. Thinning and backside illumination of a Loral CCD along with the use of antireflection coatings and backside surface charging (Lesser 1994) improved the quantum efficiency of the $3 \mathrm{~K} \times 1 \mathrm{~K}$ CCD used to over 80% at $3200 \AA$. The exposures from the first runs using the improved CCD at the MMT suffer from a variable focus across the chip due to problems with the original field flatteners used. Figure 2.1 shows the FWHM of the comparison lamp lines as a function of wavelength. The July 1993 data was taken on the first run with this CCD detector; and a number of problems were encountered, including poor charge transfer efficiency and a jump in the bias level of $\sim 8 \mathrm{ADU}$ in the center of the chip. On this run, the FWHM rises to
$\sim 2.5 \AA$ at the red end of the spectrum (short-dashed line in Figure 2.1).
Wavelength calibration was performed using $\mathrm{He}-\mathrm{Ne}-\mathrm{Ar}-\mathrm{Hg}-\mathrm{Cd}$ lamp exposures; and domeflats or quartz exposurers were used to correct for pixel-to-pixel variations. When available, a few half-hour exposures of each object are combined; and the total integration time is listed in Table 2.1. An example QSO spectrum is shown in Figure 2.2. The remainder can be found in Appendix A.

Cosmic rays were removed from the data during the reduction process. Bad columns on the CCD were left in the spectrum in order to keep track of their positions. The flux in these regions was set to a value of -1000.; and they were excluded from the analysis. In some spectra, some clearly non-Gaussian features are present at the red end, mainly redward of Lyman α emission. Because these features occur at the same pixel in each of the spectra in which they are visible, they are identified as traps in the CCD. They are discussed individually in Appendix C below.

2.2 Line Identification Process

The continuum was fit iteratively to each spectrum and significant (3σ or greater) absorption lines were found by measuring the equivalent width in bins of size equal to 2.46 times the FWHM of the comparison lines in pixels, the point at which a Gaussian is 1.5% of its peak value (B94, Young et al. 1979). Lines of 3σ significance and above were used to help identify metal line systems, but only lines of greater than 5σ significance were used in the analysis of the Lyman α forest statistics.

Using the technique described in Dobrzycki and Bechtold (1996), we produced a set of 30 simulated $z=2.48$ pure $\mathrm{Ly}-\alpha$ forest spectra in order to determine how reliably our program for finding significant lines, FINDSL, recovers those generated by the simulations. We use values of 1.82 and 1.46 for $\mathrm{Ly}-\alpha$ forest statistics γ and β, but the results of this analysis should not be sensitive to the value of γ as the redshift path covered in each spectrum is small. The lower and upper column density limits
chosen were 10^{12} and $7 \times 10^{14} \mathrm{~cm}^{-2}$ respectively; and the mean Doppler parameter and width of the Doppler parameter distribution used were $28 \mathrm{~km} \mathrm{~s}^{-1}$ and 10 km s^{-1}. The column density limits were chosen to give the same total absorption in the simulated spectra as is seen in the spectrum of $0955+472$, the object spectrum which served as the template for this series of simulations.

We determine matches between the simulation line list output and the FINDSL line lists on the basis of the best wavelength match between simulated and recovered lines. At 5σ significance, the line lists are 55% complete. When blending is accounted for by matching all simulated lines within 2.46 resolution elements of each recovered line to that recovered line, 99% of the lines in the simulation are recovered. These completeness values for 3σ lines are 49% and 98% respectively. Obviously, FINDSL can do nothing to help us overcome the finite resolution of the data, but when this is taken into consideration, this test indicates that it does a good job of recovering the lines it is capable of recovering.

Our simulations also revealed another interesting point. Of the 3σ lines "recovered" by FINDSL, a small percentage, $\sim 0.25 \%$, were not generated by the simulation program. In other words, FINDSL found some lines in the noise. This was not true of the 5σ lines, however, so we expect no spurious lines to be present in the line lists used for the analysis of Lyman α forest statistics. We do use lines with significance levels between 3σ and 5σ for metal line identification purposes; but expect that any low occurrence of spurious lines would have no effect on those identifications due to the all the constraints that were placed upon metal line matches to qualify as true metal line systems, which are discussed in more detail below.

The July 1993 CCD data suffers from a gradient in the FWHM across the spectrum as discussed in Section 2.1, rising from $\sim 1.1 \AA$ in the blue end to $\sim 2.5 \dot{A}$ in the red (Figure 2.1). This variation has some impact on how FINDSL identifies significant lines. Using a FWHM of $2.5 \AA$ for $\lambda>3700 \AA$, results in fewer significant lines identified relative to the case where a FWHM of $1.1 \AA$ is used over the full spectrum.

Inspection of the fits for these two cases for several objects in our sample leads us to conclude that the two cases give consistent total equivalent widths for absorption features, but that using a search window based on a FWHM of $1.1 \AA$, even at the red ends of these spectra, gives the most reasonable line identifications, as the larger window tended to blend distinct features together. Table 2 gives a list of the vacuum, heliocentric wavelengths of all lines identified along with the equivalent width of each line as determined by a Gaussian fit to the line.

We generated additional synthetic $\mathrm{Ly}-\alpha$ forest spectra with no metal lines in order to determine the maximum number of metal line identifications that our software will identify spuriously in the Ly- α forest, or equivalently, the minimum number of metal line identifications needed to qualify as a metal line system, cf. Dobrzycki and Bechtold (1996). The simulation parameters used in this case were $\gamma=1.5, \beta=1.46$, $\left.\mathrm{N}_{\text {lower }}=2 \times 10^{12} \mathrm{~cm}^{-2}, \mathrm{~N}_{\text {upper }}=10^{16} \mathrm{~cm}^{-2},<\mathrm{b}\right\rangle=28 \mathrm{~km} \mathrm{~s}^{-1}$, and $\sigma_{b}=10 \mathrm{~km} \mathrm{~s}^{-1}$. We find that our program will find metal line systems in the Lyman α forest that may appear to be reasonable based on the species present and doublet ratios, if the number of required matches between the data and a table of possible metal lines is set to a number less than four if there are less than ~ 100 lines in the spectrum, and less than five if there are more than ~ 100 identified lines in the spectrum. If a system shows lines redward of Ly- α emission, this requirement is relaxed since this spectral region is free of $\mathrm{Ly}-\alpha$ forest absorption lines.

The search list of metal lines, their wavelengths, and their f values was taken from Table 4 of Morton et al. (1988) supplemented with Fe II $\lambda 1143$ and $\lambda 1145$ and N I $\lambda 1135$ from their Table 3. Redshift systems were identified by first running our metal line searching program to find systems with our prescribed number of matches. Metal line matches within 3σ of an observed significant line are counted. The output of this program was analyzed for consistency with required doublet ratios and \mathbf{f} values. Lines found by this program were rejected if a) the weaker line of a doublet is detected while the stronger is not or b) a weak line of a species is detected while a stronger line of the
same species and ionization state is not (eg. Si II $\lambda 1304$ is detected but Si II $\lambda 1260$ is not). Next, lines with rest equivalent width greater than about $1 \AA$ were tentatively identified as Ly- α for a metal line system. The resulting redshift was used as a trial redshift and the matches with metal lines were noted and critiqued as above.

A metal line system identification is considered a strong one if it is corroborated by a spectrum from the literature that extends redward of Ly- α emission. A system is considered reasonable if it consists of at least the minimum number of lines and the strengths of those lines are in agreement with the expected f values and range in doublet ratios.

An identification is marked as a possible identification if either the doublet ratio gives a value less than one or greater than two, ie. one of the doublet lines is a blend if it is present, or if the separation between that line and another line in the redshift system (excluding doublet pairs) is greater than $\sim 200 \mathrm{~km} \mathrm{~s}^{-1}$ but less than $\sim 300 \mathrm{~km}$ \mathbf{s}^{-1}. Once metal lines were identified, they were removed from the line list used for the Ly- α forest analysis. Also, the redshift path covered by each line was removed from the analysis by removing a region of width 2.5σ centered on the wavelength centroid of the line. The line σ and line centroid were taken from the Gaussian fit.

The redshift of any spurious line in our 3σ line lists identified as a metal line would also have to match with other metal lines in our line list, specifically to a strong Lyman α line if it is observable in the spectrum. For this reason, we expect that the possible low occurrence of false lines of less than 5σ significance in our line lists has no effect on the metal line systems identified below.

2.3 Results and Discussion

The number of Ly- α lines per unit redshift per unit equivalent width can be parametrized as follows:

$$
\begin{equation*}
\frac{\partial^{2} \mathcal{N}}{\partial z \partial W}=\frac{A_{0}}{W^{*}}(1+z)^{\gamma} \exp \left(-\frac{W}{W_{*}}\right) \tag{2.1}
\end{equation*}
$$

Integrating this equation over equivalent width with a constant threshold equivalent width throughout each spectrum gives

$$
\begin{equation*}
\frac{d \mathcal{N}}{d z}=\mathcal{A}_{0}(1+z)^{\gamma} \tag{2.2}
\end{equation*}
$$

To solve for the parameters γ and W^{*}, we use a maximum likelihood technique which allows for an equivalent width threshold that varies with wavelength. We also derive these parameters using various fixed threshold values; and in this case, the procedure reduces to the method described in the Appendix of MHPB, using corrected expressions for their equations (A8) and (A2a). However, the variable threshold information is still used in the fixed threshold case, as regions of the spectrum for which the threshold lies above the fixed value, ie. where no significant lines could be detected even if they were present, are excluded.

The solutions for the statistics γ and W^{*} are listed in Table 2.3. Each sample excludes regions of the spectra within Δz of 0.15 of the QSO emission redshift, chosen to eliminate any effects on the line density due to proximity to the QSO. A variable equivalent width threshold gives a value of 1.23 ± 0.16 for γ. This is lower than the value of 2.75 ± 0.29 found by LWT for for a fixed equivalent width threshold of $0.36 \AA$ over the range $1.7<z<3.8$, and the value of 1.89 ± 0.28 found by B94 for a fixed threshold of $0.32 \AA$ over the range $1.6<z<4.1$. Using a fixed threshold of $0.32 \AA$, the value of γ derived from our data is 1.88 ± 0.22, in good agreement with that of B94. In Table 2.3, no error is quoted for \mathcal{A}_{0} because it is strongly correlated with the error in γ.

We calculate the Kolmogorov-Smirnov (KS) probability that a power law number density distribution given by Equ. 2.2 for each of these values of γ is a good representation of the data (cf. Appendix of MHPB). A high probability $\left(\mathrm{P}_{K S}\right)$ that the maximum deviation from the cumulative number distribution could occur by chance if the data set is drawn from an assumed parent distribution indicates that the choice of parent distribution is justified. These results are included in Table 2.3. The total
sample and each of the subsamples is described well by a single power law, as illustrated by the high KS probabilities obtained. The KS probability obtained from our data set with a fixed equivalent width threshold of $0.32 \AA$ and the LWT γ value of 2.75 is 0.0020 , while the B94 value of 1.85 gives 0.97 , as it is in good agreement with our maximum likelihood result.

The errors in γ and W^{*} are calculated by our software by fitting a parabola to the peak of the logarithm of the likelihood function, using the fact that the likelihood function itself should be distributed as a Gaussian in γ and W^{*} near its maximum value. In order to avoid any assumptions about the distribution of the statistics of interest, a resampling technique was used to independently estimate the distribution. Jackknife samples (Babu \& Feigelson 1996, Efron 1982) of our original data set were constructed, 100 in all, each with one QSO from the original sample removed. We used the same program to calculate γ and W^{*} for each jackknife sample, for the case of $W_{t h r}=0.32 \AA$. The goal is to understand how the values of these statistics found by our software vary with random variations in the data. The weighted mean of all the jackknife values for γ is 1.91 and for W^{*} it is $0.309 \AA$. Since we cannot treat each of the 100 values of these statistics as independent measurements of γ and W^{*}, the jackknife errors show how well the error calculated by the software estimates the true distribution of the statistics calculated. The jackknife results for σ_{γ} and σ_{W} - are 0.26 and 0.011 respectively. The fact that the jackknife errors are $\sim 20 \%$ larger than the error calculated by our software may reflect the fact that the jackknife estimate of the variance tends to be conservative (Efron 1982) or it may indicate the the presence of additional sources of random error. In any case, the jackknife results do agree with the total data set result to well within the errors.

The two questions we now ask are whether the number densities of strong and weak lines evolve differently with redshift and whether there is a difference in γ for low and high redshift subsamples, ie. does γ evolve over the history of the universe after the observed break at $z \sim 1.7$? In this context, strong lines will refer to lines
with rest equivalent widths greater than $0.32 \AA$ and weak lines will refer to those with rest equivalent widths between $0.16 \AA$ and $0.32 \AA$. The total absorption line sample was divided into low and high redshift subsamples at an absorption redshift of 2.5, giving 1084 and 995 lines in each subset, respectively. For the remainder of this paper, the low and high redshift subsamples will refer to Lyman α forest absorption lines with redshifts above and below 2.5, respectively.

Figure 2.4 is a set of plots of $\log (d \mathcal{N} / d z)$ versus $\log (1+z)$ for the various subsamples of our data set which are binned solely for display purposes. The straight lines are derived from the parameters given in Table 2.3. Figure 4 a shows the low and high redshift subsamples and the solutions for each along with the solution for the total sample. Each of these are generated with a fixed equivalent width threshold of $0.32 \AA$. Figure 4 b shows the results for strong ($\mathrm{W}>0.32 \AA$) and weak lines $(0.16<W<0.32 \AA)$ considered separately. Column 8 of Table 2.3 lists the KS probabilities for each case considered.

No $\log (d \mathcal{N} / d z)$ versus $\log (1+z)$ plots are shown and no KS probabilities are quoted for any case in which a variable threshold was used. This is because the distribution in redshift is now related to the equivalent width of each line. The separation of these two distributions, which is possible in the case of a constant threshold, is not possible; and the formalism of MHPB can no longer be applied. Nevertheless, since the implementation of a variable threshold allows the most efficient use of the data, we consider these values of γ to be reliable, especially in light of the reasonable KS probabilities in the constant threshold cases.

Considering the moderate resolution and signal-to-noise of our data, it is worth investigating how well we are recovering the true parameters describing the line distribution. Recall from the discussion of the simulations in Section 2.2 that our 5σ line lists are 55% complete due to blending. To address this point, we generated more sets of artificial spectra based on the 56 objects in our data set for which we have detailed spectral information in the way described in Section 2.2. The redshift of each

QSO in these sets is equal to that of one of the 39 new MMT spectra presented in this paper or to that of one of the 17 spectra presented in Dobrzycki and Bechtold (1996). In order to investigate how signal-to-noise impacts this analysis, we created three sets of these 56 artificial spectra with the resolution of the data, $\sim 1 \AA$, one set having signal-to-noise ratios half that of the data (median $S / N \sim 5$), another having signal-to-noise ratios equal to that of the data (median $\mathrm{S} / \mathrm{N} \sim 10$), and another having twice the signal-to-noise of the data (median $\mathrm{S} / \mathrm{N} \sim 20$). The input parameters used were $\gamma=1.88, \beta=1.46, N_{\text {lower }}=10^{13} \mathrm{~cm}^{-2}, N_{\text {upper }}=10^{16} \mathrm{~cm}^{-2},\langle\mathrm{~b}\rangle=28 \mathrm{~km}$ s^{-1}, and $\sigma_{b}=10 \mathrm{~km} \mathrm{~s}^{-1}$.

In the low S/N simulation, FINDSL spuriously identified one simulated line, out of 1722 lines above threshold, as two separate lines, both of 5σ significance or greater. This did not occur in either the data S / N simulation, or in the high S / N simulation, so we remain confident that the Lyman α lines in our line lists are real absorption features.

We also generated set of synthetic spectra with higher resolution than the data. Two sets were made with resolution $\Delta \lambda \sim 0.7 \AA$, one with the same signal-to-noise as the data, and another with median S/N ~ 20. Finally, a Keck/HIRES data set was simulated by generating spectra with $\Delta \lambda \sim 0.2 A$ and median $S / N \sim 40$.

The simulation line lists were analyzed in the same way as the data to determine the value of γ input into the FINDSL analysis. This γ is not necessarily equal to the simulation input $\gamma, 1.88$, because, in generating the artificial spectra, the simulation software does not fix the redshift and equivalent width distributions by the input parameters, but rather draws line redshifts and equivalent widths from a distribution given by Equation 2.2. FINDSL line lists were then generated and γ was calculated again using these line lists. This was done for both the variable threshold and the case of an equivalent width threshold of $0.32 \AA$ for all redshifts, and at high and low redshifts separately. The two values of γ for each case are compared with each other in order to determine how well the redshift distribution in the FINDSL line
lists reflects the distribution output by the simulations. The results are listed in Table 2.4. The simulation resolution and median signal-to-noise ratio are given in the first two columns; the redshift range and the threshold used for the γ solution are given in columns (3) and (4); and the values of γ derived from the simulation line lists ($\gamma_{\text {simulation }}$) and from the FINDSL line lists ($\gamma_{\text {FINDSL }}$) are given in columns (5) and (6), respectively. DB96 discuss this simulation software in detail and use it to investigate the column density distribution of Lyman α lines. Their data set, a subset of ours, encompassed a limited redshift path and was therefore insensitive to a determination of γ from the simulations. Presumably, if we ran the large number of simulations for which this software was designed, we would recover $\gamma=1.88$ in column (5) of Table 2.4; but since we are merely trying to determine the reliability of our methods for identifying significant lines, we will leave this for future work. These Monte-Carlo simulations create line lists by distributing lines according to the input value of γ, which is independent of redshift and equivalent width. It is for this reason, and because we have created a relatively small number of synthetic spectra in order to simulate our data set, that we do not take the values of γ derived either from the simulation line lists or from the FINDSL line lists to truly reflect the redshift distribution of Lyman α lines. We use these simulations only to investigate how well our techniques for identifying significant lines and calculating γ recovers the value input into the FINDSL analysis.

Figure 2.5 also demonstrates these results. It shows the number of sigma difference between the output (FINDSL line lists) and input (simulation line lists) values of γ, (a)-(c) for the variable threshold case and (d)-(f) for the $\mathrm{W}_{t h r}=0.32 \AA$ case. The square points and solid lines indicate the results for the simulations at the resolution of the data in this paper, $\Delta \lambda \sim 1 \AA$. The open triangles and dotted lines show the results for the simulations at higher resolution, $\Delta \lambda \sim 0.7 \AA$; and the filled triangle shows the result for the Keck/HIRES simulation, $\Delta \lambda \sim 0.2 \AA$.

Histograms of the line distributions used in the input (simulation line lists) and
output (FINDSL line lists) γ solutions are shown in Figure 2.6(a-d). Also, plots of $\log (d \mathcal{N} / d z)$ versus $\log (1+z)$ analogous to those in Figure 2.4 for the data resolution, data S / N, constant threshold simulations are shown in Figure 2.7. As in Figures 2.6(a-d), the solid lines correspond to the maximum likelihood solution for γ and \mathcal{A}_{0} for the simulation line lists and the dashed lines correspond to the solution for the FINDSL line lists. These figures demonstrate that the process of simulation lines above threshold being "blended out" with other features in the final FINDSL line lists dominates over lines below threshold being "blended in" by blending with other features below threshold in all cases. Overall, therefore, the FINDSL line lists suffer from a net loss of lines due to the blending out of significant features.

However, this blending has not significantly affected the value of γ. The only case for which the simulation and subsequent FINDSL solutions for γ differ by more than 1.5σ, indicated by the dashed-dotted lines in Figure 2.5, is the constant threshold solution for the lowest S / N simulation at low redshift, the leftmost point in Figure 2.5(b). It should be noted that some visual inspection of the simulation spectra was necessary to achieve this overall agreement between the simulation and the FINDSL γ 's. This examination was commensurate with that done on the data, especially during the course of the metal line identifications, so no significant bias is introduced into the simulation analysis by doing this. The FINDSL program tended to miss some weak lines in the high redshift spectra due to crowding of features. Some lines were also missed by FINDSL at low redshift, where the signal-to-noise is lowest. The equivalent width thresholds used in the solution for γ required that the weakest lines at low S / N be left out of the simulation line list solution, so missing them with FINDSL had little effect. However, in some cases, FINDSL either failed to find lines above threshold at low S / N or failed to fit them with the proper equivalent width. These omissions did adversely affect the agreement between the γ solutions, as these lines were included in the solution using simulation line lists. Upon inspection of the simulated spectra, all of these lines were identified and the simulation and FINDSL line list solutions for
γ were brought into agreement.
For the total sample and the high redshift subsample, including weak lines in the maximum likelihood solution tends to make γ more shallow. Both our data and high resolution work (Cristiani et al. 1995, Giallongo et al. 1996) indicate that the tendency for γ to change in either direction when weaker lines are included is not a significant one. Decreasing the column density cutoff from $\log \left(\mathrm{N}_{H I}\right)=13.8$ to 13.3 at $z \sim 3$, Cristiani et al. (1995) find that γ increases from 1.86 to 2.17 ; but this is a change of less than 1σ. Giallongo et al. (1996) find that decreasing the column density cutoff from $\log \left(\mathrm{N}_{H I}\right)=14$ to 13.3, again at $z \sim 3$, decreases γ from 2.7 to 2.49 , $\sim 1 \sigma$. However, using only weak lines for our total sample gives a γ of 0.26 ± 0.33, a value consistent with no evolution for $q_{0}=0.5$; while using all lines with rest equivalent width greater than $0.32 \AA$ gives a value 4σ larger, 1.88. In the case of the high redshift subsample, this difference is 2.6σ. Weak lines being blended out in the crowded, high redshift regions of the spectra is undoubtedly contributing to this effect. In our simulations, lines with rest equivalent widths between $0.16 \AA$ and $0.32 \AA$ yield a γ of 2.25 ± 0.40 for the simulation output lines, while the FINDSL line lists give a significantly lower value of 1.30 ± 0.49. The plots of $\log (d \mathcal{N} / d z)$ versus $\log (1+z)$ analogous to Figure 2.7 for these weak lines are shown in Figure 2.8; and this solution for all redshifts is shown in panel (a). Recall that the input simulation redshift distribution is independent of the line width. By contrast, the simulation line list and FINDSL line list values of γ for lines with equivalent widths greater than $0.32 \AA$ are 1.62 ± 0.27 and 1.70 ± 0.30, respectively. This indicates that though we can be confident that we are recovering the true γ for lines with equivalent widths greater than 0.32 A . weak lines blended out at high redshift in our data may indeed produce this flattening of γ seen when weak lines are included in the solution.

For the low redshift subsample, the weak lines give a steeper γ, but this difference is not statistically significant. The Weymann et al. (1998) results at $z<1.7$ suggest the opposite, that lines of higher rest equivalent width yield larger values of
γ. These authors find a difference in the evolution rates for $\mathrm{Ly}-\alpha$ absorbers with and without identified associated metal lines. Their interpretation of this is that it can be attributed to a difference in the rate of evolution of lines of different strengths. This scenario is supported by the higher redshift results of Kim et al. (1997). Their high resolution data suggest that there is a break in the column density distribution of Ly- α lines at $\log \left(N_{H I}\right) \geq 14.8$ and $z \sim 3.3$ and that this break occurs at lower column densities and becomes more pronounced as redshift decreases. These results imply that weak lines should show a flatter γ at all redshifts and that the difference in the rate of evolution between strong and weak lines should be more significant at redshifts less than 2.5 than at redshifts greater than 2.5.

The γ 's derived from the simulation and FINDSL line lists for the spectra generated at the data resolution and signal-to-noise listed in Table 2.4 are generally in good agreement with one another for strong and weak lines at low and high redshift, noting however, the large uncertainties for the weak line γ 's. The FINDSL γ 's for weak lines for all redshifts and at low redshift are systematically lower than the simulation γ 's, due to blending out of weak features preferentially at high redshift. The high redshift solution does not suffer from this as lines are evenly blended out at all redshifts greater than 2.5, as demonstrated in Figure 2.8(a-c). In any case, this comparison indicates that there is no tendency for blending to work to artificially produce the trend noted above, namely that the γ for weak lines is steeper than the γ for strong lines at low redshift, contrary to the results of other authors.

For a variable threshold at high redshifts, γ flattens by 1.5σ compared to the value found for low redshift lines, to 0.64 ± 0.47 for $z>2.5$ from 1.57 ± 0.42 at $z<2.5$. Again, the difference is not statistically significant; but a trend exists in that the maximum likelihood values of γ found for the low redshift subsample are larger than those found for the high redshift subsample in all cases in which weak lines are included, while for strong lines, γ increases from low to high redshift. The agreement between the γ 's derived from the simulation line lists and the FINDSL line
lists indicates that, at the resolution and signal-to-noise of the data, this trend is not artificially imposed by blending.

Equivalently, one can investigate the distribution in equivalent width as a function of redshift. The value of the parameter W^{*} increases from low to high redshift from $0.282 \AA$ to $0.330 \AA$ in the case of a constant $0.32 \AA$ threshold, a difference of $\sim 3 \sigma$ in the sense that the distribution is more shallow at high redshift. Both of these results imply that there exist more weak lines relative to strong ones at low redshift than at high redshift. Given the discussion above, it is likely that at least some of this difference can be attributed to increased blending of weak lines at high redshifts. Nevertheless, the Kim et al. (1997) analysis supports this interpretation, as do the results of the hydrodynamic simulations of Davé et al. 1999. These authors find that W^{*} does indeed increase with redshift from $z=0$ to $z=3$ due to the onset of structure formation. The values of W^{*} they derive from their simulated spectra at high resolution are smaller than those measured in this paper or at low redshift by Weymann et al. (1998). They find, however, that the effects of blending in even low redshift, moderate resolution spectra, comparable to the FOS data, can raise the measured values to those found by Weymann et al. (1998).

This effect is demonstrated by Figure 2.9, a histogram of the rest equivalent width distribution of lines in the simulation and FINDSL line lists for the data resolution ($\sim 1 \AA$) simulations with median signal-to-noise ratios of 5,10 , and 20 in the variable threshold case. As expected, the number of lines blended out is largest at low equivalent width, flattening out the overall distribution and in turn raising the value of W^{*} derived.

If a fixed equivalent width threshold of $0.32 \AA$ is used (rows $9,11,15$, and 17 in Table 2.3), weak lines are thrown out and the distribution in redshift is flatter at low redshift than at high redshift, though not significantly so: $\gamma=1.30 \pm 0.60$ for $z<2.5$, versus 1.69 ± 0.60 for $z>2.5$, a difference of less than 0.5σ. Interestingly, StenglerLarrea et al. (1995) find $\gamma=1.50 \pm 0.39$ for Lyman limit absorbers between $z=0.32$
and $z=4.11$, in reasonable agreement with our values of γ using $W_{t h r}=0.32 \AA$ for both the low and high redshift subsamples. The total sample of lines with $\mathrm{W}>0.32 \AA$ gives a somewhat larger value of $\gamma, 1.88 \pm 0.22$, but including the low redshift data of Bahcall et al. (1993) yields a value of 1.70 ± 0.19, consistent with the result for Lyman limit systems. It has been proposed that Ly- α absorbers with $\log \left(N_{H I}\right) \gtrsim 14$, the value of the break in the column density distribution, are associated with the outer halos of galaxies responsible for Lyman limit systems and damped Lyman α systems (Giallongo et al. 1996, Lanzetta et al. 1995, 1996, Chen et al. 1998). This column density is approximately equivalent to the equivalent width threshold of $0.32 \AA$ used in this study; and the agreement between our values of γ and that for Lyman limit systems lends some credence to this scenario.

Table 2.1: Summary of $z \approx 2$ QSO Observations

QSO	Alternate Name	$z_{e m}$	Ref. (a)	m_{V} (b)	Instr. (c)	Date	Total Exposure (seconds)	Wavelength (\AA)
0006+020		2.34	1	17.5	2	15Nov93	7200	3200-4088
0027+018	UM 247	2.31	2	18.9	1	250 Ct 92	3600	3136-4118
0037-018	UM 264	2.34	1	18.0	2	7 Jan 94	7200	3205-4109
0049+007	UM 287	2.27	3	17.8	1	23-25Oct92	9600	3150-4111
$0123+257$	PKS	2.37	3	17.5	2	16Nov93	9000	3198-4094
0150-202	UM 675	2.14	4	17.1	1	24-25Oct92	6000	3173-4126
0153+744	S5	2.34	3	16.0	2	15Nov93	3600	3192-4088
0226-038	PKS	2.07	3	16.9	2	16Nov93	3000	3198-4095
0348+061		2.05	4	17.6	1	$250 \mathrm{ct92}$	2400	3130-4112
$0400+258$	B2	2.10	1	18.0	2	7 Jan 94	3000	3209-4121
0747+613		2.49	1	17.5	1	250 ct 92	3600	3323-4269
0836+710	S5	2.21	3	16.5	2	15Nov93	3600	3192-4088
$0848+155$		2.01	4	17.7	2	15Nov93	3600	3192-4088
0936+368	CSO 233	2.02	1	17.0	2	4Apr94	3600	3176-4058
0952+338	CSO 239	2.50	1	17.0	2	7Jan94	5400	3486-4389
0955+472	PC	2.48	1	17.7	2	7Jan94	3600	3486-4389
$0956+122$		3.30	1	17.5	2	7Jan94	3600	4394-5293
1009+299	CSO 38	2.63	1	16.0	2	7 Jan 94	3600	3622-4525
$1207+399$		2.45	3	17.5	3	5Apr94	900	3201-4824
$1210+175$		2.56	1	17.4	2	4June94	3600	3572-4453
$1231+294$	CSO 151	2.01	1	16.0	2	12Mar94	1800	3172-4053
1323-107	POX188	2.36	5	17.0	2	4June94	5400	3200-4087
1329+412	PG	1.93	1	16.3	2	3June94	1800	3202-4087
$1337+285$		2.54	1	17.1	2	3June94	3600	3574-4455
1346-036		2.36	3	17.2	2	$18 \mathrm{Ju193}$	3600	3275-4155

Table 2.1: Summary of $z \approx 2$ QSO Observations (Con-
tinued)

QSO	Alternate Name	$z_{\text {em }}$	Ref. (a)	$\begin{aligned} & \mathrm{m}_{V} \\ & \text { (b) } \end{aligned}$	Instr (c)	Date	Total Exposure (seconds)	Wavelength (\AA)
$1358+115$		2.58	1	16.5	2	18 Jul 93	3600	3547-4424
$1406+492$	CSO 609	2.16	1	17.0	2	3-4June94	3400	3201-4085
$1408+009$	UM 645	2.26	3	18.0	3	5Apr94	900	3200-4807
$1421+330$	MKN 679	1.90	4	16.7	2	4June94	1800	3200-4084
$1422+231$		3.62	3	16.5	2	16-17Ju193	1800	4853-5716
$1435+638$		2.06	3	15.0	2	16-17Jul93	7200	3100-3942
$1603+383$	HS	2.51	6	16.9	4	12-13Apr97	3300	3532-5045
$1604+290$	KP 63	1.96	1	17.0	2	18 Jul 93	3600	3100-3943
$1715+535$	PG	1.93	4	16.3	2	16-17Jul93	9000	3100-3938
$2134+004$	PKS	1.94	1	17.5	1	24-25Oct92	7200	3173-4125
$2251+244$	PKS	2.35	3	17.8	2	16Nov93	12000	3200-4093
2254+022	PKS	2.09	4	17.0	2	16-17Jul93	7200	3100-3936
$2310+385$	UT	2.18	3	17.5	1	250ct92	1200	3200-4118
$2320+079$	PKS	2.08	1	17.5	2	17 Jul 93	5400	3160-3940
2329-020	UM 164	1.89	1	17.0	2	18 Jul 93	3600	3060-3943

${ }^{a}$ (1) this paper, from Ly α emission; (2) Baker et al. 1994; (3) Scott et al. 2000, and refs. therein; (4) Steidel \& Sargent 1991; (5) Hewitt \& Burbidge 1993; (6) Dobrzycki, Engels, \& Hagen 1999
${ }^{b}$ as listed in Hewitt \& Burbidge 1993, with the exception of $1603+383$, for which V was calculated from the flux-calibrated spectrum (unpublished)
${ }^{c}$ Instrument Set-up:
(1) Big Blue Reticon, $8321 \mathrm{~mm}^{-1} 2^{\text {nd }}$ order, $1^{\prime \prime} \times 3^{\prime \prime}$ slit;
(2) $3 \mathrm{Kx} 1 \mathrm{~K} \mathrm{CCD}, 832 \mathrm{I} \mathrm{mm}{ }^{-1} 2^{\text {nd }}$ order, $1^{\prime \prime} \times 180^{\prime \prime}$ slit;
(3) $3 \mathrm{~K} \times 1 \mathrm{~K} C C D, 800 \mathrm{lmm}^{-1} 1^{\text {st }}$ order, $1^{\prime \prime} \times 180^{\prime \prime}$ slit;
(4) $3 \mathrm{KxlK} C C D, 1200 \mathrm{lmm}^{-1} 1^{\text {st }}$ order, $1^{11} \times 3^{\prime \prime}$ slit

Table 2.2: QSO Spectra from the Literature

QSO	$z_{e m}$	Reference
$0000-263$	4.111	1
$0001+087$	3.243	1
$0002+051$	1.899	2
$0002-422$	2.763	3,4
$0014+813$	3.384	1,5
$0029+073$	3.294	1
$0058+019$	1.959	6
$0100+130$	2.690	4
$0114-089$	3.205	1,5
$0119-046$	1.937	7
$0142-100$	2.727	6
$0237-233$	2.222	6
$0256-000$	3.374	1,5
$0301-005$	3.223	1
$0302-003$	3.286	1,5
$0334-204$	3.126	1
$0421+019$	2.051	2
$0424-131$	2.166	6
$0453-423$	2.656	3,4
$0636+680$	3.174	1,5
$0731+653$	3.033	1
$0831+128$	2.739	1,5
$0837+109$	3.326	6
$0848+163$	1.925	6
$0905+151$	3.173	1
$0913+072$	2.784	1,5
$0938+119$	3.192	1
$1017+280$	1.928	6
$1033+137$	3.092	1
$1115+080$	1.725	2
$1159+124$	3.502	6
$1206+119$	3.108	1,5
$1208+101$	3.822	1
$1215+333$	2.606	1,5
$1225-017$	2.831	1,5
$1225+317$	2.200	4
$1247+267$	2.039	6
$1315+472$	2.590	1,5

Table 2.2: Summary of $z \approx 2$ QSO Observations (Continued)

QSO	$z_{e m}$	Reference
$1334-005$	2.842	1,5
$1400+114$	3.177	1
$1402+044$	3.206	1
$1410+096$	3.313	1
$1442+101$	3.554	1
$1451+123$	3.251	1
$1511+091$	2.878	6
$1512+132$	3.120	1
$1548+092$	2.748	1,5
$1601+182$	3.227	1
$1602+178$	2.989	1
$1607+183$	3.134	1,5
$1614+051$	3.216	1
$1623+269$	2.526	1,5
$1700+642$	2.744	1,5
$1738+350$	3.239	1
$1946+770$	3.020	5
$2126-158$	3.280	4
$2233+131$	3.295	1
$2233+136$	3.209	1
$2311-036$	3.041	1

References:
(1) Bechtold 1994;
(2) Young, Sargent, \& Boksenberg 1982a;
(3) Sargent et al. 1979;
(4) Sargent et al. 1980;
(5) Dobrzycki \& Bechtold 1996;
(6) Sargent, Boksenberg, \& Steidel 1988;
(7) Sargent, Young, \& Boksenberg 1982

Table 2.3. Maximum Likelihood Estimations of γ, W^{*}, and $\mathcal{A}_{\mathbf{0}}$

Sample (a)	No. lines	W limit	γ (b)	$\mathrm{W}^{*}(\AA)$ (b)	\mathcal{A}_{0} $(\mathrm{~b})$	$\mathrm{P}_{\boldsymbol{K S}}$
1	2079	variable	1.23 ± 0.16	0.313 ± 0.006	-	-
1	1295	$\mathrm{~W}>0.16 \AA$	1.35 ± 0.21	0.300 ± 0.008	20.1	0.46
1	1131	$\mathrm{~W}>0.32 \AA$	1.88 ± 0.22	0.307 ± 0.009	5.78	0.98
1	1208	$0.16<\mathrm{W}<1.00 \AA$	1.11 ± 0.22	0.238 ± 0.006	25.4	0.53
1	1007	$0.32<\mathrm{W}<1.00 \AA$	1.59 ± 0.24	0.226 ± 0.007	7.47	0.96
1	555	$0.16<\mathrm{W}<0.32 \AA$	0.26 ± 0.33	0.075 ± 0.003	34.1	0.26
2	1084	variable	1.57 ± 0.42	0.284 ± 0.008	-	-
2	605	$\mathrm{~W}>0.16 \AA$	2.42 ± 0.62	0.257 ± 0.010	5.86	0.72
2	534	$\mathrm{~W}>0.32 \AA$	1.30 ± 0.60	0.282 ± 0.012	11.1	0.93
2	578	$0.16<\mathrm{W}<1.00 \AA$	2.26 ± 0.63	0.218 ± 0.009	6.77	0.53
2	491	$0.32<\mathrm{W}<1.00 \AA$	1.07 ± 0.63	0.229 ± 0.010	13.2	0.78
2	298	$0.16<\mathrm{W}<0.32 \AA$	2.47 ± 0.88	0.073 ± 0.004	2.72	0.93
3	995	variable	0.64 ± 0.47	0.348 ± 0.010	-	-
3	690	$\mathrm{~W}>0.16 \AA$	0.46 ± 0.55	0.338 ± 0.012	67.9	0.87
3	597	$\mathrm{~W}>0.32 \AA$	1.69 ± 0.60	0.330 ± 0.013	7.62	0.83
3	630	$0.16<\mathrm{W}<1.00 \AA$	-0.05 ± 0.58	0.256 ± 0.010	125.	0.98
3	516	$0.32<\mathrm{W}<1.00 \AA$	1.26 ± 0.65	0.223 ± 0.009	11.8	0.92
3	257	$0.16<\mathrm{W}<0.32 \AA$	-1.22 ± 0.94	0.077 ± 0.004	251.	0.86

(a) 1- entire sample; 2- low redshift subsample; 3 - high redshift subsample
(b) see Equ. 2.2

Table 2.4: Simulation Results for γ

$\begin{gathered} \hline \Delta \lambda(\AA) \\ (1) \\ \hline \end{gathered}$	$\begin{gathered} \hline \text { median } \mathrm{S} / \mathrm{N} \\ (2) \\ \hline \end{gathered}$	z range (3)	W limit (4)	$\gamma_{\text {simulation }}$ (5)	$\gamma_{\text {FINDSL }}$ (6)
1.0	4.9	all z	variable	1.99 ± 0.25	1.71 ± 0.30
1.0	4.9	$z<2.5$	variable	1.47 ± 0.74	2.82 ± 0.84
1.0	4.9	$z>2.5$	variable	2.25 ± 0.76	1.88 ± 0.98
1.0	4.9	all z	$0.32 \AA$	2.33 ± 0.37	1.86 ± 0.42
1.0	4.9	$z<2.5$	$0.32 \AA$	2.24 ± 1.19	2.42 ± 1.32
1.0	4.9	$z>2.5$	$0.32 \AA$	3.12 ± 1.12	1.38 ± 1.28
1.0	9.8	all z	variable	1.63 ± 0.18	1.47 ± 0.22
1.0	9.8	$z<2.5$	variable	2.61 ± 0.47	2.36 ± 0.54
1.0	9.8	$z>2.5$	variable	0.36 ± 0.61	1.35 ± 0.79
1.0	9.8	all z	$0.32 \AA$	1.62 ± 0.27	1.70 ± 0.30
1.0	9.8	$z<2.5$	$0.32 \AA$	1.85 ± 0.68	2.90 ± 0.76
1.0	9.8	$z>2.5$	$0.32 \AA$	1.10 ± 0.97	1.40 ± 1.08
1.0	9.8	all z	$0.16<W<0.32 \AA$	2.25 ± 0.40	1.30 ± 0.49
1.0	9.8	$z<2.5$	$0.16<\mathrm{W}<0.32 \AA$	5.18 ± 1.26	3.88 ± 1.50
1.0	9.8	$z>2.5$	$0.16<\mathrm{W}<0.32 \AA$	2.51 ± 1.23	2.52 ± 1.68
1.0	19.6	all z	variable	1.91 ± 0.14	1.67 ± 0.17
1.0	19.6	$z<2.5$	variable	1.82 ± 0.34	1.33 ± 0.40
1.0	19.6	$z>2.5$	variable	3.34 ± 0.53	2.87 ± 0.66
1.0	19.6	all z	0.32 A	1.79 ± 0.24	2.14 ± 0.25
1.0	19.6	$z<2.5$	0.32 A	1.48 ± 0.57	1.86 ± 0.61
1.0	19.6	$z>2.5$	$0.32 \AA$	3.61 ± 1.00	3.92 ± 1.02
0.7	9.8	all z	variable	1.77 ± 0.15	1.56 ± 0.18
0.7	9.8	$z<2.5$	variable	1.86 ± 0.39	1.46 ± 0.46
0.7	9.8	$z>2.5$	variable	2.34 ± 0.54	1.73 ± 0.67
0.7	9.8	all z	0.32 A	2.11 ± 0.24	2.44 ± 0.27
0.7	9.8	$z<2.5$	0.32 A	2.04 ± 0.61	1.58 ± 0.69
0.7	9.8	$z>2.5$	$0.32 \AA$	2.38 ± 0.92	3.12 ± 1.01
0.7	19.6	all z	variable	1.76 ± 0.12	1.56 ± 0.15
0.7	19.6	$z<2.5$	variable	1.98 ± 0.30	2.02 ± 0.35
0.7	19.6	$z>2.5$	variable	2.42 ± 0.49	1.68 ± 0.61
0.7	19.6	all z	$0.32 \AA$	1.90 ± 0.22	2.19 ± 0.24
0.7	19.6	$z<2.5$	$0.32 \AA$	1.69 ± 0.52	1.90 ± 0.57
0.7	19.6	$z>2.5$	$0.32 \AA$	3.56 ± 0.96	4.01 ± 1.03
0.2	39.2	all z	variable	1.41 ± 0.10	1.31 ± 0.12
0.2	39.2	$z<2.5$	variable	1.22 ± 0.23	1.54 ± 0.25
0.2	39.2	$z>2.5$	variable	0.72 ± 0.48	0.77 ± 0.55

Table 2.4: Simulation Results for γ (Continued)

$\Delta \lambda(\AA)$	median S/N	z range	W limit	$\gamma_{\text {simulation }}$	$\gamma_{\text {FINDSL }}$
(1)	(2)	(3)	(4)	(5)	(6)
0.2	39.2	all z	$0.32 \AA$	1.68 ± 0.21	1.91 ± 0.21
0.2	39.2	$z<2.5$	$0.32 \AA$	1.69 ± 0.45	2.24 ± 0.48
0.2	39.2	$z>2.5$	$0.32 \AA$	0.86 ± 0.96	-0.33 ± 0.98

Figure 2.1. FWHM of comparison lines versus wavelength for four separate instrumental setups listed in Table 2.1: solid line- (1) Big Blue Reticon, $8321 \mathrm{~mm}^{-1} 2^{\text {nd }}$ order, $1^{\prime \prime} \times 3^{\prime \prime}$ slit; short dashed line- (2) $3 \mathrm{Kx} 1 \mathrm{~K} C C D, 832 \mathrm{Imm}{ }^{-1} 2^{\text {nd }}$ order, $1^{\prime \prime} \times 180^{\prime \prime}$ slit; dotted line- Same as previous setup but with improved field flattener (see text); long dashed line- (3) $3 \mathrm{Kx} 1 \mathrm{~K} C C D, 800 \mathrm{lmm}^{-1} 1^{\text {st }}$ order, $\mathrm{l}^{\prime \prime} \mathrm{x} 180^{\prime \prime}$ slit

Figure 2.2. Spectra of 39 QSOs obtained at the MMT; solid line indicates the non flux-calibrated flux per unit frequency; dashed line indicates the continuum fit; dotted line indicates the 1σ errors; tick marks above the continuum indicate all lines of $\geq 3 \sigma$ significance. The bottom panel shows the 5σ equivalent width threshold as a function of wavelength.

Figure 2.3. (a) Histogram of 99 QSO redshifts, includes QSOs presented in this paper (shaded region) and objects from the literature; (b) Histogram of 3356 absorption line redshifts from QSOs presented in this paper (shaded region) and objects from the literature, using a variable equivalent width threshold, includes all lines between each QSO's Ly β and Ly α emission lines

Figure 2.4. (a) $\log (d \mathcal{N} / d z)$ versus $\log (1+z)$ for $z<2.5$ (dotted line), $z>2.5$ (dashed line), and all lines (solid line) each using a fixed threshold of $0.32 \AA$; (b) $\log (d \mathcal{N} / d z)$ versus $\log (1+z)$ for different equivalent width thresholds: $W>0.16 \AA$ (dotted line); $\mathrm{W}>0.32 \AA$ (solid line) $; 0.16 \AA<\mathrm{W}<0.32 \AA$ (dashed line)

Figure 2.5. $\left(\gamma_{\text {FindsL }}-\gamma_{\text {simulation }}\right) / \sigma_{\gamma}$ versus median signal-to-noise, open squares and solid line- data resolution, $\sim 1 \AA$; open triangles and dotted line- $\Delta \lambda \sim 0.7 \AA$; filled triangles- $\Delta \lambda \sim 0.2 \AA$: (a) variable threshold; (b) variable threshold, $z<2.5$; (c) variable threshold, $z>2.5$; (d) $W>0.32 A$; (e) $W>0.32 A, z<2.5$; (f) $W>$ $0.32 \AA, z>2.5$

Figure 2.6. Histograms of the line distribution used to solve for the simulation input γ (solid line) and FINDSL output γ (dashed line); vertical line at $z=2.5$ marks the division between low z and high z solutions for γ in Fig. 2.5: (a) variable threshold, $\Delta \lambda \sim 1 \AA$ - (i) median $S / N \sim 5$, (ii) median $S / N \sim 10$, (iii) median $S / N \sim 20$; (b) variable threshold, $\Delta \lambda \sim 0.7$ A- (i) median $S / N \sim 10$, (ii) median $S / N \sim 20$, (iii) $\Delta \lambda \sim 0.2 \AA$, median $\mathrm{S} / \mathrm{N} \sim 40$; (c) constant threshold, $\Delta \lambda \sim 1 A$ - (i) median $\mathrm{S} / \mathrm{N} \sim 5$, (ii) median $\mathrm{S} / \mathrm{N} \sim 10$, (iii) median $\mathrm{S} / \mathrm{N} \sim 20$; (d) constant threshold, $\Delta \lambda \sim 0.7 \mathrm{~A}$ (i) median $S / \mathrm{N} \sim 10$, (ii) median $\mathrm{S} / \mathrm{N} \sim 20$, (iii) $\Delta \lambda \sim 0.2 A$, median $\mathrm{S} / \mathrm{N} \sim 40$

Figure 2.7. $\log (d \mathcal{N} / d z)$ versus $\log (1+z)$ for the data resolution, data S / N simulation line lists (solid line) and FINDSL line lists (dashed line), for lines with W > 0.32 A; (a) all z; (b) $z<2.5$; (c) $z>2.5$

Figure 2.8. Same as Figure 2.7, but for lines with $0.16 \AA<W<0.32 \AA$.

Figure 2.9. Rest equivalent width distribution of lines in the data resolution, data S / N simulation line lists (solid line) and in the FINDSL line lists (dashed line), variable threshold case: (a) median $\mathrm{S} / \mathrm{N} \sim 5$; (b) median $\mathrm{S} / \mathrm{N} \sim 10$; (c) median S / N ~ 20

Chapter 3

The Ultraviolet Background at $Z>1.7$

3.1 Data

3.1.1 Spectrophotometry

Spectrophotometry of 12 sample objects in the spectral region between $\mathrm{Ly}-\alpha$ and C IV emission was obtained at the Steward Observatory Bok Telescope with the Boller and Chivens Spectrograph and the $12 \mathrm{~K} \times 8 \mathrm{~K}$ CCD on the nights of September 22, 1992, November 29, 1994, and March 28, 1995. Observations were made with a 4001 mm^{-1} grating with $\lambda_{b}=4889 \AA$ in the first order and a $4.5^{\prime \prime}$ slit. Spectrophotometry of the object $1422+231$ was obtained at the SO B\&C using a $600 \mathrm{l} \mathrm{mm}^{-1}$ grating with $\lambda_{b}=6681 \AA$ in the first order and a $1.55^{\prime \prime}$ slit on April 22, 1996; and the object $1603+383$ was observed by A.D. as part of the Hamburg/CfA Bright Quasar Survey on July 4, 1995 with the Fred Lawrence Whipple Observatory 1.5-meter Tillinghast telescope and FAST spectrograph, using a $3001 \mathrm{~mm}^{-1}$ grating with $\lambda_{b}=4750$ in the first order and a $3^{\prime \prime}$ slit. See Table 3.1 for a summary.

All observations except those of $1422+231$ and $1603+383$ were made with the slit set at the parallactic angle. This should not seriously effect the spectrophotometry of $1603+383$ as it was observed at a small airmass. Additionally, however, the observation of $1422+231$ was made with a slit width that is somewhat small for optimal spectrophotometry. But in any case, as discussed further below, both $1422+231$ and $1603+383$ are excluded from the proximity effect analysis due to the fact that $1422+231$ is a gravitational lens and the presence of associated absorption in the spectrum of $1603+383$. Any small errors in the spectrophotometry of the 74 objects used in the proximity effect analysis should not significantly bias the results of this work.

Object spectra were bias corrected and extracted using standard IRAF packages using $\mathrm{He}-\mathrm{Ne}-\mathrm{Ar}$ and quartz calibration exposures taken at each telescope position to perform the wavelength calibration and to correct for pixel-to-pixel variations, respectively. The data were then flux calibrated using standard star exposures. The column density of Galactic neutral hydrogen along the line of sight to each object was found using the program COLDEN, made available by J. M ${ }^{c}$ Dowell; and the spectra were thus corrected for the Galactic reddening calculated from the relation $N_{H I} / E(B-V)=4.8 \times 10^{21}$ atoms cm^{-2} magnitude $^{-1}$ (Bohlin 1978). The spectra and the power law continuum fits are shown in Figure 3.1.

3.1.2 QSO Systemic Redshifts

For the present absorption line sample, the QSO narrow emission lines discussed above all lie redward of $\sim 7600 \AA$, and into the near infrared. Spectra of four objects in this sample were obtained at the MMT with the infrared spectrometer FSpec (Williams et al. 1993) on May 20, 1994 (1207+399 and 1422+231) and April 1, 1996 (1408+009, and $1435+638$) using a $75 \mathrm{I} \mathrm{mm}^{-1}$ grating and a $1.2^{\prime \prime}$ slit giving a resolution of $\sim 34 \AA$ in the K band. A series of exposures of each object was taken. Between each exposure, the object was moved along the slit. The total integration time is listed in Table 3.2. One object, $0836+710$, was observed on March 28,1995 with the $B \& C$, the 1200×800 CCD, a $300 \mathrm{I} \mathrm{mm}^{-1}$ grating with $\lambda_{b}=6693 \AA$ in the first order, and a $4.5^{\prime \prime}$ slit. Infrared spectra of eight objects in this sample, 0000-263, 0014+813, 0636+680, 0956+122, $1159+124,1208+101,2126-158$, were obtained using FSpec, OSIRIS on the CTIO 4 m telescope, and CRSP on the KPNO 4-m telescope as part of the PhD. dissertation of O. Kuhn. A summary of these observations is given in Table 3.2 and the spectra are displayed in Figure 3.2.

3.2 Ly $-\alpha$ Forest Statistics for $z_{a b s} \approx z_{e m}$: The Proximity Effect

3.2.1 Spectrophotometry

In order to perform the proximity effect analysis, the flux of each QSO at the Lyman limit is needed. The spectrophotometry data discussed above was used for this purpose. A power law of the form $f_{\nu} \sim \nu^{-\alpha}$ was fit to the continua of these objects. The straight line fit to $\log \left(f_{\nu}\right)$ vs. $\log (\nu)$ was done using a robust estimation technique; and emission lines found by visually inspecting the spectrum were excluded from the points used in the fit. The measured flux at $1450 \AA$ and the value of α derived from this fit were used to determine the flux at $912 \AA$. For the objects we did not observe, we proceed as follows. If a flux measurement at a rest $U V$ wavelength other than $912 \AA$ exists along with a published spectral index, we use these to extrapolate to the Lyman limit. If no spectral index is available, we use the value of 0.46 (Francis 1996). The object $2134+004$ has a variable continuum (Perez et al. 1989, Corbin 1992). Therefore, although we have spectrophotometry from our own observations of this object, we take the flux measurement of these authors from their averaged spectrum produced from observations made over several months. We use this with the spectral index we derive to extrapolate to $912 \AA$.

If no rest UV spectrophotometry of an object exists, we estimate f_{ν} at $5500 \AA$ (observed) from the V magnitude given in Table 1 of Paper I with an extinction correction applied. The extinction correction was calculated using the column density of neutral hydrogen from COLDEN and the Seaton (1979) re-normalization of the composite UV-optical reddening curve of Nandy et al. (1975, and references therein). A rest-frame composite QSO spectrum (Zheng et al. 1997) with an arbitrary flux scale was redshifted by the appropriate amount for each object. The flux in the V filter was calculated by convolving this spectrum with the V filter transmission as a function of wavelength. A scaling factor was calculated so that when the redshifted QSO composite spectrum was multiplied by this factor, the resulting magnitude matched
the magnitude listed in Table 1 of Paper I. The flux at $1450 \AA$ was then taken from this scaled spectrum and this flux was extrapolated to the Lyman limit using the spectral index given in Table 3.3. A zero point flux density for the V filter of $3.81 \times$ $10^{-20} \mathrm{ergs} \mathrm{s}^{-1} \mathrm{~cm}^{-2} \mathrm{~Hz}^{-1}$ (Johnson 1966) was used.

The asterisks in Table 3.3 mark QSOs which are known lenses or which show associated absorption in their spectra. Associated absorption is defined to be any Lyman α absorption within $\sim 5000 \mathrm{~km} \mathrm{~s}^{-1}$ of the QSO redshift which also shows metal lines. (See Paper I for a description of the metal line systems identified in each QSO spectrum.) These objects were excluded from the proximity effect analysis on the grounds that gas associated with the QSO or QSO host galaxy is not part of the general intergalactic medium and bulk motions within this gas may skew the results. The spectrophotometric properties adopted for the 59 QSOs from the literature are listed in Table 5 of B94.

3.2.2 Number of Lines with $z_{a b s} \approx z_{e m}$

The first method we use to demonstrate the proximity effect is to compare the number of lines predicted if there was no effect from the equation

$$
\begin{equation*}
\frac{d \mathcal{N}}{d z}=\mathcal{A}_{0}(1+z)^{\gamma} \tag{3.1}
\end{equation*}
$$

with the number of lines counted in the spectrum as a function of distance from the QSO,

$$
\begin{equation*}
\Delta \mathcal{N}=\mathcal{N}_{\text {pred }}-\mathcal{N}_{\text {obs }} . \tag{3.2}
\end{equation*}
$$

The number of lines predicted is found by integrating Equ. 3.1,

$$
\begin{equation*}
\mathcal{N}_{\text {pred }}=\frac{\mathcal{A}_{0}}{\gamma+1}\left(\left(1+z_{\max }\right)^{\gamma+1}-\left(1+z_{\min }\right)^{\gamma+1}\right) \tag{3.3}
\end{equation*}
$$

The bins in luminosity distance from the QSO are defined according to the relation,

$$
\begin{equation*}
\Delta R=1687.5 \frac{\Delta z}{\left(1+z_{e m}\right)^{5 / 2}} h^{-1} \mathrm{Mpc} \tag{3.4}
\end{equation*}
$$

We use $h=0.75$. Figure 3.3 plots the distribution in \mathbf{z} and Lyman limit luminosity of the QSOs in our sample.

The dataset was divided into low luminosity and high luminosity subsamples at $\log \left[L\left(\nu_{0}\right)\right]=31.1$, such that there were equal numbers of objects in each subsample. The Lyman limit luminosity of each object was calculated according to the expression

$$
\begin{equation*}
L\left(\nu_{0}\right)=4 \pi d_{L}^{2} \frac{f\left(\nu_{0}\right)}{\left(1+z_{e m}\right)} \tag{3.5}
\end{equation*}
$$

where the luminosity distance to the quasar, d_{L} is given by

$$
\begin{equation*}
d_{L}=\frac{c\left\{q_{0} z+\left(q_{0}-1\right)\left[\left(1+2 q_{0} z\right)^{1 / 2}-1\right]\right\}}{q_{0}^{2} H_{0}} \tag{3.6}
\end{equation*}
$$

for $q_{0}>0$. In this paper, we use a value of 0.5 for q_{0}. Figure 3.4 plots the fractional deficit of lines, $\left(\mathcal{N}_{\text {pred }}-\mathcal{N}_{\text {obs }}\right) / \mathcal{N}_{\text {pred }}$, for the total sample and the high and low luminosity subsamples.

For the total sample, a 5.5σ deficit of lines is found in the $0-1.5 h^{-1} \mathrm{Mpc}$ bin. The low luminosity subsample shows a deficit of lower significance (3.6σ) than the high luminosity subsample (4.6o). These deficits are expected for a proximity effect caused by enhanced ionization of HI from the quasar flux; and the marginally higher significance for high luminosity objects further suggests that this picture is legitimate.

3.2.3 Photoionization Model

We follow the formalism outlined in BDO to calculate a value of the mean intensity of the ionizing background in the redshift range $1.7<z<3.4$. The column density of a Ly- α absorber in the immediate vicinity of a quasar will be modified from the value that it would have if the quasar were not present. The amount by which the column density of HI will be reduced due to ionization by UV photons from the quasar is given by

$$
\begin{equation*}
N=N_{0}(1+\omega)^{-1} \tag{3.7}
\end{equation*}
$$

where N is the observed column density of the absorber, and N_{0} is the column density that the absorber would have if the quasar were absent. The column density distribution of the general $\mathrm{Ly}-\alpha$ absorber population was been shown to follow a power law over several orders of magnitude in column density,

$$
\begin{equation*}
\mathcal{N} \propto N^{-\beta} \tag{3.8}
\end{equation*}
$$

which, for a fixed limiting column density, $N_{t h r}$, (corresponding to the limiting rest equivalent width) can be integrated to give the total number of lines with column densities equal to or larger than the limiting value, $\mathcal{N}\left(N \geq N_{t h r}\right)=N_{t h r}^{-(\beta-1)}$. Thus, a proximity effect-corrected redshift distribution for a fixed rest equivalent width threshold can be derived:

$$
\begin{equation*}
\frac{d \mathcal{N}}{d z}=\mathcal{A}_{0}(1+z)^{\gamma}[1+\omega(z)]^{-(\beta-1)} \tag{3.9}
\end{equation*}
$$

where ω represents a flux-scaled distance of each cloud from the QSO

$$
\begin{equation*}
\omega=\frac{F^{Q}\left(\nu_{0}\right)}{4 \pi J\left(\nu_{0}\right)} . \tag{3.10}
\end{equation*}
$$

$F^{Q}\left(\nu_{0}\right)$ is the Lyman limit flux density due to the QSO at the position of a given absorber,

$$
\begin{equation*}
F^{Q}\left(\nu_{0}\right)=\frac{L\left(\nu_{0}\right)}{4 \pi r_{L}^{2}} \tag{3.11}
\end{equation*}
$$

where r_{L} is now the luminosity distance between the QSO and the absorber. We remove the dominant dependence of the line density on redshift by introducing a coevolving coordinate, X_{γ}, given by

$$
\begin{equation*}
X_{\gamma}=\int(1+z)^{\gamma} d z \tag{3.12}
\end{equation*}
$$

If no proximity effect existed, the number of lines per coevolving coordinate would be expressed as

$$
\begin{equation*}
d \mathcal{N} / d X_{\gamma}=\mathcal{A}_{0} \tag{3.13}
\end{equation*}
$$

In this analysis, we use a value for β of 1.46 from of Hu et al. (1995) based upon high S / N, high resolution spectra of four QSOs at $\mathrm{z} \approx 3$, consistent with the value of 1.4 found by Dobrzycki \& Bechtold (1996), hereafter DB96, from simulations of Ly- α forest spectra in QSOs at $z \approx 3$. The value of this parameter is an important factor in the ionization model. B94 found that changing the adopted value of β from 1.7 to 1.4 caused the derived value of J_{-21} to decrease by a factor of ~ 3. Giallongo et al. (1996) find that a double power law provides a better fit to the observed column density distribution in their high resolution spectra than a single power law. The form of their double power law consists of a break at $N_{H I}=10^{14} \mathrm{~cm}^{-2}$ and values of β above and below this break of 1.8 and 1.4 respectively. For this analysis, however, we will use a single power law, as the data of Hu et al. (1995) do not require the double power law form.

The procedure consists of assuming a form for $J\left(\nu_{0}\right)$ as a function of z , dividing the lines into the appropriate ω bins, and finding the parameters of the assumed form of $J\left(\nu_{0}\right)$ that gives the lowest χ^{2} between the binned data and the ionization model. Since no work to date has shown that $J\left(\nu_{0}\right)$ evolves significantly with redshift over the range of our sample objects, we will treat the case that $J\left(\nu_{0}\right)$ is constant over the redshift range of the data.

Figure 3.5 plots χ^{2} with respect to the constant $J\left(\nu_{0}\right)$ photoionization model versus $\log \left[J\left(\nu_{0}\right)\right]$ and Figure 3.6 plots the coevolving number density versus ω for the lowest χ^{2} value of $J\left(\nu_{0}\right)$ for each subsample. The results of this analysis are summarized in Table 3.4 and are discussed in more detail in Section 3.4.

3.2.4 Maximum Likelihood Analysis

In addition to the standard BDO analysis, we also used a maximum likelihood method outlined by KF93 to measure the extragalactic ionizing background in a manner that
avoids binning of the data. One constructs a likelihood function of the form

$$
\begin{equation*}
L=\prod_{a} f\left(N_{a}, z_{a}\right) \prod_{Q} \exp \left[-\int_{z_{\min }^{Q}}^{z_{\max }^{Q}} d z \int_{N_{\min }^{Q}}^{\infty} f(N, z) d N\right] \tag{3.14}
\end{equation*}
$$

where the subscripts a and Q refer to absorbers and QSOs and where $f(N, z)$ is the standard equation for the distribution of Lyman α absorbers in column density and redshift,

$$
\begin{equation*}
f(N, z)=A N^{-\beta}(1+z)^{\gamma}[1+\omega(z)]^{-(\beta-1)} . \tag{3.15}
\end{equation*}
$$

The parameter ω is defined as above, but here, the normalization in terms of \mathcal{A}_{0} in Equation 3.1 is given by $\mathcal{A}_{0}\left(N_{\text {lim }} / N_{0}\right)^{\beta-1}(1 /(\beta-1))$. With the exception of the case in which a variable threshold is used, $N_{\text {min }}$ for each QSO is the column density which, according to the curve-of-growth adopted (see KF93), corresponds to an equivalent width of $0.32 \AA, 2.62 \times 10^{14} \mathrm{~cm}^{-2}$.

Instead of using the method outlined by KF93 whereby the parameters A, β, γ, and $J\left(\nu_{0}\right)$ are all found by minimizing $-\ln (\mathrm{L})$ where L is given by the likelihood function above, we chose to take the parameter γ from a separate maximum likelihood solution to Equation 3.1 (see Paper I.) Since our spectra are more highly blended than the low redshift data used by KF93, we choose not to determine β directly from our data using line equivalent widths and the curve-of-growth and instead adopt a value found from high resolution spectra. As described in the previous section, we take β to be 1.46 (Hu et al. (1995) and solve for A by requiring $f(N, z)$ to give the observed number of lines in the regions of the QSO spectra unaffected by the proximity effect.

We ran two tests on this set of algorithms. The first of these was to attempt to reproduce the results of KF93 with the dataset they used from Bahcall et al. (1993) . Next, we used a high redshift subsample of our complete dataset, the DB96 sample, to compare the results of the maximum likelihood analysis and the BDO analysis to each other and to independent checks on these values (B94, Giallongo et al. 1996).

We were able to reproduce the results of KF93. Using their Sample 2, the Bahcall et al. (1993) sample minus one BAL QSO, PG $0043+039$, we obtain $(\gamma, \beta, \log (\mathrm{A}))=$
($0.23,1.47,7.74$) and $\log \left[J\left(\nu_{0}\right)\right]=-23.0_{-0.6}^{+0.7}$ for $b=35 \mathrm{~km} \mathrm{~s}^{-1}$. These agree with the values they find, $(\gamma, \beta, \log (A))=(0.21,1.48,7.74)$, and the errors in these values, $\sigma_{\gamma} \sim 0.06 \sigma_{\beta} \sim 0.05$, and $\sigma_{\log (A)} \sim 0.1$. Their result for $\log \left[J\left(\nu_{0}\right)\right]$ for this sample is $-23.3_{-0.5}^{+0.7}$.

The high redshift subsample we created consisted of 518 lines from the 15 objects from DB96 that do not show associated absorption. The QSOs have redshifts between 2.52 and 3.38. Using our maximum likelihood program to solve for the Lyα forest statistics, we find $\gamma=1.926 \pm 0.656$, and $\log (A)=7.03$ for $N_{\min }=2.6 \times$ $10^{14} \mathrm{~cm}^{-2}$ and $\beta=1.46$. This subsample does give similar results in the BDO and the maximum likelihood cases, $\log \left[J\left(\nu_{0}\right)\right]=-21.40_{-0.69}^{+1.10}$ and $\log \left[J\left(\nu_{0}\right)\right]=-21.58_{-0.23}^{+0.30}$, respectively. (See rows 1 and 2 of Table 3.4.) These values agree well with the Giallongo et al. (1996) result of $\log \left[J\left(\nu_{0}\right)\right]=-21.30 \pm 0.7$ for $z=1.7-4.1$.

The software we used for the maximum likelihood analysis uses all regions of the QSO spectra between $z_{\text {min }}$, specified by the spectral coverage or by Ly β emission, and $z_{\max }$, specified by Ly- α emission. Though it does not count lines associated with identified metal line systems, it does not exclude the regions of the spectrum where these lines lie. To ensure that this does not have a significant effect on our resultant solution for the background, we tested a program that does exclude regions of the spectra in the same way that our BDO-style software does. The change in the result was indeed insignificant; but taking these excluded spectral regions into account and binning the data in the same way the BDO-style software does brings the maximum likelihood and the BDO method results into excellent agreement.

Figure 3.7 plots the \log of the ratio of the likelihood function to the maximum value versus $\log \left[J\left(\nu_{0}\right)\right]$; and Figure 3.8 plots the coevolving number distribution of Ly- α lines with respect to ω just as in Figure 3.6. The results of this analysis are also summarized in Table 3.4 and discussed further in Section 3.4.

3.2.5 Systemic QSO Redshifts

One of the major uncertainties in the proximity effect analysis is in the systemic redshifts of the QSOs. If the true redshift of a QSO is higher than the value used in the analysis, any given cloud is further away from the QSO than assumed. Hence, the influence of the QSO at this cloud is less than inferred and the value of $J\left(\nu_{0}\right)$ in reality is lower than the one derived.

For the data presented in Figure 3.2, an average of several cursor settings at the peak of the emission line was used to determine the line centers. More detailed fits were not done as our purpose lies mainly in determining if any gross shifts between Ly- α and the Balmer lines/[OIII]/Mg II exist for our data; but we found no significant difference between this method and making Gaussian fits to the upper 50% of the emission line profiles.

Ly- α redshifts were measured from the absorption line spectra when the entire Ly- α profile was observed, in the same way as was done for the Balmer, [OIII], and Mg II lines. Table 3.5 lists the adopted best redshift value for each emission line for each object supplementing our measurements with measurements from the literature.

Laor et al. (1994) and Laor et al. (1995) found, from a sample of 13 QSO spectra from the Faint Object Spectrograph on Hubble Space Telescope between redshifts of $z \sim 0.16$ and $z \sim 2.0$, average velocity shifts between [OIII] $\lambda 5007$ and Ly- α, Mg II, and $\mathrm{H} \beta$ of $200 \pm 150 \mathrm{~km} \mathrm{~s}^{-1},-85 \pm 130 \mathrm{~km} \mathrm{~s}^{-1}$, and $-75 \pm 110 \mathrm{~km} \mathrm{~s}^{-1}$, respectively. This agrees with the Corbin \& Boroson (1996) result for 48 objects with $0.03<z<0.77$. They found mean [OIII]-Ly- α and [OIII]-H β shifts of $191 \pm 101 \mathrm{~km}$ s^{-1} and $-75 \pm 57 \mathrm{~km} \mathrm{~s}^{-1}$. Thus, Ly- α is blueshifted with respect to [OIII] by ~ 200 $\mathrm{km} \mathrm{s}^{-1}$, while Mg II and $\mathrm{H} \beta$ are marginally redshifted with respect to [OIII]. Tytler \& Fan (1992) find a mean [OIII]-H β shift of $-15 \pm 37 \mathrm{~km} \mathrm{~s}^{-1}$ from 8 QSOs with redshifts between ~ 0.3 and ~ 0.6 and conclude that both Balmer lines and narrow forbidden lines give redshifts within $100 \mathrm{~km} \mathrm{~s}^{-1}$ or less of the QSO systemic redshift.

They then find a blueshift of Mg II with respect to $[\mathrm{OIII}] / \mathrm{H} \beta$ for 100 QSOs of 101 ± 47 $\mathrm{km} \mathrm{s}^{-1}$ which they use as a secondary systemic redshift zero point in their analysis of a large QSO sample. The magnitude of the blueshift of Ly- α with respect to [OIII]/H β that they derive is $172 \pm 17 \mathrm{~km} \mathrm{~s}^{-1}$. The data of Nishihara et al. (1997) for five QSOs at $z \sim 1.5$ show a negligible redshift of Mg II with respect to [OIII], $31 \pm 411 \mathrm{~km} \mathrm{~s}^{-1}$. However these five objects show a somewhat larger redshift of $\mathrm{H} \beta$ with respect to [OIII] $\lambda 5007$, equalling $260 \pm 522 \mathrm{~km} \mathrm{~s}^{-1}$, consistent with the fact that these objects have high luminosities. M ${ }^{c}$ Intosh et al. (1999b) use the near-infrared spectra of QSOs at $2.0 \lesssim z \lesssim 2.5$ presented in M ${ }^{c}$ Intosh et al. (1999a) to examine the redshift differences between [OIII] and $\mathrm{H} \beta$. They supplement their data with data from the literature to measure the redshift differences between [OIII] and Mg II. They find that on average, $\mathrm{H} \beta$ is redshifted relative to [OIII] by $520 \pm 80 \mathrm{~km} \mathrm{~s}^{-1}$ for 21 of their sample objects, while Mg II lies within $50 \mathrm{~km} \mathrm{~s}^{-1}$ of the redshift of [OIII] for 12 sample objects.

For our sample, we find that Ly- α is blueshifted with respect to [OIII] $\lambda 5007$ by $382 \pm 1160 \mathrm{~km} \mathrm{~s}^{-1}$ for 19 QSOs. Mg II emission is blueshifted by an average of $338 \pm 901 \mathrm{~km} \mathrm{~s}^{-1}$ with respect to [OIII] on the basis of seven measurements. We find that $\mathrm{H} \beta$ is redshifted by $642 \pm 740 \mathrm{~km} \mathrm{~s}^{-1}$ with respect to [OIII] on the basis of five measurements; and including three $\mathrm{H} \alpha$ redshifts listed in Table 3.5 with these $\mathrm{H} \beta$ redshifts, leads to a $507 \pm 615 \mathrm{~km} \mathrm{~s}^{-1}$ redshift of Balmer lines with respect to [OIII]. This shift is larger than that discussed above for low reshift QSOs. However, it is consistent with the Nishihara et al. (1997) $\mathrm{H} \beta$ shift for high luminosity QSOs. Combining our data with that of these authors, we find that Mg II is blueshifted with respect to [OIII] by $184 \pm 735 \mathrm{~km} \mathrm{~s}^{-1}$; and including the data of M^{c} Intosh et al. (1999b) that is not already in our sample gives a blueshift of $95 \pm 603 \mathrm{~km} \mathrm{~s}^{-1}$. Similarly, combining our data with that of Nishihara et al. (1997), we find that $\mathrm{H} \beta$ is redshifted with respect to [OIII] by $451 \pm 636 \mathrm{~km} \mathrm{~s}^{-1}$; and after supplementing this combined data set with the data of M^{c} Intosh et al. (1999b), the redshift becomes
$379 \pm 516 \mathrm{~km} \mathrm{~s}^{-1}$. Lastly, combining the data of M^{c} Intosh et al. (1999b) with ours gives a Ly- α blueshift of $418 \pm 920 \mathrm{~km} \mathrm{~s}^{-1}$ with respect to [OIII].

As has been noted in previous work, the standard error in the mean velocity shifts is quite large, on the order of or exceeding the value of the shift itself. We estimate that the wavelength calibration errors in our data contribute a $\sim 10-30 \mathrm{~km} \mathrm{~s}^{-1}$ error in the derived redshifts; and the spread in different redshift measurements of the same species (e.g. Balmer lines or [OIII] $\lambda 4959$ and $\lambda 5007$) for the same object is typically $100-200 \mathrm{~km} \mathrm{~s}^{-1}$. The observed spreads in the velocity differences of the $\mathrm{Ly}-\alpha, \mathrm{Mg}$ II, and Balmer emission lines with respect to the quasar systemic redshifts are much larger than this, indicating that it is intrinsic to the quasar population. Figure 3.9 shows histograms of the emission line redshift differences between [OIII] and Ly- α, [OIII] and Mg II, and [OIII] and Balmer lines. Our results are plotted with those of Laor et al. (1995) and of Nishihara et al. (1997). Our sample shows no welldefined mean [OIII]-Balmer shift, just a large scatter in the measurements included. Our sample also shows a large range of [OIII]-Ly- α and [OIII]-Mg II shifts with no well-defined mean value. Nonetheless, the mean trend is that the [OIII]-Ly- α shift is different from zero by 1.4σ for our data, less than the 3.5σ significance found by Laor et al. (1995). The [OIII]-Balmer line shifts for both our data set and for our data combined with that of Nishihara et al. (1997) are more significant, 2.7σ and 2.8σ respectively. The [OIII]-Mg II shift is consistent with zero in a mean sense, but with large scatter. Thus, though better statistics are desirable, it seems that for these high redshift and relatively high luminosity objects, Balmer lines are not good indicators of the QSO systemic redshift. For the purposes of this study therefore, we treat only the redshifts found from [OIII] $\lambda 5007$ for 19 objects in our sample and Mg II for 16 objects in our sample as systemic QSO redshifts.

3.2.6 The HI Ionization Rate

The HI ionization rate due to a source of UV flux is formally given by the equation:

$$
\begin{equation*}
\Gamma=\int_{\nu_{0}}^{\infty} \frac{4 \pi J(\nu) \sigma_{H I}(\nu)}{h \nu} d \nu \mathrm{~s}^{-1} \tag{3.16}
\end{equation*}
$$

The calculations of the mean intensity of the ionizing background to date have made a critical assumption, namely that the spectrum of the background and the spectra of the individual QSOs are identical. This allows the expression $\omega=\Gamma^{Q} / \Gamma^{b g}$ to reduce to the ratio of the Lyman limit flux density of the QSO, $J^{Q}\left(\nu_{0}\right)$, to that of the background, $J^{b g}\left(\nu_{0}\right)$, for each line (BDO). Since the IGM reprocesses the radiation emitted from QSOs, this is not strictly true (Miralda-Escudé \& Ostriker 1990, Madau 1991,1992, Meiksin \& Madau 1993, Haardt \& Madau 1996, Fardal, Giroux, \& Shull 1998). Furthermore, the value of $\Gamma^{b 9}$ is of particular interest as it can be used to infer the value of Ω_{b} by comparing the distribution of flux decrements in high resolution QSO spectra to Lyman α forest simulations (Rauch et al. 1997). Therefore, we repeat the standard BDO analysis without making this assumption, ie. using $\omega=\Gamma^{Q} / \Gamma^{b g}$ and solving for the HI ionization rate from the metagalactic background radiation. The ionization rate for each QSO was calculated using Equation 3.16, where $\sigma_{H I}(\nu)=$ $6.3 \times 10^{-18}\left(\frac{\nu_{0}}{\nu}\right)^{3} \mathrm{~cm}^{2}$ and where $J^{Q}(\nu)=J^{Q}\left(\nu_{0}\right)\left(\frac{\nu}{\nu_{0}}\right)^{-a}$. For each QSO, $J^{Q}\left(\nu_{0}\right)$ is the same value used in the standard analysis used to solve for $J^{b g}\left(\nu_{0}\right)$, and α is given in Table 3.3. For some objects, no α listed in this table and a value of 0.46 was used, as described in Section 3.2.1. As before, the best value will be the one that gives the lowest χ^{2} between the model with $\beta=1.46$ and the binned data. We use the narrow line redshifts for each QSO discussed above and add $400 \mathrm{~km} \mathrm{~s}^{-1}$ to each QSO redshift measured from the Lyman α emission line.

Haardt \& Madau (1996) present a Gaussian fit to their model for the evolution of Γ with redshift,

$$
\begin{equation*}
\Gamma=A(1+z)^{B} \exp \left[-\left(z-z_{c}\right)^{2} / S\right] \tag{3.17}
\end{equation*}
$$

that agrees with their detailed model for the background to within 10% over the range $0<z<5$. The best fit parameters they derive are $A=6.7 \times 10^{-13} \mathrm{~s}^{-1}$, $B=0.73, z_{c}=2.30$, and $S=1.90$. Fardal, Giroux, \& Shull (1998) fit their model for the background with the parameter sets $A=5.6 \times 10^{-13} \mathrm{~s}^{-1}, B=0.60, z_{\mathrm{c}}=2.22$, and $S=1.90$ and $A=1.26 \times 10^{-12} \mathrm{~s}^{-1}, B=0.58, z_{c}=2.77$, and $S=2.38$ for the Q1 and Q2 luminosity functions, of Pei (1995) respectively. Incorporating this expression for $\Gamma(z)$ with these three different sets of parameters into the BDO style analysis allows us to determine which of these models fits our data best. The results are listed in Table 3.6 and are discussed in greater depth below in Section 3.4.

3.3 Simulations and the Curve of Growth

Simulated Lyman α forest spectra for the DB96 sample only were produced using the software described in that paper. The simulation input γ was changed slightly to reflect the maximum likelihood value found by the software used in the analysis described in Paper I. The normalization was chosen to give matching amounts of total absorption in the real and simulated spectra. The parameters used were $\gamma=2.069$, $\mathcal{A}_{0}=4.835, \beta=1.46, \log \left(\mathrm{~N}_{\mathrm{HI}_{\min }}\right)=13.0, \log \left(\mathrm{~N}_{\mathrm{HI}_{\text {max }}}\right)=16.0,<\mathrm{b}>=28.0 \mathrm{~km} \mathrm{~s}^{-1}$, $\sigma_{b}=10.0 \mathrm{~km} \mathrm{~s}^{-1}$, and $b_{\text {cut }}=20.0 \mathrm{~km} \mathrm{~s}^{-1}$.

The proximity effect was included in these simulations by simply modifying each cloud's column density according to equations 3.7 and 3.10 . The value of $\log \left[J\left(\nu_{0}\right)\right]$ from the BDO type analysis on the DB96 sample is $-21.40_{-0.69}^{+1.1}$. Values of $-19.0,-20.0$, $-21.3,-22.0$, and -23.0 for $\log \left[J\left(\nu_{0}\right)\right]$ were input and the analyses described above were used to recover that $J\left(\nu_{0}\right)$. Two examples of the simulated spectra are shown in Figure 3.10.

The analysis considers all lines above a fixed equivalent width threshold of 0.32 A . Thus, as the column densities of lines are modified by the QSO flux from their expected values in the absence of the proximity effect, the equivalent widths of the
lines will change according to the curve-of-growth. If a line is saturated, changing its column density will have little effect on its equivalent width, since it lies on the flat part of the curve-of-growth where $W \propto \sqrt{\log (N)}$. This will mean that for a given equivalent width cutoff in the data, this line will not drop out of the sample as the proximity effect is turned on in the simulations. Since the line deficit will be less than expected for a given input value of $J\left(\nu_{0}\right)$, the proximity effect will appear less pronounced and the true $J\left(\nu_{0}\right)$ will be overestimated. We found this to be the case from our simulations. As Figure 3.11 illustrates and Table 3.7 summarizes, though the values of $J\left(\nu_{0}\right)$ recovered from the simulated data were usually consistent with the input values within the 1σ confidence limits, they were systematically larger than the input values by up to a factor of 3 . The largest input values of $\log \left[J\left(\nu_{0}\right)\right],-19.0$ and $\mathbf{- 2 0 . 0}$, give the largest discrepancy between this input value and the $\log \left[J\left(\nu_{0}\right)\right]$ recovered from the BDO analysis performed on the simulated spectra. The smallest input value of $\log \left[J\left(\nu_{0}\right)\right],-23.0$, gives the smallest discrepancy between the input and recovered values. However, the 1σ confidence limits on this fit are also relatively small, making it the only trial which does not recover the input $\log \left[J\left(\nu_{0}\right)\right]$ to within those limits.

To demonstrate the effect, Figure 3.12 compares the simulated line equivalent widths with and without the proximity effect included. The column density of each line from the simulated spectra line lists with no proximity effect were modified according to equations 3.7 and 3.10 . Figures $12(\mathrm{a}-\mathrm{e})$ plot the non-proximity effect rest equivalent width $W_{n o-P E}$ versus the ratio of the proximity effect and non-proximity effect equivalent widths, $W_{P E} / W_{n o-P E}$. The solid line delineates the detection threshold for the lines in the list for which the proximity effect is included, $W_{P E}=0.32 \AA$. Absorption lines that fall above this line were not removed from the sample when the proximity effect was turned on, while those below it disappeared. For a given set of QSOs with fixed Lyman limit lumosities, such as this one, the proximity effect signature in their spectra will become less pronounced as the ambient UV background
increases. Therefore, as $\log \left[J\left(\nu_{0}\right)\right]$ increases from -23.0 to -19.0, the magnitude of the proximity effect decreases, and the pre- and post- proximity effect line lists differ less and less from each other.

3.4 Results and Discussion

Table 3.4 lists the best fit values of $J\left(\nu_{0}\right)$ found for various subsamples of this dataset using both the canonical BDO and the maximum likelihood methods. For the BDO method, the 1σ confidence limits are found from a $\Delta \chi^{2}$ of 8.18 for 7 degrees of freedom. The maximum likelihood method 1σ confidence limits derive from the fact that $\ln \left(L / L_{\max }\right)$ is distributed as $\chi^{2} / 2$. The total sample consisting of 74 QSOs with all QSO redshifts based on the Ly- α emission line gives a best fit value of $\log \left[J\left(\nu_{0}\right)\right]$ of $-20.90_{-0.48}^{+0.61}$ for the BDO analysis and $-20.83_{-0.20}^{+0.23}$ for the maximum likelihood analysis.

As the results in Table 3.4 demonstrate, using narrow line redshifts for 35 of the 74 QSOs for which they have been directly measured and Ly- α redshifts for the rest does not change the result. However, when $400 \mathrm{~km} \mathrm{~s}^{-1}$ is added to the Ly- α redshifts of the objects with no measured narrow line redshift, a value for $\log \left[J\left(\nu_{0}\right)\right]$ of $-21.15_{-0.43}^{+0.17}$ is derived using the BDO method and $\log \left[J\left(\nu_{0}\right)\right]=-21.17_{-0.15}^{+0.19}$ is found using the maximum likelihood method. Recall that the mean blueshift of Ly- α with respect to [OIII] for the 19 objects in this paper with [OIII] $\lambda 5007$ measurements was found to be $\sim 400 \mathrm{~km} \mathrm{~s}^{-1}$. This decrease in the mean intensity of the background derived when larger QSO redshifts are used is to be expected. (cf. Section 3.2.5) Because this measurement of the background accounts for the systematic blueshift of the Ly- α emission line with respect to the systemic redshift of each QSO, we consider it to be our best estimate for the mean intensity of the background at the Lyman limit.

These measurements have been made, however, using a photoionization model with somewhat unrealistic assumptions, particularly that $\mathrm{Ly}-\alpha$ absorbers are isother-
mal and are composed of pure hydrogen. For clouds with a primordial He abundance and which are in thermal and ionization equilibrium, Using CLOUDY to model the ionization state of absorbers with a metal adundance of 10^{-2} solar (Cowie et al. 1995, Tytler \& Fan 1994) as a function of ω, we find that the neutral fraction, χ, is proportional to $(1+\omega)^{-1.21}$. This implies that

$$
\begin{equation*}
\frac{d \mathcal{N}}{d z}=\mathcal{A}_{0}(1+z)^{\gamma}[1+\omega(z)]^{-1.21(\beta-1)} \tag{3.18}
\end{equation*}
$$

In this scenario, the optimal value found for $\log \left[J\left(\nu_{0}\right)\right]$ is $-21.10_{-0.28}^{+0.53}$. This value is marginally larger than the value discussed above, found under the assumption of absorbers composed of pure hydrogen; but it is not significantly different, so we conclude that the absence of metals in the BDO model has not drastically affected our measurement of the background.

It is worth noting that 16 objects in our sample of objects with no associated absorption show evidence for damped Ly- α absorption: $0058+019,0100+130,0334-$ $204,0913+072,0938+119,0952+338,0955+472,1009+299,1017+280,1215+333$, $1247+267,1548+092,1946+770,2126-158,2233+131$, and $2320+079$. The dust in these systems could cause the intrinsic QSO fluxes to be underestimated. This in turn can cause $\log \left[J\left(\nu_{0}\right)\right]$ to be underestimated by up to a factor of 3 , in addition to the sources of error discussed above (Srianand \& Khare 1996). Only six of these objects, $0334-204,0938+119,0955+472,1215+333,2126-158$, and $2233+131$, appear in our low luminosity subsample, suggesting that this subsample is not preferentially heavily dust-obscured. Nevertheless, the BDO analysis was performed on all 16 objects exhibiting damped Ly- α systems; and found the best fit value for $\log \left[J\left(\nu_{0}\right)\right]$ to be $-21.45_{-0.53}^{+0.40}$, a factor of $1.9_{-1.6}^{+8.1}$ lower than the value obtained for the sample as a whole. This does not allow us to say anything significant about the presence or absence of dust, so we will neglect its influence.

Dividing our line sample into subsamples of high $(z>2.5)$ and low ($z<2.5$) redshift lines, we find marginal evidence for evolution in the intensity of the background,
namely that the maximum likelihood background intensity is lower by a factor of about $1.9_{-1.4}^{+3.9}$ at lower redshift. The BDO results corroborate this, but with larger uncertainties. The factor by which $J\left(\nu_{0}\right)$ is found to be lower at lower redshifts is $2.5_{-2.2}^{+27.7}$. Gravitational lensing could mimic a trend with redshift with about the same order of magnitude, if the high redshift subsample contains a significant number of unknown lenses. However, Figure 3.3 suggests little if any trend for high luminosity objects to exist at high redshifts in our sample; and the results of Section 3.2.2 indicate that the high luminosity objects do show a somewhat stronger proximity effect despite the fact that the measured background at high redshift appears to be higher. No other studies have found this evidence of redshift evolution in the background, so we regard it as tentative; and note that it will be interesting to see in future work if this trend can be shown to be real and if it extends smoothly to the low values of $J\left(\nu_{0}\right)$ found at redshifts less than 1.5 .

Since we find high luminosity objects do not exist preferentially at high redshift in our sample, a simple test can be done to determine whether or not there is a significant number of lensed objects in our sample. If the high luminosity QSOs are indeed intrinsically more luminous, and the proximity effect is a purely photoionization-driven phenomenon, these objects should show a more prominent proximity effect. The results of Section 3.2.2 suggest this is the case. However, in the analysis, this larger line deficit is normalized to the higher Lyman limit luminosities of this subsample. Therefore, one expects these objects, when analyzed as a separate subsample, to yield a value of $J\left(\nu_{0}\right)$ that is consistent with that found for low luminosity objects if the values of the QSO fluxes are not in error due to lensing. If the high luminosity QSOs, or a subset of them, are lensed objects, then they are not necessarily intrinsically more luminous than the low luminosity QSOs. In this case, the influence of the lensed objects on the surrounding IGM will be overestimated and given the observed line deficit, the background will also be overestimated. Table 3.4 lists the results obtained for the high and low luminosity subsamples of our data set. The values obtained for
these subsamples are equal within the uncertainties. This is consistent with there being no significant effects from gravitational lensing in our sample.

3.4.1 HI Ionization Rate

We tested a range of values for Γ, the HI ionization rate, using our data. The constant value found to fit the data the best is $1.9_{-1.0}^{+1.2} \times 10^{-12} \mathrm{~s}^{-1}$. This value is in good agreement with that predicted by the QSO-dominated model of Haardt \& Madau (1996) at this redshift, $1.3 \times 10^{-12} \mathrm{~s}^{-1}$. Using Equation 3.16 and $J^{Q}(\nu)=J^{Q}\left(\nu_{0}\right)\left(\frac{\nu}{\nu_{0}}\right)^{-\alpha}$, and assuming global QSO spectral indicies of $0,1.5$, and 2 , the ionization rate found from our data corresponds to $\log \left[J\left(\nu_{0}\right)\right]=-21.34,-21.17$, and -21.12 , respectively.

The parameter set $\left(A, B, z_{c}, S\right)$ found to give the best fit to the data is that of Fardal, Giroux, \& Shull (1998) for the Q2 luminosity function ($1.2 \times 10^{-12} \mathrm{~s}^{-1}, 0.58$, $2.38,2.77$) which, for a redshift of 2.9 yields an ionization rate of $2.7 \times 10^{-12} \mathrm{~s}^{-1}$, in good agreement with our solution, and within a factor of ~ 2 of the Haardt \& Madau result. Thus, we conclude that a significant contribution to the ionizing background from stellar UV emission is not required at this redshift.

3.4.2 Curve-of-Growth and Other Systematics

On the basis of a curve-of-growth argument, one might expect that weak lines would show a more prominent proximity effect than strong lines. We have compared the results obtained for a constant equivalent width threshold of $0.32 \AA$ with that obtained for lines with $0.16 \AA<W<0.32 \AA$. Instead of finding a more pronounced proximity effect for the weak lines, we find a less significant deficit of lines within $1.5 h^{-1} \mathrm{Mpc}$ of the QSOs. This deficit is 4.0σ, versus 5.5σ for lines with $\mathrm{W}>0.32 \AA$. As Table 3.4 lists, the value of $\log \left[J\left(\nu_{0}\right)\right]$ recovered from these weak lines is correspondingly higher than that found using strong lines, $-20.45_{-0.90}^{+0.37}$ versus $-21.15_{-0.43}^{+0.17}$. Cooke et al. (1997) point out that this could be the result of a higher degree of blending of weaker
lines compared to strong ones in crowded spectral regions. The background flux measurement will be an overestimate because blending will cause fewer individual lines to be resolved further from the QSO. Because the reduction in line density near the QSO will work to reduce line blending, the overall effect of line blending will be to suppress the true magnitude of the proximity effect causing $J\left(\nu_{0}\right)$ to be overestimated, by a factor of 4.5 in this case. It is difficult to ascertain whether this effect is as strong for lines with $\mathrm{W}>0.32 \AA$ or whether the curve-of-growth effect discussed in Section 3.3 which also causes $J\left(\nu_{0}\right)$ to be overestimated, is more important. We expect that for lines with $\mathrm{W}>0.32 \AA$, the effects of blending are reduced somewhat, while the curve-of-growth effects will remain a factor.

We have addressed many of the systematics which could possibly have affected our analysis. A treatment of the quasar systemic redshifts was integrated directly into our analysis and was found to influence the $J\left(\nu_{0}\right)$ found by up to a factor of ~ 2. Other effects, such as the influences of metals and dust, which can cause $J\left(\nu_{0}\right)$ to be underestimated, and the influences of lensing, line blending, and curve-of-growth effects, which can cause $J\left(\nu_{0}\right)$ to be overestimated, were treated after the fact in an attempt to understand the magnitude of their effects on the value of $J\left(\nu_{0}\right)$ derived. The CLOUDY simulations discussed above indicate that allowing for an absorber metal abundance of 10^{-2} solar has little effect on the value of $J\left(\nu_{0}\right)$ found from the data. Dust in intervening absorption systems may have affected our result. Though we were unable to quantify this effect with high confidence, it could be on the order of a factor of 2 . We assert that QSO flux amplification due to lensing has not significantly biassed our result; and we attempt to minimize the effect of blending discussed above by using only lines with $\mathrm{W}>0.32 \AA$. Our result may be susceptible to the curve-of-growth effect we addressed through the simulations in Section 3.3. In those simulations, we found that the discrepancy between in the input and recovered values of $J\left(\nu_{0}\right)$ depended upong the input value of $J\left(\nu_{0}\right)$ itself. The magnitude of the discrepancy corresponding to the $J\left(\nu_{0}\right)$ we found from the data was a factor of
~ 2. We therefore suspect that if our result, $\log \left[J\left(\nu_{0}\right)\right]=-21.15_{-0.43}^{+0.17}$, is systematically biased in any way, it is an overestimate of the true background and could be in error by up to a factor of 2 ; though this could be balanced somewhat by systematic error due to dust, which works in the opposite direction.

3.4.3 Comparison with Previous Measurements

Our value for $J\left(\nu_{0}\right)$ agrees well with other measurements at similar redshift, with the exception of those of B94 and Fernández-Soto et al. (1995) who both derive values four times larger than our best value for $J\left(\nu_{0}\right), \sim 3 \times 10^{-21} \mathrm{ergs} \mathrm{s}^{-1} \mathrm{~cm}^{-2} \mathrm{~Hz}^{-1}$ $\mathbf{s r}^{-1}$. The measurement of B94 does not take into account QSO systemic redshifts, but she notes that if they are blueshifted with respect to $\mathrm{Ly}-\alpha$ by $1000 \mathrm{~km} \mathrm{~s}^{-1}$, this would lower the derived value of $J\left(\nu_{0}\right)$ by a factor of 3 , bringing it into reasonable agreement with our result. The Fernández-Soto et al. (1995) value is derived from 3 QSO spectra showing a proximity effect due to foreground QSOs. These authors are not able to place an upper limit on their measurement, but our value of $7.0 \times$ $10^{-22} \mathrm{ergs} \mathrm{s}^{-1} \mathrm{~cm}^{-2} \mathrm{~Hz}^{-1} \mathrm{sr}^{-1}$ for $J\left(\nu_{0}\right)$ is consistent with their lower limit of $1.6 \times$ $10^{-22} \mathrm{ergs} \mathrm{s}^{-1} \mathrm{~cm}^{-2} \mathrm{~Hz}^{-1} \mathrm{sr}^{-1}$. In fact, when these authors examine the proximity effect in a single QSO spectrum due to the background $z \sim 2$ QSO itself, they derive a value for $J\left(\nu_{0}\right)$ of $7.9_{-6.0}^{+23} \times 10^{-22} \mathrm{ergs} \mathrm{s}^{-1} \mathrm{~cm}^{-2} \mathrm{~Hz}^{-1} \mathrm{sr}^{-1}$, which brings their estimate into better agreement with our values for our total sample and for our low redshift subsample within their large errors. Direct measurements of the background at redshifts $\sim 3-3.5$ have been made using long-slit spectroscopy of fields containing optically thick Ly- α absorbers in efforts to detect fluorescent emission the absorbers produce from the ionizing radiation field incident upon them (Lowenthal et al. 1990, Martínez-González et al. 1995). Recent Keck telescope observations by Bunker et al. (1998) at $2.5<z<4.1$ have achieved a factor of 2-10 higher sensitivity and place a firmer direct limit on the background than previous work. Their null signal in a

90 -minute integration with a 3^{\prime} slit sets an upper limit on $J\left(\nu_{0}\right)$ of $2 \times 10^{-21} \mathrm{ergs} \mathrm{s}^{-1}$ $\mathrm{cm}^{-2} \mathrm{~Hz}^{-1} \mathrm{sr}^{-1}$.

Cooke et al. (1997) claim that the value for the background at $z \sim 4$ is between their value of $8.0_{-4.0}^{+8.0} \times 10^{-22} \mathrm{ergs} \mathrm{s}^{-1} \mathrm{~cm}^{-2} \mathrm{~Hz}^{-1} \mathrm{sr}^{-1}$ and that of Williger et al. (1994), $1.0-3.0 \times 10^{-22} \mathrm{ergs} \mathrm{s}^{-1} \mathrm{~cm}^{-2} \mathrm{~Hz}^{-1} \mathrm{sr}^{-1}$. Our best value of $J\left(\nu_{0}\right)$ at $z \sim 3$, $7.0 \times 10^{-22} \mathrm{ergs} \mathrm{s}^{-1} \mathrm{~cm}^{-2} \mathrm{~Hz}^{-1} \mathrm{sr}^{-1}$, is in agreement with this, although within the uncertainty there is an allowance for the background to decrease as z approaches 4 .

Table 3.8 lists these various measurements of $J\left(\nu_{0}\right)$ in the literature as well as the Kulkarni \& Fall (1993) measurement at $z \sim 0.5$. Figure 3.13 also summarizes the literature measurements of $J\left(\nu_{0}\right)$ from $z \sim 0.5$ to $z=4.5$.

The solid curves in Figure 3.13 delineate the evolution of the mean background intensity as a function of redshift for global background source spectral indicies between 0 and 2, derived from the Haardt \& Madau (1996) model for the HI photoionization rate as a function of redshift discussed in Section 3.2.6. Over 90% of our sample QSO redshifts lie within the FWHM of the Gaussian in the Haardt \& Madau (1996) expression using their best fit parameters. At these redshifts, the Haardt \& Madau (1996) curves in Figure 3.13 are turning over. Nonetheless, for comparison with previous work (B94 and references therein), we investigate a power law redshift dependence of the background intensity:

$$
\begin{equation*}
J\left(\nu_{0}, z\right)=J\left(\nu_{0}, 0\right)(1+z)^{j} \tag{3.19}
\end{equation*}
$$

Using the BDO method, we executed a crude grid search in an attempt to constrain the power law index and normalization of this power law. The lowest $\chi^{2}(3.86)$ between the binned data and the BDO photoionization model for a power law background was achieved by $\left(j, \log \left[J\left(\nu_{0}, 0\right)\right]\right)=(5.12,-23.97)$, shown by a dashed line in Figure 3.14. Extending this solution to low redshift gives $\left.\log \left[J\left(\nu_{0}\right), 0.5\right)\right]=-23.0$, in good agreement with the measurement of Kulkarni \& Fall (1993). The solution $\left(j, \log \left[J\left(\nu_{0}, 0\right)\right]\right)=(-4.16,-18.76)$ gives the next lowest $\chi^{2}(4.91)$; and though it also
implies mean background intensities over four orders of magnitude too high at low redshift, it traces the Haardt \& Madau model at high redshift, giving $\log \left[J\left(\nu_{0}, 4.5\right)\right]=-$ 21.8, in agreement with the Willigher et al. (1994) measurement. It is also shown by a dashed line in Figure 3.14. Fitting parabolas to the regions near the χ^{2} minima in both j and $\log \left[J\left(\nu_{0}, 0\right)\right]$ gives the error in each parameter for both of these solutions, ($5.12 \pm 1.96,-23.97 \pm 1.07$) and ($-4.16 \pm 2.36,-18.76 \pm 1.31$). B94 found a similarly large range of acceptable solutions: $-7<j<4$ and $-16.5<\log \left[J\left(\nu_{0}, 0\right)\right]<-23.0$. The large error bars on these fits indicate that the power law fit to the data is not well-constrained, due possibly to the fact that the mean intensity of the background is turning over at the redshifts of our sample objects, as the Haardt \& Madau (1996) model predicts.

3.4.4 Comparison with Models for the Background

Recent models of the ionizing background include not only the integrated emission from quasars but also a variety of other physical processes such as star formation in young, high redshift galaxies and attenuation of UV photons by Ly- α absorbers and Lyman limit systems (Miralda-Escudé \& Ostriker 1990, Madau 1991, 1992, Meiksin \& Madau 1993, Haardt \& Madau 1996, Fardal, Giroux, \& Shull 1998). Madau \& Shull (1996) find that the production of metals in Ly- α absorbers may also be a significant contributor to the UV background at $z \approx 3$. Their contribution may be up to $5 \times 10^{-22} \mathrm{ergs} \mathrm{s}^{-1} \mathrm{~cm}^{-2} \mathrm{~Hz}^{-1} \mathrm{sr}^{-1}$, assuming that the bulk of the metals in the Lyman α forest did not form at $z \gg 3$, and assuming a Lyman continuum escape fraction, $f_{\text {esc }}$, from a galaxy of $\gtrsim 0.25$. They note, however, that $f_{\text {esc }}$ is essentially unconstrained.

Past debate about how the space density of quasars evolves at high redshift (Koo \& Kron 1988; Boyle et al. 1991; Irwin et al. 1991; Schmidt et al. 1991; Warren et al. 1994; Kennefick et al. 1995) has been clarified by recent radio surveys (Hook et al.

1995, 1998; Shaver et al. 1996). This work has demonstrated that the space density of radio-loud quasars decreases rapidly with redshift beyond $z \sim 3$. Since these surveys are unaffected by any presence of dust in the intervening IGM; and since they confirm the behavior seen in optically selected surveys, they indicate that the quasar population is truly declining at high redshift. Nevertheless, the discovery of QSOs with redshifts greater than 4 has brought better agreement between the values of $J\left(\nu_{0}\right)$ found via the proximity effect and the values predicted by the models with quasars primarily contributing to the background (Madau 1992, Meiksin \& Madau 1993, Haardt \& Madau 1996).

Madau (1992) and Meiksin \& Madau (1993) estimate the QSO UV background by integrating the QSO luminosity function (Boyle 1991) and including the effects of attenuation by hydrogen in the IGM. Their estimates however, $1-3 \times 10^{-22}$ ergs $\mathrm{s}^{-1} \mathrm{~cm}^{-2} \mathrm{~Hz}^{-1} \mathrm{sr}^{-1}$, are still somewhat lower than the values derived in this paper. The analysis of Haardt \& Madau (1996) takes into account the effects of various atomic processes leading to the production of hydrogen-ionizing photons within Ly- α absorbers and Lyman limits systems themselves. They conclude that observed QSOs can account for number of ionizing photons required by the proximity effect at $z \lesssim 4$. These authors find a value of $\log \left[J\left(\nu_{0}\right)\right]$ equal to ~-21.2 at $z=3$, in good agreement with the value found in this paper at similar redshifts. The solid lines in Figure 3.13 show the results from the Haardt \& Madau (1996) model for two different values of the global background source spectral index. The lower and upper curves show the evolution of the background for indicies of 0 and 2 respectively. The literature measurements at redshifts between 1.7 and 3.6 agree well with the model predictions. The $z \sim 0.5$ measurement of Kulkarni \& Fall (1993) falls below both model curves and the $z=4.5$ measurement of Williger et al. (1994) falls above them.

Madau, Haardt, \& Rees (1998) revisit the issue of the contribution of high redshift, star-forming galaxies to the ionizing background in light of recent work identifying such objects at $2<z<4$. (Steidel et al. 1996a,b; Madau et al. 1996; Lowenthal
et al. 1997) They calculate the critical photoionization rate necessary to reionize a non-uniform intergalactic medium as a function of redshift. This is compared to the expected contributions from quasars and young, star-forming galaxies. There are uncertainties in estimating both of these. The quasar luminosity function at $z>4$ must be extrapolated from that at lower redshifts. There is also still some debate between theory and observations, eg. of the Hubble Deep Field, on the subject of a population of low-luminosity QSOs (see Madau et al. 1998 and references therein) which could cause the quasar luminosity function to steepen with lookback time, making up for the dearth of observed objects at $z>4$. The estimation of the galaxy contribution of ionizing photons is limited by poor knowledge of luminosity function of Lyman-break galaxies at $z>4$ as well as by the lack of constraints upon $f_{\text {esc }}$. Nevertheless, the results are intriguing. Assuming that $f_{\text {esc }}=0.5$, Madau et al. (1998) find that the contribution of hydrogen-ionizing photons from star-forming galaxies $z \sim 3$ could exceed that from quasars by a factor of more than 3 . However, the quasar contribution at this redshift is sufficient, according to these estimates, to ionize the IGM at this redshift. Deharveng et al. (1998) estimate a much lower $f_{\text {esc }}$ at $z=0$, less than 1%, based on the local galaxy $\mathrm{H} \alpha$ luminosity density. Furthermore, Devriendt et al. (1998) make an independent estimation of the galaxy contribution to $J\left(\nu_{0}\right)$ assuming damped Ly- α systems to be the progenitors of present day galaxies. Their semi-analytic models include a treatment of not only HI absorption of Lyman limit photons in the intervening IGM, but also of HI and dust absorption in the interstellar medium of the photon-producing galaxies. Their results show that constraining $f_{\text {esc }}$ in this way yields a much lower contribution to the UV background from galaxies at $z>2$. At $z \sim 2.5$, their estimated quasar contribution to $J\left(\nu_{0}\right)$ is 3 orders of magnitude greater than that expected from galaxies. Our measurement of $J\left(\nu_{0}\right)$ is consistent with the UV background being quasar-dominated in the models of both these authors and Haardt \& Madau (1996).

In the models of Madau et al. (1998), the scenario changes at $z \gtrsim 3.5$. At this
redshift, the quasar contribution of ionizing photons falls below the critical limit needed to photoionize the IGM; and by $z=5$, it will fall short of the critical value by a factor of ~ 4. This implies that at high redshift, the contribution from young stars may become the dominant contributor to the background, with the caveat that the space density of star-forming galaxies would have to be maintained at the level observed at $z \approx 3$, and that most of their UV photons would have to be free to escape into the IGM. The Devriendt et al. (1998) models lead to the conclusion, however, that the galaxy contribution to the UV background is negligible at high redshifts.

In conclusion, the proximity effect data at present reflect that the UV background at $2<z<4$ is quasar dominated. The discrepancies between this model at low and high redshifts (Kulkarni \& Fall 1993, Williger et al. 1994) indicate that the contribution to the background from galaxies may be of larger relative importance. We plan to undertake an analysis of the proximity effect at low redshifts from a large sample of quasar spectra taken with the Faint Object Spectrograph on the Hubble Space Telescope to place better constraints on the background at $0.5<z<2$. Further observations of objects at $z>4$ are also of particular interest to this subject.

TABLE 3.1. Spectrophotometry Observations of $z \approx 2$ QSOs

QSO	Date	Exposure (seconds)	Airmass	Wavelength Coverage (\AA)
$0006+020$	29Nov1994	1800	1.15	$3150-6385$
$0027+018$	22Sep1992	1800	1.28	$3467-6475$
$0037-018$	29Nov1994	2400	1.27	$3150-6385$
$0049+007$	29Nov1994	1800	2.05	$3125-6380$
$0123+257$	29Nov1994	1800	1.55	$3125-6380$
$0153+744$	29Nov1994	1800	1.38	$3125-6380$
$0348+061$	22Sep1992	1800	1.13	$3465-6475$
$1323-107$	28Mar1995	1800	1.56	$3115-6400$
$1346-036$	28Mar1995	1800	1.27	$3115-6400$
$1422+231$	22Apr1996	1800	1.31	$5235-7554$
$1603+383^{a}$	04July1995	450	1.03	$3663-7544$
$2134+004$	22Sep1992	1800	1.29	$3465-6483$
$2251+244$	29Nov1994	1800	1.01	$3150-6385$
$2254+022$	22Sep1992	1800	1.18	$3470-6480$

${ }^{a}$ spectrum donated by Hamburg/CfA Bright Quasar Survey
(Dobrzycki,Engels, \& Hagen 1999) in advance of publication
Note- Instrument Set-up for:
$1422+231-\mathrm{SO} \mathrm{B} \mathrm{\& C} ,600 \mathrm{I} \mathrm{mm}^{-1} 1^{\text {st }}$ order, $\lambda_{b}=6681 \AA, 1.5^{\prime \prime}$ slit $1603+383-$ FLWO FAST, $300 \mathrm{I} \mathrm{mm}^{-1} 1^{\text {st }}$ order, $\lambda_{b}=4750 \hat{A}, 3^{\prime \prime}$ slit

Table 3.2. Summary of Narrow Emission Line Observations of $z \approx 2$ QSOs

Name	V	Instrument	Date	Exposure (sec.)	Wavelength Coverage
$0000-263$	17.5	OSIRIS	27Jul1994	4800	$1.20 \mu \mathrm{~m}-1.46 \mu \mathrm{~m}$
$0014+813$	16.5	CRSP	07Dec1993	1200	$1.18 \mu \mathrm{~m}-1.26 \mu \mathrm{~m}$
		FSpec	26Nov1993	5280	$1.96 \mu \mathrm{~m}-2.39 \mu \mathrm{~m}$
$0114-089$	17.4	CRSP	04Dec1993	3180	$1.10 \mu \mathrm{~m}-1.35 \mu \mathrm{~m}$
$0636+680$	19.0	CRSP	04Dec1993	4800	$1.09 \mu \mathrm{~m}-1.35 \mu \mathrm{~m}$
		CRSP	05Dec1993	2820	$1.96 \mu \mathrm{~m}-2.10 \mu \mathrm{~m}$
$0836+710$	16.5	B\&C	29Mar1995	1800	$5250 \AA-9600 \AA$
$0956+122$	17.5	CRSP	04Dec1993	8220	$1.10 \mu \mathrm{~m}-1.35 \mu \mathrm{~m}$
		FSpec	27Nov1993	5280	$1.96 \mu \mathrm{~m}-2.38 \mu \mathrm{~m}$
$1159+124$	17.5	CRSP	05Dec1993	3180	$1.09 \mu \mathrm{~m}-1.35 \mu \mathrm{~m}$
		FSpec	29Nov1993	4320	$1.97 \mu \mathrm{~m}-2.38 \mu \mathrm{~m}$
$1207+399$	17.5	FSpec	21May1994	600	$1.98 \mu \mathrm{~m}-2.41 \mu \mathrm{~m}$
$1208+101$	17.5	CRSP	06Dec1993	4800	$2.00 \mu \mathrm{~m}-2.42 \mu \mathrm{~m}$
$1408+009$	18.0	FSpec	02Apr1996	3840	$1.46 \mu \mathrm{~m}-1.73 \mu \mathrm{~m}$
			02Apr1996	1920	$1.99 \mu \mathrm{~m}-2.40 \mu \mathrm{~m}$
$1422+231$	16.5	FSpec	21May1994	1920	$1.98 \mu \mathrm{~m}-2.41 \mu \mathrm{~m}$
$1435+638$	15.0	FSpec	02Apr1996	1920	$1.99 \mu \mathrm{~m}-2.40 \mu \mathrm{~m}$
$2126-158$	17.3	CRSP	05Dec1993	3180	$1.08 \mu \mathrm{~m}-1.35 \mu \mathrm{~m}$
		OSIRIS	24Sep1994	7680	$1.96 \mu \mathrm{~m}-2.35 \mu \mathrm{~m}$

Table 3.3: Spectrophotometric Properties of $z \approx 2$ QSOs

QSO	$\mathrm{N}_{H I}\left(10^{20} \mathrm{~cm}^{-2}\right)$	$\mathrm{f}_{\nu}^{\text {chs }}(912 \AA)$	α	$\mathrm{f}^{\text {cos }}$	$\mathrm{f}_{\nu}(912 \AA)$	
(a)	(b)	(c)	(d)	(e)	(f)	(g)
0006+020*	3.02		0.26	354 (1450 \AA)	313	1
0027+014	2.93		-0.38	219 (1450 \AA)	183	1
0037-018	2.81		-0.27	45 (1450 \AA)	51	1
0049+007	2.67		0.31	324 (1450 A)	280	1
0123+257*	6.88		1.12	237 (1450 \AA)	141	1
0150-202*	1.29			529 (1430 A)	430	2,3
0153+744*	22.74		0.18	1023 (1450 \AA)	940	1
0226-038	2.35			582 (1800 \AA)	425	4
0348+061	12.33		0.12	513 (1450 \AA)	485	1
$0400+258$	7.82		1.54		199	5
0747+610	4.77			500 (1800 \AA)	365	4
0819-032	6.16		0.33	63 (1450 \AA)	54	6
0836+710*	2.93				652	
0848+155	3.14		0.07	198 (1450 \AA)	191	7,8
$0936+368$	1.36				386	
0952+335	1.37				370	
0955+472*	1.04				188	
0956+122	3.10	140	0.49	448 (1450 \AA)	356	9
1009+299	2.30				1217	
$1207+399$	2.10		0.59	319 (1450 \AA)	242	1,8
1210+175*	2.67				285	
1231+294	1.54				980	
1323-107	2.64		-0.30	303 (1450 \AA)	349	1
1329+412*	0.99		0.33		750	10

Table 3.3: Spectrophotometric Properties of $z \approx 2$ QSOs
(Continued)

QSO	$\mathrm{N}_{\mathrm{III}}\left(10^{20} \mathrm{~cm}^{-2}\right)$	$\mathrm{f}_{\nu}^{\text {bs }}(912 \AA)$	α	$\mathrm{f}_{\nu}^{\text {bos }}$	$\mathrm{f}_{\nu}(912 \AA)$	Ref.
(a)	(b)	(c)	(d)	(e)	(f)	(g)
1337+285*	1.17				339	
1346-036	2.51		0.091	458 (1450 \AA)	439	1
1358+115*	1.81		1.10	345 (1450 \AA)	207	6
$1406+492$	1.77				392	
$1408+009$	3.04		0.91	99 (1450 \AA)	64	1
$1421+330$	1.23	58	0.54	914 (1450 \AA)	711	11,7
1422+231*	2.52		-1.21	211 (1450 \AA)	371	1
$1435+638$	1.68	55		1244 (1800 \AA)	909	12,4
1603+383*	1.32		0.36	550 (1450 \AA)	464	1,13
$1604+290$	3.24				428	
$1715+535$	2.69	36	1.26	875 (1800 \AA)	371	11,10,4
$2134+004$	4.03		0.04	35 (1450 \AA)	34	1,14
$2251+244 *$	5.18		1.53	243 (1450 \AA)	119	1
$2254+024$	5.32		0.20	116 (1450 \AA)	106	1
2310+385	10.62				419	
2320+079	5.04				306	
2329-020	4.45				451	

Table 3.3: Spectrophotometric Properties of $z \approx 2$ QSOs (Continued)

QSO	$\mathrm{N}_{\mathrm{HI}}\left(10^{20} \mathrm{~cm}^{-2}\right)$	$\mathrm{f}_{\nu}^{\mathrm{obs}(912 \AA)}$	α	f $_{\nu}^{\text {obs }}$	$\mathrm{f}_{\nu}(912 \AA)$	Ref.
(a)	(b)	(c)	(d)	(e)	(f)	(g)

${ }^{\text {a }}$ QSO name: an asterisk denotes a metal line system within $5000 \mathrm{~km} \mathrm{~s}^{-1}$ of the QSO emission redshift; in the case of $1422+231$, the QSO is a known lens
${ }^{6}$ Galactic $N_{H I}$ in units of $10^{20} \mathrm{~cm}^{-2}$ from program COLDEN using Stark et al. (1992)
${ }^{c}$ Observed flux in $\mu \mathrm{Jy}$ at the Lyman limit from reference in (g)
${ }^{d}$ Observed spectral index between Ly α and C IV emission lines or in the vicinity of the flux listed in (e) from reference in (g); in general, values are based upon spectra corrected for Galactic reddening if $\mathrm{E}(\mathrm{B}-\mathrm{V}) \gtrsim 0.03$
"Observed flux in $\mu \mathrm{Jy}$ at the rest wavelength indicated in parentheses from reference in (g)
${ }^{f}$ Extrapolated Lyman limit flux in $\mu \mathrm{J}$ y from measured flux in (e), when available, or V magnitude given in Table 1 of Paper I.; if no observed spectral index available, value of 0.46 used (Francis 1996)
${ }^{9}$ References:
(1) this paper; (2) MacAlpine \& Feldman 1982; (3) Griffith et al. 1994; (4) Steidel \& Sargent 1991; (5) Cheng, Gaskell, \& Koratkar 1991; (6) Pei, Fall, \& Bechtold 1991; (7) Uomoto 1984; (8) Barthel et al. 1988; (9) Sargent, Steidel, \& Boksenberg 1989; (10) Baldwin, Wampler, \& Gaskell 1989; (11) Koratkar, Kinney, \& Bohlin 1992; (12) Lanzetta, Turnshek \& Sandoval 1993; (13) Hamburg QSO Survey (unpublished); (14) Perez, Penston, \& Moles 1989

Table 3.4: Measurements of $J\left(\nu_{0}\right)$

Sample (a)	$\overline{\mathcal{N}_{\text {lines }}}$ (b)	γ, norm. (c)	method (d)	$\overline{\log \left[\left(J\left(\nu_{0}\right)\right]\right.}$ (e)	$\begin{aligned} & \chi^{2} \\ & (\mathrm{f}) \end{aligned}$	$\begin{gathered} \hline \hline \mathcal{N}_{\text {points }} \\ (\mathrm{g}) \\ \hline \end{gathered}$	$\overline{\mathrm{Q}_{x^{2}}}$ (h)	Figure (i)
1	518	1.9260,5.8882	BDO	-21.40 ${ }_{-0.69}^{+1.1}$	3.05	7	0.88	6(a)
1	518	1.9260,3.9709	ML	$-21.58_{-0.23}^{+0.30}$	20.3	6	0.0024	8(a)
2	1286	1.6749,7.5723	BDO	-20.90 ${ }_{-0.48}^{+0.61}$	5.22	7	0.63	6(b)
2	1286	1.6749,4.6637	ML	$-20.83_{-0.20}^{+0.23}$	6.32	6	0.38	8(b)
3	1286	1.6749,7.5723	BDO	$-21.00_{-0.36}^{+0.57}$	7.19	7	0.40	6(c)
3	1286	1.6749,4.6709	ML	$-20.83_{-0.22}^{+0.24}$	7.41	6	0.28	8(c)
4	1286	1.6749,7.5723	BDO	$-21.15_{-0.43}^{+0.17}$	6.54	7	0.47	6(d)
4	1286	1.6749,4.6617	ML	$-21.17_{-0.15}^{+0.19}$	3.53	6	0.73	8(d)
5	763	-0.2848,110.13	BDO	$-20.75_{-0.86}^{+0.16}$	3.31	7	0.85	6(e)
5	763	-0.2848,69.934	ML	-21.18 ${ }_{-0.21}^{+0.19}$	4.92	5	0.42	8(e)
6	523	1.3754,10.240	BDO	$-21.15_{-0.92}^{+0.11}$	3.97	7	0.78	6(f)
6	523	1.3754,7.4759	ML	$-21.46{ }_{-0.29}^{+0.34}$	15.5	6	0.016	8(f)
7	261	2.3284,2.6809	BDO	$-21.45{ }_{-0.53}^{+0.40}$	3.03	7	0.88	6(j)
8	666	1.5361,9.1237	BDO	$-21.25_{-0.45}^{+0.28}$	4.32	7	0.74	6(g)
9	620	2.0242,4.6980	BDO	$-21.05_{-0.42}^{+0.20}$	3.49	7	0.83	6(h)
10	671	0.5468,24.655	BDO	$-20.45_{-0.90}^{+0.37}$	3.05	7	0.88	6(i)

Table 3.4: Measurements of $J\left(\nu_{0}\right)$ (Continued)

Sample (a)	$\mathcal{N}_{\text {lines }}$ (b)	γ, norm. (c)	method (d)	$\log \left[\left(J\left(\nu_{0}\right)\right]\right.$ (e)	χ^{2}	$\begin{gathered} \hline \mathcal{N}_{\text {points }} \\ (\mathrm{g}) \\ \hline \end{gathered}$	$Q_{x^{2}}$ (h)	Figure (i)

${ }^{a}$ (1) DB96 sample;
${ }^{b}$ number of Ly α forest lines in sample
${ }^{c}$ Equ. 3.1 parameters γ and \mathcal{A}_{0} from maximum likelihood fit to data; when the method listed is ML, the normalization listed is equal to $\mathcal{A}_{0}\left(N_{\text {lim }} / N_{0}\right)^{\beta-1}(1 /(\beta-1))$ (see text,Paper I)
${ }^{d}$ BDO- Bajtlik, Duncan, \& Ostriker (1988),
ML- maximum likelihood, see Kulkarni \& Fall (1993)
${ }^{e}$ Best fit value of $\log \left[\left(J\left(\nu_{0}\right)\right]\right.$ in units of ergs s${ }^{-1} \mathrm{~cm}^{-2} \mathrm{~Hz}^{-1} \mathrm{sr}^{-1}$
${ }^{\prime} \chi^{2}$ of data versus the ionization model used
${ }^{g}$ number of points used to calculated χ^{2}
${ }^{n} \chi^{2}$ probability for the ionization model used
${ }^{i}$ Figure displaying number distribution per coevolving redshift interval, $d \mathcal{N} / d X_{\gamma}$

Table 3.5: QSO Emission Line Redshifts for $J\left(\nu_{0}\right)$ Measurement ${ }^{a}$

QSO	z	line $^{\text {b }}$	Ref. ${ }^{\text {c }}$
0000-263*	4.111	Ly α	1
	4.116	Mg II	2
0001+087	3.243	Ly α	3
0002+051	1.899	Ly α	4
	1.899	Mg II	5
0002-422	2.763	Ly α	6
0006+020*	2.340	Ly α	2
0014+813	3.386	Ly α	1
	3.379	Mg II	2
	3.404	$\mathrm{H} \beta$	2
0027+014	2.333	Ly α	2
	2.310	$\mathrm{H} \beta$	7
0029+073	3.261	Ly α	1
0037-018	2.341	Ly α	2
0049+007	2.275	Ly α	2
	2.279	[OIII] $\lambda 5007$	8
0058+019	1.959	Ly α	9
	1.964	Mg II	5
$0100+130$	2.690	Ly α	6
0114-089	3.194	Ly α	9
	3.192	Mg II	2
0119-046*	1.951	Ly α	1
	1.964	Mg II	5
0123+257*	2.358	Ly α	10
	2.370	[OIII] $\lambda \lambda 4959,5007$	8
0142-100*	2.727	Ly α	9
0150-202*	2.148	Ly α	2
	2.149	Mg II	5
0153+744*	2.340	Ly α	2
	2.341	[OIII] $\lambda 5007$	8
0226-038	2.067	Lya	2
	2.073	Mg II	5
	2.073	[OIII] $\lambda \lambda 4959,5007$	8
0237-233	2.224	Ly α	9
	2.200	[OIII] $\lambda 5007$	7
0256-000	3.374	Ly α	1
0301-005	3.228	Ly α	1

Table 3.5: QSO Emission Line Redshifts for $J\left(\nu_{0}\right)$ Measurement ${ }^{a}$ (Continued)

QSO	z	line ${ }^{\text {b }}$	Ref. ${ }^{\text {c }}$
0302-003*	3.286	Ly α	1
0334-204	3.131	Ly α^{\prime}	1
0348+061	2.057	Ly α^{\prime}	2
	2.056	Mg II	5
0400+258	2.108	Ly α	2
0421+019	2.050	Ly α	4
	2.056	Mg II	5
0424-131*	2.165	Ly α	11
	2.166	Mg II	5
	2.163	$\mathrm{H} \alpha$	12
0453-423	2.656	Ly $\boldsymbol{\alpha}$	6
0636+680	3.167	Ly α	1
	3.184	Mg II	2
	3.187	H β	2
$0731+653$	3.033	Ly α	1
0747+610	2.491	Ly $\boldsymbol{\alpha}$	2
0831+128	2.739	Ly α	3
0836+710*	2.189	Ly α	2
	2.197	Mg II	2
	2.218	[OIII] $\lambda 5007$	8
0837+109	3.323	Ly α	9
$0848+155$	2.019	Ly α	2
	2.014	Mg II	5
0848+163*	1.925	Ly α	13
	1.922	Mg II	5
0905+151	3.173	Ly α	3
$0913+072$	2.785	Ly α	9
0936+368	2.025	Ly α	2
0938+119	3.192	Ly α	3
$0952+335$	2.504	Ly α	2
$0955+472$	2.482	Ly α	2
$0956+122$	3.033	Ly α	2
	3.299	Mg II	2
	3.314	H β	2
	3.308	[OIII] $\lambda 5007$	2
$1009+299$	2.633	Ly α	2
$1017+280$	1.928	Ly α	9

Table 3.5: QSO Emission Line Redshifts for $J\left(\nu_{0}\right)$ Measurement ${ }^{a}$ (Continued)

QSO	z	line ${ }^{\text {b }}$	Ref. ${ }^{\text {c }}$
1033+137	3.092	Ly α	3
1115+080*	1.727	Ly α	14
1159+124*	3.505	Ly α	9
	3.508	Mg II	2
	3.497	$\mathrm{H} \beta$	2
	3.497	[OIII] $\lambda 5007$	2
1206+119	3.108	Ly α	3
$1207+399$	2.451	Ly α	2
	2.463	H α	2
1208+101*	3.822	Ly α	3
	3.833	H β	2
	3.802	[OIII] $\lambda 5007$	2
1210+175*	2.564	Ly α	2
$1215+333$	2.606	Ly α	14
1225-017	2.831	Ly α	15
$1225+317$	2.200	Ly α	6
	2.226	[OIII] $\lambda 5007$	8**
$1231+294$	2.018	Ly α	2
$1247+267$	2.041	Ly α	9
$1315+472$	2.590	Ly α	3
1323-107	2.360	Ly α /C IV	16
1329+412*	1.934	Ly α	2
1334-005	2.842	Ly β	3
1337+285*	2.541	Ly α	2
1346-036	2.356	Ly α	2
	2.368	Mg II	12
	2.362	[OIII] $\lambda 5007$	8
	2.367	$\mathrm{H} \alpha$	12
1358+115*	2.589	Ly α	2
$1400+114$	3.177	Ly α	3
$1402+044$	3.208	Ly α	17
$1406+492$	2.161	Ly α	2
$1408+009$	2.262	Ly α	2
	2.260	[OIII] $\lambda 5007$	2
	2.265	$\mathrm{H} \alpha$	2
$1410+096$	3.313	Ly α	3
$1421+330$	1.903	Ly α	2

Table 3.5: QSO Emission Line Redshifts for $J\left(\nu_{0}\right)$ Measurement ${ }^{a}$ (Continued)

QSO	z	line ${ }^{\text {b }}$	Ref. ${ }^{\text {c }}$
1422+231*	1.906	Mg II	5
	3.624	Ly α	2
	3.630	H β	2
	3.623	[OIII] $\lambda 5007$	2
$1435+638$	2.063	Ly α	2
	2.061	Mg II	5
	2.066	[OIII] $\lambda \lambda 4959,5007$	8
	2.065	$\mathrm{H} \alpha$	2
$1442+101$	3.560	Ly α	17
$1451+123$	3.251	Ly α	3
1511+091*	2.877	C IV	9
$1512+132$	3.120	Ly α	3
$1548+092$	2.759	Ly α	9
1601+182*	3.227	Ly α	3
1602+178*	2.989	Ly α	3
1603+383*	2.510	Ly $\boldsymbol{\alpha}$	18
$1604+290$	1.962	Ly α	2
$1607+183$	3.120	Ly α	17
$1614+051$	3.216	Ly α	17
	3.214	[OIII] $\lambda 5007$	19
1623+269*	2.526	Ly α	3
$1700+642$	2.744	Ly α	15
$1715+535$	1.935	Ly α	2
	1.932	Mg II	5
$1738+350$	3.239	Ly α	3
1946+770	3.020	Ly α	15
2126-158	3.280	Ly α	6
	3.284	Mg II	2
	3.298	$\mathrm{H} \beta$	2
	3.292	[OIII] $\lambda 5007$	2
2134+004	1.941	Ly α	2
$2233+131$	3.301	Ly α	1
$2233+136$	3.207	Ly α	1
$2251+244 *$	2.335	Ly α	17
	2.359	[OIII] $\lambda 5007$	8
$2254+024$	2.089	Ly α	2
	2.090	Mg II	5

Table 3.5: QSO Emission Line Redshifts for $J\left(\nu_{0}\right)$ Measurement ${ }^{a}$ (Continued)

QSO	z	line b	Ref. c
$2310+385$	2.179	Ly α	2
	2.181	[OIII] $\lambda \lambda 4959,5007$	8
$2311-036$	3.041	Ly α	1
$2320+079$	2.088	Ly α	2
$2329-020$	1.896	Ly α	2

Note-
Objects marked with an asterisk are excluded from the proximity effect analysis on the basis of associated absorption or gravitational lensing
${ }^{a}$ Objects with both Ly α and Mg II, Balmer, or [OIII] redshifts were used to construct histograms in Figure 2.3;
${ }^{6}$ Emission lines used to measure redshift
${ }^{c}$ References:
(1) Sargent et al. 1989; (2) this paper;
(3) B94; (4) Young et al. 1982a; (5) Steidel \& Sargent 1991;
(6) Sargent et al. 1980; (7) Baker et al. 1994;
(8) M^{c} Intosh et al. 1999a (** $1225+317$ measurement quoted as uncertain due to weak [O III] emission and low S / N);
(9) Sargent et al. 1988; (10) Schmidt 1968; (11) Burbidge 1970;
(12) Espey et al. List of Tables989; (13) Young et. al 1982b;
(14) Wills \& Wills 1979; (15) DB96; (16) Kunth et al. 1981;
(17) Barthel et al. 1990; (18) Hamburg Survey (unpublished);
(19) Bremer \& Johnstone 1995

Table 3.6. Ionization Rates

A, B, z_{c}, S	Ref. (a)	χ^{2} (b)	$\mathrm{Q}_{\chi^{2}}$ (c)
$6.7 \mathrm{e}-13 \mathrm{~s}^{-1}, 0.73,2.30,1.90$	1	10.2	0.17
$5.6 \mathrm{e}-13 \mathrm{~s}^{-1}, 0.60,2.22,1.90$	2	11.8	0.10
$1.2 \mathrm{e}-12 \mathrm{~s}^{-1}, 0.58,2.77,2.38$	2	7.15	0.41
(1)Haardt \& Madau (1996); (2)Fardal, Giroux, \& Shull (1998)			
χ^{2} of data versus the BDO ionization model			
χ^{2} probability for the BDO ionization model			

Table 3.7. Simulation Results

Input $\log \left[\left(J\left(\nu_{0}\right)\right]\right.$ (a)	γ, \mathcal{A}_{0} $(\mathrm{~b})$	$\log \left[\left(J\left(\nu_{0}\right)\right]\right.$ recovered (c)	χ^{2} $(\mathrm{~d})$	$\mathrm{Q}_{\chi^{2}}$ (e)
-23.0	$1.5722,11.043$	$-22.75_{-0.19}^{+0.28}$	11.2	0.12
-22.0	$1.6869,8.8367$	$-21.80_{-0.28}^{+0.40}$	11.3	0.12
-21.3	$2.6267,2.6960$	$-21.00_{-0.60}^{+0.28}$	2.68	0.91
-20.0	$2.2511,3.8084$	$-19.50_{-0.84}^{+1.86}$	3.90	0.79
-19.0	$2.0302,5.2704$	$-18.50_{-1.56}^{+0.66}$	5.28	0.62

${ }^{\text {a }}$ value of $\log \left[\left(J\left(\nu_{0}\right)\right]\right.$ used for modifying absorber column densities according to Equations 3.7 and 4.4
${ }^{b}$ Equ. 3.1 parameters γ and \mathcal{A}_{0}
from maximum likelihood fit to data
${ }^{c}$ value of $\log \left[\left(J\left(\nu_{0}\right)\right]\right.$ from simulated
spectra using the standard BDO technique
${ }^{d} \chi^{2}$ of data versus the BDO ionization model
${ }^{e} \chi^{2}$ probability for the BDO ionization model

Table 3.8. Literature Proximity Effect Measurements of $J\left(\nu_{0}\right)$

$\log \left[\left(J\left(\nu_{0}\right)\right]\right.$	z	$\mathcal{N}_{Q S O s}$	Ref. a
$-23.2_{-0.6}^{+0.8}$	$0.16-0.99$	13	1
$-20.5_{-1.3}^{+0.6}$	$1.8-2.3$	3	2^{b}
-21.1 ± 0.6	2.0	1	2
-21.15	3.2	1	3
-21.3	3.6	1	4
-21.0 ± 0.5	$1.7-3.8$	38	5
-21.0 ± 0.5	$1.7-3.8$	19	6
-20.5	$1.6-4.1$	49	7
$-21.3_{-0.09}^{+0.08}$	$1.7-4.1$	10	8
$-21.1_{-0.27}^{+0.15}$	$1.7-4.1$	74	9
$-21.0_{-0.15}^{+0.17}$	$2.0-4.5$	11	10
$-22.0--21.5$	4.5	1	11
a (1) Kulkarni \& Fall 1993;			
(2) Fernández-Soto et al. $1995 ;$			
(3) Giallongo et al. 1993;			
(4) Cristiani et al. 1995;			
(5) BDO: (6) LWT; (7) B94;			
(8) Giallongo et al. 1996;			
(9) this paper;			
(10) Cooke et al. 1997;			
(11) Williger et al. (1994)			
measured from the proximity effect			
due to a foreground QSO; not able			
to set an upper limit			

Figure 3.1. Spectrophotometry of $z \approx 2$ QSOs: Dashed line indicates the power law continuum fit; dotted line indicates the 1σ errors: (a) $0006+202$; (b) $0027+018$; (c) 0037-018: (d) $0049+007$; (e) $0123+257$; (f) $0153+744$; (g) $0348+061$; (h) 1323-107; (i) $1346-036$; (j) $1422+231$; (k) $2134+004$; (l) $2251+244$; (m) $2254+022$

Figure 3.1. Spectrophotometry of $\mathrm{z} \approx 2$ QSOs (Continued)

Figure 3.1. Spectrophotometry of $z \approx 2$ QSOs (Continued)

Figure 3.1. Spectrophotometry of $z \approx 2$ QSOs (Continued)

Figure 3.1. Spectrophotometry of $z \approx 2$ QSOs (Continued)

Figure 3.2. Infrared QSO spectra, line identifications as listed in Table 3.5 are marked: (a) 0000-263; (b) 0014+813 (J); (c) 0014+813 (K) (d) 0114-089; (e) $0636+680(\mathrm{~J}):(\mathrm{f}) 0636+680(\mathrm{~K}) ;(\mathrm{g}) 0836+710$, flux units are $10^{26} \mathrm{ergs} \mathrm{s}^{-1} \mathrm{~cm}^{-2}$ $\mathrm{Hz}^{-1} \mathrm{sr}^{-1}$; (h) $0956+122$ (J); (i) $0956+122$ (K); (j) $1159+124$ (J); (k) $1159+124$ (K); (l) $1207+399$; (m) $1208+101$; (n) $1408+009$ (H); (o) $1408+009$ (K); (p) $1422+231$; (q) $1435+638$; (r) $2126-158(\mathrm{~J})$; (s) $2126-158(\mathrm{~K})$

Figure 3.2. Infrared spectra of $z \approx 2$ QSOs (Continued)

Figure 3.2. Infrared spectra of $z \approx 2$ QSOs (Continued)

Figure 3.2. Infrared spectra of $z \approx 2$ QSOs (Continued)

Figure 3.2. Infrared spectra of $z \approx 2$ QSOs (Continued)

Figure 3.3. Lyman limit luminosity versus redshift for the proximity effect dataset; squares- QSOs from which low redshift line sample was taken; crosses- QSOs from which high redshift line sample was taken; the line marks the boundary between low and high luminosity QSOs

Figure 3.4. Relative deficit of lines with respect to the number predicted by Equ. 3.1 versus distance from the QSO for lines with rest equivalent width greater than $0.32 \AA$ (a) total sample; (b) low luminosity QSOs; (c) high luminosity QSOs

Figure 3.5. χ^{2} of binned data with respect to the ionization model with a constant $J\left(\nu_{0}\right)$ versus $\log \left[J\left(\nu_{0}\right)\right]$: (a) DB96 sample; (b) all lines, Ly α QSO redshifts; (c) all lines, using narrow line redshifts where available, Ly α redshifts otherwise; (d) all lines, narrow line redshifts where available, Ly α redshifts $+400 \mathrm{~km} \mathrm{~s}^{-1}$ otherwise; (e) high z lines, QSO redshifts as in case (d); (f) low z lines, QSO redshifts as in case (d); (g) high luminosity QSOs, QSO redshifts as in case (d); (h) low luminosity QSOs, QSO redshifts as in case (d); (i) weak lines only: $0.16 \AA<W<0.32 \AA$, QSO redshifts as in case (d); (j) lines from QSOs with damped Ly α systems only, QSO redshifts as in case (d)

Figure 3.6. Number distribution per coevolving redshift coordinate for the best fit values of $J\left(\nu_{0}\right)$ (BDO method); (a-j) same as Fig. 3.5

Figure 3.7. Likelihood function versus $\log \left[J\left(\nu_{0}\right)\right]:$ (a-f) same as Fig. 3.5

Figure 3.8. Number distribution per coevolving redshift coordinate for the best fit values of $J\left(\nu_{0}\right)$ (KF method); (a-f) same as Fig. 3.5

Figure 3.9. Histograms of redshift differences with respect to the [OIII] $\lambda 5007$ line (a) Ly α; (b) Mg II; (c) Balmer lines ; dotted lines- data of Laor et al. (1995), dashed lines- data of Nishihara et al. (1997)

Figure 3.10. Sample simulation spectra plotted with data, flux scale is arbitrary. (a) $0014+813:$ (i)data, (ii) input $\log \left[J\left(\nu_{0}\right)\right]=-23.0$, (iii) input $\log \left[J\left(\nu_{0}\right)\right]=-22$, (iv)input $\log \left[J\left(\nu_{0}\right)\right]=-21.3$, (v)input $\log \left[J\left(\nu_{0}\right)\right]=-20.0$, (vi)input $\log \left[J\left(\nu_{0}\right)\right]=-19.0$; (b) $1700+643$: (i)-(vi) same as in (a)

Figure 3.10. Sample simulation spectra (Continued)

Figure 3.11. Number distribution per coevolving redshift coordinate for the best fit values of $J\left(\nu_{0}\right)$ listed in Table 2.4; solid lines- simulation, dotted lines- data, scaled by the relevant value of \mathcal{A}_{0} in Table 2.4: (a)input $\log \left[J\left(\nu_{0}\right)\right]=-23.0$; (b)input $\log \left[J\left(\nu_{0}\right)\right]=-$ 22; (c)input $\log \left[J\left(\nu_{0}\right)\right]=-21.3$; (d)input $\log \left[J\left(\nu_{0}\right)\right]=-20.0$; (e)input $\log \left[J\left(\nu_{0}\right)\right]=-19.0$

Figure 3.12. Curve of growth effects: ratio of post- to pre- proximity effect rest equivalent width for all lines versus pre- proximity effect rest equivalent width; solid line represents the detection threshold $W_{P E}=0.32 A$; (a)-(e) as in Fig. 3.11

Figure 3.13. Measurements of $\log \left[J\left(\nu_{0}\right)\right]$ versus redshift: points and error bars are taken from Table 3.8. The upper limit set by Bunker et al. (1998) at $\mathrm{z} \sim 3$ is included. Measurements over extended redshift ranges and the errors in those measurements are indicated by boxes. The solid curves are derived from the Haardt \& Madau (1996) model for the HI photoionization rate as a function of redshift for QSO spectral indicies of 0 (lower curve) and 2 (upper curve). Overall, measurements at $z=2-3$ agree well with one another and with the predictions of the Haardt \& Madau (1996) model.

Figure 3.14. Power law fits to $\log \left[J\left(\nu_{0}\right)\right]$ as a function of redshift: $J\left(\nu_{0}, z\right)=$ $J\left(\nu_{0}, 0\right)(1+z)^{j}$. The dashed lines indicate the two lowest χ^{2} fits to the data: $\left(j, \log \left[J\left(\nu_{0}, 0\right)\right]\right)=(5.12,-23.97)$ and (-4.16,-18.76). The solid curves are the Haardt \& Madau (1996) models as shown in Figure 3.13. The Haardt \& Madau (1996) models are turning over at the redshift of the data, precluding a strong constraint on the parameters j and $J\left(\nu_{0}, 0\right)$; but the lowest χ^{2} fit extends to low redshift to match the Kulkarni \& Fall (1993) measurement shown by the box, while the next lowest χ^{2} fit extends to high redshift to match the Williger et al. (1994) measurement, the point at $z=4.5$.

Chapter 4

HST/FOS Data and the Ultraviolet Background at $Z<1.7$

4.1 Data Sample

The reduction of the FOS data is described in Paper III. Table 4.1 lists the objects used in the proximity effect analysis along with the object's redshift and classification in the NASA Extragalactic Database.

For the reasons outlined in Scott et al. (2000b, hereafter Paper II) we have removed from the full FOS sample of Paper III the spectra of quasars known to be lensed, as well as those that show damped Ly- α absorption, associated absorption, or broad intrinsic absorption. For our primary proximity effect sample, we also remove objects classified as blazars (BL Lacs and optically violent variables) on the grounds that their continua are highly variable. However, we also perform the proximity effect analysis with associated absorbers, damped Ly- α absorbers, and blazars included in order to determine if they affect the results obtained.

As discussed in Paper III, objects observed only in the period before the COSTAR upgrade to the HST optics and with the A-1 FOS aperture are particularly subject to irregular line spread functions. We have omitted those data from this analysis as well. The distributions in redshift of the QSOs and absorption lines used in this paper are shown in Figure 4.1.

4.2 Systemic Redshifts

QSO redshifts based on the Ly- α emission line have been shown to be blueshifted from the systemic redshift based on narrow emission lines by up to $\sim 200 \mathrm{~km} \mathrm{~s}^{-1}$. Generally, the forbidden OIII doublet at $4959,5007 \AA$ is taken to be the most reliable
indicator of the QSO systemic redshift; though other lines such as Mg II $\lambda \lambda 2796,2803$ and Balmer lines have been shown to trace the systemic redshift as well, with some spread. (Zheng \& Sulentic 1990, Tytler \& Fan 1992, Laor et al. 1994,1995, Corbin \& Boroson 1996) However, the results of Nishihara et al. (1997), M'Intosh et al. (1999), and Paper II indicate that in fact $\mathrm{H} \beta$ may not reflect the systemic redshift of high redshift QSOs.

4.2.1 Observations

Spectra of the emission lines $\mathrm{H} \beta$, [OIII] $\lambda 5007$, or Mg II were obtained for several objects in our total proximity effect sample. The observations were carried out on the nights of 19 December 1995, 14 January 1996, 20 and 21 April 1996, 12 and 13 December 1996, and 2 February 1997. These observations are summarized in Table 4.2.

The 19 December 1995 and 13 December 1996 observations were made using the 1.5 meter Tillinghast telescope at the Fred Lawrence Whipple Observatory using the FAST spectrograph (Fabricant et al. 1998) and a thinned Loral 512x2688 CCD chip (gain $=1.06$, read noise $=7.9 \mathrm{e}^{-}$) binned by a factor of 4 in the cross-dispersion direction. Observations were made using a 300 lines mm^{-1} grating blazed at $4750 \AA$ and a $3^{\prime \prime}$ slit. These spectra cover a wavelength range of $3660-7540 \mathrm{~A}$. This is listed as set-up (1) in Table 4.2.

The January, April, and December 10 and 12, 1996 observations were made using the Steward Observatory Bok 90 inch telescope using the Boller and Chivens Spectrograph with a $600 \mathrm{l} \mathrm{mm}^{-1}$ grating blazed at $6681 \AA$ in the first order, a $1.5^{\prime \prime}$ slit, and a $1200 \times 800 \mathrm{CCD}$ array with a gain of $2.2 \mathrm{e}^{-} \mathrm{ADU}^{-1}$ and a read noise of 7.7 e^{-}, binned 1xl. For the January 1996 observations, the data were obtained with one of two grating tilts, one resulting in wavelength coverages of $3600-5825 \AA$ and 6870-9140 \AA. For the April 1996 data, the wavelength ranges were $4140-6370 \AA$ and

5280-7550 \AA. Two grating tilts were also used for the December 1996 data, giving wavelength coverages of $4500-6700 \AA$ and $5610-7860 \AA$.

The spectrum of one object, 0827+2421, was obtained on 15 February 1997 at the Multiple Mirror Telescope with the Blue Channel Spectrograph, a 2 " slit, the 3 K x 1 KCCD array, and the $800 \mathrm{I} \mathrm{mm}^{-1}$ grating blazed at $4050 \AA$ with spectral coverage of 4365-6665 \AA.

The spectra are shown in Figure 4.2 and the lines used for redshift measurements are labeled.

4.2.2 Measurements

Taking a simple cursor measurement of each line centroid, we find a mean [OIII]Balmer line $\Delta \mathrm{v}$ of $-30 \pm 1010 \mathrm{~km} \mathrm{~s}^{-1}$ for 31 objects and a mean [OIII]-Mg II $\Delta \mathrm{v}$ of $58 \pm 576 \mathrm{~km} \mathrm{~s}^{-1}$ for 31 objects. The mean blueshift of the Ly- α emission line with respect to [OIII] is $289 \pm 727 \mathrm{~km} \mathrm{~s}^{-1}$ based on 51 measurements. The redshifts measured for each object in our sample are shown in Table 4.1; and the results are shown in Figure 4.3. Gaussian fits to the lines give similar results.

We therefore treat both Balmer lines and Mg II in addition to [OIII] as good systemic redshift indicators for these low redshift objects. In the case of a QSO for which we have only a Ly- α emission line measurement of the redshift, we add 300 $\mathrm{km} \mathrm{s}^{-1}$ to this value to estimate its systemic redshift.

4.3 Lyman Limit Fluxes

Our method for estimating Lyman limit fluxes for each QSO is the same as that described in Paper II. For objects with spectral coverage between the Ly- α and CIV emission lines, we extrapolate the flux from $1450 \AA$ in the quasar's rest frame to $912 \AA$ using $f_{\nu} \sim \nu^{-\alpha}$ and a spectral index α measured primarily from the spectral region between the Ly- α and C IV emission lines. Figure 4.4 shows the FOS spectra for
which these fits were made along with the power law fits themselves. In some cases, α is poorly constrained from these fits, especially if there was little spectral coverage redward of $\mathrm{Ly}-\alpha$ emission in the data. If another measurement of the spectral index was available in the literature for these objects, we used it; otherwise, we used our measurement.

Table 4.3 lists the Lyman limit flux for each object in this proximity effect sample and either a) the flux at $1450 \AA$, or some other appropriate wavelength free of emission features, measured from the FOS data, or b) a directly measured Lyman limit flux and the reference. If available from the extracted archive data, red spectra and the fits to them are presented for objects which were observed only with pre-COSTAR FOS and A-1 aperture, though these data were not subsequently used for any Ly- α forest studies. See Table 4 of Paper III.

In Figure 4.5, we show QSO Lyman limit luminosities versus emission redshift for this HST/FOS sample combined with the high redshift objects presented in Papers I and II. Only at the lowest redshifts is there any trend of luminosity with redshift.

4.4 Analysis

The distribution of $\mathrm{Ly}-\alpha$ lines in redshift and equivalent width is given by:

$$
\begin{equation*}
\frac{\partial^{2} \mathcal{N}}{\partial z \partial W}=\frac{A_{0}}{W^{*}}(1+z)^{\gamma} \exp \left(-\frac{W}{W_{*}}\right) \tag{4.1}
\end{equation*}
$$

The distribution in redshift and HI column density, N , is:

$$
\begin{equation*}
\frac{\partial^{2} \mathcal{N}}{\partial z \partial N}=A N^{-\beta}(1+z)^{\gamma} \tag{4.2}
\end{equation*}
$$

The parameter γ is the redshift distribution parameter. The quantities W^{*} in Equ. 4.1 and β in Equ. 4.2 are the line rest equivalenth width and column density distribution parameters, respectively. The quantities A_{0} and A are normalizations.

The BDO method for measuring $J\left(\nu_{0}\right)$ consists of binning all lines in the sample in the parameter $\omega(z)$, the ratio of QSO to background Lyman limit flux density at
the physical location of the absorber: $F^{Q}\left(\nu_{0}\right) /\left(4 \pi J\left(\nu_{0}\right)\right)$ for various values of $J\left(\nu_{0}\right)$. The value of $J\left(\nu_{0}\right)$ that results in the lowest χ^{2} between the binned data and the ionization model,

$$
\begin{equation*}
\frac{d \mathcal{N}}{d z}=\mathcal{A}_{0}(1+z)^{\gamma}[1+\omega(z)]^{-(\beta-1)} \tag{4.3}
\end{equation*}
$$

is considered to be the optimal value. This ionization model follows from the assumption that the column densities of lines are modified by the presence of the QSO according to

$$
\begin{equation*}
N \propto N_{0}(1+\omega(z))^{-1} \tag{4.4}
\end{equation*}
$$

where N_{0} is the column density a given line would have in the absence of the QSO. The 1σ errors are found from $\Delta \chi^{2}=8.18$ for 7 degrees of freedom (Press et al. 1992).

The value of $\omega(z)$ for each line in a given sample depends not only upon the value of $J\left(\nu_{0}\right)$ assumed, but also on the cosmological model, as

$$
\begin{equation*}
F^{Q}\left(\nu_{0}\right)=\frac{L\left(\nu_{0}\right)}{4 \pi r_{L}^{2}(z)} \tag{4.5}
\end{equation*}
$$

and

$$
\begin{equation*}
L\left(\nu_{0}\right)=4 \pi d_{L}^{2}(z) \frac{f\left(\nu_{0}\right)}{\left(1+z_{e m}\right)}, \tag{4.6}
\end{equation*}
$$

where $r_{L}(z)$ is the luminosity distance of an individual absorber from the QSO and $d_{L}(z)$ luminosity distance to the QSO from the observer. The luminosity distance between two objects at different redshifts can be calculated analytically for cosmological models in which $\Omega_{\Lambda}=0$. We return to this point in Section 4.6.2 below.

If the proximity effect is indeed caused by enhanced ionization of the IGM in the vicinity of QSOs, one may expect to observe a larger deficit of lines relative to the Ly- α forest near high luminosity QSOs than near low luminosity QSOs. In Figure 4.6(a), we plot the fractional deficit of lines with respect to the number predicted by Equ. 4.1 versus distance from the QSO for this HST/FOS sample combined with the high redshift objects observed with the Multiple Mirror Telescope (MMT) presented in Papers I and II. We divide our QSO sample into high and low luminosity
objects at the median Lyman limit luminosity of the combined MMT and HST/FOS sample, $\log \left(\mathrm{L}_{912} \AA\right) \sim 31$. High luminosity objects show a marginally more pronounced proximity effect than low luminosity objects: 4.9σ for QSOs with $\log \left(\mathrm{L}_{912} \mathrm{~A}\right)>31$ versus 3.2σ for QSOs with $\log \left(\mathrm{L}_{912} \mathrm{~A}\right)<31$. In panel (b), we plot the line deficit within $2 \mathrm{~h}_{75}^{-1} \mathrm{Mpc}$ as a function of $\log \left(\mathrm{L}_{912} \AA\right.$). The lack of a significant difference in the line deficit between high and low luminosity QSOs may indicate the presence of clustering, if absorption features cluster more strongly around more luminous QSOs with deeper potential wells. We will address the issue of clustering further below.

The BDO method of measuring the background can result in poor statistics at low redshift due to the low line density in the low redshift Ly- α forest. We will quote results from this method, but we will generally use the maximum likelihood method for measuring $J\left(\nu_{0}\right)$ as presented by KF93, which consists of constructing a likelihood function of the form

$$
\begin{equation*}
L=\prod_{a} f\left(N_{a}, z_{a}\right) \prod_{q} \exp \left[-\int_{z_{\min }^{q}}^{z_{\max }^{q}} d z \int_{N_{\min }^{q}}^{\infty} f(N, z) d N\right] \tag{4.7}
\end{equation*}
$$

where

$$
\begin{equation*}
f(N, z)=A N^{-\beta}(1+z)^{\gamma}[1+\omega(z)]^{-(\beta-1)} \tag{4.8}
\end{equation*}
$$

and the indicies a and q denote sample absorption lines and quasars, respectively. Using the values of γ and A_{0} from a separate maximum likelihood analysis on the Lyα forest excluding regions of the spectra affected by the proximity effect (Dobrzycki et al. 2001, hereafter Paper IV), and a value of β from studies with high resolution data, eg. $\beta=1.46$ from Hu et al. (1995), the search for the best-fit value of $J\left(\nu_{0}\right)$ consists of finding the value that maximizes this function, fixing the other parameters.

If the line density is low throughout a single Ly- α forest spectrum, it becomes difficult to distinguish any proximity effect, even in a large sample of spectra. The absence of a proximity effect in this model formally translates into the limit $J\left(\nu_{0}\right) \rightarrow$ ∞ because in this scenario, the QSO has no additional effect on its surroundings and
therefore generates no relative line underdensity. The errors quoted in the values of $\log \left[J\left(\nu_{0}\right)\right]$ are found from the fact that in solving for $\log \left[J\left(\nu_{0}\right)\right]$ alone, the logarithm of the likelihood function, $-2 \ln \left(L / L_{\max }\right)$, is distributed as χ^{2} with one degree of freedom. In the case of an ill-defined solution, the likelihood function is very broad and the formal error approaches infinity. If a proximity effect is weak but not absent in the data, a maximum likelihood solution is sometimes possible, but with no welldefined 1σ upper limit on $\log \left[J\left(\nu_{0}\right)\right]$. In other words, if an upper limit of infinity is quoted, the data cannot rule out the nonexistence of a proximity effect to within 1σ confidence.

Using a constant equivalent width threshold results in the loss of a large amount of spectral information. In the case of a large equivalent width threshold, of course, many weak lines are discarded; and in the case of a small threshold, regions of spectra where the signal-to-noise ratio (S / N) does not permit the detection of lines all the way down to the specified threshold are lost and only the highest S / N spectral regions are used. The technique of measuring the statistics γ and W^{*} has been expanded to allow for a threshold that varies with S / N across each QSO spectrum (Bahcall et al. 1993,1996, Weymann et al. 1998, Scott et al. 2000a). We will use this variable threshold information to measure $J\left(\nu_{0}\right)$ as well.

4.5 Results

The results of this analysis are given in Table 3.4.
Before we begin the discussion of the results, some words about the normalization values listed in Table 3.4 are in order. In the BDO method for measuring $J\left(\nu_{0}\right)$, lines are binned in $\omega(z)$ and compared to the ionization model given by Equ. 4.3, for an assumed value of β. In this case, the normalization listed in Table 3.4 is the parameter in Equ. 4.1, found from the number of lines in the sample and the maximum likelihood
value of γ :

$$
\begin{equation*}
\mathcal{A}_{0}=A_{0} \exp \left(-\frac{W_{\lim }}{W_{*}}\right)=\mathcal{N}\left(\sum_{q} \int_{z_{\min }^{q}}^{z_{\max }^{q}} d z(1+z)^{\gamma}\right)^{-1}, \tag{4.9}
\end{equation*}
$$

where \mathcal{N} is the total number of lines observed with rest equivalent width greater than $W_{\text {lim }}$, the limiting equivalent width of the line sample. For the maximum likelihood solutions for $J\left(\nu_{0}\right)$, we convert line equivalent widths to column densities using the Ly- α curve of growth and an assumed value of b, the characteristic Doppler parameter of the lines. As we will demonstrate, different values of β and b have only a small effect on the value of $J\left(\nu_{0}\right)$ found. The normalization is given by

$$
\begin{equation*}
A=\mathcal{N}\left(\sum_{q} \int_{z_{\min }^{q}}^{z_{\max }^{q}} d z \int_{N_{\min }^{q}(z)}^{\infty} d N N^{-\beta}(1+z)^{\gamma}\right)^{-1} \tag{4.10}
\end{equation*}
$$

where $N_{\min }^{q}(z)$ is the limiting column density across each QSO spectrum corresponding to a limiting equivalent width. This quantity can be held constant, as in the BDO method, or it can be allowed to vary across each QSO spectrum. In both of these formulations for the normalization, a proximity region around the QSO is neglected and that proximity region is either defined by a velocity cut, eg. $z_{\mathrm{em}}-3000 \mathrm{~km} \mathrm{~s}^{-1}$, or by a cut in $\omega(z)$, eg. $\omega(z)=0.2$.

We also use the standard BDO method to find $\log \left[J\left(\nu_{0}\right)\right]=-22.04_{-1.11}^{+0.43}$ and $-22.06_{-0.62}^{+0.05}$ for equivalent width thresholds of 0.32 and $0.24 \AA$ respectively. Figures $4.7(\mathrm{a})$ and (d) illustrate the χ^{2} of the binned data compared to the BDO ionization model as a function of assumed $J\left(\nu_{0}\right)$ for these two thresholds. The BDO ionization model is expressed in terms of the number of lines per coevolving coordinate:

$$
\begin{equation*}
\frac{d N}{d X_{\gamma}}=\mathcal{A}_{0}(1+\omega)^{-(\beta-1)} \tag{4.11}
\end{equation*}
$$

where $X_{\gamma}=\int(1+z)^{\gamma} d z$. This χ^{2} curve is very broad, which is reflected in the large error bars and indicates the difficulty in isolating the optimal mean intensity of a weak background using this technique. Figures 4.8(a) and (d) show the binned data
and the ionization model for the values of $J\left(\nu_{0}\right)$ listed above, those that give the lowest χ^{2} between the binned data and the model, ie. the minima of the curves in Figures 4.7(a) and (d).

We executed the maximum likelihood search for $J\left(\nu_{0}\right)$, using two different fixed equivalent width thresholds, $0.24 \AA$ and $0.32 \AA$ as well as for the case of a variable threshold across all the spectra. The uncertainty in γ does not translate directly into a large uncertainty in $J\left(\nu_{0}\right)$. Changing the value of γ alters the maximum likelihood normalization, A, according to Equ. 4.10. From the sample of lines with rest equivalent widths greater than $0.32 \AA$ we find $\log \left[J\left(\nu_{0}\right)\right]=-22.11_{-0.40}^{+0.51}$ for $\gamma=$ 0.82 ± 0.29. Varying γ by $\pm 1 \sigma$ gives $\log \left[J\left(\nu_{0}\right)\right]=-22.21$ and -22.00 with similar uncertainties.

The data used here are not of sufficient resolution to fit Voigt profiles to the absorption features and derive HI column densities and Dopper parameters. We therefore choose to fix the values of β and b to those found from work on high resolution data, rather than allow them to freely vary in our analysis. For the $0.32 \AA$ fixed equivalent width threshold, we tested several pairs of values of (β, b) where b is in $\mathrm{km} \mathrm{s}^{-1}$: $(1.46,35)$ and $(1.46,25)$ where the value of β is taken from Hu et al. (1995); as well as $(1.45,25)$ and $(1.70,30)$ found from low redshift Ly- α forest spectra taken with the Goddard High Resolution Spectrograph (GHRS) on HST by Penton et al. (2000a,b). In addition, Davé \& Tripp (2001) have found some evidence for β increasing to 2.04 at $z<0.3$ from high resolution echelle data from the Space Telescope Imaging Spectrograph aboard the HST. We test this value as well. The likelihood functions for the maximum likelihood solutions listed in rows 2-6, 8-12, 14, and 18 of Table 3.4 are shown in Figure 4.9. The binned data and ionization models are plotted in Figure 4.10. The values of $J\left(\nu_{0}\right)$ derived for these various pairs of values of β and b are not significantly different from one another, though the results in Table 3.4 indicate that varying β has a larger impact on the inferred $J\left(\nu_{0}\right)$ than does varying b. The solution for $\beta=2.04$ differs from the $\beta=1.46$ solution by $\sim 1 \sigma$.

In the analysis that follows, we adopt the values 1.46 and $35 \mathrm{~km} \mathrm{~s}^{-1}$.
The models of Haardt \& Madau (1996) predict that the UV background arising from QSOs drops by over an order of magnitude from $z=2.5$ to $z=0$. We therefore divide the sample into low and high redshift subsamples at $z=1$ and use both the BDO method and the maximum likelihood method for finding $J\left(\nu_{0}\right)$. These results, also listed in Table 3.4, confirm some evolution in $J\left(\nu_{0}\right)$, though not at a high level of significance. For the BDO solutions, we find $\log \left[J\left(\nu_{0}\right)\right]$ at $z<1$ is equal to $-22.87_{-0.82}^{+1.19}$ and $\log \left[J\left(\nu_{0}\right)\right]$ at $z>1$ is equal to $-22.02_{-1.33}^{+0.005}$. The restrictive 1σ upper limit for $\log \left[J\left(\nu_{0}\right)\right]$ at $z>1$ arises from the steeply rising χ^{2} as a function of $\log \left[J\left(\nu_{0}\right)\right]$ shown in Figure 4.7. This, in turn arises from the single line in the highest $\log (\omega)$ bin moving to the next bin for larger values of $J\left(\nu_{0}\right)$, resulting in a drastic change in the χ^{2} with respect to the photoionization model. We do not consider this to be a reliable indicator of the uncertainty in $J\left(\nu_{0}\right)$ at $z>1$. The maximum likelihood technique gives more robust estimates of the uncertainties. From this analysis, we find $\log \left[J\left(\nu_{0}\right)\right]$ at $z<1$ is found to be $-22.18_{-0.61}^{+0.90}$, while at $z>1$ it is $-21.98_{-0.54}^{+0.76}$. These results are shown in Figures 4.11(a) and 4.16.

Including associated absorbers, damped $\mathrm{Ly}-\alpha$ absorbers, or blazars in the proximity effect analysis appears to have little effect on the results. One might expect associated absorbers to reduce the magnitude of the observed proximity effect and hence cause $J\left(\nu_{0}\right)$ to be overestimated. The value found including the 45 associated absorbers in our sample is indeed larger, $\log \left[J\left(\nu_{0}\right)\right]=-21.74_{-0.39}^{+0.55}$, versus $\log \left[J\left(\nu_{0}\right)\right]=-22.11_{-0.40}^{+0.51}$, but not significantly so. Likewise, if the intervening dust extinction in damped Ly- α absorbers is significant, including these objects in our analysis could cause us to overestimate the magnitude of the proximity effect and hence underestimate $J\left(\nu_{0}\right)$. However, the inclusion of these 7 objects only negligibly reduces the value of $J\left(\nu_{0}\right)$ derived. QSO variability on timescales less than $\sim 10^{5}$ years would be expected to smooth out the proximity effect distribution (BDO). However, the inclusion of 6 blazars in the sample, all at $z<1$, resulted in no discernible
change in $J\left(\nu_{0}\right)$. The sample used in the analysis of HI ionization rates discussed below includes all of these objects.

For each solution, we calculate the χ^{2} with respect to the ionization model expressed by Equ. 4.3, and the probability that the observed χ^{2} will exceed the value listed by chance for a correct model, $\mathrm{Q}_{\chi^{2}}$ (Press et al. 1992). We also execute a Kolmogorov-Smirnov (KS) test for each solution. The KS test provides a measure of how well the assumed parent distribution of lines with respect to redshift, given by Equ. 4.8, reflects the true redshift distribution of lines (cf. Murdoch et al. 1986, Press et al. 1992). The KS probability, Q_{KS}, indicates the probability that a value of the KS statistic larger than the one calculated could have occurred by chance if the assumed parent is correct. The KS probability associated with each solution for $J\left(\nu_{0}\right)$ is listed in column 10 of Table 3.4.

4.5.1 Simulations

We tested our maximum likelihood methods, including our treatment of the variable equivalent width thresholds by running our analysis on a simulated data set. Each of the 151 spectra in this simulated data set had a redshift equal to that of an object in our data set. All objects including those showing associated absorption, damped Ly- α absorption, or blazar activity are included in this simulated set. Each spectrum is created using a Monte Carlo technique by which lines are placed in redshift and column density space according to Equ. 4.2. A background of known mean intensity modifies the column densities of the lines according to the BDO formulation given by Equ. 4.4. The same analysis done on the data, consisting of the line-finding algorithm and the maximum likelihood searches for γ and $J\left(\nu_{0}\right)$, is then used on the simulated spectra in order to recover the input $J\left(\nu_{0}\right)$. Three different values of $\log \left[J\left(\nu_{0}\right)\right]$ are input, $-21,-22$, and -23 , and the results are listed in Table 4.5. In order to understand the possible range of recovered $\log \left[J\left(\nu_{0}\right)\right]$, we repeated the input
$\log \left[J\left(\nu_{0}\right)\right]=-22$ simulation in the constant threshold case nine additional times, resulting in $\overline{J\left(\nu_{0}\right)}=2.91 \pm 1.67 \times 10^{-22} \mathrm{ergs} \mathrm{s}^{-1} \mathrm{~cm}^{-2} \mathrm{~Hz}^{-1} \mathrm{sr}^{-1}$. In addition, since we observe the background to evolve with redshift from $z=1.7$ to $z=0$, we implement a model in which $J\left(\nu_{0}\right)$ varies as a power law in $(1+z)$ over the redshift range of the data. This relationship is defined by the best fit to a power law variation of $J\left(\nu_{0}\right)$ with redshift: $\log \left[J\left(\nu_{0}\right)\right]=0.017 \log (1+z)-21.87$. We recover this using both the constant threshold and the variable threshold analyses, at all redshifts and at $z<1$ and $z>1$ separately. The results of this exercise are shown in Table 4.5 and in Figure 4.12.

These simulation results indicate that both the constant and variable threshold analyses can overestimate the background by up to a factor of 3-5, though the uncertainties for the variable threshold solutions are consistently lower, as a factor of ~ 2 more lines are used in these solutions. We separated the first of the input $\log \left[J\left(\nu_{0}\right)\right]=-22$ simulated data samples into high and low redshift subsamples at $z=1$, in order to determine if the change in $J\left(\nu_{0}\right)$ as a function of redshift could be falsely introduced in a case there the input background is constant with redshift. For both the constant and variable threshold treatments, this is not the case. The value found for the low redshift subsample is actually larger than the value found for the high redshift subsample in both treatments.

In the case of the varying input $\log \left[J\left(\nu_{0}\right)\right]$, the values recovered for the high redshift subsample and for the entire redshift range of the data are overestimates. The slope of the linear relationship between $\log \left[J\left(\nu_{0}\right)\right]$ and $\log (1+z)$ is quite small, 0.017 , resulting in a variable input $\log \left[J\left(\nu_{0}\right)\right]$ that is actually nearly constant with redshift. The solution for $z<1$ matches the input well for both the constant and variable threshold cases. At $z>1$, the variable threshold solution overestimates the input by a larger factor, ~ 3, or 1.6σ, than does the constant threshold solution, ~ 2, or less than 1σ.

In Paper II, we argued that curve-of-growth effects are likely to come into play
in the proximity effect analysis and to play a larger role for cases in which $J\left(\nu_{0}\right)$ is large and the proximity effect signature is small. Here we find that the input $J\left(\nu_{0}\right)$ is recovered most effectively by the constant and variable threshold cases for the largest input value of $\log \left[J\left(\nu_{0}\right)\right],-21$. However, nearly every case tested with these simulations results in a value of $J\left(\nu_{0}\right)$ larger than the input value, especially when a variable equivalent width threshold is used. The only case where the difference is significant is the input $\log \left[J\left(\nu_{0}\right)\right]=-23$, variable threshold case. The recovered $\log \left[J\left(\nu_{0}\right)\right],-22.47$, is 4σ larger than the input. We will return to the discussion of the variable threshold in Section 4.5 .3 below.

4.5.2 HI Ionization Rate

As described in Paper II, solving for the HI ionization rate,

$$
\begin{equation*}
\Gamma=\int_{\nu_{0}}^{\infty} \frac{4 \pi J(\nu) \sigma_{H I}(\nu)}{h \nu} d \nu \mathrm{~s}^{-1} \tag{4.12}
\end{equation*}
$$

instead of $J\left(\nu_{0}\right)$ avoids the assumption that the spectral indicies of the QSOs and the background are identical. We modified our maximum likelihood code to use the values of α for each QSO listed in Table 4.3 to measure this quantity and the results are listed in Table 4.6. For objects with no available measured value of α, we use $\alpha=2.02$, the extreme ultraviolet spectral index measured from a composite spectrum of 101 HST/FOS QSO spectra by Zheng et al. (1997). The result for lines above a constant $0.32 \AA$ rest equivalent width threshold is $\log (\Gamma)=-12.17_{-0.40}^{+0.50}$. This result is not substantially changed if we instead use $\alpha=1.76$, the value found from a composite of 184 QSO spectra from HST/FOS, GHRS, and STIS by Telfer et al. (2001), giving $\log (\Gamma)=-12.25_{-0.35}^{+0.47}$. We also find little change in the result if we assume $\alpha=2.02$ or $\alpha=1.76$ for all QSOs. The variable threshold data result in a high HI ionization rate, and this is discussed further in the following section. The constant threshold result is plotted in Figure 4.13. Evolution in the UV background is more apparent in the HI ionization rate than in the solutions for $J\left(\nu_{0}\right)$. The result at $z>1$ is 6.5
times larger than that at $z<1$. The values of $J\left(\nu_{0}\right)$ implied by these solutions for Γ and a global source spectral index $\alpha_{\mathrm{s}}=1.8$ are also listed in Table 4.6.

We also parametrize the evolution of the HI ionization rate as a power law:

$$
\begin{equation*}
\Gamma(z)=A_{\mathrm{pl}}(1+z)^{B_{\mathrm{pl}}} \tag{4.13}
\end{equation*}
$$

and solve for the parameters A_{pl} and B_{pl} in both the constant and variable threshold cases. The values we find are shown as the dashed line in Figure 4.13 also listed in Table 4.6.

HM96 parametrize their models of the HI ionization rate with the function:

$$
\begin{equation*}
\Gamma(z)=A_{\mathrm{HM}}(1+z)^{B_{\mathrm{HM}}} \exp \left(\frac{-\left(z-z_{c}\right)^{2}}{S}\right) \tag{4.14}
\end{equation*}
$$

We combine our data set with that of Paper II to solve for the parameters $A_{\mathrm{HM}}, B_{\mathrm{HM}}$, z_{c}, and S. We find ($\left.A_{\mathrm{HM}}, B_{\mathrm{HM}}, z_{c}, S\right)=\left(7.6 \times 10^{-13}, 0.35,2.07,1.77\right)$ for $\beta=1.46$ and $\left(A_{\mathrm{HM}}, B_{\mathrm{HM}}, z_{c}, S\right)=\left(3.2 \times 10^{-13}, 1.45,2.13,1.42\right)$ for $\beta=1.7$, while the parameters found by HM96 for $q_{0}=0.5$ are $\left(6.7 \times 10^{-13}, 0.43,2.30,1.95\right)$. These results are also represented by the solid curves in Figure 4.13, while the HM96 parametrization is shown by the dotted line for comparison.

4.5.3 Variable Equivalent Width Threshold

The variable threshold analysis yielded some unexpected results. As seen in the majority of the simulations, the values of $J\left(\nu_{0}\right)$ found were consistently larger than the values found using a constant equivalent width threshold, indicating that the inclusion of weaker lines suppresses the proximity effect. This is to be expected if clustering is occurring (Loeb \& Eisenstein 1995), which in itself is to be expected to be more prominent at low redshift than at high redshift. However, the suppression of the proximity effect by the inclusion of weak lines is somewhat counterintuitive from the perspective of the curve of growth. Most of the lines included in a constant threshold solution are on the flat part of the curve of growth. Therefore, though the ionizing
influence of the quasar may be translated directly into a change in the HI column density, as predicted by the BDO photoionization model, this will not necessarily result in a corresponding change in the line equivalent width. The solution for $z<1$ is nearly a factor of 3 larger than the the solution found in the case of a constant, $0.32 \AA$ equivalent width threshold. The solution for $z>1$ is a factor of ~ 6 larger than the constant threshold solution, with no well-defined 1σ upper limit due to the flattening of the likelihood function towards high $J\left(\nu_{0}\right)$ This likelihood function for the total sample shows two peaks, the most prominent at $\log \left[J\left(\nu_{0}\right)\right]=-20.82$, the solution listed in Table 3.4, and a secondary peak at $\log \left[J\left(\nu_{0}\right)\right] \sim-18.4$.

This behavior is also exhibited, even more dramatically, in the solutions for the HI ionization rate, as discussed above. We conducted a jackknife resampling experiment (Babu \& Feigelson 1996, Efron 1982) to determine the source of these likelihood function peaks at large $\log (\Gamma)$, or $\log \left[J\left(\nu_{0}\right)\right]$.

Two objects, 0743-6719 ($z_{\mathrm{em}}=1.508$) and 0302-2223 ($z_{\mathrm{em}}=1.402$), are found from jackknife experiments to produce all of this effect. In the jackknife experiment, we perform the maximum likelihood calculation of $J\left(\nu_{0}\right) \mathrm{N}$ times, where N is the number of objects in the high redshift subsample. In each calculation, one object from the total sample is removed. The results of this experiment are shown in the histogram in Figure 4.14. The removal of 0743-6719 or 0302-2223 results in the two values of Γ that are well-defined and that are in reasonable agreement with the value calculated at high redshift in the constant threshold case. Removing only the one line from 0743-6719 nearest the Ly- α emission line with $z_{\mathrm{abs}}=1.5058$ and observed equivalent width equal to $0.23 \AA$ results in $\Gamma=6.23 \times 10^{-12} \mathrm{~s}^{-1}$. This object was part of the HST Key Project sample (Jannuzi et al. 1998) and they cite no evidence of associated aborption in its spectrum. Removing only the one line from 0302-2223 nearest the Ly- α emission line with $z_{\mathrm{abs}}=1.3886$ and observed equivalent width equal to $0.27 \AA$ results in $\Gamma=8.14 \times 10^{-12} \mathrm{~s}^{-1}$. This object shows an absorption system at $z_{\text {abs }}=1.406$ and is classified as an associated absorber. No metal absorption is seen at
$z_{\mathrm{abs}}=1.3886$, though this absorber is within $5000 \mathrm{~km} \mathrm{~s}^{-1}$ of the QSO, the canonical associated absorber region. Removing both of these lines gives $\Gamma=3.88 \times 10^{-12}$ s^{-1}. Due to the small equivalent widths of both of these lines they are not included in the constant threshold analysis, and the solutions for $J\left(\nu_{0}\right)$ and Γ for $z>1$ are well-defined.

It appears that this method has some trouble reliably recovering the background from a sample of absorption lines above an equivalent width threshold allowed to vary with S / N. As the method works well for the constant threshold case, we contend that the photoionization model, expressed in Equ. 4.3, used to create the likelihood function must not be an adequate model for the proximity effect when weak lines are included in the analysis. Liske \& Williger (2001) introduce a method for extracting $J\left(\nu_{0}\right)$ from QSO spectra based on flux statistics. We shall return to this topic in future work.

4.6 Discussion

4.6.1 Radio Loudness

As the results listed in Table 3.4 indicate, the inclusion of the four blazars and one BL Lac object, all at $z<1$, in our sample does not change the result significantly. However, there is much observational evidence that radio loud and radio quiet quasars inhabit different environments, namely that radio loud quasars reside in rich clusters while radio quiet quasars exist in galaxy environments consistent with the field (Stockton 1982, Yee \& Green 1984, 1987, Yee 1987, Yates, Miller, \& Peacock 1989, Ellingson, Yee, \& Green 1991, Yee \& Ellingson 1993, Wold et al. 2000, Smith, Boyle, \& Maddox 2000). If there is a corresponding increase in the number of $\mathrm{Ly}-\alpha$ absorption lines in the spectra of radio loud objects, this could cause the proximity effect to be suppressed, and the measured $\log \left[J\left(\nu_{0}\right)\right]$ to be artificially large. We have therefore divided our sample into radio loud and radio quiet subsamples using the ratio of radio
to UV flux to characterize the radio loudness,

$$
\begin{equation*}
\mathrm{RL}=\log [\mathrm{S}(5 \mathrm{GHz})] / \log [\mathbf{S}(1450 \AA)] . \tag{4.15}
\end{equation*}
$$

The value of RL for each object in our sample is listed in Table 4.3. A histogram of these values and the distribution of RL with z for the sample objects are shown in Figure 4.15. The division between radio loud and radio quiet was chosen to be $\mathrm{RL}=1.0$. The resulting values of $\log \left[J\left(\nu_{0}\right)\right]$ for these subsamples are listed in Table 3.4. There is no significant trend for $\log \left[J\left(\nu_{0}\right)\right]$ to appear larger for radio loud objects than for radio quiet objects.

4.6.2 $\operatorname{Non-Zero~} \Omega_{\Lambda}$

We performed the maximum likelihood calculation for the case of a non-zero cosmological constant. This means that the observer-QSO and absorber-QSO luminosity distances that appear in the relationship between ω and z (BDO) must be calculated numerically from the expression:

$$
\begin{equation*}
d_{L}=(1+z) \frac{c}{H_{0}} \int_{0}^{z} \frac{d z^{\prime}}{E\left(z^{\prime}\right)} \tag{4.16}
\end{equation*}
$$

where

$$
\begin{equation*}
E(z) \equiv \sqrt{\Omega_{\mathrm{M}}(1+z)^{3}+\Omega_{\mathrm{k}}(1+z)^{2}+\Omega_{\Lambda}}, \tag{4.17}
\end{equation*}
$$

(Peebles, 1993) as this integral cannot be reduced to an analytical form for $\Omega_{\mathrm{A}} \neq 0$.
The calculations in the sections above assume $\left(\Omega_{M}, \Omega_{\Lambda}\right)=(1.0,0.0)$. Here, we perform the maximum likelihood search for $J\left(\nu_{0}\right)$ using $\left(\Omega_{M}, \Omega_{\Lambda}\right)=(0.3,0.7)$. For a QSO at $z=0.5$ with a Lyman limit flux density of $0.1 \mu \mathrm{Jy}$, an absorber at $z=0.48$, and an assumed background of $\log \left[J\left(\nu_{0}\right)\right]=-22$., this $\left(\Omega_{M}, \Omega_{\mathrm{A}}\right)$ results in a value of ω that is $\sim 25 \%$ smaller than that inferred in the $\Omega_{A}=0$ case. Unlike all the other solutions performed, we ignore redshift path associated with metal lines and use all redshifts between $z_{\min }^{q}$ and $z_{\max }^{q}$. This does not change the results significantly, but
cuts down the computation time substantially. The results are listed in Table 3.4 and are plotted in Figure 4.11. For comparison, we also give the solutions for $J\left(\nu_{0}\right)$ found using the standard parameters, $\left(\Omega_{M}, \Omega_{\Lambda}\right)=(1.0,0.0)$, with this redshift path neglected. We find that $\left(\Omega_{M}, \Omega_{\Lambda}\right)=(0.3,0.7)$, does not change the value of $J\left(\nu_{0}\right)$ derived significantly from the value found using $\left(\Omega_{M}, \Omega_{\Lambda}\right)=(1.0,0.0)$.

We performed a slightly modified re-analysis of the Paper II sample of objects at $z \sim 2$ and found little effect at high redshift as well. The solution found for $\left(\Omega_{\mathrm{M}}, \Omega_{\Lambda}\right)=(1.0,0.0)$ was $\log \left[J\left(\nu_{0}\right)\right]=-21.09_{-0.17}^{+0.20}$, while for $\left(\Omega_{\mathrm{M}}, \Omega_{\Lambda}\right)=(0.3,0.7)$, we find $\log \left[J\left(\nu_{0}\right)\right]=-21.25_{-0.17}^{+0.20}$ for these data.

4.6.3 $d \mathcal{N} / d z$

In the case of a size distribution of Ly- α absorbers that is constant in redshift, the evolution of the number of $\mathrm{Ly}-\alpha$ absorption lines per unit redshift is given by:

$$
\begin{equation*}
d \mathcal{N} / d z=\mathcal{N}_{0}(1+z)^{2}\left[\Omega_{M}(1+z)^{3}+\left(1-\Omega_{M}-\Omega_{\Lambda}\right)(1+z)^{2}+\Omega_{\Lambda}\right]^{-0.5} \tag{4.18}
\end{equation*}
$$

(Sargent et al. 1980) where \mathcal{N}_{0} equals the absorber cross section times the absorber comoving number density times the Hubble distance, $\pi r_{0}^{2} \phi_{0} c H_{0}^{-1}$. A plot of $d \mathcal{N} / d z$ versus z for non-evolving Ly- α absorbers in $\left(\Omega_{M}, \Omega_{\Lambda}\right)=(1.0,0.0)$ and ($0.3,0.7$) cosmologies is shown in Figure 4.17. It is clear that non-evolving models are too shallow to fit points at $z>1.7$, so the normalization is found from a fit to the FOS data. The FOS data at $z<1.7$ are consistent with a non-evolving population for $\left(\Omega_{M}, \Omega_{\Lambda}\right)=(1.0,0.0)$. The data are less consistent with a non-evolving concordance model in which $\left(\Omega_{M}, \Omega_{\Lambda}\right)=(0.3,0.7)$, though not significantly so.

The number density evolution of Ly- α absorbers over the redshift range $z=0-5$ cannot be approximated with a single power law. There is a significant break in the slope of the line number density with respect to redshift, near $z=1.7$ (Weymann et al. 1998, Paper IV) though Kim, Cristiani, \& D'Odorico (2001) argue that the break occurs at $z=1.2$. Davé et al. (1999) show from hydrodynamical simulations
of the low redshift Ly- α forest, that the evolution of the line density is sensitive mainly to the HI photoionization rate, but also to the evolution of structure (cf. their Figure 7). The flattening of $d \mathcal{N} / d z$ observed by Weymann et al. (1998) is mostly attributed to a dramatic decline in $\Gamma(z)$ with decreasing z. Davé et al. (1999) derive an expression for the density of Ly- α forest lines per unit redshift as a function of the HI photoionization rate:

$$
\begin{equation*}
\frac{d \mathcal{N}}{d z}=C\left[(1+z)^{5} \Gamma^{-1}(z)\right]^{\beta-1} H^{-1}(z) \tag{4.19}
\end{equation*}
$$

where C is the normalization at some fiducial redshift which we choose to be $z=0$ and $\Gamma(z)$ can be expressed by Equ. 4.14.

We fit the FOS and MMT absorption line data, binned in $d \mathcal{N} / d z$ as presented in Paper IV and Scott et al. (2000a, Paper I), to this function in order to derive the parameters describing $\Gamma(z)$ implied by the evolution in Ly- α forest line density. We observe flattening of $d \mathcal{N} / d z$ at $z<1.7$, but not to the degree seen by Weymann et al. (1998) in the Key Project data. As described in Paper IV, we find $\gamma=0.54 \pm 0.21$, for lines above a $0.24 \AA$ threshold, while Weymann et al. (1998) measure $\gamma=0.15 \pm 0.23$. See Paper IV for more discussion of the significance and underlying causes of this difference. We find $\left(A_{\mathrm{HM}}, B_{\mathrm{HM}}, z_{c}, S\right)=\left(3.0 \times 10^{-12}, 0.61,5.5 \times 10^{-7}, 7.07\right)$ and $(1.9 \times$ $10^{-11}, 0.38,3.4 \times 10^{-7}, 6.21$) for ($\Omega_{\mathrm{M}}, \Omega_{\Lambda}$) $=(1 ., 0$) and lines with rest equivalent widths above 0.24 and $0.32 \AA$ respectively. These fits to Equ. 4.19 are shown in Figure 4.18(a). In panel (b), we plot $\Gamma(z)$, as expressed in Equ. 4.14, evaluated using the parameters found from the fit to Equ. 4.19 above. The HM96 solution and the solution derived from the full FOS and MMT data sets are represented by the thick and thin solid lines respectively. The small values of z_{c} derived from $d \mathcal{N} / d z$ above translate into ionization rates that do not decrease dramatically with decreasing redshift and result from the less pronounced flattening of $d \mathcal{N} / d z$ relative to the Key Project. These fits are particularly insensitive to the normalization, A_{HM}, so the errors on this parameter are large. These fits should therefore not be interpreted
as measurements of $\Gamma(z)$ as reliable as those found directly from the absorption line data. But we find them instructive nonetheless. The observed $\Gamma(z)$ falls short of the ionization rate needed to fully account for the change in the Ly- α line density with redshift, indicating that if the value of γ at low redshift is indeed slightly larger than that found by the Key Project, $d \mathcal{N} / d z$ may still be consistent with a non-evolving population of $\mathrm{Ly}-\alpha$ absorbers in the sense noted above, but the formation of structure in the low redshift universe must play a significant role in determining the character of the Ly- α forest line density.

4.6.4 Comparison with Previous Results

Proximity Effect: KF93 performed a similar measurement with a small subsample of this total sample- the HST Quasar Absorption Line Key Project data of Bahcall et al. (1993). We compare our result to that from Sample 2 of KF93, which was constructed from the Bahcall et al. (1993) data excluding one BAL quasar and all heavy element absorption systems. The Key Project sample has since been supplemented (Bahcall et al. 1996, Jannuzi et al. 1998) and those data have been included when appropriate in the complete archival sample of FOS spectra presented in Paper III.

The mean intensity KF93 derive from their Sample $2\left(b=35 \mathrm{~km} \mathrm{~s}^{-1}, \beta=1.48\right.$, $\gamma=0.21$) is $5.0_{-3.4}^{+20 .} \times 10^{-24} \mathrm{ergs} \mathrm{s}^{-1} \mathrm{~cm}^{-2} \mathrm{~Hz}^{-1} \mathrm{sr}^{-1}$. This result is lower than ours for $z<1$ by a factor of ~ 13, though the errors are large on both results are large enough that they are consistent. We use 162 lines in our low redshift solution for $J\left(\nu_{0}\right), 65$ more than KF93.

Direct Measurements: Several authors have examined the sharp cutoffs observed in the HI disks of galaxies in the context of using these signatures to infer the local ionizing background (Maloney 1993, Corbelli \& Salpeter 1993, Dove \& Shull 1994). The truncations are modeled as arising primarily from photoionization of the disk gas by the local extragalactic background radiation field. Using 21 cm observations
(Corbelli, Scheider, \& Salpeter 1989, van Gorkom 1993) to constrain these models, limits on the local ionizing background are placed at $10^{4}<\Phi_{\text {ion }}<5 \times 10^{4} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$, where

$$
\begin{equation*}
\Phi_{\mathrm{ion}}=2 \pi \int_{0}^{1} \mu d \mu \int_{\nu_{0}}^{\infty} \frac{J_{\nu}}{h \nu} d \nu=\frac{\pi J\left(\nu_{0}\right)}{h \alpha_{s}} \tag{4.20}
\end{equation*}
$$

and where $J_{\nu}=I_{\nu}$ for an isotropic radiation field.
Additionally, narrow-band and Fabry-Perot observations of $\mathrm{H} \alpha$ emission from intergalactic clouds (Stocke et al. 1991, Bland-Hawthorn et al. 1994, Vogel et al. 1995, Donahue, Aldering, \& Stocke 1995) place limits of $\boldsymbol{\Phi}_{\text {ion }} \lesssim 10^{4} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$, or $J\left(\nu_{0}\right)<7.6 \times 10^{-23} \mathrm{ergs} \mathrm{s}^{-1} \mathrm{~cm}^{-2} \mathrm{~Hz}^{-1} \mathrm{sr}^{-1}$ for $\alpha_{s}=1.8$, while results from measurements of Galactic high velocity clouds (Kutyrev \& Reynolds 1989, Songaila, Bryant, \& Cowie 1989, Tufte, Reynolds, \& Haffner 1998) imply $\boldsymbol{\Phi}_{\text {ion }} \lesssim 6 \times 10^{4} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$, though the ionization of high velocity clouds may be contaminated by a Galactic stellar contribution.

Tumlinson et al. (1999) have reanalyzed the 3C273/NGC3067 field using the $\mathrm{H} \alpha$ imaging data from Stocke et al. (1991) as well as new GHRS spectra of 3C273, in order to model the ionization balance in the absorbing gas in the halo of NGC3067. From this analysis, they derive the limits, $2600<\Phi_{\text {ion }}<10^{4} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$, or $10^{-23}<$ $J\left(\nu_{0}\right)<3.8 \times 10^{-23} \mathrm{ergs} \mathrm{s}^{-1} \mathrm{~cm}^{-2} \mathrm{~Hz}^{-1} \mathrm{sr}^{-1}$ at $z=0.0047$. Weymann et al. (2001) have recently reported an upper limit of $\Phi_{\text {ion }}<1.01 \times 10^{4} \mathrm{~cm}^{-2} \mathrm{~s}^{-1}$, or $J\left(\nu_{0}\right)<$ $3.84 \times 10^{-23} \mathrm{ergs} \mathrm{s}^{-1} \mathrm{~cm}^{-2} \mathrm{~Hz}^{-1} \mathrm{sr}^{-1}$ from Fabry-Perot observations of the intergalactic HI cloud, $1225+01$, for a face-on disk geometry. If an inclined disk geometry is assumed, this limit becomes $J\left(\nu_{0}\right)<9.6 \times 10^{-24} \mathrm{ergs} \mathrm{s}^{-1} \mathrm{~cm}^{-2} \mathrm{~Hz}^{-1} \mathrm{sr}^{-1}$. These results are summarized in Figure 4.16. It is encouraging that the proximity effect value is consistent with the limits on the background set by these more direct estimates which are possible locally.

4.6.5 Comparison with Models

Haardt \& Madau (1996) calculated the spectrum of the UV background as a function of frequency and redshift using a model based on the integrated emission from QSOs alone. The QSO luminosity function is drawn from Pei (1995). The opacity of the intergalactic medium is computed from the observed redshift and column density distributions of Ly- α absorbers given by Equ. 4.2. The effects of attenuation and reemission of radiation by hydrogen and helium in $\mathrm{Ly}-\alpha$ absorbers are included in these models. Their result for $q_{0}=0.5$ and $\alpha_{s}=1.8$ at $z=0$ is $J\left(\nu_{0}\right)=1.6 \times 10^{-23}$ ergs $\mathrm{s}^{-1} \mathrm{~cm}^{-2} \mathrm{~Hz}^{-1} \mathrm{sr}^{-1}$.

Fardal, Giroux, \& Shull (1998) compute opacity models for the intergalactic medium (IGM) based on high resolution observations of the high redshift Ly- α forest from several authors. Shull et al. (1999) extend the models of Fardal, Giroux, \& Shull (1998) to $z=0$, treating opacity of low redshift Ly- α forest from observations made with HST/GHRS (Penton et al. 2000a,b) and with HST/FOS (Weymann et al. 1998). Like Haardt \& Madau (1996), they also incorporate the observed redshift distribution of Lyman limit systems with $\log \left(\mathrm{N}_{\mathrm{HI}}\right)>17$ (Stengler-Larrea et al. 1995, Storrie-Lombardi et al. 1994). Their models also allow for a contribution from star formation in galaxies in addition to AGN. The QSO luminosity function again is taken to follow the form given by Pei (1995) with upper/lower cutoffs at $0.01 / 10 \mathrm{~L}$. QSO UV spectral indicies are assumed to equal 0.86 , while the ionizing spectrum at $\nu>\nu_{0}$ has $\alpha_{s}=1.8$. The contribution to the background from stars was normalized to the $\mathrm{H} \alpha$ luminosity function observed by Gallego et al. (1995) and the escape fraction of photons of all energies from galaxies was taken to be $\left\langle f_{\text {esc }}\right\rangle=0.05$. The full radiative transfer model described in Fardal, Giroux, \& Shull (1998) was used to calculate the contribution to the mean intensity by AGN, but not the contribution from stars, as they were assumed to contribute no flux above 4 Ryd, the energies at which the effects of IGM reprocessing become important. These authors find $J\left(\nu_{0}\right)=2.4 \times 10^{-23}$
ergs $\mathrm{s}^{-1} \mathrm{~cm}^{-2} \mathrm{~Hz}^{-1} \mathrm{sr}^{-1}$ at $z \sim 0$, with approximately equal contributions from AGN and stars, a value somewhat lower than our result for $z<1$, but which is allowed within the errors.

We estimate the contribution to the UV background from star-forming galaxies using the galaxy luminosity function of the Canada-France Redshift Survey (Lilly et al. 1995). At $z \sim 0.5$, we derive $J^{\text {gal }}\left(\nu_{0}\right)=1.5 \times 10^{-22} \mathrm{ergs} \mathrm{s}^{-1} \mathrm{~cm}^{-2} \mathrm{~Hz}^{-1}$ sr^{-1}, assuming $<f_{\text {esc }}>=1$. The HM96 models for the QSO contribution give $J^{\mathrm{QSO}}\left(\nu_{0}\right)=5.2 \times 10^{-23} \mathrm{ergs} \mathrm{s}^{-1} \mathrm{~cm}^{-2} \mathrm{~Hz}^{-1} \mathrm{sr}^{-1}$ at $z \sim 0.5$. These estimates, and the range of measured $J\left(\nu_{0}\right)$ in this paper, $\sim 5-16 \times 10^{-23} \mathrm{ergs} \mathrm{s}^{-1} \mathrm{~cm}^{-2} \mathrm{~Hz}^{-1} \mathrm{sr}^{-1}$ imply an escape fraction of UV photons from galaxies between 4% and 70%. The $J\left(\nu_{0}\right)$ inferred from $d \mathcal{N} / d z$ in Section 4.6 .3 implies escape fractions well over 100%.

Bianchi et al. (2001) make updated estimates of the mean intensity of the background with contributions from both QSOs and star-forming galaxies. Their models incorporate various values of the escape fraction of Lyman continuum photons from galaxies which are constant with redshift and wavelength. Our new results at $z<1.7$ are most consistent with their models of the QSO contribution alone, though some contribution from galaxies, ie. a small $\mathrm{f}_{\mathrm{esc}}$, is allowed within the uncertainties. At $z \sim 3.5$, recent results from Steidel, Pettini, \& Adelberger (2001) on the Lymancontinuum radiation from high redshift galaxies suggest that these sources become a more important component of the UV background at high redshift.

4.6.6 Systematics

Drawing on lessons learned from our work on high redshift objects in Paper II, we have made corrections for quasar systemic redshifts before performing the proximity effect analysis, as discussed in $\S 4.2$. This correction, $\sim 300 \mathrm{~km} \mathrm{~s}^{-1}$, was made to QSO redshifts measured from Ly- α emission for objects for which no systemic redshift measurement was available. For the low redshifts considered in this paper, redshifts
measured from [OIII], MgII, or Balmer emission lines were deemed suitable as QSO systemic redshift measurements.

We have removed known gravitational lenses from the sample. As discussed above, we perform the proximity effect analysis omitting and including spectra that show associated absorption and damped Ly- α absorption and determined that neither of these populations significantly biases our results.

Because we are working with low redshift data where line densities are low, we expect that blending has not contributed as strong a systematic effect as in the high redshift sample of Paper II. The curve-of-growth effects discussed in Paper II may still be present, since many lines in the sample have equivalent widths which place them on the flat part of the curve of growth.

However, the effects of clustering may be even more important at low redshift than at high redshift. Loeb \& Eisenstein (1995) showed how the fact that quasars reside in the dark matter potentials of galaxies and small groups of galaxies can influence the proximity effect signature. The peculiar velocities of matter clustered in these potentials can result in $\mathrm{Ly}-\alpha$ absorption at redshifts greater than the quasar emission redshift. We found that including associated absorbers in our sample did not significantly change our results. Recently, Pascarelle et al. (2001) report evidence for a lower incidence of $\mathrm{Ly}-\alpha$ absorption lines arising in the gaseous halos of galaxies in the vicinities of QSOs than in regions far from QSOs. They argue that galaxy-QSO clustering may lead proximity effect measurements to overestimate $J\left(\nu_{0}\right)$ at $z<1$ by a up to a factor of 20 . While we agree that most systematic effects in this type of analysis, including clustering, will lead to overestimates of $J\left(\nu_{0}\right)$, the agreement between our results and the direct measurements discussed in Section 4.6 .4 give us confidence that our results are not biased by this large a factor.

The hydrodynamic simulations of the low redshift Ly- α forest of Davé et al. (1999) indicate that, at low redshift, structures of the same column density correspond to larger overdensities and more advanced dynamical states than at high redshift. For
a $\left(\Omega_{\mathrm{M}}, \Omega_{\Lambda}\right)=(0.4,0.6)$ cosmology, an equivalent width limit of $0.32 \AA$ corresponds to an overdensity of ~ 1.4 at $z \sim 3$, while at $z \sim 0.6$, this limit corresponds to $\rho_{H} / \overline{\rho_{H}} \sim 13$. This may have implications on the clustering of Ly- α absorption lines around QSOs and hence on the values of $J\left(\nu_{0}\right)$ derived from the proximity effect. It is possible that we are seeing this clustering effect in the variable threshold solution at $z>1$, in which the two highest $\omega(z)$ lines in the sample are responsible for the inability to isolate a reasonable maximum likelihood $J\left(\nu_{0}\right)$.

4.7 Summary

We have analyzed a set of 151 QSOs and 906 Ly- α absorption lines, the subset of the total data set presented in Paper III that is appropriate for the proximity effect. The primary results of this paper are as follows:
(1) At low redshift, Balmer, [OIII], and Mg II emission lines are reasonable indicators of QSO systemic redshifts. Ly- α emission is blueshifted by $\sim 300 \mathrm{~km} \mathrm{~s}^{-1}$ with respect to [OIII].
(2) The value of $J\left(\nu_{0}\right)$ is observed to increase with redshift over the redshift range of the sample data, $0.03<z<1.67$. Dividing the sample at $z=1$, we find $J\left(\nu_{0}\right)=$ $6.5_{-1.6}^{+38 .} \times 10^{-23} \mathrm{ergs} \mathrm{s}^{-1} \mathrm{~cm}^{-2} \mathrm{~Hz}^{-1} \mathrm{sr}^{-1}$, at low redshift and $J\left(\nu_{0}\right)=1.0_{-0.2}^{+3.8} \times 10^{-22}$ ergs $\mathrm{s}^{-1} \mathrm{~cm}^{-2} \mathrm{~Hz}^{-1} \mathrm{sr}^{-1}$ at high redshift.
(3) The inclusion of blazars at $z<1$ has no significant effect on the result. There is no significant difference between the values of $J\left(\nu_{0}\right)$ derived from radio loud (RL >1.0) and radio quiet ($\mathrm{RL}<1.0$) objects, indicating that the observed richness of quasar environments does not distinctly bias the proximity effect analysis.
(4) Using information measured and gathered from the literature on each QSO's UV spectral index and solving for the HI ionization rate, yields $1.9 \times 10^{-13} \mathrm{~s}^{-1}$ for $z<1$ and $1.3 \times 10^{-12} \mathrm{~s}^{-1}$ for and $z>1$. Solving directly for the parameters $\left(A_{\mathrm{HM}}, B_{\mathrm{HM}}, z_{\mathrm{c}}, S\right)$ in the HM96 parametrization of $\Gamma(z)$ using the HST/FOS data
presented in Paper III combined with the high redshift, ground-based data presented in Papers I and II results in $\left(A_{\mathrm{HM}}, B_{\mathrm{HM}}, z_{c}, S\right)=\left(7.6 \times 10^{-13}, 0.35,2.07,1.77\right)$ for $\beta=1.46$ and $\left(A_{\mathrm{HM}}, B_{\mathrm{HM}}, z_{c}, S\right)=\left(3.2 \times 10^{-13}, 1.45,2.13,1.42\right)$ for $\beta=1.7$ for $0.03<z<3.8$.
(5) Allowing for a varying equivalent width threshold across each QSO spectrum results in consistently higher values of $J\left(\nu_{0}\right)$ than are found from the constant threshold treatments. At $z>1$, the variable threshold solution is not well-constrained. Jackknife experiments indicate that this is due to the objects 0743-6719 and 03022223, namely the highest $\omega(z)$ absorption lines in each of their spectra.
(6) Allowing for a cosmology in which $\left(\Omega_{\mathrm{M}}, \Omega_{\Lambda}\right)=(0.3,0.7)$, rather than ($1 ., 0$.) has no significant effect on the value of $J\left(\nu_{0}\right)$ derived from these data.
(7) The $z<1$ result is in agreement with the range of values of the mean intensity of the hydrogen-ionizing background allowed by a variety of local estimates, including $\mathrm{H} \alpha$ imaging and modeling of galaxy HI disk truncations. To within the uncertainty in the measurement, this result agrees with the one previous proximity effect measurement of the low redshift UV background (KF93). These results are consistent with calculated models based upon the integrated emission from QSOs alone (HM96) and with models which include both QSOs and starburst galaxies (Shull et al. 1999). The uncertainties do not make a distinction between these two models possible.
(8) The results presented here tentatively confirm the IGM evolution scenario provided by large scale hydrodynamic simulations (Davé et al. 1999). This scenario, which is successful in describing many observed properties of the low redshift IGM, is dependent upon an evolving $J\left(\nu_{0}\right)$ which decreases from $z=2$ to $z=0$. However, the low redshift UV background required to match the observations of the evolution of the Ly- α forest line density is larger than found from the data, indicating that structure formation is playing a role in this evolution as well. Our results and the work of others are summarized in Figure 4.16. We find some evidence of evolution in $J\left(\nu_{0}\right)$, though it appears that even larger data sets, especially at $z<1$ and/or improved
proximity effect ionization models will be required to improve the significance.

Table 4.1: Sample QSOs and Emission Line Redshifts

QSO ${ }^{1}$	NED description	Ly- α (a)	MgII (b)	OIII (c)	Balmer (d)	References			
						(a)	(b)	(c)	(d)
0003+1553	opt.var.	0.4497	0.4502	0.4503		(1)	(2)	(3)	
$0003+1955$	opt.var.	0.0264	0.0264	0.0261	\ldots	(1)	(1)	(4)	
$0007+1041$	opt.var.	0.0902	0.0890	0.089	0.0895	(1)	(1)	(5)	(6)
$0015+1612$	RQQ	0.5492				(1)			
$0017+0209$	LINER	0.3994			\ldots	(1)			
$0024+2225$		1.1081	1.1096			(1)	(7)		
$0026+1259$	Syl	0.1453	0.1463	0.1452	0.1458	(1)	(1)	(5)	(6)
$0042+1010$		0.5854	0.583	0.586	0.584	(1)	(8)	(8)	(8)
$0043+0354$	BAL? ${ }^{2}$	0.3803	(1)			
$0044+0303$	Sy1?	0.6219	0.6222	\ldots	...	(1)	(2)		
$0050+1225$	Compact,Syl	0.0594	\ldots	(1)			
$0100+0205$	opt.var.	0.3937	\ldots	0.3936	\ldots	(1)		(3)	
0102-2713	...	0.7763	\ldots	...	\ldots	(1)			
0107-1537	\ldots	0.8574	...	\ldots		(1)			
0112-0142 ${ }^{3}$		1.3739	1.3727	\ldots	\ldots	(1)	(1)		
$0115+0242^{3}$	opt.var.	0.6652	0.6700			(1)	(9)		
$0117+2118$...	1.4925	1.499	1.504	1.499	(1)	(10)	(11)	(11)
0121-5903	Sy 1	0.0461	0.0462	0.044	...	(1)	(1)	(5)	
0122-0021	opt.var.,LPQ	1.0710	1.0895			(1)	(12)		
$0137+0116$	opt.var.	0.2622	...	0.2631	0.2644	(1)		(1)	(1)
0159-1147	opt.var.,Syl	0.6683	0.6696	(1)	(13)		
0214+1050	opt.var.	0.4068		0.407		(1)		(14)	
0232-0415	opt.var.	1.4391	1.4434	...		(1)	(1)		
0253-0138 ${ }^{3}$		0.8756		\ldots		(1)			
0254-3327B	opt.var.	1.916	\ldots	\ldots	\ldots	(15)			

Table 4.1: Sample QSOs and Emission Line Redshifts (Continued)

QSO ${ }^{1}$	NED description	Ly- α (a)	MgII (b)	OIII (c)	Balmer (d)	References			
						(a)	(b)	(c)	(d)
0302-2223	DLAs	1.4021				(1)			
0333+3208	opt.var.,LPQ	1.2642	1.264	\ldots		(1)	(7)		
0334-3617 ${ }^{3}$		1.1085				(1)			
0349-1438		0.6155	0.615	\ldots	0.6206	(1)	(16)		(1)
0355-4820		1.0058	1.005			(1)	(2)		
0403-1316 ${ }^{3}$	opt.var.,HPQ	0.5705		0.571		(1)		(14)	
0405-1219	opt.var.,HPQ	0.5717	0.5730	0.573	0.5731	(1)	(16)	(14)	(16)
0414-0601	opt.var.	0.7739	0.773	0.774	...	(1)	(2)	(5)	
0420-0127	blazar, HPQ	0.9122	0.9162	...	\ldots	(1)	(13)		
0439-4319		0.5932				(1)			
0454-2203	DLAs,LPQ	0.5327	0.5350	0.534	\ldots	(1)	(2)	(14)	
0454+0356	DLAs	1.3413	1.3490			(1)	(10)		
0518-4549	Syl	0.0355	0.0341	\ldots	0.0339	(1)	(1)		(17)
0537-4406 ${ }^{3}$	BL Lac, HPQ	0.8976	0.8926	\ldots		(1)	(18)		
0624+6907	...	0.3663	0.3687	0.3710	0.3698	(1)	(1)	(1)	(1)
0637-7513	Syl	0.6522	0.6565	...	0.6570	(1)	(18)		(18)
$0710+1151^{3}$	opt.var.	0.7712				(1)			
$0742+3150$	Syl	0.4589	0.462	0.461	0.4620	(1)	(19)	(14)	(10)
0743-6719	opt.var.	1.5109	1.5089	...	1.511	(1)	(20)		(21)
0827+2421	blazar, HPQ	0.9363	0.94		0.942	(1)	(7)		(7)
$0844+3456$	Syl	0.0637	0.0646	0.064	...	(1)	(1)	(5)	
$0848+1623$	opt.var.	...	1.9220		(7)		
$0850+4400$,	0.5132	0.5142		0.5150		(1)		(1)
0859-1403 ${ }^{3}$	blazar	1.3338	1.3381		1.341	(1)	(13)		(21)
$0903+1658^{3}$	opt.var.	0.4108	0.4106	0.4114	...	(1)	(22)	(22)	

Table 4.1: Sample QSOs and Emission Line Redshifts (Continued)

QSO^{1}	NED description	Ly- α (a)	$\overline{\mathrm{MgII}}$ (b)	OIII (c)	Balmer (d)	References			
						(a)	(b)	(c)	(d)
0907-0920 ${ }^{3}$		0.630^{4}							
0916+5118		0.5520	0.5525	\ldots	0.5536		(1)		(1)
$0923+3915^{3}$	opt.var.,Sy1,LPQ	0.6986	0.6990	\ldots		(1)	(24)		
$0935+4141$		1.937^{4}	...	\ldots					
$0945+4053$	LPQ	1.2479	1.2506	\ldots		(1)	(19)		
$0947+3940$	Sy1	0.2057		0.2059		(1)		(25)	
0953+4129	Syl?	0.2331		0.247	0.2326	(1)		(25)	(25)
$0954+5537{ }^{3}$	blazar, HPQ	0.9005	0.9025	...		(1)	(1)		
0955+3238	opt.var.,Syl. 8	0.5281	...	0.531	0.5309			(14)	(10)
0958+5509	...	1.7569	1.7582	(10)	(7)		
0959+6827	\ldots	0.7663	0.7724	\ldots	\ldots	(1)	(1)		
$1001+0527$		0.1589	0.1605	\ldots	0.160	(1)	(1)		(25)
$1001+2239$	\ldots	0.9766	...	\ldots	...	(1)			
$1001+2910$	AGN	0.3285	...	\ldots	0.3293	(1)			(1)
$1007+4147$	\ldots	0.6110	0.6125	\ldots		(1)	(13)		
$1008+1319$	\ldots	1.3012	1.2968	...		(1)	(1)		
$1010+3606$	Syl	0.0785	...	0.079	\ldots	(1)		(5)	
1026-004A	...	1.4349	\ldots	...	\ldots	(1)			
1026-004B	\cdots	1.5253	...	\ldots		(1)			
1038+0625	opt.var.,LPQ	1.2667	1.272	\ldots	\ldots	(1)	(7)		
1049-0035	Sy1	0.3580	0.360	\ldots	0.3605	(1)	(5)		(10)
$1055+2007$	opt.var.	1.1136	1.1165	\ldots		(1)	(13)		
$1100+7715$	opt.var.,AGN	0.3120		0.324	0.339	(1)		(25)	(25)
$1104+1644$	opt.var.,Syl	0.6294	\ldots	0.630	0.6307	(1)		(5)	(6)
$1114+4429$	Syl	0.1448	0.1442	0.143	...	(1)	(1)	(25)	

Table 4.1: Sample QSOs and Emission Line Redshifts
(Continued)

QSO 1	NED description	Ly- α (a)	MgII (b)	OIII (c)	Balmer (d)	References			
		(a)	(b)	(c)	(d)				
$1115+4042$	Sy1	0.1545	0.1552	\ldots	0.156	(1)	(1)		(25)
$1116+2135$	E2,Sy1?	\ldots	\ldots	0.1768	0.1756			(25)	(25)
$1118+1252$	opt.var.	0.6823	\ldots	\ldots	\ldots	(1)			
$1127-1432^{3}$	blazar,LPQ	1.1824	1.2121	\ldots	\ldots	(1)	(18)		
$1130+1108$	\ldots	0.5065	\ldots	0.5110	0.5104	(1)		(1)	(1)
$1136-1334$	Sy1	0.5551	0.5571	\ldots	0.5604	(1)	(18)		(18)
$1137+6604$	opt.var.,LPQ	0.6449	0.6448	0.646	\ldots	(1)	(13)	(5)	
$1138+0204$	\ldots	0.3789	\ldots	0.3820	0.3831	(1)		(1)	(1)
$1148+5454$	opt.var.	0.9688	0.9777	\ldots	\ldots	(1)	(10)		
$1150+4947$	opt.var.	0.3334	0.333	0.333	0.333	(1)	(26)	(26)	(26)
$1156+2123$	\ldots	0.3464	\ldots	0.3475	0.3459	(1)		(1)	(1)
$1156+2931$	blazar,HPQ	0.7225	0.7281	\ldots	\ldots	(1)	(1)		
$1206+4557$	\ldots	1.1596	1.164	\ldots	\ldots	(1)	(7)		
$1211+1419$	RQQ,Sy1	0.0802	0.0805	0.0807	0.0810	(1)	(1)	(25)	(25)
$1214+1804$	\ldots	0.3719	\ldots	\ldots	0.3726	(1)			(1)
$1215+6423$	\ldots	1.2981	\ldots	\ldots	\ldots	(1)			
$1216+0655$	opt.var.	0.3312	0.3302	0.334	0.3374	(1)	(25)	(5)	(25)
$1219+0447$	AGN	0.0953	0.0931	\ldots	\ldots	(1)	(1)		
$1219+7535^{3}$	SB(r)ab pec,Sy1	0.0701	0.0713	0.071	\ldots	(1)	(1)	(5)	
$1226+0219$	blazar,Sy1,LPQ	0.156	\ldots	0.157	0.158	(1)		(27)	(27)
$1229-0207$	DLAs,blazar,LPQ	1.0406	1.0439	\ldots	\ldots	(1)	(13)		
$1230+0947^{3}$	\ldots	0.4176	\ldots	0.4162	0.4153	(1)		(1)	(1)
$1241+1737$	\ldots	1.2807	1.282	\ldots	\ldots	(1)	(7)		
$1247+2647$	AGN	2.0394	\ldots	\ldots	\ldots	(10)			
$1248+3032$	\ldots	1.0607	\ldots	\ldots	\ldots	(1)			

Table 4.1: Sample QSOs and Emission Line Redshifts (Continued)

QSO^{1}	NED description	$\overline{\mathrm{L} y-\alpha}$ (a)	MgII (b)	OIII (c)	Balmer (d)	References			
						(a)	(b)	(c)	(d)
1248+3142			1.029				(28)		
$1248+4007$	\ldots	1.0256	1.033	\ldots	...	(1)	(7)		
$1249+2929$		0.8205	...	\ldots		(1)			
$1250+3122$		0.7779				(1)			
1252+1157	opt.var.	0.8701				(1)			
1253-0531	BL Lac, HPQ	0.5367	0.5366	0.5356	0.536	(1)	(29)	(29)	(29)
1257+3439	opt.var.	1.3760	1.376	(1)	(7)		
$1258+2835$...	1.3611	...	\ldots		(1)			
$1259+5918$		0.4679	0.4717	...	0.4853	(1)	(25)		(25)
1302-1017	E4?,opt.var.	0.2770	0.2867	0.278	0.2868	(1)	(12)	(5)	(6)
$1305+0658$...	0.6009	0.5999	(1)	(1)		
1309+3531	Sab,Syl	0.1841	...	0.184	0.183	(1)		(25)	(25)
$1317+2743$...	1.0082	1.016	(1)	(7)		
$1317+5203^{3}$	blazar	1.0550	1.0555	\ldots	...	(1)	(7)		
$1318+2903$	opt.var.	0.5469	...	\ldots	\ldots	(1)			
$1320+2925$.	0.9601	0.972	\ldots	...	(1)	(7)		
$1322+6557$	Sy1	0.1676		\ldots	0.1684	(1)			(25)
$1323+6530$...	1.6227	1.6233	\ldots	...	(1)	(30)		
1327-2040	\cdots	1.1682	1.170	\ldots	...	(1)	(18)		
$1328+3045$	DLAs	0.8466	0.8508	...	\ldots	(1)	(13)		
$1329+4117$...	1.9351	.			(10)			
$1333+1740$	\ldots	0.5464	0.5546	...	\ldots	(1)	(25)		
$1351+3153$	\ldots	1.3170	1.3382	..		(1)	(31)		
$1351+6400$	Syl	0.0886	0.0884	0.087	0.089	(1)	(1)	(25)	(25)
$1352+0106$	\ldots	1.1200	(1)			

Table 4.1: Sample QSOs and Emission Line Redshifts (Continued)

QSO ${ }^{1}$	NED description	Ly- α (a)	$\overline{\mathrm{MgII}}$ (b)	$\overline{\mathrm{O} I I I}$ (c)	Balmer (d)	References			
						(a)	(b)	(c)	(d)
1352+1819	Syl	0.1508	0.1514	0.1572	0.1538	(1)	(1)	(25)	(25)
$1354+1933$	opt.var.	0.7190	0.718	0.719	...	(1)	(7)	(5)	
$1356+5806^{3}$		1.3741	1.370	...		(1)	(7)		
$1401+0952^{3}$	\ldots	0.4363	...	\ldots		(1)			
$1404+2238$	Sy	0.0966	0.0978	\ldots	0.098	(1)	(1)		(25)
$1407+2632$		0.95	0.946		0.958	(1)	(32)		(32)
$1415+4509$	\ldots	0.1145	0.1142	0.1143	0.1139	(1)	(1)	(25)	(25)
1416+0642	\ldots	1.4339		...	1.442	(1)			(21)
1424-1150		0.8033	0.8037	\ldots	\ldots	(1)	(18)		
$1425+2645$	opt.var.	0.3634	\ldots	...	0.3644	(1)			(10)
$1427+4800$	Syl	0.2215	\ldots	0.2203	0.2246	(1)		(25)	(25)
1435-0134		1.3099				(1)			
$1440+3539$	compact	0.0764	0.0772	0.0777	0.0772	(1)	(1)	(25)	(25)
$1444+4047$	E1?	0.2659	...	0.2672	0.267	(1)		(3)	(5)
$1512+3701$	Syl?	0.3704	0.3734	0.371	0.3715	(1)	(2)	(5)	(6)
$1517+2356$...	1.9037	...	\ldots	...	(10)			
$1517+2357$	\ldots	1.834^{4}	..	\ldots	...				
1521+1009	\ldots	1.3210	1.332	\ldots	\ldots	(1)	(7)		
$1538+4745$	\ldots	0.7704	0.7711	\ldots	...	(1)	(7)		
$1544+4855$		0.3985	...	\ldots	0.4010	(1)			(2)
$1555+3313^{3}$		0.9402	0.9427	(1)	(31)		
$1611+3420^{3}$	blazar,LPQ	1.3968	1.3997	\ldots	\ldots	(1)	(33)		
$1618+1743$	opt.var.	0.5549	0.5560	0.555	\ldots	(1)	(14)	(13)	
$1622+2352$	opt.var.	0.9258	0.925			(1)	(7)		
$\underline{1626+5529}$	Sy1	0.1315	0.1325	0.132	0.133	(1)	(1)	(25)	(25)

Table 4.1: Sample QSOs and Emission Line Redshifts (Continued)

QSO^{1}	NED description	Ly- α (a)	$\overline{\mathrm{MgII}}$ (b)	$\begin{gathered} \text { OIII } \\ \text { (c) } \\ \hline \end{gathered}$	Balmer (d)	References			
						(a)	(b)	(c)	(d)
$1630+3744$		1.4712	1.478	1.474	1.478	(1)	(10)	(11)	(27)
$1634+7037$		1.3338	1.338	1.336	1.342	(1)	(10)	(11)	(27)
$1637+5726^{3}$	LPQ	0.7499	0.750		0.751	(1)	(7)		(5)
$1641+3954^{3}$	opt.var., HPQ^{5}	0.5946	0.5954	0.593		(1)	(14)	(2)	
$1704+6048$	opt.var.	0.3694	0.3704	0.372	\ldots	(1)	(2)	(5)	
$1715+5331$		1.9371	1.932		\ldots	(10)	(7)		
$1718+4807$		1.0809	1.0828			(1)	(7)		
$1803+7827$	BL Lac	0.6840		0.6797		(1)			(23)
$1821+6419$	Syl	0.2957	\cdots	0.297	...	(1)		(5)	
1845+7943	opt.var.,BLRG,Sy1	0.0567	0.0548	...		(1)	(1)		
2112+0556		0.4585	...	\ldots	0.460	(1)			(5)
2128-1220	opt.var.,LPQ,Sy 1	0.4988	0.5000	0.499	0.5028	(1)	(2)	(14)	(6)
2135-1446	E1,opt.var.,Syl	0.2016		0.200	0.199	(1)		(14)	(34)
$2141+1730$	opt.var.,LPQ,Sy 1	0.2124	\ldots	0.211	...	(1)		(14)	
$2145+0643$	opt.var.,LPQ	0.9997	1.000	...		(1)	(7)		
2155-3027 ${ }^{3}$	opt.var.,BL Lac	0.116^{4}	...	,	\ldots				
$2201+3131^{3}$	LPQ	0.2953	0.2981	0.295	0.2979	(1)	(16)	(5)	(16)
2216-0350 ${ }^{3}$	opt.var.,LPQ	0.8997	0.900		...	(1)	(7)		
2223-0512 ${ }^{3}$	opt.var.,HPQ,BL Lac	1.4037		\ldots	\ldots	(1)			
$2230+1128^{3}$	blazar,HPQ	1.0367	1.0379	\ldots	...	(1)	(13)		
2243-1222	opt.var.,HPQ	0.6257	0.6297		...	(1)	(17)		
$2251+1120$	opt.var.		0.322	0.326	0.3255		(34)	(5)	(10)
$2251+1552$	blazar, HPQ	0.8557	(1)			
2251-1750	opt.var.,Sy1	0.0651	0.0637	0.064	...	(1)	(1)	(5)	
2300-6823	\ldots	0.5149	0.511	0.516	0.512	(1)	(35)	(35)	(35)

Table 4.1: Sample QSOs and Emission Line Redshifts (Continued)

QSO ${ }^{1}$	NED description	Ly- α (a)	$\overline{\mathrm{MgII}}$ (b)	OIII (c)	Balmer (d)	References			
						(a)	(b)	(c)	(d)
2340-0339		0.8948	0.893	\ldots		(1)	(7)		
2344+0914	opt.var.,Sy1	0.6710	0.6722	0.673	0.6731	(1)	(16)	(5)	(16)
2352-3414	opt.var.	0.7060	0.7063	\ldots	...	(1)	(2)		

${ }^{1}$ See Paper III, Table 1 for alternate names
${ }^{2}$ We classify this as an associated absorber, see Paper III
${ }^{3}$ Observed only with pre-COSTAR FOS and A-1 aperture
${ }^{4}$ Redshift from Knezek \& Bregman 1998 (0907-0920), Green et al. 1986 (0935+4141), Hewitt \& Burbidge 1987 (1517+2357), Falomo et al. 1993 (2155-3027)
${ }^{5}$ Classified as blazar by Kinney et al. 1991
References:
(1) This paper; (2) Tytler et al. 1987; (3) Stockton \& MacKenty 1987;
(4) de Robertis 1985; (5) Corbin \& Boroson 1996; (6) Zheng \& Sulentic 1990;
(7) Steidel \& Sargent 1991; (8) Smith et al. 1977; (9) Cristiani \& Koehler 1987;
(10) Tytler \& Fan 1992; (11) Nishihara et al. 1997; (12) Browne et al. 1975;
(13) Aldcroft et al. 1994; (14) Corbin 1997; (15) Bolton et al. 1976; (16) Gaskell 1982;
(17) Basu 1994; (18) Wilkes 1986; (19) Wills \& Wills 1976; (20) di Serego-Alighieri et al. 1994;
(21) Cheng et al. 1990; (22) Lynds et al. 1966; (23) Lawrence et al. 1996;
(24) Burbidge \& Kinman 1966; (25) Green et al. 1986; (26) Lynds \& Wills 1968;
(27) Morris \& Ward 1988; (28) Zotov 1985; (29) Netzer et al. 1994; (30) Barthel et al. 1990;
(31) Ulrich 1976; (32) M ${ }^{\text {c Dowell et al. 1995; (33) Schmidt 1977; }}$
(34) Kimman \& Burbidge 1967; (35) Jauncey et al. 1978

Table 4.2. Emission Line Observations of HST/FOS QSOs

Name	V	Setup $^{\mathrm{a}}$	Date	Total exp. time (sec)
$0112-0142$	18.0	1	13Dec1996	1200
$0137+0116$	17.1	1	13Dec1996	1200
$0232-0415$	16.4	1	13Dec1996	1200
$0349-1438$	16.2	1	12Dec1996	900
$0414-0601$	15.9	1	19Dec1995	400
$0454-2203$	16.1	1	19Dec1995	400
$0624+6907$	14.2	1	19Dec1995	465
$0827+2421$	17.2	3	15Feb1997	1200
$0850+4400$	16.4	1	19Dec1995	300
$0859-1403$	16.6	2a	12Dec1996	3600
$0916+5118$	16.5	1	19Dec1995	350
$0923+3915$	17.9	2b	14Jan1996	1800
$0954+5537$	17.7	2c	20Apr1996	3600
$0959+6827$	16.4	2b	14Jan1996	1800
$1001+2910$	15.5	2a	12Dec1996	3600
$1008+1319$	16.2	2a	10Dec1996	1800
$1130+1108$	16.9	2d	14Jan1996	3600
$1138+0204$	17.6	2e	12Dec1996	2400
$1156+2123$	17.5	2e	12Dec1996	1800
$1156+2931$	17.0	2a	10Dec1996	1800
$1214+1804$	17.5	2f	21Apr1996	1800
$1230+0947$	16.1	2f	21Apr1996	3600
$1305+0658$	17.0	2c	20Apr1996	3600

Telescope/Instrument set up:
(1) FLWO 1.5 m, FAST, $300 \mathrm{l} \mathrm{mm}^{-1} 1^{\text {st }}$ order, 3 " slit, $3660-7540 \AA$;
(2) SO B90, B\&C, $600 \mathrm{I} \mathrm{mm}^{-1} 1^{\text {st }}$ order, $1.5{ }^{\prime \prime}$ slit,
[a] 4500-6700 \AA, [b] 3600-5825 $\AA,[c] 4140-6370 \AA$,
[d] 6870-9140 \AA, [e] 5610-7860 \AA, [f] 5280-7550 \AA;
(3) MMT, Blue Channel, $800 \mathrm{I} \mathrm{mm}^{-1} 1^{\text {st }}$ order, $2^{\prime \prime}$ slit, $4365-6665 \AA$

Table 4.3: Spectrophotometric Properties

QSO		$\overline{\boldsymbol{f}_{\nu_{0}}^{\mathrm{bbs}}}$ (b)	$\begin{gathered} \alpha \\ (\mathrm{c}) \end{gathered}$	$\overline{f_{\nu_{0}}}$(d)	$\overline{\mathfrak{f}_{\nu}^{0 b s}}$ (e)	$\begin{aligned} & \hline \hline \mathrm{RL} \\ & \text { (f) } \end{aligned}$	References			
							(b)	(c)	(d)	(e)
0003+1553	3.88	0.46	0.71 ± 0.52	1.39 ± 0.33	1.94 (1450)	2.24	(2)	(1b)	(1b)	(1b)
$0003+1955$	3.99	2.04	0.47 ± 0.09	6.77 ± 0.45	8.43 (1450)	-0.44	(3)	(1a)	(1a)	(1a)
0007+1041	5.62		-0.50 ± 1.00	1.86 ± 0.66	1.47 (1450)	0.00		(1a)	(1a)	(1a)
$0015+1612$	4.07		-1.14 ± 0.43	0.19 ± 0.06	0.11 (1450)	0.00		(1b)	(1b)	(1b)
0017+0209	3.05		1.98 ± 0.56	0.12 ± 0.08	0.31 (1450)	0.00		(1b)	(1b)	(1b)
$0024+2225^{1}$	3.60		0.59 ± 0.65	0.60 ± 0.15	0.79 (1450)	2.40		(1c)	(lc)	(1c)
0026+1259	4.56		-0.10 ± 0.24	2.33 ± 0.33	2.22 (1450)	-0.04		(1b)	(1b)	(1b)
0042+1010	5.52		0.19 ± 0.08	0.08 ± 0.02	0.09 (1450)	2.99		(1c)	(1c)	(1c)
$0043+0354^{1}$	3.18		2.35 ± 0.04	0.13 ± 0.01	0.97 (2093)	0.00		(1c)	(1c)	(1c)
$0044+0303$	2.88	1.16	0.34 ± 0.11	0.67 ± 0.07	0.79 (1450)	1.94	(2)	(1c)	(1c)	(1c)
$0050+1225^{1}$	1.46		0.84 ± 1.14	1.72 ± 1.05	2.56 (1450)	0.06		(1a)	(1a)	(1a)
0100+0205	2.92		1.42 ± 0.27	0.23 ± 0.06	0.45 (1450)	0.00		(1b)	(lb)	(1b)
0102-2713	1.93			0.18	0.29 (1285)	0.00		(4)		(1b)
0107-1537	1.73		0.78 ± 0.31	0.11 ± 0.01	0.16 (1450)	0.00		(1c)	(1c)	(1c)
0112-0142 ${ }^{2}$	4.32			0.17	0.29 (1326)	3.83		(4)		(1c)
$0115+0242^{2}$	3.32		0.83 ± 0.08	0.05 ± 0.01	0.08 (1450)	4.08		(1c)	(1c)	(1c)
$0117+2118^{1}$	4.75	0.39	0.15 ± 40.6	1.77 ± 7.84	1.88 (1307)	0.00	(2)	(1c)	(1c)	(1c)
0121-5903	3.05		0.15 ± 0.10	2.71 ± 0.27	2.91 (1450)	0.00		(la)	(1a)	(1a)
0122-0021	3.57		0.65 ± 0.07	0.63 ± 0.07	0.86 (1450)	3.13		(1c)	(1c)	(1c)
0137+0116	3.00		1.44 ± 0.31	0.03 ± 0.02	0.07 (1450)	3.97		(1b)	(1b)	(1b)
0159-1147	1.77		-0.02 ± 0.11	1.35 ± 0.05	1.33 (1450)	3.01		(1c)	(1c)	(1c)
0214+1050	6.96		1.39 ± 0.08	0.64 ± 0.13	1.22 (1450)	2.57		(1b)	(1b)	(1b)
0232-0415	2.42	0.59				2.73	(2)			
0253-0138 ${ }^{2}$	5.61		0.31 ± 0.19	0.67 ± 0.07	0.78 (1450)	0.00		(1c)	(1c)	(1c)
0254-3327B4	2.32		...	0.28	...	3.08		(4)		

Table 4.3: Spectrophotometric Properties (Continued)

QSO	$\mathrm{N}_{H I}$ $\mathrm{f}_{\nu_{\mathrm{o}}^{\mathrm{bs}}}$ (a) (b)		$\begin{gathered} \alpha \\ (\mathrm{c}) \end{gathered}$	$\begin{aligned} & \hline \mathbf{f}_{\nu_{0}} \\ & (\mathrm{~d}) \\ & \hline \end{aligned}$	$\overline{f_{\nu}^{p h s}}$ (e)	$\begin{aligned} & \hline \overline{\mathrm{RL}} \\ & (\mathrm{f}) \end{aligned}$	References				
			(b)				(c)	(d)	(e)		
$0302-2223^{1,4}$	1.87	0.31		-2.89 ± 0.08	2.57 ± 0.44	0.88 (1318)	0.00	(2)	(1c)	(1c)	(1c)
0333+3208	13.5		0.80 ± 5.79	0.56 ± 1.65	0.81 (1450)	3.38		(1c)	(1c)	(1c)	
0334-3617 ${ }^{2}$	1.40		0.13 ± 1.27	0.13 ± 0.02	0.14 (1450)			(1c)	(1c)	(lc)	
0349-1438	3.83		-0.32 ± 0.29	2.45 ± 0.23	2.11 (1450)	2.53		(1c)	(1c)	(1c)	
0355-4820 ${ }^{1}$	1.16	0.39	0.65 ± 0.58	0.52 ± 0.13	0.70 (1450)	2.91	(5)	(1c)	(1c)	(1c)	
0403-1316 ${ }^{2}$	3.65		0.23 ± 0.04	0.35 ± 0.05	0.39 (1450)	4.35		(1c)	(1c)	(1c)	
0405-1219	3.74	2.05	-0.11 ± 0.04	4.38 ± 0.18	4.14 (1450)	2.68	(2)	(1c)	(1c)	(1c)	
0414-0601	5.14	0.34	-0.19 ± 0.08	0.77 ± 0.05	0.70 (1450)	2.66	(2)	(1c)	(1c)	(1c)	
0420-0127 ${ }^{3}$	7.10		1.84 ± 0.05	0.08 ± 0.01	0.20 (1450)	3.89		(1c)	(1c)	(1c)	
0439-4319	2.30		0.40 ± 0.08	0.27 ± 0.01	0.33 (1450)	2.95		(1c)	(1c)	(1c)	
$0454+0356^{5}$	7.39	0.38	-0.26 ± 2.26	1.40 ± 0.57	1.26 (1336)	2.50	(2)	(1c)	(1c)	(1c)	
0454-2203	2.99	0.38	0.05 ± 4.19	1.25 ± 0.17	1.28 (1450)	2.77		(1b)	(1b)	(1b)	
0518-4549	4.12		0.18 ± 1.45	0.12 ± 0.05	0.13 (1450)	5.06		(1a)	(1a)	(1a)	
0537-4406 ${ }^{2}$	4.02	0.05	2.00 ± 0.16	0.14 ± 0.03	0.36 (1450)	4.05	(2)	(1c)	(1c)	(1c)	
$0624+6907$	7.01		1.71 ± 0.03	2.37 ± 0.18	5.26 (1450)	0.00		(1b)	(1b)	(1b)	
0637-7513	9.22	0.53	1.32 ± 0.07	0.27 ± 0.03	0.49 (1450)	4.10	(2)	(1c)	(1c)	(1c)	
$0710+1151^{2}$	11.0		0.16 ± 0.08	1.13 ± 0.10	1.22 (1450)	4.12		(1c)	(1c)	(lc)	
$0742+3150^{1}$	4.89	0.35	0.24 ± 0.43	0.92 ± 0.08	1.03 (1450)	2.96	(2)	(1b)	(1b)	(1b)	
0743-6719	11.9	0.24				3.46	(2)				
$0827+2421^{3}$	3.51		1.21 ± 0.04	0.34 ± 0.03	0.59 (1450)	3.17		(1c)	(1c)	(1c)	
$0844+3456^{1}$	3.31		0.75 ± 0.03	2.31 ± 0.09	4.94 (2495)	0.00		(lc)	(1c)	(1c)	
$0848+1623^{4}$	29.7		0.46	0.15	0.19 (1450)	0.00		(6)		(11)	
$0850+4400$	2.53		1.02 ± 0.20	0.35 ± 0.05	0.56 (1450)	0.00		(1b)	(1b)	(lb)	
0859-1403 ${ }^{2}$	5.71	0.60				3.29	(2)				
$0903+1658^{2}$	3.61		3.28 ± 0.27	0.03 ± 0.02	0.17 (1450)	2.79		(1b)	(1b)	(1b)	
0907-0920 ${ }^{6}$	4.57		-0.04 ± 1.50	0.11 ± 0.008	0.11 (1822)	0.00		(1c)	(1c)	(1c)	

Table 4.3: Spectrophotometric Properties (Continued)

QSO	N_{HI} (a)	$\begin{aligned} & \hline \mathrm{f}_{\nu_{0} \mathrm{~s}} \\ & \text { (b) } \\ & \hline \end{aligned}$	$\alpha$$(\mathrm{c})$	$\mathrm{f}_{\nu_{0}}$ (d)	$\overline{\mathrm{f}_{\nu}^{\text {obs }}}$ (e)	RL	References			
							(b)	(c)	(d)	(e)
0916+5118	1.40		0.31 ± 0.03	0.71 ± 0.06	0.82 (1450)	0.00		(1c)	(1c)	(lc)
$0923+3915^{2}$	1.53		0.17 ± 0.05	0.70 ± 0.03	0.77 (1450)	4.83		(1c)	(1c)	(1c)
$0935+4141^{4,5}$	1.32			0.55		0.00		(4)		
$0945+4053$	1.44		-0.33 ± 5.03	0.17 ± 0.19	0.15 (1450)	4.07		(1c)	(1c)	(1c)
0947+3940	1.61		0.70 ± 0.11	0.90 ± 0.08	1.25 (1450)	0.00		(1b)	(1b)	(1b)
0953+4129	1.28		0.71 ± 0.08	1.13 ± 0.10	1.58 (1450)	0.10		(1b)	(1b)	(1b)
$0954+5537^{2}$	0.94		0.96 ± 0.05	0.12 ± 0.01	0.18 (1450)	3.51		(1c)	(1c)	(1c)
$0955+3238{ }^{1}$	1.62	0.38	0.96 ± 0.07	0.45 ± 0.03	0.87 (1774)	2.99	(2)	(1c)	(lc)	(1c)
$0958+5509^{1}$	0.84	0.31				0.00	(2)			
$0959+6827$	3.93		1.12 ± 2.21	0.54 ± 0.71	1.10 (1720)	1.99		(1c)	(1c)	(1c)
$1001+0527^{1}$	2.41		1.73 ± 0.12	0.24 ± 0.04	0.55 (1450)	0.26		(1b)	(1b)	(1b)
1001+2239	2.82		1.67 ± 0.32	0.05 ± 0.02	0.12 (1450)	3.17		(1c)	(1c)	(1c)
$1001+2910$	1.93		1.18 ± 0.02	1.08 ± 0.06	1.88 (1450)	0.00		(1b)	(1b)	(1b)
1007+4147	1.23	0.72	-0.20 ± 0.08	1.12 ± 0.07	1.02 (1450)	2.92	(2)	(1c)	(1c)	(1c)
$1008+1319^{1}$	3.79	0.58				0.00	(2)			
$1010+3606$	1.24		0.90 ± 1.60	0.66 ± 0.60	1.00 (1450)	0.00		(1a)	(1a)	(1a)
1026-004A	4.85			0.11	0.19 (1328)	0.00		(4)		(1c)
1026-004B	4.85			0.15	0.24 (1285)	0.00		(4)		(1c)
$1038+0625^{1}$	2.81		-0.65 ± 1.96	1.30 ± 0.06	1.00 (1361)	3.09		(1c)	(1c)	(1c)
1049-0035 ${ }^{1}$	3.87	0.35	1.60 ± 0.11	0.51 ± 0.07	1.07 (1450)	0.00	(2)	(1b)	(1b)	(1b)
$1055+2007$	1.94		0.51 ± 0.37	0.27 ± 0.05	0.34 (1450)	3.64		(1c)	(lc)	(lc)
$1100+7715^{1}$	3.04		0.67 ± 0.04	0.97 ± 0.06	1.33 (1450)	2.76		(1b)	(1b)	(1b)
1104+1644	1.55		-0.02 ± 0.15	1.23 ± 0.08	1.22 (1450)	2.66		(1c)	(1c)	(lc)
$1114+4429^{1}$	1.80		1.80 ± 0.04	0.15 ± 0.02	0.35 (1450)	0.00		(1b)	(1b)	(1b)
$1115+4042^{1}$	1.86		0.44 ± 0.05	1.10 ± 0.14	1.35 (1450)	0.00		(1b)	(1b)	(1b)
1116+2135	1.27		0.46 ± 0.10	2.31 ± 0.36	2.87 (1450)	0.01		(1b)	(1b)	(b)

Table 4.3: Spectrophotometric Properties (Continued)

QSO	$\overline{\mathrm{N}_{H I}}$ (a)	(b)	$\begin{gathered} \alpha \\ (\mathrm{c}) \end{gathered}$	$\mathrm{f}_{\nu_{0}}$ (d)	$\overline{f_{\nu}^{p b s}}$ (e)	$\begin{aligned} & \hline \text { RL } \\ & \text { (f) } \end{aligned}$	References			
							(b)	(c)	(d)	(e)
$1118+1252^{1}$	2.28		0.42 ± 0.08	0.11 ± 0.02	0.14 (1450)	2.75		(1c)	(1c)	(1c)
1127-1432 ${ }^{2}$	4.07		0.96 ± 3.07	0.31 ± 0.59	0.49 (1450)	4.78		(1c)	(1c)	(lc)
$1130+1108^{1}$	3.47		1.40 ± 0.15	0.32 ± 0.05	0.62 (1450)	0.00		(1b)	(1b)	(1b)
1136-1334	3.51	0.60	-0.46 ± 0.20	1.03 ± 0.09	0.83 (1450)	3.36	(2)	(1b)	(1b)	(1b)
$1137+6604^{1}$	1.00	1.05	0.24 ± 0.04	1.04 ± 0.09	1.17 (1450)	2.98	(2)	(1c)	(1c)	(1c)
$1138+0204{ }^{1}$	2.37		0.97 ± 0.09	0.22 ± 0.03	0.35 (1450)	0.00		(1b)	(1b)	(1b)
$1148+5454$	1.19	0.97	0.56 ± 0.17	1.04 ± 0.11	1.35 (1450)	-0.13	(2)	(1c)	(1c)	(1c)
$1150+4947$	2.01		0.66 ± 0.05	0.19 ± 0.03	0.26 (1450)	3.44		(1b)	(1b)	(1b)
$1156+2123$	2.56		0.95 ± 0.10	0.31 ± 0.04	0.49 (1450)	2.23		(1b)	(1b)	(1b)
$1156+2931$	1.58	0.57	1.27 ± 0.08	0.73 ± 0.06	1.33 (1450)	3.04	(2)	(lc)	(lc)	(l)
$1206+4557$	1.27	0.45	-0.32 ± 0.49	1.96 ± 0.23	1.69 (1450)	0.00	(2)	(1c)	(1c)	(1c)
$1211+1419$	2.70		1.27 ± 0.34	1.31 ± 0.37	2.37 (1450)	-0.37		(1a)	(1a)	(1a)
$1214+1804^{1}$	2.74		1.55 ± 0.17	0.25 ± 0.05	0.52 (1450)	0.00		(1b)	(1b)	(1b)
$1215+6423{ }^{1}$	2.10		-0.14 ± 2.50	0.19 ± 0.06	0.18 (1340)	3.18		(1c)	(1c)	(1c)
$1216+0655$	1.57		0.84 ± 0.06	0.97 ± 0.06	1.44 (1450)	0.44		(1b)	(1b)	(1b)
$1216+503 \mathrm{a}^{7}$	1.87			0.35	0.58 (1326)	0.00		(4)	(1c)	(1c)
$1219+0447^{1}$	1.68		0.83 ± 0.05	0.06 ± 0.006	0.15 (2457)	0.00		(1c)	(1c)	(1c)
$1219+7535^{2}$	3.13		0.00 ± 0.36	2.21 ± 0.34	2.21 (1450)	0.45		(1a)	(1a)	(1a)
$1226+0219^{3}$	1.81	7.40	-1.51 ± 2.68	47.6 ± 1.94	26.9 (1330)	4.26	(7)	(la)	(1a)	(1a)
1229-0207 ${ }^{5}$	2.34	0.23	1.23 ± 0.78	0.32 ± 0.20	0.57 (1450)	3.25		(1c)	(1c)	(1c)
$1230+0947^{2}$	1.81		1.33 ± 0.36	0.51 ± 0.16	0.96 (1450)	0.00		(1b)	(1b)	(1b)
$1241+1737$	1.81	0.25	...			2.16	(2)			
$1247+2647^{5}$	1.03	0.76				-0.07	(2)			
$1248+3032$	1.23		0.19 ± 0.28	0.08 ± 0.01	0.09 (1450)	3.19		(1c)	(1c)	(1c)
$1248+3142^{8}$	1.27			0.26		0.00		(4)		(8)
$1248+4007$	1.44	0.57	0.67 ± 0.76	0.48 ± 0.16	0.65 (1450)	0.00	(2)	(1c)	(1c)	(1c)

Table 4.3: Spectrophotometric Properties (Continued)

QSO	$\mathrm{N}_{H I}$ (a)	$f_{\nu_{0}}^{\text {obs }}$ (b)	$\begin{gathered} \alpha \\ (\mathrm{c}) \end{gathered}$	$\mathrm{f}_{\nu_{0}}$ (d)	$f_{\nu}^{\text {obs }}$ (e)	$\begin{aligned} & \mathrm{RL} \\ & (\mathrm{f}) \end{aligned}$	References			
							(b)	(c)	(d)	(e)
$1249+2929^{8}$	1.14			0.22		0.00		(4)		(8)
$1250+3122$	1.24			0.33	0.54 (1279)	0.00		(4)	(1b)	(1b)
$1252+1157$	2.34		0.80 ± 0.38	0.37 ± 0.07	0.54 (1450)	3.12		(1c)	(1c)	(1c)
1253-0531 ${ }^{2}$	2.12	1.43	1.58 ± 0.02	0.14 ± 0.01	0.30 (1450)	4.47	(2)	(1c)	(1c)	(1c)
$1257+3439^{1}$	1.13			0.51	0.94 (1450)	1.14		(4)		(9)
$1258+2835{ }^{1}$	0.93		0.21 ± 0.81	0.32 ± 0.04	0.34 (1331)	0.00		(1c)	(1c)	(1c)
$1259+5918$	1.37	1.02	1.14 ± 0.45	0.96 ± 0.32	1.63 (1450)	0.00	(2)	(1b)	(1b)	(1b)
1302-1017	3.37	0.99	1.17 ± 0.06	2.00 ± 0.14	3.47 (1450)	2.34	(2)	(1b)	(1b)	(1b)
$1305+0658$	2.16		-0.07 ± 0.04	0.24 ± 0.03	0.23 (1450)	3.13		(1c)	(1c)	(1c)
$1309+3531^{1}$	2.55		1.08 ± 0.16	0.68 ± 0.11	1.12 (1450)	1.58		(1b)	(lb)	(1b)
$1317+2743$	1.18	0.73	0.64 ± 0.19	1.04 ± 0.10	1.40 (1450)	0.00	(2)	(1c)	(1c)	(lc)
$1317+5203^{1,2}$	1.90		0.54 ± 0.82	0.51 ± 0.15	0.66 (1450)	2.70		(1c)	(1c)	(lc)
$1318+2903$	1.14	0.26	-0.06 ± 10.0	0.58 ± 0.25	0.56 (1450)	0.00	(2)	(1b)	(lb)	(1b)
$1320+2925$	1.17		1.37 ± 1.63	0.19 ± 0.26	0.36 (1450)	0.00		(1c)	(1c)	(lc)
$1322+6557$	1.92		0.91 ± 0.16	0.66 ± 0.07	1.01 (1450)	0.00		(1b)	(1b)	(lb)
$1323+6530^{1,4,5}$	1.99			0.11		3.02		(4)		
1327-2040 ${ }^{1}$	7.53	0.19	0.83 ± 0.41	0.55 ± 0.12	0.82 (1450)	2.62	(2)	(1c)	(1c)	(1c)
$1328+3045^{5}$	1.16		0.39 ± 0.13	0.20 ± 0.01	0.24 (1450)	4.49		(1c)	(1c)	(1c)
$1329+4117^{5}$	0.97	0.95				0.00	(2)			
$1333+1740$	1.75	0.51	0.92 ± 4.71	0.65 ± 1.81	1.01 (1450)	1.39	(2)	(1b)	(1b)	(1b)
$1351+3153^{1,5}$	1.29		-0.91 ± 2.78	0.16 ± 0.28	0.11 (1319)	2.88		(1c)	(1c)	(1c)
$1351+6400^{1}$	2.10		0.97 ± 0.06	1.62 ± 0.07	4.36 (2531)	1.10		(1c)	(1c)	(1c)
$1352+0106$	2.25	0.07	0.50 ± 1.23	0.83 ± 0.33	1.05 (1450)	0.00	(2)	(1c)	(1c)	(1c)
$1352+1819$	2.03		0.38 ± 0.13	0.59 ± 0.11	0.71 (1450)	0.00		(1b)	(1b)	(1b)
$1354+1933$	2.21	0.40	0.68 ± 0.11	0.56 ± 0.05	0.77 (1450)	3.53	(2)	(1c)	(1c)	(1c)
$1356+5806^{2}$	1.40		0.09 ± 6.29	0.56 ± 0.04	0.59 (1344)	2.34		(1c)	(1c)	(1c)

Table 4.3: Spectrophotometric Properties (Continued)

QSO	$\mathrm{N}_{\text {III }}$ (a)	${ }^{\prime \prime} \mathrm{f}_{\nu_{0}}^{\mathrm{bbs}}$ (b)	$\begin{gathered} \hline \alpha \\ (\mathrm{c}) \end{gathered}$	$\mathrm{f}_{\nu_{0}}$ (d)	$\overline{f_{\nu}^{\text {obs }}}$ (e)	$\begin{aligned} & \hline \mathrm{RL} \\ & (\mathrm{f}) \end{aligned}$	References			
							(b)	(c)	(d)	(e)
$1401+0952^{2}$	1.96		2.03 ± 0.29	0.12 ± 0.05	0.31 (1450)	0.72		(1b)	(1b)	(1b)
$1404+2238{ }^{1}$	1.99		1.03 ± 0.04	0.31 ± 0.04	0.86 (2413)	0.29		(1c)	(lc)	(lc)
$1407+2632$	1.47	0.83	0.28 ± 0.05	1.20 ± 0.07	1.38 (1450)	0.00	(2)	(1c)	(1c)	(1c)
$1415+4509$	1.13		0.65 ± 0.08	0.85 ± 0.05	1.32 (1790)	0.00		(1b)	(1b)	(1b)
$1416+0642^{1}$	6.24		1.20 ± 15.9	0.25 ± 3.47	0.40 (1308)	3.67		(1c)	(1c)	(lc)
1424-1150	7.54		-0.04 ± 0.18	0.85 ± 0.07	0.83 (1450)	2.59		(lc)	(1c)	(lc)
$1425+2645^{1}$	2.55	0.15	1.67 ± 0.10	0.22 ± 0.03	0.48 (1450)	2.43	(2)	(1b)	(1b)	(1b)
$1427+4800$	1.88		0.47 ± 0.24	0.69 ± 0.07	0.86 (1450)	0.00		(1b)	(1b)	(1b)
1435-0134	3.66	0.82				0.00	(5)			
$1440+3539^{1}$	1.00		0.44 ± 0.09	3.61 ± 0.15	4.96 (1857)	-0.58		(1b)	(1b)	(1b)
$1444+4047$	1.27	0.89	0.86 ± 0.04	1.06 ± 0.06	1.59 (1450)	0.00	(2)	(1b)	(1b)	(1b)
$1512+3701$	1.39	0.57	0.94 ± 0.12	0.61 ± 0.06	0.95 (1450)	2.75	(2)	(1b)	(1b)	(1b)
$1517+2356^{4}$	3.91			0.51		0.00		(4)		
$1517+2357^{4}$	3.91			0.08		0.00		(4)		
$1521+1009$	2.88	1.65				0.00	(2)			
$1538+4745^{1}$	1.64	0.34	0.57 ± 0.06	1.03 ± 0.05	1.34 (1450)	1.28	(2)	(1c)	(1c)	(1c)
$1544+4855$	1.60	0.10	2.04 ± 1.72	0.36 ± 0.81	0.95 (1450)	0.00	(2)	(1b)	(1b)	(1b)
$1555+3313^{2}$	2.35		1.79 ± 0.08	0.03 ± 0.005	0.07 (1450)	3.03		(1c)	(1c)	(1c)
$1611+3420^{2}$	1.65			0.18	0.30 (1322)	4.88		(4)	(1c)	(1c)
$1618+1743$	4.14		-0.30 ± 0.05	1.30 ± 0.06	1.13 (1450)	2.70		(1b)	(1b)	(1b)
$1622+2352$	4.46		1.75 ± 0.16	0.09 ± 0.01	0.21 (1450)	3.54		(1c)	(1c)	(lc)
$1626+5529^{1}$	1.83		0.29 ± 0.16	1.13 ± 0.22	1.30 (1450)	0.00		(1b)	(1b)	(1b)
$1630+3744$	1.07	0.84				0.00	(2)			
$1634+7037$	4.55	1.96				0.00	(2)			
$1637+5726^{2}$	1.90		0.17 ± 0.02	0.64 ± 0.05	0.70 (1450)	3.98		(1c)	(1c)	(1c)
$1641+3954^{3}$	1.02	0.61	1.04 ± 0.08	0.41 ± 0.06	0.67 (1450)	3.92	(2)	(1c)	(1c)	(1c)

Table 4.3: Spectrophotometric Properties (Continued)

QSO	$\overline{\overline{\mathbf{N}_{H I}}}$ (a)	$\overline{\boldsymbol{f}_{\nu_{0}}^{\mathrm{obs}}}$ (b)	α (c)	$\begin{aligned} & \hline \mathbf{f}_{\nu_{0}} \\ & \text { (d) } \\ & \hline \end{aligned}$	$\overline{\mathbf{f}_{\nu}^{\text {obs }}}$ (e)	$\begin{aligned} & \mathrm{RL} \\ & (\mathrm{f}) \end{aligned}$	References			
							(b)	(c)	(d)	(e)
$1704+6048^{1}$	2.32	0.90	1.25 ± 0.16	0.94 ± 0.14	1.68 (1450)	2.86	(2)	(1b)	(1b)	(1b)
$1715+5331$	2.71		0.43	0.58	0.29 (1450)	0.53		(10)		(2)
$1718+4807^{1}$	2.27		-0.43 ± 0.84	5.01 ± 1.16	4.09 (1450)	1.52		(1c)	(1c)	(1c)
$1803+7827^{3}$	3.92		1.69 ± 0.02	0.53 ± 0.05	1.16 (1450)	3.35		(1c)	(1c)	(1c)
$1821+6419^{1}$	3.98	1.86	0.86 ± 0.07	3.90 ± 0.13	8.37 (2204)	1.10	(2)	(1c)	(1c)	(1c)
$1845+7943^{1}$	4.17		0.66 ± 0.27	0.42 ± 0.08	0.58 (1450)	3.88		(1a)	(1a)	(1a)
$2112+0556$	6.48	0.29	0.48 ± 0.93	0.54 ± 0.16	0.67 (1450)	0.00	(2)	(1b)	(1b)	(1b)
2128-1220	4.75	0.35	0.27 ± 1.63	1.77 ± 0.51	2.02 (1450)	2.99	(11)	(1b)	(1b)	(1b)
2135-1446 ${ }^{1}$	4.71		0.94 ± 0.42	0.57 ± 0.15	0.88 (1450)	3.17		(1b)	(1b)	(1b)
$2141+1730{ }^{1}$	8.20		1.22 ± 0.05	0.81 ± 0.14	1.43 (1450)	2.84		(1b)	(lb)	(1b)
$2145+0643$	4.90		0.99 ± 0.68	0.72 ± 0.31	1.14 (1450)	3.58		(1c)	(1c)	(1c)
$2201+3131^{2}$	9.02	0.60	0.96 ± 0.08	3.15 ± 0.33	4.93 (1450)	3.64	(2)	(1b)	(1b)	(1b)
2216-0350 ${ }^{2}$	5.66	0.18	1.21 ± 0.09	0.40 ± 0.05	0.71 (1450)	3.43	(2)	(1c)	(1c)	(1c)
2223-0512 ${ }^{2}$	5.47	0.16				4.35	(2)			
$2230+1128^{2}$	5.42		0.76 ± 0.96	0.45 ± 0.21	0.64 (1450)	4.39		(1c)	(1c)	(1c)
2243-1222	4.94		-0.38 ± 0.06	1.50 ± 0.10	1.25 (1450)	3.32		(1c)	(1c)	(1c)
$2251+1120^{1}$	5.08		1.2	1.46	0.49 (1450)	3.06		(12)		(2)
$2251+1552$	6.38	0.09	1.04 ± 0.05	0.71 ± 0.07	1.15 (1450)	3.94	(2)	(1c)	(lc)	(1c)
2251-1750 ${ }^{\text {1 }}$	2.77		1.06 ± 0.08	1.47 ± 0.09	4.32 (2507)	0.07		(1c)	(1c)	(1c)
2300-6823	3.69		-0.34 ± 0.75	0.26 ± 0.04	0.22 (1450)	3.18		(1b)	(1b)	(1b)
2340-0339	3.61		0.68 ± 0.05	0.99 ± 0.06	1.36 (1450)	2.24		(1c)	(lc)	(1c)
$2344+0914$	5.76	0.34		0.22	0.41 (1450)	3.52	(2)	(4)	(9)	(9)
2352-3414	1.08		0.07 ± 0.03	0.74 ± 0.05	0.77 (1450)	2.70		(1c)	(1c)	(1c)

Table 4.3: Spectrophotometric Properties (Continued)

QSO	$\mathrm{N}_{H I}$ $\mathrm{f}_{\nu 0}^{\mathrm{obs}}$ (a) (b)		$\begin{gathered} \alpha \\ (\mathrm{c}) \end{gathered}$	$\begin{aligned} & \hline \mathrm{f}_{\nu_{0}} \\ & \text { (d) } \end{aligned}$	$\overline{\mathrm{f}_{\nu}^{\mathrm{obs}}}$(e)	$\overline{\mathrm{RL}}$$(f)$	References			
			(b)				(c)	(d)	(e)	

(a) $10^{20} \mathrm{~cm}^{-2}$ from Stark et al. 1992; Burstein \& Heiles 1982; Lockman \& Dickey 1995;
(b) Direct measurement of flux at Lyman Limit in $\mu \mathrm{J} y$;
(c) Measured spectral index;
(d) Extrapolated flux at Lyman Limit in $\mu \mathrm{Jy}$;
(e) Measured flux at the rest wavelength listed in \AA;
(f) Radio Loudness, $\mathrm{RL}=\log [\mathrm{S}(5 \mathrm{GHz})] / \log [\mathrm{S}(1450 \AA)]$
${ }^{1}$ Object spectrum shows associated absorption
${ }^{2}$ Observed only with pre-COSTAR FOS and A-1 aperture, not used for proximity effect
${ }^{3}$ Object is classified as a blazar or BL Lac
${ }^{4}$ Flux estimated from scaling composite QSO spectrum to match V
${ }^{5}$ Object spectrum shows damped Ly- α absorption
${ }^{6}$ No Ly- α forest observed, not used for proximity effect
${ }^{7}$ Binary quasar, not used for proximity effect
${ }^{8}$ Flux estimated from scaling composite QSO spectrum to match B References:
(1) this paper, FOS data [a] H130, [b] H190, [c] H270; (2) Lanzetta et al. 1993;
(3) Zheng et al. 1995; (4) Zheng et al. 1997; (5) Hamann et al. 1995; (6) Tytler \& Fan 1992
(7) Appenzeller et al. 1998; (8) Sanduleak \& Pesch 1984; (9) Osmer et al. 1994;
(10) Zheng \& Malkan 1993; (11) Kinney et al. 1991; (12) Green 1996

Table 4.4: Measurements of $J\left(\nu_{0}\right)$

Sample (a)	$\mathcal{N}_{\text {lines }}$ (b)	γ,norm. (c)	β	$\begin{gathered} \hline \mathrm{b} \\ (\mathrm{~d}) \end{gathered}$	method (e)	$\left.\overline{\log [J}\left(\nu_{0}\right)\right]$ (f)	$\begin{aligned} & \hline \chi^{2} \\ & \text { (g) } \end{aligned}$	$\overline{\mathrm{Q}_{\mathrm{X}^{2}}}$ (h)	QKS (i)
1.	259	0.82, 13.6	1.46		BDO	-22.04-1.41	2.13	0.95	0.80
1.	259	0.82, 6.73	1.46	35	ML	-22.11 ${ }_{-0.40}^{+0.51}$	1.21	0.29	0.80
1	259	0.82, 9.61	1.46	25	ML	-22.12 ${ }_{-0.39}^{+0.52}$	1.01	0.41	0.80
1.	259	0.82, 9.31	1.45	25	ML	-22.13-0.41	0.78	0.58	0.80
1.	259	0.82, 11.8	1.70	30	ML	$-21.74_{-0.36}^{+0.45}$	1.34	0.23	0.80
1	259	0.82, 38.0	2.04	25	ML	$-21.47_{-0.32}^{+0.43}$	1.10	0.35	0.80
2.	289	0.15, 31.3	1.46		BDO	$-22.06_{-0.62}^{+0.05}$	2.62	0.91	0.30
2.	289	$0.15,12.0$	1.46	35	ML	$-22.03_{-0.37}^{+0.44}$	1.32	0.24	0.30
2.	289	0.15, 13.9	1.46	25	ML	-22.04 ${ }_{-0.36}^{+0.45}$	1.34	0.23	0.30
2.	289	$0.15,13.6$	1.45	25	ML	$-22.06_{-0.37}^{+0.45}$	1.48	0.18	0.30
2	289	$0.15,17.6$	1.70	30	ML	$-21.69_{-0.32}^{+0.40}$	1.47	0.18	0.30
2.	289	0.15, 31.1	2.04	25	ML	$-21.42_{-0.28}^{+0.37}$	0.88	0.50	0.30
1 a	162	1.50, 10.1	1.46		BDO	$-22.87_{-0.82}^{+1.19}$	1.51	0.98	0.64
1a	162	1.50, 4.92	1.46	35	ML	$-22.18_{-0.61}^{+0.90}$	0.17	0.98	0.64
1a	162	1.50, 3.67	1.46	35	ML	$-21.72_{-0.74}^{+1.521}$	1.02	0.40	0.62
1 a	162	1.50, 3.71	1.46	35	ML	$-21.88_{-0.73}^{+1.542}$	0.98	0.43	0.62
1 b	97	-0.87, 53.0	1.46		BDO	$-22.02_{-1.33}^{+0.005}$	2.44	0.87	0.98
1 b	97	-0.87, 26.1	1.46	35	ML	$-21.98_{-0.54}^{+0.76}$	2.25	0.03	0.98
1b	97	-0.87, 21.5	1.46	35	ML	-21.76 ${ }_{-0.58}^{+0.921}$	1.31	0.24	0.95
1b	97	-0.87, 21.5	1.46	35	ML	$-21.95_{-0.57}^{+0.932}$	1.27	0.26	0.95
3.	214	0.28, 9.97	1.46	35	ML	$-21.57_{-0.52}^{+0.80}$	0.47	0.82	0.70
4.	208	1.04, 5.76	1.46	35	ML	$-22.15_{-0.46}^{+0.66}$	1.47	0.19	0.65
5.	373	0.60, 7.93	1.46	35	ML	$-21.74_{-0.39}^{+0.45}$	0.97	0.44	0.96
6.	301	0.89, 6.57	1.46	35	ML	-22.17 ${ }_{-0.37}^{+0.44}$	0.98	0.43	0.97
7.....	415	0.67, 7.72	1.46	35	ML	$-21.82_{-0.37}^{+0.46}$	0.93	0.46	0.98

Table 4.4: Measurements of $J\left(\nu_{0}\right)$ (Continued)

Sample (a)	$\overline{\mathcal{N}_{\text {lines }}}$ (b)	γ,norm. (c)	β	b (d)	method (e)	$\log \left[J\left(\nu_{0}\right)\right]$ (f)	$\begin{aligned} & \hline \chi^{2} \\ & (\mathrm{~g}) \end{aligned}$	$\overline{\mathrm{Q}_{\chi^{2}}}$ (h)	QKS (i)
7 a	213	0.79, 7.28	1.46	35	ML	-22.22 ${ }_{-0.51}^{+0.74}$	0.29	0.94	0.64
7b	202	0.72, 7.29	1.46	35	ML	-21.60 ${ }_{-0.47}^{+0.70}$	1.15	0.33	0.98
8.	422	0.69, 7.64	1.46	35	ML	$-21.85{ }_{-0.36}^{+0.46}$	0.82	0.55	0.97
8 a	220	0.84, 7.10	1.46	35	ML	$-22.23_{-0.49}^{+0.73}$	0.46	0.83	0.56
8b	202	0.72, 7.29	1.46	35	ML	-21.60-0.47	1.15	0.33	0.98
9.	906	0.61, 9.26	1.46	35	ML	-21.21 ${ }_{-0.32}^{+0.49}$	0.55	0.76	0.91
9a	474	0.63, 9.23	1.46	35	ML	$-21.79_{-0.40}^{+0.53}$	0.76	0.59	0.87
9b....	432	$1.05,6.40$	1.46	35	ML	$-20.82_{-0.51}^{+\infty}$	0.33	0.91	0.71

(a) Sample number-
(1) all lines with $W>0.32 \AA$, (1a) $z<1$, (1b) $z>1$;
(2) all lines with $W>0.24 \AA$, (2a) $z<1$, (2b) $z>1$;
(3) RL >1.0; (4) RL <1.0;
(5) sample (1) including associated absorbers;
(6) sample (1) including damped Ly- α absorbers;
(7) sample (1) including both associated absorbers and damped Ly- α absorbers;
(7a) $z<1$, (7b) $z>1$;
(8) sample (1) including associated absorbers, damped Ly- α absorbers, and blazars;
(8a) $z<1$, (8b) $z>1$;
(9) sample (8), all lines above variable threshold, (9a) $z<1$, (9b) $z>1$

Table 4.5. Simulation Results

Input $\log \left[J\left(\nu_{0}\right)\right]$ (a)	z $(\mathrm{~b})$	$W_{\text {thr }}$ (c)	γ, A $(\mathrm{~d})$	Recovered $\log \left[J\left(\nu_{0}\right)\right]$ (e)	χ^{2} (f)
-23.0	all	0.32	$1.41,7.81$	$-22.74_{-0.13}^{+0.15}$	5.13
-23.0	all	variable	$1.15,8.94$	$-22.47_{-0.12}^{+0.13}$	5.73
-22.0	all	0.32	$1.17,8.27$	$-21.32_{-0.29}^{+0.41}$	13.6
-22.0	$z<1$	0.32	$0.95,8.74$	$-20.81_{-0.62}^{+1.91}$	9.53
-22.0	$z>1$	0.32	$1.79,5.21$	$-21.64_{-0.28}^{+3.39}$	6.70
-22.0	all	variable	$1.48,6.71$	$-21.63_{-0.19}^{+0.20}$	3.21
-22.0	$z<1$	variable	$0.75,10.0$	$-21.34_{-0.36}^{+0.60}$	11.3
-22.0	$z>1$	variable	$1.52,6.09$	$-21.63_{-0.22}^{+0.25}$	1.30
-21.0	all	0.32	$1.44,7.25$	$-20.81_{-0.41}^{+0.65}$	1.56
-21.0	all	variable	$1.13,8.72$	$-20.81_{-0.38}^{+0.53}$	0.73
$(0.017) \log (1+z)-21.87$	all	0.32	$0.99,9.46$	$-21.54_{-0.25}^{+3.38}$	3.35
$(0.017) \log (1+z)-21.87$	$z<1$	0.32	$0.51,11.1$	$-21.80_{-0.45}^{+0.80}$	4.63
(0.017) $\log (1+z)-21.87$	$z>1$	0.32	$1.90,4.74$	$-21.54_{-0.29}^{+0.40}$	1.55
$(0.017) \log (1+z)-21.87$	all	variable	$1.38,7.32$	$-21.56_{-0.21}^{+0.22}$	0.57
$(0.017) \log (1+z)-21.87$	$z<1$	variable	$0.84,10.1$	$-21.83_{-0.34}^{+0.45}$	3.28
$(0.017) \log (1+z)-21.87$	$z>1$	variable	$2.48,2.67$	$-21.37_{-0.23}^{+0.31}$	0.82

(a) Value of $\log \left[J\left(\nu_{0}\right)\right]$ used for modifying absorber column densities according to Equ. 4.4 and Equ. 4.4;
(b) Redshift range of solution;
(c) Equivalent width threshold in \AA for line sample used in solution;
(d) Maximum likelihood γ for line sample used, maximum likelihood method normalization, see $\S 4.5$, Equ. 4.10;
(e) Value of $\log \left[J\left(\nu_{0}\right)\right]$ from simulated spectra using the ML technique;
(f) χ^{2} of data versus the BDO ionization model

Table 4.6. HI Ionization Rates

Sample (a)	γ, A (b)	β	b	$\log \left[\Gamma_{\mathrm{HI}}\right]$	$\begin{aligned} & \hline \chi_{\nu}^{2} \\ & (\mathrm{c}) \end{aligned}$	$Q_{\chi_{\nu}^{2}}$ (d)	$\overline{\log \left[J\left(\nu_{0}\right)\right]}$ (e)
1.	0.69,7.65	1.46	35	$-12.17_{-0.40}^{+0.50}$	0.49	0.81	-21.56
1 a	0.85,7.11	1.46	35	$-12.70_{-0.51}^{+0.74}$	0.38	0.88	-22.09
1b	0.72,7.29	1.46	35	$-11.88_{-0.50}^{+0.74}$	0.48	0.81	-21.28
2.	0.61,9.27	1.46	35	$-11.27_{-0.45}^{+0.74}$	0.78	0.58	-20.67
2a	0.63,9.24	1.46	35	$-12.23_{-0.42}^{+0.55}$	1.17	0.31	-21.62
2b	1.05,6.40	1.46	35	$-9.089_{-2.22}^{+\infty}$	1.17	0.31	-18.48
1.	0.69, $7.21{ }^{1}$	1.46	35	$-12.67,1.73^{1}$	1.01	0.40	
2.....	0.61, $9.04{ }^{1}$	1.46	35	-10.86,3.04	0.47	0.82	\ldots

(2) all lines above variable threshold, (2a) $z<1$, (2b) $z>1$;
(b) Maximum likelihood method normalization (see §4.5, Equ. 4.10);
(c) χ^{2} of data versus the ionization model used;
(d) χ^{2} probability for the ionization model used;
(e) $J\left(\nu_{0}\right)$ implied by Γ listed and $\alpha_{s}=1.8$ (see $\S 4.5 .2$, Equ. 4.12)
${ }^{1}$ maximum likelihood solution for $\log \left(A_{\mathrm{pl}}\right), B_{\mathrm{pl}}$ and normalization (see §4.5.2, Equ. 4.13)

Figure 4.1. Histograms of (a) QSO redshifts in proximity effect sample, dotted line indicates objects classified as blazars or BL Lacs, and (b) Ly- α line redshifts in proximity effect sample, (solid line)- lines above variable threshold, (dashed line)lines with $W>0.32 \AA$ (dotted line)- lines with $W>0.24 \hat{A}$

Figure 4.2. Emission line spectra of sample QSOs used to measure redshifts

Figure 4.2. Emission line spectra of HST/FOS QSOs (Continued)

Figure 4.2. Emission line spectra of HST/FOS QSOs (Continued)

Figure 4.2. Emission line spectra of HST/FOS QSOs (Continued)

Figure 4.3. Histograms of redshift differences between [OIII] and (a) $\mathrm{Ly}-\alpha$, (b) Mg II, and (c) Balmer emission lines, dotted lines show results from Laor et al. (1995)

Figure 4.4. FOS spectra used to extrapolate to the Lyman limit flux of each object: (dashed lines) power law fits, (dotted lines) 1σ errors in spectrum

Figure 4.5. Lyman limit luminosity versus redshift for objects in the HST/FOS sample (squares) and in the MMT sample presented in Papers I and II (crosses), solid line indicates the boundary between low and high luminosity objects

Figure 4.6. (a) Relative deficit of lines with respect to the number predicted by Equ. 4.1 for $W_{t h r}=0.32 \AA$ versus distance from the QSO for high and low luminosity QSOs (thick and thin solid lines, respectively) in both the HST/FOS sample presented in Paper III and the MMT sample presented in Paper I; (b) Deficit of lines within 2 $\mathrm{h}_{75}^{-1} \mathrm{Mpc}$ as a function of QSO Lyman limit luminosity for the HST/FOS and MMT samples, the vertical line delineates the boundary between low and high luminosity objects

Figure 4.7. χ^{2} of binned data with respect to the ionization model expressed in Equ. 4.11 versus $\log \left[J\left(\nu_{0}\right)\right]$ for various redshift ranges and equivalent width thresholds: (a) $W_{t h r}=0.32 \dot{A}$; (b) $W_{t h r}=0.32 \AA, z<1$; (c) $W_{t h r}=0.32 A, z>1$; (d) $W_{t h r}=0.24 \hat{A}$

Figure 4.8. Number distribution per coevolving redshift coordinate expressed in Equ. 4.11 for the best fit values of $J\left(\nu_{0}\right)$ (BDO method); (a-d) same as Fig. 4.7

Figure 4.9. Likelihood function versus $\log \left[J\left(\nu_{0}\right)\right]$ for $W_{\text {thr }}=0.32 \AA(\beta, b)=(\mathrm{a})$ (1.46,35); (b) $(1.46,25)$; (c) $(1.45,25)$; (d) $(1.70,30)$; (e) $(2.04,25)$; (f) $(1.46,35), z<1$; (g) $(1.46,35), z>1$; and for $W_{t h r}=0.24 \hat{A}(\beta, b)=(\mathrm{h})(1.46,35)$; (i) $(1.46,25)$; (j) $(1.45,25)$; (k) $(1.70,30)$; (l) $(2.04,25)$

Figure 4.10. Number distribution per coevolving redshift coordinate for the best fit values of $J\left(\nu_{0}\right)$ (KF method); (a-l) same as Fig. 4.9; the dotted point and error bars in (g) has been divided by 5 for clarity

Figure 4.11. $\log \left[J\left(\nu_{0}\right)\right]$ versus redshift, solid curves in (a)-(f) correspond to HM96 models: (a) $W_{\text {thr }}=0.32 \AA$ all redshifts, $0.03<z<1.67$, and $z<1, z>1$ separately, ML method; (b) same as (a), BDO method; (c) variable threshold, all redshifts $0.03<z<1.67$, and $z<1, z>1$ separately; (d) $W_{\text {thr }}=0.32 \AA$ all redshifts, $\mathrm{RL}>0.3$ and $\mathrm{RL}<0.3$; (e) $W_{\text {thr }}=0.32 \AA$ all redshifts, $0.03<z<1.67$, and $z<1$, total sample including blazars; (f) $W_{t h r}=0.32 A z<1$ and $z>1$, (solid points) $\left(\Omega_{M}, \Omega_{\mathrm{A}}\right)=(1.0,0.0)$, (dotted points) $\left(\Omega_{M}, \Omega_{\Lambda}\right)=(0.3,0.7)$, metal line dz neglected in both cases

Figure 4.12. (a) Values of $\log \left[J\left(\nu_{0}\right)\right]$ recovered from simulated QSO spectra with proximity effect included: (dotted lines)- input $J\left(\nu_{0}, z\right)$, see Figure 4.11(a) (solid points)- recovered $J\left(\nu_{0}\right)$ for $W_{t h r}=0.32 \mathrm{~A}$ at all redshifts and at $z<1$ and $z>1$ separately; (b) same as (a), but $J\left(\nu_{0}\right)$ recovered using variable threshold

Figure 4.13. HI ionization rate versus redshift: (points)-constant equivalent width threshold maximum likelihood solutions from this paper, at $z<1$ and $z>1$, and from Paper II for $1.7<z<3.8$; (dashed line)- constant threshold solution to Equ. 4.13 for HST/FOS data alone; (solid line)- constant threshold solution to Equ. 4.14 with $\beta=1.46$ and $\beta=1.7$ for HST/FOS data and ground-based data from Papers I and II, (dotted line)- HM96 solution to Equ. 4.14

Figure 4.14. Histogram of results of jackknife measurements of HI ionization rate, Γ, for all lines at $z>1$ above variable equivalent width threshold; labels on highest Γ bins indicate objects removed, see § 4.5.3

Figure 4.15. (a) Histogram of radio loudness (RL) values for QSOs in proximity effect sample, where $R L=\log [S(5 \mathrm{GHz})] / \log [S(1450 A)]$, includes blazars and objects with damped Ly- α absorption; (b) redshift versus RL for QSOs in proximity effect sample

Figure 4.16. $\log \left[J\left(\nu_{0}\right)\right]$ versus redshift: (lower limit at $z \sim 0$)- Tumlinson et al. (1999); (upper limit at $z \sim 0$)- Weymann et al. (2001); (filled triangle)- Shull et al. (1999); (upper limit at $z=0$)- Weymann et al. (2001); (filled squares, bold error bars)- our results for $z<1$ and $z>1$; (other filled squares)- results from KF93, Paper II, Lu et al. (1996), Savaglio et al. (1997), and Williger et al. (1994); (upper limit at $z \sim 3$)- Bunker et al. (1998); (solid curves)- HM96 models for two values of the global source spectral index, α_{s}

Figure 4.17. $d \mathcal{N} / d z$ versus z : solid and dashed lines show the relation for nonevolving Ly- α absorbers given by Equ. 4.18 for $\left(\Omega_{M}, \Omega_{\mathrm{A}}\right)=(1.0,0.0)$ and ($0.3,0.7$), respectively; dotted lines are fits to low redshift data from Weymann et al. (1998) and to high redshift data of Kim et al. (1997); dashed-dotted lines are fits to low redshift data from Paper IV and to high redshift data from Paper I

Figure 4.18. (a) $d \mathcal{N} / d z$ versus z : (solid points, dotted lines) $W_{\text {thr }}=0.24 \AA$ with fit to Equ. 4.19, (open points, dashed lines) $W_{t h r}=0.32 \AA$ with fit to Equ. 4.19, (thick solid line) Equ. 4.19 evaluated with HM96 parameters for $\Gamma(z)$ expressed by Equ. 4.14, (thin solid lines) Equ. 4.19 evaluated with parameters for $\Gamma(z)$ found in this paper; (b) $\Gamma(z)$ versus redshift expressed by Equ. 4.14 using HM96 parameters (thick solid line), using parameters found in this paper (thin solid lines), and using parameters found from fits to $d \mathcal{N} / d z$ for $W_{t h r}=0.24 \AA$ and $\left(\Omega_{M}, \Omega_{\Lambda}\right)=(1.0,0.0)$ (dotted iine) and $W_{t h r}=0.32 \AA$ and $\left(\Omega_{M}, \Omega_{\Lambda}\right)=(1.0,0.0)$ (dashed line),

Chapter 5

Lognormal Models of the Proximity Effect in Quasar Spectra

5.1 The Lyman α Forest

5.1.1 The Density and Velocity Fields

We construct density and velocity fields in the linear and mildly nonlinear regime using the lognormal (LN) approximation following the method outlined by BD97 for both standard CDM and Λ CDM cosmologies for comparison with other simulation techniques.

In general, the LN technique consists of creating Gaussian random fields (GRFs) for the density and peculiar velocity using a one-dimensional matter power spectrum. The baryonic power spectrum is constructed by smoothing the dark matter power spectrum, $P(k)$, on the Jeans scale, $x_{b}=\lambda_{\mathrm{J}} /(2 \pi)$:

$$
\begin{equation*}
P_{\mathrm{IGM}}(k)=\frac{P(k)}{\left[1+\left(x_{b} k\right)^{2}\right]^{2}}, \tag{5.1}
\end{equation*}
$$

where, at redshift z,

$$
\begin{equation*}
x_{b} \equiv \frac{1}{H_{0}}\left[\frac{2 \gamma k<T>}{3 \mu m_{p} \Omega_{0}(1+z)}\right]^{1 / 2} \tag{5.2}
\end{equation*}
$$

For the mean temperature of the IGM, $\langle T\rangle$, we use the density-averaged mean temperature. The terms k and m_{p} are the Boltzmann constant and proton mass; γ is the ratio of specific heats, μ is the mean molecular weight of the IGM; and H_{0} and Ω_{0} are the Hubble constant and total matter density parameter.

In general, the correlated, one-dimensional density and velocity fields are generated from linear combinations of two independent GRFs. These fields are evolved to the redshift of interest using the linear growth factors and are transformed to real
space via a Fast Fourier Transform. For further details on these calculations, see BD97. The LN transformation is applied to the overdensities:

$$
\begin{equation*}
\delta_{\mathrm{LN}}=\exp \left[\delta-\frac{<\delta^{2}>}{2}\right] \tag{5.3}
\end{equation*}
$$

Where δ is the linear density contrast with respect to the mean density, $\frac{\rho}{\rho_{0}}-1$. In each simulation, the spatial resolution in the GRFs is less than 5% of x_{b} at the redshift of interest, typically $\sim 3-4 \mathrm{~h}^{-1} \mathrm{kpc}$. The box size of a given simulation is set by the line of sight length necessary to generate the spectral range of the QSO spectrum, generally $\sim 100-500 \mathrm{~h}^{-1} \mathrm{Mpc}$.

5.1.2 Comparison with \mathbf{N}-body simulations

The lognormal approximation was first introduced to treat the nonlinear evolution of dark matter (Coles \& Jones 1991). Here, we compare dark matter density in the linear regime and under the lognormal transformation with the results of an N -body calculation, kindly provided by V. Eke. The N-body simulation follows the evolution of $128^{3} 2.11 \times 10^{9} \mathrm{M}_{\odot}$ particles in 50 Mpc comoving box in a Λ CDM cosmology with $\Omega_{0}=0.3$, vacuum energy density parameter $\Omega_{\Lambda}=0.7$, Hubble parameter $\mathrm{h}=H_{0} /(100$ $\left.\mathrm{km} \mathrm{s}^{-1} \mathrm{Mpc}^{-1}\right)=0.65$, and a power spectrum normalization defined by rms mass fluctuations on $8 \mathrm{~h}^{-1} \mathrm{Mpc}$ scales, $\sigma_{8}=0.9$. The linear dark matter density fields, Gaussian random fields generated using a dark matter power spectrum (Bardeen et al. 1986), are shown in the first column of Figure 5.1. We create the lognormal dark matter density fields by applying the lognormal transformation described in Equation 5.3 to the GRFs. Figure 5.1 illustrates the comparison between the dark matter density distributions for 100-200 lines of sight through a ACDM N-body simulation at $z=100$, 30,9 , and 2.33, and 100 realizations of a LN simulation for the same cosmological model at the same redshifts.

In both the linear and lognormal cases, the agreement is good at $z=100$ and steadily worsens as time progresses. At $z=9$, the peak of the distribution of linear
densities is already significantly shifted from that of the N -body simulation. The LN transformation leads to better alignment with the N-body distribution, but with a lower peak height.

By $z=2.33$, both distributions look rather different from the N -body distribution. The large variance of the DM Gaussian random field at low redshift has caused the LN transformation to shifted the mean of the distribution to a value less than one (see Figure 1 of Coles \& Jones, 1991). The LN distribution compares better with the N -body distribution than the linear density distribution in the sense that it skews the distribution towards lower densities rather than higher densities. At the highest densities, the LN distribution is well-matched to the N -body distribution.

In addition to the shift of the mean of the LN distribution relative to the N body distribution, the LN transformation tends to produce too few points at the mean density and too many in the wings of the distribution, particularly in the low density wing, relative to the N -body simulations. This shall have consequences on the distribution of baryon densities and the flux distributions in the spectra created from these simulations. We discuss this further below.

5.1.3 Physical Conditions in the Absorbing Gas

We depart from the treatment of BD97 in three ways in modeling the physical conditions in the intergalactic gas: (1) because the Ly- α forest data to which we will be comparing the models covers a range in redshift from $z=1.7$ to $z=4.1$, we use an IGM equation of state which incorporates its reionization history (Hui \& Gnedin 1997, HG97 hereafter), a redshift-varying polytrope, rather than the single polytrope approximation used by BD97; (2) we include helium in our overall ionization balance; and (3) we use the ionization rates of $\mathrm{H}^{0}, \mathrm{He}^{0}$, and He^{+}as functions of redshift calculated by Haardt \& Madau (1996, HM96 hereafter) rather than from a power law form for the redshift dependence of the mean intensity background, $J\left(\nu_{0}\right)$.

The HM96 ionization rates reflect the integrated emission from the quasar population, with no contribution from stars. The exclusion of a contribution from star formation should not be of major consequence, as only 3 objects in our sample lie at $z>3.5$. Galaxies may contribute to the ionizing background at $z \sim 3$, but how significantly is a matter of debate (Steidel, Pettini \& Adelberger 2001, Giallongo et al. 2002). In terms of the number of ionizing photons need to bring agreement with the overall transmission of the IGM, it is not necessary to invoke a contribution from galaxies that dominates over that from quasars unless $z \geq 3.5$ (Haardt, Madau, \& Rees 1999).

Gas temperatures are calculated from the density-temperature relation derived by HG97:

$$
\begin{equation*}
T=T_{0}(z)(1+\delta)^{\gamma(z)-1}, \tag{5.4}
\end{equation*}
$$

where the temperature at mean density, T_{0}, and the polytropic index, γ, depend upon the redshift, the cosmological model, and the redshift of hydrogen reionization. We adopt $z=6.2$ as the redshift of hydrogen reionization, in agreement with recent observations of low transmitted flux in the spectra of quasars at $z=5.80-6.28$ (Becker et al. 2001, Djorgovski et al. 2001, Fan et al. 2002) as well as model predictions that the epoch of reionization can be constrained to a small window around this redshift (Gnedin 2002). If we instead adopt $z=10$ as the redshift of reionization, $\gamma(z)$ is increased and the density weighted mean temperature in the LN model is decreased by a few percent by $z=2$. The equation of state is not highly sensitive to the redshift of reionization because IGM should not retain a strong imprint of its reionization history provided it occurred at an early period (Miralda-Escudé \& Rees 1994, HG97). The lower temperatures would lead to a larger flux decrement in the LN spectra, which may require a different ionization rate scaling to match the data, but not one significantly different than the value discussed in Section 5.1.5.

The HG97 prescription for the IGM density-temperature relation does not include
the thermal effects of HeII reionization, which may occur at $z \sim 3$ (eg. Songaila \& Cowie 1996, Reimers et al. 1997, Songaila 1998, Kriss et al. 2001, see also MiraldaEscudé, Haehnelt, \& Rees 2000). This energy input would alter the slope of the equation of state and increase the temperature at mean density by a factor of ≈ 2 (Schaye et al. 1999). We expect that this would have some effect on the HI optical depths calculated in our models, but that this effect would not be large enough to dramatically effect the results of our investigation of the proximity effect.

Equation 5.4 is a good representation of the IGM density-temperature relation for $\delta \lesssim 5$ (HG97). At higher densities, density-temperature relationship of intergalactic gas in photoionization equilibrium turns over due to recombination cooling (cf. Figure 1 of Haehnelt, Rauch, \& Steinmetz 1996). At high densities, therefore, a power law density-temperature relation yields temperatures larger than the balance between photoheating and line cooling requires. We impose this thermal photoionization equilibrium at high densities by calculating the equilibrium temperature of the IGM for $\frac{\rho}{\rho_{0}}=1-1000$. The HG97 density-temperature relation is scaled and connected smoothly to this equilibrium condition for each redshift, ensuring that the density-temperature relation in the simulation turns over at high densities (cf. Figure 1 of Haehnelt, Rauch, \& Steinmetz 1996).

Once a density and temperature are established at each point in the simulation, ionization balance is calculated using the HM96 ionization rates, assuming photoionization equilibrium, and the rate coefficients for collisional ionization of $\mathrm{H}^{0}, \mathrm{He}^{0}$, and He^{+}and recombination of $\mathrm{H}^{+}, \mathrm{He}^{+}$, and He^{2+} as functions of temperature from Cen (1992) and Theuns et al. (1998a).

From the neutral hydrogen densities and the peculiar velocity field, the optical depth at each point in the spectrum is calculated assuming Voigt profiles:

$$
\begin{equation*}
\tau=N_{\mathrm{HI}} \sigma_{0} K(x, y) \tag{5.5}
\end{equation*}
$$

where $K(x, y)$ is the Voigt function. In this expression, x is a dimensionless frequency:

$$
\begin{equation*}
x=\frac{c\left(\nu-\nu_{0}\right)}{\nu_{0}}\left(\frac{2 k T}{m}\right)^{-1 / 2} \tag{5.6}
\end{equation*}
$$

where m is the mass of the absorbing atom, and y is $\sqrt{\ln 2}$ times the ratio of damping to Doppler widths:

$$
\begin{equation*}
y=\frac{\nu_{0}}{c}\left(\frac{2 k T}{m}\right)^{-1 / 2} \frac{A_{21}}{4 \pi} \tag{5.7}
\end{equation*}
$$

where A_{21} is the Einstein coefficient for the Ly- α transition.

5.1.4 Comparison with hydrodynamical simulations

SCDM SPH and $\Lambda C D M$ Eulerian Models- Mean Decrements: We compare the mean and distribution of flux decrements in the spectra generated with our lognormal model with those listed in Rauch et al. (1997, R97 hereafter) for high resolution quasar spectra from the HIRES instrument on the Keck telescope as well as for the hydrodynamical simulations they use to match the Keck data, a standard CDM (SCDM) smoothed particle hydrodynamics (SPH) simulation (Croft et al. 1997) and a Λ CDM Eulerian simulation (Cen et al. 1994, Miralda-Escudé et al. 1996). We restrict the comparison to their $z=2$ simulations, as we can use the same density-temperature relations in their simulations at this redshift by consulting their Figure 7. In particular, we attempt to mimic the reionization heating processes treated in the Eulerian simulations by using the density-temperature relation given in this figure. With the LN model, we simulate the Keck data presented by R97 for the combinations of the baryon density, Ω_{b}, and the HI photoionization rate listed in their Table 4. As described by R97, we weight each pixel's contribution to the mean decrement by the signal-to-noise (S / N) and scale the optical depths in each spectrum to the central redshift of the calculation. Our standard CDM (SCDM) LN models fare better in matching the simulations and the Keck data than the Λ CDM models. The mean flux decrements for the SCDM and Λ CDM model spectra are 0.155 and 0.174 , respectively. R97 find 0.154 and 0.152 .

We do not have the simulation data in hand to directly compare the LN cumulative flux decrement distributions (FDDFs) with the hydrodynamical simulation FDDFs, but their Figures 3 and 4 indicate that they match the Keck data quite well. We therefore compare the LN simulations described here directly to the $z=1.5-2.5$ FDDF of the Keck data, provided to us by M. Rauch. The Kolmogorov-Smirnov probabilities, $Q(\mathrm{KS})$, associated with these two pairs of simulation cumulative distributions are 0.35 and 0.002 . We find better agreement between the Λ CDM LN model spectra and the Keck data by using a higher photoionization rate than that found by R97. Specifically, we require $\Gamma_{\mathrm{HI}}=1.37 \times 10^{-12} \mathrm{~s}^{-1}$ at $z=2$, giving a KS probability of 0.72 , but a lower mean decrement than R97, 0.134 . This combination of Γ_{HI} and Ω_{b} results in $\mu=\left(\frac{\Omega_{b} h^{2}}{0.0125}\right)\left(\frac{100 \mathrm{~km} \mathrm{~s}^{-1} \mathrm{Mpc}^{-1}}{H(z)}\right) \Gamma_{-12}^{-1}=1.22$, compared to the value of 1.88 quoted by R97 for the Λ CDM simulations. The mean flux decrements are listed in Table 5.1 and the cumulative distributions of flux decrements are shown in Figure 5.2.
^CDM SPH Model- Direct Lines of Sight: We compare our lognormal simulations to spectra generated from lines of sight through a hydrodynamical simulation in a Λ CDM cosmology, namely the SPH simulations presented by Davé et al. 1999. For the parameters used, see Table 1 of that paper.

We generate 400 independent lognormal spectra using the same box size, cosmological model parameters, and ionization and recombination rates as the SPH simulations. We calculate gas temperatures from a polytropic approximation to the density-temperature relation of the SPH data cube, $\log (T)=0.60 \log [\mathrm{n}(\mathrm{H})]+7.21$. The absence of scatter in the LN density-temperature relation has little effect on the mean flux decrement in the simulated spectra. We construct FDDFs from these spectra and compare these with the FDDFs derived from 400 lines of sight through the SPH simulations. These are shown in Figure 5.3. The average flux decrement we find from 400 realizations of the LN model at $z=2$ is 0.206 . The same number of lines of sight through the SPH simulation cube gives $\langle\mathrm{D}\rangle=0.193$. A hotter density-
temperature relation is required by the LN simulations to give good agreement with the SPH spectra. Using relation from the Λ CDM Eulerian simulation discussed above (cf. Figure 7 of R97) for these LN simulations, we find $<\mathrm{D}\rangle=0.190$, in much better agreement with the decrement in the SPH spectra. However, the value of $Q(K S)$ from the K-S comparison of this LN flux decrement distribution and the SPH FDDF is negligible, indicating that while the mean decrements may match each other well, the flux distributions have significantly different shapes.

In order to determine the source of the discrepancy between these models, we plot the distribution of neutral fractions, optical depths, and hydrogen densities at $z=2$ in Figure 5.4. In Figure 5.4(a), we use the SPH densities and our ionization subroutine to calculate neutral fractions at each point in the SPH simulation cube. These compare well with the neutral fractions found by the SPH code. In Figure 5.4(b), we use the densities and neutral fractions from the SPH code to calculate optical depths from our code. These compare well with the optical depths from the SPH code itself. The discrepancy between the SPH and LN codes arises in the density distributions themselves, as illustrated in Figure 5.4(c). Here, we plot the total hydrogen densities, in units of the mean density, for both simulations. It is not surprising that the LN model underproduces the number of points in the high density wing of the distribution, given that this method does not treat highly nonlinear evolution in the IGM. But it is clear that the lognormal approximation underproduces the number of points at the mean density, placing these points instead at low densities. This overabundance of low density- and, with the polytropic density-temperature relation, low temperature- points is contributing to the disagreement between the FDDFs at low flux decrements, and the disagreement in the overall shape of the LN FDDF relative to that of the SPH FDDF. This difference in the density distributions is a reason to consider other semi-analytic methods for generating Ly- α forest spectra, such as methods based on the Zel'dovich approximation (Hui, Gnedin, \& Zhang 1997, Viel et al. 2002) or a method by which gas densities are estimated directly from the evolved
dark matter density and peculiar velocity fields generated by N -body simulations (Viel et al. 2002). We emphasize that we use the LN method because it provides a means of constructing quasar spectra quickly so that we may perform several realizations of the data set and explore different scenarios for quasar placement within the LN density fields. As we are mainly interested in the properties of the IGM near quasars and the relative difference in absorption in the IGM far from and near quasars due to the proximity effect, we will leave treatment of other models for future work and will proceed with the LN method as a first approximation.

5.1.5 The Background Ly- α Forest Model

To choose an underlying model for the Ly- α forest upon which to imprint the proximity effect signature we compare our LN models to the MMT QSO absorption line data presented in Scott et al. (2000a) and used to measure the ionizing background at $z \approx 2$ in Scott et al. (2000b). We investigate a Λ CDM "concordance" cosmological model: ($\Omega_{0}=0.3, \Omega_{\Lambda}=0.7, \mathrm{~h}=0.65$). We use $\sigma_{8}=0.9$, in agreement with the local cluster abundance (Eke, Cole, \& Frenk 1996) and the 4 -year COBE results (Bunn \& White 1997). We adopt $\Omega_{b} \mathrm{~h}^{2}=0.019$ from measurements of D / H in Ly- α absorbers (Burles \& Tytler 1998a,b, Kirkman et al. 2000). We use the Sugiyama (1995) fit for the shape parameter for this model, 0.157 .

We perform ten LN realizations of the full sample of 78 quasars. These data comprise the samples of moderate resolution quasar spectra from the Palomar 5-meter Telescope and the Multiple Mirror Telescope presented in Bechtold 1994, Dobrzycki \& Bechtold 1996, and Scott et al. 2000a and summarized in Scott et al. 2000a. The gravitational lens Q1422+231 is excluded from the simulated samples due to the lack of information about its intrinsic Lyman limit luminosity. The majority of the data come from the MMT, so we will refer to this as the MMT sample.

Flux Statistics- Comparison with MMT and Keck Data: We simulate the MMT data from Scott et al. (2000a) at the resolution (median $=75 \mathrm{~km} \mathrm{~s}^{-1}$) and continuum S / N (median ~ 10) of the data itself, and at a resolution of $6.6 \mathrm{~km} \mathrm{~s}^{-1}$ and median continuum S/N of \sim 20, approximating that of Keck/HIRES data. We compare the Keck resolution simulations with the FDDF for Keck data in R97, and the MMT resolution simulations with the MMT data itself. These FDDFs are shown in Figure 5.5. There is good agreement between the LN simulations and both the MMT and the Keck data for the same scaling of the HM96 photoionization rates as a function of redshift. We will refer to this scaling factor throughout the paper as f_{Γ}. This result gives us confidence that the continuum fits to the MMT spectra are reliable, because any systematic depression of the continuum fit caused by blending in the moderate resolution MMT data, with respect to the level in the higher resolution Keck spectra, would lead to the requirement of a larger value of f_{Γ} to match the MMT data to the LN simulations than is needed to match the Keck data.

We find the best value of f_{Γ} by performing one realization of the quasar sample at both Keck and MMT resolution for various values of f_{Γ}. The agreement between the LN simulations and the data is quantified in terms of the mean decrement, $<\mathrm{D}\rangle$, over some redshift range, and the KS probability that the cumulative distributions of flux decrements in the simulations and the data are the same, $Q(\mathrm{KS})$. Specifically, the best values are in the range $f_{\Gamma}=1.53,1.43,1.33$, or $f_{\Gamma}^{-1}=0.65,0.70,0.75$, and the value we choose as the best scaling factor is $f_{\mathrm{r}}=1.43$.

The $\mathrm{LN} /$ Keck simulations give $\langle\mathrm{D}\rangle=0.135$ at $\langle z\rangle=2.29$, where R97 quote 0.148 for the Keck data, and $Q(\mathrm{KS})=0.92$ for these two distributions. The LN/MMT simulations give $\langle\mathrm{D}\rangle=0.128$ at $\langle z\rangle=2.07$. The MMT data give $\langle\mathrm{D}\rangle=0.129$, and $Q(\mathrm{KS})=0.72$ for these two distributions. For comparison, at these same mean redshifts, the $\mathrm{LN} /$ Keck simulations give $[<\mathrm{D}>, Q(\mathrm{KS})]=[0.130,0.94]$ for $f_{\Gamma}=1.53$ and $[<\mathrm{D}>, Q(\mathrm{KS})]=[0.143,0.77]$ for $f_{\Gamma}=1.33$ while the $\mathrm{LN} / \mathrm{MMT}$ simulations show $[<\mathrm{D}>, Q(\mathrm{KS})]=[0.099,0.13]$ for $f_{\Gamma}=1.53$ and $[<\mathrm{D}>, Q(\mathrm{KS})]=[0.133,0.47]$
for $f_{\Gamma}=1.33$.
This scaling of the HM96 ionization rates for the LN models matches less well to the mean decrement of the data at $z=2.5-3.5$. The LN/Keck simulations give $<\mathrm{D}\rangle=0.299$ at $\langle z\rangle=3.02$, where R97 quote 0.316 for the Keck data, with $Q(\mathrm{KS})=0.31$. The LN/MMT models $\langle\mathrm{D}\rangle=0.307$ while the data show $<\mathrm{D}\rangle=$ 0.250 at $\langle z\rangle=2.85$, with a low KS probability, $Q(\mathrm{KS})=0.007$. Therefore, the LN simulations have some difficulty reproducing the observed flux decrements equally well at $z=1.5-2.5$ and at $z=2.5-3.5$ for the same f_{Γ}. Again, for comparison, the $\mathrm{LN} /$ Keck simulations give $[<\mathrm{D}>, Q(\mathrm{KS})]=[0.289,0.19]$ for $f_{\Gamma}=1.53$ and $[<\mathrm{D}>, Q(\mathrm{KS})]=[0.324,0.41]$ for $f_{\Gamma}=1.33$ and the LN/MMT simulations show $[<\mathrm{D}>, Q(\mathrm{KS})]=[0.254,0.63]$ for $f_{\Gamma}=1.53$ and $[<\mathrm{D}>, Q(\mathrm{KS})]=[0.318,0.001]$ for $f_{\Gamma}=1.33$.

The $Q(\mathrm{KS})$ indicates that the match to the Keck data at $z=2.5-3.5$ is reasonable for $f_{\Gamma}=1.43$. Also, there are approximately 50% more pixels in the MMT data at $z=1.5-2.5$ than at $z=2.5-3.5$. For these reasons, we adopt $f_{\Gamma}=1.43$ as the best scaling factor for the HM96 ionization rates, as this gives the best agreement between the LN simulations and the MMT data for the lower redshift range, and reasonable agreement with the Keck data at $z=1.5-2.5$ and $z=2.5-3.5$.

In Figure 5.6, we show a histogram of the values of $\langle\mathrm{D}\rangle$ derived from each of the ten realizations of LN simulations of the MMT data set. These values are also tabulated in Table 5.1. In the left panel, we show the values from a set of simulations in which the quasars are placed at random positions in the density field. The values in the right panel of this figure are from a set of "high density" simulations in which quasars are placed in 3σ overdensities in the LN density fields which have been smoothed on $1 \mathrm{~h}^{-1} \mathrm{Mpc}$ scales to model the clustering of matter around quasars and explore the consequences for the proximity effect. We discuss these models further in § 5.2.2. Because we exclude proximity effect regions in the calculations of $<\mathrm{D}>$ from the simulated spectra, these values should not be substantially different from
each other, and these histograms illustrate that they are not.
The differential flux distribution function, $P(F)$, for the simulations in which quasars are placed at random positions is plotted in the top panel of Figure 5.7. For the full redshift range of the data, we calculate a χ_{ν}^{2} of $8.8\left(Q\left(\chi^{2}\right)=7.0 \times 10^{-16}\right)$ from a full covariance matrix based on 500 bootstrap samples of the MMT data (McDonald et al. 2002). Formally, this agreement is not good. But, as stated above, since we are not attempting to model the detailed flux distribution in the $\mathrm{Ly}-\alpha$ forest, we will accept the global agreement in the mean decrements and cumulative flux decrement distributions as sufficient for our purpose of examining the proximity effect. In the lower panel of this figure, we show the flux distribution for the simulations in which quasars are placed in 3σ overdensities, which we discuss further below.

Line Statistics- Comparison with MMT Data: Examples of simulated spectra are shown in bottom panels of Figure 5.8. Comparing with the real spectra, shown in the top panels of the figure, it is evident that the simulations compare well visually with the data.

We identify significant absorption features and measure line equivalent widths in the simulations in the same way as was done on the data (see Scott et al. 2000a). As in the analysis of Scott et al. (2000a), we consider only lines of 5σ significance or greater, where the significance is defined by the ratio of measured line equivalent width to the 1σ error in the equivalent width calculated from the smoothed detection threshold as described by Bechtold et al. (2002). From Monte Carlo simulations, Scott et al. (2000a) found that blending in the moderate resolution MMT data limits the completeness of the 5σ line lists to 55%. Following the analysis of Scott et al. (2000a), we use either a constant rest equivalent width threshold of 0.16 A. . 0.32 \AA, or we allow this threshold to vary with S / N, and we employ the same maximum likelihood method described in that paper and in Dobrzycki et al. (2002) to calculate
the line number density evolution parameters \mathcal{A}_{0} and γ :

$$
\begin{equation*}
\frac{d \mathcal{N}}{d z}=\mathcal{A}_{0}(1+z)^{\gamma} \tag{5.8}
\end{equation*}
$$

These values for each realization and for $0.16 \AA, 0.32 \AA$, and variable equivalent width thresholds, are tabulated in Table 5.2, and in Figure 5.9, we compare the statistic γ derived from the data and presented in Scott et al. (2000a) to that derived from the simulation. In the left panel, we present one of the ten realizations of the LN simulations and in the right panel, we compare the mean and variance of the values from all ten realizations with the γ found from the MMT data itself. The values of γ derived from the simulations agree with those calculated from the MMT data to within the statistical uncertainties, though the simulations do systematically produce slightly larger values of γ than found from the data. This can also be seen in the histograms of all the values of γ from all ten of the LN realizations of the MMT data set, shown in Figure 5.10. We show the results of both the random and high density simulations, though the values of γ from these two simulations should not differ dramatically from one another in principle because proximity effect regions are excluded from the calculations of γ.

5.2 The Proximity Effect

We model the proximity effect in the generated spectra by placing a quasar with a specific Lyman limit flux density at a specific redshift and modeling the effect of that quasar's radiation field on the surrounding IGM. The Lyman limit fluxes and redshifts of the quasars match those of the objects in the MMT data sample. See Tables 3 and 5 of Scott et al. (2000b).

5.2.1 QSO Radiation Field

The Lyman limit intensity at the redshift of an absorber, z_{a} from a quasar at redshift z_{q} with observed Lyman limit flux $f\left(\nu_{0}\right)$ is computed from

$$
\begin{equation*}
F^{q}\left(\nu_{0}\right)=\frac{f\left(\nu_{0}\right)}{\left(1+z_{q}\right)} \frac{d_{L}^{2}\left(z_{q}\right)}{r_{L}^{2}\left(z_{a}, z_{q}\right)} \tag{5.9}
\end{equation*}
$$

where $d_{L}\left(z_{q}\right)$ and $r_{L}\left(z_{a}, z_{q}\right)$ are the observer-quasar and absorber-quasar luminosity distances, respectively.

The relevant parameter for characterizing the proximity effect is ω, the ratio of quasar to background ionization rates (BDO). If one assumes that the spectral shape of each sample quasar is identical to that of the background, this ratio becomes $F^{q}\left(\nu_{0}\right) / 4 \pi J\left(\nu_{0}\right)$. However, this is likely not a valid assumption, given the intrinsic variation in quasar spectral energy distributions and given that IGM reprocessing of quasar radiation will result in a background spectrum that is softer than the emitted quasar spectrum (HM96, Fardal, Giroux, \& Shull 1998). We avoid this assumption by using each sample quasar's UV spectral index (cf. Table 3 of Scott et al. 2000b) to calculate ω as the ratio of ionization rates, $\Gamma_{q} / \Gamma_{b g}$, where $\Gamma_{b g}$ is the HM96 ionization rate, scaled by the factor, f_{Γ}, necessary to bring agreement with the observed mean transmission of the IGM at the relevant redshifts. As discussed in Section 5.1.5, we found $f_{\Gamma}=1.43$.

At every point in the LN density fields, the ionizing radiation is then the sum of the metagalactic background field and the local quasar field. To include the proximity effect in the model spectra, then, the ionization state of the gas is calculated using this summed field assuming the gas is in photoionization equilibrium, and the optical depth is calculated from the resulting neutral fraction. To address the question of whether the simple quasar photoionization model for the proximity effect is valid, we compare our models which include the ionization effects of quasars to the QSO absorption line data of Scott et al. (2000a). In the next sections, we examine whether these models reproduce the proximity effect signature seen in the observed quasar
spectra. First, we discuss the two different scenarios under which quasars have been placed in the model density fields.

5.2.2 Clustering Near Quasars

In a hierarchical scenario of structure formation, quasars are expected to occupy regions of the highest overdensities (Haehnelt \& Rees 1993). The peculiar velocities of matter clustered in the potential wells of galaxies and small groups of galaxies can influence the proximity effect signature by redshifting absorption features into the proximity effect region or to wavelengths greater than the Ly- α emission line (Loeb \& Eisenstein 1995). Pascarelle et al. (2001) argue that clustering of galaxies around quasars may lead proximity effect measurements to overestimate $J\left(\nu_{0}\right)$ at $z<1$ by a up to a factor of 20 . Also, the fact that absorption arising from high density regions will not lie on the linear part of the curve-of-growth may also be expected to influence the proximity effect signature as the line equivalent widths will not respond in a linear fashion to changes in HI column density (Scott et al. 2000b, 2001).

We address the issue of clustering by running a set of simulations using the best model parameters described above, but placing quasars preferentially in high overdensity regions of the density fields. In this prescription, we boxcar smooth the density field on a length of 1 comoving Mpc, and identify a region in the smoothed field with a 3σ overdensity. We model a scenario in which quasars inhabit environments similar to large groups or clusters of galaxies by placing them at the centers of these overdense regions. These regions are also regions where the peculiar velocity gradients are highest, so we treat both effects noted above. However, this model does not account for hot ($\sim 10^{7}-10^{8} \mathrm{~K}$) X-ray emitting gas detected in groups and clusters of galaxies (eg. Forman \& Jones 1982, Mulchaey 2000), including those which host quasars (Hall, Ellingson, \& Green 1997). This shock-heated gas is highly ionized, and accounting for it in the model would reduce the enhancement of absorption near the quasars caused
by placing them in these overdense regions. In previous sections, we have referred to this set of simulated spectra, in which quasars inhabit high density regions in the density distributions, as the "high density" simulations, while the simulations in which quasars occupy random positions within the density fields at any given redshift are the "random" simulations, and we will continue this nomenclature throughout the rest of this paper. We have used the same background Ly- α forest model as was used in the random simulations, as these models were calibrated to the data by the flux decrements in the Ly- α forest, excluding regions affected by the proximity effect. As described in Section 5.2.3, the division between the Ly- α forest and the proximity effect region in each spectrum is chosen to be $\omega=0.1$. In the lower panel of Figure 5.7, we plot the differential flux distribution of these simulations, compared with that of the MMT data. Though visual inspection of Figure 5.7 indicates that these simulations give better agreement in the highest and third highest flux bins, they give $\chi_{\nu}^{2}=20$. with respect to the 500 bootstrap samples of the data discussed in $\S 5$ 5.1.5 above, versus $\chi_{\nu}^{2}=8.8$ for the random simulations. For some of the ten LN realizations of the full data MMT set, however, the high density simulations give a lower χ_{ν}^{2} than the random simulations, so this test alone cannot discriminate between these two proximity effect models.

Figure 5.11 shows the bin-by-bin comparison of the flux in the random and high overdensity simulations for the full redshift range of the data, ie. with no exclusion of regions expected to be influenced by the proximity effect. The $\mathrm{F}=0.9$ flux bin does not change between these two simulations, and the largest discrepancy between the two models is in the $\mathrm{F}=1.0$ bin, where the high density simulations show a higher relative fraction of pixels. This is not unexpected due to the fact that placing quasars in high overdensity regions within the simulation box will tend to ionize these rare high density regions relative to their ionization state in the random simulations, leading to more pixels at high flux levels and fewer pixels at lower flux levels, a trend also visible in Figure 5.11.

5.2.3 The Spectral Signature of the Proximity Effect

We now explore the ramifications on the simulated quasar spectra of the quasar fluxes that we have included in the ionization balance in our LN density fields. We do this by examining the mean optical depths and the absorption line distributions in regions of the simulated Ly- α forest spectra near the quasar emission lines.

Mean Optical Depth Near Quasars: Following Press, Rybicki, \& Schneider (1993, PRS hereafter) we fit the mean Ly- α optical depth, $\bar{\tau}_{\alpha}$, in $100 \AA$ bins in the spectra to the function

$$
\begin{equation*}
\bar{\tau}_{\alpha}(z)=A(1+z)^{1+\gamma} \tag{5.10}
\end{equation*}
$$

PRS find $A=0.0037$ and $\gamma=2.46$ for 29 low resolution spectra of quasars at $2.5<z<4.3$. The results of the fits to all ten realizations of the simulated data set in the random and high density scenarios are listed in Table 5.3. The errors are derived from the least square fits to Equation 5.10 by setting the RMS error on each point equal to the square root of the median variance of all the flux bins used in the fit. The fits are performed separately for the Ly- α forest regions of the spectra with a proximity effect cutoff of $\omega=0.1$, and for the entire redshift extent of the spectra, including the proximity effect regions. The fits with the proximity regions excluded and included are shown in Figure 5.12. Zuo \& Lu (1993) point out that γ is expected to be smaller if the proximity effect regions are included, similar to the way it is flatter if these regions are included in the fit to the line distribution with redshift given by Equation 5.8. Restricting the fits to lie within approximately the same redshift range, we find this in the fits to the flux points of the MMT data, for which we derive $\gamma=1.41$ for the $\mathrm{Ly}-\alpha$ forest and $\gamma=0.24$ for the $\mathrm{Ly}-\alpha$ forest plus proximity regions. The points at $\omega>0.1$ are plotted as open squares in Figure 5.12 and are excluded from the Ly- α forest only fits, which are shown as thick dashed lines. These points are added to the fits which include the proximity effect regions, shown as dotted lines in Figure 5.12.

Many of these bins lie at $<\mathrm{F}>\sim 1$, flattening the mean optical depth distribution, and thus lowering γ and raising the normalization, A. The simulations also show this effect, $\gamma=2.34$ in the forest alone and $\gamma=1.77$ when including the proximity regions. The effect is somewhat less dramatic for the high density simulations, for which the γ 's become 2.40 and 1.96 for the exclusion and inclusion of spectral points at $\omega>0.1$, respectively. The values of γ in both simulations are larger than those in the data, and the small statistical error bars indicate that these differences are significant. However, the amount by which γ is depressed by the proximity effect in the simulations is consistent with the data, and the agreement between the values of γ derived from the absorption lines in the simulation and those derived from the data gives us confidence that our $\mathrm{Ly}-\alpha$ forest models are reasonable.

Absorption Lines Near Quasars: Another prediction of the photoionization model of the proximity effect is that the line deficit near quasars with respect to the canonical power law given by Equation 5.8 should be more pronounced for high luminosity objects than for low luminosity objects. Dividing the MMT sample into high and low luminosity objects at $\log \left[\mathrm{L}\left(\nu_{0}\right)\right]=31.1$, and calculating the line deficit as a function of distance from the quasar in a Λ CDM cosmology, we find no significant difference in the deficit of lines with $W>0.32 \AA$ within $2 \mathrm{~h}^{-1} \mathrm{Mpc}$ of the quasars in the MMT data. In fact, we find a deficit of 2.9σ significance for low luminosity quasars and 2.1σ for high luminosity quasars ${ }^{1}$. This sample spans a factor of ~ 300 in quasar luminosity, but most objects posses a luminosity near the mean value, and the mean luminosities of the high and low luminosity subsamples are only a factor of ~ 5.5 different from one another. Because lines of $0.32 \AA$ equivalent width and greater lie on the flat part of the curve of growth where the relationship between HI column density and equivalent width is not linear, we also examine a smaller equivalent width limit of 0.16 A . Lines of equivalent width greater than $0.16 \AA$ also show no significant difference between

[^0]low and high luminosity quasars within $2 h^{-1} \mathrm{Mpc}, 4.7 \sigma$ and 4.2σ, respectively. In Figure 5.13, we show the line deficit in the real quasar sample and in one realization of the simulated MMT sample as a function of distance from the quasars for lines of equivalent widths greater than $0.16 \AA$ and $0.32 \AA$. In Figures 5.14 and 5.15 , we show histograms of the line deficits within $2 h^{-1} \mathrm{Mpc}$ in all the realizations of the LN models for these two equivalent width thresholds.

Figure 5.13 indicates that the random simulations reproduce the general pattern of line deficits more faithfully than the high density simulations. Figures 5.14 and 5.15 illustrate that both the random and high density simulations produce line deficits in good agreement with the data for the high luminosity subsample of quasars. Overall, however, these histograms also indicate that the random simulations tend to give a larger line deficits than the data and that the high density simulations have a tendency to show a smaller line deficits than the data.

In the realization of the random simulations shown in Figure 5.13, the deficit of $W>0.32 \AA$ lines within the first $2 \mathrm{~h}^{-1} \mathrm{Mpc}$ is 3.1σ for low luminosity objects and 2.1σ for high luminosity objects. This is in quite good agreement with the line deficits seen the MMT data, demonstrating that a lack of a correlation of line deficit with quasar luminosity for strong lines does not indicate the absence of a proximity effect, or the invalidity of the photoionization model. In the next bin, extending out to 4 $\mathrm{h}^{-1} \mathrm{Mpc}$, the high luminosity objects do show a somewhat more pronounced deficit, 4.7σ, compared to 3.8σ for the low luminosity quasars. The deficit of $W>0.16 \mathrm{~A}$ lines is more pronounced for high luminosity objects than for low luminosity objects within $6 \mathrm{~h}^{-1} \mathrm{Mpc}$, however: $6.5 \sigma, 5.5 \sigma$, and 2.9σ versus $5.9 \sigma, 3.1 \sigma$, and 1.2σ. This is marginally larger than the deficit seen in the MMT data.

In this realization of the high density simulations, the line deficits in all cases, strong and weak lines in low and high luminosity quasar subsamples, are reduced substantially from those observed in the random simulations, as one might expect. With the exception of the deficit of $W>0.32 \AA$ lines in the spectra of the low
luminosity objects, $2-4 \sigma$ in the first four $2 h^{-1} \mathrm{Mpc}$ bins, the line deficits in the high density simulations are consistent with no proximity effect at all for the realization shown in Figure 5.13.

Figures 5.14 and 5.15 indicate that the deficits of strong and weak lines for high luminosity quasars are reproduced rather well in both the random and high density models. There is a slight tendency for the random simulations to produce more significant line deficits and for the high density simulations to produce less significant line deficits in the spectra of high luminosity quasars, but the only case in which this trend is statistically significant is the case of the deficit of $0.16 A$ lines in the high density simulations of the low luminosity subsample of quasars. A higher degree of certainty will require a larger number of realizations of the data set. In general, the simulated spectra of low luminosity quasars show do the trend mentioned above somewhat more clearly for both strong and weak lines, that is, the simulations in which quasars inhabit random positions in the density field tend to produce larger line deficits than are seen in the data while the opposite is true for simulations in which quasars inhabit regions in which the smoothed density is 3σ larger than the mean density. One way to remedy this discrepancy in the high density simulations may be to correlate the overdensity in which quasars lie with their luminosity. If lower luminosity quasars reside in overdensities less than 3σ above the mean, this should boost the line deficit seen for these objects, though not to the levels seen in the random simulations.

5.2.4 Measurement of the Ionizing Background

We apply the maximum likelihood method discussed in Scott et al. 2000b to measure the ionizing background from the sample of simulated quasar spectra in the same way as it was measured for the data in these papers. We perform the maximum likelihood analysis described in that paper on lines with $W>0.32 \AA$ to derive both the single
best-fit value of the HI ionization rate, Γ, over the redshift range $z=1.9-4.1$. Since we know the redshift dependence of the HI ionization rate input into the simulations, we also solve for f_{Γ}, the best-fit scaling of the HM96 parametrization of $\Gamma(z)$:

$$
\begin{equation*}
\Gamma(z)=f_{\Gamma} A(1+z)^{B} \exp \left(\frac{-\left(z-z_{c}\right)^{2}}{S}\right) \tag{5.11}
\end{equation*}
$$

where $\left(A, B, z_{\mathrm{c}}, S\right)=\left(6.7 \times 10^{-13}, 0.43,2.3,1.95\right)$ matches the simulation input well in this redshift range.

The results of the maximum likelihood analysis on one realization of the simulations are shown in Figure 5.16. The dashed black line in the top and middle panels shows the value of the HI ionization rate used in the simulations. Recall that the photoionization rate input into the simulations was a scaling of Equation 5.11, chosen to match the flux decrements in the simulation Ly- α forest spectra with both MMT and Keck data, $f_{\Gamma}=1.43$. The maximum likelihood solutions for both Γ and f_{Γ} in this realization of the random simulations reproduce the input values well. Any clustering of material around quasars relative to the general IGM, where the function relative to which we look for a deficit of absorption is defined, should cause us to underestimate the extent of the proximity effect and hence overestimate the background. Indeed, the high density simulation realization reproduces the input Γ at the median redshift of the sample, but overestimates f_{Γ} by 1.2σ. In nine of the ten realizations of the MMT data set, the high density simulations return larger values of Γ and f_{Γ} than the corresponding random simulations.

Performing this analysis on the MMT data gives $\log (\Gamma)=-11.82_{-0.17}^{+0.20}$, and $f_{\Gamma}=$ $1.42_{-0.42}^{+0.78}$, in excellent agreement with this realization of the random simulations. This result is shown in the bottom panel of Figure 5.16. The redshift range of this solution is indicated by the horizontal bar. It does not extend to $z=4.1$ as the simulations do, because some of the quasars in the MMT sample, particularly Q0000263 ($z_{\mathrm{em}}=4.1$), show associated absorption, ie. a metal system within $5000 \mathrm{~km} \mathrm{~s}-1$ of the quasar emission line, and were thus excluded from the proximity effect analysis.

The distributions of results, which are listed in Table 5.4, for the single-valued Γ solutions and the HM96 scaling factors, f_{r}, are shown in Figure 5.10. The arrows on these histograms mark the values input into the simulations, which were chosen to match the mean decrement in the Ly- α forest data, and the values derived from the maximum likelihood analysis on the MMT data. The values of f_{Γ} derived from the random simulations agree quite well with the input values, while those derived from the high density simulations tend to be larger than the input, with a large spread. The values of Γ derived from the random simulations tend to slightly underestimate the input and data values, while those derived from the high density simulations are more evenly distributed around the input and data values.

The mean ionization rate derived from the LN simulations in which quasars are placed in random positions in the density field is smaller than the input ionization rate, by a factor of 1.7 , or 1.3σ. However, the solution for f_{Γ} measured from these simulated spectra is fully consistent with the input ionization rate. The mean ionization rate from all ten realizations of the simulations in which the quasars are placed in high density regions is consistent with the input ionization rate at the median redshift, larger by 0.4σ. The mean value of f_{Γ} is 3 times the input value, 1σ given the spread in the results.

5.2.5 Quasar Systemic Redshifts

Uncertainty in quasar systemic redshifts is a major source of systematic uncertainty in the ionization rate derived from the proximity effect analysis. Scott et al. (2000b) treated this problem by using quasar redshifts derived from [OIII] $\lambda 5007$ and Mg II emission lines whenever they were available and applying a global velocity shift to the redshifts measured from the Ly- α emission line. This shift was determined by comparing the redshifts derived from [OIII] 25007 and Ly- α in the same object for a sample of emission line data from that work, supplemented with data from M^{c} Intosh
et al. (1999).
To directly determine the magnitude of this effect, we treat our input simulation quasar redshifts as systemic and attempt to reproduce the uncertainty in real quasar systemic redshifts by applying a redshift transformation to each:

$$
\begin{equation*}
z=z_{q}-z_{\mathrm{sys}}+z_{\Delta v} \tag{5.12}
\end{equation*}
$$

where z_{q} is the quasar emission redshift used in the simulation, the true quasar redshift. The term $z_{\text {sys }}$ is a redshift difference from a velocity shift which is drawn from a Gaissian distribution with mean $418 \mathrm{~km} \mathrm{~s}^{-1}$ and $\sigma=920 \mathrm{~km} \mathrm{~s}^{-1}$. This is the mean and standard deviation of the blueshifts of Ly- α emission with respect to [OIII] measured by Scott et al. (2000b). In that work, emission redshifts from [OIII] or some other reliable indicator of systemic redshifts were used when possible, but in for some quasars, only a $\mathrm{Ly}-\alpha$ redshift was available. The term $z_{\Delta v}$ is the global velocity correction of $400 \mathrm{~km} \mathrm{~s}^{-1}$ applied to all Ly- α redshifts by Scott et al. (2000b) in the attempt to convert these redshifts to true quasar systemic redshifts.

We choose one LN realization of the of the MMT data set and, within the maximum likelihood analysis, transform the each quasar redshift according to Equation 5.12 with no global correction, $z_{\Delta v}=0 \mathrm{~km} \mathrm{~s}^{-1}$, mimicking a proximity effect analysis done with no attempt to correct for quasar systemic redshifts. This is repeated nine additional times on this LN realization of the MMT data set. Next, this entire exercise is repeated using the same LN realization, but with $z_{\Delta v}=400 \mathrm{~km} \mathrm{~s}^{-1}$, representing the attempt to correct for quasar systemic redshifts by applying a global velocity shift to all Ly- α emission redshifts.

We use the random simulations as the baseline for comparison, but we are interested primarily in the magnitude and direction of the bias in the ionization rate introduced by uncertainty in quasar redshifts. We define this bias relative to $\log (\Gamma)=$ -11.93, the value of the ionization rate we derive from this realization of this model using the quasar redshifts that define the quasar position in the model spectra. For
the ten calculations with no $z_{\Delta v}$ correction to the transformed quasar redshifts applied, we find that the mean ionization rate is larger than $\log (\Gamma)=-11.93$ by a factor of 3.6 , or 2.1σ. The results are listed in Table 5.5 and shown in a histogram in Figure 5.18. This shift occurs in the direction expected. If quasar redshifts are systematically redshifted from Ly- α, the extent of the proximity effect is underestimated and the ionizing background is overestimated. Applying the $z_{\Delta v}$ correction to the transformed quasar redshifts, the ionization rates derived are systematically shifted from that derived using the true quasar redshifts, shown by the arrow at $\log (\Gamma)=-11.93$ above. The mean of these ten calculations is shifted by a factor of 1.8 from this result, 1.8σ. These results are themselves a factor of two different from one another, reproducing the shift in Γ measured from the analysis of the MMT data when systemic redshifts are used if possible and $400 \mathrm{~km} \mathrm{~s}^{-1}$ is added to Ly- α redshifts otherwise (Scott et al. 2000b). This experiment emphasizes that the systemic redshift correction is an important one to the proximity effect analysis, but that applying a single global redshift correction may still in fact lead to an overestimation of the ionizing background.

5.3 Summary and Future Work

We confirm BD97 in finding that a lognormal model for cosmological density and velocity fields can reproduce the global properties of the Ly- α forest such as the mean flux decrement the cumulative flux decrement distribution and Ly- α absorption line statistics quite well. Reproduction of more detailed flux statistics such as the differential flux distribution will require models such as those discussed by Viel et al. (2002) in which baryon densities are derived from evolved dark matter density fields. For the purposes of investigating the absorption features of the regions near quasars, however, we find the lognormal models to be sufficient.

In both types of LN simulations we perform, the deficit of absorption lines in the
simulated spectra are a reasonable match to the deficits observed in the data. The largest discrepancies with the data in terms of the line deficits within $2 \mathrm{~h}^{-1} \mathrm{Mpc}$ of the quasars are seen in the low luminosity quasar subsample, in the sense that the simulations in which quasars are placed in random positions in the density field tend to produce line deficits larger than are observed in the data and the simulations in which quasars are placed in positions corresponding to 3σ overdensities tend to produce smaller line deficits than observed.

In the future, we will explore models which correlate the overdensities in which quasars reside with their luminosity to investigate whether or not this brings better agreement with the data. Also, we will investigate curve of growth effects and further investigate the impact of the clustering of material in the vicinity of quasars by adjusting the quasar luminosities input into the simulations to determine how this affects the line deficits as a function of distance from the quasars.

The values of Γ and f_{Γ} derived from a maximum likelihood analysis of the absorption line distribution near the quasars in the MMT data are in good agreement with that required to match the flux decrement distribution in the LN models to the MMT data, demonstrating an overall self-consistency in the models and a reliability in the maximum likelihood method of deriving the background from absorption lines.

However, the ten realizations of both the random and the high density simulations give a large spread in the ionization rates one measures from the maximum likelihood analysis on the absorption lines in the model spectra. Solving for single value of Γ over the redshift range $z=1.9-4.1$, the results from the random simulations underestimate the simulation input at the median redshift, by a factor of 1.7 , or 1.3σ. It is not immediately clear why this should be the case. A possible explanation is that a single-valued ionization rate over this redshift range is simply not a good assumption. Indeed, the simulation input ionization rates are a factor of 3.8 lower at $z=4.1$ than they are at $z=1.9$. Solving instead for a factor by which the HM96 ionization rates given in Equation 5.11 are scaled, the results from the maximum
likelihood analysis on these simulations agree very well with the simulation inputs. The mean of all ten f_{Γ} derived from these simulations overestimates than the input value by only 5%.

The simulations in which quasars are placed in 3σ overdensities in the density fields systematically suppress the proximity effect signature seen in the line deficit with distance from the quasar and cause the absorption line based method to overestimate the input ionizing background. These high density simulations also result in a larger spread of the maximum likelihood ionization rates measured from the simulated spectra. Figure 5.17 demonstrates that the f_{Γ} derived from every realization is an overestimate of the input. The mean of all ten realizations is 3.2 times larger than the input value, though because of the large spread in f_{Γ} derived from the simulations, this is formally $\sim 1 \sigma$ larger than the input. This factor is consistent with the prediction that clustering of $\mathrm{Ly}-\alpha$ absorption around quasars could cause a factor of 3 overestimation of the mean background (Loeb \& Eisenstein 1995). The maximum likelihood solution for a single Γ also gives values larger than those input into the simulations. The mean of all ten realizations is 47% larger than the input ionization rate at the median redshift.

The relative uncertainties in the maximum likelihood solutions indicate how well the assumed likelihood function represents the absorption line distribution. We expect these to be lower for the random simulations than for the high density simulations because the likelihood function makes no accommodation for clustering of matter, and a higher incidence of absorption, near quasars. The relative uncertainties of the maximum likelihood solutions for both Γ and f_{Γ} from the random simulations are in better agreement with those derived from the maximum likelihood analysis on the data itself. The uncertainty in the single ionization rate solution is $+58 \% /-32 \%$ for the data and $+45 \% /-27 \%$ for the random simulations while it is $+81 \% /-36 \%$ for the high density simulations. Likewise, for the f_{Γ} solution, we find uncertainty of $+54 \% /-$ 29% for the data, $+52 \% /-30 \%$ for the random simulations, and $+90 \% /-39 \%$ for the
high density simulations.
It is perhaps not surprising that we should find better agreement between the data and the random simulations than between the data and the high density simulations given that we have removed objects from the data sample which show metal absorption features within $5000 \mathrm{~km} \mathrm{~s}^{-1}$ of the quasar emission. From a sample of ten quasars with associated C IV absorption at $0.15<z<0.65$, Ellingson et al. (1994) found that these quasars also show a higher incidence of galaxies within 35 kpc of the line of sight than is seen in a control sample of quasars, suggesting that galactic environment determines the presence of associated absorption. It is possible that we are therefore removing the very objects which would be expected to show excess absorption due to material clustered around the quasar. However, observations of the metallicities and ionization states of associated absorbers (Papovich et al. 2000, Hamann et al. 2001) as well as their time variability (Hamann, Barlow, \& Junkkarinen 1997, Ganguly et al. 2001) and rate of incidence in steep-spectrum and lobe-dominated radio loud quasars (Foltz et al. 1986, Baker et al. 2002) suggest that this absorption arises from material intrinsic to quasars rather than that comprising the large scale galactic environments of quasars (see also Wold et al. 2000). As our high density simulations attempt to treat the latter case, and because in any one object we generally do not know the source of the associated absorption, omitting quasars which show this absorption from our comparisons with the simulations is somewhat justified.

Therefore, if quasars inhabit random positions in the line of sight distribution of mass, measurements of the ionizing background are likely to reflect the true metagalactic ionization rates. If, more realistically, quasars reside preferentially in high density regions as predicted by hierarchical structure formation scenarios, the ionization rate measured from the proximity effect in observed quasar spectra may be overestimated by up to a factor of three.

We demonstrate that the observed velocity differences between quasar redshifts
determined from the Ly- α emission line and systemic redshifts from [OIII] $\lambda 5007$ may lead to an overestimation of the metagalactic ionization rate by up to a factor of 3.6 if uncorrected. Applying a mean global velocity shift to all Ly- α emission redshifts mitigates this to some extent, but the resulting measurement is still likely to be an overestimate of the true ionization rate. It is therefore desirable to redshifts based on [OIII] $\lambda 5007$ or another reliable indicator of the quasar systemic redshift whenever possible, especially given that clustering of matter around quasars may already introduce a bias in the result of roughly this order. If the proximity effect measurements of the mean background at $z \sim 2-3$ are indeed a factor of three larger than the true background, this places them distinctly at odds with model estimates which incorporate a contribution from star-forming galaxies with high UV escape fractions at these redshfits (Bianchi, Cristini, \& Kim 2001).

5.3.1 Measurement of UV Background from Mean Flux

Above, we demonstrated that the methods using absorption line deficits near quasars to measure the ionizing background are reliable, but large uncertainties in the maximum likelihood solutions do result from this treatment. We seek to develop a process for measuring the background using flux statistics rather than absorption lines. The advantages of using a method based on flux rather than upon identified absorption lines above some equivalent width threshold are: (1) all of the information contained in the spectrum may be used as there is no threshold analogous to the equivalent width threshold for which information is discarded, thus, there are many more points to be used in a solution; (2) the problems associated with identifying and fitting absorption lines, especially in moderate resolution spectra, may be avoided; (3) an average Ly- α forest transmission baseline must be defined, but there is no need to fit parameters describing the line distribution in the Ly- α forest such as the redshift dis-
tribution parameter γ, the column density distribution parameter ${ }^{2}, \beta$, or the Doppler parameter, and (4) concerns about the curve of growth may be avoided, and we may avoid the assumption that the column density of a particular absorption line responds in a linear fashion to the ionizing flux.

We briefly outline a method to be refined and used on the data and simulated quasar spectra in future work. We start by assuming that the mean optical depth is proportional to $(1+\omega)^{-1}$, which is true for the high ionization limit:

$$
\begin{equation*}
\tau=\frac{\pi e^{2}}{m_{e} c} f_{\mathrm{Ly} \alpha} \lambda_{\mathrm{Ly} \alpha} H^{-1}(z) \frac{1.16 n_{H}^{2} \alpha(T)}{\Gamma} \tag{5.13}
\end{equation*}
$$

where $f_{\mathrm{Ly} \alpha}$ and λ_{Lya} are the $\mathrm{Ly}-\alpha$ oscillator strength and wavelength and $\alpha(T)$ is the H^{+}recombination rate (Weinberg et al. 1997). In the Ly- α forest, Γ equals the contribution from the background alone, $\Gamma_{b g}$, but in the proximity effect regions near quasars, Γ becomes $\Gamma_{b g}+\Gamma_{q}$, so $\tau_{p e}=\tau_{\mathrm{Lya} \alpha} \frac{\Gamma_{b g}}{\Gamma_{b g}+\Gamma_{q}}=\tau_{\mathrm{Lya}} \frac{1}{1+\omega}$. The high ionization assumption does not seem unwarranted in the absence of clustering, given that it is frequently made in the literature to describe the mean flux in the Ly- α forest, and the proximity regions of quasars should only be more highly ionized than the forest. If, however, strong absorption features cluster around quasars due to the matter overdensities in which they reside, this assumption becomes less valid.

We may perform this analysis on all the flux points binned in ω, analogous to the BDO treatment for absorption lines; or we may do a maximum likelihood calculation. We will discuss the binned treatment first.

The analogy to the BDO method for extracting the background from the deficit of absorption lines simply consists of binning all flux points in the parameter ω, calculated by using the redshift of each flux point and the HM96 ionization rate scaled by the factor of 1.43 required to match the mean flux decrements in the MMT and simulated spectra. We seek to find the factor that gives the lowest χ^{2} between

[^1]the binned flux points and the ionization model:
\[

$$
\begin{equation*}
\langle\mathrm{F}\rangle_{\text {model }}=\left\langle\mathrm{F}>_{0}-\exp \left[f_{c}(1+\omega)\right]\right. \tag{5.14}
\end{equation*}
$$

\]

In this expression, $\left\langle\mathrm{F}>_{0}\right.$ is the normalization, the average flux in the Ly- α forest in the data or the simulation, and f_{c} is a factor we introduce to account for any clustering of absorption around quasars (cf. Pascarelle et al. 2001), or any departures from the high ionization assumption, which includes the assumption of photoionization equilibrium.

We scale the ionization rate given by f_{Γ}, as in Equation 5.11. We then bin all the flux points in all the quasar spectra in the quantity ω, the ratio of the ionization rate due to the quasar at the position of the absorbing pixel to the ionization rate of the background. The χ^{2} of these binned flux points with respect to Equation 5.14 is calculated. A search is conducted for the scaling factor, f_{Γ}, that gives the lowest value of this χ^{2}.

The maximum likelihood calculation consists of finding the average flux and flux variance in $50 \AA$ bins, and calculating the minimum χ^{2} with respect to the ionization model, the likelihood function is thus

$$
\begin{equation*}
L=\exp \left(\sum_{i} \frac{\left\langle\mathrm{~F}>_{i}-<\mathrm{F}>_{\text {model }}\right.}{\sigma_{i}^{2}}\right) \tag{5.15}
\end{equation*}
$$

where the index i refers to each $50 \AA$ bin, $\langle\mathrm{F}\rangle_{i}$ and σ_{i}^{2} are the average and variance of the flux in that bin, and $\langle\mathrm{F}\rangle_{\text {model }}$ is the ionization model in Equation 5.14 above. In practice, we will solve for Γ by minimizing $-\log (L)$.

The clustering factor, f_{c} is determined by comparison with the simulations, namely by finding the value of f_{c} for which the f_{Γ} input into the simulations is recovered. This will be different, and presumably larger, for the simulations that mimic clustering of matter around quasars by placing them in overdense regions. The clustering factors derived from the random and high density simulations are then applied to the data to derive two values of the scaling factor f_{Γ}, one for a scenario in which quasars occupy
random positions in the large scale density distribution and one in which they inhabit regions of 3σ overdensity. Figure 5.19 demonstrates this technique. In the $\mathrm{Ly}-\alpha$ forest, there exist a number of bins in which the flux is low, $\langle\mathrm{F}\rangle \lesssim 0.6$, whereas in the proximity region $(\log (\omega) \gtrsim-1)$ there exist no points at these low flux levels. The left panels correspond to the solutions for f_{c}, for each type of simulation, that gives the input scaling factor, $f_{\Gamma}=1.43$. The random simulations give $f_{c}=1.17$ and the high density simulations give $f_{c}=1.60$. On the right are the maximum likelihood values of f_{Γ} derived from the data with these two values of the clustering factor applied. These solutions are $f_{\Gamma}=0.92_{-0.25}^{+0.38}$ for $f_{c}=1.17$ and $f_{\Gamma}=4.85_{-1.79}^{+3.53}$ for $f_{c}=1.60$. The relative errors in these solutions are only marginally lower than those that arise from the absorption line analysis, so this flux-based method will require further refinement.

A method such as this one, which is based on flux in the spectrum rather than on absorption lines, is particularly sensitive to the placement of the quasar continuum, but should be useful for extending proximity effect measurements of the UV background to redshifts greater than 4.5 (Songaila \& Cowie 2002) where the standard absorption line analysis becomes impossible due to the low overall transmission of the IGM.

Table 5.1: Mean Flux Decrements in Simulated Spectra

Real. ${ }^{1}$	Sample	Δz	$\langle z\rangle$	$\Omega_{0}, \Omega_{\Lambda}$	$\Omega_{6} \mathrm{~h}^{2}$	Γ_{-12}	EOS 2	μ	$\langle D\rangle$	$\left\langle\mathrm{D}_{0}{ }^{3}\right.$	$Q(\mathrm{KS})^{4}$
-	1	$1.5-2.5$	2.29	$1.0,0.0$	0.024	1.37	R97	1.03	0.155	0.154	0.72
-	1	$1.5-2.5$	2.29	$0.4,0.6$	0.024	1.37	R97	1.22	0.134	0.152	0.35
-	2	$1.5-2.5$	2.29	$0.3,0.7$	0.019	1.46	HG97	0.65	0.135	0.148	0.92
-	2	$2.5-3.5$	3.02	$0.3,0.7$	0.019	1.35	HG97	0.56	0.299	0.316	0.31
1	3	$1.5-2.5$	2.07	$0.3,0.7$	0.019	1.46	HG97	0.76	0.128	0.129	0.72
1	3	$2.5-3.5$	2.85	$0.3,0.7$	0.019	1.35	HG97	0.55	0.307	0.250	0.007
1	3 a	$1.5-2.5$	2.07	$0.3,0.7$	0.019	1.46	HG97	0.76	0.118	0.129	0.80
1	3 a	$2.5-3.5$	2.85	$0.3,0.7$	0.019	1.35	HG97	0.55	0.327	0.250	0.03
2	3	$1.5-2.5$	2.07	$0.3,0.7$	0.019	1.46	HG97	0.76	0.103	0.129	0.43
2	3	$2.5-3.5$	2.85	$0.3,0.7$	0.019	1.35	HG97	0.55	0.240	0.250	0.40
2	3 a	$1.5-2.5$	2.07	$0.3,0.7$	0.019	1.46	HG97	0.76	0.102	0.129	0.11
2	3 a	$2.5-3.5$	2.85	$0.3,0.7$	0.019	1.35	HG97	0.55	0.238	0.250	0.98
3	3	$1.5-2.5$	2.07	$0.3,0.7$	0.019	1.46	HG97	0.76	0.108	0.129	0.55
3	3	$2.5-3.5$	2.85	$0.3,0.7$	0.019	1.35	HG97	0.55	0.253	0.250	0.46
3	3 a	$1.5-2.5$	2.07	$0.3,0.7$	0.019	1.46	HG97	0.76	0.123	0.129	0.99
3	3 a	$2.5-3.5$	2.85	$0.3,0.7$	0.019	1.35	HG97	0.55	0.284	0.250	0.82
4	3	$1.5-2.5$	2.07	$0.3,0.7$	0.019	1.46	HG97	0.76	0.106	0.129	0.77
4	3	$2.5-3.5$	2.85	$0.3,0.7$	0.019	1.35	HG97	0.55	0.232	0.250	0.80
4	3 a	$1.5-2.5$	2.07	$0.3,0.7$	0.019	1.46	HG97	0.76	0.139	0.129	0.99
4	3 a	$2.5-3.5$	2.85	$0.3,0.7$	0.019	1.35	HG97	0.55	0.253	0.250	0.99
5	3	$1.5-2.5$	2.07	$0.3,0.7$	0.019	1.46	HG97	0.76	0.133	0.129	0.79
5	3	$2.5-3.5$	2.85	$0.3,0.7$	0.019	1.35	HG97	0.55	0.284	0.250	0.05
5	3 a	$1.5-2.5$	2.07	$0.3,0.7$	0.019	1.46	HG97	0.76	0.136	0.129	0.99
5	3 a	$2.5-3.5$	2.85	$0.3,0.7$	0.019	1.35	HG97	0.55	0.257	0.250	0.99
6	3	$1.5-2.5$	2.07	$0.3,0.7$	0.019	1.45	HG97	0.76	0.101	0.129	0.37
6	3	$2.5-3.5$	2.85	$0.3,0.7$	0.019	1.35	HG97	0.55	0.237	0.250	0.74

Table 5.1: Mean Flux Decrements in Simulated Spectra (Continued)

Real. ${ }^{1}$	Sample	Δz	$\langle z\rangle$	$\Omega_{0}, \Omega_{\Lambda}$	$\Omega_{6} \mathrm{~h}^{2}$	Γ_{-12}	EOS 2	μ	$\langle D\rangle$	$\langle\mathrm{D}\rangle_{0}{ }^{3}$	$Q(\mathrm{KS})^{4}$
6	3 a	$1.5-2.5$	2.07	$0.3,0.7$	0.019	1.46	HG97	0.76	0.117	0.129	0.46
6	3 a	$2.5-3.5$	2.85	$0.3,0.7$	0.019	1.35	HG97	0.55	0.252	0.250	0.98
7	3	$1.5-2.5$	2.07	$0.3,0.7$	0.019	1.46	HG97	0.76	0.135	0.129	0.64
7	3	$2.5-3.5$	2.85	$0.3,0.7$	0.019	1.35	HG97	0.55	0.278	0.250	0.03
7	3 a	$1.5-2.5$	2.07	$0.3,0.7$	0.019	1.46	HG97	0.76	0.122	0.129	0.98
7	3 a	$2.5-3.5$	2.85	$0.3,0.7$	0.019	1.35	HG97	0.55	0.250	0.250	0.99
8	3	$1.5-2.5$	2.07	$0.3,0.7$	0.019	1.46	HG97	0.76	0.125	0.129	0.66
8	3	$2.5-3.5$	2.85	$0.3,0.7$	0.019	1.35	HG97	0.55	0.291	0.250	0.01
8	3 a	$1.5-2.5$	2.07	$0.3,0.7$	0.019	1.46	HG97	0.76	0.126	0.129	0.99
8	3 a	$2.5-3.5$	2.85	$0.3,0.7$	0.019	1.35	HG97	0.55	0.277	0.250	0.93
9	3	$1.5-2.5$	2.07	$0.3,0.7$	0.019	1.46	HG97	0.76	0.121	0.129	0.93
9	3	$2.5-3.5$	2.85	$0.3,0.7$	0.019	1.35	HG97	0.55	0.283	0.250	0.04
9	3 a	$1.5-2.5$	2.07	$0.3,0.7$	0.019	1.46	HG97	0.76	0.112	0.129	0.29
9	3 a	$2.5-3.5$	2.85	$0.3,0.7$	0.019	1.35	HG97	0.55	0.264	0.250	0.99
10	3	$1.5-2.5$	2.07	$0.3,0.7$	0.019	1.46	HG97	0.76	0.133	0.129	0.52
10	3	$2.5-3.5$	2.85	$0.3,0.7$	0.019	1.35	HG97	0.55	0.291	0.250	0.04
10	3 a	$1.5-2.5$	2.07	$0.3,0.7$	0.019	1.46	HG97	0.76	0.130	0.129	0.99
10	3 a	$2.5-3.5$	2.85	$0.3,0.7$	0.019	1.35	HG97	0.55	0.294	0.250	0.65

Table 5.1: Mean Flux Decrements in Simulated Spectra
(Continued)

Real. ${ }^{1}$	Sample	Δz	$\langle z\rangle$	$\Omega_{0}, \Omega_{\Lambda}$	$\Omega_{b} \mathrm{~h}^{2}$	Γ_{-12}	EOS 2	μ	$<D>$

Sample:
(1) Simulation of Keck data set in R97
(2) Simulation of MMT data set at Keck resolution and S/N
(3) Simulation of MMT data set at MMT resolution and S/N

Quasars in random positions in density fields
(3a) Simulation of MMT data set at MMT resolution and S / N
Quasars in high density regions
${ }^{1}$ Realization of LN simulation
${ }^{2}$ Density-temperature relation from Figure 7 of R97 or from HG97
${ }^{3}$ Comparison mean decrement:
Sample 1- R97 simulations
Sample 2- Keck data in R97
Samples 3 and 3a- MMT data in Scott et al. 2000a
${ }^{4} \mathrm{KS}$ probability of cumulative flux decrement distribution of Sample with respect to comparison sample in Col. 9
${ }^{5}$ See their Figure 7

Table 5.2: Line Statistics

Realization	Sample	W limit	\mathcal{A}_{1}	γ
-	1 a	var.	1.21 ± 0.20	-
-	1b	var.	1.00 ± 0.15	-
-	1a	0.32	1.67 ± 0.29	7.57
-	1b	0.32	1.53 ± 0.21	8.53
-	1a	0.16	1.32 ± 0.27	21.3
-	1b	0.16	1.07 ± 0.19	27.3
1	2a	var.	1.24 ± 0.46	-
1	2b	var.	0.81 ± 0.30	-
1	2a	0.32	2.16 ± 0.68	4.91
1	2b	0.32	1.77 ± 0.43	7.67
1	2a	0.16	1.51 ± 0.54	19.8
1	2b	0.16	1.04 ± 0.35	33.4
1	3a	var.	1.82 ± 0.57	-
1	3b	var.	1.25 ± 0.36	-
1	3 a	0.32	2.35 ± 0.74	3.24
1	3b	0.32	1.49 ± 0.47	9.30
1	3a	0.16	1.68 ± 0.61	12.7
1	3b	0.16	1.41 ± 0.38	17.3
2	2a	var.	1.30 ± 0.50	-
2	2b	var.	1.23 ± 0.32	-
2	2a	0.32	2.01 ± 0.78	4.46
2	2b	0.32	1.87 ± 0.49	5.31
2	2a	0.16	1.44 ± 0.61	17.3
2	2b	0.16	1.49 ± 0.38	15.5
2	3a	var.	1.16 ± 0.58	-
2	3b	var.	1.21 ± 0.37	-
2	3a	0.32	1.12 ± 0.77	14.0
2	3 b	0.32	1.32 ± 0.49	10.4
2	3a	0.16	0.81 ± 0.67	31.2
2	3b	0.16	1.13 ± 0.43	19.8
3	2a	var.	1.52 ± 0.51	-
3	2 b	var.	1.22 ± 0.32	-
3	2a	0.32	2.25 ± 0.77	3.35
3	2b	0.32	2.14 ± 0.48	3.79
3	2a	0.16	1.82 ± 0.61	10.6
3	2 b	0.16	1.52 ± 0.39	14.8
3	3a	var.	1.47 ± 0.56	-
3	3 b	var.	1.20 ± 0.36	-

Table 5.2: Line Statistics (Continued)

Realization	Sample	W limit	\mathcal{A}	γ
3	3a	0.32	1.86 ± 0.73	6.14
3	3b	0.32	1.42 ± 0.47	10.0
3	3 a	0.16	1.20 ± 0.65	19.9
3	3b	0.16	1.08 ± 0.41	22.9
4	2a	var.	1.65 ± 0.51	-
4	2b	var.	1.27 ± 0.32	-
4	2a	0.32	2.81 ± 0.76	1.70
4	2b	0.32	2.31 ± 0.48	3.09
4	2a	0.16	1.51 ± 0.54	19.8
4	2b	0.16	1.04 ± 0.35	33.4
4	3a	var.	1.47 ± 0.57	-
4	3b	var.	1.18 ± 0.36	-
4	3a	0.32	1.78 ± 0.72	6.91
4	3b	0.32	1.22 ± 0.46	13.3
4	3a	0.16	1.05 ± 0.66	9.41
4	3b	0.16	0.85 ± 0.42	18.3
5	2a	var.	1.43 ± 0.51	-
5	2b	var.	1.17 ± 0.32	-
5	2a	0.32	2.38 ± 0.76	2.94
5	2b	0.32	2.17 ± 0.48	3.61
5	2a	0.16	1.68 ± 0.61	12.7
5	2b	0.16	1.41 ± 0.38	17.3
5	3a	var.	1.63 ± 0.57	-
5	3b	var.	1.08 ± 0.36	-
5	3a	0.32	2.19 ± 0.74	3.96
5	3b	0.32	1.37 ± 0.47	10.7
5	3a	0.16	1.33 ± 0.65	17.3
5	3b	0.16	0.86 ± 0.41	30.9
6	2a	var.	1.43 ± 0.51	-
6	2b	var.	1.17 ± 0.32	-
6	2a	0.32	2.38 ± 0.76	2.94
6	2 b	0.32	2.17 ± 0.48	3.61
6	2a	0.16	1.68 ± 0.61	12.7
6	2 b	0.16	1.41 ± 0.38	17.3
6	3a	var.	0.86 ± 0.56	-
6	3b	var.	0.95 ± 0.36	-
6	3 a	0.32	0.85 ± 0.74	21.1
6	3 b	0.32	1.05 ± 0.47	16.0

Table 5.2: Line Statistics (Continued)

Realization	Sample	W limit	\mathcal{A},	γ
6	3a	0.16	0.97 ± 0.66	26.2
6	3b	0.16	0.91 ± 0.42	27.8
7	2a	var.	1.00 ± 0.45	-
7	2 b	var.	0.76 ± 0.29	-
7	2a	0.32	2.07 ± 0.66	5.69
7	2b	0.32	1.71 ± 0.43	8.41
7	2a	0.16	1.09 ± 0.54	33.8
7	2b	0.16	0.99 ± 0.35	35.6
7	3a	var.	1.36 ± 0.56	-
7	3 b	var.	1.18 ± 0.36	-
7	3 a	0.32	1.64 ± 0.74	7.96
7	3b	0.32	1.63 ± 0.47	7.84
7	3a	0.16	1.32 ± 0.65	17.1
7	3b	0.16	1.07 ± 0.42	22.7
8	2a	var.	1.28 ± 0.46	-
8	2b	var.	0.80 ± 0.30	-
8	2a	0.32	2.07 ± 0.67	5.52
8	2b	0.32	1.88 ± 0.43	6.67
8	2a	0.16	1.72 ± 0.55	14.5
8	2 b	0.16	1.08 ± 0.35	31.0
8	3a	var.	1.57 ± 0.56	-
8	3 b	var.	1.16 ± 0.36	-
8	3 a	0.32	2.24 ± 0.75	3.65
8	3b	0.32	1.88 ± 0.48	5.42
8	3 a	0.16	1.68 ± 0.65	11.5
8	3b	0.16	1.32 ± 0.41	16.5
9	2 a	var.	1.19 ± 0.47	-
9	2 b	var.	0.84 ± 0.30	-
9	2a	0.32	1.65 ± 0.68	9.19
9	2 b	0.32	1.46 ± 0.44	10.9
9	2a	0.16	1.42 ± 0.56	20.8
9	2 b	0.16	0.99 ± 0.35	34.8
9	3a	var.	1.33 ± 0.56	-
9	3 b	var.	1.13 ± 0.36	-
9	3 a	0.32	1.45 ± 0.72	10.6
9	3 b	0.32	1.41 ± 0.46	10.5
9	3 a	0.16	1.28 ± 0.65	18.3
9	3b	0.16	1.00 ± 0.41	24.8

Table 5.2: Line Statistics (Continued)

Realization	Sample	W limit	\mathcal{A}_{1}	γ
10	2a	var.	0.83 ± 0.46	-
10	2b	var.	0.77 ± 0.30	-
10	2a	0.32	1.97 ± 0.67	6.25
10	2b	0.32	1.65 ± 0.43	8.76
10	2a	0.16	0.79 ± 0.54	48.4
10	2b	0.16	0.83 ± 0.35	43.0
10	3a	var.	1.63 ± 0.57	-
10	3b	var.	1.37 ± 0.37	-
10	3a	0.32	1.99 ± 0.72	5.39
10	3b	0.32	1.65 ± 0.47	7.59
10	3a	0.16	1.71 ± 0.65	10.7
10	3b	0.16	1.26 ± 0.42	17.7

Sample:
1- MMT data
(a) Ly - α forest
(b) Ly- α forest + proximity effect region

2- realization of LN model, random simulations
(a) $\mathrm{Ly}-\alpha$ forest
(b) Ly- α forest + proximity effect region

3- realization of LN model, high density simulations
(a) $\mathrm{Ly}-\alpha$ forest
(b) Ly- α forest + proximity effect region

Table 5.3: Mean Ly- α Optical Depth versus Redshift

Realization	Sample	A	γ
-	1 a	0.0085 ± 0.00019	1.41 ± 0.018
-	1b	0.022 ± 0.00032	0.24 ± 0.012
1	2a	0.0030 ± 0.000075	2.34 ± 0.020
1	2b	0.0056 ± 0.00012	1.77 ± 0.017
1	3a	0.0020 ± 0.000053	2.40 ± 0.021
1	3b	0.0032 ± 0.000067	1.96 ± 0.016
2	2a	0.0038 ± 0.000088	2.93 ± 0.018
2	2b	0.0043 ± 0.000078	1.77 ± 0.014
2	3a	0.0032 ± 0.000082	2.00 ± 0.020
2	3b	0.0047 ± 0.000095	1.64 ± 0.015
3	2a	0.0039 ± 0.000092	1.95 ± 0.019
3	2b	0.0055 ± 0.00010	1.59 ± 0.015
3	3a	0.0029 ± 0.000080	2.13 ± 0.021
3	3b	0.0047 ± 0.00010	1.68 ± 0.017
4	2a	0.0025 ± 0.000058	2.26 ± 0.018
4	2b	0.0043 ± 0.000081	1.77 ± 0.014
4	3a	0.0045 ± 0.00013	1.77 ± 0.023
4	3b	0.0064 ± 0.00014	1.44 ± 0.017
5	2a	0.0042 ± 0.00011	2.07 ± 0.023
5	2b	0.0062 ± 0.00013	1.69 ± 0.017
5	3a	0.0031 ± 0.000082	2.09 ± 0.021
5	3b	0.0069 ± 0.00014	1.36 ± 0.016
6	2a	0.0029 ± 0.000072	2.16 ± 0.019
6	2 b	0.0046 ± 0.000086	1.71 ± 0.014
6	3a	0.0085 ± 0.00022	1.26 ± 0.022
6	3b	0.0093 ± 0.00019	1.14 ± 0.017
7	2a	0.0043 ± 0.00012	2.06 ± 0.023
7	2b	0.0064 ± 0.00013	1.66 ± 0.017
7	3a	0.0026 ± 0.000072	2.20 ± 0.002
7	3b	0.0050 ± 0.00011	1.63 ± 0.017
8	2a	0.0035 ± 0.000093	2.22 ± 0.021
8	2b	0.0061 ± 0.00013	1.69 ± 0.017
8	3 a	0.0021 ± 0.000052	2.33 ± 0.020
8	3b	0.0038 ± 0.000074	1.77 ± 0.015
9	2a	0.0042 ± 0.00011	2.05 ± 0.022
9	2 b	0.0064 ± 0.00014	1.65 ± 0.017
9	3a	0.0027 ± 0.000078	2.19 ± 0.023
9	3b	0.0038 ± 0.000083	1.85 ± 0.017

Table 5.3: Mean Ly- α Optical Depth versus Redshift (Continued)

Realization	Sample	A	γ
10	2 a	0.0030 ± 0.000084	2.32 ± 0.022
10	2b	0.0053 ± 0.00011	1.82 ± 0.018
10	3a	0.0037 ± 0.00010	1.93 ± 0.022
10	3 b	0.0053 ± 0.00011	1.57 ± 0.017

Sample:
1- MMT data
(a) Ly- α forest
(b) Ly- α forest + proximity effect region

2- realization of LN model, random simulations
(a) $\mathrm{Ly}-\alpha$ forest
(b) Ly- α forest + proximity effect region

3- realization of LN model, high density simulations
(a) $\mathrm{L} y-\alpha$ forest
(b) Ly- α forest + proximity effect region

Table 5.4. Ionization Rates and HM96 Scaling Factors

Realization	Sample	$\log (\Gamma)$	f_{Γ}
-	1	$-11.822_{-0.17}^{+0.20}$	$1.42{ }_{-0.42}^{+0.78}$
1	2	$-12.10_{-0.14}^{+0.16}$	$1.49_{-0.48}^{+0.79}$
1	3	$-11.86_{-0.18}^{+0.20}$	$2.77_{-1.04}^{+1.89}$
2	2	$-12.07_{-0.17}^{+0.20}$	$1.20{ }_{-0.44}$
2	3	$-11.29_{-0.26}^{+0.33}$	$8.64{ }_{-3.91}^{+10.0}$
3	2	$-11.66_{-0.20}^{+0.23}$	$4.14{ }_{-1.65}^{+3.27}$
3	3	$-11.84_{-0.24}^{+0.30}$	$3.35{ }_{-1.56}^{+3.64}$
4	2	$-12.02_{-0.15}^{+0.18}$	$1.28_{-0.39}^{+0.66}$
4	3	$-11.811_{-0.17}^{+0.21}$	$2.61{ }_{-0.93}^{+1.69}$
5	2	$-12.19_{-0.14}^{+0.15}$	$0.80_{-0.23}^{+0.38}$
5	3	$-11.75_{-0.19}^{+0.22}$	$2.51{ }_{-0.91}^{+1.62}$
6	2	$-12.12_{-0.16}^{+0.17}$	$1.39_{-0.46}^{+0.82}$
6	3	$-11.50{ }_{-0.27}^{+0.36}$	$5.39_{-2.64}^{+7.10}$
7	2	$-12.24_{-0.14}^{+0.27}$	$0.98{ }_{-0.30}^{-2.51}$
7	3	$-11.28_{-0.28}^{+0.35}$	$12.8{ }_{-6.78}^{+20.4}$
8	2	$-12.11_{-0.14}^{+0.15}$	$1.16_{-0.34}^{+0.55}$
8	3	$-11.77_{-0.22}^{+0.26}$	$3.26{ }_{-1.50}^{+3.08}$
9	2	$-11.93_{-0.17}^{+0.19}$	$1.87{ }_{-0.67}^{+1.21}$
9	3	$-11.866_{-0.21}^{+0.24}$	$3.03_{-1.27}^{+2.67}$
10	2	$-12.30_{-0.13}^{+0.13}$	$0.81{ }_{-0.22}^{+0.34}$
10	3	$-12.11_{-0.20}^{+0.22}$	$1.97{ }_{-0.81}^{+1.65}$
Sample:			
1- MMT data			
2- realization of LN model, random simulation			
3 - realization of LN model, high density simulations			

Table 5.5. Ionization Rates after Redshift Transformation

Realization	$\log (\Gamma)$	$\log (\Gamma)$
	$z_{\Delta v}=400 \mathrm{~km} \mathrm{~s}^{-1}$	$z_{\Delta v}=0 \mathrm{~km} \mathrm{~s}^{-1}$
1	$-11.58_{-0.23}^{+0.28}$	$-11.15_{-0.31}^{+0.47}$
2	$-11.79_{-0.20}^{+0.24}$	$-11.56_{-0.21}^{+0.25}$
3	$-11.74_{-0.21}^{+0.21}$	-11.41
4	$-11.70_{-0.21}^{+0.25}$	$-11.46_{-0.24}^{+0.27}$
5	$-11.51_{-0.24}^{+0.31}$	$-11.32_{-0.24}^{+0.29}$
6	$-11.59_{-0.23}^{+0.27}$	$-11.22_{-0.27}^{+0.33}$
7	$-11.79_{-0.19}^{+0.23}$	$-11.59_{-0.24}^{+0.24}$
8	$-11.74_{-0.24}^{+0.24}$	$-11.36_{-0.24}^{+0.31}$
9	$-11.75_{-0.19}^{+0.21}$	$-11.46_{-0.21}^{+0.25}$
10	$-11.70_{-0.20}^{+0.33}$	$-11.40_{-0.23}^{+0.28}$

Figure 5.1. N-body and LN dark matter density distributions at $z=100,30,9$, and 2.33

Figure 5.2. Cumulative flux decrement distributions for Keck data (thin solid line) from R97, and for SCDM and Λ CDM LN simulations scaled according to R97 (thick solid and dotted lines). Thin dotted line corresponds to the best fit ACDM LN simulation.

Figure 5.3. Cumulative flux decrement distributions for SPH simulations and LN simulations

Figure 5.4. Distributions of hydrogen neutral fraction, HI optical depth, and hydrogen densities for SPH simulations and LN simulations

Figure 5.5. Cumulative flux decrement distributions: (a) Keck data (thin solid line) from R97, and ACDM LN simulation (thick solid line); (b) MMT data (thin solid line) and Λ CDM LN simulation (thick solid line)

Figure 5.6. Histogram of mean decrements at $z=1.5-2.5$ and $z=2.5-3.5$ in simulated spectra: (left panel) quasars in random positions in density fields; (right panel) quasars in high density regions, see § 5.2.2; arrows mark $<\mathrm{D}>$ measured from MMT data

Figure 5.7. Differential flux distribution of pixels in the Ly- α forest and proximity effect regions of 500 bootstrap samples of the MMT data (histograms with error bars) and in the simulations (solid triangles): (top panel) quasars placed at random positions in density field; (bottom panel) quasars placed in high density regions (see § 5.2.2)

Figure 5.8. Data (top panels) and simulated spectra (bottom panels) of two sample quasars

Figure 5.9. Left panels: Redshift distribution of absorption lines for data spectra (bold lines) and one realization of simulated (top panel) random and (bottom panel) high density spectra using (top curves) $0.16 \AA$ and (bottom curves) $0.32 \AA$ equivalent width thresholds; Right panels: Comparison of parameter γ derived from real and 10 realizations of the simulated (top panel) random and (bottom panel) high density quasar spectra using $0.16 \AA, 0.32 \AA$, and variable equivalent width thresholds

Figure 5.10. Histograms of γ in simulations: (top panel) variable equivalent width threshold; (middle panel) lines with $W>0.32 \AA$; (bottom panel) lines with $W>0.16$ \AA; arrows mark values found from MMT data

Figure 5.11. Comparison of differential flux distributions for random and high density simulations, numbers indicate flux bin of x-axis in Figure 5.7

Figure 5.12. Mean flux in $100 \AA$ bins as a function of redshift. Thick dashed line is the fit to Ly- α forest points ($\omega<0.1$), thin dashed line in top panel is the PRS fit to Ly- α forest points, dotted line is fit to the full redshift range, including the proximity effect regions with $\omega>0.1$ plotted as open squares. Error bar at left denotes average redshift bin size.

Figure 5.13. Deficit of absorption lines with $W>0.16 \AA$ and $W>0.32 \AA$ with respect to Equ. 5.8 as a function of luminosity distance from QSO for high (bold lines) and low luminosity QSOs

Figure 5.14. Histogram of line deficit within $2 \mathrm{~h}^{-1} \mathrm{Mpc}$ for (left panels) high and (right panels) low luminosity quasars in (top panels) random and (bottom panels) high density simulations for lines with $W>0.32 A$: arrows mark line deficits in MMT data

Figure 5.15. Histogram of line deficit within $2 \mathrm{~h}^{-1} \mathrm{Mpc}$ for (left panels) high and (right panels) low luminosity quasars in (top panels) random and (bottom panels) high density simulations for lines with $W>0.16 \AA$: arrows mark line deficits in MMT data

Figure 5.16. Maximum likelihood values of Γ (points) and f_{Γ} (solid curves) for $z=1.9-4.1$ from absorption line solution for lines with $W>0.32 \AA$ in (top panel) random simulations, (middle panel) high density simulations, and in (bottom panel) MMT data; shaded regions delineate 1σ uncertainties on f_{Γ}; dashed black curves in top and middle panels indicate the photoionization rates input into simulations, $f_{\Gamma}=1.43$, chosen to match the flux decrements in the Ly- α forest data

Figure 5.17. Histograms of (top panels) $\log (\Gamma)$ and (bottom panels) f_{Γ} in (left panels) random and (right panels) high density simulations; black arrows mark the values input into simulations, chosen to match flux decrements in the $\mathrm{Ly}-\alpha$ forest data; dotted arrows mark values measured from maximum likelihood analysis on the MMT data

Figure 5.18. (solid line) Histogram $\log (\Gamma)$ derived from ten realizations of the redshift transformation described in Equation 5.12 with $z_{\Delta v}=400 \mathrm{~km} \mathrm{~s}^{-1}$, (dashed line) same as solid line, but $z_{\Delta v}=0 \mathrm{~km} \mathrm{~s}^{-1}$; the arrow denotes the value derived from the simulation using the input quasar redshifts

Figure 5.19. Mean flux in 50 A bins as a function of ω with maximum likelihood solution to Equation 5.14, $z=1.7-4$.

Appendix A
Figure 2.2 (Continued)
smoothed 50 EW limit (λ)

relative flux (f_{\sim})

smoothed so EW limit (A)

relative flux (t_{*})

relative flux (l_{*})

smoothed 50 EW limit (A)

relative flux ($\left(I_{v}\right)$

relative flux (p_{v})

smoothed 5aEW limat (A)

relative flux (1.)

smoothed 60EW limit (A)

smoothed 50 EW IImit (A)

Appendix B
 Line Lists and Identifications for MMT QSO Spectra

		017．0干061 7		\＆
		0LI0干09L 1	600 ∓ 68	ZZ
		0170 ∓ 078.7	IIOFIE9ICE	12
LTVLE $\%=z \angle 801 Y$ I $\Lambda 0$				
		$0 \pm 80 \mp 00 \sigma^{\circ} \mathrm{Z}$		07
		072\％0才018 ${ }^{\circ}$	ZI＇0干Iて＇I6DE	6I
$88609^{\prime} \mathrm{I}=z$ VEEIY ID		0z\％0干010\％	カ・0干1\＆て8も¢	8I
		0870 0 OLE $¢$		LI
	$8 \angle E L E \cdot 7=z \delta^{\prime} \delta_{\mathrm{I}}$	$07 \%^{\circ} 0 \mp 0 z \varepsilon^{\circ} \mathrm{E}$	01．0干9¢ 09才¢	91
		012．1干089 2	$68.0 \mp 198 ¢ ¢ ¢ ¢$	GI
		0 ± 90 ¢0ヶ0 0°	8907\％I＇ちちゃを	bl
		0280干0切0	910干09 1 ¢もE	\＆I
		$08 \chi^{\prime}$ IF0LL	bc．0干E\＆ $68 \pm ¢$	ZI
Z90EI＇L＝z 8091Y IIP3				
z80ャ8＇I＝z 90ZIY III！S	$688 \mathrm{I} 8^{\circ} \mathrm{I}=z{ }^{\text {o }} \mathrm{K}_{\mathrm{T}}$	$0880 \mp 080 \cdot 8$	b「0干98．97ヵ¢	II
		0680 0 ¢071＇I	9Z＇0干LZとZも¢	0I
		$0080 \mp 02 \% \%$		6
		$068^{\circ} 0 \mp 078^{\circ} 7$	$8 \varepsilon^{\circ} 0 \mp 88^{\circ} \angle 8 \varepsilon \varepsilon$	8
	99658 $1=z 007$ IY IN	008．0干0bc 6	$28^{\circ} 0 \times 8 \mathrm{D}^{\circ} \mathrm{E} 8 \mathrm{E}$ ¢	2
	$0882 Z \cdot \zeta=z g \kappa^{\prime} \mathrm{T}$	06\％ 0 ¢088＇ 1	8107¢9＇z9E¢	9
		088．0708 ${ }^{\circ} \mathrm{Z}$	Iて．0干87＇9EEE	c
				■
$69609 \cdot \mathrm{I}=z 09 Z 1 \mathrm{Y}$ II！S	DDEE0 $\square^{\circ}=z$ E80IT IIN	$079 \cdot 0 \mp 09 \angle \varepsilon$	8Z0干I\＆ 68 Z	ε
		$018.0 \mp 090 \%$	LZ＇0干60．92\％	7
		016.0 ∓ 027.8	ع¢ $0 \mp 8 \mathrm{~F}^{\circ} \mathrm{ELZE}$	I
$070+9000$ O				
${ }^{\text {a }}$ I ${ }^{\text {rimissod }}$	ио！реэу！	（y）${ }^{\mathrm{r}} \mathrm{M}$	${ }^{\text {sq9 }} \mathrm{Y}$	${ }^{\circ} \mathrm{N}$

Table B.1: (continued)

No.	$\lambda_{\text {obs }}$	$W_{\lambda}(\AA)$	Identification	Possible I.D.
24	3550.42 ± 0.20	1.790 ± 0.240		
25	3558.62 ± 0.19	0.660 ± 0.400		
26	3561.34 ± 0.36	1.660 ± 0.700	AlII $\lambda 1670$	$z=1.13153$
27	3564.21 ± 0.15	0.790 ± 0.350		
28	3567.65 ± 0.17	2.170 ± 0.240	NV $\lambda 1238$	$z=1.87988$
29	3579.26 ± 0.10	0.440 ± 0.140	NV $\lambda 1242$	$z=1.87999$
SiII $\lambda 1260 \quad z=1.83973$				
30	3582.31 ± 1.52	1.100 ± 0.560		
31	3588.95 ± 0.20	0.960 ± 0.200		
32	3600.75 ± 0.69	1.100 ± 0.560		
33	3603.64 ± 0.22	0.960 ± 0.450		
34	3637.20 ± 0.47	1.580 ± 0.430	SiIV $\lambda 1393$	$z=1.60935$
35	3642.60 ± 0.16	0.760 ± 0.140		SiII $\lambda 1190 \quad z=2.05540$
36	3649.77 ± 0.22	0.840 ± 0.160		
37	3655.14 ± 0.36	1.490 ± 0.310		
38	3666.79 ± 0.07	2.610 ± 0.160		
39	3672.76 ± 0.15	1.780 ± 0.190		
40	3696.99 ± 0.15	0.420 ± 0.100		
41	3710.63 ± 0.06	2.190 ± 0.130		
42	3715.50 ± 0.06	2.800 ± 0.150		
43	3719.15 ± 0.05	1.420 ± 0.100		
44	3725.35 ± 0.07	1.570 ± 0.120		
45	3730.04 ± 0.02	1.640 ± 0.070		
46	3739.77 ± 0.09	0.940 ± 0.110		
47	3757.39 ± 0.10	1.450 ± 0.130		
48	3761.96 ± 0.09	1.450 ± 0.160	CII $\lambda 1334$	$z=1.81893$
49	3766.58 ± 0.28	1.620 ± 0.280		
50	3770.17 ± 0.09	0.670 ± 0.150		

	LgLLZ＇Z＝z 8¢ZIY Λ N	060．0〒0ヶt゙I	20079\％090¢	92
		0200才0IE＇I	900才¢ヶ．9¢0ャ	¢ 2
08LLE $Z=z 00 Z$ Y \times IN				
		020．07061＇t	200¢92．6t00	VL
		080．0才0ヶ0＇		\＆ 2
		0200 0 ¢0980		22
		$060 \cdot 0 \mp 086^{\circ} \mathrm{I}$	90．0¢90．700b	IL
		$080^{\circ} 0 \mp 000{ }^{\circ}$	50．0〒88．6868	02
		0 D －0¢0198	90．0干ャがヤ868	69
		$099^{\circ} \mathrm{O} \mp 099{ }^{\text { }}$	$9^{9} 0 \mp 978268$	89
		0270 00968	010才0988968	29
			$60^{\circ} 0 \mp 90{ }^{\circ}$ 1968	99
	$0 ヶ 8 L Z \cdot Z=z$ 90ZIY III！S	0¢\％ $0 \mp 002 \cdot 1$	7z0 0×68 ¢ 968	99
		0010702\％ 0	1z0于27：8768	59
		015070¢90	770才70 2168	¢9
		01.0 ∓ 0890		79
		0600¢0zto	¢ 0 0† 20 ¢68¢	19
		$0 ¢ 10 \mp 08 \varepsilon^{\circ} \mathrm{I}$	210才¢\＆6888	09
		01507069	200才て16988	69
26ヶ90＇z＝z 09ZIY II！S		0600\％0180	80076F＇0988	89
		060 07009 0		LS
	E8FEO ${ }^{\circ}=z$ 097IY IITS	$0180 \mp 020 \%$		9 c
		0610 0 ¢087		9
		$081^{\circ} 0 \mp 0900^{\circ}$	20＇0干6L＇ 7088	tc
		011070990	0107¢9 8628	ε
		$081^{\circ} 0 \mp 0 \mathrm{~F}^{\circ} \mathrm{I}$	$00^{0} 0 \mp 97$ 1628	z9
		091．0¥089 $\%$	$60^{\circ} 078{ }^{\text {¢ }}$ ¢ 9828	$\underline{19}$
dil Pq！${ }^{\text {ssod }}$		（y）${ }^{\text {r }} \mathrm{M}$	${ }^{\text {89\％}} \mathrm{K}$	${ }^{\circ} \mathrm{N}$

（pənu！quos）：I•G गqR．L
Table B.1: (continued)

No.	$\lambda_{\text {obs }}$	$\mathbf{W}_{\lambda}(\AA)$	Identification	Possible I.D.
77	4069.67 ± 0.15	1.240 ± 0.230		
78	4072.22 ± 0.15	1.840 ± 0.240	NV $\lambda 1242 \quad z=2.27663$	
79	4078.55 ± 0.04	2.030 ± 0.070		NII $\lambda 1083 \quad z=1.98643$
80	4087.54 ± 0.12	2.050 ± 0.170		
Q 0027+014				
1	3237.26 ± 0.14	2.080 ± 0.380		
2	3247.19 ± 0.61	1.980 ± 1.220		
3	3249.46 ± 0.48	1.490 ± 1.120		
4	3273.49 ± 0.15	1.930 ± 0.360		
5	3293.73 ± 0.79	4.230 ± 2.000	Ly $\beta \quad z=2.21113$	
6	3315.24 ± 0.15	2.930 ± 0.350		
7	3324.99 ± 0.14	1.880 ± 0.260		
8	3329.64 ± 0.29	2.140 ± 0.480		
9	3335.86 ± 0.39	1.840 ± 0.540		
10	3359.20 ± 0.12	1.380 ± 0.210	Ly $\beta z=2.27496$	
11	3397.53 ± 0.09	1.960 ± 0.220		
12	3410.82 ± 0.11	1.460 ± 0.200	NI $\lambda 1200 \quad z=1.84235$	
13	3415.65 ± 0.11	1.970 ± 0.220		
14	3419.48 ± 0.13	2.430 ± 0.290		
15	3427.85 ± 0.12	1.750 ± 0.210	SilII $\lambda 1206 z=1.84115$	
16	3454.36 ± 0.24	6.190 ± 1.200	Ly $\alpha z=1.84153$	
17	3498.50 ± 0.10	2.970 ± 0.260		
18	3508.12 ± 0.13	2.370 ± 0.270	CIV $\lambda 1548 z=1.26593$	
19	3513.53 ± 0.08	1.550 ± 0.170	CIV $\lambda 1550 z=1.26566$	
20	3516.77 ± 0.17	1.190 ± 0.210		
21	3532.58 ± 0.09	1.040 ± 0.150		

Table B.1: (continued)

No.	$\lambda_{\text {obs }}$	$\bar{W}_{\lambda}(\AA)$	Identification
22	3563.32 ± 0.57	2.050 ± 0.990	
23	3581.91 ± 0.12	0.710 ± 0.150	SiII $\lambda 1260 \quad z=1.84183$
24	3590.22 ± 0.11	0.490 ± 0.120	
25	3594.32 ± 0.12	0.790 ± 0.140	
26	3602.98 ± 0.10	1.160 ± 0.150	
27	3607.65 ± 0.10	1.760 ± 0.180	
28	3622.13 ± 0.09	1.960 ± 0.180	
29	3629.86 ± 0.12	1.210 ± 0.170	
30	3638.61 ± 0.06	1.460 ± 0.140	
31	3696.81 ± 0.09	2.520 ± 0.210	
32	3722.15 ± 0.06	1.330 ± 0.120	
33	3749.25 ± 0.06	1.530 ± 0.120	
34	3753.76 ± 0.09	1.690 ± 0.150	
35	3762.68 ± 0.21	1.400 ± 0.310	
36	3765.40 ± 0.15	1.770 ± 0.300	
37	3768.75 ± 0.13	1.590 ± 0.180	
38	3783.17 ± 0.25	0.750 ± 0.190	
39	3785.93 ± 0.33	0.410 ± 0.320	AlII $\lambda 1670 z=1.98589$
40	3789.09 ± 0.27	2.030 ± 0.420	
41	3793.53 ± 0.15	5.280 ± 0.590	
42	3806.84 ± 0.11	0.980 ± 0.130	
43	3830.07 ± 0.10	1.140 ± 0.130	
44	3834.96 ± 0.12	0.410 ± 0.110	
45	3837.17 ± 0.15	0.640 ± 0.130	
46	3841.00 ± 0.09	3.290 ± 0.290	
47	3843.85 ± 0.08	0.750 ± 0.150	
48	3850.46 ± 0.14	4.220 ± 0.420	

Table B.1: (continued)

No.	$\lambda_{\text {obs }}$	$\mathrm{W}_{\lambda}(\AA)$	Identification	Possible I.D.
49	3865.91 ± 0.10	1.660 ± 0.160		
50	3871.28 ± 0.09	1.570 ± 0.140		
51	3890.20 ± 0.10	2.050 ± 0.180		
52	3904.71 ± 0.11	4.020 ± 0.330		
53	3921.89 ± 0.14	0.440 ± 0.100		
54	3931.10 ± 0.35	0.960 ± 0.240		
55	3938.95 ± 0.07	0.270 ± 0.060		
56	3947.96 ± 0.11	1.890 ± 0.170		
57	3959.78 ± 0.08	2.360 ± 0.150	SilV $\lambda 1393 \quad z=1.84109$	
58	3966.81 ± 0.13	2.540 ± 0.270		
59	3981.70 ± 0.07	2.730 ± 0.160		
60	3985.98 ± 0.08	0.700 ± 0.080	SilV $\lambda 1402 \quad z=1.84151$	
61	3990.72 ± 0.12	0.280 ± 0.070		
62	3993.71 ± 0.07	0.740 ± 0.080		
63	3996.22 ± 0.04	1.070 ± 0.070		
64	4007.46 ± 0.04	0.930 ± 0.060		
65	4026.21 ± 0.06	0.420 ± 0.050		
66	4033.19 ± 0.06	0.350 ± 0.040		
67	4035.51 ± 0.03	1.120 ± 0.050		
68	4037.67 ± 0.04	0.710 ± 0.050		
69	4042.08 ± 0.05	0.570 ± 0.040		
			0	
1	3568.66 ± 0.09	0.820 ± 0.190		
2	3604.01 ± 0.06	0.610 ± 0.140		
3	3703.98 ± 0.12	1.020 ± 0.190		
4	3762.29 ± 0.12	0.820 ± 0.180		

		0¢\％0¢0btて	－10才ャで2098	Iz
		OSTOFOLC＇I	200788．0098	02
		0910¢022＇0	9107 0 ¢ 9698	6I
		0910F092＇ı	80076 $8^{\circ} 169^{\circ}$	8I
		09 c －0才06\％＇I	20．07809998	21
		$0 \mathrm{ct} 0 \mp 0 \mathrm{c} 90$	\＆ $1^{\circ} 0 \mp 61^{\circ} 0 ¢ 98$	91
		00ヶ0¢096．$¢$	¢10干じ0ヶ¢8	¢1
		$01 Z^{\circ} 0 \mp 00 \mathrm{t}^{\circ} \mathrm{Z}$		bl
		0610戸0iz＇z	800戸8899898	\＆I
		091．0¢099．0		21
		01z：0〒0tb＇		II
18061＇$z=z 880 \mathrm{I}$ Y IIN		07% O¢060＇		01
		$08 \mathrm{~T} 0 \mp 088$ I	800才79 1 Ltを	6
		0680才0¢I＇	c¢ 0¢0ヶ¢ ¢ ¢ ¢	8
		027＇0¢002．0	zi $0 \mp$ ¢0＇tzes	4
		088 $0 \mp 092^{\prime}$ I	9\％ 0 ∓ 89 2LE¢	9
		018．0才089＇	070才60zİ\＆	9
9LZz¢ ${ }^{\prime}$ I＝z z0¢IY 10	$89707 \cdot 7=z \delta^{\prime} \mathcal{S}_{T}$	087\％ $0 \mp 062^{\prime} \mathrm{I}$	ャг 0¢ 20.9888	－
		099 $0 \mp 006 . z$	97．0干ャ9 ¢ 278	ε
		$089.0 \mp 010{ }^{\circ}$	$9 \mathrm{9} \cdot 0 \mp \varepsilon \chi^{\circ} \mathrm{Gqz} \mathrm{\%}$	\checkmark
		0LE＇I $709 \downarrow$ ¢	て¢0才て！＇8ちて¢	1

$200+6 \mathrm{~F} 000$				
		09107082．0	910才06 7868	8
				1
		080007069°	70．0FLL＇2088	9
		$080^{\circ} 0 \mp 08 \underbrace{\circ}$	01．0才02．9828	$\underline{9}$
	ио！̣еэу！${ }^{\text {a }}$	（ $\mathrm{V}^{\text {r }}$ Y M	${ }^{\text {59\％}} \mathrm{Y}$	${ }^{\circ} \mathrm{N}$

Table B.1: (continued)

No.	$\lambda_{\text {obs }}$	$\mathrm{W}_{\lambda}(\AA)$	Identification	Possible I.D.
22	3610.99 ± 0.16	1.140 ± 0.170		
23	3614.51 ± 0.06	1.440 ± 0.140		
24	3617.29 ± 0.09	1.910 ± 0.180		
25	3621.35 ± 0.22	1.700 ± 0.530		
26	3624.00 ± 0.41	1.650 ± 0.590		
27	3643.56 ± 0.10	0.890 ± 0.120	SiII $\lambda 1526 z=1.38655$	
28	3667.86 ± 0.11	3.040 ± 0.260		
29	3677.94 ± 0.12	0.460 ± 0.110		
30	3680.04 ± 0.09	0.930 ± 0.120		
31	3695.09 ± 0.14	0.890 ± 0.140	CIV $\lambda 1548 z=1.38670$	
32	3698.19 ± 0.07	1.660 ± 0.150		
33	3700.96 ± 0.13	0.700 ± 0.130	CIV $\lambda 1550 z=1.38652$	
34	3704.58 ± 0.12	1.310 ± 0.150		
35	3717.51 ± 0.09	0.990 ± 0.120		
36	3720.02 ± 0.09	0.670 ± 0.110		Sill $\lambda 1193 z=2.11744$
37	3733.97 ± 0.25	0.960 ± 0.200		
38	3758.63 ± 0.05	1.190 ± 0.100		
39	3764.84 ± 0.08	0.880 ± 0.100		
40	3780.59 ± 0.09	2.260 ± 0.180		
41	3789.03 ± 0.06	1.570 ± 0.100	Ly $\alpha z=2.11682$	
42	3798.18 ± 0.13	0.810 ± 0.110		
43	3806.03 ± 0.15	0.470 ± 0.100		
44	3815.60 ± 0.09	1.130 ± 0.110		
45	3833.99 ± 0.10	1.610 ± 0.150		
46	3838.03 ± 0.15	0.560 ± 0.100		
47	3841.46 ± 0.15	1.100 ± 0.220		
48	3843.91 ± 0.23	0.890 ± 0.240		

Table B.1: (continued)

No.	$\lambda_{\text {obs }}$	$\mathrm{W}_{\lambda}(\AA)$	Identification	Possible I.D.
49	3849.80 ± 0.09	4.610 ± 0.360	Ly $\alpha z=2.16681$	$\begin{aligned} & \text { SiII } \lambda 1526 z=1.52163 \\ & \text { SiIII } \lambda 1206 z=2.19088 \end{aligned}$
50	3855.48 ± 0.06	2.250 ± 0.120		
51	3880.09 ± 0.07	2.620 ± 0.150	$\mathrm{Ly} \alpha z=2.19172$	
52	3893.78 ± 0.24	1.610 ± 0.280	Ly $\alpha z=2.20299$	
53	3899.94 ± 0.15	0.270 ± 0.060		
54	3905.20 ± 0.13	0.340 ± 0.060		CIV $\lambda 1548 z=1.52240$
55	3911.77 ± 0.10	1.950 ± 0.150		CIV $\lambda 1550 z=1.52246$
56	3926.71 ± 0.10	4.140 ± 0.310		Sill $\lambda 1260 z=2.11539$
				NV $\lambda 1238 z=2.16971$
57	3931.27 ± 0.06	1.710 ± 0.090		
58	3934.85 ± 0.04	1.200 ± 0.070		NV $\lambda 1242 z=2.16610$
59	3937.82 ± 0.17	0.430 ± 0.080		
60	3987.13 ± 0.16	0.420 ± 0.060	AllI $\lambda 1670 z=1.38638$	
61	4027.36 ± 0.14	0.830 ± 0.090		
62	4033.56 ± 0.14	0.540 ± 0.070		
63	4057.46 ± 0.06	0.820 ± 0.050	SiIV $\lambda 1393 z=1.91117$	$\text { Fell } \lambda 1608 z=1.52258$ $\text { OI } \lambda 1302 z=2.11592$
64	4083.76 ± 0.12	0.730 ± 0.080	SiIV $\lambda 1402 z=1.91121$	
			Q 0123+257	
1	3429.76 ± 0.14	1.750 ± 0.260	$\mathrm{Ly} \beta z=2.34375$	SilII $\lambda 1206 z=1.84274$
2	3433.08 ± 0.22	0.790 ± 0.310		FeII $\lambda 2600 z=0.32033$
3	3435.16 ± 0.25	1.140 ± 0.340		
4	3455.80 ± 0.14	2.680 ± 0.280	Ly $\alpha z=1.84271$	$\mathrm{Ly} \beta$ z 2.36913
5	3473.23 ± 0.24	1.660 ± 0.290	OVI $\lambda 1031 z=2.36577$	Fell $\lambda 1143 z=2.03810$
6	3477.76 ± 0.20	4.540 ± 0.530		FeII $\lambda 1145 \quad z=2.03751$

Table B.1: (continued)

No.	$\lambda_{\text {obs }}$	$W_{\lambda}(\AA)$	Identification	Possible I.D.
7	3495.82 ± 0.23	3.260 ± 0.480	OVI $\lambda 1037$	$z=2.36909$
8	3540.25 ± 0.04	0.820 ± 0.120		
9	3560.66 ± 0.12	2.120 ± 0.250		
10	3584.82 ± 0.51	2.340 ± 0.630		
11	3602.90 ± 0.24	2.140 ± 0.330		
12	3645.20 ± 0.16	1.740 ± 0.220	NII $\lambda 1083$	$z=2.36276$
13	3650.09 ± 0.13	3.310 ± 0.300		NI $\lambda 1200 z=2.03767$
14	3670.98 ± 0.06	0.640 ± 0.120		
15	3676.40 ± 0.23	2.140 ± 0.320		
16	3693.13 ± 0.13	4.320 ± 0.350	MgII $\lambda 2796 \quad z=0.32070$	Ly $\alpha z=2.03794$
17	3701.91 ± 0.11	2.510 ± 0.210	MgII $\lambda 2803$	$z=0.32045$
18	3708.54 ± 0.12	2.440 ± 0.220		OI $\lambda 1302 z=1.84288$
19	3731.60 ± 0.08	0.670 ± 0.110		
20	3735.99 ± 0.11	1.950 ± 0.200		
21	3767.51 ± 0.09	1.290 ± 0.130	MgI $\lambda 2853$	$z=0.32056$
22	3775.91 ± 0.16	0.740 ± 0.140		
23	3781.14 ± 0.15	0.980 ± 0.150		
24	3787.46 ± 0.24	0.690 ± 0.160		
25	3795.77 ± 0.08	0.690 ± 0.110		
26	3799.08 ± 0.08	1.620 ± 0.140		
27	3807.59 ± 0.13	1.900 ± 0.190		
28	3845.67 ± 0.28	2.680 ± 0.450		
29	3866.68 ± 0.10	2.430 ± 0.180		
30	3882.63 ± 0.26	1.270 ± 0.220		
31	3889.85 ± 0.11	1.300 ± 0.160		
32	3900.51 ± 0.09	1.520 ± 0.130		
33	3914.51 ± 0.05	1.000 ± 0.100		

Table B.1: (continued)

No.	$\lambda_{\text {obs }}$	$W_{\lambda}(\AA)$	Identification
34	3930.63 ± 0.15	0.450 ± 0.090	
35	3936.04 ± 0.21	1.090 ± 0.160	
36	3944.11 ± 0.08	1.640 ± 0.130	
37	3959.82 ± 0.09	0.770 ± 0.110	
38	3962.09 ± 0.16	0.630 ± 0.120	
39	3971.90 ± 0.13	1.480 ± 0.330	
40	3974.34 ± 0.18	2.540 ± 0.360	
41	3982.75 ± 0.07	2.590 ± 0.140	
42	3989.45 ± 0.16	0.720 ± 0.100	
43	4004.05 ± 0.04	2.760 ± 0.090	
44	4013.21 ± 0.05	3.730 ± 0.120	
45	4038.10 ± 0.08	0.920 ± 0.070	
46	4059.86 ± 0.03	0.636 ± 0.035	
47	4064.42 ± 0.07	4.050 ± 0.230	Ly $\alpha z=2.34335$

47	4064.42 ± 0.07	4.050 ± 0.230	Ly $\alpha z=2.34335$	SiIII $\lambda 1206 z=2.36876$
			$\mathrm{Q} 0150-202$	
1	3229.98 ± 1.04	4.200 ± 3.150		
2	3231.74 ± 0.09	0.390 ± 0.310		
3	3234.08 ± 0.72	2.070 ± 2.330	OVI $\lambda 1031 \quad z=2.13402$	
4	3249.31 ± 1.17	2.590 ± 2.780	FeII $\lambda 2382 z=0.36367$	
5	3252.99 ± 0.71	3.390 ± 2.560		OVI $\lambda 1037 z=2.13506$
			FeII $\lambda 2344 z=0.38766$	
6	3293.81 ± 0.17	1.860 ± 0.320		AlII $\lambda 1854 z=0.77922$
7	3299.95 ± 0.10	0.920 ± 0.210		FeII $\lambda 2382 z=0.38824$
8	3307.86 ± 0.16	1.820 ± 0.300		
9	3358.39 ± 0.09	2.290 ± 0.230		
10	3363.04 ± 0.11	2.390 ± 0.250	Ly $\alpha z=1.76640$	

	$98800 \%=z$ 万K＇T	091．0干086．0	20070¢ 2998	LE
	20900% \％ OK T	09z．0干006．1	¢107¢ \％¢ ¢98	98
		001．0干0¢9 ${ }^{\circ}$	60.0 ∓ 96 ヶャ98	SE
		08107019 1	20．0干II 9898	VE
	$99010{ }^{\circ} \mathrm{Z}=z$ 90ZIY IIIIS	0¢t．0干018．1	9007¢z 7898	E¢
			610才1b6798	78
		008．0干089＇1	9107LL 0098	IE
		089．0干069＊0	29．0781－1098	08
		065070c9\％	8¢07126698	67
		0\＆I＇0干08L＇I	80．0干じ969¢	87
LLL8E $0=z 9897 \mathrm{Y}$ IIP ${ }^{\text {P }}$	$\varepsilon 8800 \cdot \square=z \mathcal{E 6 I I Y}$ II！S	02I＇0干078 1	81070L6898	LZ
		0110干0¢F\％	110780＇9LCE	97
		091．0于0z6：1	20．0干960998	gz
	97z98：0 $=z 0097$ Y IIP	07\％＇0干061＇1		$\checkmark Z$
		0¢t＇0干066．0	210干00 28.8	\＆z
	187980 $0=z 9897$ Y IIPH	0210 0 082：0	610701 96SE	ZZ
		0 OLO 0 OLL 0	cz＇0干9 ${ }^{\circ} \mathrm{f6b} \mathrm{\varepsilon}$	IZ
		065 0 ¢08 ${ }^{\circ} \mathrm{T}$	0107E\＆060¢	02
		07\％0才002：0	01．070¢ $7 ¢ 5 ¢$	6I
		08807079 ${ }^{\circ}$	02．0718．6bte	8I
		0910 0 ¢0980	8007059bb\＆	LI
		0z8．0干097． 7	81．0788．${ }^{\circ} \mathrm{tbt}$	91
		0610干098．	210768：87ヵ¢	cI
		0LI＇0干090＇	01．0706．7\％¢	bI
		007：0干0\＆5 1		\＆I
		$061^{\circ} 0 \mp 08^{\circ} 0$	91．0781＇7008	21
	$60 \pm 8 L^{\prime} \%=z$ E80IY IIN	09z．0¢088． 1	万1．07\＆	11
${ }^{\text {d／I }}$ PlqIssod	ио！ұеэy！	（8）${ }^{\mathrm{Y}} \mathrm{M}$	${ }^{59 \%} \mathrm{Y}$	${ }^{\circ} \mathrm{N}$

Table B.1: (continued)

No.	$\lambda_{\text {obs }}$	$\mathrm{W}_{\lambda}(\AA)$	Identification	Possible I.D.
38	3659.32 ± 0.07	1.250 ± 0.130	Ly $\alpha z=2.01012$	
39	3674.84 ± 0.06	0.810 ± 0.090		
40	3684.81 ± 0.09	0.900 ± 0.100		
41	3690.21 ± 0.12	0.770 ± 0.100		Sill $\lambda 1260 z=1.92775$
42	3693.37 ± 0.07	1.010 ± 0.090		CII $\lambda 13343 z=1.76753$
43	3701.56 ± 0.21	0.610 ± 0.120		
44	3711.03 ± 0.09	0.770 ± 0.090		
45	3715.42 ± 0.05	3.510 ± 0.140		
46	3726.34 ± 0.66	0.740 ± 0.290		NV $\lambda 1238 z=2.00797$
47	3746.73 ± 0.16	0.300 ± 0.070		
48	3766.63 ± 0.03	1.410 ± 0.060		
49	3771.62 ± 0.04	0.740 ± 0.050		
50	3783.56 ± 0.03	0.960 ± 0.040		
51	3788.59 ± 0.04	0.930 ± 0.050		SiII $\lambda 1260 z=2.00581$
52	3792.57 ± 0.03	1.310 ± 0.040	SiII $\lambda 1260 z=2.00896$	
53	3810.34 ± 0.12	6.790 ± 0.630	Ly $\alpha z=2.13435$	MgII $\lambda 2796 z=0.36261$
54	3820.78 ± 0.10	0.220 ± 0.030		$\begin{aligned} & \text { MgII } \lambda 2803 z=0.36285 \\ & \text { SiII } \lambda 1304 z=1.92921 \end{aligned}$
55	3827.80 ± 0.14	0.180 ± 0.030		
56	3868.16 ± 0.14	0.580 ± 0.070		
57	3883.28 ± 0.14	2.740 ± 0.310	NV $\lambda 1238 z=2.13465$	MgII $\lambda 2796$ z $=0.38869$
58	3896.29 ± 0.16	1.690 ± 0.210	NV $\lambda 1242 z=2.13508$	MgII $\lambda 2803 z=0.38977$
59	3918.56 ± 0.17	0.260 ± 0.060	OI $\lambda 1302 z=2.00925$	
60	4014.49 ± 0.15	0.420 ± 0.070	CII $\lambda 1334 z=2.00816$	
Q 0153+744				
1	3432.34 ± 0.12	2.840 ± 0.310	Ly $\beta z=2.34626$	

Table B.1: (continued)

No.	$\lambda_{\text {obs }}$	$W_{\lambda}(\AA)$	Identification	Possible I.D.
2	3439.88 ± 0.20	1.140 ± 0.270		
3	3453.25 ± 0.11	2.000 ± 0.250	OVI $\lambda 1031 z=2.34641$	
4	3472.52 ± 0.23	2.270 ± 0.370	OVI $\lambda 1037$	$z=2.34663$
5	3501.59 ± 0.14	2.060 ± 0.380		
6	3526.07 ± 0.14	1.910 ± 0.290		
7	3577.96 ± 0.17	1.280 ± 0.280		
8	3601.66 ± 0.14	1.600 ± 0.250		
9	3614.49 ± 0.13	1.250 ± 0.220		
10	3617.92 ± 0.10	1.290 ± 0.210		
11	3624.23 ± 0.11	0.780 ± 0.170		
12	3634.82 ± 0.11	2.370 ± 0.250		
13	3680.75 ± 0.14	2.320 ± 0.260		
14	3712.10 ± 0.10	2.750 ± 0.250		
15	3716.10 ± 0.11	2.620 ± 0.250		
16	3734.63 ± 0.11	1.860 ± 0.180		
17	3753.89 ± 0.14	0.480 ± 0.130		
18	3774.51 ± 0.07	2.230 ± 0.150		
19	3784.84 ± 0.18	1.140 ± 0.180		
20	3797.00 ± 0.12	0.720 ± 0.140		
21	3825.87 ± 0.29	1.230 ± 0.240		
22	3830.64 ± 0.10	1.280 ± 0.160	FeII $\lambda 1145$	$z=2.34571$
23	3834.65 ± 0.10	3.010 ± 0.210		
24	3866.69 ± 0.11	3.880 ± 0.280		
25	3874.66 ± 0.17	2.460 ± 0.270		
26	3910.37 ± 0.10	1.420 ± 0.130		
27	3916.95 ± 0.06	1.680 ± 0.110		
28	3933.63 ± 0.11	1.220 ± 0.120		

Table B.1: (continued)

No.	$\lambda_{\text {obs }}$	$\mathrm{W}_{\lambda}(\AA)$	Identification	Possible I.D.	
29	3948.15 ± 0.07	1.390 ± 0.100			
30	3983.77 ± 0.07	1.720 ± 0.100			
31	3998.61 ± 0.06	1.530 ± 0.080			
32	4008.91 ± 0.21	0.740 ± 0.100			
33	4026.84 ± 0.15	0.420 ± 0.060			
34	4037.09 ± 0.04	0.800 ± 0.050	SiIII $\lambda 1206$	$z=2.34611$	
35	4042.77 ± 0.07	0.360 ± 0.040			
36	4067.11 ± 0.02	3.540 ± 0.050	Ly $\alpha z=2.34557$		
1	3496.45 ± 0.32	1.941 ± 0.473			
2	3524.52 ± 0.51	2.113 ± 0.531			
3	3529.93 ± 0.21	1.780 ± 0.370			
4	3535.58 ± 0.25	1.290 ± 0.580			
5	3537.78 ± 0.36	1.810 ± 0.660		CIV $\lambda 1548 z=1.32813$	
6	3540.90 ± 0.10	1.630 ± 0.280			
7	3604.42 ± 0.22	1.110 ± 0.263			
8	3647.38 ± 0.18	2.150 ± 0.280			
9	3654.29 ± 0.17	0.770 ± 0.170			
10	3665.79 ± 0.15	0.710 ± 0.150			
11	3672.48 ± 0.14	0.550 ± 0.130			
12	3840.57 ± 0.06	0.770 ± 0.110			
13	3908.09 ± 0.04	1.280 ± 0.110			
14	3975.41 ± 0.07	0.740 ± 0.110			
15	3979.11 ± 0.09	1.300 ± 0.140			
16	3992.06 ± 0.04	0.980 ± 0.100			
17	4050.22 ± 0.08	0.440 ± 0.090			

Table B.1: (continued)

No.	$\lambda_{\text {obs }}$	$\mathrm{W}_{\lambda}(\AA)$	Identification	Possible I.D.
			$\mathrm{Q} 0348+061$	
1	3238.05 ± 0.20	2.770 ± 0.530		
2	3272.71 ± 0.17	1.600 ± 0.350		
3	3331.14 ± 0.22	2.800 ± 0.480		
4	3362.36 ± 0.25	2.000 ± 0.570		
5	3364.35 ± 0.21	1.260 ± 0.520		
6	3373.65 ± 0.17	1.460 ± 0.330		
7	3398.16 ± 0.35	1.570 ± 0.880		
8	3400.40 ± 0.34	2.780 ± 0.920	Ly $\alpha z=1.79714$	
9	3453.19 ± 0.17	2.900 ± 0.420	Ly $\alpha z=1.84056$	
10	3467.18 ± 0.12	1.750 ± 0.270		
11	3471.79 ± 0.24	1.750 ± 0.360		
12	3476.15 ± 0.13	1.380 ± 0.250		
13	3502.00 ± 0.28	1.750 ± 0.390		
14	3509.57 ± 0.23	1.550 ± 0.320		
15	3555.34 ± 0.17	1.430 ± 0.250		
16	3581.17 ± 0.13	1.790 ± 0.220	SiIII $\lambda 1206 z=1.96823$	SiII $\lambda 1260 z=1.84124$
17	3589.96 ± 0.12	0.660 ± 0.140		
18	3607.63 ± 0.19	6.700 ± 1.040	Ly $\alpha z=1.96760$	
19	3623.27 ± 0.12	3.400 ± 0.330		
20	3627.89 ± 0.05	0.840 ± 0.100	NI $\lambda 1200 z=2.02324$	
21	3648.33 ± 0.08	1.440 ± 0.140	SiIII $\lambda 1206 z=2.02389$	
22	3658.78 ± 0.23	2.590 ± 0.450	SiIII $\lambda 1206 z=2.03255$	
23	3660.77 ± 0.07	0.650 ± 0.270		
24	3665.41 ± 0.05	1.770 ± 0.110		
25	3675.97 ± 0.29	9.280 ± 2.060	Ly $\alpha z=2.02382$	NV $\lambda 1238 z=1.96731$
26	3687.30 ± 0.09	5.820 ± 0.440	Ly $\alpha z=2.03314$	NV $\lambda 1242 z=1.96692$

Table B.1: (continued)

No.	$\lambda_{\text {obs }}$	$\mathrm{W}_{\lambda}(\AA)$	Identification	Possible I.D.
27	3693.45 ± 0.08	1.300 ± 0.100		
28	3811.94 ± 0.07	0.560 ± 0.080	Sill $\lambda 1260 z=2.02433$	
29	3969.91 ± 0.16	0.550 ± 0.120		
30	4035.34 ± 0.11	0.810 ± 0.120	CII $\lambda 1334 z=2.02378$	
Q 0400+258				
1	3751.72 ± 0.75	1.490 ± 2.060		
Q 0747+610				
1	3333.99 ± 1.16	3.810 ± 2.650		NV $\lambda 1242 z=1.68264$
2	3356.88 ± 0.37	2.130 ± 0.650	$\begin{aligned} & \operatorname{Ly} \beta z=2.27270 \\ & \text { SiIV } \lambda 1393 z=1.41039 \end{aligned}$	Sill $\lambda 1193 z=1.81313$
3	3359.50 ± 0.17	1.170 ± 0.510		
4	3369.13 ± 0.10	2.730 ± 0.240	$\mathrm{Ly} \beta \quad z=2.28464$	
5	3380.75 ± 0.17	1.120 ± 0.190	SilV $\lambda 1402 z=1.41005$	Sill $\lambda 1260 z=1.68224$
6	3389.25 ± 0.21	1.340 ± 0.230	OVI $\lambda 1031 z=2.28439$	SiII $\lambda 1304 z=1.59838$ NI $\lambda 1135 z=1.98618$
7	3393.22 ± 0.23	0.770 ± 0.180	SilII $\lambda 1206 z=1.81245$	
8	3407.82 ± 0.16	1.320 ± 0.190	OVI $\lambda 1037 z=2.28428$	
9	3418.84 ± 0.12	1.120 ± 0.160	Ly $\alpha z=1.81231$	SiIV $\lambda 1393 z=1.45297$
				NII $\lambda 1083 z=2.15394$
				Sill $\lambda 1190 z=1.87197$
10	3422.93 ± 0.12	1.780 ± 0.190		
11	3428.22 ± 0.10	1.500 ± 0.160	$\mathrm{Ly} \beta z=2.34224$	Sill $\lambda 1193 z=1.87291$
12	3439.32 ± 0.08	0.440 ± 0.180		
13	3441.00 ± 0.26	2.650 ± 0.390	$\mathrm{Ly} \beta \quad z=2.35471$	SiIV $\lambda 1402 z=1.45300$
14	3446.84 ± 0.12	0.700 ± 0.130	NI $\lambda 1200 z=1.87237$	
15	3449.45 ± 0.12	0.520 ± 0.120		
16	3457.70 ± 0.10	0.970 ± 0.140	Ly $\beta z=2.37099$	

Table B.1: (continued)

No.	$\lambda_{\text {obs }}$	$\mathrm{W}_{\lambda}(\AA)$	Identification	Possible I.D.
17	3462.95 ± 0.09	1.610 ± 0.170	Ly $\beta z=2.37611$	
18	3466.06 ± 0.18	1.010 ± 0.190	SiIII $\lambda 1206 z=1.87282$	CII $\lambda 1334 z=1.59721$
19	3472.26 ± 0.14	0.510 ± 0.130		
20	3479.87 ± 0.11	1.640 ± 0.180	NII $\lambda 1083 z=2.21024$	
21	3489.68 ± 0.08	0.770 ± 0.180		
22	3492.36 ± 0.10	3.220 ± 0.290	Ly $\alpha z=1.87279$	OI $\lambda 1302 z=1.68196$
23	3497.96 ± 0.07	1.430 ± 0.130		SiII $\lambda 1304 z=1.68172$
24	3507.56 ± 0.20	0.660 ± 0.160	$\mathrm{Ly} \beta z=2.41960$	
25	3513.13 ± 0.10	3.520 ± 0.270		
26	3529.48 ± 0.11	0.690 ± 0.110		
27	3544.12 ± 0.10	2.420 ± 0.190	SiII $\lambda 1260 z=1.81185$	
28	3554.27 ± 0.09	1.320 ± 0.120		SiII $\lambda 1190 z=1.98573$
29	3558.11 ± 0.37	0.810 ± 0.220		NV $\lambda 1238 z=1.87217$
				OI $\lambda 1302 z=1.73244$
30	3562.30 ± 0.36	0.930 ± 0.240	Ly $\beta z=2.47297$	$\begin{aligned} & \text { NI } \lambda 1135 z=2.13864 \\ & \text { SiII } \lambda 1193 z=1.98527 \end{aligned}$
31	3575.47 ± 0.20	1.200 ± 0.180		
32	3580.03 ± 0.15	0.320 ± 0.190	Sill $\lambda 1190 z=2.00737$	CII $\lambda 1334 z=1.68261$
33	3582.37 ± 0.40	0.970 ± 0.270	NI $\lambda 1200 z=1.98530$	
34	3588.72 ± 0.22	0.500 ± 0.120	Sill $\lambda 1193 z=2.00741$	
35	3600.95 ± 0.06	0.760 ± 0.080	NI $\lambda 1135 z=2.17270$	
36	3606.46 ± 0.12	1.000 ± 0.120		
37	3613.73 ± 0.14	0.550 ± 0.100		
38	3618.17 ± 0.05	2.200 ± 0.110		SiIII $\lambda 1206 z=1.99889$
39	3621.03 ± 0.06	0.690 ± 0.080	Sill $\lambda 1260 z=1.87287$	SiIV $\lambda 1393 z=1.59804$
40	3629.15 ± 0.21	2.570 ± 0.350	Ly $\alpha z=1.98530$	SilII $\lambda 1206 z=2.00800$
41	3635.13 ± 0.08	1.550 ± 0.110		

Table B.1: (continued)

No.	$\lambda_{\text {obs }}$	$\mathrm{W}_{\lambda}(\AA)$	Identification	Possible I.D.
42	3649.25 ± 0.11	1.550 ± 0.140		
43	3655.61 ± 0.75	3.370 ± 2.180	Ly $\alpha z=2.00707$	NI $\lambda 1200 \quad z=2.04634$
44	3658.29 ± 0.64	1.900 ± 1.930	Ly $\alpha z=2.00928$	
45	3662.58 ± 1.02	0.880 ± 0.760	OI $\lambda 1302 z=1.81267$	
46	3664.64 ± 0.24	0.300 ± 0.500		
47	3666.79 ± 0.16	0.670 ± 0.170		
48	3670.29 ± 0.23	0.860 ± 0.160		
49	3677.07 ± 0.33	1.160 ± 0.250		SilII $\lambda 1206 z=2.04772$
50	3686.13 ± 0.12	0.610 ± 0.100		
51	3696.21 ± 0.13	0.670 ± 0.100		
52	3704.91 ± 0.09	0.960 ± 0.100	Ly $\alpha z=2.04763$	
53	3720.96 ± 0.06	0.960 ± 0.090		
54	3727.63 ± 0.14	0.370 ± 0.090		NV $\lambda 1238 z=2.00901$
55	3731.54 ± 0.08	1.770 ± 0.130	CIV $\lambda 1548 z=1.41024$	
56	3736.14 ± 0.06	0.310 ± 0.070		
57	3738.14 ± 0.08	1.090 ± 0.110	CIV $\lambda 1550 z=1.41050$	SiIV $\lambda 1393 z=1.68206$
58	3745.18 ± 0.05	1.600 ± 0.090	SiII $\lambda 1526 z=1.45311$	
59	3752.66 ± 0.16	0.370 ± 0.090	CII $\lambda 1334 z=1.81197$	
60	3758.15 ± 0.04	1.380 ± 0.100		
61	3761.18 ± 0.05	2.680 ± 0.120		SiIV $\lambda 1402 z=1.68125$
62	3767.37 ± 0.22	0.490 ± 0.110	NI $\lambda 1200 z=2.13948$	
63	3771.96 ± 0.05	2.380 ± 0.120		
64	3777.29 ± 0.07	1.530 ± 0.100		Sill $\lambda 1190 z=2.17308$
65	3783.07 ± 0.34	0.680 ± 0.190	Sill $\lambda 1260 z=2.00143$	
66	3785.74 ± 0.07	0.660 ± 0.120		Sill $\lambda 1193 z=2.17252$
67	3790.69 ± 0.11	0.480 ± 0.090	SiII $\lambda 1260 z=2.00747$	
68	3792.52 ± 0.12	0.470 ± 0.100		

Table B.1: (continued)

No.	$\lambda_{\text {obs }}$	$\bar{W}_{\lambda}(\AA)$	Identification	Possible I.D.
69	3797.65 ± 0.04	1.730 ± 0.090	CIV $\lambda 1548 z=1.45294$	
70	3801.69 ± 0.11	0.900 ± 0.370		
71	3804.10 ± 0.49	1.200 ± 0.490	CIV $\lambda 1550 z=1.45303$	SiIII $\lambda 1206 z=2.15300$
72	3807.86 ± 0.16	1.000 ± 0.130	NI $\lambda 1200 z=2.17321$	SiIV $\lambda 1393 z=1.73208$
73	3812.02 ± 0.19	0.990 ± 0.150		
74	3816.06 ± 0.10	1.210 ± 0.120	Ly $\alpha z=2.13906$	
75	3822.00 ± 0.60	0.940 ± 0.390		
76	3824.89 ± 0.12	0.740 ± 0.280		
77	3827.84 ± 0.16	0.640 ± 0.110	SiIII $\lambda 1206 z=2.17268$	
78	3833.37 ± 0.27	1.120 ± 0.220	CII $\lambda 1334 z=1.87244$	SilV $\lambda 1402 z=1.73271$
79	3839.64 ± 0.11	0.690 ± 0.090		
80	3843.15 ± 0.14	0.570 ± 0.100		
81	3846.74 ± 0.04	2.410 ± 0.100		
82	3856.56 ± 0.06	1.170 ± 0.090	Ly $\alpha z=2.17237$	
83	3863.62 ± 0.04	1.440 ± 0.080		
84	3873.73 ± 0.09	0.490 ± 0.080	SilII $\lambda 1206 z=2.21072$	
85	3882.25 ± 0.08	1.290 ± 0.110		
86	3889.15 ± 0.11	0.320 ± 0.070		NV $\lambda 1238 z=2.13940$
87	3896.89 ± 0.04	1.320 ± 0.140		
88	3900.69 ± 0.12	5.130 ± 0.450		
89	3903.29 ± 0.06	0.850 ± 0.240	Ly $\alpha z=2.21081$	
90	3906.75 ± 0.07	3.740 ± 0.230		
91	3910.14 ± 0.13	1.030 ± 0.120		
92	3914.96 ± 0.05	1.120 ± 0.080		
93	3922.94 ± 0.08	1.590 ± 0.110	SiII $\lambda 1304 z=2.00753$	
94	3927.21 ± 0.04	1.020 ± 0.070		
95	3948.59 ± 0.22	0.610 ± 0.120		

		060．0才096 ${ }^{\text {I }}$	90．0才9s＇LzIt	IZI
		080．0キ021 ${ }^{\circ}$		02I
		$0 \mathrm{bl} 0 \mp 026 \mathrm{E}$	50．0干6¢切じ	6II
	$\angle Z L \angle E Z=z O S_{T}$	090．0干0c9 ${ }^{\text {－}}$	ع0．0干¢8：860	811
		001＇0干098＇I	90．0才0¢ 880 b	211
		0blomoso	200干口t＇080	9II
	28¢98\％$=z 0$ ¢ 7	0bt＇0才020＇t	80．0才LF 820 O	¢ıI
	$6 \mathrm{CLtE} \mathrm{C}^{\prime}=\sim \mathrm{OS} 7$		0．0〒6下＇¢90	－II
		0200才069\％	90．0干¢0．090\％	\＆II
		060．0キ096 ${ }^{\text {－}}$	b00才砍290b	ZII
	c901z\％$z=z$ 097IY II！S	0800才0¢90	H＇0才8L＇960t	III
		0110才0990	610 0 ¢96 280 t	0II
	ФtLecz $=z$ ¢6IIY II！S	0800才0¢50	21．0干018z0t	601
		0c00才09\％ 0	20078 $L^{\circ} 810$ ¢	801
		090 $0 \mp 0 \mathrm{~b}$ \％ 0	6007LEC10\％	201
09 LLE \％$=\sim$ 06IIY II！S	$09200 \%=z$ ธ¢¢LY ID	020 $0 \mp 0 ¢ 90$	200干19810t	901
		060．0干08 ${ }^{\circ} 0$		¢01
		088．0干078．9	600干 28.8668	¥01
		020．0干0190	200才 28 \％868	c0I
$06 L I Z ' Z=z 88 Z I Y \wedge N$		060.0 ∓ 096.1		zoI
			6007¢9．7268	101
		$017.0 \mp 088^{\circ} 0$	$61^{\circ} 0 \mp 6 \varepsilon^{\circ} \mathrm{L} 268$	001
			91．0干LT6968	66
92960 $=\sim$ z 0 ¢TY 10		0LCOFOLLO	1z：0788：2968	86
18987＇z＝z 90zIY III！		060．0才0ヶ6．0	90．0キ¢¢＇ヶ968	26
		060．07088．0	6007996968	96
G．${ }^{\text {Pqussod }}$	иопреэу！？	（y）${ }^{\mathrm{r}} \mathrm{M}$	${ }^{599} \mathrm{Y}$	${ }^{\circ} \mathrm{N}$

Table B.1: (continued)

No.	$\lambda_{\text {obs }}$	$\mathrm{W}_{\lambda}(\AA)$	Identification	Possible I.D.
122	4134.34 ± 0.06	1.410 ± 0.080		
123	4138.23 ± 0.14	2.020 ± 0.190		
124	4150.56 ± 0.07	0.590 ± 0.060		
125	4157.12 ± 0.02	2.110 ± 0.060	Ly $\alpha=2.41961$	
126	4161.46 ± 0.03	1.360 ± 0.050		
127	4175.09 ± 0.11	0.340 ± 0.060		
128	4179.84 ± 0.19	0.440 ± 0.080	OI $\lambda 1302 z=2.20991$	
129	4182.20 ± 0.11	0.220 ± 0.060		
130	4184.08 ± 0.04	0.550 ± 0.040		
131	4186.00 ± 0.03	0.690 ± 0.040		
132	4189.88 ± 0.04	0.330 ± 0.040		
133	4192.15 ± 0.08	0.240 ± 0.050	SiIV $\lambda 1393 z=2.00780$	
134	4193.66 ± 0.08	0.230 ± 0.040	SiIV $\lambda 1393 z=2.00889$	
135	4195.41 ± 0.12	0.190 ± 0.050		
136	4198.80 ± 0.02	1.260 ± 0.040		
137	4201.73 ± 0.10	0.370 ± 0.050		
138	4204.39 ± 0.05	0.300 ± 0.040		
139	4220.98 ± 0.06	0.930 ± 0.050	Ly $\alpha z=2.47214$	SiIV $\lambda 1402 z=2.00903$
140	4230.33 ± 0.06	0.390 ± 0.040		CIV $\lambda 1548 z=1.73241$
141	4234.98 ± 0.34	1.770 ± 0.600		CII $\lambda 1334 z=2.17338$
142	4237.10 ± 0.30	1.200 ± 0.550		CIV $\lambda 1550 z=1.73277$
143	4241.29 ± 0.05	0.920 ± 0.050		
144	4245.22 ± 0.11	0.340 ± 0.050		
145	4247.20 ± 0.06	0.370 ± 0.040		SiIV $\lambda 1393 z=2.04731$
Q 0836+710				
1	3243.49 ± 0.22	1.360 ± 0.280	Ly $\alpha z=1.66807$	$\operatorname{Ly} \beta z=2.16215$

Table B.1: (continued)

No.	$\lambda_{\text {obs }}$	$W_{\lambda}(\AA)$	Identification	Possible I.D.
2	3261.06 ± 0.15	0.810 ± 0.220	Ly $\beta \quad z=2.17928$	
3	3263.09 ± 0.12	1.260 ± 0.210	Ly $\beta \quad z=2.18126$	
4	3292.38 ± 0.24	2.600 ± 0.360		
5	3308.03 ± 0.12	0.270 ± 0.120		
6	3311.20 ± 1.47	2.520 ± 1.000		
7	3322.54 ± 0.10	2.170 ± 0.180	Ly $\alpha z=1.73309$	
8	3350.63 ± 0.14	1.200 ± 0.160		
9	3365.71 ± 0.13	0.890 ± 0.140		
10	3368.34 ± 0.17	0.540 ± 0.130		
11	3380.53 ± 0.18	1.560 ± 0.190	SiIV $\lambda 1393 \quad z=1.42548$	
12	3386.19 ± 0.33	1.480 ± 0.300	NV $\lambda 1238 \quad z=1.73340$	
13	3396.88 ± 0.09	0.650 ± 0.100	NV $\lambda 1242 \quad z=1.73324$	
14	3402.60 ± 0.21	1.000 ± 0.160	SiIV $\lambda 1402 \quad z=1.42563$	
15	3415.78 ± 0.17	1.800 ± 0.190		
16	3474.65 ± 0.10	1.830 ± 0.160		
17	3506.67 ± 0.18	0.440 ± 0.100		
18	3509.27 ± 0.12	0.350 ± 0.080		
19	3522.24 ± 0.05	0.380 ± 0.060		
20	3536.92 ± 0.07	0.890 ± 0.080		
21	3545.73 ± 0.19	1.390 ± 0.170		
22	3550.45 ± 0.15	0.430 ± 0.080	AlIII $\lambda 1854 z=0.91428$	
23	3558.49 ± 0.06	0.990 ± 0.080	OI $\lambda 1302 z=1.73274$	
24	3560.84 ± 0.08	0.780 ± 0.080	CII $\lambda 1334 z=1.66823$	
25	3570.59 ± 0.09	1.310 ± 0.100		
26	3585.20 ± 0.14	0.330 ± 0.070		
27	3594.40 ± 0.12	0.580 ± 0.080		
28	3603.73 ± 0.06	1.150 ± 0.080		

Table B.1: (continued)

No.	$\lambda_{\text {obs }}$	$\mathrm{W}_{\lambda}(\AA)$	Identification	Possible I.D.
29	3608.34 ± 0.05	1.490 ± 0.090	NI $\lambda 1135 z=2.17920$	
30	3620.37 ± 0.08	1.250 ± 0.150		
31	3622.75 ± 0.16	1.140 ± 0.170		
32	3628.73 ± 0.03	1.270 ± 0.060		
33	3636.80 ± 0.06	0.800 ± 0.130		FeII $\lambda 1145 z=2.17926$
34	3640.06 ± 0.18	1.590 ± 0.250		
35	3644.57 ± 0.18	0.370 ± 0.070		
36	3669.21 ± 0.06	1.520 ± 0.070		
37	3701.94 ± 0.04	3.060 ± 0.100		
38	3718.71 ± 0.06	0.600 ± 0.050	SiIV $\lambda 1393 z=1.66812$	
39	3723.77 ± 0.03	3.670 ± 0.070		
40	3727.65 ± 0.09	0.390 ± 0.070		
41	3729.65 ± 0.06	0.700 ± 0.070		
42	3742.47 ± 0.03	0.880 ± 0.040	SilV $\lambda 1402$	$z=1.66791$
43	3755.26 ± 0.05	2.290 ± 0.090	CIV $\lambda 1548$	$z=1.42556$
44	3761.78 ± 0.06	1.670 ± 0.070	CIV $\lambda 1550 z=1.42574$	
45	3771.78 ± 0.15	0.390 ± 0.070		
46	3776.95 ± 0.11	0.240 ± 0.040		
47	3782.21 ± 0.02	1.590 ± 0.040		
48	3790.08 ± 0.12	0.450 ± 0.050		
49	3809.59 ± 0.16	0.280 ± 0.050		
50	3816.49 ± 0.16	0.180 ± 0.040	NI $\lambda 1200$	$z=2.18040$
51	3828.26 ± 0.03	1.040 ± 0.040		
52	3831.94 ± 0.05	0.510 ± 0.040		
53	3839.60 ± 0.04	0.860 ± 0.050		
54	3843.55 ± 0.02	2.370 ± 0.050	Ly $z=2.16167$	
55	3851.61 ± 0.27	0.470 ± 0.080		

		090＊0干0¢\％＇0	もI．0干LC． 9998	GI
		0900 －0Zャ 0	Z107\％c0998	t
		$090.0 \mp 06 L^{\circ}$	900 ∓ 67.9698	\＆I
		020．0干099 0	01076c．ce98	6I
ZLELCI $=$ z Z0ヵIY AIIS		0010才0ヶ2．0	¢107¢ 0 0198	II
		060.0 ∓ 0790	11．076L＇0098	0I
			$9 \mathrm{c} 0 \mp 08.66 \mathrm{c}$	6
		081．0于0c0＇I	91．0干9\％ 289 c	8
		0ZI＇0干089＊0	910708889¢	L
		011．0干001＇I	600干IL 6\＆98	9
		008：0干090\％	2I0干9c9zes	c
		00\％＇0干001＇z		\checkmark
		0080 ∓ 002 L		ε
		0170 0 02\％	900耳 $66 . \mathrm{CIVE}$	\boldsymbol{Z}
		00LO干0ITC	L\＆0干 266978	I
	¢9It 8780 O			
		080\％ 0 ¢06\％ 0	80．0干E8 8900	99
		0800 ∓ 0970	90．0干98．090才	$\ddagger 9$
		0800 F0810	$90.0 \mp 28^{\circ} \mathrm{bz00}$	$\varepsilon 9$
		0700 ∓ 0170	¢「07¢0＇を\＆6¢	79
		0700 ¢ 0660	200干866068	19
		080\％ 0 ¢091．0	81．0干00 7068	09
		0700才081＇I	90\％ 0 ¢ 69.0688	69
		0ヶ0 0 ¢099 ${ }^{\text {－}}$	80＇0干60＇L288	89
		0z80耳085 2	90＇0708 ${ }^{\circ} 9888$	29
		$0 \vdash 0^{\circ} 0 \mp 068^{\circ} 0$	20．0才10．8988	99
G＇I Plq！ssod	ио！реоу！	（v）${ }^{\gamma} \mathrm{M}$	${ }^{\text {sqo }} \mathrm{Y}$	${ }^{\circ} \mathrm{N}$

（рәnu！̣uos）：I•G әqeL
Table B.1: (continued)

No.	$\lambda_{\text {obs }}$	$\mathrm{W}_{\lambda}(\AA)$	Identification	Possible I.D.
16	3667.61 ± 0.19	0.570 ± 0.080		
17	3836.84 ± 0.08	0.270 ± 0.060		
18	3934.70 ± 0.13	0.320 ± 0.070		
19	3975.93 ± 0.07	0.490 ± 0.070		
			Q 0936+368	
1	3398.67 ± 0.14	2.320 ± 0.330		
2	3403.28 ± 0.14	3.570 ± 0.340		
3	3408.55 ± 0.14	1.670 ± 0.240		
4	3421.29 ± 0.11	3.404 ± 0.332		
5	3431.62 ± 0.51	2.490 ± 0.670		
6	3441.50 ± 0.10	4.190 ± 0.310		
7	3447.80 ± 0.05	1.340 ± 0.170	CII $\lambda 1334 z=1.58352$	
8	3455.91 ± 0.19	1.700 ± 0.260		
9	3466.83 ± 0.20	1.400 ± 0.250		
10	3470.95 ± 0.03	1.200 ± 0.100		
11	3476.89 ± 0.08	0.550 ± 0.130		
12	3479.12 ± 0.10	1.250 ± 0.220		
13	3481.61 ± 0.14	1.360 ± 0.230		
14	3496.71 ± 0.18	0.510 ± 0.160		
15	3521.28 ± 0.11	1.470 ± 0.170		
16	3560.26 ± 0.20	0.790 ± 0.170		
17	3574.02 ± 0.06	1.640 ± 0.130		
18	3586.36 ± 0.07	1.010 ± 0.120		
19	3589.10 ± 0.05	1.740 ± 0.120		
20	3624.59 ± 0.45	0.960 ± 0.240		
21	3634.56 ± 0.03	1.520 ± 0.060		

Table B.1: (continued)

No.	$\lambda_{\text {obs }}$	$\mathrm{W}_{\lambda}(\AA)$	Identification	Possible I.D.
22	3646.77 ± 0.17	0.340 ± 0.080		
23	3654.15 ± 0.04	1.440 ± 0.070		
24	3658.67 ± 0.08	1.520 ± 0.090		
25	3662.97 ± 0.10	0.760 ± 0.080		
26	3683.73 ± 0.03	2.370 ± 0.070		
27	3713.91 ± 0.03	1.330 ± 0.070		
28	3727.24 ± 0.08	0.470 ± 0.080		
29	3761.77 ± 0.04	1.090 ± 0.070		
30	3774.94 ± 0.04	1.240 ± 0.080		
31	4000.74 ± 0.14	1.410 ± 0.150	CIV $\lambda 1548 z=1.58412$	
32	4006.52 ± 0.39	1.080 ± 0.240	CIV $\lambda 1550 z=1.58356$	
			Q 0952+335	
1	3498.23 ± 0.30	0.951 ± 0.211	FeII $\lambda 1145 z=2.05538$	
2	3522.75 ± 0.12	0.716 ± 0.114		
3	3527.38 ± 0.19	0.917 ± 0.154		
4	3535.15 ± 0.09	1.904 ± 0.146	SiIV $\lambda 1393$	$z=1.53642$
5	3552.36 ± 0.18	0.503 ± 0.115		
6	3558.14 ± 0.21	1.619 ± 0.252	SilV $\lambda 1402 z=1.53651$	
7	3561.74 ± 0.12	1.509 ± 0.200		
8	3568.99 ± 0.08	0.455 ± 0.079	NII $\lambda 1083 z=2.29246$	
9	3573.93 ± 0.15	0.575 ± 0.102		
10	3578.49 ± 0.20	0.704 ± 0.125		
11	3589.71 ± 0.06	4.556 ± 0.206		
12	3609.17 ± 0.05	2.261 ± 0.095		
13	3620.14 ± 0.10	0.761 ± 0.078	FeII $\lambda 1143 z=2.16660$	
14	3625.75 ± 0.21	0.344 ± 0.081	FeII $\lambda 1145 z=2.16676$	

Table B.1: (continued)

No.	$\lambda_{\text {obs }}$	$\mathrm{W}_{\lambda}(\AA)$	Identification	Possible I.D.
15	3635.89 ± 0.09	0.961 ± 0.081		
16	3639.77 ± 0.37	0.799 ± 0.194		
17	3655.25 ± 0.12	0.613 ± 0.094		
18	3668.00 ± 0.14	0.914 ± 0.112	FeII $\lambda 2382 z=0.53939$	SiIII $\lambda 1206 z=2.04020$
19	3672.39 ± 0.16	0.770 ± 0.106		
20	3685.08 ± 0.11	0.563 ± 0.089		Sill $\lambda 1190 z=2.09562$
21	3687.44 ± 0.07	1.009 ± 0.138	SiIII $\lambda 1206 z=2.05631$	
22	3690.66 ± 0.07	3.377 ± 0.185		
23	3695.53 ± 0.11	5.668 ± 0.366	Ly $\alpha z=2.03991$	Sill $\lambda 1193 z=2.09692$
24	3714.48 ± 0.06	2.056 ± 0.096	Ly $\alpha z=2.05550$	NI $\lambda 1200 z=2.09540$
25	3735.26 ± 0.09	0.824 ± 0.085	SiIII $\lambda 1206 z=2.09594$	
26	3741.78 ± 0.33	0.178 ± 0.210		
27	3745.65 ± 0.53	2.132 ± 0.675		
28	3764.32 ± 0.10	30.97 ± 0.360	Ly $\alpha z=2.09649$	NV $\lambda 1238 z=2.04159$
29	3780.11 ± 0.38	2.107 ± 0.377		NV $\lambda 1242 z=2.04159$
30	3787.32 ± 0.16	0.954 ± 0.118		
31	3795.35 ± 0.17	0.304 ± 0.073	Fell $\lambda 1143 z=2.31985$	
32	3800.88 ± 0.06	1.156 ± 0.074	FeII $\lambda 1145 z=2.31972$	NI $\lambda 1200 z=2.16740$ Sill $\lambda 1193 z=2.18523$
33	3804.20 ± 0.07	0.876 ± 0.074		
34	3820.49 ± 0.33	0.424 ± 0.319	SiIII $\lambda 1206 z=2.16658$	NI $\lambda 1200 z=2.18457$ SiII $\lambda 1190 z=2.21021$
35	3824.22 ± 0.77	0.814 ± 0.478		
36	3829.91 ± 0.06	1.212 ± 0.071	Sill $\lambda 1193 z=2.20953$	
37	3833.43 ± 0.02	0.931 ± 0.041		
38	3850.06 ± 0.04	1.313 ± 0.062	Ly $\alpha z=2.16703$	SiII $\lambda 1260 z=2.05457$
39	3858.20 ± 0.13	0.418 ± 0.068		

	$888 \mathrm{I} \varepsilon^{\prime} 7=z 0 \mathrm{~K}_{7}$		800729 ${ }^{\circ}$ ¢0¢	99
			ع00才 0 ¢9 880b	b9
		650079060	万0．0干\％¢ 780 b	\＆9
		9010 0 I8 $9^{\circ} 0$	900¢ ${ }^{\circ} 9.910$ b	79
	86081＇z＝z 097IY IITS	0210 0 160 ${ }^{\circ}$	\＆1．0干08． 810 b	19
		$880.0 \mp 09{ }^{\circ} \mathrm{E}$	80．0干 $2 \mathrm{t}^{\circ} 700{ }^{\circ}$	09
		\＆\％\％ 0 干 28.9	50．0干L9．7668	69
$01990 \%=z$ D0\＆IY II！S		9900\％ $296^{\circ} 0$	¢10 $0 \mp 66^{\circ} 8868$	89
		$890.0 \mp ⿰ 688^{\circ} \mathrm{Z}$	800712．0868	L9
$68607 \cdot \zeta=z 88 Z$ IY Λ N		L20．0干IIGO0	$61^{\circ} 0 \mp 6 \nabla^{\circ} 9268$	99
	LEz6z\％$=z$ 907IY III！S	LF00\％${ }^{\circ} 9699^{\circ}$	700干口z＇zL6E	9 c
ceste $z=z 8611 \mathrm{Y}$ In！	820t0\％$=z$ zociY IO	680．0干0¢\％＇0	900干¢96968	p9
		990.0 ∓ 960 I		$\varepsilon 9$
			8007 98.9768	79
		8800\％ 22.0	20．0干09．$¢ 768$	IS
			010干1も1768	09
		29007LIC0	80．0干tE6868	$6{ }^{6}$
		1010 0 680＊	80．0干09．9768	80
$27960{ }^{\circ}=z 097$ IY II！S	$970\left[Z \quad Z=z \quad 0 \Omega_{7}\right.$	9ZI＇0干¢89＇I	80．0干19 7068	Li
		0800 $0^{\circ} 988^{\circ} 0$	$61^{\circ} 0 \mp 8 L^{\prime} 8688$	97
		$9900787 \mathrm{I}^{\circ} \mathrm{T}$	10．0干67． 6888	St
		9900 ¢ 989.0	60．0干 26.8888	Dit
			80\％ $0 \mp \square \%$ ¢888	ε
		89\％ 0 干 2690	$99^{\circ} 0 \mp ⿰ 66 \cdot 9 L 8 \varepsilon$	ZV
$\downarrow Z 607 \cdot \boldsymbol{Z}=z$ 90ZIY III！S				
		$901^{\circ} 0 \mp 929.7$	$900796 \cdot 1288$	It
		－ 200 ∓ 9280		$0 \pm$
－${ }^{\text {I I Plqissod }}$		（v）${ }^{\mathrm{r}} \mathrm{M}$	${ }^{\text {sqo }} \mathrm{Y}$	${ }^{\circ} \mathrm{N}$

Table B.1: (continued)

No.	$\lambda_{\text {obs }}$	$\mathrm{W}_{\lambda}(\AA)$	Identification	Possible I.D.
66	4040.94 ± 0.09	0.263 ± 0.048		
67	4046.55 ± 0.03	2.681 ± 0.071	SilI $\lambda 1260 z=2.21047$	
68	4055.41 ± 0.17	0.436 ± 0.063	CII $\lambda 1334 z=2.03802$	
69	4079.39 ± 0.04	1.306 ± 0.050	FeIl $\lambda 1608 z=1.53622$	SiIV $\lambda 1393 z=2.29296$
70	4085.31 ± 0.08	0.349 ± 0.043		
71	4091.67 ± 0.03	0.998 ± 0.042		SiIV $\lambda 1402 z=2.29229$
72	4100.14 ± 0.04	1.322 ± 0.053		
73	4103.67 ± 0.02	1.431 ± 0.040		
74	4108.25 ± 0.03	1.564 ± 0.053		
75	4113.86 ± 0.17	0.256 ± 0.048		
76	4121.47 ± 0.08	0.604 ± 0.050		
77	4126.10 ± 0.04	0.616 ± 0.039		
78	4130.54 ± 0.02	1.733 ± 0.039	CII $\lambda 1334 z=2.09512$	
79	4140.17 ± 0.18	0.324 ± 0.054		
80	4147.17 ± 0.04	1.156 ± 0.048	OI $\lambda 1302 z=2.18481$	
81	4153.58 ± 0.05	0.756 ± 0.041		SiII $\lambda 1304 z=2.18435$
82	4168.75 ± 0.24	0.277 ± 0.057		
83	4171.81 ± 0.11	0.142 ± 0.034		
84	4174.84 ± 0.03	1.144 ± 0.040		
85	4180.58 ± 0.08	0.526 ± 0.046	OI $\lambda 1302 z=2.21047$	
86	4182.84 ± 0.06	0.286 ± 0.036	Sill $\lambda 1260 z=2.31860$	
87	4203.49 ± 0.08	0.131 ± 0.026		
88	4206.55 ± 0.11	0.482 ± 0.047		
89	4209.59 ± 0.03	0.935 ± 0.037		
90	4218.70 ± 0.03	1.705 ± 0.041		
91	4223.04 ± 0.06	0.601 ± 0.034		
92	4237.43 ± 0.03	3.058 ± 0.058	SiIV $\lambda 1393 z=2.04029$	AlII $\lambda 1670 z=1.53619$

Table B.1: (continued)

No.	$\lambda_{\text {obs }}$	$W_{\lambda}(\AA)$	Identification	Possible I.D.
93	4258.33 ± 0.02	0.687 ± 0.018	SiIV $\lambda 1393 z=2.05529$	
94	4264.67 ± 0.02	0.779 ± 0.020	SilV $\lambda 1402$	$z=2.04017$
95	4267.21 ± 0.03	0.553 ± 0.021		
96	4270.23 ± 0.05	0.183 ± 0.018		
97	4295.41 ± 0.15	0.367 ± 0.043		
98	4304.51 ± 0.14	0.212 ± 0.034	MgII $\lambda 2796 \quad z=0.53933$	
99	4314.23 ± 0.09	0.365 ± 0.037	SiIV $\lambda 1393$	$z=2.09540$
MgII $\lambda 2803$	$z=0.53885$			
100	4342.16 ± 0.08	0.140 ± 0.025	SiIV $\lambda 1402 z=2.09542$	
Q 0955+472				
1	3489.11 ± 0.12	1.000 ± 0.130		
2	3540.36 ± 0.12	1.150 ± 0.120		
3	3547.33 ± 0.21	1.170 ± 0.170	Ly $\beta z=2.45837$	OI $\lambda 1302 z=1.72417$
4	3554.17 ± 0.09	1.010 ± 0.090	SiII $\lambda 1304 z=1.72481$	
5	3560.64 ± 0.07	1.370 ± 0.090	Ly $\beta z=2.47134$	NII $\lambda 1083 z=2.28475$
6	3567.94 ± 0.25	1.330 ± 0.220		
7	3573.01 ± 0.13	0.910 ± 0.090		
8	3578.61 ± 0.08	0.830 ± 0.070	Ly $\beta z=2.48887$	
9	3589.83 ± 0.05	1.350 ± 0.070		
10	3593.50 ± 0.10	0.740 ± 0.070		
11	3606.27 ± 0.05	2.660 ± 0.100		
12	3623.14 ± 0.17	0.430 ± 0.070		
13	3628.02 ± 0.08	1.060 ± 0.070		
14	3633.42 ± 0.05	2.970 ± 0.110		
15	3667.90 ± 0.16	0.620 ± 0.080		
16	3692.89 ± 0.11	0.440 ± 0.060		
17	3714.80 ± 0.04	0.290 ± 0.060		

		080\％0干092．0	¢1．0干19 ${ }^{\circ} \mathrm{F} 68$	b
		$0 ヶ 00$ ¢091．0	0107币L．0z68	\＆
		0900 ∓ 0220	900796 2168	2.
		0200 ∓ 008.0	010干ZL．9068	It
		0c00干0EE0	0107 ${ }^{\circ} 6$ 6006	$0 \pm$
		$0900700 \% 0$	［1＇0789＇9688	68
		$0900 \mp 0 巾 9.0$	90070¢ 2888	88
		0900 ∓ 0920	c0079L＇z888	L\＆
		$090 \cdot 0 \mp 0$［ち0	810710．8288	98
		$090 \cdot 0 \mp 000{ }^{\circ}$	8007¢\％${ }^{\circ} \mathrm{L} 88$	98
$28800^{\circ} \mathrm{Z}=\mathrm{z}$ GEIIY IN		0900 干0LT 0	0107106988	D¢
		0L0＇0干0¢E：0	910干96．9988	¢ $£$
		$080.0 \mp 09 L^{\circ} 0$	て！0干Z¢＇1988	Z
			11＇0干80＇2988	I¢
		$090 \cdot 0 \mp 0090$	$80^{\circ} 0 \mp 78{ }^{\circ} \mathrm{\square} 88 \mathrm{E}$	08
		$060.0 \mp 069^{\circ} \mathrm{I}$	80070¢9888	6 Z
		090．0干098．0	200768 ¢ \％8	87
		$060 \cdot 0 \mp 079{ }^{\circ}$	50071＊088\＆	$L Z$
		0800 0 ¢0bI＇I	8007669788	92
		$0010 \mp 06 \square^{\circ} 0$	L7．0干8L＇718¢	92
LUTUE $Z=z$ SEIIY IN		071．0于075＇\％	800716．9628	b\％
		$090.0 \mp 082^{\circ} 0$	60．0干26．98L8	$\varepsilon \tau$
		060.0 ∓ 076.0	010干1Z6LLE	22
		060．07068．	200干LLCGLLE	12
		090．0干07\％＇I	900799．2928	02
		090.0 ∓ 080 I	900780．98LE	61
		0ZI＇0才099＇I	Lİ0F9ILLLE	81
${ }^{\text {a }}$ I PqIssod		$(\mathrm{y})^{\mathrm{Y}} \mathrm{M}$	${ }^{\text {sqo }} \mathrm{Y}$	${ }^{\circ} \mathrm{O}$

		090．0干002＇I	c00\％9c＇zIIT	IL
		0 O 0 O70ヶ9 0		02
		$0000 \mp 090 \cdot 1$	80．0786 660 b	69
		0600 ∓ 0070	¢10 0 ¢ $0 ¢ 960$ ¢	89
		0¢00¢7079\％	म0076\＆ 860 ¢	29
		0200干097＇1	80．0干28．680t	99
		$050.0 \mp 0 \mathrm{O}$－		99
		0ャ0．0干09\％ 0	60.0 ∓ 10620 b	¢9
	$\angle 18 \mathrm{DE} \cdot \mathrm{Z}=z \quad 0 \mathrm{ST}$	0LGIF080\％	18．0干87\％020	¢9
		891．0円699 $¢$		79
		0¢0．0才0IZ\％	07：0干EL： 2900	［9
		$0 \downarrow 00 \mp 09 \checkmark^{\circ}$	100700 $990 \pm$	09
		090.0 ∓ 0960	c007EL＇IG0t	69
		$001.0 \mp 068^{\circ} \mathrm{V}$	80．0786．2800	89
		0¢0．0干098\％0	200791＊IE0ヵ	49
		050．0干07\％\％	LI．0于69．270b	99
		0900 ∓ 098.0	0z．0干7c\％070t	G9
	gicter $=z 007 \mathrm{I}$ IN	070.0 ∓ 018.0		¢¢
		0ヶ0．0干00900	$90.0 \mp 65^{\circ} 010{ }^{\circ}$	$\varepsilon ¢$
		$050.0 \mp 00 z^{\circ} \mathrm{L}$		Z9
		0¢0．0干062\％	70．0干67． 2668	IS
¢99b\＆$z=z$ \＆6ItY II！S	$86787^{\prime} 7=z \quad 0 \kappa_{T}$	$0900 \mp 027^{\circ} \mathrm{T}$	70．0干68． 6668	0 S
		090070ICO	200才99＇8868	$6{ }^{6}$
		0G00才0ヶて＇	80．0干696668	$8{ }^{5}$
		0900 0060 I		Lb
	$09887{ }^{\circ} \mathrm{Z}=z$ 90ZIY IIIIS	0900 ¢00\％ 1	70．0才92．7968	$9{ }^{\text {a }}$
19987． $2=z 007 \mathrm{IY}$ IN		$0900 \mp 006^{\circ} \mathrm{I}$	20．0702． 2068	96
${ }^{\text {a }}$＇I Plisssod		（V）${ }^{\mathrm{r}} \mathrm{M}$	${ }^{59}{ }^{\circ} \mathrm{Y}$	${ }^{\circ} \mathrm{N}$

Table B.1: (continued)

No.	$\lambda_{\text {obs }}$	$\mathrm{W}_{\lambda}(\AA)$	Identification	Possible I.D.
72	4122.03 ± 0.04	1.230 ± 0.040		
73	4129.63 ± 0.16	0.150 ± 0.040		
74	4135.93 ± 0.03	0.950 ± 0.040		
75	4143.90 ± 0.03	2.200 ± 0.050	Ly $\alpha z=2.40866$	NV $\lambda 1238 z=2.34503$
76	4147.63 ± 0.09	1.790 ± 0.140		
77	4151.36 ± 0.12	1.060 ± 0.130		
78	4156.47 ± 0.02	1.720 ± 0.040		
79	4165.80 ± 0.05	0.430 ± 0.030		
80	4171.10 ± 0.07	0.340 ± 0.030		
81	4203.22 ± 0.01	1.830 ± 0.030	Ly $\alpha z=2.45753$	
82	4206.16 ± 0.02	0.980 ± 0.030	Ly $\alpha z=2.45995$	
83	4219.02 ± 0.01	3.370 ± 0.030	Ly $\alpha z=2.47053$	CIV $\lambda 1548 z=1.72510$
84	4225.19 ± 0.17	0.132 ± 0.028	CIV $\lambda 1550 z=1.72456$	
85	4229.81 ± 0.09	0.140 ± 0.020		
86	4240.60 ± 0.01	2.230 ± 0.020	Ly $\alpha z=2.48828$	
1	4402.43 ± 0.12	0.400 ± 0.050		
2	4418.41 ± 0.07	0.670 ± 0.050	CII $\lambda 1334 z=2.31083$	
3	4425.83 ± 0.13	0.220 ± 0.060		
4	4430.51 ± 0.83	0.460 ± 0.190		
5	4433.32 ± 0.04	0.750 ± 0.120		
6	4452.69 ± 0.17	0.960 ± 0.100		
7	4457.68 ± 0.04	1.060 ± 0.050		
8	4461.26 ± 0.04	1.510 ± 0.070	NI $\lambda 1200 z=2.71771$	
9	4464.47 ± 0.03	1.570 ± 0.060		
10	4467.68 ± 0.12	0.280 ± 0.050		

Table B.1: (continued)

No.	$\lambda_{\text {obs }}$	$\mathrm{W}_{\lambda}(\AA)$	Identification	Possible I.D.
11	4471.80 ± 0.17	0.320 ± 0.060		
12	4476.69 ± 0.10	0.480 ± 0.060		NII $\lambda 1083 \quad z=3.13301$
13	4480.15 ± 0.20	0.410 ± 0.080		
14	4483.85 ± 0.29	0.340 ± 0.080	SiIII $\lambda 1206 \quad z=2.71641$	
15	4493.46 ± 0.06	4.370 ± 0.190		
16	4497.43 ± 0.03	2.650 ± 0.070		
17	4509.61 ± 0.19	0.290 ± 0.190		
18	4513.30 ± 0.42	0.950 ± 0.350		
19	4518.60 ± 0.05	3.740 ± 0.130	Ly $\alpha z=2.71696$	
20	4524.47 ± 0.14	1.290 ± 0.130		
21	4534.00 ± 0.07	0.450 ± 0.050		
22	4536.74 ± 0.11	0.820 ± 0.150		
23	4539.68 ± 0.39	0.570 ± 0.160		
24	4545.28 ± 0.16	0.360 ± 0.070		
25	4554.33 ± 0.14	1.140 ± 0.120		
26	4559.45 ± 0.04	1.380 ± 0.050		
27	4565.88 ± 0.05	3.120 ± 0.120		
28	4571.93 ± 0.09	0.730 ± 0.090		
29	4574.29 ± 0.13	0.670 ± 0.100		
30	4582.90 ± 0.15	0.390 ± 0.050		
31	4592.31 ± 0.05	1.800 ± 0.070		
32	4598.81 ± 0.23	0.740 ± 0.110	NI $\lambda 1200 z=2.83234$	NI $\lambda 1135 z=3.05188$
33	4604.10 ± 0.04	1.940 ± 0.060	NV $\lambda 1238 z=2.71651$	
34	4613.80 ± 0.04	1.560 ± 0.060	SiIV $\lambda 1393 z=2.31033$	
35	4617.85 ± 0.04	3.780 ± 0.110		NV $\lambda 1242 z=2.71567$
36	4629.94 ± 0.37	0.420 ± 0.100		
37	4632.99 ± 0.20	0.550 ± 0.150		

Table B.1: (continued)

No.	$\lambda_{\text {obs }}$	$\mathrm{W}_{\lambda}(\AA)$	Identification	Possible I.D.
38	4636.25 ± 0.31	0.780 ± 0.190	NII $\lambda 1083 z=3.27702$	FeII $\lambda 1145 z=3.04934$
39	4642.42 ± 0.10	1.610 ± 0.110		SiIV $\lambda 1402 \quad z=2.30946$
40	4653.30 ± 0.07	0.920 ± 0.110		
41	4655.75 ± 0.11	1.540 ± 0.290		
42	4658.62 ± 0.15	1.770 ± 0.820	Ly α	$z=2.83214$
43	4661.18 ± 0.35	3.020 ± 0.730	Ly α	$z=2.83424$
44	4666.66 ± 0.09	1.570 ± 0.090		
45	4670.73 ± 0.06	1.280 ± 0.090		
46	4673.52 ± 0.09	1.070 ± 0.090		
47	4680.93 ± 0.12	0.740 ± 0.070		
48	4689.53 ± 0.31	0.460 ± 0.100		
49	4700.75 ± 0.03	2.240 ± 0.050		
50	4707.37 ± 0.58	0.220 ± 0.380		
51	4710.24 ± 1.59	0.410 ± 0.490		
52	4716.55 ± 0.07	8.480 ± 0.450		
53	4722.44 ± 0.69	1.800 ± 0.910		
54	4726.59 ± 0.03	3.280 ± 0.070		
55	4730.84 ± 0.08	2.040 ± 0.120		
56	4740.89 ± 0.19	0.580 ± 0.080		
57	4749.61 ± 0.06	0.790 ± 0.060	NV $\lambda 1238$	$z=3.83397$
58	4753.01 ± 0.11	0.210 ± 0.050	NI $\lambda 1135 z=3.23866$	
59	4756.34 ± 0.14	0.870 ± 0.100		
60	4760.03 ± 0.0	3.520 ± 0.070		
61	4765.14 ± 0.07	0.520 ± 0.050	NV $\lambda 1242$	$z=3.83418$
62	4771.25 ± 0.17	0.530 ± 0.070		
63	4781.24 ± 0.04	1.080 ± 0.060		
64	4784.14 ± 0.14	0.610 ± 0.080		

$02781 \mathrm{E}=z 00 \mathrm{TIY}$ IN		08L：07010＇I	¢10干ャて＇696b	16
		011 －$\ddagger 080{ }^{\circ}$		06
		020070290	01．0干69666p	68
		0900才082\％	80．0786 \＆ 66 b	88
		0900¢0¢TE	70．0才68976b	28
		0900キ0zz\％	200円 0 \％ 2766	98
		0200才0980	$900 \mp 00{ }^{\circ} \mathrm{b}$ ¢	98
		060．0¢070．	It．0才89006b	8
		0c00才0610	เг $0 \mp ¢ 9$ 906ь	$\varepsilon 8$
		0600¢0980	200キE！ 106 亿	28
		060．0才0¢6．	700才09968b	18
		080．0干06E\％	07＇0干ャ8．168t	08
		090．0干0010	1t．0才i0．068 ${ }^{\text {b }}$	62
		0210才009．0	7¢0¢¢¢ $288{ }^{\circ}$	82
	28800 ¢ $¢=z 907 \mathrm{TY}$ III！S	060．0〒098．0	60．0才9¢＇788	L2
		020．0干080\％	20．0干 $29.928{ }^{\circ}$	92
$08 \mathrm{IC} 0{ }^{\circ} \mathrm{E}=z=00 Z \mathrm{IY}$ IN โ $1 L L z \varepsilon=z$ getiv IN		0c00 0 ¢0t＇I	9007L1＇298b	$\mathrm{c}^{\text {L }}$
		0g00 0 ¢0670	200799＇r98b	焐
		0900 ∓ 0 ¢80	80．0干 $72.798{ }^{\circ}$	\＆ 2
		060．0〒09\％0	80．07\＆${ }^{\circ} 6 \mathrm{6} 8{ }^{\circ}$	Z2
		020070ヶ0．	200才85 $788{ }^{\circ}$	12
		$0900 \mp 02 \mathrm{~V}^{\circ}$		02
		$0 \mathrm{CO} 0^{\circ} \mathrm{O} \mp 00 \mathrm{~S}^{\circ} \mathrm{I}$		69
		$0900 \pm 0 \mathrm{~S} 2 \cdot \mathrm{I}$	0．0才00618	89
		$0900^{\circ} \mathrm{F} 020^{\circ} \mathrm{I}$	90．0〒08018	29
		0¢00¢0690		99
		$0900 \pm 0 \square^{\circ} \mathrm{O}$	20．0784．062\％	¢9
$\mathrm{a}^{\prime} \mathrm{I}$ गq！${ }^{\text {Ssod }}$	ио！ұеэу！？${ }^{\text {appi }}$	（V）${ }^{\mathrm{r}} \mathrm{M}$	${ }^{\text {sq9 }} \mathrm{Y}$	${ }^{\circ} \mathrm{N}$

Table B.1: (continued)

No.	$\lambda_{\text {obs }}$	$\mathrm{W}_{\lambda}(\AA)$	Identification	Possible I.D.
92	4962.53 ± 0.13	0.370 ± 0.210	SiIII $\lambda 1206 z=3.11316$	
93	4968.51 ± 0.16	1.030 ± 0.110		
94	4973.31 ± 0.03	2.250 ± 0.060		
95	4979.78 ± 0.03	5.630 ± 0.140	Ly α	$z=3.09632$
96	4989.67 ± 0.04	6.410 ± 0.180	Ly $\alpha z=3.10446$	NI $\lambda 1200 \quad z=3.14981$
97	5001.83 ± 0.04	7.360 ± 0.250	Ly α	$z=3.11446$
98	5008.56 ± 0.22	1.280 ± 0.240		SiII $\lambda 1302 z=2.83181$
99	5011.88 ± 0.04	0.920 ± 0.140		
100	5014.63 ± 0.03	1.280 ± 0.060		SiIII $\lambda 1206 z=3.83466$
101	5017.39 ± 0.08	0.560 ± 0.060		
102	5020.83 ± 0.07	1.370 ± 0.120	NV $\lambda 1238$	$z=3.05291$
103	5023.31 ± 0.05	2.100 ± 0.250	Ly $\alpha z=3.13213$	
104	5025.89 ± 0.11	1.900 ± 0.190		
105	5032.29 ± 0.05	1.760 ± 0.090		
106	5035.80 ± 0.11	0.930 ± 0.110	NV $\lambda 1242$	$z=3.05196$
107	5041.73 ± 0.02	1.870 ± 0.050		NI $\lambda 1200 z=3.19650$
108	5048.12 ± 0.04	7.040 ± 0.230		
109	5054.04 ± 0.04	2.670 ± 0.120	Sill $\lambda 1526 z=2.31041$	
110	5056.83 ± 0.06	1.570 ± 0.110		
111	5064.90 ± 0.10	0.450 ± 0.050		
112	5068.65 ± 0.08	0.920 ± 0.070	NI $\lambda 1200 z=3.22387$	
113	5073.31 ± 0.06	1.030 ± 0.060		
114	5078.77 ± 0.06	7.530 ± 0.400		
115	5095.25 ± 0.09	0.630 ± 0.050	SillI $\lambda 1206 z=3.22316$	NI $\lambda 1200 z=3.24604$
116	5102.83 ± 0.03	3.240 ± 0.080	Ly $\alpha z=3.19754$	SiII $\lambda 1260 z=3.04850$
117	5106.40 ± 0.05	0.650 ± 0.050		
118	5110.84 ± 0.07	0.350 ± 0.040		

Table B.1: (continued)

No.	$\lambda_{\text {obs }}$	$\mathrm{W}_{\lambda}(\AA)$	Identification	Possible I.D.
119	5117.82 ± 0.08	6.450 ± 0.390	NV $\lambda 1238 z=3.13120$	CII $\lambda 1334 z=2.83491$
120	5122.31 ± 0.03	1.100 ± 0.130	SilI $\lambda 1206 z=3.24559$	
121	5125.54 ± 0.10	2.170 ± 0.150	CIV $\lambda 1548 z=2.31064$	
122	5133.60 ± 0.04	5.830 ± 0.160	Ly $\alpha z=3.22285$	CIV $\lambda 1550 z=2.31034$
				NV $\lambda 1242 z=3.13065$
				NI $\lambda 1200 z=3.27800$
123	5139.35 ± 0.04	1.300 ± 0.050		
124	5144.12 ± 0.18	0.260 ± 0.050	NV $\lambda 1238 z=3.15243$	
125	5156.91 ± 0.08	0.590 ± 0.050		SiII $\lambda 1260 z=3.09542$
126	5161.97 ± 0.03	3.250 ± 0.070	Ly $\alpha z=3.24619$	SV $\lambda 1242 z=3.15348$
127	5165.41 ± 0.04	0.780 ± 0.050		
128	5172.56 ± 0.11	1.470 ± 0.100	SiII $\lambda 1260 z=3.10383$	
129	5195.21 ± 0.06	3.050 ± 0.120		
130	5199.98 ± 0.05	3.520 ± 0.130	Ly $\alpha z=3.27746$	
131	5204.38 ± 0.10	0.610 ± 0.050		
132	5207.71 ± 0.11	0.250 ± 0.040	SiII $\lambda 1260 z=3.13171$	
133	5214.02 ± 0.05	1.110 ± 0.060		
134	5217.08 ± 0.03	1.290 ± 0.050		
135	5222.57 ± 0.06	0.580 ± 0.040		
			Q $1009+299$	
1	3626.86 ± 0.04	0.605 ± 0.034		
2	3644.95 ± 0.04	1.084 ± 0.038	Ly $\beta z=2.55354$	
3	3664.66 ± 0.14	0.346 ± 0.058	NII $\lambda 1083 z=2.38071$	
4	3667.22 ± 0.24	0.211 ± 0.062	OVI $\lambda 1031 z=2.55376$	

LLもL9 $\%=z$ 980IY IIO	gezeg $=z$ c80IY IN	$6600 \mp ¢ ¢ 97$	10．070¢ 6688	I¢
		6700 ¢もIて＇	800才7c9888	0ε
		980．0干68900		67
		$270 \cdot 0 \mp 9290$	ヤ0．07\％2．0988	87
		Lz0．0干b91．0	ゅ！0干ち68888	27
			80．0干01＇1888	97
			2007¢18888	97
		8900 ¢G70＇も	70．0干80＇7288	ちZ
		670．0干08100	\＆10790808\＆	$\varepsilon \overline{1}$
		8500 ¢ $2866^{\circ} \mathrm{Z}$	700721－88LE	Z7
		98007L991	ع007E88LLE	L2
		$670.0 \mp 968{ }^{\circ}$	800750 $92 L E$	07
		120．0干7\％80	97：0干¢z6928	6I
		9900 ∓ 061.1	5007¢6 992E	8I
		97007¢ ${ }^{\circ} \mathrm{O}$	800799 792E	LI
		6200 5692°	L007E\％GgLE	9I
		EG00耳GLEO	01078966LE	9I
		\＆b00\％ 208.1	800790．9bLE	カI
	${ }^{5} 0919{ }^{\circ} \mathrm{Z}=z \mathrm{C}^{\prime} \mathrm{T}$	18007918．0	0107¢L68LE	\＆I
		L90．0干โIz\％ 0	68．0761 ${ }^{\circ} \mathrm{CLLE}$	ZI
			800780 ZILE	II
		ঢD0．0干EGG\％	LI＇0干90．602E	0I
		\＆50．0于Z09\％	60．0796 0208	6
		LD0．0干702：0	900789．1028	8
	$\downarrow 9909 \%=z \mathcal{V}^{\prime} 7$	680．0干III＊	50．0〒67＊8698	2
	88399\％$=z$ LEOTY $1 \Lambda 0$	870.0 ¢ $187{ }^{\circ}$	20078¢9898	9
	$68989^{\prime} Z=z \chi^{\prime} \chi_{T}$	$880 \cdot 0 \mp 90{ }^{\prime} 1$	0107519 $2 \mathrm{L9E}$	9
$\mathrm{Cl}^{\text {I Plqussod }}$		$(\mathrm{y})^{\mathrm{Y}} \mathrm{M}$	${ }^{\text {sq0 }} \mathrm{Y}$	${ }^{\circ} \mathrm{N}$

Table B.1: (continued)

No.	$\lambda_{\text {obs }}$	$\mathrm{W}_{\lambda}(\AA)$	Identification	Possible I.D.
32	3896.71 ± 0.04	1.967 ± 0.088		
33	3903.47 ± 0.03	0.516 ± 0.022		
34	3909.89 ± 0.05	0.335 ± 0.023		
35	3921.94 ± 0.03	0.904 ± 0.027		
36	3925.63 ± 0.04	1.232 ± 0.040		
37	3934.30 ± 0.06	0.500 ± 0.028	SilII $\lambda 1206 z=2.26092$	
38	3937.98 ± 0.03	0.404 ± 0.033		
39	3940.69 ± 0.07	0.973 ± 0.056		
40	3944.40 ± 0.18	0.153 ± 0.037		
41	3955.64 ± 0.02	6.032 ± 0.094		
42	3964.39 ± 0.01	2.388 ± 0.031	Ly $\alpha z=2.26107$	
43	3967.84 ± 0.03	0.714 ± 0.031		
44	3969.61 ± 0.01	0.900 ± 0.024		
45	3972.26 ± 0.02	1.406 ± 0.030		
46	3976.00 ± 0.27	0.342 ± 0.064		
47	3981.67 ± 0.06	0.773 ± 0.037		
48	3986.28 ± 0.02	0.957 ± 0.025		
49	3998.40 ± 0.12	0.214 ± 0.027		
50	4006.08 ± 0.03	0.774 ± 0.023		
51	4019.13 ± 0.03	0.759 ± 0.024		
52	4023.56 ± 0.03	0.675 ± 0.023		
53	4029.78 ± 0.04	0.687 ± 0.027	NI $\lambda 1200 z=2.35815$	
54	4041.43 ± 0.01	2.148 ± 0.028		
55	4052.22 ± 0.03	0.563 ± 0.022	SiIII $\lambda 1206 z=2.35865$	
56	4056.39 ± 0.06	0.715 ± 0.036	NI $\lambda 1200 z=2.38032$	SiII $\lambda 1190 z=2.40753$
57	4061.43 ± 0.11	0.100 ± 0.031		FeII $\lambda 1145 z=2.55322$
58	4063.03 ± 0.12	0.209 ± 0.038		

Table B.1: (continued)

No.	$\lambda_{\text {obs }}$	$\mathrm{W}_{\lambda}(\AA)$	Identification	Possible I.D.
59	4074.96 ± 0.13	0.163 ± 0.029		
60	4079.48 ± 0.05	0.669 ± 0.036	SiIII $\lambda 1206 z=2.38125$	
61	4082.50 ± 0.05	1.182 ± 0.069	Ly $\alpha z=2.35823$	
62	4086.90 ± 0.02	4.064 ± 0.085	NI $\lambda 1200 \quad z=2.40575$	
63	4110.06 ± 0.01	2.047 ± 0.023	Ly $\alpha z=2.38090$	SilI $\lambda 1260 z=2.26085$
				SiIII $\lambda 1206 z=2.40659$
64	4127.99 ± 0.03	1.549 ± 0.036		FeII $\lambda 1143 z=2.61613$
65	4134.06 ± 0.01	1.517 ± 0.023		
66	4137.51 ± 0.02	2.197 ± 0.037		FeII $\lambda 1145 z=2.61727$
67	4141.52 ± 0.01	7.309 ± 0.042	Ly $\alpha z=2.40677$	
68	4149.87 ± 0.18	0.143 ± 0.029		
69	4154.62 ± 0.02	0.726 ± 0.018		
70	4160.46 ± 0.03	0.470 ± 0.021		
71	4168.72 ± 0.01	5.140 ± 0.059		
72	4174.51 ± 0.03	0.625 ± 0.024		
73	4177.44 ± 0.11	0.211 ± 0.027		
74	4181.40 ± 0.03	0.905 ± 0.026		
75	4196.64 ± 0.02	0.532 ± 0.020		
76	4198.93 ± 0.02	0.822 ± 0.024		
77	4201.46 ± 0.22	0.137 ± 0.031		
78	4205.33 ± 0.01	1.694 ± 0.020	SiII $\lambda 1193 \quad z=2.52415$	
79	4211.40 ± 0.09	0.266 ± 0.025		
80	4214.26 ± 0.11	0.092 ± 0.019		
81	4227.42 ± 0.03	0.631 ± 0.022		
82	4232.15 ± 0.06	0.458 ± 0.027	SiII $\lambda 1260$	$z=2.35772$
83	4240.03 ± 0.02	1.279 ± 0.023	SiII $\lambda 1193 z=2.55322$	
84	4245.80 ± 0.20	0.298 ± 0.046	OI $\lambda 1302 z=2.26056$	

Table B.1: (continued)

No.	$\lambda_{\text {obs }}$	$\mathrm{W}_{\lambda}(\AA)$	Identification	Possible I.D.
85	4249.49 ± 0.13	0.186 ± 0.036		
86	4252.39 ± 0.07	0.459 ± 0.031	SillI $\lambda 1206 z=2.52456$	
87	4255.67 ± 0.06	0.234 ± 0.021		
88	4259.42 ± 0.01	2.997 ± 0.022		
89	4266.80 ± 0.01	1.122 ± 0.016		
90	4274.72 ± 0.04	0.419 ± 0.020		
91	4279.30 ± 0.02	0.568 ± 0.017		
92	4283.59 ± 0.01	3.412 ± 0.028	Ly $\alpha z=2.52364$	
93	4294.07 ± 0.03	0.567 ± 0.019	SiII $\lambda 1260 z=2.40685$	
94	4313.70 ± 0.13	0.560 ± 0.050		
95	4316.43 ± 0.02	1.344 ± 0.025		
96	4319.46 ± 0.01	2.085 ± 0.024	Ly $\alpha=2.55315$	
97	4325.95 ± 0.07	0.285 ± 0.021		
98	4330.46 ± 0.03	0.558 ± 0.024		
99	4332.71 ± 0.07	0.237 ± 0.023		
100	4336.13 ± 0.04	0.378 ± 0.017		
101	4343.03 ± 0.01	1.714 ± 0.018		
102	4348.71 ± 0.06	0.731 ± 0.035		
103	4352.98 ± 0.01	1.048 ± 0.016		
104	4358.66 ± 0.02	1.130 ± 0.019	Ly $\alpha z=2.58540$	
105	4361.61 ± 0.02	0.477 ± 0.017	SilII $\lambda 1206 z=2.61509$	
106	4367.82 ± 0.03	0.425 ± 0.017		
107	4372.93 ± 0.08	0.153 ± 0.016	OI $\lambda 1302$	$z=2.35819$
108	4376.46 ± 0.02	0.690 ± 0.016		
109	4383.34 ± 0.01	1.053 ± 0.014	Ly $\alpha z=2.60569$	
110	4392.78 ± 0.24	0.151 ± 0.029		
111	4395.64 ± 0.03	0.417 ± 0.022	Ly $\alpha z=2.61581$	

		$927 \cdot 0 \mp 970 \%$	0¢07L9．6bs	8I
		ILE0干L99\％	Zv0戸ち8．8zse	21
		0ع7．0干8L9	2107198zse	91
		108．07\＆${ }^{\text {c }}$ ¢	0Z07ZI＇9ISE	91
		çz－0干Z18．8	¢1078L¢098	1
			$69^{\circ} 0 \mp$ ¢ $^{\circ} 8858$	εI
		5970才IE8	$99^{\circ} 0 \mp 88.02 \mathrm{LE}$	ZI
		0¢90788¢ ${ }^{\circ}$	$0 \downarrow 0 \mp \pm 099 \mathrm{EE}$	II
		90\％ $0 \mp 809^{\circ} \mathrm{E}$	070759 LDVE	01
		281．0干0ヶ ${ }^{\circ} \mathrm{L}$		6
			610766 ${ }^{\circ} 98$ ¢	8
		90\％ 0 于0zI $¢$	98．0干L¢ $78 \varepsilon 8$	L
		198．0干076．9	010 0 ¢98 8988	9
		セ0ヶ0才99\％\％	Lz＇0干97＇もGz\＆	9
		$669.0 \mp 96 \mathrm{~L}$ ¢		\checkmark
		$870^{\circ} 0 \mp 219 \%$		ε
		0LE0干099＇I	LE0耳II「gIz\＆	2
		0¢0．0于0¢9 ${ }^{\text {I }}$	10．0甲88．zLz\＆	I
	$668+20210$			
		610．0干もLE\％	70．0干28．07s	8II
		610．0才0ヶて＇0	800才78966䂙	LII
	9890\％$\%=z$ zoEIY IO	810．0干LもT0		9II
		9700甲6ZI＇0		cII
		7700耳86\％ 0	20079086防	bli
			8207¢960㖇	\＆II
	90188． $7=z$ Z0¢IY 10	910．0干L01．0		ZII
	ио！реәу！риәрI	（8）${ }^{\mathrm{Y}} \mathrm{M}$	${ }^{\text {890}} \mathrm{Y}$	${ }^{\circ} \mathrm{N}$

Table B.1: (continued)

No.	$\lambda_{\text {abs }}$	$\mathrm{W}_{\lambda}(\AA)$	Identification	Possible I.D.
19	3568.02 ± 0.60	3.202 ± 0.482		
20	3588.38 ± 0.45	1.937 ± 0.316		
21	3616.92 ± 0.40	7.475 ± 0.733		
22	3634.31 ± 0.31	0.927 ± 0.220		
23	3641.77 ± 0.23	3.570 ± 0.302		
24	3660.98 ± 0.47	5.821 ± 0.650		
25	3673.67 ± 0.06	1.360 ± 0.107		
26	3712.20 ± 0.22	1.296 ± 0.240		
27	3719.27 ± 0.75	1.486 ± 0.370		
28	3729.54 ± 0.14	2.570 ± 0.214		
29	3754.52 ± 0.14	3.805 ± 0.852	SiIII $\lambda 1206 \quad z=2.11191$	
30	3765.49 ± 3.16	2.848 ± 1.818		
31	3781.45 ± 0.09	8.770 ± 0.277	Ly $\alpha=2.11058$	
32	3792.64 ± 0.87	3.766 ± 0.945		
33	3800.88 ± 0.11	3.250 ± 0.545		
34	3808.18 ± 0.18	2.852 ± 0.244	Ly $\alpha=2.13258$	
35	3830.74 ± 0.29	6.026 ± 0.735		
36	3836.82 ± 0.23	4.962 ± 0.820	Lyo $z=2.15614$	
37	3847.65 ± 0.77	3.071 ± 0.629		
38	3867.45 ± 0.21	0.975 ± 0.186		
39	3884.48 ± 0.12	1.086 ± 0.148		
40	3907.30 ± 0.17	7.154 ± 0.334	NV $\lambda 1238$	$z=2.15404$
41	3921.95 ± 0.14	1.038 ± 0.156	SiII $\lambda 1260$	$z=2.11161$
42	3954.77 ± 0.22	1.308 ± 0.197		NV $\lambda 1242$
43	3961.96 ± 0.23	1.028 ± 0.187		
44	3970.18 ± 0.20	0.802 ± 0.165		
45	3977.55 ± 0.16	2.078 ± 0.202	SiII $\lambda 1260$	$z=2.15573$

		$060.0 \mp 029^{\prime} 1$ $0910 \mp 099 \cdot 1$ $0 \varepsilon \mathrm{r}^{\circ} 0 \mp 068^{\circ} 0$ $0210 \mp 06 \mathrm{C} Z$	010干062z98 ¢1．0〒89．6098 zz 0〒 II 0798.8298	
$9 L I+01 Z \mathrm{I} 0$				
		29\％00．099	97．0708918 ${ }^{\text {b }}$	99
				ゅ9
	ZLILİZ＝z Z0tIY AIS	6910¢9¢¢＇土	LI0才b0 ¢98b	¢9
	Z9LIT＇Z $=z$ E6EIY NI！S	I¢T0キ9¢6 ${ }^{\text {L }}$	แ10才ャ898¢	79
			280¢02 2876	19
		01t＇0キてI8＇0		09
		z010才192．I	200才02 80zt	69
		b¢10¢9798	010768 78 Lb	89
		\＆1t0¢1980	－t $0 \mp$ ¢0092Lt	L9
		6110キ729\％	200¢ 26.19 「t	99
		8910 ∓ 806.9	$80.0 \mp 00 \mathrm{zcIb}$	g 9
		Lgiomege i	710キ7698しち	ts
		L910 0 ¢ 22.1	210¢¢8＇teit	$\varepsilon 9$
		81ヵ0干も988	980¢Zヶて\％	zs
		๖IE0才918．		19
		20z 0¢0¢c＇b	u0才Is980b	09
		8LIOFE6L0	LZ0干69\％LOD	6 b
		LIZ．0才Z09＇	$97^{\circ} \mathbf{0}$ ¢80890t	$8{ }^{8}$
			080 ∓ 76 切	Lb
		ャ0\％ $0 \mp 9788^{\circ}$	$68^{\circ} 0799 \mathrm{gcot}$	$9{ }^{\text {9 }}$
$\mathrm{Cl}^{\text {I }}$ Pq！		（X）${ }^{\text {r }} \mathrm{M}$	${ }^{\text {890 }} \mathrm{Y}$	${ }^{\circ} \mathrm{N}$

（рәпи！̣иоэ）： $\mathrm{I} \cdot \mathrm{g}$ ә $\mathrm{TqP}_{\mathrm{L}}$

Table B.1: (continued)

No.	$\lambda_{\text {obs }}$	$W_{\lambda}(\AA)$	Identification	Possible I.D.
33	3842.65 ± 0.06	1.090 ± 0.070		
34	3847.26 ± 0.04	2.780 ± 0.110		
35	3850.45 ± 0.04	2.050 ± 0.100	SiII $\lambda 1260 \quad z=2.05488$	
36	3858.64 ± 0.04	2.230 ± 0.100	CII $\lambda 1334$	$z=1.89137$
37	3862.18 ± 0.05	2.900 ± 0.120		SiIII $\lambda 1206 z=2.19820$
38	3868.21 ± 0.07	0.660 ± 0.070		
39	3873.63 ± 0.07	0.520 ± 0.060		NV $\lambda 1238 z=2.12249$
40	3880.81 ± 0.12	0.320 ± 0.060		NV $\lambda 1242 z=2.12262$
41	3887.02 ± 0.04	5.050 ± 0.130	Ly $\alpha z=2.19742$	
42	3905.18 ± 0.22	0.570 ± 0.120		
43	3912.48 ± 0.07	1.240 ± 0.080		
44	3921.93 ± 0.07	1.010 ± 0.070		
45	3938.23 ± 0.03	1.790 ± 0.060	SiII $\lambda 1260 \quad z=2.12453$	
46	3951.72 ± 0.03	3.320 ± 0.080		
47	3962.60 ± 0.13	0.270 ± 0.060		
48	3968.08 ± 0.03	2.080 ± 0.060		
49	3972.60 ± 0.12	0.370 ± 0.060		
50	3980.64 ± 0.06	2.320 ± 0.210		
51	3985.24 ± 0.07	5.600 ± 0.320		
52	3988.94 ± 0.08	0.430 ± 0.120		
53	4008.67 ± 0.06	0.530 ± 0.050		
54	4019.82 ± 0.10	0.360 ± 0.060		
55	4025.53 ± 0.03	1.710 ± 0.060		
56	4030.28 ± 0.08	1.250 ± 0.080	SiIV $\lambda 1393 z=1.89167$	SiII $\lambda 1260 z=2.19756$
57	4036.64 ± 0.07	0.240 ± 0.040		
58	4051.89 ± 0.04	1.060 ± 0.060		
59	4056.09 ± 0.13	1.070 ± 0.090	SiIV $\lambda 1402 z=1.89149$	

Table B.1: (continued)

No.	$\lambda_{\text {obs }}$	$\mathrm{W}_{\lambda}(\AA)$	Identification	Possible I.D.
60	4076.21 ± 0.09	0.390 ± 0.050	CII $\lambda 1334 z=2.05441$	
61	4079.24 ± 0.05	0.800 ± 0.060		
62	4086.72 ± 0.02	2.270 ± 0.060		
63	4098.64 ± 0.36	0.400 ± 0.090		
64	4102.71 ± 0.08	0.550 ± 0.060		
65	4106.86 ± 0.03	0.960 ± 0.100		
66	4110.13 ± 0.08	3.020 ± 0.160		
67	4122.80 ± 0.04	0.410 ± 0.050		
68	4147.81 ± 0.28	0.560 ± 0.090		
69	4154.51 ± 0.04	1.290 ± 0.060		
70	4160.72 ± 0.08	0.450 ± 0.050		
71	4163.77 ± 0.04	0.890 ± 0.050	OI $\lambda 1302 z=2.19756$	
72	4168.79 ± 0.05	2.100 ± 0.080	CII $\lambda 1334$	$z=2.12378$
73	4182.67 ± 0.09	0.150 ± 0.030		
74	4186.91 ± 0.02	3.010 ± 0.050		
75	4193.58 ± 0.11	0.550 ± 0.060		
76	4203.36 ± 0.03	1.890 ± 0.050		
77	4209.02 ± 0.02	2.340 ± 0.050		
78	4212.46 ± 0.03	1.560 ± 0.050		
79	4220.58 ± 0.05	0.800 ± 0.060		
80	4222.76 ± 0.03	1.020 ± 0.050		
81	4228.90 ± 0.05	1.210 ± 0.050		
82	4234.32 ± 0.16	0.800 ± 0.080		
83	4241.21 ± 0.14	0.260 ± 0.040		
84	4256.38 ± 0.07	0.330 ± 0.040		
85	4259.99 ± 0.03	0.920 ± 0.030		
86	4266.24 ± 0.11	0.540 ± 0.050	CII $\lambda 1334 z=2.19680$	

GIL9I＇I＝z 8\％GIY AID		$0 ¢ 70 \mp 069^{\circ} \mathrm{E}$	80．0761－g¢EE	ZI
		0bI 0 0 098．0		II
		0110干09\％ 0	い「0干じも¢	01
		0¢T0¢0¢9＊0	810干0L0 0 ¢	6
		0910才0¢L＇0	210干67＇10¢E	8
		0bて＇0才0LE＇I	0z＇0干98 L6zE	1
		0¢T．0才0990		9
		028．0干098 ${ }^{\text {I }}$		9
L6GL8＇I＝z GEITY IN		0¢10才0890	\＆107LI＇も9Z\＆	\checkmark
		0¢7＇0干00ヶ ${ }^{\circ}$	LI＇0干8L＇09\％\＆	ε
		0L2．0干0ちて＇\＆	98．0728．70z8	ζ
		081070190	010756．00z8	1
ャ6Z＋182I O				
		0G00干0ちて＇I		66
			6007¢ ${ }^{\circ} \mathrm{CBE}$	86
		0900 $0088^{\circ} 0$	980干6L＇tLEt	26
		0900干0Lて＇V	200788．098t	96
	SEZLS $=z$ oKT	$0 \mathrm{0} 0{ }^{\circ} 0 \mp 099{ }^{\circ} \mathrm{C}$	200708 $2 \mathrm{8Eも}$	96
		080．0干090＇I	10．0干口 9.288%	『6
		06007062．0	90079I「98Et	86
		010．0干089\％0	20．0769 288 b	76
		060 0 ¢088 0		16
		08007088． 7	10．0干12．908t	06
		050＇0干098\％	80．0干66．262b	68
		0b00¢098．0	$80.0 \mp 90888 \mathrm{~b}$	88
		0ヶ007091 1	10．0干6L． $2 \angle Z \%$	28
CII Plq！${ }^{\text {ssod }}$		（V）${ }^{\mathrm{Y}} \mathrm{M}$	${ }^{\text {sq0 }} \mathrm{Y}$	${ }^{\circ} \mathrm{O}$

Table B.1: (continued)

No.	$\lambda_{\text {obs }}$	$W_{\lambda}(\AA)$	Identification	Possible I.D.
13	3360.93 ± 0.05	2.910 ± 0.150		CIV $\lambda 1550 z=1.16725$
14	3372.16 ± 0.10	0.780 ± 0.130		
15	3383.58 ± 0.12	0.860 ± 0.130		
16	3387.35 ± 0.13	1.190 ± 0.150		
17	3391.57 ± 0.17	0.530 ± 0.137		
18	3402.70 ± 0.15	0.530 ± 0.110		
19	3426.85 ± 0.16	0.840 ± 0.130		
20	3433.19 ± 0.15	0.490 ± 0.110		
21	3443.03 ± 0.04	2.000 ± 0.100		
22	3449.79 ± 0.13	1.780 ± 0.180		
23	3453.77 ± 0.08	1.610 ± 0.130	SiIV $\lambda 1393 z=1.47803$	
24	3476.69 ± 0.12	0.760 ± 0.110	SiIV $\lambda 1402 z=1.47844$	
25	3495.64 ± 0.07	0.960 ± 0.100	Ly $\alpha z=1.87548$	
26	3511.47 ± 0.07	1.280 ± 0.110		
27	3530.18 ± 0.19	0.540 ± 0.110		
28	3534.42 ± 0.16	1.160 ± 0.140		
29	3538.58 ± 0.05	1.440 ± 0.080		
30	3554.35 ± 0.08	0.370 ± 0.070		
31	3568.22 ± 0.07	0.330 ± 0.060		
32	3570.55 ± 0.11	0.440 ± 0.070		
33	3579.07 ± 0.20	0.600 ± 0.120		
34	3582.21 ± 0.06	1.400 ± 0.130		
35	3585.50 ± 0.22	0.800 ± 0.160		
36	3588.96 ± 0.04	1.490 ± 0.090		
37	3598.06 ± 0.05	0.400 ± 0.050		
38	3613.12 ± 0.08	0.430 ± 0.060		
39	3616.37 ± 0.03	1.590 ± 0.060		

Table B.1: (continued)

No.	$\lambda_{\text {abs }}$	$W_{\lambda}(\AA)$	Identification	Possible I.D.
40	3621.25 ± 0.06	1.180 ± 0.070		AlII $\lambda 1670 z=1.16739$
41	3647.20 ± 0.25	0.610 ± 0.110		
42	3650.22 ± 0.89	0.360 ± 0.900		
43	3653.88 ± 1.38	0.920 ± 1.210		
44	3658.65 ± 0.05	0.690 ± 0.050		
45	3674.31 ± 0.0	3.130 ± 0.050		
46	3738.19 ± 0.14	0.370 ± 0.060	CIV $\lambda 1548 \quad z=1.41453$	
47	3745.09 ± 0.02	1.150 ± 0.040	CIV $\lambda 1550 z=1.41498$	OI $\lambda 1302 z=1.87604$
48	3793.63 ± 0.10	0.680 ± 0.070		
49	3806.82 ± 0.03	1.240 ± 0.050		
50	3836.51 ± 0.05	0.960 ± 0.070	CIV $\lambda 1548$	$z=1.47804$
51	3842.66 ± 0.07	0.570 ± 0.060	CIV $\lambda 1550 z=1.47789$	
			Q $1323-107$	
1	3204.56 ± 0.05	0.460 ± 0.160		
2	3206.34 ± 0.20	1.590 ± 0.300		
3	3216.42 ± 0.16	0.820 ± 0.190		
4	3220.10 ± 0.10	3.040 ± 0.240	OI $\lambda 1302 z=1.47288$	
5	3224.99 ± 0.11	0.290 ± 0.090		
6	3234.71 ± 0.05	1.510 ± 0.210	CII $\lambda 1334 z=1.42385$	
7	3240.85 ± 0.32	2.710 ± 0.490		
8	3245.61 ± 0.29	2.030 ± 0.340	OI $\lambda 1302 z=1.49247$	
9	3250.47 ± 0.07	0.680 ± 0.110		SiII $\lambda 1304 z=1.84145$
10	3260.76 ± 0.08	0.540 ± 0.110		
11	3270.96 ± 0.19	0.780 ± 0.170		
12	3272.90 ± 0.05	0.690 ± 0.110		
13	3281.28 ± 0.13	0.720 ± 0.130		

Table B.1: (continued)

No.	$\lambda_{\text {obs }}$	$\mathrm{W}_{\lambda}(\AA)$	Identification	Possible I.D.
14	3299.99 ± 0.09	2.410 ± 0.170	CII $\lambda 1334 z=1.47277$	
15	3307.67 ± 0.12	0.720 ± 0.130		
16	3309.47 ± 0.10	0.320 ± 0.130		
17	3312.28 ± 0.45	1.030 ± 0.340		
18	3329.50 ± 0.49	1.100 ± 0.300		
19	3339.06 ± 0.24	0.850 ± 0.160	Ly $\beta z=2.25533$	
20	3352.69 ± 0.15	0.420 ± 0.090		
21	3357.41 ± 0.17	1.780 ± 0.210	$\mathrm{Ly} \beta z=2.27321$	
22	3362.25 ± 0.06	2.180 ± 0.130		
23	3370.80 ± 0.06	1.880 ± 0.110		
24	3374.56 ± 0.09	1.020 ± 0.100		
25	3379.06 ± 0.09	0.548 ± 0.089	Ly $\beta z=2.29432$	SiIV $\lambda 1393 z=1.42443$
26	3384.32 ± 0.16	0.483 ± 0.117		
27	3388.24 ± 0.06	0.750 ± 0.140		
28	3393.42 ± 0.12	1.730 ± 0.140	$\mathrm{Ly} \beta z=2.30832$	
29	3400.72 ± 0.11	0.310 ± 0.170		SiIV $\lambda 1402 z=1.42429$
30	3403.07 ± 0.39	1.100 ± 0.320		
31	3406.39 ± 0.11	0.560 ± 0.190		
32	3409.35 ± 0.44	0.650 ± 0.240	$\mathrm{Ly} \beta z=2.32385$	NI $\lambda 1200 z=1.84113$
33	3419.57 ± 0.07	1.360 ± 0.100		
34	3422.50 ± 0.08	0.740 ± 0.090		
35	3436.74 ± 0.08	1.730 ± 0.110		
36	3447.05 ± 0.12	1.370 ± 0.110		
37	3454.39 ± 0.06	0.910 ± 0.070	Ly $\alpha z=1.84155$	
38	3461.20 ± 0.05	2.280 ± 0.090		
39	3489.30 ± 0.15	0.140 ± 0.050		
40	3491.71 ± 0.51	1.350 ± 0.310		

Table B.1: (continued)

No.	$\lambda_{\text {obs }}$	$W_{\lambda}(\AA)$	Identification	Possible I.D.
41	3510.01 ± 0.23	0.340 ± 0.090		
42	3513.57 ± 0.09	1.570 ± 0.110		
43	3517.05 ± 0.12	0.290 ± 0.070		
44	3519.81 ± 0.10	1.220 ± 0.100		
45	3526.01 ± 0.43	0.790 ± 0.200		
46	3529.76 ± 0.18	1.060 ± 0.120		
47	3544.74 ± 0.17	0.820 ± 0.110		
48	3550.80 ± 0.14	0.950 ± 0.190		
49	3552.88 ± 0.14	1.180 ± 0.200		
50	3557.81 ± 0.17	1.110 ± 0.130		
51	3579.07 ± 0.09	0.360 ± 0.060		
52	3582.43 ± 0.06	1.210 ± 0.080		
53	3586.71 ± 0.05	1.000 ± 0.060		
54	3613.01 ± 0.03	2.000 ± 0.060		
55	3629.72 ± 0.04	1.910 ± 0.080		
56	3643.56 ± 0.40	0.570 ± 0.140		
57	3648.00 ± 0.05	1.340 ± 0.080		
58	3652.01 ± 0.05	1.680 ± 0.080		
59	3659.17 ± 0.04	0.270 ± 0.040		
60	3693.85 ± 0.11	0.320 ± 0.070		
61	3696.50 ± 0.09	0.590 ± 0.070		
62	3701.24 ± 0.15	0.480 ± 0.080	Sill $\lambda 1526$	$z=1.42433$
63	3703.92 ± 0.13	0.170 ± 0.100		
64	3706.28 ± 0.33	0.660 ± 0.180		
65	3714.16 ± 0.03	3.390 ± 0.090		
66	3726.25 ± 0.30	0.700 ± 0.160		
67	3728.57 ± 0.08	0.270 ± 0.100		

Table B.1: (continued)

No.	$\lambda_{\text {obs }}$	$\mathrm{W}_{\lambda}(\AA)$	Identification	Possible I.D.
68	3736.95 ± 0.04	1.650 ± 0.070		
69	3739.58 ± 0.04	1.430 ± 0.070		
70	3751.83 ± 0.03	0.770 ± 0.050		
71	3757.45 ± 0.03	1.530 ± 0.050		
72	3763.81 ± 0.06	0.810 ± 0.050		
73	3768.90 ± 0.03	1.440 ± 0.050		
74	3772.99 ± 0.07	0.530 ± 0.050		
75	3778.29 ± 0.22	0.260 ± 0.060		
76	3791.98 ± 0.12	0.210 ± 0.050	CII $\lambda 1334 z=1.84143$	
77	3796.17 ± 0.24	0.250 ± 0.060		
78	3801.03 ± 0.07	0.200 ± 0.060		
79	3803.44 ± 0.47	0.630 ± 0.150		
80	3812.65 ± 0.04	1.490 ± 0.060		
81	3816.92 ± 0.01	1.060 ± 0.040		
82	3820.91 ± 0.05	1.110 ± 0.050		
83	3825.39 ± 0.03	1.290 ± 0.050		
84	3828.17 ± 0.04	1.130 ± 0.060	CIV $\lambda 1548$	$z=1.47266$
85	3831.78 ± 0.05	0.720 ± 0.050		
86	3834.68 ± 0.06	0.820 ± 0.060	CIV $\lambda 1550$	$z=1.47275$
87	3842.39 ± 0.05	1.650 ± 0.070		
88	3846.24 ± 0.07	0.620 ± 0.050		
89	3854.44 ± 0.06	1.000 ± 0.060		
90	3858.40 ± 0.05	0.640 ± 0.050	CIV $\lambda 1548$	$z=1.49218$
91	3861.40 ± 0.12	0.380 ± 0.230		
92	3863.95 ± 1.06	0.560 ± 0.300	CIV $\lambda 1550$	$z=1.49163$
93	3869.87 ± 0.05	1.300 ± 0.060		
94	3873.38 ± 0.04	0.960 ± 0.050		

		080．0干0970	［1．0728．8098	I¢
 Z08ちて＇I $=z 8 \mathrm{EGIY}$ ND		080．0才02t0	2007E¢9888	$0 ¢$
		0150 ∓ 0160	60070F08ヶ¢	62
	LILO9＇t＝z VEETY IDP	09\％ $0 \mp 02 \varepsilon^{\prime} \mathrm{z}$	LI＇0干te＇LLEE	87
			U＇0干67＇ 9 ¢	2%
		00\％ 0 ∓ 0868	800才69＇z¢t¢	97
		02107076	200F0g Lite	97
			90079868\＆8	$\dagger z$
		$060.0 \mp 085^{\circ} 0$	900769 ャてャ¢	εz
		$0 \mathrm{bl} 0 \mp 0290$		72
		091070ヶ2．0	91＇0干98＇\＆88¢	IZ
		$09^{\circ} 0 \mp 088^{\circ} 0$	I＇0キマ¢＇LLE¢	$0 \overline{1}$
		00ヶ0干0968	910干ャ600z\＆	61
		$061^{\circ} \mathrm{O} 0249^{\circ} \mathrm{I}$	\＆10キ02 $718 ¢$	81
		02F0干080＇z	1ヵ．07L8 1088	21
		097．0〒092．	070才198Lzを	91
		0z\％ $0 \mp 026^{\prime}$ I		9I
		OST 0 ∓ 0900	210才982988	tI
		0LI0¢0¢\％I	600702．69z8	εI
				ZI
		0710 0 ¢0680		II
		0110 ∓ 0890	90．0干98．6ъて¢	0I
		021070290	80．0干¢\％9ちを8	6
		007．0¢06\％	910 ± 90 ¢ъて¢	8
		$000^{\circ} \mathrm{O} 09990$	ャ0．0才6188 88	1
		$088^{\circ} 0 \mp 079^{\circ}$		9
		OLI $0 \mp 02 L^{\circ}$	20．0才て＇6zze	q
CII PqTssod	ноиұеэу！ихар	（y）${ }^{\mathrm{Y}} \mathrm{M}$	${ }^{\text {890 }} \mathrm{Y}$	${ }^{\circ} \mathrm{N}$

$69800^{\prime} z=z$ LEOIY INO		180．07 $2888^{\circ} 0$	97．0干29．0t98	8
	L¢809 $2=z$ 980t\％IID	8010才072\％	Z7＇0干06：¢¢98	2
		9900才18ヶ\％	60．0干85＇9798	9
		z910才662＇I	ti．0才8t＇6198	g
		020．0才192．I	ャ0．078L¢198	－
		¢REOFG86\％	LIO耳7\％＇1098	ε
	$61809^{\prime} Z=z \mathcal{S}^{\prime}$ T		80.0 ∓ 858698	\checkmark
	$8 \mathrm{~L} 28 \mathrm{t}^{\circ} \mathrm{Z}=z \mathrm{~g}^{\prime} \mathrm{T}$	ャ010キモ00\％	L0．0788．9298	1
$986+28810$				
L6z98＇I＝z 8091Y $\mathrm{IP}^{\text {P }} \mathrm{d}$		02100．09\％z		$8{ }^{\text {8 }}$
		00t0干098＊	91071c．920t	Lt
		007．0才0¢ 20	It＇0才¢\％＇z\％0t	9t
		080．0〒088．0	020719＇8868	$\mathrm{c}^{\text {b }}$
	6SILJ＇t＝z 0gGIY AD	060．0才0z0＇	010788＇z888	切
	¢91L＇t $=z 8 \mathrm{bGTY}$ 人ID	080．070Iて＇I	90076¢9788	$\varepsilon \square$
	Z6988＇ı＝z ๖¢¢โY ID	001070L20		7b
		060．0干00 0	L＇0干10．0928	$\underline{\text { L }}$
		080，07068．0		$0{ }^{\circ}$
		0200才0 ${ }^{\circ} 0$	60．0キャ！＇ท998	68
LセZGE＇I＝z 0gcir Mip	09009 $1=z$ 20tIY 1 I！	0ヶT070L20	620790＇8t98	88
		0600¢0960	210¢697698	28
			LI＇0干LL＇ャて98	98
	9p6I¢ $0=z$ Z887Y IIP	020070180	910 0 ¢¢¢ 0798	98
		090＇0キ001＇	800FLLVLS8	¢¢
		0ヶ00070t90	900FLI＇6998	\＆
		090.0 ∓ 098.0	900才ャレ09s¢	78
C．I Pq！${ }^{\text {S }}$	ио！บеэч！บиәрI	（V）${ }^{\mathrm{r}} \mathrm{M}$	${ }^{\text {s90 }} \mathrm{Y}$	${ }^{\circ} \mathrm{N}$

Table B.1: (continued)

No.	$\lambda_{\text {obs }}$	$\mathrm{W}_{\lambda}(\AA)$	Identification	Possible I.D.
9	3649.64 ± 0.12	0.504 ± 0.069		
10	3653.30 ± 0.03	1.662 ± 0.067		
11	3657.67 ± 0.03	3.756 ± 0.093		
12	3665.54 ± 0.03	2.842 ± 0.066		
13	3681.79 ± 0.05	1.873 ± 0.078		
14	3705.88 ± 0.05	1.351 ± 0.072		
15	3713.35 ± 0.06	1.146 ± 0.076		
16	3718.74 ± 0.05	0.935 ± 0.079		
17	3722.30 ± 0.30	0.658 ± 0.140		
18	3749.18 ± 0.08	0.450 ± 0.060		
19	3755.54 ± 0.04	0.770 ± 0.052		
20	3762.04 ± 0.03	2.010 ± 0.066		
21	3779.56 ± 0.13	0.359 ± 0.063		
22	3782.54 ± 0.03	1.663 ± 0.057		
23	3796.03 ± 0.04	0.210 ± 0.091		
24	3798.60 ± 0.08	0.580 ± 0.058		
25	3803.20 ± 0.10	0.784 ± 0.070	NII $\lambda 1083$	$z=2.50851$
26	3812.60 ± 0.04	3.380 ± 0.101		
27	3815.99 ± 0.04	1.188 ± 0.075		
28	3822.09 ± 0.10	0.306 ± 0.053		
29	3827.78 ± 0.42	0.838 ± 0.187		
30	3833.94 ± 0.11	0.609 ± 0.070		
31	3838.13 ± 0.04	1.980 ± 0.070		
32	3843.82 ± 0.17	0.262 ± 0.060		
33	3852.12 ± 0.06	2.165 ± 0.086		
34	3861.42 ± 0.12	0.484 ± 0.065		
35	3864.89 ± 0.05	0.644 ± 0.053		

Table B.1: (continued)

No.	$\lambda_{\text {obs }}$	$\mathrm{W}_{\lambda}(\AA)$	Identification	Possible I.D.
36	3868.78 ± 0.03	1.955 ± 0.060		
37	3878.57 ± 0.09	1.007 ± 0.075		
38	3882.75 ± 0.06	0.348 ± 0.044		
39	3900.39 ± 0.12	3.315 ± 0.218		
40	3908.85 ± 0.05	2.817 ± 0.135		
41	3919.84 ± 0.04	1.048 ± 0.061		
42	3922.60 ± 0.07	0.909 ± 0.068		
43	3933.06 ± 0.29	0.689 ± 0.123		
44	3952.66 ± 0.06	1.798 ± 0.077		
45	3965.81 ± 0.04	2.162 ± 0.068		
46	3971.50 ± 0.15	0.190 ± 0.047		
47	3978.02 ± 0.07	0.631 ± 0.053		
48	3988.21 ± 0.03	1.697 ± 0.052		
49	3998.58 ± 0.15	0.832 ± 0.079		
50	4014.73 ± 0.20	0.700 ± 0.169		
51	4017.04 ± 0.19	0.872 ± 0.174		
52	4020.91 ± 0.04	1.573 ± 0.060		
53	4027.36 ± 0.06	2.002 ± 0.082	FeII $\lambda 1143$	$z=2.52280$
54	4033.21 ± 0.05	6.412 ± 0.214	FeII $\lambda 1145 z=2.52267$	
55	4037.95 ± 0.03	1.885 ± 0.109		
56	4044.67 ± 0.09	0.320 ± 0.050		
57	4056.13 ± 0.02	3.593 ± 0.062		
58	4071.19 ± 0.03	2.436 ± 0.056		
59	4076.05 ± 0.04	1.861 ± 0.062		
60	4085.91 ± 0.03	4.968 ± 0.117		
61	4090.10 ± 0.05	1.565 ± 0.092		
62	4097.35 ± 0.13	5.393 ± 0.356		

Table B.1: (continued)

No.	$\lambda_{\text {obs }}$	$\mathrm{W}_{\lambda}(\AA)$	Identification	Possible I.D.
63	4106.93 ± 0.10	0.622 ± 0.058		
64	4116.22 ± 0.06	0.696 ± 0.068		
65	4118.50 ± 0.10	0.646 ± 0.073		
66	4131.19 ± 0.11	0.770 ± 0.076		
67	4133.66 ± 0.05	0.704 ± 0.064		
68	4137.94 ± 0.06	2.080 ± 0.074		
69	4143.00 ± 0.02	3.496 ± 0.051		
70	4151.02 ± 0.02	3.328 ± 0.050		
71	4160.38 ± 0.03	1.743 ± 0.044		
72	4172.60 ± 0.05	6.980 ± 0.150		
73	4174.93 ± 0.03	0.398 ± 0.026		
74	4176.19 ± 0.03	0.678 ± 0.032		
75	4178.13 ± 0.04	1.531 ± 0.083		
76	4183.44 ± 0.57	0.902 ± 0.257		
77	4186.42 ± 0.04	0.556 ± 0.089		
78	4190.66 ± 0.11	1.308 ± 0.112		
79	4196.96 ± 0.41	0.507 ± 0.110		
80	4203.04 ± 0.04	2.509 ± 0.062		
81	4212.96 ± 0.02	0.868 ± 0.031		
82	4218.18 ± 0.03	0.916 ± 0.035		
83	4222.79 ± 0.04	0.352 ± 0.029		
84	4226.46 ± 0.04	0.469 ± 0.031		
85	4230.10 ± 0.02	1.270 ± 0.033		
86	4238.68 ± 0.09	1.205 ± 0.066	Ly $\alpha z=2.48670$	
87	4244.50 ± 0.04	0.627 ± 0.032		
88	4249.52 ± 0.01	2.811 ± 0.034	SiIII $\lambda 1206$	
89	4256.11 ± 0.02	1.674 ± 0.032		

		001．0干09\％＇0	\＆107LI＇I8LE	21
		009．0干089 ${ }^{\circ}$	LGOF 82.6928	91
		$0 ¢ 70$ O09 \％ 0		¢I
		0810干0¢0 1	60072866LE	bI
			90．0干98．97LE	εI
			910780－28LE	ZI
		0210干016．	600781	II
		09I0干0¢0 I	600\％戸¢＇8898	0I
		081．0干0z8＇I	600728：8798	6
		091．0干069 1	900\％ $999^{\circ} \mathrm{Iz98}$	8
			010干90．0098	L
		$087^{\circ} 0 \mp 09 L^{\circ} \mathrm{L}$	－10FIE6898	9
		0970才0L9＇Z	て107¢9＇1998	g
		$007^{\circ} 0 \mp 060^{\circ} \mathrm{I}$	It．0干69．LLDE	\checkmark
		$097^{\circ} 0 \mp 066^{\circ} 0$	8107996968	ε
	${ }^{6} 6798.7=z g \mathcal{S}_{T}$	0620 0 ¢08 ${ }^{\circ} \mathrm{L}$	\＆7．0干GL．6bb	ζ
		069．0¢029\％		1
	980－97¢ ${ }^{\text {O }}$			
		260．0干897\％		26
		9800 $09700^{\circ} \mathrm{Z}$	200才10888t	96
		Z800 $0^{\circ} 628^{\circ} 0$	010 0 ¢96．96\％t	96
	L2879 ${ }^{\circ} \mathrm{Z}=2$ DКТ	8も0．0干口I6．	80．0耳\＆8．68で	6
			$10.0 \mp 09 \mathrm{z87} \mathrm{\%}$	86
			800 0 ¢ $28827 t$	Z6
		6700 ¢ 128.7		I6
		080．07088．0	800円 $26.097 *$	06
${ }^{\text {C／I Plqussod }}$	ио！̣еоч！${ }^{\text {a }}$	（ $\mathrm{y}^{\text {r }}$＇M	${ }^{\text {sq9 }} \mathrm{Y}$	${ }^{\circ} \mathrm{ON}$

Table B.1: (continued)

No.	$\lambda_{\text {obs }}$	$\mathrm{W}_{\lambda}(\AA)$	Identification	Possible I.D.
18	3783.35 ± 0.05	0.900 ± 0.100		
19	3793.46 ± 0.13	0.630 ± 0.110		
20	3804.00 ± 0.12	1.410 ± 0.150		
21	3846.97 ± 0.09	1.680 ± 0.140		
22	3852.41 ± 0.10	0.870 ± 0.110		
23	3856.49 ± 0.07	0.460 ± 0.080		
24	3863.67 ± 0.10	0.620 ± 0.100		
25	3880.35 ± 0.08	1.910 ± 0.130		
26	3902.89 ± 0.08	0.930 ± 0.090		
27	3906.33 ± 0.08	0.510 ± 0.080		
28	3911.88 ± 0.24	0.470 ± 0.110		
29	3925.20 ± 0.07	0.880 ± 0.080		
30	3941.90 ± 0.10	0.650 ± 0.080		
31	3954.37 ± 0.13	0.740 ± 0.100		
32	3965.04 ± 0.05	2.120 ± 0.090	Ly $\alpha=2.26160$	
33	3968.99 ± 0.14	0.730 ± 0.090		
34	3976.09 ± 0.11	0.590 ± 0.070		
35	3991.34 ± 0.07	1.380 ± 0.080		
36	3996.90 ± 0.04	1.670 ± 0.060		
37	4006.74 ± 0.06	1.770 ± 0.110		
38	4010.55 ± 0.07	1.600 ± 0.090		
39	4017.37 ± 0.42	0.980 ± 0.300		
40	4021.73 ± 0.29	0.410 ± 0.190		
41	4030.35 ± 0.16	0.480 ± 0.060		
42	4043.08 ± 0.08	1.360 ± 0.070	MgII $\lambda 2796 \quad z=0.44584$	
43	4051.09 ± 0.08	1.030 ± 0.090		
44	4054.31 ± 0.21	0.520 ± 0.090	MgII $\lambda 2803 \quad z=0.44614$	

Table B.1: (continued)

No.	$\lambda_{\text {obs }}$	$\mathrm{W}_{\lambda}(\AA)$	Identification	Possible I.D.
45	4066.89 ± 0.04	0.240 ± 0.030	Ly $\alpha z=2.36300$	
46	4071.22 ± 0.06	0.200 ± 0.030		
47	4083.86 ± 0.10	1.130 ± 0.080		
48	4088.31 ± 0.05	1.910 ± 0.060		
49	4117.46 ± 0.10	0.190 ± 0.040		
Q 1358+115				
1	3565.43 ± 1.02	0.060 ± 0.270		
2	3567.93 ± 0.35	3.470 ± 0.660	$\mathrm{Ly} \beta z=2.47845$	
3	3587.26 ± 0.18	1.950 ± 0.360	$\mathrm{Ly} \beta z=2.49730$	
4	3593.55 ± 0.35	3.770 ± 0.800	Fell $\lambda 2382 z=0.50814$	
5	3615.05 ± 0.24	2.520 ± 0.420		
6	3631.84 ± 0.41	2.100 ± 0.530		
7	3637.65 ± 0.28	3.610 ± 0.680	$\mathrm{Ly} \beta z=2.54642$	
8	3647.52 ± 0.16	1.234 ± 0.296		
9	3654.75 ± 0.17	1.840 ± 0.270	Ly $\beta z=2.56309$	
10	3672.01 ± 0.19	4.070 ± 0.480	$\mathrm{Ly} \beta z=2.57992$	
11	3688.75 ± 0.25	5.830 ± 0.930	OVI $\lambda 1031 z=2.57453$	
12	3694.24 ± 0.19	5.260 ± 0.650	OVI $\lambda 1031 z=2.57994$	
13	3709.44 ± 0.14	3.180 ± 0.300	OVI $\lambda 1037 z=2.57496$	
14	3714.48 ± 0.17	5.220 ± 0.570	OVI $\lambda 1037 z=2.57982$	
15	3719.27 ± 0.13	2.240 ± 0.230		
16	3723.05 ± 0.10	0.710 ± 0.150		
17	3757.03 ± 0.20	1.330 ± 0.230		
18	3762.37 ± 0.11	0.650 ± 0.150		
19	3765.56 ± 0.14	0.880 ± 0.180		
20	3772.14 ± 0.14	1.500 ± 0.210		

	LLGLV＇Z＝z 0¢ T	081．07062．		97
		00707012． 8		C
		0¢10才069＊0		㠶
		0zI＇0干092＇0	21079603It	$\varepsilon \square$
	Z8゙じでて＝z 00GIY IN	02I0 $0 ¢ 000 \cdot 8$	80\％ $0 \mp 62 \cdot 260$ b	7\％
		0910干068＊0		It
		09107082．1	010干以゙も800	0b
		0610¢09\％	110781．080家	68
		$0900 \mp 080 \checkmark$ 亿	\＆ $7^{\circ} 0 \mp 56 \cdot 620 *$	88
LL9Gg $\%=z$ gbily IIPd		$0960 \mp 00 \%^{\circ} \mathrm{Z}$	17：0干67：720\％	LE
－19Gg＇z＝z ¢bIIY IIPd				
9IGİて $=z$ 06IIY II！S		061．07098．0		98
		080070890	900干68090才	¢ $¢$
		08107080 ${ }^{\circ}$	210712．900	も¢
		$09 \%^{\circ} 0 \mp 066^{\prime}$ I	\＆100F28．7ヶ0t	\＆
		072．0干096＇Z	$60.0 \mp 26.880 \downarrow$	78
		0010干0ヶ9\％	90．0干1ヶ．0668	I ε
		0910干076．0		0¢
		091070880	て1072も 2168	62
		$0 \mathrm{t} 0 \mp 099 \cdot 0$	［1．0干02．9688	87
		0LI＇0干098．0		$2 z$
		0¢z＇0干0¢9＇L	\＆70F27：2888	97
		087＇0干009 ${ }^{\text {－}}$	\＆10719＊8788	96
		091．0干0¢z＇	010于9「6188	bz
		0¢I．0干089＊0	II＇0干LE＇1088	\＆Z
		0180701900	810776．8628	Z
		02\％ 0 F096 ${ }^{\text {L }}$	08．0干LZ＇1628	12
	иопреэу！	（ $)^{\text {r }} \mathrm{M}$	${ }^{\text {sqo }} \mathrm{Y}$	${ }^{\circ} \mathrm{N}$

Table B.1: (continued)

No.	$\lambda_{\text {obs }}$	$\mathrm{W}_{\lambda}(\AA)$	Identification	Possible I.D.
47	4164.34 ± 0.06	3.240 ± 0.160		
48	4172.47 ± 0.08	0.790 ± 0.100		
49	4175.71 ± 0.10	0.580 ± 0.100		
50	4183.01 ± 0.10	0.920 ± 0.110		
51	4192.71 ± 0.07	2.610 ± 0.160		
52	4200.98 ± 0.07	0.970 ± 0.100		MgII $\lambda 2803 z=0.50803$
53	4214.54 ± 0.10	0.820 ± 0.100		
54	4217.93 ± 0.05	1.530 ± 0.100	MgII $\lambda 2796 z=0.50837$	
55	4227.82 ± 0.09	5.060 ± 0.280	Ly $\alpha z=2.47776$	SiII $\lambda 1190 z=2.56290$
56	4233.65 ± 0.07	4.340 ± 0.190		SiII $\lambda 1193 z=2.55616$
57	4238.54 ± 0.76	1.050 ± 0.700		
58	4241.34 ± 0.42	0.260 ± 0.430		
59	4243.53 ± 0.31	0.440 ± 0.170		
60	4251.01 ± 0.06	4.010 ± 0.150	Ly $\alpha z=2.49684$	
61	4257.04 ± 0.05	2.280 ± 0.100		
62	4266.39 ± 0.06	1.400 ± 0.090	NI $\lambda 1200 z=2.55532$	
63	4290.41 ± 0.08	0.200 ± 0.040	SiIII $\lambda 1206 z=2.55608$	
64	4296.63 ± 0.08	0.350 ± 0.050		
65	4303.01 ± 0.12	1.410 ± 0.110	MgI $\lambda 2853 z=0.50826$	
66	4307.78 ± 0.03	1.500 ± 0.060		
67	4312.13 ± 0.05	2.870 ± 0.100	Ly $\alpha z=2.54712$	
68	4315.89 ± 0.09	0.480 ± 0.060		
69	4322.75 ± 0.06	2.300 ± 0.090	Ly $\alpha z=2.55586$	
70	4331.43 ± 0.03	3.420 ± 0.080	Ly $\alpha z=2.56299$	
71	4347.64 ± 0.13	6.720 ± 0.490	Ly $\alpha z=2.57633$	
72	4351.61 ± 0.08	6.320 ± 0.310	Ly $\alpha z=2.57959$	

Table B.1: (continued)

No.	$\lambda_{\text {obs }}$	$\mathrm{W}_{\lambda}(\AA)$	Identification	Possible I.D.
			$\mathrm{Q} 1406+492$	
1	3222.23 ± 0.03	1.120 ± 0.100		
2	3235.49 ± 0.11	0.560 ± 0.130	$\mathrm{Ly} \beta$	$z=2.15435$
3	3237.32 ± 0.11	0.650 ± 0.130		
4	3250.16 ± 0.16	2.260 ± 0.240		
5	3254.98 ± 0.11	2.700 ± 0.230		
6	3257.81 ± 0.10	0.510 ± 0.140		
7	3265.92 ± 0.08	3.170 ± 0.230	CII $\lambda 1334 \quad z=1.44723$	
8	3269.70 ± 0.28	1.170 ± 0.280		
9	3275.17 ± 0.04	0.630 ± 0.070		
10	3280.78 ± 0.36	0.990 ± 0.250		
11	3285.51 ± 0.19	3.110 ± 0.370		
12	3290.55 ± 0.11	2.090 ± 0.190		
13	3299.33 ± 0.37	1.760 ± 0.380		
14	3309.02 ± 0.16	0.690 ± 0.160		
15	3318.83 ± 0.07	1.430 ± 0.160		
16	3323.07 ± 0.15	1.850 ± 0.230		
17	3327.99 ± 0.07	0.660 ± 0.230		
18	3330.33 ± 0.25	2.230 ± 0.410		
19	3340.67 ± 0.09	3.930 ± 0.230		
20	3345.48 ± 0.05	1.640 ± 0.130		
21	3366.70 ± 0.20	0.650 ± 0.150		
22	3373.53 ± 0.08	0.500 ± 0.110		
23	3384.58 ± 0.03	2.180 ± 0.110		
24	3391.03 ± 0.16	1.360 ± 0.180	SiIV $\lambda 1393$	$z=1.43301$
25	3402.15 ± 0.10	0.820 ± 0.120		
26	3411.15 ± 0.09	2.450 ± 0.170	SiIV $\lambda 1402$	$z=1.43172$

Table B.1: (continued)

No.	$\lambda_{\text {obs }}$	$W_{\lambda}(\AA)$	Identification	Possible I.D.
27	3424.35 ± 0.15	1.030 ± 0.150		
28	3434.93 ± 0.07	2.480 ± 0.160		
29	3440.32 ± 0.03	1.240 ± 0.140		
30	3444.62 ± 0.92	2.080 ± 0.800		
31	3447.18 ± 0.08	0.790 ± 0.280		
32	3449.29 ± 0.05	2.600 ± 0.370		
33	3452.16 ± 0.06	1.510 ± 0.140		
34	3460.57 ± 0.16	0.910 ± 0.150		
35	3464.17 ± 0.08	0.360 ± 0.080		
36	3502.45 ± 0.15	1.390 ± 0.160		
37	3514.96 ± 0.18	0.620 ± 0.130		
38	3519.64 ± 0.08	0.520 ± 0.090		
39	3543.15 ± 0.06	1.570 ± 0.120		
40	3549.04 ± 0.07	2.010 ± 0.130		
41	3589.85 ± 0.06	1.700 ± 0.110		
42	3607.85 ± 0.05	2.430 ± 0.110		
43	3619.52 ± 0.11	1.160 ± 0.130		
44	3631.31 ± 0.12	0.630 ± 0.110		
45	3650.04 ± 0.07	1.920 ± 0.120		
46	3660.93 ± 0.06	0.490 ± 0.070		
47	3673.55 ± 0.02	3.690 ± 0.080		
48	3686.62 ± 0.06	1.510 ± 0.100		
49	3703.44 ± 0.17	0.600 ± 0.100		
50	3716.18 ± 0.07	0.290 ± 0.050		
51	3731.52 ± 0.15	0.830 ± 0.120		
52	3736.06 ± 0.06	3.120 ± 0.130	SiII $\lambda 1526$	$z=1.44713$
53	3740.70 ± 0.07	2.140 ± 0.110		

Table B.1: (continued)

No.	$\lambda_{\text {nbs }}$	$\mathrm{W}_{\lambda}(\AA)$	Identification	Possible I.D.
54	3744.98 ± 0.06	1.480 ± 0.100		
55	3748.23 ± 0.19	0.560 ± 0.120		
56	3751.20 ± 0.07	0.380 ± 0.080		
57	3758.92 ± 0.04	5.110 ± 0.150		
58	3766.86 ± 0.04	0.810 ± 0.050	CIV $\lambda 1548 z=1.43305$	
59	3770.13 ± 0.06	0.640 ± 0.050		
60	3773.16 ± 0.09	0.180 ± 0.040	CIV $\lambda 1550 z=1.43308$	
61	3780.79 ± 0.03	1.160 ± 0.040		
62	3788.53 ± 0.03	2.650 ± 0.060	CIV $\lambda 1548 z=1.44705$	
63	3792.08 ± 0.06	0.310 ± 0.040		
64	3794.94 ± 0.05	1.520 ± 0.060	CIV $\lambda 1550 z=1.44712$	
65	3799.15 ± 0.05	0.340 ± 0.040		
66	3801.25 ± 0.07	0.450 ± 0.050		
67	3813.28 ± 0.11	0.330 ± 0.040		
68	3819.85 ± 0.02	0.920 ± 0.030		
69	3824.13 ± 0.11	0.150 ± 0.030		
70	3834.26 ± 0.03	0.650 ± 0.030	Ly $\alpha z=2.15403$	
71	3909.72 ± 0.04	1.220 ± 0.050	CIV $\lambda 1548 z=1.52532$	
72	3916.29 ± 0.04	0.800 ± 0.050	CIV $\lambda 1550 z=1.52537$	
73	3936.55 ± 0.04	0.510 ± 0.040	FeII $\lambda 1608 z=1.44741$	
74	4055.32 ± 0.18	0.490 ± 0.090		
			Q $1408+009$	
1	3227.73 ± 0.21	2.213 ± 0.485	SiIV $\lambda 1393 z=1.31585$	
2	3241.71 ± 0.34	2.407 ± 0.600		
3	3248.54 ± 0.35	3.515 ± 0.656	SiIV $\lambda 1402 z=1.31580$	SiIII $\lambda 1206 z=1.69253$
4	3273.73 ± 0.25	3.105 ± 0.476	Ly $\alpha=1.69294$	

Table B.1: (continued)

No.	$\lambda_{\text {obs }}$	$W_{\lambda}(\AA)$	Identification	Possible I.D.
5	3282.29 ± 0.09	7.544 ± 0.554	$\mathrm{Ly} \beta$	$z=2.19997$
6	3290.77 ± 0.30	1.929 ± 0.450	$\mathrm{Ly} \beta$	$z=2.20825$
7	3310.67 ± 0.32	3.274 ± 0.523		
8	3319.97 ± 0.22	1.913 ± 0.374		
9	3341.26 ± 0.73	4.052 ± 0.818		
10	3362.64 ± 0.39	6.057 ± 0.679	CII $\lambda 1334 z=1.51971$	
11	3372.76 ± 0.17	1.936 ± 0.357		
12	3378.90 ± 0.53	2.733 ± 0.540		SiII $\lambda 1260 z=1.69250$
13	3393.69 ± 0.42	3.434 ± 0.487		
14	3505.87 ± 0.34	3.173 ± 0.443		
15	3529.48 ± 0.12	1.350 ± 0.235		
16	3535.10 ± 0.46	1.661 ± 0.418	SiII $\lambda 1526 z=1.31551$	
17	3595.00 ± 0.08	5.829 ± 0.347		
18	3601.24 ± 0.19	1.178 ± 0.259		
19	3641.63 ± 0.18	4.497 ± 0.388	Ly $\alpha z=1.99557$	
20	3653.10 ± 0.27	6.466 ± 0.488		
21	3676.95 ± 0.28	5.997 ± 0.512		
22	3696.80 ± 0.25	2.660 ± 0.357		
23	3710.66 ± 0.20	1.251 ± 0.262		
24	3724.87 ± 0.18	1.100 ± 0.245	FeII $\lambda 1608$	$z=1.31581$
25	3774.53 ± 0.55	1.531 ± 0.402	SiII $\lambda 1260 z=1.99466$	
26	3801.16 ± 0.42	1.461 ± 0.347		
27	3813.85 ± 0.25	1.719 ± 0.293		
28	3843.49 ± 0.34	3.842 ± 0.416	SilI $\lambda 1526 z=1.51750$	
29	3859.56 ± 0.40	2.004 ± 0.383	SilII $\lambda 1206 z=2.19897$	
30	3865.30 ± 0.25	2.234 ± 0.334		
31	3889.08 ± 0.13	5.199 ± 0.282	Ly $\alpha z=2.19912$	

Table B.1: (continued)

No.	$\lambda_{\text {obs }}$	$\mathcal{W}_{\lambda}(\AA)$	Identification	Possible I.D.
32	3899.88 ± 0.11	2.741 ± 0.213	Ly $\alpha z=2.20801$	CIV $\lambda 1548 z=1.51897$
			OI $\lambda 1302 z=1.99491$	
33	3906.56 ± 0.22	1.205 ± 0.213	SilI $\lambda 1304 z=1.99498$	CIV $\lambda 1550 z=1.51910$
34	3921.54 ± 0.20	2.245 ± 0.232		
35	3954.86 ± 0.16	6.680 ± 0.289		
36	3972.66 ± 0.11	1.808 ± 0.129		
37	4029.50 ± 0.43	2.998 ± 0.355		
38	4031.98 ± 0.23	1.147 ± 0.210	SilI $\lambda 1260 \quad z=2.19891$	
39	4040.79 ± 0.16	0.861 ± 0.157		
40	4121.46 ± 0.04	1.552 ± 0.138		
1	3209.86 ± 0.17	0.684 ± 0.164		
2	3216.19 ± 0.12	1.734 ± 0.184		
3	3224.84 ± 0.17	1.771 ± 0.209		
4	3251.83 ± 0.28	0.791 ± 0.167		
5	3257.48 ± 0.27	1.039 ± 0.199		
6	3273.91 ± 0.12	3.479 ± 0.276		
7	3278.89 ± 0.16	0.140 ± 0.087	SilII $\lambda 1206 z=1.71768$	
8	3281.38 ± 0.97	1.619 ± 0.553		
9	3289.68 ± 0.27	2.300 ± 0.389		
10	3304.23 ± 0.08	3.251 ± 0.192	Ly $\alpha z=1.71803$	
11	3314.50 ± 0.38	0.670 ± 0.463		
12	3318.13 ± 0.68	1.184 ± 0.811	SiII $\lambda 1526 z=1.17339$	
13	3341.55 ± 0.29	0.962 ± 0.193		
14	3352.40 ± 0.17	0.766 ± 0.236		
15	3354.97 ± 0.26	1.272 ± 0.290	Ly $\alpha z=1.75977$	

Table B.1: (continued)

No.	$\lambda_{\text {obs }}$	$\mathrm{W}_{\lambda}(\AA)$	Identification	Possible I.D.
16	3360.93 ± 0.08	1.404 ± 0.115		
17	3368.34 ± 0.19	1.407 ± 0.180		
18	3386.10 ± 0.64	0.494 ± 1.720		
19	3388.75 ± 0.15	0.385 ± 0.081		
20	3395.85 ± 0.24	0.829 ± 0.156		
21	3421.58 ± 0.19	0.538 ± 0.122		
22	3427.61 ± 0.21	0.590 ± 0.127		
23	3432.86 ± 0.13	1.176 ± 0.133	SiIV $\lambda 1393 z=1.46303$	
24	3437.98 ± 0.12	1.213 ± 0.148		
25	3440.97 ± 0.20	0.520 ± 0.125		
26	3445.85 ± 0.07	2.410 ± 0.128		
27	3454.90 ± 0.22	0.561 ± 0.115	SiIV $\lambda 1402 \quad z=1.46291$	
28	3465.83 ± 0.09	1.074 ± 0.094		
29	3492.20 ± 0.04	1.464 ± 0.062		
30	3502.06 ± 0.03	1.992 ± 0.060		
31	3521.70 ± 0.06	0.374 ± 0.033		
32	3526.17 ± 0.02	1.240 ± 0.034		
33	3529.61 ± 0.09	0.508 ± 0.043	AlIII $\lambda 1854 z=0.90304$	
34	3534.71 ± 0.13	0.163 ± 0.034		
35	3539.44 ± 0.21	0.413 ± 0.061	OI $\lambda 1302 z=1.71811$	
36	3544.23 ± 0.17	0.553 ± 0.068	AlIII $\lambda 1862 z=0.90264$	
37	3663.44 ± 0.09	1.855 ± 0.158		
38	3691.78 ± 0.22	0.955 ± 0.218		
39	3695.36 ± 0.24	1.125 ± 0.216		
40	3751.21 ± 0.04	0.984 ± 0.091	CIV $\lambda 1548 \quad z=1.46306$	
41	3813.31 ± 0.05	1.469 ± 0.080		
42	3819.62 ± 0.04	1.149 ± 0.070	CIV $\lambda 1550 z=1.46304$	

Table B.1: (continued)

No.	$\lambda_{\text {obs }}$	$W_{\lambda}(\AA)$	Identification	Possible I.D.
43	3851.70 ± 0.16	0.371 ± 0.078		
44	4001.31 ± 0.19	0.393 ± 0.086	CIV $\lambda 1548$	$z=1.58448$
		Q 1422+231		
1	4856.04 ± 0.26	0.300 ± 0.070		
2	4862.68 ± 0.05	2.200 ± 0.080		
3	4882.08 ± 0.07	4.170 ± 0.190		
4	4889.96 ± 0.06	3.390 ± 0.130		
5	4899.91 ± 0.18	2.270 ± 0.280		
6	4907.10 ± 0.05	3.480 ± 0.120		
7	4911.85 ± 0.13	0.910 ± 0.110		
8	4919.97 ± 0.08	2.480 ± 0.130		
9	4930.87 ± 0.08	0.910 ± 0.060		
10	4940.03 ± 0.04	3.230 ± 0.090		
11	4951.03 ± 0.03	3.580 ± 0.090		
12	4957.35 ± 0.43	0.490 ± 0.140		
13	4964.82 ± 0.05	1.630 ± 0.090		
14	4968.68 ± 0.05	2.880 ± 0.120		
15	4972.79 ± 0.04	3.780 ± 0.100	Ly $\alpha z=3.09057$	
16	4977.64 ± 0.04	4.170 ± 0.100		
17	4981.98 ± 0.18	1.730 ± 0.180		
18	4987.58 ± 0.04	0.960 ± 0.050		
19	4995.53 ± 0.09	1.510 ± 0.100		
20	5004.73 ± 0.13	0.370 ± 0.060		
21	5008.38 ± 0.04	2.510 ± 0.070		
22	5014.24 ± 0.10	0.630 ± 0.070		
23	5018.60 ± 0.05	2.040 ± 0.090		

Table B.1: (continued)

No.	$\lambda_{\text {obs }}$	$\mathrm{W}_{\lambda}(\AA)$	Identification	Possible I.D.
24	5025.52 ± 0.05	4.310 ± 0.160		
25	5029.68 ± 0.05	4.480 ± 0.150		
26	5039.02 ± 0.03	2.130 ± 0.070		
27	5049.24 ± 0.09	0.470 ± 0.060		
28	5055.00 ± 0.05	1.660 ± 0.070		
29	5065.32 ± 0.15	0.380 ± 0.070		
30	5069.64 ± 0.11	0.270 ± 0.050		
31	5077.34 ± 0.19	0.340 ± 0.070		
32	5087.28 ± 0.12	0.610 ± 0.080		
33	5090.83 ± 0.03	1.760 ± 0.060		
34	5095.30 ± 0.04	2.100 ± 0.080		
35	5103.45 ± 0.06	1.400 ± 0.080		
36	5107.68 ± 0.19	0.440 ± 0.080		
37	5116.61 ± 0.05	1.240 ± 0.070		
38	5123.48 ± 0.09	1.340 ± 0.090		
39	5127.59 ± 0.07	1.150 ± 0.080		
40	5137.47 ± 0.04	2.200 ± 0.080	FeII $\lambda 1143 z=3.49383$	
41	5140.58 ± 0.12	0.290 ± 0.060		
42	5145.61 ± 0.04	2.500 ± 0.090	FeIl $\lambda 1145 z=3.49422$	
43	5149.12 ± 0.10	0.520 ± 0.070		
44	5154.48 ± 0.04	2.150 ± 0.080		
45	5157.47 ± 0.05	1.030 ± 0.070	SiII $\lambda 1260$	$z=3.09185$
46	5161.65 ± 0.16	0.690 ± 0.090		
47	5166.21 ± 0.05	0.670 ± 0.100		
48	5168.72 ± 0.06	2.500 ± 0.160		
49	5171.69 ± 0.07	0.850 ± 0.140		
50	5174.42 ± 0.06	2.930 ± 0.180	SilI $\lambda 1190$	$z=3.34673$

		0ヵI 07096．0	0Z．0干98．898¢	12
	70865 ${ }^{\circ}=z 06$ ITY II！S	0zI＇0干0¢9\％	9007L9 8b\＆G	92
		0600709900		$\underline{9}$
		0LIOFOLE＇I	80．0干61＇tを\＆¢	－ 2
78160 $\mathcal{E}=z$ Z0¢IY 10	$96788 \cdot \mathcal{F}$ z $0 \kappa_{T}$	0GL0干0I9 $¢$	97＇0干ャ\％＇87¢¢	εL
	$00088 \mathrm{E}=z^{\text {OK}} \mathbf{T}$	08L0干019\％	9Z0干ャ9＇もて\＆¢	62
		0800 ¢0bi＇t	¢00720618¢	IL
		$060.0 \mp 080^{\circ}$ I	90．0788．9IE¢	02
		0910干079 $\frac{1}{}$	90．0干66．90\＆G	69
		0zI＇0干072＇0	I $70 \mp$［6．86z¢	89
		0LI0干060＇I	て10干0t 1689	29
	$969 \pm ¢ \varepsilon=z \quad 0 \kappa^{T}$	097．0干018＊		99
		0910 0 0 $66 . \varepsilon$	90．0干¢6297c	¢9
		$0600 \mp 069^{\circ} \mathrm{L}$	900\％ 08.2 gze	b9
		0010 $0069^{\circ} \mathrm{Z}$		¢9
		01I0干0¢İ	9007¢ 6 6z¢	79
	ç97\＆ $\mathcal{C}=z$ 90ZIY IIIIS	080．0干092．	900才00＇しもてs	19
		0L0 0才0z90	80．0干96．0ъて¢	09
		020．0干079 0	L0＇0干80＇28Z9	69
		$080 \cdot 0$ ¢0¢\％ 1	900760＇IEzG	89
		06007028 I	200706 5175	L9
		020．0干0L＊ 0	6007 26.2089	99
		0¢「0F0z2．E	900干90\％2079	G9
			8007ちL26IS	¢¢
		09\％ 0 干010 I	切0干88．06IS	$\varepsilon ¢$
		0270 ∓ 0067	61．0719．98IS	Z9
		0110708id	600709．2LIS	19
G＇I Plq！${ }^{\text {ssod }}$		（y）${ }^{Y} M$	${ }^{\text {sq9 }} \mathrm{Y}$	${ }^{\circ} \mathrm{O}$

		070 $7 \mp 06{ }^{\prime} \cdot 1$		ャ0I
$26879 ¢=z 06$ ITY II！S	¢0289 $\mathcal{E}=z 00 Z \mathrm{IY}$ IN	001．0干0\＆¢ 0	6107ctib0cc	80I
		0ヵ「 $0 \mp 0 ¢ 90$	$81^{\circ} 0788.26 \mathrm{bS}$	201
		0LI＇0干0Lb＇t		101
		0ZI．0干00L＇Z	$90.0 \mp 9168 \mathrm{bc}$	00I
		060．0干069\％0	$80.0 \mp 70.98 \mathrm{tc}$	66
		$060 \cdot 708 \square^{\circ} 0$	¢1．0干6「18®G	86
	89¢ヶ¢ $¢=z 097$ IY II！S	0070 ∓ 0601	0Z07LZ：LLEG	26
992EG $\varepsilon=z$ 90ZIY III！S	$68289 . \varepsilon=z$ ¢6IIY II！S	0180 ∓ 0701		96
ธ¢๒G\＆ $\mathcal{E}=z$ 90ZIY III！S		00\％ 0 － $066^{\circ} \mathrm{C}$	600干6902\％S	96
	$0966{ }^{\circ} \mathrm{E}=z{ }^{\text {o }}$ T	$0780 \mp 0 ¢ \mathrm{C} \cdot \mathrm{S}$	［10788890¢	ロ6
		080\％ 0 ¢08C\％		$\varepsilon 6$
		0070 ∓ 060 I	800干26 $7 ¢ ¢ 9$	76
		098070668		16
$66289^{\circ} \varepsilon=z 00 Z$ IY IN		07\％ $0 \mp 086 \%$	60．0干69 $0^{\circ} \mathrm{tb} 5$	06
		02I $0 \mp 080{ }^{\circ} \mathrm{E}$	800\％ 17 Itt	68
		0260才080＇9	IT0干76．98bs	88
		0bて， 0 ∓ 0780		28
		00\％ 0 ¢029 ${ }^{\circ}$	I10干 20.86 Ec	98
	80GIS $\mathcal{L}=z^{0} 00 \mathrm{ITY}$ IN	080\％ 0 ¢16 0	［1．0干01．8Its	98
	$\angle 62 D D^{\circ} \mathrm{E}=z$ OK T	092．0干009．L	$60^{\circ} 0 \mp \angle 2 \% 20 b ¢$	t8
		01107070 1	010718．96E¢	$\varepsilon 8$
	$62866^{\circ} \mathrm{E}=z 007 \mathrm{IY}$ IN	060．0干019＇1	9007SS 6685	28
		$078^{\cdot 0} 0068 \%$	910710．988¢	18
		007．0干099．I	2007も¢ 7889	08
		07I＇0干088＇I		62
	$8 \pm 760^{\circ} \mathrm{E}=z$ E6IIY IIIS	0bI＇07009 ${ }^{(1)}$		82
G＇I Pq！${ }^{\text {asod }}$	ио！реэу！${ }^{\text {¢ }}$	$(\mathrm{V})^{\mathrm{r}} \mathrm{M}$	${ }^{\text {sq9 }} \mathrm{Y}$	${ }^{\circ} \mathrm{N}$

（рәnu！̣uoo）：$I \cdot G$ әqeL

Table B.1: (continued)

No.	$\lambda_{\text {obs }}$	$W_{\lambda}(\AA)$	Identification	Possible I.D.
105	5517.62 ± 0.48	7.850 ± 4.080	Ly $\alpha z=3.53874$	SiII $\lambda 1193 z=3.62387$
106	5521.82 ± 0.11	4.030 ± 0.440		
107	5527.09 ± 0.10	3.830 ± 0.380		
108	5534.41 ± 0.16	0.500 ± 0.080	SiIII $\lambda 1206$	$z=3.58716$
109	5539.45 ± 0.04	1.870 ± 0.080		
110	5545.43 ± 0.04	1.740 ± 0.070		
111	5551.67 ± 0.05	3.990 ± 0.130		
112	5557.96 ± 0.09	4.950 ± 0.280		
113	5561.23 ± 0.27	2.950 ± 0.360		
114	5570.43 ± 0.11	2.790 ± 0.260		
115	5573.32 ± 0.10	1.250 ± 0.300		
116	5576.83 ± 0.07	4.390 ± 0.260	Ly $\alpha z=3.58745$	
117	5585.51 ± 0.10	1.120 ± 0.110		
118	5588.55 ± 0.09	1.280 ± 0.110		
119	5601.61 ± 0.09	1.440 ± 0.100		
120	5607.39 ± 0.04	2.770 ± 0.080		
121	5616.60 ± 0.05	1.890 ± 0.070		
122	5621.36 ± 0.04	1.840 ± 0.050	Ly $\alpha z=3.62408$	
123	5627.03 ± 0.08	0.770 ± 0.050		
1	3247.36 ± 0.23	1.240 ± 0.344		
2	3249.51 ± 0.23	0.816 ± 0.306		
3	3274.71 ± 0.12	1.064 ± 0.187		
4	3290.72 ± 0.18	0.886 ± 0.198		
5	3316.52 ± 0.18	1.444 ± 0.221		
6	3353.73 ± 0.11	1.683 ± 0.200		

Table B.1: (continued)

No.	$\lambda_{\text {obs }}$	$\mathrm{W}_{\lambda}(\AA)$	Identification	Possible I.D.
7	3376.04 ± 0.17	1.462 ± 0.196	Ol $\lambda 1302 \quad z=1.59262$	
8	3384.67 ± 0.13	0.538 ± 0.125		
9	3440.11 ± 0.08	2.883 ± 0.164		
10	3465.59 ± 0.07	2.211 ± 0.127		
11	3479.74 ± 0.09	0.816 ± 0.101		
12	3510.50 ± 0.08	1.338 ± 0.108		
13	3525.59 ± 0.24	4.662 ± 0.617		
14	3528.33 ± 0.30	0.398 ± 0.124		
15	3553.79 ± 0.07	3.592 ± 0.160	Ly $\alpha=1.92332$	
16	3560.06 ± 0.17	1.343 ± 0.147		
17	3571.71 ± 0.05	1.440 ± 0.138		
18	3574.84 ± 0.17	1.424 ± 0.200		
19	3581.15 ± 0.14	0.268 ± 0.068		
20	3583.60 ± 0.17	0.387 ± 0.080		
21	3591.98 ± 0.04	1.706 ± 0.077		
22	3636.69 ± 0.03	1.359 ± 0.053		
23	3646.11 ± 0.06	0.290 ± 0.040		
24	3649.75 ± 0.03	2.140 ± 0.058		
25	3660.39 ± 0.08	0.961 ± 0.062		
26	3666.61 ± 0.09	0.540 ± 0.052		
27	3669.93 ± 0.05	0.850 ± 0.048		
28	3684.68 ± 0.05	0.790 ± 0.053	Sill $\lambda 1260$	$z=1.92337$
29	3687.30 ± 0.06	0.853 ± 0.053		
30	3691.69 ± 0.02	1.490 ± 0.037		
31	3706.88 ± 0.03	0.983 ± 0.032		
32	3710.40 ± 0.02	1.169 ± 0.033		
33	3807.89 ± 0.27	0.384 ± 0.069	OI $\lambda 1302$	$z=1.92427$

Table B.1: (continued)

No.	$\lambda_{\text {obs }}$	$\mathrm{W}_{\lambda}(\AA)$	Identification	Possible I.D.
34	3813.45 ± 0.15	0.241 ± 0.040	SiII $\lambda 1304 z=1.92359$	CIV $\lambda 1550 z=1.45906$
35	3837.35 ± 0.07	0.951 ± 0.053		CIV $\lambda 1548 z=1.47858$
36	3862.02 ± 0.30	0.115 ± 0.189		
37	3901.41 ± 0.17	0.870 ± 0.088	CII $\lambda 1334 z=1.92343$	
1	3251.52 ± 0.15	1.461 ± 0.219		
2	3260.78 ± 0.24	1.043 ± 0.207		
3	3278.19 ± 0.13	1.038 ± 0.153		
4	3293.92 ± 0.08	1.768 ± 0.148		
5	3297.06 ± 0.09	0.661 ± 0.112	CII $\lambda 1334 z=1.47057$	
6	3305.57 ± 0.22	0.809 ± 0.159		
7	3321.36 ± 0.08	0.873 ± 0.107		
8	3353.63 ± 0.09	1.214 ± 0.140	Ly $\alpha z=1.75866$	
9	3356.82 ± 0.09	1.085 ± 0.121		
10	3359.92 ± 0.09	1.061 ± 0.116		SiII $\lambda 1193 z=1.87557$
11	3392.17 ± 0.15	0.968 ± 0.134		
12	3400.73 ± 0.33	0.731 ± 0.162		
13	3419.79 ± 0.18	0.955 ± 0.131		
14	3431.40 ± 0.09	0.713 ± 0.079		
15	3449.02 ± 0.08	0.824 ± 0.074	NI $\lambda 1200 z=1.87418$	
16	3464.84 ± 0.04	0.882 ± 0.071		
17	3466.88 ± 0.04	1.330 ± 0.077		SiIII $\lambda 1206 z=1.89643$
18	3475.82 ± 0.07	0.246 ± 0.044	NI $\lambda 1200 z=1.89651$	SiII $\lambda 1260 z=1.75766$
19	3485.92 ± 0.09	0.259 ± 0.056		
20	3494.55 ± 0.03	2.059 ± 0.061	Ly $\alpha z=1.87458$	
21	3502.17 ± 0.06	1.133 ± 0.070		

Table B.1: (continued)

No.	$\lambda_{\text {obs }}$	$\mathrm{W}_{\lambda}(\AA)$	Identification	Possible I.D.
22	3505.18 ± 0.03	1.640 ± 0.078		
23	3508.27 ± 0.24	0.422 ± 0.090		
24	3512.55 ± 0.10	0.883 ± 0.079	CII $\lambda 1334 z=1.63205$	
25	3520.97 ± 0.04	1.398 ± 0.059	Ly $\alpha z=1.89632$	
26	3524.75 ± 0.12	0.423 ± 0.060		
27	3530.00 ± 0.15	0.080 ± 0.023		
28	3541.60 ± 0.09	0.466 ± 0.051		
29	3547.39 ± 0.05	1.359 ± 0.059		
30	3550.67 ± 0.03	0.872 ± 0.045		
31	3555.06 ± 0.21	0.301 ± 0.053		
32	3559.53 ± 0.16	0.164 ± 0.037		
33	3566.33 ± 0.04	0.676 ± 0.041		
34	3624.73 ± 0.07	0.409 ± 0.039	CIV $\lambda 1548$	$z=1.34125$
SiII $\lambda 1260$	$z=1.87580$			
35	3631.19 ± 0.07	0.207 ± 0.031	CIV $\lambda 1550 z=1.34153$	
36	3657.51 ± 0.07	0.175 ± 0.030		
37	3669.02 ± 0.23	0.407 ± 0.066	SiIV $\lambda 1393 z=1.63247$	
38	3692.00 ± 0.25	0.336 ± 0.065	SilV $\lambda 1402 z=1.63194$	
39	3771.95 ± 0.02	0.907 ± 0.038	OI $\lambda 1302 z=1.89666$	SiII $\lambda 1526 z=1.47064$
40	3787.07 ± 0.04	0.384 ± 0.034		
41	3790.07 ± 0.11	0.204 ± 0.038		
42	3829.06 ± 0.18	0.226 ± 0.060		MgI $\lambda 2853 z=0.36768$
43	3830.90 ± 0.17	0.209 ± 0.058		
44	3901.97 ± 0.08	0.141 ± 0.029		CalI $\lambda 3935 z=-0.0002$
45	3904.19 ± 0.07	0.311 ± 0.035		
46	3911.16 ± 0.01	0.509 ± 0.026	AlII $\lambda 1670 z=1.34090$	
47	3933.57 ± 0.31	0.384 ± 0.074		

Table B.1: (continued)

No.	$\lambda_{\text {obs }}$	$\mathrm{W}_{\lambda}(\AA)$	Identification	Possible I.D.
Q 2134+004				
1	3317.39 ± 0.20	1.341 ± 0.276		
2	3341.63 ± 0.13	1.020 ± 0.196		
3	3366.26 ± 0.15	0.861 ± 0.192		
4	3404.83 ± 0.14	0.664 ± 0.160		
5	3433.21 ± 0.09	0.472 ± 0.115		
6	3436.70 ± 0.10	1.980 ± 0.192		
7	3448.91 ± 0.09	1.633 ± 0.187		
8	3451.55 ± 0.13	1.291 ± 0.198		
9	3474.87 ± 0.06	1.737 ± 0.138		
10	3478.89 ± 0.15	1.272 ± 0.187		
11	3489.09 ± 0.28	0.892 ± 0.234		
12	3492.73 ± 0.07	1.316 ± 0.133		
13	3508.12 ± 0.15	0.620 ± 0.117		
14	3548.85 ± 0.13	0.830 ± 0.098		
15	3559.86 ± 0.11	0.510 ± 0.066		
16	3588.44 ± 0.03	1.222 ± 0.052		
17	3818.07 ± 0.15	0.511 ± 0.101		MgII $\lambda 2796 z=0.36547$
18	3881.03 ± 0.12	0.754 ± 0.103		
19	3935.29 ± 0.23	0.428 ± 0.102		
Q 2251+244				
1	3416.24 ± 0.16	1.902 ± 0.342		NV $\lambda 1242 z=1.74881$
2	3437.98 ± 0.41	1.332 ± 2.164	$\mathrm{Ly} \beta z=2.35176$	
3	3440.64 ± 1.71	2.521 ± 2.615		OVI $\lambda 1037 z=2.31591$
4	3450.48 ± 0.13	4.025 ± 0.400	Ly $\beta z=2.36395$	SiII $\lambda 1190 z=1.89854$
5	3459.00 ± 0.18	2.321 ± 0.356	OVI $\lambda 1031 z=2.35198$	Sill $\lambda 1193 z=1.89871$

Table B.1: (continued)

No.	$\lambda_{\text {obs }}$	$W_{\lambda}(\AA)$	Identification	Possible I.D.
6	3470.24 ± 0.16	0.998 ± 0.895	OVI $\lambda 1031 z=2.36287$	NI $\lambda 1135 z=2.05753$
7	3472.32 ± 0.52	3.838 ± 1.335		
8	3478.56 ± 0.23	3.071 ± 0.487	OVI $\lambda 1037 z=2.35245$	NI $\lambda 1200 z=1.89880$
9	3490.54 ± 0.19	3.594 ± 0.460	OVI $\lambda 1037 z=2.36400$	AIII $\lambda 1670 z=1.08915$
10	3524.64 ± 0.29	2.331 ± 0.428	Ly $~$	$z=1.89880$
11	3532.41 ± 0.13	1.669 ± 0.245		
12	3553.81 ± 0.35	1.004 ± 0.319		
13	3617.37 ± 0.11	1.685 ± 0.222		
14	3619.75 ± 0.09	0.652 ± 0.151		
15	3627.15 ± 0.17	0.744 ± 0.201		
16	3635.98 ± 0.19	2.337 ± 0.327		
17	3642.98 ± 0.18	1.379 ± 0.232		
18	3649.95 ± 0.25	1.071 ± 0.257		
19	3652.96 ± 0.34	1.238 ± 0.390	SiII $\lambda 1260 z=1.89820$	
20	3657.03 ± 0.20	1.182 ± 0.266		
21	3660.25 ± 0.26	1.157 ± 0.283	SiIII $\lambda 1206 z=2.03378$	
22	3664.54 ± 0.29	0.742 ± 0.221		
23	3667.90 ± 0.16	0.676 ± 0.171	NI $\lambda 1200 z=2.05658$	
24	3671.73 ± 0.11	2.794 ± 0.247		
25	3684.01 ± 0.08	1.734 ± 0.198		
26	3687.88 ± 0.19	2.415 ± 0.309	Ly $\alpha z=2.03362$	SiIII $\lambda 1206 z=2.05668$
27	3716.28 ± 0.08	2.134 ± 0.174	Ly $\alpha z=2.05698$	
28	3745.73 ± 0.21	1.520 ± 0.221	SiIII $\lambda 1206 z=2.10462$	
29	3765.58 ± 0.40	1.227 ± 0.282	SiII $\lambda 1193 z=2.15563$	
30	3774.95 ± 0.10	1.858 ± 0.173	Ly $\alpha z=2.10524$	OI $\lambda 1302 z=1.89897$
31	3782.72 ± 0.23	1.494 ± 0.292		
32	3786.39 ± 0.17	2.052 ± 0.288	NV $\lambda 1238 z=2.05645$	NI $\lambda 1200 z=2.15532$

Table B.1: (continued)

No.	$\lambda_{\text {obs }}$	$\mathrm{W}_{\lambda}(\AA)$	Identification	Possible I.D.
33	3798.66 ± 0.22	1.455 ± 0.222	NV $\lambda 1242 z=2.05652$	
34	3807.84 ± 0.12	1.392 ± 0.180		SiIII $\lambda 1206 z=2.15610$
35	3811.65 ± 0.23	1.180 ± 0.233		SiII $\lambda 1260 \quad z=2.03251$
36	3822.24 ± 0.23	0.927 ± 0.187		
37	3828.85 ± 0.12	1.014 ± 0.153		FeII $\lambda 1145 z=2.35235$
38	3835.42 ± 0.28	1.887 ± 1.010	Ly $\alpha z=2.15498$	
39	3838.21 ± 0.39	4.419 ± 1.122		
40	3862.39 ± 0.18	0.595 ± 0.151		
41	3885.84 ± 0.11	3.739 ± 0.262		
42	3890.76 ± 0.27	1.053 ± 0.209		
43	3906.20 ± 0.97	2.226 ± 0.701		
44	3909.42 ± 0.14	0.578 ± 0.236		
45	3913.58 ± 0.32	0.844 ± 0.189	Sill $\lambda 1260 \quad z=2.10497$	
46	3921.91 ± 0.14	0.993 ± 0.131		
47	3926.10 ± 0.11	1.133 ± 0.125		
48	3931.11 ± 0.11	1.268 ± 0.127	MgII $\lambda 2796 z=0.40580$	
49	3934.73 ± 0.29	0.617 ± 0.325		
50	3937.19 ± 0.39	0.954 ± 0.440		
51	3940.37 ± 0.33	0.492 ± 0.220		
52	3943.91 ± 0.22	0.648 ± 0.144		
53	3949.42 ± 0.26	0.982 ± 0.175	OI $\lambda 1302 z=2.03296$	
54	3958.71 ± 0.17	3.028 ± 0.391		
55	3962.43 ± 0.14	3.061 ± 0.361		
56	3976.43 ± 0.10	0.766 ± 0.323	SiII $\lambda 1260 z=2.15484$	
57	3979.14 ± 0.49	1.514 ± 0.470	NI $\lambda 1200 z=2.13595$	SiIII $\lambda 1206 z=2.29809$
58	3986.13 ± 0.11	1.758 ± 0.150		
59	3989.53 ± 0.15	0.456 ± 0.107		

		627．07079 ${ }^{\circ}$		$\varepsilon 1$
		98507 0 29\％		ZI
			\＆ $8^{\circ} 0 \mp \angle 9^{\circ} 0298$	II
		$8 \mathrm{bz} 0 \mp 600 \mathrm{I}$	cz：0于900998	0I
		8IE0干EIでI	0で0干7L．9998	6
		$92 \varepsilon^{\circ} 0 \mp \varepsilon\left[\varepsilon^{\prime} \mathrm{I}\right.$	1 $10 \mp 9 \pm$ ¢ 998	8
		978．0于88\％\％	\＆1．0干18．8598	2
		ZLE $0 \mp 818^{\circ} \mathrm{L}$	18.0 ∓ 297898	9
		81も0才IL9 ${ }^{\text {I }}$		g
		－¢9 $1 \mp ¢ 870$ ¢	$60^{\circ} \mathrm{T} 719{ }^{\circ} \mathrm{L} 98$	∇
		$6180 \mp 16{ }^{\circ} \mathrm{T}$	L2＇07 28.2098	ε
		EE\＆＇I干下LI＇\％	90．0786 7698	ζ
				I
		L\＆¢07067．9	60.0 ∓ 98.2800	IL
	¢9198．z＝z 0К＇	6II $0 \mp 886{ }^{\circ}$	90.0 于67＊ 206	02
		$668^{\circ} 0 \mp 066.0$	69．0788 ${ }^{\circ} \mathrm{8c} 0^{\circ}$	69
		L60．0干9990	810干98．090\％	89
		6600 ∓ 9190	crofal ciot	$\angle 9$
		\＆II＇0才9L60	［1．0781．280ヵ	99
			ع10干06．0¢0¢	¢9
		8Z1．0〒768＇I	$60.0 \mp 9 L^{\circ} 810$ b	¢9
		881．0 $0806{ }^{\circ} \mathrm{L}$	If07tcolot	¢9
			\＆1．0干78．900¢	79
	889EI＇Z＝z 907TY IIIIS	İI＇0才001＇L	$81^{\circ} 0 \mp 1 Z^{\prime} 100{ }^{\text {c }}$	I9
		6II＇0才02L：0	81．07¢ ${ }^{\circ} 9668$	09
＇G＇I Plq！ssod	иопреэу！${ }^{\text {a }}$	（y）${ }^{\gamma} M$	${ }^{\text {89\％}} \mathrm{Y}$	${ }^{\circ} \mathrm{N}$

Table B.1: (continued)

No.	$\lambda_{\text {obs }}$	$\mathrm{W}_{\lambda}(\AA)$	Identification	Possible I.D.
14	3696.53 ± 0.11	0.586 ± 0.118		
15	3707.97 ± 0.10	1.809 ± 0.150		
16	3717.35 ± 0.06	2.497 ± 0.125		
17	3727.74 ± 0.28	1.506 ± 0.323		
18	3731.67 ± 0.48	0.515 ± 0.258		
19	3735.52 ± 0.10	1.336 ± 0.113		
20	3740.93 ± 0.10	0.534 ± 0.067		
21	3745.27 ± 0.06	1.084 ± 0.065		
22	3808.18 ± 0.08	0.918 ± 0.109		
23	3823.07 ± 0.10	0.376 ± 0.087		
24	3831.99 ± 0.15	0.440 ± 0.097		
25	3836.63 ± 0.18	0.816 ± 0.133		
			QiV $\lambda 1402$	$z=1.73173$
1	3604.38 ± 0.27	2.969 ± 0.722		$z=1.47512$
2	3692.60 ± 0.07	1.274 ± 0.252		
3	3742.69 ± 0.13	1.540 ± 0.310		
4	3789.80 ± 0.16	3.330 ± 0.440		
5	3793.86 ± 0.09	1.120 ± 0.220		
6	3799.16 ± 0.17	1.160 ± 0.400		
7	3801.83 ± 0.33	1.770 ± 0.530		
8	3812.04 ± 0.14	1.560 ± 0.250		
9	3831.80 ± 0.14	3.140 ± 0.360		
10	3852.62 ± 0.24	0.700 ± 0.160		
11	3866.67 ± 0.21	0.700 ± 0.140		
12	3870.30 ± 0.12	1.120 ± 0.140	MgII $\lambda 2796$	$z=0.38405$

Table B.1: (continued)

Table B.1: (continued)

No.	$\lambda_{\text {obs }}$	$\mathrm{W}_{\lambda}(\AA)$	Identification	Possible I.D.
5	3513.14 ± 0.04	1.737 ± 0.092		
6	3520.85 ± 0.05	2.054 ± 0.112		
7	3530.61 ± 0.13	0.521 ± 0.093		
8	3545.63 ± 0.08	1.136 ± 0.125	CIV $\lambda 1548 z=1.29015$	
9	3548.72 ± 0.08	1.378 ± 0.158	CIV $\lambda 1548$	$z=1.29215$
10	3551.43 ± 0.13	1.222 ± 0.189	CIV $\lambda 1550 z=1.29010$	
11	3554.57 ± 0.11	1.453 ± 0.188	CIV $\lambda 1550 z=1.29212$	
12	3561.22 ± 0.87	1.348 ± 0.733		
13	3613.33 ± 0.10	2.163 ± 0.185	CIV $\lambda 1548 z=1.33388$	
14	3619.21 ± 0.11	2.260 ± 0.208	CIV $\lambda 1550 z=1.33380$	
15	3784.10 ± 0.08	0.676 ± 0.119		
16	3786.23 ± 0.07	0.625 ± 0.111		
17	3839.38 ± 0.27	0.713 ± 0.186		

Appendix C Notes on Individual MMT Objects

C. 1 Q 0006+020
 $$
z_{e m}=2.340
$$

This QSO was identified by (87) Foltz et al. (1989). (265) Tytler et al. (1993), hereafter T93, discuss the redshift systems they find in their red ($4312 \AA-7059 \AA$), low resolution ($8.6 \AA$ FWHM) spectrum of this object. We do not confirm the first system they find at $z_{a b s}=1.131$. This identification was based on the detection of Mg II $\lambda \lambda 2796,2803$ at $5960 \AA$ and $5975 \AA$ respectively which we do not detect in our red spectrum of this object, which is presented in Paper II of this series. The second system (265) T93 find is at $z_{a b s}=2.034$ for which they identify the C IV doublet at $4700 \AA$ and $\mathrm{Al} \mathrm{II} \lambda 1670$ at $5073 \AA$. The positions of Ly α and Si III $\lambda 1206$ for this redshift lie on bad columns in the data, but we identify N II $\lambda 1083$ at $3289 \AA$, a possible N V doublet at $3757 \AA$ and $3770 \AA$, Si II $\lambda 1260$ at $3825 \AA$, and C II $\lambda 1334$ at $4050 \AA$. In addition, our red spectrum of this QSO confirms the C IV doublet and Al II identifications of T93 while also revealing the Si IV doublet at $4227 \AA$ and $4252 \AA$ and a possible Si II $\lambda 1526$ line at $4632 \AA$. Identifying the $4700 \AA$ line in the spectrum of (265) T93 as Si IV $\lambda 1393$ reveals the third system, at $z_{a b s}=2.374$. We identify Ly β at $3460 \AA$, O VI $\lambda 1031$ and $\lambda 1037$ at $3482 \AA$ and $3501 \AA$, and N I $\lambda 1200$ at $4050 \AA$. Our red data confirm the $4700 \AA$ feature as well as the C IV doublet at $\sim 5222 \AA$ for this redshift. This system is consistent with an associated absorber as proposed by (87) Foltz et al. (1989).

We also detect several other systems using the methods and criteria described above:
$z_{\mathrm{abs}}=1.6094-$ This is a system showing Si II $\lambda 1260$ at $3289 \hat{A}, \mathrm{C}$ II $\lambda 1334$ at $3482 \AA$, Si IV $\lambda 1393$ at $3637 \AA$ (the position of the $\lambda 1402$ component lies on a bad
column but there is an absorption feature at this wavelength in our red spectrum), and Si II $\lambda 1526$ at $3984 \AA$ (which is blended with Ly α at $z_{a b s}=2.2775$.) In addition, our red spectrum (see Paper II) shows a line at $4362 \AA$, consistent with Al II $\lambda 1670$ for this redshift.
$z_{a b s}=1.8189-$ At this redshift, we identify Ly α at $3427 \AA, N$ I $\lambda 1200$ at $3383 \AA$, a tentative N V doublet at $3491 \AA$ and $3501 \AA$ (where the $\lambda 1242$ component must be blended with Ly α at $z_{a b s}=1.880$ and/or O VI $\lambda 1037$ at $z_{a b s}=2.375$), and C II $\lambda 1334$ at $3762 \AA$. The C IV doublet at this redshift is visible in our red spectrum at a wavelength of $4367 \AA$.
$z_{a b s}=1.8409$ - For this system, we detect Ly $\alpha 3454 \AA$, Si III $\lambda 1206$ at $3427 \AA, \mathrm{Si}$ II $\lambda 1260$ at $3579 \AA$, and C II $\lambda 1334$ at $3791 \AA$. Our red spectrum does not show any lines redward of Ly α consistent with this redshift.
$z_{a b s}=1.8802$ - This system is composed of Ly α at $3501 \AA$, a N V doublet at $3568 \AA$ and $3579 \AA$, C II $\lambda 1334$ at $3845 \AA$, and a possible weak Si IV $\lambda 1393$ line at $4015 \AA$ (no $\lambda 1402$ is detected.) No lines redward of Ly α are detected in the red spectrum.
$z_{a b s}=2.2775$ - This is a system showing Ly α at $3984 \AA, \operatorname{Ly} \beta$ at $3363 \AA$, Si III $\lambda 1206$ at $3955 \AA$, and the N V doublet at $4060 \AA$ and $4072 \AA$. (The position of Fe II $\lambda 1145$ falls on a bad column for this redshift.) A possible C IV doublet identification is made from the red spectrum at $5076 \AA$.

Lastly, we find a possible Mg II absorber at $z_{a b s}=0.448$. However, the implied Fe II lines are not consistent with line ratios. Therefore, since only two lines are found, this system cannot qualify as a metal line system by our criteria.

C. 2 Q 0027+014
 $$
z_{e m}=2.310
$$

(241) Steidel \& Sargent (1992), hereafter SS92, find a single Mg II system for this object at $z_{a b s}=1.2664$ using their red setup ($5128-8947 \AA$) with 4-6 \AA resolution. In addition to Mg II $\lambda \lambda 2796,2803$ (at $6336 \AA$ and $6352 \AA$ respectively), they identify Fe

II $\lambda 2382$ at $5400 \AA$. We confirm this system with our detection of the C IV doublet at $3508 \AA$ and $3513 \AA$ as well as Al II $\lambda 1670$ at $3786 \AA$. Our red spectrum of this object (see Paper II) shows the Fe II line found by SS92, but shows only marginal evidence for the Mg II doublet.

We also identify two other redshift systems in our spectrum:
$z_{a b s}=1.8415-$ We find Ly α at $3454 \AA$, N I $\lambda 1200$ at $3411 \AA$, Si III $\lambda 1206$ at $3428 \AA$, Si II $\lambda 1260$ at $3582 \AA$, a possible, blended C II $\lambda 1334$ line $3793 \AA$, and the Si IV doublet at $3960 \AA$ and $3986 \AA$. However, the doublet ratio for the Si IV doublet is greater than two; therefore, the $\lambda 1393$ component must be blended. Our red spectrum shows Si II $\lambda 1526$ at $4337 \AA$, the C IV doublet at $4403 \AA$, Fe II $\lambda 1608$ at $4572 \AA$, and Al II $\lambda 1670$ at $4748 \AA$.
$z_{a b s}=1.9859-\operatorname{Ly} \alpha$ for this possible system is found at $3630 \AA$. At this redshift, we also identify N II $\lambda 1083$, Fe II $\lambda 1145$, Si II $\lambda 1193$ and $\lambda 1260$ lines at $3237 \AA, 3419 \AA$, $3563 \AA$, and $3763 \AA$. The equivalent widths relative to Ly α indicate each of these must be blended. A Si III $\lambda 1206$ line is found at $3603 \AA$. The red spectrum shows no lines for this redshift redward of $\mathrm{Ly} \alpha$.

C. 3 Q 0037-018 $\quad z_{\text {em }}=2.341$

(284) Wolfe et al. (1986), hereafter W86, find a candidate damped Ly α system present in the spectrum of this object at $3602 \AA\left(z_{a b s}=1.962\right)$ with an observed equivalent width of $15.5 \AA$. They also note an absorption feature at $3832 \AA\left(z_{a b s}=2.152\right)$. However, since their objective was to search for and characterize damped Ly α systems only, they do not produce detailed line lists for their spectra. These lines are not confirmed by our data. We find no significant absorption feature at $3602 \mathcal{A}$; but we do find a line at 3604 A. We also find no significant line at 3832 A. Due to the low signal-to-noise at the blue end of our spectrum, we truncated the spectrum for the purposes of our line searches. The usable portion of our spectrum therefore extends
from $\sim 3542 \AA$ to $\sim 4110 \AA$. The features at $3998 \AA, 4003 \AA, 4007 \AA$, and $4011 \AA$ are identified as traps in the CCD, as they appear in many other object spectra.

C. 4 Q 0049+007 $\quad z_{e m}=2.279$

We find a system consistent with Ly α at $3540 \AA$. (241) SS92 (cf. Section C.2) identify this metal line system at $z_{\text {abs }}=1.9115$ on the basis of weak Al III $\lambda 1854$ and $\lambda 1862$ lines and a weak Mg II doublet. Further corroboration of this system comes from a possible N V $\lambda 1238$ line at $3607 \AA$ (no $\lambda 1242$ is detected) and the Si IV doublet at $4057 \AA$ and $4084 \AA$ respectively in our data. Our red spectrum of this object (see Paper II) also shows Si II $\lambda 1526$ at $4445 \AA$, and the C IV doublet at $4507 \AA$ and $4515 \AA$, consistent with this system.

In addition, we find five other systems or possible systems from our data:
$z_{a b s}=1.3865-$ We identify this system based on the C IV doublet at $3695 \AA$ and $3701 \AA$. We also find Si II $\lambda 1526$ at $3643 \AA$, and Al II $\lambda 1670$ at $3987 \AA$. (241) SS92 do not find a Mg II doublet nor do they find any Fe II lines at this redshift. Our red spectrum shows possible Al III $\lambda 1854$ and $\lambda 1862$ lines at $4426 \AA$ and $4445 \AA$. However, the feature at $4445 \AA$ is more likely Si IV $\lambda 1393$ at $z_{a b s}=2.1908$.
$z_{\mathrm{abs}}=1.5226-$ This system is composed of O I $\lambda 1302$ at $3285 \AA$, Si IV $\lambda 1393$ at $3515 \AA$ and $\lambda 1402$ at $3540 \AA$ (blended with Ly α at $z_{a b s}=1.9123$), a possible identification of Si II $\lambda 1526$ at $3850 \AA$, and the C IV doublet at $3905 \AA$ and $3912 \AA$. (241) SS92 do not detect a Mg II doublet or any Fe II lines at this redshift, nor do we find any matching lines in our red spectrum.
$z_{a b s}=2.1168$ - This is a relatively insecure identification based upon Ly α at $3789 \AA$, a possible O I $\lambda 1302$ at $4057 \AA$ and possible Si II $\lambda 1193$ and $\lambda 1260$ lines at $3720 \AA$ and $3927 \AA$. No lines are found redward of Ly α emission.
$z_{a b s}=2.1667$ - This system shows $\operatorname{Ly} \alpha$ at $3850 \hat{A}, \operatorname{Ly} \beta$ at $3248 \hat{A}$, and a very tentative N V doublet both components of which must be blends at $3927 \AA$ and
$3935 \AA$. We find no lines at this redshift in our red spectrum
$z_{a b s}=2.1918$ - For this system, we find Ly α at $3880 \AA, \operatorname{Ly} \beta$ at $3274 \AA, \mathrm{Si}$ III $\lambda 1206$ at $3850 \AA$, and a possible, blended N II $\lambda 1083$ at $3458 \AA$. In addition, our red spectrum shows the Si IV doublet at $4447 \AA$ and $4476 \AA$ and the C IV doublet at $4944 \AA$.

C. $5 \quad$ Q $0123+257 \quad z_{\text {em }}=2.370$

The absorption spectrum of this QSO has been observed by (218) Schmidt \& Olsen (1968) (SO68), (188) Oemler \& Lynds (1975) (OL75), and (284) W86 (cf. Section C.3).

We confirm the absorption features seen by (218) SO68 at $3900 \AA, 4013 \AA, 4057 \AA$, and $4065 \AA$. The remainder of their features lie outside the wavelength range of our spectrum. They report an absorption system at $z_{a b s}=2.3683$, an associated absorber, from the identification of Ly α and the C IV doublet, as well as a possible identification of Si III $\lambda 1206$. (188) OL75 discuss several possible redshift systems. The only system they find compelling, however, is the $z_{a b s}=2.3683$ system of (218) SO68. We confirm several lines possibly associated with this system: Ly β at $3456 A$, O VI $\lambda \lambda 1031,1037$ at $3473 \AA$ and $3496 \AA, N$ II $\lambda 1083$ at $3645 \AA$, and Si III $\lambda 1206$ at $4064 \AA$ which is blended with Ly α at $z_{a b s}=2.3433$. Our red spectrum of this object (see Paper II) shows the C IV doublet at $5216 \AA$ and $5226 \AA$. We also confirm the absence of any marked damped Ly α absorption, as reported by (284) W86.

We tested all of the possible redshift systems proposed by (188) OL75 and used our usual methods for finding additional metal line systems. As a result, we identify three other systems:
$z_{a b s}=0.3207$ - This system consists of Fe II $\lambda 2600$ at $3433 \AA$, a Mg II doublet at $3693 \AA$ and $3702 \AA$, and Mg I $\lambda 2753$ at $3767 \AA$.
$z_{a b s}=1.8427$ - This system consists of Ly α at $3456 \AA$, Si III $\lambda 1206$ at $3430 \AA$, O I
$\lambda 1302$ at $3702 \AA$, and Si IV $\lambda 1393$ at $3962 \AA$, with a possible identification of $\lambda 1402$ blended with a feature at $3989 \AA$.
$z_{a b s}=2.0379-$ For this system, we find Ly α at $3693 \AA$, Fe II $\lambda 1143$ and a blended $\lambda 1145$ at $3473 \AA$ and $3478 \AA$, and N I $\lambda 1200$ at $3645 \AA$. Neither (218) SO68 nor (188) OL75 note any absorption features at the position of Fe II $\lambda 1608$ for this redshift; and our red spectrum shows no lines at this redshift.

C. 6 Q 0150-203 $\quad z_{e m}=2.148$

The absorption spectrum of 0150-203 (UM675) is first discussed in detail by (212) Sargent et al. (1988), hereafter SBS88. Their data provide coverage from $3815 \AA$ to $5038 \AA$ with $1.5 \AA$ resolution. They report several absorption systems from their spectrum:
$z_{a b s}=0.3892-\mathrm{A} \mathrm{Mg}$ II doublet is identified at this redshift. (212) SBS88 report the possible blending of the Mg II doublet at $z_{a b s}=0.3892$ with a second component at $z_{a b s}=0.3882$. Our spectrum does show two prominent absorption features at 3883 and $3896 \AA$. If these lines are interpreted as the Mg II doublet the resulting redshifts are $z_{a b s}=0.38869$ for the $\lambda 2796$ line and $z_{a b s}=0.38977$ for the $\lambda 2803$ line, an unacceptable separation of $233 \mathrm{~km} \mathrm{~s}^{-1}$. It is possible to identify three Fe II lines at this redshift, $\lambda 2344$ at $3253 \AA, \lambda 2382$ at $3308 \AA$, and $\lambda 2586$ at $3590 \AA$. However, no Fe II $\lambda 2600$ line is found which calls the identification of the $\lambda 2344$ and the $\lambda 2586$ lines into question. Given these arguments and the more compelling identification of the $3883 \AA$ and $3896 \AA$ features as the N V doublet at $z_{a b s}=2.134$, we consider this system improbable.
$z_{a b s}=0.7800-\mathrm{A}$ Mg II system showing Fe II $\lambda 2382$ is reported by (212) SBS88. The only lines in our search list that fall within the wavelength range of our data for $z_{a b s}=0.7800$ are Al III $\lambda 1854$ and $\lambda 1862$, but we detect neither of these, and thus cannot confirm this system.
$z_{a b s}=1.7666-(212)$ SBS88 detect a weak C IV doublet at this redshift. We confirm this system from our detection of Ly α at $3363 \AA$ and possible identifications of O I $\lambda 1302$ at $3604 \AA$, and C II $\lambda 1334$ at $3693 \AA$.
$z_{a b s}=1.9287-(212)$ SBS88 regard this weak C IV doublet as a probable system. We confirm this system through our identifications of Ly α at $3560 \AA$ and tentative Si II $\lambda 1193, \lambda 1260$, and $\lambda 1304$ lines at $3494 \AA, 3690 \AA$ and $3821 \AA$ respectively.
$z_{a b s}=2.0083,2.0097-(212)$ SBS88 regard this C IV complex as almost certain due to the good redshift agreement between the putative doublet lines. The Si IV $\lambda 1393$ line is also identified for the $z_{a b s}=2.0097$ component of this complex. We confirm the $z_{a b s}=2.0083$ system. At this redshift, we identify lines of Ly α at $3657 \AA, \mathrm{Fe}$ II $\lambda 1145$ at $3444 \AA$, Si II $\lambda 1193$ at $3590 \AA$ (possible), Si II $\lambda 1260$ at $3792 \AA, \mathrm{~N} V$ $\lambda 1238$ at $3726 \AA$ (possible), and C II $\lambda 1334$ at $4014 \AA$. (291) York et al. (1991) give this component a B rating, as (212) SBS88 only identified the C IV doublet. For the $z_{a b s}=2.0097$ component, we confirm Ly α absorption at $3659 \AA$, or $z_{a b s}=2.0101$. We also find Fe II $\lambda 1145$ at $3446 \AA$, Si III $\lambda 1206$ at $3632 \AA$, and O I $\lambda 1302$ at $3918 \AA$. (291) York et al. (1991) assign this system an A rating since (212) SBS88 identified both C IV and Si IV $\lambda 1393$ at this redshift. In our spectrum, the Ly α lines for the components of this complex are within $5 \AA$ of a third line, which, if identified as Ly α as well, gives $z_{a b s}=2.0060$. However, we detect only one other line (Si II $\lambda 1260$ at $3788 \AA$) for this redshift. This, and the fact that(212) SBS88 find no C IV at $z_{a b s}=2.0060$ lead us to regard this additional identification as extremely uncertain.
(241) SS92 (cf. Section C.2) find no Mg II systems in their spectrum of this object although they note that for the SBS88 systems at $z_{a b s}=1.7666,1.9287,2.0083$, and 2.0097, these lines would have been visible in their spectrum if present. In fact, SS92 find no absorption features in their spectrum at all.
(17) Beaver et al. (1991), hereafter B91, observed the far-UV spectrum of this object using the Faint Object Spectrograph (FOS) on the Hubble Space Telescope (HST). The spectra range from $1630 \AA$ to $2428 \AA$ and were taken using two different
apertures each resulting in $\sim 8.0 \AA$ resolution. In addition, optical spectra were obtained with the Lick telescope. These spectra cover $3250-6350 \AA$ at $15 \AA$ resolution and $3540-4120 \AA$ at $1.8 \AA$ resolution. (17) B91 confirm the $z_{a b s}=0.7800$ system of SBS88 with their identification of Ly α at $2161 \AA$ and $\operatorname{Ly} \beta$ at $1836 \AA$ as well as their tentative identifications of C II $\lambda 1334$ at $2370 \AA$, and Si III $\lambda 1206$ at $2148 \AA$ and their possible identification of C III $\lambda 977$ at $1736 \AA$. They also report one other system:
$z_{a b s}=2.1348$ - The optical spectra of (17) B91 show strong absorption at $3810 \AA$ which is identified as Ly α. This identification results in the coincidence of the N V doublet at this redshift with the Mg II doublet at $z_{a b s}=0.3892$ identified by (212) SBS88. This system is corroborated by the tentative identification of Ne VIII $\lambda 770$ at $2417 \AA$ and the uncertain identification of He I $\lambda 584$ at $1836 \AA$. We identify several lines for this associated absorber, including Ly α at $3810 \AA$, O VI $\lambda \lambda 1031,1037$ at $3234 \AA$ and $3253 \AA$, N II $\lambda 1083$ at $3397 \AA$, and N V $\lambda \lambda 1238,1242$ at $3883 \AA$ and $3896 \AA$. Also, as noted by (17) B91, the spectrum of (212) SBS88 shows some absorption near the position of the C IV doublet at this redshift ($\sim 4860 \AA$) but they do not identify this feature.

We identify one additional system in our data:
$z_{a b s}=0.3628$ - This system consists of Fe II $\lambda 2382, \lambda 2586$, and $\lambda 2600$ at $3249 A$, $3525 \AA$, and $3542 \AA$ respectively, as well as Mg II $\lambda \lambda 2796,2803$ at $3810 \AA$ and $3821 \AA$. (17) B91 do not detect $\mathrm{Ly} \alpha$ for this system in their FOS spectrum, however, its position at $1657 \AA$ would place it at the very blue edge of their data where the signal-to-noise ratio is poor.

$$
\text { C. } 7 \text { Q 0153+744 } \quad z_{e m}=2.341
$$

According to our searches, there is no previously published spectrum of this QSO. In our spectrum, we find only one possible metal line system, an associated absorber at $z_{a b s}=2.3456$. We consider this identification tentative, however, due to the fact that
the $\operatorname{Ly} \beta$ line for this system is separated from the position of Ly α by 6σ. The other species detected are O VI $\lambda 1031$ and $\lambda 1037$ at $3453 \AA$ and $3472 \AA$, Fe II $\lambda 1143$ and Fe II $\lambda 1145$ at $3826 \AA$ and $3831 ~ \AA$, and Si III $\lambda 1206$ at $4037 \AA$. In addition, our red spectrum (see Paper II) does show a possible C IV doublet at $5179 \AA$ and $5188 \AA$, but the doublet ratio is less than one.

C. 8 Q 0226-038 $\quad z_{e m}=2.073$

The absorption line spectrum of this QSO has been studied by many authors. The first such investigation was undertaken by (42) Carswell et al. (1976) using spectrograms spanning a wavelength range from $3200 \AA$ to $6000 \AA$. (294) Young, Sargent, and Boksenberg (1982b), YSB82 hereafter, obtained spectra from $3530 \AA$ to $5070 \AA$ with $2.2 \AA$ resolution. In addition, (140) Lanzetta, Turnshek, \& Wolfe (1987), LTW87 hereafter, obtained spectra from $6271 \AA$ to $8766 \AA$ with $4.5 \AA$ resolution and a signal-to-noise ratio between 18 and 32. This object was also observed by (241) SS92 with their red setup and by (212) SBS88 (cf. Section C. 2 and Section C.6).

The spectrum we obtained for this object is, unfortunately, riddled with bad columns from the CCD. Therefore, we find no absorption systems from our data alone; instead, we use our spectrum to attempt to confirm the systems found by other authors:
$z_{a b s}=1.3284-$ (241) SS92 confirm the Mg II identification for this system which was found by (140) LTW87. (241) SS92 also identify Fe II $\lambda 2344, \lambda 2382$, and $\lambda 2600$ in their red spectrum. They further corroborate this system by noting that lines found by (294) YSB82 at $3606 \AA$ and $3611 \AA$ can be identified as the C IV doublet and that an unidentified line found by (212) SBS88 at $3890 \AA$ can be identified as Al II $\lambda 1670$. Our data show the C IV $\lambda 1548$ line at $3604 \hat{A}$, but we find only a weak feature at the expected position of $\lambda 1550$. The position of AI II $\lambda 1670$ falls on a bad column in our data. There is a feature at $3555 \AA$, the expected position of Si II $\lambda 1526$; but it is not
identified as a significant line as it falls on another of the many bad columns.
$z_{a b s}=1.3558-(294)$ YSB82 propose the identification of two lines, at $3647 \AA$ and $3654 \AA$, in the Lyman α forest region of their spectrum with the C IV doublet at this redshift. We confirm the presence of these lines; however, given the lack of any other lines to strengthen this identification, the does not meet our criteria for a true metal line system.
$z_{a b s}=2.0435-(212)$ SBS88 identify this system based on the identification of the Si IV and C IV doublets. The expected position of Ly α for this redshift falls on a bad column in our data; and we find only one other possible line for this redshift, Si III $\lambda 1206$ at $3672 \AA$.

We do not confirm the absorption line at $3703 \AA$ reported by Carswell et al. (1976)

C. 9 Q 0348+061 $\quad z_{e m}=2.056$

(212) SBS88 (cf. Section C.6) find several absorption systems in their spectrum of this QSO ($3880 \AA-5060 \AA$):
$z_{a b s}=0.3997$ - This system is a single Mg II doublet according to (212) SBS88. We find only marginal evidence for a Mg II doublet at $3912 \AA$ and $3921 \AA$ from our red spectrum of this object (see Paper II).
$z_{a b s}=1.7975-(212)$ SBS88 find a C IV doublet at this redshift. We verify Ly α absorption at $3400 \AA$; we detect a possible Si III $\lambda 1206$ line at $3374 \AA$; and our red spectrum shows the C IV doublet identified by (212) SBS88 at $4328 \AA$ and $4336 \AA$.
$z_{a b s}=1.8409-(212)$ SBS88 find another C IV doublet at this redshift. We detect Ly α absorption at $3453 \AA$, in agreement with this system. A possible Si II $\lambda 1260$ line at $3581 \AA$ is found for this redshift; and our red spectrum corroborates the C IV doublet found by (212) SBS88 as well as showing Si IV $\lambda 1393$ at $3958 \mathcal{A}$ (but no $\lambda 1402$) and a possible Si II $\lambda 1526$ line at $4335 \AA$.

$$
z_{a b s}=1.9681-(212) \text { SBS88 find a C IV doublet along with C II } \lambda 1334 \text { and a }
$$

possible Si IV $\lambda 1393$ line at this redshift. We find Ly $\alpha 3608 \AA$, Si III $\lambda 1206$ at $3581 \AA$, and a very tentative N V doublet at $3676 \AA$ and $3687 \AA$, which, if present, is highly blended with Ly α at $z_{a b s}=2.0238$ and $z_{a b s}=2.0331$. Our red spectrum verifies the identifications of (212) SBS88 listed above and also shows Fe II $\lambda 1608$ at $4775 \AA$.
$z_{a b s}=2.0237-(212)$ SBS88 find a C IV doublet and possible Si IV $\lambda 1393$ at this redshift. (241) SS92 (cf. Section C.2) confirm this system in their red spectrum ($5128 \AA-8947 \AA$) of this object with the detection of a Mg II doublet at this redshift. They do not detect Mg II for any of the other SBS88 redshifts to which their spectrum is sensitive $\left(z_{a b s}>0.83\right.$.) We detect Ly α absorption at $3676 \AA$, in agreement with this system. In addition, we identify a possible blended Si II $\lambda 1193$ line at $3608 \AA, N$ I $\lambda 1200$ at $3628 \AA$, Si III $\lambda 1206$ at $3648 \AA$, Si II $\lambda 1260$ at $3812 \AA$, and C II $\lambda 1334$ at $4035 \AA$. Our red spectrum exhibits the features found by (212) SBS88 listed above as well as C II $\lambda 1334$ at $4037 \AA$.
$z_{a b s}=2.0330-(212)$ SBS88 identify both C IV and Si IV doublets for this redshift. We detect Ly α at $3687 \AA$ and Si III $\lambda 1206$ at $3659 \AA$. Our red spectrum shows marginal evidence for the features listed by (212) SBS88.

C. 10 Q 0400+258 $z_{\text {em }}=2.108$

No previously published absorption line spectrum of this QSO was found in our searches. Unfortunately, the low signal-to-noise of the blue portion of our spectrum ($3208 \AA-3659 \AA$) prevents us from identifying any lines in the Lyman alpha forest. We find only one significant line at $3752 \AA$ from which we cannot identify any metal line systems.

C. 11 Q 0747+610 $z_{e m}=2.491$

In their catalog of QSO absorption lines, (124) Junkkarinen et al. (1991) note two metal line systems found for this object by (2) Afanasjev et al. (1979). These systems were identified at $z_{a b s}=1.986$ and $z_{a b s}=2.210$. (291) York et al. (1991) give both of these systems a B rating in their reference catalog of heavy element systems in QSO spectra. According to their explanation of their rating system, this B rating indicates that either a C IV or Mg II doublet was identified for these systems with the correct doublet ratio, but that no other lines but Lyman alpha were detected. However, (124) Junkkarinen et al. note that for the $z_{a b s}=1.986$ system, N V, Si II, C II , Si IV, and Al II lines were detected in addition to H I and C IV; and for the $z_{a b s}=2.210$ system, Si II', N V, C II, Si IV, and Al III lines were detected in addition to H I and C IV. (241) SS92 (cf. Section C.2) do not confirm either of these metal line system redshifts. Instead, they find three others at $z_{a b s}=1.1282, z_{a b s}=2.0076$, and $z_{a b s}=2.4865$.

We confirm the $z_{a b s}=1.986$ system of (2) Afanasjev et al. (1979) with our identification of Ly α at $3629 \AA$, a possible N I $\lambda 1135$ at $3389 \AA$, a possible Si II $\lambda 1190$ at $3554 \AA$, Si II $\lambda 1193$ at $3562 \AA$, and N I $\lambda 1200$ at $3582 \AA$. We also confirm their $z_{a b s}=2.210$ system with our detection of Ly α at $3903 \AA$, a possible N II $\lambda 1083$ line at $3480 \AA$, Si III $\lambda 1206$ at $3874 \AA$, Si II $\lambda 1260$ at $4047 \AA$, and O I $\lambda 1302$ at $4180 \AA$.

We do not find any lines at the position of the $z_{a b s}=1.1282$ system of SS92 which they identify by a weak Mg II doublet. We identify a metal line system at $z_{a b s}=2.0071$, in accordance with the $z_{a b s}=2.0076$ system found by these authors. At this redshift, we find a strong Ly α line at $3656 \AA$, Si II $\lambda 1190$ and $\lambda 1193$ at $3580 \AA$ and $3589 \AA$, Si III $\lambda 1206$ at $3629 \AA$, Si II $\lambda 1260$ and $\lambda 1304$ at $3791 \AA$ and $3923 \AA$, O I $\lambda 1302$ at $3915 \AA$, and possible C II $\lambda 1334$ absorption at $4014 \AA$. It is clear that some of these Si II lines are blends given their relative strengths. Our confirmation of the $z_{a b s}=2.4865$ system of SS92 is not as strong. We find Ly α and $\mathrm{Ly} \beta$ at $4237 \AA$ and
$3575 \AA$ respectively for this redshift. But we do not detect any other species with any confidence.

The absorption line spectrum of this object is a rich one. We find a total of 145 significant lines and we find twelve metal line systems in addition to the ones discussed above. As is the case for all of our objects, it is unlikely that all of these systems are real since SS92 do not report any lines from their red spectrum at these redshifts. However, we have kept all the systems that cannot be definitively ruled out on the basis of our data. For all redshifts below 1.742, the Ly α line falls outside the spectral range of our data. The values of these redshifts are based upon the strongest line that was detected for each system.
$z_{a b s}=1.4102$ - This system is based upon a C IV doublet at $3731 \AA$ and $3738 \AA$ and a Si IV doublet at $3359 \AA$ and $3381 \AA$. We also find AI II $\lambda 1670$ at $4028 \AA$.
$z_{a b s}=1.4529-$ The value for this redshift is based upon a C IV doublet at $3798 \AA$ and $3804 \AA$. In addition, we detect Si IV $\lambda 1393$ at $3419 \AA$ and Si IV $\lambda 1402$ at $3441 \AA$ (though it must be a blend if it is present otherwise the Si IV doublet ratio is less than one), Si II $\lambda 1526$ at $3745 \AA$, and Al II $\lambda 1670$ at $4098 \AA$.
$z_{a b s}=1.5986$ - For this system, we identify Si II $\lambda 1304$ at $3389 \AA$, possible C II $\lambda 1334$ absorption at $3466 \AA$, a possible Si IV $\lambda 1393$ line at $3621 \AA$ (no $\lambda 1402$ is found), Si II $\lambda 1526$ at $3967 \AA$, and a possible, weak C IV $\lambda 1548$ line at $4023 \AA$. A weak feature is present at the position of C IV $\lambda 1550$, but it is not identified as a significant (3σ) line.
$z_{a b s}=1.6822$ - This redshift is based upon Si II $\lambda 1260$. We also find a possible blended N V $\lambda 1242$ line at $3333 \AA$ ($\lambda 1238$ is out of the wavelength range of our line list), O I $\lambda 1302$ at $3492 \AA$, Si II $\lambda 1304$ at $3498 \AA$, C II $\lambda 1334$ at $3580 \AA$, and a rather doubtful Si IV doublet at $3738 \AA$ and $3761 \dot{A}$.
$z_{a b s}=1.7324-$ This system, based on a possible C IV doublet at $4230 A$ and $4237 \AA$, is a relatively tentative one due to the inconsistent doublet ratios of this pair and of a possible Si IV doublet at $3808 \AA$ and 3833 A. We also find O I $\lambda 1302$ at

3558 A.
$z_{a b s}=1.8123$ - For this system, we find Ly α at $3419 \AA$. In addition, we find a possible Si II $\lambda 1193$ line at $3357 \AA$, Si III $\lambda 1206$ at $3393 \AA$, a possible blended Si II $\lambda 1260$ line at $3544 \AA, O$ I $\lambda 1302$ at $3662 \AA$, and C II $\lambda 1334$ at $3753 \AA$.
$z_{a b s}=1.8728$ - This system consists of Ly α at $3492 \AA$, Si II $\lambda 1190$ and $\lambda 1193$ at $3419 \AA$ and $3428 \AA$, N I $\lambda 1200$ at $3447 \AA$, Si III $\lambda 1206$ at $3466 \AA$, a possible N V $\lambda 1238$ line at $3558 \AA$, Si II $\lambda 1260$ at $3621 \AA, \mathrm{C}$ II $\lambda 1334$ at $3833 \AA$ and a possible Si IV $\lambda 1393$ at $4003 \AA$ (no $\lambda 1402$ component is found.)
$z_{a b s}=2.0070,2.0093-$ We find a metal line system of two components at these redshifts. The first component shows Ly α at $3656 \AA, \mathrm{Si}$ II $\lambda 1190$ and $\lambda 1193$ at $3580 \AA$ and $3589 \AA$, a possible Si III $\lambda 1206$ line at $3618 \AA$, Si II $\lambda 1260$ and $\lambda 1304$ at $3791 \AA$ and $3923 \AA$, C II $\lambda 1334$ at $4014 \AA$, and Si IV $\lambda 1393$ at $4192 \AA$. The $\lambda 1402$ component of this doublet is blended with the same line corresponding to the other system at $z_{a b s}=2.009$. The second component consists of Ly α at $3658 \AA$, a possible $N V \lambda 1238$ line at $3728 \AA$ (no $\lambda 1242$ line is found), Si II $\lambda 1260$ at $3792 \AA$, C II $\lambda 1334$ at $4015 \AA$, and a tentative Si IV doublet at $4194 \AA$ and $4221 \AA$ (with a doublet ratio less than one due to blending.)
$z_{a b s}=2.0476-$ This system is composed of Ly α at $3705 \AA$, N I $\lambda 1200$ at $3656 \AA$ (blended with Ly α at $z_{a b s}=2.007$ if present), Si III $\lambda 1206$ at $3677 \AA$, O I $\lambda 1302$ at $3967 \AA$, and Si IV $\lambda 1393$ at $4247 \AA$.
$z_{a b s}=2.1391-$ At this redshift, we identify Ly α at $3816 \AA$, N I $\lambda 1135$ and $\lambda 1200$ at $3562 \AA$ and $3767 \AA$, and a possible N V doublet at $3889 \AA$ and $3901 \AA$ for which the $\lambda 1242$ component must be blended as it is stronger than both the $\lambda 1238$ component of the doublet and Lya.
$z_{a b s}=2.1724$ - This system consists of Ly α at $3856 \AA$, tentative N I $\lambda 1135$ and $\lambda 1200$ lines at $3601 \AA$ and $3808 \AA$, Si III $\lambda 1206$ at $3828 \AA$, and a possible C II $\lambda 1334$ line at $4235 \AA$.
$z_{a b s}=2.2849$ - This system is identified on the basis of strong Ly α absorption at
$3993 \AA, \mathrm{Ly} \beta$ at $3369 \AA, \mathrm{O}$ VI $\lambda 1031$ and $\lambda 1037$ at $3389 \AA$ and $3408 \AA$, possible Si II $\lambda 1190$ and $\lambda 1193$ lines at $3777 \AA$ and $3786 \AA$, and a possible Si III $\lambda 1206$ line at 3964 A.

C. 12 Q 0836+710 $z_{e m}=2.218$

(247) Stickel \& Kühr (1993) report an absorption feature in their spectrum of this object at $5360 \AA$ which they identify as the Mg II doublet at $z_{a b s}=0.914$. We find Al III $\lambda 1854$ at $3550 \AA$. Also, we have a red spectrum of this object in the vicinity of Mg II emission. This spectrum does show the Mg II doublet at $5359 \AA$ and $5372 \AA$, giving a redshift of 0.916 .

We find several other redshift systems in our data:
$z_{a b s}=1.4256-$ This system is a double-component C IV absorber with the Si IV doublet at $3380 \AA$ and $3403 \AA$, the C IV doublet at $3755 \AA$ and $3762 \AA$, a possible Si II $\lambda 1526$ at $3702 \AA$, and Fe II $\lambda 1608$ at $3902 \AA$ Tंwo components in each line are evident in the spectrum, with the second, weaker component at $z_{a b s}=1.4249$ which, unlike the first component, shows Al II $\lambda 1670$ absorption, at $4051 \AA$.
$z_{a b s}=1.6681-$ At this redshift, we detect absorption from Ly α at $3243 \mathrm{~A}, \mathrm{C}$ II $\lambda 1334$ at $3561 \AA$, and a Si IV doublet at $3719 \AA$ and $3742 \AA$ (though its implied doublet ratio is less than one.) There is no Mg II absorption in our red spectrum.
$z_{a b s}=1.7331-$ This system consists of Ly α at $3322 \AA$, O I $\lambda 1302$ at $3558 \AA$, the N V doublet at $3386 \AA$ and $3397 \AA$, and a possible Si IV $\lambda 1393$ line at $3809 \AA$. The expected position of the Mg II doublet falls on a poorly subtracted sky line in the red spectrum.

We find a two-component associated absorption system at $z_{a b s}=2.1800$ consisting of only $\operatorname{Ly} \alpha(3866 \AA$) and $\operatorname{Ly} \beta(3261 \AA$ and $3263 \AA$.)

The absorption features at $3964 \AA, 3970 \AA, 3975 \AA$, and $3983 \AA$ are identified as traps in the CCD.

C. 13 Q 0848+153
 $$
z_{e m}=2.014
$$

(294) YSB82 (cf. Section C.8) find eight absorption lines blueward of Ly α emission in their spectrum of this QSO. They do not identify any of them. (212) SBS88 (cf. Section C.6) detect only one line in their spectrum of this object (one which is not found by YSB88.) (241) SS92 (cf. Section C.2) find four absorption features in their red spectrum and identify three of them as a Mg II doublet and Fe II $\lambda 2600$ at $z_{a b s}=1.0254$. Neither we nor YSB82 nor SBS88 observed the region of the spectrum necessary to confirm the C IV doublet for this system; but we do identify Fe II $\lambda 1608$ at $3259 \AA$. We find no other lines at this redshift or any other metal line systems from our data. We do note that lines 8 and 11 in our line list match the position of the Si IV doublet at $z_{\mathrm{abs}}=1.5738$ well, although we cannot call this a true metal line system based on our criteria.

C. 14 Q 0936+368
 $$
z_{e m}=2.025
$$

We have found no previously published spectrum of this object. Due to low signal-tonoise in the blue region of our spectrum ($3200-3400 \AA$) the spectrum was truncated at roughly $3400 \AA$ for the purposes of the line list. The absorption features at $3942 \AA$, $3948 \AA$, and $3955 \AA$ are traps in the CCD.

The only system found is a C IV doublet at $4001 \AA$ and $4006 \AA$ and C II $\lambda 1334$ at $3448 \AA$ from a system at $z_{a b s}=1.5841$.

$$
\text { C. } 15 \quad \text { Q } 0952+335 \quad z_{e m}=2.504
$$

Our spectrum of this object shows a damped Lyman alpha system at $3765 \AA$ with an observed equivalent width of $30.97 \AA$. The absorption features at $4277 \AA, 4282 \AA$, $4286 \AA$, and $4290 \AA$ are traps in the CCD. We find ten possible metal line systems:
$z_{a b s}=0.5393-$ This system consists of several Fe II lines ($\lambda 2344$ at $3609 \AA, \lambda 2374$ at $3655 \AA, \lambda 2382$ at $3668 \AA, \lambda 2586$ at $3981 \AA$, and $\lambda 2600$ at $4002 \AA$) and a possible Mg II doublet at $4304 \AA$ and $4314 \AA$. However, these Mg II lines are weaker than all of the Fe II lines identified, contrary to what is expected; and the relative strengths of the Fe II lines are also not entirely consistent with the expected values. Although the possibility of blending keeps us from ruling out this system altogether, it is a tentative one.
$z_{a b s}=1.5362-$ This redshift is based upon a C IV $\lambda 1548$ line at $3927 \AA$. The expected position of C IV $\lambda 1550$ for this redshift falls on a bad column in the data. We also detect a Si IV doublet at $3535 \AA$ and $3558 \AA$, Si II $\lambda 1526$ at $3872 \AA$, Fe II $\lambda 1608$ at $4079 \AA$, and Al II $\lambda 1670$ at $4237 \AA$.
$z_{a b s}=2.0399$ - For this system, we find Ly α at $3695 \AA$, Si III $\lambda 1206$ at $3668 \AA, \mathrm{C}$ II $\lambda 1334$ at $4055 \AA$, and the Si IV doublet at $4237 \AA$ and $4265 \AA$. Also, the position of the N V doublet falls within the damped Lyman alpha line at $3763 \AA$.
$z_{a b s}=2.0555-$ Ly α for this system is found at $3714 \AA$. We also identify Fe II $\lambda 1145$ absorption at $3498 \AA$, possible Si III $\lambda 1206$ absorption at $3687 \AA$, possible Si II $\lambda 1260$ and $\lambda 1304$ absorption at $3850 \AA$ and $3985 \AA$, and a Si IV doublet at $4258 \AA$ and 4286 A.
$z_{a b s}=2.0965-$ This system is the damped Ly α absorber noted above. The metal lines found at this redshift include Si II $\lambda 1190$ and $\lambda 1193$ at $3685 \AA$ and $3695 \AA$ (possible), a N I $\lambda 1200$ line at $3714 \AA$, Si III $\lambda 1206$ at $3735 \AA$, Si II $\lambda 1260$ at $3903 \AA$, C II $\lambda 1334$ at $4130 \AA$, and Si IV $\lambda \lambda 1393,1402$ at $4314 \AA$ and $4342 \AA$.
$z_{a b s}=2.1670-$ For this system, we find Ly α at $3850 \AA$, Fe II $\lambda 1143$ and $\lambda 1145$ at $3620 \AA$ and $3626 \AA, N$ I $\lambda 1200$ at $3801 \AA$, and Si III $\lambda 1206$ at $3820 \AA$.
$z_{a b s}=2.1850-$ This system consists of Ly α at $3872 A, S i \operatorname{II} \lambda 1193$ at $3801 A, N$ I $\lambda 1200$ at $3820 \AA$, Si II $\lambda 1260$ and $\lambda 1304$ at $4014 \AA$ and $4153 \AA$, and O I $\lambda 1302$ at $4147 \AA$.
$z_{a b s}=2.2102-$ At this redshift, we detect Ly α at $3903 \AA$, Si II $\lambda 1190$ and $\lambda 1193$
at $3820 \AA$ and $3830 \AA$, Si III $\lambda 1206$ at $3872 \AA$, a possible $\mathrm{N} V \lambda 1238$ line at $3976 \AA$ (no $\lambda 1402$ component is found), a blended Si II $\lambda 1260$ line at $4046 \AA$, and O I $\lambda 1302$ at $4180 \AA$. The expected position of Si II $\lambda 1304$ falls on a bad column in the data.
$z_{a b s}=2.2924-$ For this system, we identify Ly α at $4002 \AA, \mathrm{~N}$ II $\lambda 1083$ at $3569 \AA$, Si III $\lambda 1206$ at $3972 \AA$, and the N V doublet at $4079 \AA$ and $4092 \AA$.
$z_{a b s}=2.3189-$ This system consists of $\operatorname{Ly} \alpha$ at $4035 \AA$, Fe II $\lambda 1143$ and $\lambda 1145$ at $3795 \AA$ and $3801 \AA$, Si II $\lambda 1193$ at $3959 \AA$, and Si II $\lambda 1260$ at $4183 \AA$.

C. 16 Q 0955 $+472 \quad z_{e m}=2.482$

We note the presence of associated absorption in the spectrum of this radio loud QSO, at $4203 \AA, 4206 \AA, 4219 \AA$, and $4241 \AA$, separated from the position of the Lyman alpha emission by $2121 \mathrm{~km} \mathrm{~s}^{-1}, 1910 \mathrm{~km} \mathrm{~s}^{-1}, 990 \mathrm{~km} \mathrm{~s}^{-1}$, and $-539 \mathrm{~km} \mathrm{~s}^{-1}$, respectively. We do not find metal line systems consistent with these redshifts, but we do find Ly β absorption in our spectrum for the first, third, and fourth systems listed above at $3547 \AA, 3561 \AA$, and $3579 \AA$. The Ly β line for the second system appears to be blended with Ly β for the first system at $3549 \hat{A}$, but is not identified as a significant line by our line-finding program. The metal line systems we find are as follows:
$z_{a b s}=1.7251-$ This system is identified on the basis of a possible C IV doublet at $4219 \AA$ and $4225 \AA$. The other metal lines detected are O I $\lambda 1302$ at $3547 \AA$ and Si II d 1304 at $3554 \AA$. This system is relatively insecure.
$z_{a b s}=2.2849$ - For this system, we find Ly α at $3993 \AA$, N II $\lambda 1083$ at $3561 \AA$, blended N I $\lambda 1200$ absorption at $3943 \AA$, Si III $\lambda 1206$ at $3963 \AA$, and a possible N V doublet for which the $\lambda 1238$ component is blended with the Lyman alpha complex at 4071 A , and the $\lambda 1242$ component is detected at 4082 A .
$z_{a b s}=2.3453,2.3481-$ Ly α for this system is part of the Lyman alpha complex at 4067 A. Other lines detected include a possible, blended N I $\lambda 1135$ line and N I $\lambda 1200$
at $3796 \AA$ and $4014 \AA$, Fe II $\lambda 1145$ at $3830 \AA$, Si II $\lambda 1190$ and $\lambda 1193$ at $3984 \AA$ and $3993 \AA$, Si III $\lambda 1206$ at $4038 \AA$, and a possible N V doublet at $4144 \AA$ and $4156 \AA$.
$z_{a b s}=2.4087-$ This system consists of Ly α at $4144 \AA, \mathrm{~N}$ I $\lambda 1135$ and $\lambda 1200$ at $3869 \AA$ and $4090 \AA$, and Si III $\lambda 1206$ at $4112 \AA$. Despite the fact that the putative N I $\lambda 1135$ line shows good redshift agreement with this system, it is treated as a possible identification because the stronger line of the same species, N I $\lambda 1200$, shows poorer agreement.

The absorption features at $4277 \AA, 4282 \AA, 4286 \AA$, and $4290 \AA$ are traps in the CCD.

C. 17 Q 0956+122 $z_{e m}=3.308$

Sargent et al. (1989) obtained a spectrum of this object with $4 \AA$ resolution from $3150 \AA$ to $4700 \AA$ and $6 \AA$ resolution from $4600 \AA$ to $7000 \AA$. They find weak C IV systems at $z_{a b s}=2.9145$ and $z_{a b s}=3.2230$. We find only Ly α at $z_{a b s}=2.9156$. The system at $z_{a b s}=3.2230$ is identified as a Lyman limit system by Steidel (1990) from a higher resolution ($\sim 1.1 \AA$) spectrum. He identifies C IV and Si IV doublets, Si III $\lambda 1206$, C III $\lambda 977$ and several Lyman series lines. We confirm this system with our detection of Ly α at $5134 \AA$, N I $\lambda 1200$ at $5069 \AA$, and Si III $\lambda 1206$ at $5095 \AA$. Songaila \& Cowie (1996) identify this system as a partial Lyman limit system at $z_{a b s}=3.2216$. Sargent et al. (1989) also find a Lyman limit system with no corresponding heavy element lines at $z_{a b s}=3.096$. We identify strong Ly α absorption at this redshift as well as a possible Si II $\lambda 1260$ line at $5162 \AA$. Both of these lines are found in the spectrum of Steidel (1990), but they are not attributed to a Lyman limit system. Instead, Steidel (1990) finds another Lyman limit system at $z_{a b s}=3.11$. We detect strong Lyman alpha absorption at this redshift as well as Si III $\lambda 1206$. The position of Si II $\lambda 1260$ falls on a trap in the CCD. Several other metal line systems were also found by this author:
$z_{a b s}=0.0456$ - Our spectrum does not extend far enough into the red to allow us to confirm the Na I $\lambda \lambda 5891,5897$ lines tentatively identified at this redshift.
$z_{a b s}=2.3104$ - Steidel (1990) tentatively identifies Ly α, C IV $\lambda 1548$ and Al II $\lambda 1670$ at this redshift. We find C II $\lambda 1334$ at $4418 \AA$, a double-component Si IV doublet at $4614 \AA$ and $4636 \AA$, Si II $\lambda 1526$ at $5054 \AA$, and C IV $\lambda 1548$ and $\lambda 1550$ (blended with Ly α at $z_{a b s}=3.223$) at $5125 \AA$ and $5134 \AA$, Hu et al. (1995) identify this double-component Si IV doublet as well in a high resolution ($\sim 0.13 \AA$) spectrum taken with the HIRES Spectrograph on the Keck Telescope. The $\lambda 1393$ line is seen at $z_{a b s}=2.3104$ and $z_{a b s}=2.3109$.
$z_{a b s}=2.7169$ - Steidel (1990) finds C II $\lambda 1334$, a C IV doublet, and Al II $\lambda 1670$ at this redshift. We confirm this system with the detection of Ly α at $4519 \AA, N$ I $\lambda 1200$ at $4461 \AA$, Si III $\lambda 1206$ at $4484 \AA$, the N V doublet at $4604 \AA$ and $4618 \AA$, and C II $\lambda 1334$ at $4959 \AA$. The position of O I $\lambda 1302$ falls on a bad region in the spectrum.
$z_{a b s}=2.7261-$ Steidel (1990) finds a weak C IV doublet at this redshift. We do not find Ly α corresponding to this redshift.
$z_{a b s}=2.8320-$ Steidel (1990) finds a weak C IV doublet at this redshift as well as $\mathrm{Ly} \beta$, Si II $\lambda 1260$, and C II $\lambda 1334$. We identify Ly α at $4659 \AA, \mathrm{~N}$ I $\lambda 1200$ at $4599 \AA$, Si II $\lambda 1260$ at $4830 \AA$, a possible Si II $\lambda 1304$ line at $5002 A$ (blended with Ly α at $z=3.1145$), O I $\lambda 13024990 \AA$, and a possible C II $\lambda 1334$ line at $5118 \AA$.
$z_{a b s}=3.1045-$ Steidel (1990) identifies Ly α, C III $\lambda 977$, and the C IV doublet for this secure system. We confirm strong Ly α absorption at $4990 \AA$ and find a Si II $\lambda 1260$ line at $5172 \AA$.
$z_{a b s}=3.1530-$ Steidel (1990) finds a weak C IV doublet, a Si IV doublet, Si II $\lambda 1190$ and $\lambda 1193$, Si III $\lambda 1206$, and several Lyman series lines. We detect Ly α at $5048 \AA$, a possible N I $\lambda 1200$ line at $4980 \AA$ (blended with Ly α at $z_{a b s}=3.0963$), a tentative Si III $\lambda 1206$ line at $5012 \AA$, and the N V doublet at $5144 \hat{A}$ and $5157 \AA$. We detect the features identified by Steidel (1990) as Si II $\lambda 1190$ and $\lambda 1193$, but since our spectrum shows no feature at the position of Si II $\lambda 1260$, we do not confirm those

identifications.

We identify several other possible metal line systems from our spectrum:
$z_{a b s}=2.8342-$ This system is separated by $172 \mathrm{~km} \mathrm{~s}^{-1}$ from the system found by Steidel (1990) at $z_{a b s}=2.8320$. Ly α is detected at $4661 \AA$, the N V doublet at $4750 \AA$ and $4765 \AA$, and Si II $\lambda 1260$ at $4832 \AA$. The Si II $\lambda 1304$ and C II $\lambda 1334$ identified with the $z_{a b s}=2.8320$ system are more likely associated with this system.
$z_{a b s}=3.0490-$ This system consists of Ly α at $4922 \AA$, possible Fe II $\lambda 1143$ and $\lambda 1145$ lines at $4630 \AA$ and $4636 \AA$, Si III $\lambda 1206$ at $4884 \AA$ and Si II $\lambda 1260$ at $5103 \AA$. Steidel (1990) finds no line which would correspond to Fe II $\lambda 1608$ at $\sim 6510 \AA$ or C IV at $\sim 6270 \AA$.
$z_{a b s}=3.0528-$ At this redshift, we identify Ly α at $4927 \AA, N$ I $\lambda 1135$ and $\lambda 1200$ at $4599 \AA$ and $4862 \AA$, Si III $\lambda 1206$ at $4890 \AA$, and the N V doublet at $5021 \AA$ and $5036 \AA$. There is a line in the Steidel (1990) line list at $6274 \AA$, which would correspond to C IV $\lambda 1548$ at this redshift, but none at $6285 \AA$, which would correspond to C IV $\lambda 1550$.
$z_{a b s}=3.1321-$ This system is composed of Ly α at $5023 \AA$, a possible N II $\lambda 1083$ line at $4480 \AA, N$ I $\lambda 1135$ and $\lambda 1200$ at $4689 \AA$ and $4959 \AA$, a possible $N V$ doublet, both components of which are blended with other lines (see line list), at $5118 \AA$ and $5134 \AA$, and Si II $\lambda 1260$ at $5208 \AA$. No C IV is detected by Steidel (1990).
$z_{a b s}=3.1975-$ At this redshift, we detect Ly α at $5103 \AA$, N I $\lambda 1200$ at $5036 \AA, \mathrm{Si}$ III $\lambda 1206$ at $5065 \AA$, and a possible N V doublet at $5200 \AA$ and $5217 \AA$. A feature at $6497 \AA$ in the line list of Steidel (1990) would correspond to C IV $\lambda 1548$ at this redshift, but no $\lambda 1550$ component is present.
$z_{a b s}=3.2461$ - This system consists of Ly α at $5162 \AA$, Fe II $\lambda 1143$ and $\lambda 1145$ at $4855 \AA$ and $4862 \AA$: N I $\lambda 1135$ and $\lambda 1200$ at $4753 \AA$ and $5095 \AA$, and Si III $\lambda 1206$ at $5122 \AA$. Steidel (1990) finds no C IV doublet or Fe II $\lambda 1608$ at this redshift.
$z_{a b s}=3.2774-$ At this redshift, we identify Ly α at $5200 \AA$, N II $\lambda 1083$ at $4636 \AA$, N I $\lambda 1135$ and $\lambda 1200$ at $4855 \AA$ and $5134 \AA$, and Si III $\lambda 1206$ at $5162 \AA$. Steidel
(1990) finds no C IV at this redshift.

The absorption features at $5176 \AA, 5181 \AA, 5185 \AA$, and $5189 \AA$ are identified as traps in the CCD.

C. 18 Q 1009+299 $\quad z_{e m}=2.633$

There are no previously published absorption line spectra of this object. From our data, we find eight candidate metal line systems including a complex of associated absorption near the quasar redshift:
$z_{a b s}=1.8484$ - This system is identified by the C IV doublet at $4410 \AA$ and $4418 \AA$, the $\lambda 1550$ component of which is blended with Ly α at $z_{a b s}=2.6339$. Other lines found include O I $\lambda 1302$ at $3709 \AA$, Si II $\lambda 1304$ and $\lambda 1526$ at $3715 \AA$ and $4349 \AA$.
$z_{a b s}=2.2611$ - For this system, we identify Ly α at $3964 \AA$, Si III $\lambda 1206$ at $3934 \AA$, Si II $\lambda 1260$ at $4110 \AA$, O I $\lambda 1302$ at $4246 \AA$, and a possible C II $\lambda 1334$ line at $4353 \AA$. The expected positions of Fe II $\lambda 1143$ and $\lambda 1145$ fall on bad columns in the data.
$z_{a b s}=2.3582$ - This system is comprised of Ly α at $4082 \AA, \mathrm{~N}$ I $\lambda 1200$ at $4030 \AA$, Si III $\lambda 1206$ at $4052 \AA$, Si II $\lambda 1260$ at $4232 \AA$, and O I $\lambda 1302$ at $4373 \AA$.
$z_{a b s}=2.3809-$ At this redshift, we detect Ly α at $4110 \AA, N$ II $\lambda 1083$ at $3665 \AA, N$ I $\lambda 1200$ at $4056 \AA$, Si III $\lambda 1206$ at $4079 \AA$, a possible $N V \lambda 1242$ line at $4201 \AA$ (the expected position of the $\lambda 1238$ component falls on a bad region in the spectrum), and O I $\lambda 1302$ at $4403 \AA$.
$z_{a b s}=2.4068$ - For this system, we identify very strong, weakly damped damped Ly α absorption at $4141 \AA$, Si II $\lambda 1190$ at $4056 \AA$ (the position of Si II $\lambda 1193$ falls on a bad region in the spectrum), N I $\lambda 1200$ at $4087 \AA$ A, Si III $\lambda 1206$ at $4110 \AA$, Si II $\lambda 1260$ at $4294 \AA$, and O I $\lambda 1302$ at $4436 \AA$. The position of Si II $\lambda 1304$ falls on a bad column.
$z_{a b s}=2.5236-$ At this redshift, we identify Ly α at $4283 \hat{A}, \mathrm{~N}$ I $\lambda 1135$ at $3998 \AA, \mathrm{Si}$ II $\lambda 1193$ at $4205 \AA, N$ I $\lambda 1200$ at $4227 \AA$, and Si III $\lambda 1206$ at $4252 \AA$. The expected
position of Si II $\lambda 1260$ falls on bad columns in the data.
$z_{a b s}=2.5531-$ This system consists of Ly α at $4319 \AA, \operatorname{Ly} \beta$ at $3645 \AA$, O VI $\lambda 1031$ and $\lambda 1037$ at $3667 \AA$ and $3686 \AA$, N II $\lambda 1083$ at $3851 \AA$, Fe II $\lambda 1143$ at $4061 \AA$ (the position of $\lambda 1145$ falls on bad columns in the spectrum), and Si II $\lambda 1193$ at $4240 \AA$.
$z_{a b s}=2.6158$ - For this associated absorber, $\operatorname{Ly} \alpha$ is found at $4396 \AA, \operatorname{Ly} \beta$ at $3709 \AA$, C II $\lambda 1036$ at $3746 \AA$, possible Fe II $\lambda 1143$ and Fe II $\lambda 1145$ blended with Ly α at $z_{a b s}=2.40677$ at $4134 \AA$ and $4141 \AA$, and Si III $\lambda 1206$ at $4362 \AA$.

The absorption features at $4412 \AA, 4418 \AA, 4422 \AA$, and $4425 \AA$ are identified as traps in the CCD.

C. 19 Q 1207+399 $z_{e m}=2.459$

According to our literature searches, there is no previously published absorption line spectrum of this QSO. From our data, we find two metal line systems:
$z_{a b s}=2.1116-$ At this redshift, we detect a blended Ly α line at $3781 \AA, \mathrm{Si}$ III $\lambda 1206$ at $3765 \AA$, Si II $\lambda 1260$ at $3922 \AA$, C II $\lambda 1334$ at $4152 \AA$, Si IV $\lambda \lambda 1393,1402$ at $4337 \AA$ and $4365 \AA$, and a possible C IV $\lambda 1548$ line at $4816 \hat{A}$. The expected position of C IV $\lambda 1550$ for this redshift falls just outside our spectral range.
$z_{a b s}=2.1561-$ At this redshift, we find Ly α at $3837 \AA, \operatorname{Ly} \beta$ at $3238 \AA, \operatorname{Si}$ III $\lambda 1206$ at $3808 \AA$, the N V doublet at $3907 \AA$ and $3922 \AA$, Si II $\lambda 1260$ at $3977 \AA$, and C II $\lambda 1334$ at $4212 \AA$.

The absorption features present at $4576 \AA, 4587 \AA, 4595 \AA$ and $4603 \AA$ are traps in the CCD.

$$
\text { C. } 20 \quad \text { Q } 1210+175 \quad z_{e m}=2.564
$$

This QSO was observed by (86) Foltz et al. (1987) who noted a possible damped Lyman alpha system in their spectrum at roughly 3500 A. According to Wolfe et al. (1995) this system is a confirmed damped Ly α absorber with an equivalent width
of $11.3 \AA$. Ly α for this candidate is not within our spectral range for this object. However, we find five metal line systems from our data, one of which is consistent with this damped system.
$z_{a b s}=1.8917$ - This system is the damped Ly α absorber discussed above. Ly α at this redshift is outside our spectral range, but we do detect the Si IV doublet at $4030 \AA$ and $4056 \AA$. Other lines detected include Si II $\lambda 1260, \lambda 1304$, and $\lambda 1526$ at $3645 \AA, 3772 \AA$, and $4414 \AA$, O I $\lambda 1302$ at $3765 \AA$, and C II $\lambda 1334$ at $3859 \AA$.
$z_{a b s}=2.0548-$ At this redshift, we identify Ly α at $3713 \AA, \mathrm{Si}$ II $\lambda 1193, \lambda 1260$, and $\lambda 1304$ at $3645 \AA, 3850 \AA$, and $3985 \AA$, and C II $\lambda 1334$ at $4076 \AA$. The Si II $\lambda 1304$ line must be a blend if it is present.
$z_{a b s}=2.1240$ - For this system, we detect Ly α at $3798 \AA$, Si III $\lambda 1206$ at $3768 \AA$, a N V doublet at $3868 \AA$ and $3881 \AA$, a possible Si II $\lambda 1260$ line at $3938 \AA$, and C II $\lambda 1334$ at $4169 \AA$.
$z_{a b s}=2.1974$ - For this system, we identify Ly α at $3887 \AA$, N I $\lambda 1200$ at $3837 \AA$, Si III $\lambda 1206$ at $3859 \AA$, Si II $\lambda 1260$ at $4030 \AA$, O I $\lambda 1302$ at $4164 \AA$, and C II $\lambda 1334$ at $4266 \AA$.
$z_{a b s}=2.5786$ - This system consists of $\mathrm{Ly} \alpha$ at $4350 \AA, \mathrm{Ly} \beta$ at $3671 \AA$, and O VI $\lambda 1031$ and $\lambda 1037$ at $3693 \AA$ and $3714 \AA$. Both O VI lines are stronger than Ly α and $\operatorname{Ly} \beta$ indicating either that they are blends or that the line of sight through this absorber intersects regions dominated by highly ionized gas. The latter interpretation is likely because the redshift of this absorber is larger than the QSO emission redshift, indicating that this absorbing material must be infalling gas associated with the QSO itself.

$$
\text { C. } 21 \quad \text { Q } 1231+294 \quad z_{e m}=2.018
$$

(259) Thompson et al. (1989) measure an emission redshift of $z_{e m}=2.011 \pm 0.001$ for this QSO from [O IV]+Si IV $\lambda \lambda 1397-1406$ and C III] $\lambda 1909$ emission lines. Our
spectrum of Ly α emission gives a redshift of ~ 2.018.
We find two metal line systems from our absorption line spectrum.
$z_{a b s}=1.4780-$ This system consists of the C IV doublet at $3836 \AA$ and $3843 \AA$ and the Si IV doublet at $3454 \AA$ and $3477 \AA$.
$z_{a b s}=1.8755$ - For this system, we identify Ly α at $3496 \AA$, possible N I $\lambda 1135$ and $\lambda 1200$ lines at $3264 \AA$ and $3450 \AA$, a possible Fe II $\lambda 1145$ line at $3292 \AA$, and O I $\lambda 1302$ at $3745 \AA$, blended with C IV $\lambda 1550$ at $z_{a b s}=1.4145$.

Lastly, we identify a C IV doublet at $z_{a b s}=1.4145$ and a C IV doublet at $z_{a b s}=$ 1.1672 along with Al II $\lambda 1670$ at $3621 \AA$, though we detect no other lines at these redshifts. The absorption features at $3937 \AA, 3942 \AA, 3946 \AA$, and $3950 \AA$ are traps in the CCD. The feature at $3722 \AA$ is spurious as well, and it most likely a cosmic ray.

C. 22 Q 1323-107 $z_{e m}=2.360$

The only previously published spectrum found for this object is a spectrum including Ly α and C IV emission from (138) Kunth et al. (1981). They find an emission redshift of 2.360 for the QSO. We find four candidate metal line systems from our absorption line spectrum:
$z_{a b s}=1.4244-$ This system is based upon the Si IV doublet at $3379 \AA$ and $3401 \AA$. At this redshift, we also detect C II $\lambda 1334$ at $3235 \AA$ and Si II $\lambda 1526$ at $3701 \AA$. No C IV doublet is detected.
$z_{a b s}=1.4727$ - This system is identified by the C IV doublet at $3828 \AA$ and $3835 \AA$. Other lines detected include O I $\lambda 1302$ at $3220 \hat{A}$ and C II $\lambda 1334$ at $3300 ~ A$.
$z_{a b s}=1.4922-$ This system is based upon the C IV doublet at $3858 \AA$ and $3864 \AA$. Due to the large uncertainty in the position of the line center for the $\lambda 1550$ component, the redshifts of the doublet components agree to within $<1 \sigma$. We also detect O I $\lambda 1302$ at $3246 \AA$, possible Si II $\lambda 1304$ and $\lambda 1526$ lines at $3250 \AA$ and $3803 \AA$ respectively,
and Fe II $\lambda 1608$ at $4008 \AA$. Our red spectrum of this object (see Paper II) actually extends slightly blueward of $1.0 \AA$ resolution blue spectrum and shows a possible Si II $\lambda 1260$ line at $3144 \AA$.
$z_{a b s}=1.8415-$ This system consists of Ly α at $3454 \AA$, N I $\lambda 1135$ and $\lambda 1200$ at $3225 \AA$ and $3409 \AA$, a possible O I $\lambda 1302$ line at $3701 \AA$, Si II $\lambda 1260$ and $\lambda 1304$ at $3582 \AA$, and $3706 \AA$ respectively, and C II $\lambda 1334$ at $3792 \AA$. The Si II $\lambda 1260$ line must be blended because its equivalent width is larger than that of Ly α. The N I and Si II line matches have been retained despite poor redshift agreement between the two lines of the same species due to the fact the errors in the line centers of lines 32 (N I $\lambda 1200$) and 64 (Si II $\lambda 1260$) are large enough for these redshifts to agree to within $\sim 3 \sigma$. Our red spectrum shows no lines redward of Ly α for this system.

C. 23 Q 1329+412 $z_{\text {em }}=1.934$

(212) SBS88 (cf. Section C.6) find six absorption line systems in their spectrum of this object. (241) SS92 (cf. Section C.2) confirm two of these systems and find another. These are the systems these authors report and the additional information gained from our spectrum:
$z_{a b s}=0.5009-$ (212) SBS88 regard this system as probable from their identification of the Mg II doublet. The only search lines that fall in our spectral range for this redshift are Fe II $\lambda 2344-\lambda 2600$. We find none of these.
$z_{a b s}=1.2821-$ This system is identified by (241) SS92 from a strong Mg II doublet. The spectrum of (212) SBS88 did not cover the region of C IV absorption, but ours does and we find no significant lines that would correspond to the C IV doublet at this redshift.
$z_{a b s}=1.4716-$ This system is identified by (212) SBS88 on the basis of an "unambiguous" C IV doublet. (241) SS92 find no Mg II absorption at this redshift. We confirm the C IV doublet identification of (212) SBS88 and also find a
tentative O I $\lambda 1302$ line at $3217 \AA$.
$z_{a b s}=1.6010-(212)$ SBS88 find a strong C IV doublet at this redshift which they note is likely to be blended with another C IV doublet at a nearby redshift. (241) SS92 identify the Mg II doublet at this redshift. Our spectrum shows the strong C IV doublet found by (212) SBS88 in addition to Si II $\lambda 1260$ at $3279 \AA$, C II $\lambda 1334$ at $3471 \AA$, and the Si IV doublet at $3625 \AA$ and $3648 \AA$. In addition, we find that the position of the C IV $\lambda 1548$ for $z_{a b s}=1.5980$ corresponds to a significant line in our spectrum while the $\lambda 1550$ component at this redshift appears to be strongly blended with C IV $\lambda 1548$ at $z_{a b s}=1.6007$.
$z_{a b s}=1.8359-$ This system is identified by (212) SBS88 by the C IV doublet and confirmed by (241) SS92 who find the Mg II doublet at $z_{a b s}=1.8355$. We detect Ly α at $3447 \AA$, a possible Fe II $\lambda 1145$ line at $3246 \AA$, possible Si II $\lambda 1193$ and $\lambda 1260$ lines at $3384 \AA$ and $3575 \AA$, and C II $\lambda 1334$ at $3785 \AA$.
$z_{a b s}=1.8401$ - This system is identified by (212) SBS88 on the basis of a C IV doublet. (241) SS92 do not detect Mg II. We do detect a strong Ly α line consistent with this redshift at $3453 \AA$.
$z_{a b s}=1.9406-(212)$ SBS88 identify this system on the basis of the C IV doublet. (241) SS92 do not observe the spectral region encompassing Mg II at this redshift; but we detect Ly α at $3575 \AA$ and a N V doublet at $3643 \AA$ and $3654 \AA$. This system, having a redshift larger than the QSO emission redshift, is probably associated with the QSO.

The absorption features at $3969 \AA, 3974 \AA, 3979 \AA$, and $3983 \AA$ are traps in the CCD.

We detect a possible C IV doublet redward of Ly α emission but blueward of the spectral range of (241) SS92 at a redshift of 1.35285 . The components are detected at $3643 \AA$ and $3648 \AA$ along with Fe II $\lambda 1608$ at $3785 \AA$. The $\lambda 1548$ component of the doublet coincides with $\mathrm{N} V \lambda 1238$ at $z_{a b s}=1.9404$; and the $\lambda 1550$ component coincides with the Si II $\lambda 1402$ for the well-established system at $z_{a b s}=1.6010$ described
above. No other lines are found. Also, we find another possible C IV doublet in the Ly α forest at $z_{a b s}=1.2480$; but no other lines are detected at this redshift either.

Lastly, (144) Lanzetta, Wolfe, \& Turnshek (1995) report a damped Lyman alpha system at $z_{a b s}=0.5193$ in the IUE spectrum of (142) Lanzetta, Turnshek, \& Sandoval (1993). Again, the only lines in our spectral range for this redshift are Fe II $\lambda 2344$ $\lambda 2600$. We detect only the strongest of these lines, Fe II $\lambda 2382$ at $3621 \AA$.

C. 24 Q 1337+285 $z_{e m}=2.541$

Our literature search yielded no previously published optical spectrum of this QSO. From our spectrum, we detect two possible heavy metal absorption systems:
$z_{a b s}=2.5081$ - This relatively secure system consists of Ly α at $4265 \AA, \operatorname{Ly} \beta$ at $3598 \AA$, possible O VI $\lambda 1031$ and $\lambda 1037$ lines at $3619 \AA$ and $3640 \AA$, C II $\lambda 1036$ at $3636 \AA$, N II $\lambda 1083$ at $3803 \AA$, a possible Fe II $\lambda 1145$ line at $4017 \AA$, and Si II $\lambda 1190$ and $\lambda 1193$ at $4176 \AA$ and $4186 \AA$.
$z_{a b s}=2.5228$ - For this system, we detect Ly α at $4283 \AA, \operatorname{Ly} \beta$ at $3614 \AA$, O VI $\lambda 1031$ at $3636 \AA$, possible N I $\lambda 1135$ and $\lambda 1200$ lines at $3998 \AA$ and $4226 \AA$, Fe II $\lambda 1143$ and $\lambda 1145$ at $4027 \AA$ and $4033 \AA$, and Si III $\lambda 1206$ at $4249 \AA$.

The absorption features at $4339 \AA, 4344 \AA, 4347 \AA$, and $4352 \AA$ are traps in the CCD.

$$
\text { C. } 25 \text { Q 1346-036 } \quad z_{e m}=2.362
$$

The spectrum of this QSO blueward of Ly α emission has been studied by (294) YSB82 (cf. Section C.8). We confirm all the absorption features seen by these authors with the exception of the line they detect at $3844 \AA$ which falls on a bad region in our spectrum. They find no metal line absorbers from their data, but suggest a possible Mg II doublet at $z_{a b s}=0.4453$. We detect this tentative doublet at 4043 A and $4054 \AA\left(z_{a b s}=0.4458\right)$ but find no Fe II absorption at this redshift. We detect the
$4051 \AA$ line reported by (294) YSB82, but identify Mg II $\lambda 2803$ with the absorption feature at $4054 \AA$ for better redshift agreement.
(140) LTW87 (cf. Section C.8) report no absorption features in their red ($6250 \AA$ $-8350 \AA$) spectrum of this object. And (284) W86 (cf. Section C.3) find no damped Lyman alpha candidates in their $3200 \AA-5200 \AA$ spectrum.

The only additional identifications we make for this object are are two Ly α-Ly β pairs at $3965 \AA$ and $3345 \AA\left(z_{a b s}=2.2616\right)$ and at $4028 \AA$ and $3450 \AA\left(z_{a b s}=2.3630\right)$. For the $z_{a b s}=2.2616$ pair, the Ly β line is stronger than Ly α and must be a blend; also, our red spectrum (see Paper II) shows the C IV doublet for this system at $5050 \AA$ and $5058 \AA$. The $z_{a b s}=2.3630$ redshift is larger than the QSO emission redshift indicating that it must be associated with the QSO, although not an associated absorber per se, as it shows no metal lines Our red spectrum does not show the C IV doublet at this redshift.

C. 26 Q 1358+115 $\quad z_{e m}=2.589$

(284) W86 (cf. Section C.3) find several 4σ absorption features in their $10 \AA$ resolution spectrum of this object. We confirm these lines with the exception of the features they report at $3573 \AA, 3874 \AA$, and $4092 \AA$. We also confirm the feature they report at $4074 \AA$ having less than 4σ significance.

We find six possible metal line systems from our data:
$z_{a b s}=0.5084-$ This system is a Mg II absorber for which the doublet is detected at $4218 \AA$ and $4228 \AA$. The $\lambda 2803$ component of the doublet is blended with Ly α at $z_{a b s}=2.4778$. We also detect Fe II $\lambda 2382$ and $\lambda 2600$ at $3593 \AA$ and $3922 \AA$ and Mg I $\lambda 2853$ at 4303 A .
$z_{a b s}=2.4158$ - This system is composed of a strong Ly α line at $4152 \AA$, possible Si II $\lambda 1190$ and $\lambda 1193$ lines at $4065 \AA$ and $4075 \AA$, a N I possible $\lambda 1200$ line at $4098 \AA$, and Si III $\lambda 1206$ at $4121 \AA$. The expected position of N I $\lambda 1135$ for this redshift falls
on a bad column in the data.
$z_{a b s}=2.5559$ - For this system, we find Ly α at $4323 \AA, \operatorname{Ly} \beta$ at $3647 \AA$, Si II $\lambda 1190$ and $\lambda 1193$ at $4234 \AA$ and $4243 \AA$, N I $\lambda 1200$ at $4266 \AA$, and Si III $\lambda 1206$ at $4290 \AA$.
$z_{a b s}=2.5630$ - This system is composed of Ly α at $4331 \AA, \operatorname{Ly} \beta$ at $3655 \AA$ and Si II $\lambda 1190$ and $\lambda 1193$ at $4241 \AA$ and $4251 \AA$. The Si II $\lambda 1193$ line is blended with Ly α at $z_{a b s}=2.4968$.
$z_{a b s}=2.5763-$ At this redshift, we find an associated absorber showing Ly α at $4348 \AA, \mathrm{Ly} \beta$ blended with the feature at $3672 \AA\left(\mathrm{Ly} \beta\right.$ at $\left.z_{a b s}=2.5799\right)$, O VI $\lambda 1031$ and $\lambda 1037$ at $3689 \AA$ and $3709 \AA$.
$z_{a b s}=2.5799-$ This system is another associated absorber for which we identify $\operatorname{Ly} \alpha$ at $4353 \AA, \operatorname{Ly} \beta$ at $3672 \AA$, and O VI $\lambda 1031$ and $\lambda 1037$ at $3694 \AA$ and $3714 \AA$.

C. 27 Q 1406+492 $z_{e m}=2.161$

Literature searches yielded no previously published absorption spectrum of this QSO. From our data, we find two possible heavy element absorption systems:
$z_{a b s}=1.4330-$ This redshift is based upon the C IV doublet at $3767 \AA$ and $3773 \AA$. We also detect the Si IV doublet at $3391 \AA$ and $3411 \AA$. However, the Si IV $\lambda 1402$ line must be a blend (possibly with Si IV $\lambda 1393$ at $z_{a b s}=1.4474$) due to its equivalent width relative to the $\lambda 1393$ component and its poor redshift agreement with it.
$z_{a b s}=1.4470-$ This system is another C IV absorber for which the C IV doublet is found at $3788 \AA$ and $3795 \AA$. We also find C II $\lambda 1334$ at $3266 \AA$, the Si IV doublet for which the $\lambda 1393$ component lies at $3411 \AA$ and the $\lambda 1402$ component is blended with the feature at $3435 \AA$, Si II $\lambda 1526$ at $3736 \AA$, and Fe II $\lambda 1608$ at $3936 \AA$.

A C IV doublet is found at at $z_{a b s}=1.5253$; and we find a $\operatorname{Ly} \alpha, \operatorname{Ly} \beta$ pair due to an absorber at $z_{a b s}=2.1540$. The absorption features present at $3962 \mathrm{~A}, 3967 \mathrm{~A}$, $3968 \AA, 3974 \AA, 3978 \AA$, and $3981 \AA$ are traps in the CCD.

C. 28 Q 1408+009 $z_{\text {em }}=2.260$

According to a literature search, this is the first published spectrum of this object. Five possible metal line systems are found:
$z_{a b s}=1.3158$ - This system is identified by a Si IV doublet at $3228 \AA$ and $3248 \AA$ as well as Si II $\lambda 1526$ absorption at $3535 \AA$ and a Fe II $\lambda 1608$ line at $3725 \AA$.
$z_{a b s}=1.5190$ - This system is a C IV absorber with $\lambda 1548$ identified at $3900 \AA$ and $\lambda 1550$ at $3906 \AA$. Also found are C II $\lambda 1334$ at $3363 \AA$ and Si II $\lambda 1526$ at $3843 \AA$.
$z_{a b s}=1.6929-$ This system consists of Ly α at $3274 \AA$, Si III $\lambda 1206$ at $3248 \AA, \mathrm{Si}$ II $\lambda 1260$ at $3394 \AA$, and O I $\lambda 1302$ at $3506 \AA$. Despite the fact that this Ly α line is relatively strong ($E W_{0}=1.153 \AA$) all of the other lines identified are stronger, creating the need to invoke the possibility of blending for all of them. For this reason, this system is considered uncertain.
$z_{a b s}=1.9956-$ At this redshift, we detect $\operatorname{Ly} \alpha$ at $3642 \AA$, N I $\lambda 1200$ at $3595 \AA, \mathrm{Si}$ II $\lambda 1260$ and $\lambda 1304$ at $3774 \AA$ and $3906 \AA$, and O I $\lambda 1302$ at $3900 \AA$.
$z_{a b s}=2.1991$ - For this system, we identify Ly α at $3889 \AA$, a blended $\operatorname{Ly} \beta$ line at $3282 \AA$, Si III $\lambda 1206$ at $3859 \AA$, and Si II $\lambda 1260$ at $4032 \AA$.

The absorption features at $4575 \AA, 4586 \AA, 4602 \AA$ are traps in the CCD.

C. 29 Q 1421+330 $\quad z_{e m}=1.905$

The rest-UV absorption spectrum of this object has been studied by many authors. (275) Weymann et al. (1979) find C IV in their $2.5 \AA$ resolution spectrum at $z_{a b s}=$ 1.462, but not the expected Si IV and C II absorption. This redshift is confirmed by (133) Koratkar et al. (1992) and by our data. We find Si IV at $3433 \AA$ and $3455 \AA$ and C IV at $3813 \AA$ and $3820 \AA$.
(268) Uomoto (1984) finds several tentative systems in his red spectrum of this QSO:
$z_{a b s}=0.2249-(268)$ Uomoto (1984) detects a Mg II doublet at this reshift. Our spectrum shows this identification to be unlikely given the implied velocity separation of the doublet lines ($\sim 310 \mathrm{~km} \mathrm{~s}^{-1}$) if they are associated with the features at $3428 \AA$ and $3433 \AA$ in our data.
$z_{\mathrm{abs}}=0.3236-(268)$ Uomoto (1984) finds a Mg II doublet at this redshift. Our spectrum does not show these lines, nor any others at this redshift.
$z_{a b s}=0.9030$ - (268) Uomoto (1984) finds several Fe II lines at this redshift, $\lambda 2344, \lambda 2374, \lambda 2382, \lambda 2586$, and $\lambda 2600$. Also, Mn II $\lambda 2594 \AA$ and a Mg II doublet are detected. This Mg II doublet is confirmed by (241) SS92 (cf. Section C.2.) Our spectrum shows Al III $\lambda 1854$ and $\lambda 1862$ absorption at $3530 \AA$ and $3544 \AA$.
$z_{a b s}=1.1732$ - (268) Uomoto (1984) finds a Mg II doublet at this redshift which is confirmed by (241) SS92. We find Si II $\lambda 1526$ at $3318 \AA$; but no C IV or Al III.
$z_{a b s}=1.2252$ - (268) Uomoto (1984) finds a C IV doublet at this redshift. We detect absorption at the position of the $\lambda 1548$ component, but none at the position of $\lambda 1550$.
(85) Foltz et al. (1986) find four additional systems in their $1 \AA$ resolution spectrum covering $3820 \AA$ to $4035 \AA$:
$z_{a b s}=0.4565-\mathrm{A} \mathrm{Mg}$ II doublet is detected at this redshift. These lines should fall at the very red edge of our spectrum. While there are some possible features present, we are not able to confirm this system.
$z_{a b s}=1.5847-$ A C IV doublet is detected at this redshift. We detect O I $\lambda 1302$ at $3368 \AA$, C IV $\lambda 1548$ at $4001 \AA$, and an apparent absorption feature, but no significant line, at the position of C IV $\lambda 1550$.
$z_{a b s}=1.7177$ - (85) Foltz et al. (1986) find a C IV doublet and Al II $\lambda 1670$ at this redshift. We confirm this system with our detections of Ly α at $3304 A$, Si III $\lambda 1206$ at $3279 \AA$, and O I $\lambda 1302$ at $3539 \AA$.
$z_{a b s}=1.7590-(85)$ Foltz et al. (1986) detect a C IV doublet at this redshift. We detect a Ly α line consistent with this system at $3355 \AA$.
(45) Caulet (1989) detects C IV at four redshifts including $z_{a b s}=1.7171$ and $z_{a b s}=1.4621$ (see above). The other systems detected are $z_{a b s}=1.7010$ and $z_{a b s}=$ 1.7755 for which we detect no Ly α absorption.

Lastly, (144) Lanzetta et al. (1995) report a possible Lyman limit absorber in their IUE spectrum at $z_{L L S}=1.4798$. We find possible absorption features at the positions of OI $\lambda 1302$, Si II $\lambda 1304$, and Si II $\lambda 1526$ for this redshift. These features are not identified as 3σ lines by FINDSL, however. We do not detect C IV, Si IV, or C II.

The absorption features at $3967 \AA, 3972 \AA$, and $3980 \AA$ are traps in the CCD.

C. 30 Q $1422+231 \quad z_{e m}=3.623$

This object is a gravitationally lensed quasar (Bechtold \& Yee 1995, hereafter BY95.) Therefore, due to uncertainties in the amplification by the lensing, it will only be used for the analysis of the Ly α forest statistics and not in the proximity effect analysis in Paper II.

Bechtold \& Yee (1995) obtained a spectrum of this object from $4818 \AA$ to $5684 \AA$ with $1.8 \AA$ resolution using the Subarcsecond Imaging Spectrograph on the Canada-France-Hawaii Telescope. A red spectrum from $6246 \AA$ to $7179 \AA$ with $2.0 \AA$ resolution was also obtained in order to identify metal line systems using the Red Channel Spectrograph on the Multiple Mirror Telescope. The systems identified by these authors are as follows:
$z_{a b s}=3.091$ - This system is identified by a strong C IV doublet. We detect a marginally consistent doublet at $6323 \AA$ and $6331 \AA$ in our red spectrum (see Paper II). BY95 also find $\mathrm{Ly} \alpha, \mathrm{Si}$ II $\lambda 1193$, N I $\lambda 1200, \mathrm{Si}$ II $\lambda 1260$, and O I $\lambda 1302$. We confirm the Ly α feature at $4973 \hat{A}$ and find features at $4882 \hat{A}, 4907 A .5157 \AA$, and $5328 \AA$, in marginal agreement with the other lines found by these authors. No Si II $\lambda 1190$ is detected by us or BY95. The O I $\lambda 1302$ line, if present, is blended with Ly α
at $z_{a b s}=3.3830$.
$z_{a b s}=3.382-$ This system is also based upon a strong C IV doublet seen in the red spectrum of BY95. These authors also identify Ly α and Si II $\lambda 1260$ blended with a double-component Ly α line at $5519 \AA$. We confirm their C IV doublet from our red spectrum; and in our Ly α forest spectrum, we detect a strong Ly α line consistent with this redshift at $5328 \AA$, but do not confirm a Si II $\lambda 1260$ line corresponding to the one found by BY95.
$z_{a b s}=3.515-$ This system is based upon a weak C IV doublet for which BY95 also identify Ly α, Si II $\lambda 1190$ and $\lambda 1193$, and Si III $\lambda 1206$. We confirm the Ly α line at $5489 \AA$; we find N I $\lambda 1200$ at $5418 \AA$; but we do not find features corresponding to the Si II and Si III lines above. We do detect weak features at the correct position of C IV for this system in our red spectrum.
$z_{a b s}=3.536,3.538$ - These systems are identified by strong C IV doublets by BY95. We confirm these in our red spectrum, but the two components are not resolved. These authors also identify Ly α and Si III $\lambda 1206$ for both components. We confirm these features, Ly α at $5513 \AA$ and $5517 \AA$, and Si III at $5471 \AA$ and $5475 \AA$; and we make an additional identification of N I $\lambda 1200$ at $5445 \AA$. Songaila \& Cowie (1996) identify a strong redshift system at $z_{a b s}=3.5353$ in their high resolution ($\sim 0.15 \AA$) spectrum taken with HIRES on the Keck Telescope. They are able to derive column densities for several species, including C II, C IV, S II, Si III, Si IV, and N V (upper limit).
$z_{a b s}=3.587-$ BY95 find a weak C IV doublet at this redshift, and we confirm this detection in our red spectrum. They also identify Ly α and Si II $\lambda 1193$. We confirm these features at $5577 \AA$ and $5475 \AA$ and make the additional identifications of N II $\lambda 1083$ at 4973 (blended with Ly α at $z_{a b s}=3.0906$), Si III $\lambda 1206$ at 5534 A and N I $\lambda 1200$ at $5504 \AA$. Songaila \& Cowie (1996) find a strong system at $z_{a b s}=3.5862$ and derive column densities for C II, C III (upper limit), C IV, Si II (upper limit), Si III (upper limit), Si IV, and N V (upper limit).
$z_{a b s}=3.624-$ BY95 find another weak C IV doublet at this redshift, along with Ly α, Si II $\lambda 1190$ and $\lambda 1193$, and Si III $\lambda 1206$. We detect the weak C IV absorption in our red spectrum. In our Ly α forest spectrum, we confirm Ly α at $5621 \AA$ and the Si II lines at $5504 \AA$ and $5578 \AA$; but we find no Si III line.

Songaila and Cowie identify a third strong redshift system from their data at $z_{a b s}=3.4464$ for which they derive column densities for $\mathrm{CIV}, \mathrm{Si}$ III, and Si IV and upper limits on the column densities for C II, C III, and Si II. We detect a strong C IV doublet in our red spectrum; but in the Ly α forest, we identify only a strong Ly α line at $5407 \AA$ corresponding to this system. These authors also identify a partial Lyman limit system at $z_{a b s}=3.3809$ showing C IV, Si IV. and C II. Our spectrum shows Ly α at $5324 \AA$ and a possible Si II $\lambda 1260$ line at $5522 \AA$.

Lastly, we make two more metal line system identifications based upon strong Ly α absorption in our spectrum:
$z_{a b s}=3.3460-$ This system is composed of Ly α at $5283 \AA$, possible Si II $\lambda 1190$ and $\lambda 1193$ lines at $5174 \AA$ and $5187 \AA$, Si III $\lambda 1206$ at $5244 \AA$, and Si II $\lambda 1260$ at $5477 \AA$.
$z_{a b s}=3.4945-$ At this redshift, we identify Ly α at $5464 \AA$, Fe II $\lambda 1143$ and $\lambda 1145$ at $5137 \AA$ and $5146 \AA$, possible Si II $\lambda 1190$ and $\lambda 1193$ lines at $5348 \AA$ and $5363 \AA$, and N I $\lambda 1200$ at $5392 \AA$.

C. 31 Q 1435+638 $z_{e m}=2.066$

The absorption line spectrum of this QSO has been studied by several authors. (212) SBS88 (cf. Section C.6) report four C IV systems:
$z_{a b s}=1.4590$ - (212) SBS88 find a weak, possible C IV doublet at this redshift. We confirm this identification, but note that these lines are more likely O I $\lambda 1302$ and Si II $\lambda 1304$ at $z_{a b s}=1.9233$. We find no other lines at this redshift.
$z_{a b s}=1.4792-$ (212) SBS88 find a second weak, possible C IV doublet at this
redshift. Our spectrum shows only the $\lambda 1548$ component at $3837 \AA$. There is a weak absorption feature at the position of the $\lambda 1550$ component, but no significant line is identified. No other lines are found at this redshift.
$z_{a b s}=1.5925-$ (212) SBS88 find a probable C IV doublet at this redshift. We identify O I $\lambda 1302$ at $3376 \AA$ and find a possible, weak absorption feature (but no 3σ line) at the position of C II $\lambda 1334$.
$z_{a b s}=1.9235-(212)$ SBS88 regard this C IV doublet as certain. They also find C II $\lambda 1334$ and a possible Si IV $\lambda 1393$ line. We detect a strong Ly α line for this redshift at $3554 \AA$, Si II $\lambda 1260$ at $3685 \AA$, O I $\lambda 1302$ at $3808 \AA$, Si II $\lambda 1304$ at $3813 \AA$, C II $\lambda 1334$ at $3901 \AA$. In addition, (241) SS92 find a strong Mg II doublet at this redshift.
(144) Lanzetta et al. (1995) report no damped Lyman alpha candidates in their ultraviolet spectrum. The absorption features at $3824 \AA$ and $3829 \AA$ are traps in the CCD.

C. 32 Q 1604+290 $\quad z_{e m}=1.962$

A literature search yielded no previously published absorption line spectrum of this QSO. Our spectrum shows no significant absorption lines. However, the signal-tonoise of the data blueward of Lyman alpha is poor (≤ 2 over the range $3200-3500 \AA$) and the spectrum is truncated blueward of $3493 \AA$. The apparent absorption features redward of Ly α emission are identified as traps in the CCD.

C. 33 Q 1715+535 $z_{e m}=1.932$

The Lyman alpha forest spectrum of this QSO has been studied by several authors. (212) SBS88 (cf. Section C.6) find three systems from their 3750-4930 \AA i spectrum:
$z_{a b s}=0.3673-(212)$ SBS88 identify a Mg II doublet at this redshift. The $\lambda 2796$ component falls on a series of traps in the CCD at $3824 \hat{\AA}$ in our spectrum; and we do not detect the $\lambda 2803$ component. Mg I $\lambda 2853$ coincides with a feature at $3902 \AA$;
but we find no Fe II lines to corroborate this Mg II system, which is therefore still regarded as uncertain. (185) Nelson \& Malkan (1992) find no candidates for this system in their photometric search for [O II] emission from Mg II absorption systems. They do note a galaxy at a redshift of 0.449 , but we detect no Fe II at this redshift. $z_{a b s}=1.6330-(212)$ SBS88 detect a C IV doublet and Si II $\lambda 1526$ at this redshift. Our spectrum shows C II $\lambda 1334$ at $3512 \AA$, and a Si IV doublet at $3669 \AA$ an $3692 \AA$. The IUE spectrum of (142) Lanzetta et al. (1993) appears to show an absorption feature at $\sim 3200 \AA$, which would coincide with Ly α.
$z_{a b s}=1.7587-(212)$ SBS88 report a C IV doublet at this redshift as well. We confirm this system with our detections of Ly α at $3354 \AA$ and a possible Si II $\lambda 1260$ line at $3476 \AA$. We find possible weak absorption features at the positions of the Si IV doublet.
(212) SBS88 also report a possible Galactic Ca II $\lambda 3935$ line. We confirm the detection of this line at $3934 \AA$. (241) SS92 (cf. Section C.2) detect no lines in their $5950-8040 \AA$ and $5130-8950 \AA$ spectra of this object.

In addition to the absorption line systems discussed above, we find four other systems from our spectrum:
$z_{a b s}=1.3412-A t$ this redshift, we detect a C IV doublet at $3635 \AA$ and $3631 \AA$ and Al II $\lambda 1670$ at $3911 \AA$. We note the presence of a weak absorption feature (but no 3σ line) at the expected position of Si II $\lambda 1526$. Although we find only three lines for this system, the IUE spectrum of (142) Lanzetta et al. (1993) appears to show a feature at $\sim 2850 \AA$ which could be identified with Ly α at this redshift.
$z_{a b s}=1.4711$ - This system consists of a possible C IV $\lambda 1548$ line at $3826 \AA$ (no $\lambda 1550$ absorption is detected), Si II $\lambda 1526$ at $3772 \AA$, and C II $\lambda 1334$ at $3297 \AA$. We find weak features, but no significant lines at the positions of O I $\lambda 1302$ and Si II $\lambda 1304$. Only three line detections for this system are regarded as acceptable as well given a possible absorption line in the IUE spectrum of (142) Lanzetta et al. (1993) at $\sim 3005 \AA$ which can be regarded as Ly α at this redshift.
$z_{a b s}=1.8746-$ For this system, we find Ly α at $3494 \AA$, possible Si II $\lambda 1193$ and $\lambda 1260$ lines at $3431 \AA$ and $3625 \AA$, N I $\lambda 1200$ at $3449 \AA$, and possible Si III $\lambda 1206$ absorption at $3467 \AA$. (241) SS92 find no Mg II $\lambda 2796$ at this redshift.
$z_{a b s}=1.8963-$ At this redshift, we detect Ly α at $3521 \AA$, N I $\lambda 1200$ at $3476 \AA$, a blended Si III $\lambda 1206$ line at $3494 \AA$, and O I $\lambda 1302$ at $3772 \AA$.

The apparent absorption features at $3818 \AA, 3821 \AA, 3824 \AA$, and $3826 \AA$ are identified as traps in the CCD.

C. 34 Q 2134+004 $z_{e m}=1.941$

We find no previously published spectrum for this object. Our data show 19 absorption lines. Line \#17 is tentatively identified at Mg II $\lambda 2796$ at $z_{a b s}=0.3654$. The $\lambda 2803$ component of the doublet as well as Mg I 2853 coincide with absorption features which are not identified as 3σ lines by FINDSL. No Fe II lines are found at this redshift.

C. 35 Q 2251+244 $z_{e m}=2.359$

(42) Carswell et al. (1976) report one metal line system in their spectrum (3250$5200 \AA$) of this object. This system is an associated absorber at $z_{\text {abs }}=2.3638$; and these authors identify Ly $\alpha, \operatorname{Ly} \beta$, C III $\lambda 977$, O VI $\lambda 1031$, N I $\lambda 1200$, N V $\lambda 1238, \mathrm{Si}$ IV $\lambda 1393$, and C IV $\lambda 1548$. This system is confirmed by (15) Barthel et al. (1990) from their $5.0 \AA$ resolution spectrum over the range $3870-7730 \AA$ who detect $\mathrm{Ly} \alpha, \mathrm{N}$ V $\lambda 1238$, Si IV $\lambda 1393$, and C IV $\lambda 1548$ as well. The N V, Si IV, and C IV doublets are also confirmed by (4) Aldcroft et al. (1995). We confirm this system as well with our identifications of $\mathrm{Ly} \alpha$ at $4088 \mathcal{A}, \mathrm{Ly} \beta$ at $3450 \mathcal{A}$ and O VI $\lambda 1031$ and a blended $\lambda 1037$ line at $3470 \AA$ and $3490 \AA$ respectively. In addition, our red spectrum of this object (see Paper II) shows the N V doublet at $4167 \hat{A}$ and $4181 \hat{A}$, the Si IV doublet at $4688 \AA$ and $4718 \AA$, and the C IV doublet at $5205 \AA$ and $5214 \AA$. The region of
the spectrum blueward of $\sim 3290 \AA$ has been removed from our analysis due to low signal-to-noise ($\leqslant 2$.)
(15) Barthel et al. (1990) report four other systems:
$z_{a b s}=1.7495-$ At this redshift, the authors detect a C IV doublet. We detect only a possible N V $\lambda 1242$ line at $3416 \AA$. Since no lines are detected at shorter wavelengths in our spectrum, no $\lambda 1238$ component is identified. (4) Aldcroft et al. (1995) confirm this system. Our red spectrum does show a possible C IV doublet associated with this system at $4257 \AA$ and $4264 \AA$.
$z_{a b s}=1.0901$ - For this system, the authors identify Fe II $\lambda 2382$, a Mg II doublet and Mg I $\lambda 2852$. Our spectrum shows only a possible Al II $\lambda 1670$ line at $3490 \AA$. The only other lines that fall within the range of our line list are Al III $\lambda 1854$ and $\lambda 1862$, but these are not found. (4) Aldcroft et al. (1995) confirm this system. Our red spectrum confirms the Mg II doublet identification made by (15) Barthel et al. (1990) ($5842 \AA$ and $5857 \AA$) but not the Fe II or the Mg I identifications.
$z_{a b s}=2.1554-$ The authors find C II $\lambda 1334$ and a C IV doublet at this redshift. (4) Aldcroft et al. (1995) confirm this and also detect Si IV $\lambda 1393$. In our spectrum, we identify Ly α for this system at $3835 \AA$, Si II $\lambda 1193$ at $3765 \AA$ (the position of $\lambda 1190$ falls on a bad column in the data), N I $\lambda 1200$ at $3786 \AA$, a possible Si III $\lambda 1206$ line at $3807 \AA$, and Si II $\lambda 1260$ at $3976 \AA$. In addition, our red spectrum shows C II $\lambda 1334$ at $4122 \AA$, Si II $\lambda 1526$ at $4816 \AA$, the C IV doublet at $4885 \AA$ and $4893 \AA, \mathrm{Al}$ II $\lambda 1670$ at $5272 \AA$, and a possible Al III $\lambda 1854$ line at $5272 \AA$. (No Al III $\lambda 1862$ line is found.)
$z_{a b s}=2.3524-$ (15) Barthel et al. (1990) identify C IV and N V doublets at this redshift which are confirmed by (4) Aldcroft et al. (1995). In our spectrum, we identify Ly α at $4074 \AA, \operatorname{Ly} \beta$ at $3438 \AA$, O VI $\lambda 1031$ and $\lambda 1037$ at $3459 \AA$ and $3478 \AA$, and a possible Fe II $\lambda 1145$ line at $3838 \AA$. We also confirm the $N V$ and C IV doublet found by (15) Barthel et al. (1990) from our red spectrum, though the N V doublet we identify has a doublet ratio less than one. In addition, our red spectrum shows O

I $\lambda 1302$ at $4367 \AA$ and C II $\lambda 1334$ at $4475 \AA$.
We also identify a number of other systems from our data:
$z_{a b s}=1.8993$ - This system is composed of $\mathrm{Ly} \alpha$ at $3525 \AA$, possible Si II $\lambda 1190$ and $\lambda 1193$ absorption at $3450 \AA$ and $3459 \AA$, N I $\lambda 1200$ at $3478 \AA$, O I $\lambda 1302$ at $3775 \AA$, and Si II $\lambda 12603653 \AA$. In addition, our red spectrum shows Si II $\lambda 1526$ at $4427 \AA$.
$z_{a b s}=2.0336-$ At this redshift, we identify Ly α at $3688 \AA$, possible, blended Si II $\lambda 1193$ and $\lambda 1260$ lines at $3620 \AA$ and $3824 \AA$, Si III $\lambda 1206$ at $3660 \AA$, and O I $\lambda 1302$ at $3949 \AA$. Our red spectrum shows Si II $\lambda 1526$ at $4631 \AA$, a possible, blended Fe II $\lambda 1608$ line at $4879 \AA$, and Al II $\lambda 1670$ at $5068 \AA$.
$z_{a b s}=2.0570$ - For this system, we find Ly α at $3716 \AA, \mathrm{~N}$ I $\lambda 1135$ (blended) and $\lambda 1200$ at $3470 \AA$ and $3668 \AA$, a blended Si III $\lambda 1206$ line at $3688 \AA$, and the $\mathrm{N} V$ doublet at $3786 \AA$ and $3799 \AA$. Also, our red spectrum shows the Si IV doublet at $4262 \AA$ and $4289 \AA$ as well as Fe II $\lambda 1608$ at $4915 \AA$.
$z_{a b s}=2.1052$ - This system consists of Ly α at $3775 \AA$, Si III $\lambda 1206$ at $3746 \AA$, and Si II $\lambda 1260$ and $\lambda 1304$ at $3913 \AA$ and $4050 \AA$. Our red spectrum shows a possible, blended Al II $\lambda 1670$ line at $5188 \AA$.
$z_{a b s}=2.3158$ - This system is composed of Ly α at $4031 \AA$, a possible O VI $\lambda 1037$ line at $3440 \AA$ ($\lambda 1031$ is outside the range of the line list), N I $\lambda 1200$ at $3979 \AA$, and Si III $\lambda 1206$ at $4001 \AA$. Our red spectrum extends slightly blueward of the higher resolution $\mathrm{Ly} \alpha$ forest spectrum and shows some evidence for $\mathrm{Ly} \beta$ at $3401 \AA$ and O VI $\lambda 1031$ at $3422 \AA$, as well as Si II $\lambda 1260, \lambda 1304$, and $\lambda 1526$ at $4181 \AA, 4327 \AA$, and $5065 \AA$, O I $\lambda 1302$ at $4319 \AA$, and C II $\lambda 1334$ at $4427 \AA$.

C. 36 Q 2254+024 $z_{\text {em }}=2.090$

The radio properties and the UV emission lines of this object have been widely studied. (241) SS92 (cf. Section C.2) find no absorption lines in their red spectra (5128$8947 \AA$). Due to the poor signal-to-noise (≤ 2) of the blue region of our spectrum, only
the portion redward of $3450 \AA$ was used for our line list. We find 25 absorption lines but no metal line systems according to our criteria. Only two possible identifications are made: a C IV doublet at $z_{a b s}=1.4751$ for which the $\lambda 1550$ component must actually blended with the feature at $3837 \AA$; and a Si IV doublet at $z_{a b s}=1.7323$ for which the corresponding Ly α line falls in the low signal-to-noise region of the data and is not seen. However, our red spectrum (see Paper II) does lend some confirmation to the possible $z_{a b s}=1.7323$ system as it shows this Si IV doublet as well as Si II $\lambda 1526$ at $4171 \AA$, a C IV doublet at $4233 \AA$ and $4238 \AA$, and Al II $\lambda 1670$ at $4564 \AA$. No lines redward of Ly α are confirmed for the $z_{a b s}=1.4751$ system.

C. 37 Q 2310+385 $z_{e m}=2.181$

No previously published spectrum of this QSO was found. Due to poor signal-to-noise blueward of $3571 \AA$, only the portion of the spectrum redward of this wavelength was used for the purposes of our line list. Fifteen significant absorption lines were found, but none of these could be identified with any heavy element absorption systems. Three identifications of doublets redward of Ly α emission could be made: C IV doublets at $z_{a b s}=1.4998$ and $z_{a b s}=1.5036 ;$ and a Mg II doublet at $z_{a b s}=0.3840$.

C. 38 Q 2320 $+079 \quad z_{e m}=2.088$

We found no previously published spectrum of this object. We find a double component damped Ly α complex in our spectrum at $3712 \AA$ and $3715 \AA$. Each of these components shows Si II $\lambda 1193$ ($3645 \AA$) and Si III $\lambda 1206$ ($3685 \AA$ and $3687 \AA$.) Si II $\lambda 1190$ is present, but not identified as a 3σ line by FINDSL. The feature at $3553 \AA$ is most likely a cosmic ray.

C. 39 Q 2329-020 $z_{e m}=1.896$

No previously published spectra of this QSO were found. We find 17 significant absorption lines in our spectrum. We make a number of identifications of doublets redward of Ly α emission. Two C IV doublets are seen at $z_{a b s}=1.2902$ and $z_{a b s}=$ 1.2922 , a separation of $\sim 260 \mathrm{~km} \mathrm{~s}^{-1}$. The second doublet also appears to have weak features of Si II $\lambda 1526$ and Al II $\lambda 1670$ associated with it. A strong C IV doublet is also detected at $z_{a b s}=1.3339$ along with weak features at the positions of Si II $\lambda 1526$ and Al II $\lambda 1670$. This QSO also shows associated Ly α absorption at $3509 \AA, 3513 \AA$, $3521 \AA$, and $3531 \AA$, but no metals lines are found at this redshifts.

C. 40 Data from the Literature

Spectra that met three basic criteria were gathered from the literature. In all cases, the errors were published, the resolution was equal to or better than $200 \mathrm{~km} \mathrm{~s}^{-1}$, and no broad absorption line features were present, which would indicate the presence of material intrinsic to the QSO (see Table 5 of B94). Table 2.2 is a list of the objects chosen to supplement the sample and the reference for each. Figure 2.3 shows histograms of the distribution of QSO redshifts and absorption line redshifts for the total sample.

The line list for the QSO $1603+383$ was provided by Dobrzycki, Engels, \& Hagen (1999) prior to publication. This object has a B magnitude of 15.9.

Appendix D
Figure 4.4 (Continued)

References

[1] Abel, T. \& Haehnlet, M. G. 1999, ApJ, 520, L13
[2] Afanasjev, V. L., Karachenstev, I. D., Lipovetsky, V. A., Lorentz, H., \& Stoll, D. 1979, Astron. Nachr., 300, 31
[3] Appenzeller, I., Krautter, J., Mandel, H., Bowyer, S., Dixon, W. V., Hurwitz, M., Barnstedt, J., Grewing, M., Kappelmann, N., \& Krmere, G. 1998, ApJ, 500, L9
[4] Aldcroft, T. L., Bechtold, J., \& Elvis, M. 1994, ApJS, 93, 1
[5] Babu, G. J. \& Feigelson, E. D. 1996, Astrostatistics, (London: Chapman \& Hall)
[6] Bahcall, J. N. \& Salpeter, E. E. 1965, ApJ, 142, 1677
[7] Bahcall, J. N., Jannuzi, B. T., Schneider, D. P., Hartig, G. F., Bohlin, R., Junkkarinen, V. 1991, ApJ, 377, L5
[8] Bahcall, J. N., Bergeron, J., Boksenberg, A., Hartig, G. F., Jannuzi, B. T., Kirhakos, S., Sargent, W. L. W., Savage, B. D., Schneider, D. P., Turnshek, D. A., Weymann, R. J., \& Wolfe, A. M. 1993, ApJS, 87, 1
[9] —— 1996, ApJ, 457, 19
[10] Bajtlik, S., Duncan, R. C., \& Ostriker, J. P. 1988, ApJ, 327, 570 (BDO)
[11] Baker, A. C., Carswell, R. F., Bailey, J. A., Espey, B. R., Smith, M. G., \& Ward, M. J. 1994, MNRAS, 270, 579
[12] Baker, J. C., Hunstead, R. W., Athreya, R. M., Barthel, P. D., de Silva, E., Lehnert, M., \& Saunders, R. D. E. 2001, ApJ, 568, 592
[13] Baldwin, J. A., Wampler, E. J., \& Gaskell, C. M. 1989, ApJ, 338, 630
[14] Bardeen, J. M., Bond, J. R., Kaiser, N., \& Szalay, A. S. 1986, ApJ, 30415
[15] Barthel, P. D., Tytier, D. R., \& Thomson, B. 1990, A\&A, 82, 339
[16] Basu, D. 1994, Ap\&SS, 222, 91
[17] Beaver, E.A., Burbidge, E. M., Cohen, R. D., Junkkarinen, V. T., Lyons, R. W., Rosenblatt, E. I., Hartig, G. F., Margon, B., \& Davidsen A. F. 1991, ApJ, 377, L1 (B91)
[18] Bechtold, J., Weymann, R. J., Lin, Z., \& Malkan, M. A. 1987, ApJ, 315, 180
[19] Bechtold, J. 1994, ApJS, 91, 1 (B94)
[20] Bechtold, J. \& Yee, H. K. 1995, AJ, 110, 1984
[21] Bechtold, J., Dobrzycki, A., Wilden, B., Morita, M., Scott J., Dobrzycka, D., Tran, K. -V., \& Aldcroft, T. L. 2002, ApJ, in press (Paper III)
[22] Becker, Robert H., et al. 2001, AJ, 122, 2850
[23] Bi, H. 1993, ApJ, 405, 479
[24] Bi, H. \& Davidsen, A. 1997, ApJ, 479, 523
[25] Bianchi, S., Cristiani, S., \& Kim, T. -S. 2001, A\&A, 376, 1
[26] Bland-Hawthorn, J., Taylor, K., Veilleux, S., \& Shopbell, P. L. 1994, ApJ, 437, L95
[27] Bolton, J. G., Peterson, B. A., Wills, B. J., Wills, D. 1976, ApJ, 210, L1
[28] Boyle, B. J. 1991 in Proc. 1990 Texas/ESO-CERN Symp. on Relativistic Astrophysics,Cosmology, and Fundamental Physics, ed. J. D. Barrow, L. Mestel, \& P. A. Thomas (Ann. NY Acad. Sci., 647, 14)
[29] Boyle, B. J., Shanks, T., Croom, S. M., Smith, R. J., Miller, L., Loaring, B., \& Heymans, C. 2000, MNRAS, 317, 1014
[30] Boyle, B. J., Jones, L. R. \& Shanks, T. 1991, MNRAS, 251, 482
[31] Bremer, M. N. \& Johnstone, R. M. 1995, MNRAS, 277, 51
[32] Browne, I. W. A., Savage, A., \& Bolton, J. G. 1975, MNRAS, 173, 87P
[33] Bryan, G. L., Machacek, M., Anninos, P., \& Norman, M. L. 1999, ApJ, 517, 13
[34] Bunker, A. J., Marleau, F. R., \& Graham, J. R. 1998, AJ, 116, 2086
[35] Bunn, E. F. \& White, M. 1997, ApJ, 480, 6
[36] Burbidge, E. M. \& Kinman, T. D. 1966, ApJ, 145, 654
[37] Burbidge, E. M. 1970, ApJ, 160, 33
[38] Burles, S. \& Tytler, D. 1998a, ApJ, 499, 699
[39] Burles, S. \& Tytler, D. 1998b, ApJ, 507, 732
[40] Burstein, D. \& Heiles, C. 1982, AJ, 87, 1165
[41] Buson, L. M. \& Ulrich, M.-H. 1990, A\&A 240, 247
[42] Carswell, R. F., Coleman, G., Strittmatter, P. A., \& Williams, R. E. 1976, å, 53, 275
[43] Carswell, R. F., Whelan, J. A. J., Smith, M. G., Boksenberg, A., \& Tytler, D. 1982, MNRAS, 198, 91
[44] Carswell, R. F., Webb, J. K., Baldwin, J. A., \& Atwood, B. 1987, ApJ, 319, 709
[45] Caulet, A. 1989, ApJ, 340, 90
[46] Cen, R. 1992, ApJS, 78, 341
[47] Cen, R., Miralda-Escudé, J., Ostriker, J. P., \& Rauch, M. 1994, ApJ, 437, L9
[48] Chen, H.- W., Lanzetta, K. M., Webb, J. K., \& Barcons, X. 1998, ApJ, 498, 77
[49] Cheng, F. H., You, J. H., \& Yan, M. 1990, ApJ, 358, 18
[50] Cheng, F. H., Gaskell, C. M., \& Koratkar, A. P. 1991, ApJ, 370, 487
[51] Coles, P. \& Jones, B. 1991, MNRAS, 248, 1
[52] Cooke, A.J., Espey, B., \& Carswell, B. 1997, MNRAS, 284, 552
[53] Corbelli, E., Schneider, S. E, \& Salpeter, E. E. 1989, AJ, 97, 390
[54] Corbelli, E. \& Salpeter, E. E. 1993, ApJ419, 104
[55] Corbin, M. R. 1992, ApJ, 391, 577
[56] Corbin, M. R. \& Boroson, T. A. 1996. ApJ, 107, 69
[57] Corbin, M. R. 1997, ApJS, 113, 245
[58] Cowie, L. L., Songaila, A., Kim, T. -S., \& Hu, E. M. 1995, AJ, 109, 1522
[59] Cowie, L. L., \& Hu, E. M. 1998, AJ, 115, 1319
[60] Cristiani, S. \& Koehler, B. 1987, A\&AS, 68, 339
[61] Cristiani, S., D’Odorico, S., Fontana, A., Giallongo, E., \& Savaglio, S. 1995, MNRAS, 273, 1016
[62] Croft, R. A. C., Weinberg, D. H., Katz, N., \& Hernquist, L. 1997, ApJ, 488, 532
[63] Croft, R. A. C., Weinberg, D. H., Katz, N., \& Hernquist, L. 1998, ApJ, 495, 44
[64] Croft, R. A. C., Weinberg, D. H., Pettini, M., Hernquist, L., \& Katz, N. 1999, ApJ, 520, 1
[65] Davé, R., Hernquist, L., Katz, N., \& Weinberg, M. 1999, ApJ, 511, 521
[66] Davé, R. \& Tripp, T. M. 2001, ApJ, 553, 528
[67] Deharveng, J. -M., Faïsse, Milliard, B., \& Le Brun, V. 1997, A\&A, 325, 1259
[68] Devriendt, J. E. G., Sethi, S. K., Guideroni, B., \& Nath, B. B. 1998, MNRAS, 298, 708
[69] Djorgovski, S. G., Castro, S., Stern, D., \& Mahabal, A. A. 2001, ApJ, 560, 5L
[70] Dobrzycki, A. \& Bechtold, J. 1996, ApJ, 457, 102
[71] Dobrzycki, A., Engels, D., \& Hagen, H.-J. 1999, å, 349, L49
[72] Dobrzycki, A., Bechtold, J., Scott J., \& Morita, M. 2002, ApJ, in press (Paper IV)
[73] Donahue, M., Aldering, G., \& Stocke, J. T. 1995, ApJ, 450, L45
[74] Dove, J. B. \& Shull, J. M. 1994, ApJ, 423, 196
[75] Efron, B. 1982, The Jackknife, the Bootstrap, and Other Resampling Plans, (Philadelphia: Society for Industrial and Applied Mathematics)
[76] Eke, V. R., Cole, S., \& Frenk, C. S. 1996, MNRAS, 282, 263
[77] Ellingson, E., Yee, H. K. C., \& Green, R. F. 1991, ApJ, 371, 49
[78] Ellingson, E., Yee, H. K. C., Bechtold, J., \& Dobrzycki, A. 1994, AJ, 107, 1219
[79] Espey, B., Carswell, R. F., Bailey, J. A., Smith, M. G., \& Ward, M. J. 1989, ApJ, 342, 666
[80] Fabricant, D., Cheimets, P., Caldwell, N., \& Geary, J. 1998, PASP, 11079
[81] Falomo, R., Pesce, J. E., \& Treves, A. 1993, ApJ, 411, L63
[82] Fan, X., Narayanan, V. K., Strauss, M. A., White, R. L., Becker, R. H., Pentericci, L., Rix, H.-W. 2002, AJ, 123, 1247
[83] Fardal, M. A., Giroux, M. L. \& Shull, J. M. 1998, AJ, 115, 2206
[84] Fernández-Soto, A., Barcons, X., Carballo, R., \& Webb, J. K. 1995, MNRAS, 277, 235
[85] Foltz, C. B., Weymann, R. J., Peterson, B. M., Sun, L, Malkan, M. A., \& Chaffee, F. H. Jr. 1986, ApJ, 307, 504
[86] Foltz, C. B., Chaffee, F. H. Jr., Turnshek, D. A., Weymann, R. J., \& Anderson, S. F. 1987, AJ, 94, 1423
[87] Foltz, C. B., Chaffee, F. H. Jr., Hewitt, P. C., Weymann, R. J., Anderson, S. F., \& MacAlpine, G. M. 1989, AJ, 98, 1959.
[88] Forman, W. \& Jones, C. 1982, ARAA, 20, 547
[89] Francis, P. J. 1996, Pub. Ast. Soc. Aust., 13, 212
[90] Gallego, J. M., Zamorano, J., Aragón-Salamanca, A., \& Rego, M. 1995, ApJ, 455, L1
[91] Ganguly, R., Charlton, J., C., \& Eracleous, M. 2001, ApJ, 556, 7L
[92] Gaskell, C. M. 1982, ApJ, 263, 79
[93] Giallongo, E., Cristiani, S., Fontana, A., \& Trèvese, D. 1993, ApJ, 417, 137
[94] Giallongo, E., Cristiani, S., D'Odorico, S., Fontana, A., \& Savaglio, S. 1996, ApJ, 466, 46
[95] Giallongo, E., Cristiani, S., D’Odorico, S., \& Fontana, A. 2002, ApJ, 568, 9L
[96] Gnedin, N. 2002, MNRAS, submitted, (astro-ph/0110290)
[97] Green, R. F., Schmidt, M., \& Liebert, J. 1986, ApJS, 61, 305
[98] Green, P. J. 1996, ApJ, 467, 61
[99] Haardt, F. \& Madau, P. 1996, ApJ, 461, 20
[100] Haehnelt, M. G. \& Rees, M. J. 1993, MNRAS, 263, 168
[101] Haehnelt, M. G., Rauch, M., \& Steinmetz, M. 1996, MNRAS, 283, 1055
[102] Haehnelt, M. G., Madau, P., Kudritzki, R., \& Haardt, F. 2001, ApJ, 459, L151
[103] Hall, P., Ellingson, E., \& Green, R. F. 1997, AJ, 113, 1179
[104] Hamann, F., Zuo, L., \& Tytler, D. 1995, ApJ, 444, L69
[105] Hamann, F., Barlow, T. A., \& Junkkarinen, V. 1997, ApJ, 478, 87
[106] Hamann, F. W., Barlow, T. A., Chaffee, F. C., Foltz, C. B., \& Weymann, R. J. 2001, ApJ, 550, 142
[107] Heisler, J. \& Ostriker, J. 1988, ApJ, 332, 543
[108] Hernquist, L., Katz, N., Weinberg, D., \& Miralda- Escudé, J. 1996, ApJ, 457, L51
[109] Hewitt, A. \& Burbidge, G. 1987, ApJS, 63, 1
[110] Hewitt, A. \& Burbidge, G. 1993, ApJS, 87, 451
[111] Hook, I. M., M ${ }^{c}$ Mahon, R. G., Patnaik, A. R., Browne, I. W. A., Wilkinson, P. N., Irwin, M. J., \& Hazard, C. 1995, MNRAS, 273, L63
[112] Hook, I. M., Shaver, P. A., \& M ${ }^{c}$ Mahon, R. G. 1998, in The Young Universe, ed. S. D'Odorico, A. Fontana, \& E. Giallongo, (San Francisco: ASP), 17
[113] Hu, E. M., Kim, T. -S., Cowie, L. L., \& Songaila, A. 1995, AJ, 110, 1526
[114] Hu, E. M. \& M ${ }^{c}$ Mahon, R. G. 1996, Nature, 382, 231
[115] Hu, E. M., Cowie, L. L., \& M ${ }^{c}$ Mahon, R. G. 1998, ApJ, 502, L99
[116] Hu, E. M., M ${ }^{c}$ Mahon, R. G., \& Cowie, L. L. 1999, ApJ, 522, 9
[117] Hui, L. \& Gnedin, N. Y. 1997, MNRAS, 292, 27
[118] Hui, L., Gnedin, N. Y., \& Zhang, Y. 1997, ApJ, 486, 599
[119] Impey, C. D., Petry, C. E., \& Flint, K. P. 1999, ApJ, 524, 5361
[120] Irwin, M., M ${ }^{c}$ Mahon, R. G., \& Hazard, C. 1991, in Space Distribution of Quasars, ed. D. Crampton (San Francisco: ASP), 117
[121] Jannuzi, B. T., Bahcall, J. N., Bergeron, J., Boksenberg, A., Hartig, G., Kirhakos, S., Sargent, W. L. W., Savage, B. D., Schneider, D. P., Turnshek, D. A., Weymann, R. J., \& Wolfe, A. M. 1998, ApJS, 118, 1
[122] Jauncey, D. L., Wright, A. E., Peterson, B. A., \& Condon, J. J. 1978, ApJ, 219, L1
[123] Johnson, H. L. 1966, ARAA, 4, 193
[124] Junkkarinen, V., Hewitt, A., \& Burbidge, G. 1991, ApJS, 77,203
[125] Kennefick, J. D., Djorgovski, S. G., \& de Carvalho, R. R. 1995, AJ, 110, 2553
[126] Kim, T.- S., Hu, E. M., Cowie, L. L., Songaila, A. 1997, AJ, 114, 1
[127] Kim, T.- S., Cristiani, S., \& D'Odorico, S. 2001, A\&A, 373, 757
[128] Kinman, T. D. \& Burbidge, E. M. 1967, ApJ, 148, L59
[129] Kinney, A. L., Bohlin, R. C., Blades, J. C., \& York, D. G. 1991, ApJS, 75, 645
[130] Kirkman, D., Tytler, D., Burles, S., Lubin, D., \& O'Meara, J. M. 2000, ApJ, 529, 655
[131] Knezek, P. M. \& Bregman, J. N. 1998, ApJ, 115, 1737
[132] Koo, D. C. \& Kron, R. G. 1988, ApJ, 325, 92
[133] Koratkar, A. P., Kinney, A. L., \& Bohlin, R. C. 1992, ApJ, 400, 435
[134] Kriss, G. A., Shull, J. M., Oegerle, W., Zheng, W., Davidsen, A. F., Songaila, A., Tumlinson, J., Cowie, L. L., Deharveng, J.- M., Friedman, S. D., Giroux, M. L., Green, R. F., Hutchings, J. B., Jenkins, E. B., Kruk, J. W., Moos, H. W., Morton, D. C., Sembach, K. R., \& Tripp, T. M. 2001, Science, 293, 1112
[135] Kudritzki, R.-P., Méndez, R. H., Feldmeier, J. J., Ciardullo, R., Jacoby, G. H., Freeman, K. C., Arnaboldi, M., Capaccioli, M., Gerhard, O., Ford, H. C. 2000, ApJ, 536, 19
[136] Kuhn, O. 1996, PhD dissertation.
[137] Kulkarni, V. P. \& Fall, S. M. 1993, ApJ, 413, L63 (KF93)
[138] Kunth, D., Sargent, W. L. W., \& Kowal, C. 1981, å, 44, 229
[139] Kutyrev, A. S. \& Reynolds, R. J. 1989, ApJ, 344, L9
[140] Lanzetta, K. M., Turnshek, D. A., \& Wolfe, A. M. 1987, ApJ, 322, 739 (LTW87)
[141] Lanzetta, K. M. 1991, ApJ, 375, 1
[142] Lanzetta, K. M., Turnshek, D. A., \& Sandoval J. 1993, ApJS, 84, 109
[143] Lanzetta, K. M., Bowen, D. V., Tytler, D., Webb, J. K. 1995, ApJ, 442, 538
[144] Lanzetta, K. M., Wolfe, A. M., \& Turnshek, D. A. 1995, ApJ, 440, 435
[145] Lanzetta, K. M., Webb, J. K., \& Barcons, X. 1996, ApJ, 456, L17
[146] Laor, A., Bahcall, J. N., Jannuzi, B. T., Schneider, D. P., Green, R. F., \& Hartig, G. F. 1994, ApJ, 420, 110
[147] Laor, A., Bahcall, J. N., Jannuzi, B. T., Schneider, D. P., \& Green, R. F. 1995, ApJS, 99, 1
[148] Lawrence, C. R., Zucker, J. R., Readhead, A. C. S., Unwin, S. C., Pearson, T. J., Xu, W. 1996, ApJS, 107, 541
[149] Lilly, S. J., Tresse, L., Hammer, F., Crampton, D., \& Le Fèvre, O. 1995, ApJ, 455, 108
[150] Liske, J. \& Williger, G. M. 2001, MNRAS, 328, 653
[151] Lockman, F. J. \& Dickey, J. M. 1995, ADIL FL 01L (NCSA Astronomy Digital Image Library)
[152] Loeb, A. \& Eisenstein, D. J. 1995, ApJ, 448, 17L
[153] Lowenthal, J. D., Hogan, C. J., Leach, R. W. \& Schmidt, G. D. 1990, ApJ, 347, 3
[154] Lowenthal, J. D., Koo, D. C., Guzman, R., Gallego, J., Phillips, A. C., Faber, S. M., Vogt, N. P., Illingworth, G. D., \& Gronwall, C. 1997, ApJ, 481, 673
[155] Lesser, M. 1994, Proc. SPIE, 2198, 782
[156] Lu, L., Wolfe, A. M., \& Turnshek, D. A. 1991, ApJ, 367, 19 (LWT)
[157] Lu, L., Sargent, W. L. W., Womble, D. S., \& Takada-Hidai, M. 1996, ApJ, 472, 509
[158] Lynds, C. R., Hill, S. J., Heere, K., \& Stockton, A. 1966, ApJ, 144, 1244
[159] Lynds, R. \& Wills, D. 1968, ApJ, 153, L23
[160] Lynds, C. R. 1971, ApJ, 164, L73
[161] MacAlpine, G. M. \& Feldman, F. R. 1982, ApJ, 261, 412
[162] Madau, P. 1991, ApJ, 376, L33
[163] Madau, P. 1992, ApJ, 389, L1
[164] Madau, P., Ferguson, H. C., Dickinson, M. E., Giavalisco, M., Steidel, C. C., \& Fruchter, A. 1996, MNRAS, 283, 1388
[165] Madau, P. \& Shull, J. M. 1996, ApJ, 457, 551
[166] Madau, P., Haardt, F., \& Rees, M. J. 1998, ApJ, 514, 648
[167] Maloney, P. 1993, ApJ, 414, 41
[168] Marshall, H. L. 1985, ApJ, 299, 109
[169] Martínez-González, E, González-Serrano, J. I., Cayón, L., Sanz, J. L., \& MartínMirones, J. M. 1995, A\&A, 303, 379
[170] M${ }^{c}$ Donald, P., Miralda-Escudé, J., Rauch, M., Sargent, W. L. W., Barlow, T. A., Cen, R., Ostriker, J. 2002, ApJ, 543, 1
[171] M Dowell, J. C., Canizares, C., Elvis, M., Lawrence, A., Markoff, S., Mathur, S., \& Wilkes, B. 1995, ApJ, 450, 585
[172] McIntosh, D. H., Rieke, M., Rix, H. -W., Foltz. C. B., \& Weymann, R. J. 1999a, ApJ, 514, 40
[173] Mc Intosh, D. H., Rix, H. -W., Rieke, M., Foltz. C. B. 1999b, ApJ, 517L, 73
[174] Meiksin, A. \& Madau, P. 1993, ApJ, 412, 34
[175] Miralda-Escudé, J. \& Ostriker, J. P. 1990, ApJ, 350, 1
[176] Miralda-Escudé, J. \& Rees, M. J. 1994, MNRAS, 266, 343
[177] Miralda-Escudé, J., Cen, R., Ostriker, J. P., Rauch, M., 1996, ApJ, 471, 582
[178] Miralda-Escudé, J., Haehnelt, M., \& Rees, M. J. 2000, ApJ, 530, 1
[179] Morris, S. L. \& Ward, M. J. 1988 MNRAS, 230, 639
[180] Morris, S. L., Weymann, R. J., Savage, B. D., \& Gilliland, R. L. 1991, ApJ, 377, L21
[181] Morton, D. C., York, D. G., \& Jenkins, E. B. 1988, ApJS, 68, 4491997
[182] Mulchaey, J. S. 2000, ARAA, 38, 289
[183] Murdoch, H. S., Hunstead, R. W., Pettini, M., \& Blades, J. C. 1986, ApJ, 309, 19 (MHPB)
[184] Nandy, K., Thompson, G. I., Jamar, C., Monfils, A., \& Wilson, R. 1975, å, 44, 195
[185] Nelson, B. O. \& Malkan, M. A. 1992, ApJS, 82, 447
[186] Netzer, H., Kazanas, D., Wills, B. J., Wills, D., Mingsheng, H., Brotherton, M.
S., Baldwin, J. A., Ferland, G. J., \& Browne, I. W. A. 1994, ApJ, 430, 191
[187] Nishihara, E., Yamashita, T., Yoshida, M., Watanbe, E., Okumura, S.-I., Mori, A., \& Iye, M. 1997, ApJ, 488, L27
[188] Oemler, A., Jr. \& Lynds, C. R. 1975, ApJ, 199, 558
[189] Ortiz-Gil, A., Lanzetta, K. M., Webb, J. K., Barcons, X., \& Fernández-Soto, A. 1999, ApJ, 523, 720
[190] Osmer, P. S., Porter, A. C., \& Green, R. F. 1994, ApJ, 436, 678
[191] Papovich, C., Norman, C. A., Bowen, D. V., Heckman, T., Savaglio, S., Koekemoer, A. M., \& Blades, J. C. 2000, ApJ, 531, 654
[192] Pascarelle, S. M., Windhorst, R. A., \& Keel, W. C. 1998, AJ, 116, 2659
[193] Pascarelle, S. M., Lanzetta, K. M., Chen, H. -W., \& Webb, J. K. 2001, ApJ, 560, 101
[194] Peebles, P. J. E. 1993, Principles of Physical Cosmology, (Princeton: Princeton University Press)
[195] Pei, Y. C., Fall, S. M., \& Bechtold, J. 1991, ApJ, 378, 6
[196] Pei, Y. 1995, ApJ, 438, 623
[197] Penton, S. V., Stocke, J. T., \& Shull, J. M. 2000a, ApJS, 130, 121
[198] Penton, S. V., Shull, J. M., \& Stocke, J. T. 2000b, ApJ, 544, 140
[199] Penton, S. V., Stocke, J. T., \& Shull, J. M. 2002, ApJ, 565, 720
[200] Perez, E., Penston, M. V., \& Moles, M. 1989, MNR.AS, 239, 55
[201] Press, W. H., Teukolsky, S. A., Vetterling, W. T., \& Flannery, B. P. 1992, Numerical Recipes in Fortran 77, The Art of Scientific Computing, Second Edition, Cambridge: Cambridge University Press
[202] Press, W. H., Rybicki, G. B., \& Schneider, D. P. 1993, ApJ, 414, 64
[203] Rauch, M., Miralda-Escudé, J., Sargent, W. L. W., Barlow, T., Weinberg, D.
H., Hernquist, L., Katz, N., Cen, R., Ostriker, J. P. 1997,ApJ, 489, 7
[204] Reimers, D., Köhler, S., Wisotzki, L., Groote, D., Rodriguez-Pascual, P., \& Wamsteker, W. 1997, å, 327, 890
[205] Reisenegger, A. \& Miralda-Escudé, J. 1995, ApJ, 449, 476
[206] de Robertis, M. 1985, ApJ, 289, 67
[207] Rhoads, J. E., Malhotra, S., Dey, A., Stern, D., Spinrad, H., Jannuzi, B. T. 2000, ApJ, 545, L85
[208] Sanduleak, N. \& Pesch,P. 1984, ApJS, 55, 517
[209] Sargent, W. L. S., Young, P. J., Boksenberg, A., Carswell, R. F., \& Whelan, J. A. J. 1979, ApJ, 230, 49
[210] Sargent, W. L. S., Young, P. J., Boksenberg, A., \& Tytler, D. 1980, ApJS, 42, 41
[211] Sargent, W. L. S., Young, P. J., \& Boksenberg, A. 1982, ApJ, 252, 54
[212] Sargent, W. L. S., Boksenberg, A. \& Steidel, C. C. 1988, ApJS, 68,539 (SBS88)
[213] Sargent, W. L. S., Steidel, C. C., \& Boksenberg, A. 1989, ApJS, 69, 703
[214] Savage, B. D., Lu, L., Bahcall, J. N., Bergeron, J., Boksenberg, A., Hartig, G., Jannuzi, B. T., Kirhakos, S., Lockman, F., Sargent, W. L. W., Schneider, D. P., Turnshek, D., Weymann, R. J., \& Wolfe, A. M. 1993, ApJ, 413, 116
[215] Savaglio, S., Cristiani, S., D'Odorico, S., Fontana, A., Giallongo, E., \& Molaro, P. 1997, A\&A, 318, 347
[216] Schaye, J., Theuns, T., Leonard, A., \& Efstathiou, G. 1999, MNRAS, 310, 57
[217] Schmidt, M. 1968, AJ, 73, 117S
[218] Schmidt, M. \& Olsen, E. T. 1968, AJ, 73, 5117
[219] Schmidt, M. 1977, ApJ, 217, 358
[220] Schmidt, M., Schneider, D. P., \& Gunn, J. E. 1986, ApJ, 310, 518
[221] Schmidt, M., Schneider, D. P., \& Gunn, J. E. 1991, in Space Distribution of Quasars, ed. D. Crampton (San Francisco: ASP), 109
[222] Scott, J., Bechtold, J., \& Dobrzycki, A. 2000, ApJS, 130, 37 (Paper I)
[223] Scott, J., Bechtold, J., Dobrzycki, A. \& Kulkarni, V. 2000, ApJS, 130, 67 (Paper II)
[224] Scott, J., Bechtold, J., Morita, M., Dobrzycki, A. \& Kulkarni, V. 2002, ApJ, in press (Paper V)
[225] Seaton, M. J. 1979 MNRAS, 187, 73P
[226] di Serego-Alighieri, S., Danziger, I. J., Morganti, R., \& Tadhunter, C. N. 1994, MNRAS, 269, 998
[227] Shaver, P. A., Wall, J. V., Kellermann, K. I., Jackson, C. A., \& Hawkins, M. R. S. 1996, Nature, 384, 439
[228] Shull, J. M., Stocke, J. T., \& Penton, S. V. 1996, AJ, 111, 72
[229] Shull, J. M., Penton, S. V., \& Stocke, J. T. 1999, PASA, 16, 95
[230] Shull, J. M., Roberts, D., Giroux, M. L., Penton, S. V., Fardal, M. A. 1999, AJ, 118, 1450
[231] Smith, H. E., Burbidge, E. M., Baldwin, J. A., Tohline, J. E., Wampler, E. J., Hazard, C., \& Murdoch, H. S. 1977, ApJ, 215, 427
[232] Smith, R. J., Boyle, B. J., \& Maddox, S. J. 2000, MNRAS, 313, 252
[233] Songaila, A., Bryant, W., \& Cowie, L. L. 1989, ApJ, 345, L71
[234] Songaila, A. \& Cowie, L. L. 1996, AJ, 112, 335
[235] Songaila, A. 1998, AJ, 115, 2184
[236] Songaila, A. \& Cowie L. L. 2002, AJ, 123, 2183
[237] Srianand, R. \& Khare, P. 1996, MNRAS, 280, 767
[238] Stark, A. A., Gammie, C. F., Wilson, R. W., Bally, J., Linke, R. A., Heiles, C., \& Hurwitz, M. 1992, ApJS, 79, 77
[239] Steidel, C. 1990, ApJS, 74, 37
[240] Steidel, C. \& Sargent, W. L. S. 1991, ApJ, 382, 433
[241] Steidel, C. \& Sargent, W. L. S. 1992, ApJS, 80, 1 (SS92)
[242] Steidel, C. C., Giavalisco, M., Dickinson, M., Adelberger, K. L. 1996a, AJ, 112, 352
[243] Steidel, C. C., Giavalisco, M., Pettini, M., Dickinson, M., \& Adeleberger, K. L. 1996b, ApJ, 462, L17
[244] Steidel, C. C., Adelberger, K. L., Shapley, A. E., Pettini, M., Dickinson, M., \& Giavalisco, M. 2000, ApJ, 532, 170
[245] Steidel, C. C., Pettini, M., \& Adelberger, K. L. 2001, ApJ, 546, 665
[246] Stengler-Larrea, E. A., Boksenberg, A., Steidel, C. C., Sargent, W. L. W., Bahcall, J. N., Bergeron, J., Hartig, G., Jannuzi, B. T., Kirhakos, S., Savage, B. D., Schneider, D. P., Turnshek, D. A., \& Weymann, R. J. 1995, ApJ, 444, 64
[247] Stickel, M. \& Kühr, H. 1993, A\&AS, 100, 395
[248] Stocke, J. T., Case, J., Donahue, M., Shull, J. M., \& Snow, T. P. 1991, ApJ, 374, 72
[249] Stocke, J. T., Shull, J. M., Penton, S., Donahue, M., \& Carilli, C. 1995, ApJ, 451, 24
[250] Stockton, A. 1982, ApJ, 257, 33
[251] Stockton, A. \& MacKenty, J. W. 1987, ApJ, 316, 584
[252] Storrie-Lombardi, L. J., M ${ }^{c}$ Mahon, R. G., Irwin, M. J., \& Hazard, C. 1994, ApJ, 427, L13
[253] Storrie-Lombardi, L. J. 1995, in Proc. of the ESO Workshop on QSO Absorption Lines, ed. G. Meylan (Berlin: Springer), 47
[254] Sugiyama, N. 1995, ApJS, 100, 281
[255] Telfer, R. C., Zheng, W., Kriss, G. A., \& Davidsen, A. F. 2001, ApJ, in press (astro-ph/0109531)
[256] Theuns, T., Leonard, A., \& Efstathiou, G., Pearce, F. R., \& Thomas, P. A. 1998a, MNRAS, 301, 478
[257] Theuns, T., Leonard, A., Efstathiou, G. 1998, MNRAS, 297, L49
[258] Thommes, E., Meisenheimer, K., Fockenbrock, R., Hippelein, H., Roeser, H.-J., \& Beckwith, S. 1998, MNRAS, 293, L6
[259] Thompson, D. J., Djorgovsky, S., \& Weir, W. N. 1989 PASP, 101, 1065
[260] Tufte, S. L., Reynolds, R. J., \& Haffner, L. M. 1998, ApJ, 504, 773
[261] Tumlinson, J., Giroux, M. L., Shull, J. M., \& Stocke, J. T. 1999, AJ, 118, 2148
[262] Tytler, D. 1987, ApJ, 321, 69
[263] Tytler, D., Boksenberg, A., Sargent, W. L. W., Young, P., \& Kunth, D. 1987, ApJS, 64, 667
[264] Tytler, D. \& Fan, X. -M. 1992, ApJS, 79, 1
[265] Tytler, D., Fan, X. -M., Junkkarinen, V. T., \& Cohen, R. D. 1993, AJ, 106, 426 (T93)
[266] Tytler, D. \& Fan, X. -M. 1994, ApJ, 424, L87
[267] Ulrich, M.- H. 1976, ApJ, 206, 364
[268] Uomoto, A. 1984, ApJ, 284, 497
[269] van Gorkom, J. H. 1993, in The Environment and Evolution of Galaxies, ed. J. M Shull \& H. A. Thronson (Dordrecht:Kluwer), 343
[270] Viel, M., Matarrese, S., Mo, H. J., Theuns, T., \& Haehnelt, M. G. 2002, MNRAS, submitted (astro-ph/203418)
[271] Vogel, S. N., Weymann, R., Rauch, M., \& Hamilton, T. 1995, ApJ, 441, 162
[272] Warren, S. J., Hewett, P. C., \& Osmer, P. S. 1994, ApJ, 421, 412
[273] Weinberg, D. H., Miralda-Escudé, J., Hernquist, L., \& Katz, N. 1997, ApJ, 490, 564
[274] Weinberg, D. H., Croft, R. A. C., Hernquist, L., Katz, N., \& Pettini, M. 1998, ApJ, 522, 563
[275] Weymann, R. J., Williams, R. E., Peterson, B. M., \& Turnshek, D. A. 1979, ApJ, 234, 33
[276] Weymann, R. J., Carswell, R. F., \& Smith, M. G. 1981, ARAA, 19, 41
[277] Weymann, R. J., Jannuzi, B. T., Lu, L., Bahcall, J. N., Bergeron, J., Boksenberg, A., Hartig, G., Kirhakos, S., Sargent, W. L. W., Savage, B. D., Schneider, D. P., Turnshek, D. A., \& Wolfe, A. 1998, ApJ, 506, 1
[278] Weymann, R. J., Vogel, S. N., Veilleux, S., \& Epps, H. 2001, ApJ, 561, 559
[279] Wilkes, B. J. 1986, MNRAS, 218, 331
[280] Williger, G. M., Baldwin, J. A., Carswell, R. F., Cooke, A. J., Hazard, C., Irwin, M. J., Mc Mahon, R. G., \& Storrie-Lombardi, L. J. 1994, ApJ, 428, 574
[281] Wills, D. \& Wills, B. J. 1976, ApJS, 31, 143
[282] Wills, B. J. \& Wills, D. 1979, ApJS, 41, 689
[283] Wold, M., Lacy, M., Lilje, P. B., \& Serjeant, S. 2000, MNRAS, 316, 267
[284] Wolfe, A. M., Turnshek, D. A., Smith, H. E., Cohen, R. D. 1986, ApJS, 61, 249 (W86)
[285] Wolfe, A. M., Lanzetta, K. M., Foltz, C. B., \& Chaffee, F. H. 1995, ApJ, 454, 698
[286] Yates, M. G., Miller, L., \& Peacock, J. A. 1989, MNRAS, 240, 129
[287] Yee, H. K. C. \& Ellingson, E. 1993, ApJ, 411, 43
[288] Yee, H. K. C. 1987, AJ, 94, 1461
[289] Yee, H. K. C. \& Green R. F. 1987, AJ, 94, 618
[290] Yee, H. K. C. \& Green R. F. 1984, ApJ, 280, 79
[291] York, D. G., Yanny, B., Crotts, A., Carilli, C., Garrison, E., \& Matheson, L. 1991, MNRAS, 250, 24
[292] Young, P., Sargent, W. L. S., Boksenberg, A., Carswell, R. F., \& Whelan, J. A. J. 1979, ApJ, 228, 891
[293] Young, P., Sargent, W. L. S., \& Boksenberg, A. 1982a, ApJ, 252, 10
[294] Young, P., Sargent, W. L. S., \& Boksenberg, A. 1982b, ApJS, 48,455 (YSB82)
[295] Zhang, Y., Anninos, P., \& Norman, M. L. 1995, ApJ, 453, L57
[296] Zhang, Y., Meiksin, A., Anninos, P., \& Norman, M. L. 1998, ApJ, 495, 63
[297] Zheng, W. \& Sulentic, J. W. 1990, ApJ, 350, 512
[298] Zheng, W. \& Malkan, M. A. 1993, ApJ, 415, 517
[299] Zheng, W., Kriss, G. A., Davidsen, A. F., Lee, G., Code, A. D., Bjorkman, K. S., Smith, P. S., Weistrop, D., Malkan, M. A., Baganoff, F. K., \& Peterson, B. M. 1995, ApJ, 444, 632
[300] Zheng, W., Kriss, G. A., Telfer, R. C., Grimes, J. P., \& Davidsen, A. F. 1997, ApJ, 474, 469
[301] Zotov, N. 1985, ApJ, 295, 94
[302] Zuo, L. \& Lu, L. 1993, ApJ, 418, 601

[^0]: ${ }^{1}$ Note that Scott et al. (2000b) found deficits within $1.5 h^{-1} \mathrm{Mpc}$ of 3.6σ for low luminosity objects and 4.6σ for high luminosity objects using a standard CDM cosmology

[^1]: ${ }^{2}$ The observed HI column density distribution of Ly- α forest absorbers is $d V / d N_{\mathrm{HI}} \propto N_{\mathrm{HI}}^{-3}$

