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ABSTRACT 

Thin ceramic substrates are widely used in engineering applications in modem 

industry. For example, they are used as molecular filters in fuel cells and solid oxide 

electrolyzers for oxygen generation. Development of high-reliability substrate materials 

inevitably requires the accurate characterization of their mechanical properties. The 

loading conditions in service on the ceramic substrates, such as the solid oxide 

electrolytes with a thickness of much less than 2 mm, often involve multiaxial bending 

instead of simple tension or bending. 

In this dissertation, the ASTM standard piston-on-3-ball experimental technique 

at ambient temperature is employed to investigate the quasi-static biaxial flexural 

strength of pure 8YSZ and AI2O3 or 3YSZ doped 8YSZ ceramic substrates. Furthermore, 

this piston-on-3-ball experimental technique is developed into a dynamic piston-on-3-ball 

technique at ambient temperature and a quasi-static piston-on-3-ball technique at elevated 

temperatures. Stress distribution functions in the tensile surface of a specimen under 

piston-on-3-ball loading condition are formulated and used to develop statistical models, 

which are proven to be in the form of a Weibull distribution function, to describe the 

biaxial flexural strength behavior of ceramic substrates under piston-on-3-ball loading 

condition. Analytical modeling was conducted on the dynamic piston-on-3-ball loading 

configuration. This analytical model can be used to guide the experimental design and 

judge the validity of experimental results. A new material constitutive model is 
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developed to give a good description of the dynamic strength behavior of ceramic 

materials under constant stress-rate loading. 

Quasi-static experiments under piston-on-3-ball loading are conducted at both 

ambient temperature and elevated temperatures, while dynamic experiments are 

conducted at ambient temperature. Experimental results, as well as observations from 

SEM microstructure images and values of fracture toughness measured using a newly 

developed Vickers micro-indentation toughness technique, lead to a conclusion that no 

obvious overall improvement to the 8YSZ ceramic substrates in the biaxial flexural 

strength can be observed by adding AI2O3 additive with amount up to 3 mol% or 3YSZ 

additive with amount up to 30 wt%. 
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CHAPTER 1 

INTRODUCTION 

This research is a part of a NASA-sponsored research program, "The 

development of superior materials for layered solid oxide electrolyzers based on 

mechanical and thermal failure testing and analysis," which studies the material issues 

related to solid oxide electrolyzers (electrochemical systems) that will generate oxygen 

from the atmosphere of Mars and also from the lunar regolith. 

1.1 Applications of 8YSZ thin ceramic substrates 

The high oxygen ion conductivity over wide ranges of temperature and oxygen 

pressures in 8-mol% yttria stabilized zirconia (8YSZ) has led to its use as a solid oxide 

electrolyte in a variety of electrochemical applications (Pasciak, Prociow, Mielcarek, 

Gomicka, and Mazurek, 2001). These include high temperature solid oxide fuel cells 

(SOFCs) which offer a clean, pollution-free technology to electrochemically generate 

electricity at high efficiencies. These fiiel cells provide many advantages over traditional 

energy conversion systems including high efficiency, reliability, modularity, fuel 

adaptability, and very low levels of NOr and SQr emissions. Quiet, vibration-free 

operation of solid oxide fuel cells also eliminates noise usually associated with 
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conventional power generation systems. Furthermore, because of their high temperature 

of operation (800~1000°C), natural gas fuel can be reformed within the cell stack 

eliminating the need for an expensive, external reformer system. Also, pressurized 

SOFCs can be successfully used as replacements for combustors in gas turbines; such 

hybrid SOFC-gas turbine power systems are expected to reach efficiencies approaching 

70% (Singhal, 2000). 

In addition to the wide applications described above, the solid oxide electrolyzer 

is used in our NASA-sponsored research program as an electrochemical apparatus 

(Figures 1.1 and 1.2) to generate pure oxygen from oxygen bearing gases such as carbon 

dioxide, water vapor, and air. Functioning as an effective oxygen generator, it has a wide 

variety of potential applications in space exploration. For example, it can be used to 

produce oxygen either from the predominantly carbon dioxide rich atmosphere of Mars, 

or from hydrogen or carbon reduction of the lunar regolith (Sridhar and Vaniman, 1995). 

The oxygen thus produced can be used for not only propulsion but also life support. The 

solid oxide electrolyzer can also be used aboard a space station for air revitalization in 

closed-loop life support. When oxygen is extracted by the electrolyzer from oxygen 

bearing gases in space, significant savings in launch mass and cost can be attained for 

both unmanned and manned missions. In unmanned missions such as the robotic return 

missions to Mars, the oxidizer for the return trip propellant can be replaced with a small 

oxygen production unit, thereby reducing both the launching mass fi'om Earth and the 

landing mass on Mars. On the other hand, in manned missions, the oxygen produced can 

be used for both intraplanetary and interplanetary propulsion and life support. 



Figure 1.1 Oxygen generator 

Figure 1.2 Electrolyzer. 
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The critical part of the electrolyzer is a stack of electrochemical cell whose central 

portion includes three different layers; two porous electrodes (an anode and a cathode) 

separated by a dense, oxygen ion conducting electrolyte (Figure 1.3). Of these three 

layers, the electrolyte is the oxygen-generating layer, which is usually made of a ceramic 

solid oxide such as 8-mol% yttria stabilized zirconia (8YSZ). 

Exhaust Feed 
Gas Gas 

" hode 

+ 

Electrolyte 

Anode 

Oxygen 
Outlet 

Figure 1.3 A single ceil of eiectrolyzer. 
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1.2 Mechanical properties for electrolyte material selection 

The selection criteria for the electrolyte material are based on its physical and 

mechanical properties. The physical properties include elastic constants (Young's 

modulus and Poisson's ratio), thermal expansion coefficient, thermal conductivity, 

density, and electric conductivity. The most important is the electric conductivity, which 

directly associated with the oxygen production. The mechanical properties include 

strength, fracture toughness, and parameters of subcritical crack growth. The main 

characteristic of ceramics is brittleness. Brittleness means that failure occurs without 

prior measurable plastic deformation. This is due to the strong atomic bonding of 

ceramics, which lead to high stresses for the motion of dislocations. Thus, failure can 

start from small flaws before plastic deformation is possible. This fact can also be 

expressed as the low resistance against crack extension, which is characterized by the 

fracture toughness. The random distribution of sizes and locations of the small flaws in 

ceramic materials causes a large scatter of strength. This requires a statistical description 

of the strength and a relation between failure probability and stress distribution in a 

component. In addition, subcritical crack extension can cause failure under constant or 

cyclic loading during the operation of a component and will lead, consequently, to a 

limited lifetime. 

The most widely used electrolyte material is 8YSZ due to its superior 

characteristics including cost, sintering behavior, chemical stability at high temperatures, 

oxygen conductivity over a wide range of oxygen partial pressures, and relatively proper 
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mechanical properties. The main disadvantages of 8YSZ are low tensile strength at room 

temperature, brittleness, large scatter of strengths, and subcritical crack extension. 

Since the electric conductivity across the electrochemical cell decreases with the 

increasing thickness of the electrolyte, the electrolyte is usually made as a very thin sheet. 

The thin 8YSZ sheets (~0.5mm) that are used for electrolyte must be designed to 

withstand stresses of considerable magnitude which originate from launching, landing, 

gas pumping, and thermal expansion mismatch with supporting structure during thermal 

cycling between ambient temperature and working temperature. 

1.3 Literature survey 

Yttria stabilized zirconia (YSZ) has been studied for a long time. However, most 

researchers focused their attentions on partially yttria-stabilized zirconia such as 3-mol% 

yttria stabilized zirconia (3YSZ) because a phase transformation mechanism makes it 

possess a high toughness and high strength (Evans, 1984; Hannink, Kelly, and Muddle, 

2000). Strength and fracture of yttria stabilized zirconia single crystals were studied by 

Ingel et al. (1982). Some measurements of strength and toughness on 8YSZ 

polycrystalline materials as well as some 8YSZ-containing composites have already been 

performed by several investigators (Winnubst, Keizer, and Burggraaf, 1983; Esper et al., 

1983; Mori et al, 1994; Burelli, Maschio, and Lucchini, 1997; Sel^uk, and Atkinson, 

2000). However, most results showed large scatter and were impossible to be reliably 
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applied in practical design procedure. In the following, a brief review of the work having 

been done on 8YSZ is given. 

Using biaxial-loading experimental method to obtain the biaxial flexural strength 

of ceramic thin substrate has been widely accepted. Sel^uk and Atkinson tested type-cast 

8YSZ by ring-on-ring method (Sel9uk and Atkinson, 2000; Atkinson and Sel^uk, 2000). 

They reported that mean flexural strength of 8YSZ is 416±70 MPa at room temperature 

(25 °C) and 265±39 MPa at 900 °C. A byproduct of the ring-on-ring method they 

obtained was the Young's modulus, E, of the material. They used the relation between 

the Young's modulus and the central deflection of the specimen under load, P, to 

estimate the value of E. They found this result was in good agreement with those from 

the standardized impulse excitation technique (lET) (Sel^uk, and Atkinson, 1997). The 

average value of E was 216±5 GPa at room temperature and 155±8 GPa at 900 °C. 

Sel(;uk and Atkinson (2000) also tried to relate the biaxial strength with the mode-

I fracture toughness. They used Irwin's part-through crack extension model for semi-

elliptical surface defects in brittle materials (Irwin, 1965) to predict the mode-I fracture 

toughness for their weakest specimen and obtained acceptable agreement with their 

experimental observations. The Irwin's model is 

( I . I )  
fC y 

where K,c is the mode-I fracture toughness, (Tf the fracture stress, M a numerical free-

surface correction factor (0.795 in their bending condition), and x the crack depth. The 
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term K is a shape factor for a semi-elliptical surface crack with a half-length of a, 

approximated by the equation 

This approach was based on the "weakest link of a chain" assumption. Although they 

noticed that the specimens of high strength broke into many pieces, they assumed that 

this phenomenon was due to the crack branching during unstable crack propagation. 

The mechanical properties of the fully stabilized 8YSZ, which is usually in cubic 

phase (Hannink, Kelly, and Muddle, 2000), can be modified by adding some additives 

such as alumina (AI2O3). The mechanical properties of composites of yttria stabilized 

zirconia and alumina (AI2O3) have been investigated by many researchers. Esper, Friese 

and Geier (1983) studied the mechanical, thermal, and electrical properties of the system 

of stabilized Zr02(Y203)/a-Al203 . They concluded that the mechanical strength of the 

7.5 mol% yttria stabilized zirconia could be increased by 50% by adding about 20 mass% 

alumina. Susnik et al. (1997) reported the influence of alumina additive on the 

characteristics of cubic 8YSZ ceramic. 

The fracture strength of 8YSZ as well as the composites of 8YSZ and AI2O3 has 

been examined as a function of AI2O3 content by Mori et al. in 1994. The temperature 

dependence of 3-point bending strength of 8YSZ showed a minimum at 500 °C. The 

strength of pure 8YSZ at 1000 °C was about 250 MPa, almost comparable to that at room 

temperature. The strength of the composites of 8YSZ and AI2O3 increased with AI2O3 

l/z 
(1.2) 
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content up to 20 wt%. The composite with 20-wt% AI2O3 showed a fracture strength of 

320 MPa at room temperature. However, the experimental method they used was 3-point 

bending which applied a non-uniform uniaxial stress loading on the specimen. Their 

specimen dimension was 36 mm x 4mm >< 3mm, which was not the geometry of the 

usually thin electrolyte in service. Therefore, these data need to be re-examined before 

using them for designing electrolyte since the loading condition and specimen geometry 

have significant effects on strength (Hoshide, Murano, and Kusaba, 1998). 

The fracture strength data of 8YSZ as well as the composites of 8YSZ and AI2O3 

have also been reported by Burelli et al. in 1997. Their data, shown in Table 1.1, further 

verified the statement that the loading condition and specimen geometry have effects on 

strength. In addition to the fracture strength, Burelli et al. also reported the fracture 

toughness trend against composition measured by two different experimental techniques. 

The fracture toughness increases approximately linearly with the increase of zirconia 

volume percentage up to 80%. The mode-I fracture toughness of pure yttria stabilized 

zirconia as well as Bi203 doped material was also studied by Winnubst, Keizer, and 

Burggraaf (1983) using indentation method. 

The flexural strength of yttria-stabilized zirconia at elevated temperatures has also 

been studied. The fracture mode of cubic phase 6.5 mol% yttria stabilized zirconia was 

transgranular at low temperatures, mixed mode at intermediate temperatures (~500°C-

1000°C), and intergranular at higher temperatures (Adams, Ruh, and Mazdiyasni, 1997). 

The four-point flexural strength of the hot-pressed and sintered Zyttrite yttria-stabilized 

zirconia showed a minimum value at about 760°C and 960°C, respectively. 
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Table 1.1 
Bending strength and Weibull modulus determined by monoaxial single bending 
and biaxial ball-on-ring tests 

Composition 4-point bending 
(T(MPa) 

Weibull 
modulus 

Ball-on-ring 
0 (MPa) 

Weibull 
modulus 

AI2O3 242 11.6 350 9.4 

AhOa-ZrO: 20-vol% 255 16.8 361 9.1 

Al203-Zr02 40-vol% 402 20.4 508 10.4 

AliOs-ZrOi 60-vol% 500 16.7 535 12.2 

Al203-Zr02 80-vol% 500 17.3 574 14.1 

Zr02 508 36.9 514 9.9 

Although the strength data can be directly measured, the fracture mechanism 

study is important to the comprehensive understanding of the fracture strength. The 

fracture resistance and stable crack-growth behavior of the cubic-phase 8YSZ made by 

uniaxial powder pressing at room temperature has been carefully studied by Kumar and 

S^orensen (2000) at room temperature. They placed double-cantilever-beam specimens, 

which were loaded with pure bending moments in a specially designed loading fixture, 

inside an environmental scanning electron microscope (ESEM). Crack-growth data were 

obtained from truly sharp (arrested) cracks, bypassing the interpretation problems that 

involve crack initiation from a machined notch. Their crack-growth studies were 

conducted over a range of applied energy-release rates fi"om crack arrest to fast fracture. 

The relation between crack-growth and energy-release rate was revealed as shown in 

Figure 1.4. Three critical energy-release-rate values were determined as follows: 
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• Energy-release-rate associated with crack arrest, Ga, is 2.8 J/m^. 

• Energy-release-rate associated with initiation of crack growth, G„ is 3.5 J/m". 

• Energy-release-rate associated with fast fracture, Gf, is 8.0 J/m~. 

O 
o 
> 

2 00 

U 

Energy release rate 

Figure 1.4 The cracic-growth velocity as a function of the applied energy-release 
rate. 

The crack-growth behavior can be well illustrated by Figure 1.4. If applied 

energy-release rate is lower than Ga, no crack-growth will happen. When loading starts 

from an energy-release rate G < Ga, the load has to be increased to G Gi to initiate 

crack growth. Decreasing the energy-release rate will decrease the crack-growth velocity. 

If the energy-release rate is decreased to G < Ga, the crack growth is arrested. Then, 

energy-release rate has to be increased beyond Ga to G, before further crack growth 

happens. The stable crack-growth occurs when the energy-release rate is between Ga and 

G„ provided that the crack-growth has been initiated. Furthermore, Kumar and 
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S^orensen identified that the fracture mode for stable crack-growth is transgranular 

while some (~5%-I0%) intergranular fracture modes were observed in the fast-fracture 

region. 

Several characteristic features were observed at the microscopic scale during the 

stable crack growth by Kumar and S^orensen. These are grain bridging, branching, and 

secondary cracking, which are shown in Figure 1.5. Although these characteristic features 

can be material toughening mechanisms, 8YSZ possesses no obvious R-curve behavior 

because the occurrence rates of these characteristic features are too low. Typically, the 

formation of secondary cracks occurs about 10 times over a distance of 1 mm, the crack 

branching once over 10 mm, and grain bridging once over 200 |im. The grain size of their 

specimens was about 10 ^m. 

(a) 

"X 

(b) (c) 

Figure 1.5 Schematics of crack-growth process and mechanisms (a) formation of 
secondary cracks, (b) crack branching, and (c) grain bridging. 
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Failure mechanisms of 8YSZ ceramic at ambient and elevated temperatures were 

investigated by Lowrie and Raelings (2000). They found that sub-critical crack growth 

(sccg) occurred at both ambient temperature and 950°C, and was shown to be very 

sensitive to the applied stress. 

1.4 Outline of this research 

One of the final goals of the NASA-sponsored research program is to identify a 

proper material for the electrolyte in the oxygen generator, which can efficiently generate 

oxygen as well as possesses reasonable mechanical properties to ensure a high working 

reliability of the oxygen generator. The most important material property for such a 

material is electric conductivity as mentioned early. Researches from another group 

(Brach, 2000) have singled out some candidates, which are 8YSZ and its doped 

compositions with alumina and 3-mol% yttria stabilized zirconia (3YSZ). 8YSZ ceramic 

with less than 3-mol% alumina or 30-wt% 3YSZ will not degrade its electric conductivity 

significantly. To fulfill the eletrolyte material research, it is necessary to study the 

mechanical properties of these material candidates. 

In order to integrate this study with the study of physical properties in another 

research group, the specimens prepared for this study are exactly the same as those 

specimens used for the study of physical properties. The specimen compositions studied 

in this research are listed in Table 1.2 with their aliases that will be used later on. 
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Table 1. 2 
Composition of specimens 

Composition Alias 

Pure 8YSZ 8YSZ 

I mol% AliOs-doped 8YSZ lA 

2 mol% AhOa-doped 8YSZ 2A 

3 mol% AhOs-doped 8YSZ 3A 

10 wt% 3YSZ-doped 8YSZ lY 

20 wt% 3YSZ-doped 8YSZ 2Y 

30 wt% 3YSZ-doped 8YSZ 3Y 

The specimens were made from TZ-8YSZ powder (TOSOH USA, Inc., Atlanta, 

GA). Standard specification of this powder provided by TOSOH is in Table 1.3. Typical 

properties of sintered material bulk with TOSOH-recommended heating schedule are 

listed in Table 1.4. The powder was mixed with dopants and was then processed into 

slurry with dispersant, binder, and plasticizer, and the slurry was tape-cast. Then, the 

specimens were laser-cut out of green sheets and sintered at 1450 C for 3 hours as 

recommended by TOSOH. The surface roughness of as-fired specimens is between 20 

and 30 [im as observed with a Zeiss IM 35 inverted microscope. The geometry of the 

specimen is the one recommended by ASTM F 394-78: a thin cycle disk with 32-mm in 

diameter. An X-ray diffraction (XRD) analysis performed on the materials revealed that 

only the cubic phase was present in all these specimens (Brach, 2000). 
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Table 1.3 
Standard specification of TOSOH 8YSZ powder 

Y2O3 (mol.%) 8 

Y2O3 (wt%) 13.3 ±0.60 

AI2O3 (wt%) <0.1 

Si02 (wt%) <0.02 

FeiOs (wt%) <0.01 

NaaO (wt%) <0.12 

Specific surface area (m^/g) 7 ± 2  

Table 1.4 
Typical properties of sintered material bulk with TOSOH 8YSZ powder 

Density (g/cm^) 5.90 

Bending strength at room temperature (MPa) 300 

Fracture toughness at room temperature (MPa m°^) 1.5 

Hardness (HVIO) 1250 

It has been shown by Lawn and Wilshaw (1975) that if small dust particles are 

wedged between the undersurface of a specimen and the surface on which it is placed, the 

resulting stresses are sufficient to rupture bonds. Silicate glass is a very good example for 

demonstrating the importance of surface cracks. If the sizes of surface cracks are reduced 

by etching away some surface materials, the stress of the silicate glass can be increased 

several-fold (Jayatilaka, 1979). The effects of surface conditions on flexural strength of 
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yttria stabilized zirconia are also significant (Kosmac, Oblak, Jevnikar, Funduk, and 

Marion, 1999). Therefore, for research on strength improvement theory, microstructure 

design, and processing, the surfaces are usually prepared to be as free as possible of 

cracks not characteristic of the general microstructure. However, the surface condition of 

the specimens is usually made as close as possible to that to be used in service when the 

intention is to obtain strength data for design. This is the situation of this research. 

Therefore, the specimens used in this research will be kept as-fired. At this surface 

condition, the test results include all the factors that have effects on the biaxial flexural 

strength, such as material compositions and processing parameters, in addition to surface 

flaws. Nevertheless, the surface conditions of each specimen will be carefully examined 

whenever it is necessary. 

Fracture strength and fracture strength distribution are the most commonly used 

properties for the design of ceramic components for advanced structural applications such 

as the solid oxide electrolyzer. Although many fracture strength data have been published 

by different investigators, these data are different from each other because the fracture 

strength of brittle materials depends on many factors such as materials' chemical 

compositions, processing parameters, loading conditions, and environmental conditions 

in service. Therefore, it is mandatory to measure the fracture strength for each single 

target application, although the general data in the literature are useful to serve as the 

references for the selection of candidate materials. Ceramic materials usually possess 

high compressive strength. Their tensile strengths are much lower and depend on the 

material properties such as fracture toughness and parameters of subcritical crack growth 
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as well as loading conditions and material processing parameters such as crack density. 

The research in this dissertation focuses on the tensile strength of the target material 

candidates under biaxial bending loading conditions. 

In the next chapter of this dissertation, the piston-on-3-ball technique, an ASTM 

standard test method for the biaxial flexural strength of ceramic substrates at ambient 

temperature, is briefly discussed first with an analytical elastic solution of the stress 

distribution in the tensile surface of a specimen under such loading condition. 

Experiments with this technique on 8YSZ thin substrates and its doped versions are 

performed. Since strength data of brittle materials show large scatter, statistical 

processing of these data is necessary. However, there is no theory available about the 

distribution of the biaxial flexural strength data of brittle materials under the piston-on-3-

ball loading condition. Therefore, a new theoretical proof is presented in chapter 3 that 

the well-accepted Weibull statistical treatment of the strength data of brittle materials 

under uniaxial loading conditions can also be applied to describe the scattering of the 

strength data under the piston-on-3-ball loading condition. The quasi-static experimental 

results with the piston-on-3-ball technique are then processed using the Weibull 

treatment. 

The oxygen generator associated with this research is planned to be placed on a 

spacecraft. The eletrolyzer is then exposed to transient loading conditions during 

launching and landing. The ceramics possess different mechanical properties under high

speed loading conditions from those under static loading conditions (Grady, 1995). 

Therefore, it is mandatory to investigate the strength behavior of electrolyte material 
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under high-speed loading conditions. However, no dynamic experimental technique is 

available to obtain the strength data of ceramic substrates under biaxial loading 

conditions. In chapter 4, a new dynamic piston-on-3-ball experimental technique is 

proposed. Analytical model of the dynamic piston-on-3-ball technique is provided to 

guide the design of experimental facility and to judge the validity of the strength result 

obtained from each experiment. Finally, a new dynamic strength model under constant 

stress-rate is formulated to facilitate the description of the dynamic strength behavior of 

ceramic materials. 

The electrolyzer works at elevated temperatures (800°C~1000°C). The strength 

behavior is different form that at room temperature (24°C) as mentioned early. Therefore, 

the experimental investigation of the strength behavior of the target material candidates at 

elevated temperatures is important to the design of a reliable oxygen generator. In chapter 

5, the ASTM standard piston-on-3-ball experimental technique is modified to test the 

biaxial flexural strength of ceramic substrates at elevated temperatures. 

Next, some comprehensive discussions about the effects of the dopants on the 

microstructures and macroscopic strengths of 8YSZ ceramic substrates are presented in 

chapter 6. In addition, a new Vickers micro-indentation toughness technique is developed 

in this chapter. The fracture toughness values measured with this new Vickers micro-

indentation toughness technique, as well as SEM micro-structural observations, are 

combined together with the results of various piston-on-3-ball experiments to analyze the 

biaxial flexural strength behavior of 8YSZ ceramic substrate and its AI2O3 or 3YSZ 

doped versions. 
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The final conclusions and the work necessary to accomplish a complete research 

are discussed in chapter 7. In this chapter, some possible solutions to the strength 

problem of electrolyte ceramic substrates are proposed. 



36 

CHAPTER 2 

QUASI-STATIC PISTON-ON-3-BALL EXPERIMENTAL 

TECHNIQUE 

A number of techniques and methodologies have been developed for the 

measurement of fracture strength of ceramic materials. All of these techniques equate the 

fracture strength to the maximum stress in the specimen at fracture moment. 

Consequently, in order for a particular load and specimen geometry to be useful for the 

determination of fracture strength, the stress distribution must be well established. A 

complicating factor in the determination of fracture strength is that the strength of 

ceramic materials is quite sensitive to size, shape, and surface finish. This sensitivity is 

largely responsible for the wide variation in strength values often reported for a given 

material. To be viable, the test methodology must therefore account for these effects. 

2.1 Ceramic test methods 

In the US, the American Society for Testing and Materials (ASTM) has 

developed many standard test methods for advanced ceramics and ceramic composites. 

ASTM committee C28 on Advanced Ceramics has been responsible for the creation of 
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over 25 standards. All of the ASTM standard test methods can be classified into three 

catalogues. 

• Uniform uniaxial stress loading. 

• Nonuniform uniaxial stress loading. 

• Biaxial stress loading. 

Although uniform uniaxial stress loading, such as uniaxial tensile test (ASTM C 

1273-95a, 1995) is conceptually simple, it is in empirical practice the most difficult to 

conduct satisfactorily. Analytically, this method is statically determinate, and the uniform 

stress state can be simply calculated as the axial load divided by the cross-sectional area 

of the gauge section. However, a geometric stress concentration in the gauge section is a 

major source of error. St. Venant's principle indicates that the effects of stress 

concentrations decay with distance from the load application site until the simplest, 

statically equivalent stress distribution is reached. Thus, the length of the uniform gauge 

section is chosen to achieve a uniform, uniaxial stress field relatively distant from smooth 

reductions in the specimen cross section leading from the loading point to the gauge 

section. Another major source of error is bending stresses resulted from nonaxial 

(eccentric) loading such as off-center loading, moment applied at ends, curved specimen, 

and twisting. Moments due to eccentricity applied at the end of the specimen will not 

decay with distance from the ends. The bending stresses often result in failure of brittle 

specimen during specimen-grip alignment procedure. 
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The most common experimental techniques of nonuniform uniaxial stress loading 

are three- and four-point bending (ASTM C 1211-92, 1995). Despite their wide 

utilizations, these experimental techniques are not without problem. Ferber, Wereszczak 

and Jenkins (1998) summarized the major sources of errors of these bending test 

methods. The main drawback of these test methods is the effects of specimen preparation 

upon the strength. In other words, the cut-surface finish has strong effects on the final test 

results. It is then necessary to carefully polish the specimen. Therefore, these test 

methods could not be used to study the effects of material processing parameters on the 

specimen in an as-fired state. Besides, the specimen geometry is a rectangular bar with a 

thickness required to be thicker than 2 mm. The solid oxide electrolytes are typically 

made by a tape-cast process. After sintering, the products are usually in the form of thin 

sheets. The thickness of these sheets is typically 0.5 mm or less in engineering 

applications. The three- and four-point bending experimental techniques thus are 

incompatible with the geometry of thin, tape-cast sheets. 

2.2 Biaxial flexural test methods 

Fracture in ceramic substrates mainly originates at a surface flaw. The strength of 

ceramic substrates is determined by surface condition in conjunction with internal 

microstructure rather than by internal microstructure alone. A valid test method for the 

purpose of obtaining strength data for design should permit the determination of the 

strength of specimens having the same surface condition that they have in service and 
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should not require any machining of a type not actually occurring in the normal use of the 

material. Most ceramic substrates are used with as-fired surfaces such as the electrolyte in 

this research program, so a test method capable of measuring strength on specimens in 

this condition is needed. 

The strength of brittle materials such as ceramics depends significantly on 

specimen size and loading conditions (Weibull, 1939; Richerson, 1992; Hoshide, 

Murano, and Kusaba, 1998). The loading conditions in service on the electrolyte and 

many other applications such as SOFC, with a thickness of much less than 2 mm, often 

involve biaxial bending instead of simple tension or simple bending. Therefore, a biaxial 

experimental technique must be used for this research. 

To obtain strength data under biaxial bending on thin sheets, ASTM standardized 

a piston-on-3-baIl testing method for the biaxial flexural strength (modulus of rupture, 

MOR) of ceramic substrates (Wachtman, Capps, and Mandel, 1972; ASTM F 394-78, 

1995). In such a test, a thin ceramic sheet is placed on three balls sitting 120° apart on a 

25.4-mm-diameter circle. A piston pushes at the center of the circle from the other side 

of the ceramic sheet, thus producing a biaxial flexural loading condition. The area of 

maximum tensile stress thus falls only at the center of the lower surface of the specimen 

plate and the strength should be independent of the condition of the edges of the plate. A 

number of variations of this technique exist (Figure 2.1). For the loads to be more evenly 

distributed on the ceramic sheet, it has been proposed to replace the three supporting balls 

by a ring. Also, the piston could be replaced by a ball, a smaller ring, or simply pressure, 

resulting in new designs of the biaxial flexural testing configurations: ring-on-ring. 



40 

piston-on-ring, ball-on-ring, piston-on-3-ball, and ball-on-3-ball. The ring-on-ring (Kao, 

Perrone, and Capps, 1971; Fessler and Flicker, 1984; Hulm, Parker, and Evans, 1998) 

configuration involves supporting a circular plate on a ring and loading with a small 

concentric ring, which was the focus of a collaborative Japan-United States effort on 

development of low-cost aluminum nitride materials (Wallace et al., 1998). The ball-on-

3-baIl has a theoretical advantage over the other biaxial loading configurations in that 

there is no problem of assuring uniform loading over the surface of the piston and it is 

totally symmetric about the loading center. However, no exact elastic analysis for this 

loading configuration has been found. Rickerby developed a pressure-on-ring loading 

configuration (Salem and Jenkins, 1999), which can be considered a modified version of 

piston-on-ring loading configuration. 

Ring-on-ring Piston-on-ring Ball-on-ring Piston-on-3-balI BalI-on-3-bali 

Figure 2.1 Biaxial flexure loading configurations. 
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2.3 Quasi-static piston-on-3-bail biaxial flexural strength test metliod 

Watchman et al. (Wachtman, Capps, and Mandel, 1972) presented a piston-on-3-

ball experimental technique, which later became an ASTM standard (ASTM F 394-78, 

1995). This technique has an advantage over many other ring-supported biaxial flexural 

strength measurement techniques in that three balls support the specimens, allowing the 

use of a slightly warped specimen, and no surface grinding or polishing is required. It is 

possible, therefore, to analyze the effects of processing parameters on the surface of the 

specimen using the piston-on-3-ball method. 

2.3.1 ASTM standard piston-on-3-ball experimental technique 

The quasi-static piston-on-3-ball biaxial flexural strength test method, an ASTM 

test standard, is a method used to measure the biaxial flexural strength of ceramic 

substrates at room temperature. The technique employs a compression piston-on-3-ball 

experimental fixture as in Figure 2.2. The three 3.18-mm-diameter balls are equidistant 

(120°) on a 25.4-mm-diameter circle. A thin 32-mm-diameter plate specimen is placed on 

the three balls with a 1.6-mm-diameter piston pushing the central portion of the specimen 

until the specimen is broken. The suggested loading rate should be such that the stress 

rate at the center of the specimen is 19.5 to 26.4 MPa/s. The experimental fixture and 

specimen dimensions are fashioned after the design by Wachtman et al. (Wachtman, 

Capps, and Mandel, 1972). 
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Load 

Thin specimen 

Support 

J} 
Piston 

3 balls 

Figure 2. 2 Piston-on-3-ball experimental configuration. 

The experiments can be performed using a hydraulically driven material testing 

system such as MTS 810 material test machine with piston load and central specimen 

deflection recorded simultaneously. Once the peak piston load at fracture is determined, 

the following equation provided by ASTM F 394-78 can be used to calculate the biaxial 

flexural strength. 

4;r h' 
(2.1) 

where 
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<T/r = biaxial flexural strength (MPa), 

P = load peak causing fracture (N), 

h = specimen thicicness at fracture origin (mm), 

f \ 2 
'\-v' 

r \ 
>V = (l + v/)ln -1-

'\-v' 
>V = (l + v/)ln 

.'•o> 2 

r = (l + vi 1 + ln 
/  > -

v''oy 
+0-4^ 

'0 y 

v= Poisson's ratio, 

r„ = radius of specimen (mm), 

r, = radius of support circle (mm), and 

n = radius of loading area (mm). 

Although an ASTM standard exists for this experimental configuration, it has 

been argued that the piston-on-S-ball configuration applies a nonuniform stress and 

therefore introduces uncertainties in the calculation of the biaxial flexural strength. In 

experimental practice, it is not possible to produce uniform loading under a piston's 

whole cross section once deflection has been induced, even with the alignment fixtures 

developed for this purpose. Regardless of these introduced uncertainties, the technique 

remains popular because of its experimental convenience. 
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2.3.2 Analytical elastic solution to the stress distribution in the tensile surface of a 

specimen under the piston-on-3-ball loading condition 

Numerical method such as finite element method (FEM) can usually be employed 

to solve elastic problem with complicated structural geometry and external loading. 

However, numerical solution is difficult to be used for further formulation in a theoretical 

analysis procedure. Fortunately, the elastic problem with the piston-on-3-ball loading 

configuration has been analytically solved for small deflections (less than the specimen 

thickness). 

Bassali (19S7) formulated a general solution to the problem of flexure of a thin 

circular elastic plate supported at an arbitrary number of points, which may be located 

anywhere within the plate periphery, and loaded perpendicular to the plate over a circular 

area lying anywhere within the boundary of the plate. Kirstein and Woolley (1967) 

specified Bassali's theory to provide solutions to the problem of symmetrical bending of 

thin circular elastic plates on equally spaced point supports. With these solutions, the 

equations for evaluating the stress state on the tensile surface of the specimen plate can 

be formulated. The contribution of direct shear forces to the stress is ignored, which is 

justified by the fact that the thickness of the plate is much less than the in-plane 

dimensions, such that the plate can be considered as a slender structure. 

Some of the parameters associated with the piston-on-3-ball loading configuration 

(Figure 2.2) are given in Figure 2.3. The in-plane stresses on the tensile surface are 

conveniently expressed in a polar coordinate system with normalized radius p = r/ro (0 < 
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p < I), which starts from the center of the specimen surface, and polar angle 9, which 

starts from the positive X axis that passes through one of the supports. 

Figure 2.3 Parameters in the piston-on-3-ball configuration: ro = radius of the plate 
specimen, r, = radius of the concentric support circle, rz = radius of the loaded area 

(radius of the piston), and (p^^) = 0-2ml'i{i = 1,2,3). 

By using Kirstein and Woolley's equations for bending and twisting moments, the 

in-plane stresses on the tensile surface due to the out-of-plane load P can be derived as 

follows: 

Y 

Support points 

Loading Loading region 

Specimen boundary 

<^rr=P 
h 

(2.2) 
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f ^oo=P foo{p^^ ) - [T  
h 

(2.3) 

and 

^rO =P fro{P^^ ) - r r  
h' 

(2.4) 

where h is the thickness of the plate, p is the normalized polar radius coordinate (r/ro), 

and frXp^O) , foo{P'>^) ' froip^^) are stress distribution functions that are 

independent of loading levels and plate thickness and are expressed as follows; 

zAttk 48;r/cp 

24;rAc 48;rK'p 

247rKp 

where Acis defined as (3+v)/(v^l), vis the Poisson's ratio, and 4^ is defined as 

T = 4' + 6K\nq+^^—3*:, p^q 
q 

6K In p. p > q  

with the first term defined as 

(=1 

1 + 
2-t' 

2 > 

V + 1 
3(1+,=) 
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4', = ln(l-2prcos^, + p't')-K\n[p' - Iptcosip^ +r) ^ ^ ) 
l-2ptcos<p^ •\- p't 

where q is defined as rj/ro. and t is defined as r/r,,. In addition, 0 is defined as 

3kp* 
0 = 0 + r 

-6k:p^ + 3Kq', p>q 

with the first term defined as 

0  = X0,+3(«r- l ) (p=- , ' )  
1=1 

0, =(ac '-l)ln(l-2/»cos^!?,+p'r")+^5— -̂L1—?£_(!—) 
\-2ptcos(p^ + yO"r" 

( x - p - \ \ - r \ x - p - r t  ^  K ( p ' - r )  
(l-2prcos^, 4-p'r)^ p ' -2p tcos (p j+t  

,2 

r 

O is defined as 

(D = £ci,,  
(=1 

^ p/sin^,(p--r) pfsin^,(l-p')(l-/')(l-p'/') 

Icos ̂3,.+p'r (l-2/3rcos^,+/7^r)' 

Kptsmcp ip '  - r ]  (  2  A  p t s \n<p ,  
P Zi^t: L - l/c 2 -1 jarctan — 

p- -2p tcos (P i+t '  l -p tcos<Pj  

The stress distributions expressed by Equations (2.2)-(2.4) have a singular point at 

the center of the plate where p is equal to zero. By further analysis of stresses at this point 
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(Kirstein and Woolley, 1967), it was concluded that the tensile stresses reach their 

maximum values at the center of the surface. 

o ? 6 = (^00 =<^b=P fc-^ (2.5) 

and 

(^rO =0 (2.6) 

where 

/ c = -
(1+.) 

8;r 

ir- 1-^  
2r 

K + l 
^ + 21n^-

t 

As described by Equations (2.2)-(2.5), all the stresses are proportional to the 

piston load P and inversely proportional to the square of the specimen thickness. 

However, each stress has its own distribution function, independent of loading level, as 

described by frr{p->^) » fooiP-'^) froip^^) • Therefore, the stress distributions can 

be normalized by the stresses at the center. The normalized stress distribution functions 

fAp^e) , foo{p,0) ,and f,o{p,Q) are independent of the piston load and the thickness 

of the specimen. In terms of f^Xp^^) » fooiP^^) ' froiP-'^) > ^^e stress distributions 

in the tensile surface of the plate can be expressed as follows: 

f r r {p^0)  f  
~^b  J  ~^bJrr \P i0 )  (2.7) 
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(2.8) 

and 

'rO ~^b J.  ~  *^hJ rO\P'<") 
J c 

(2.9) 

With the stress components o>r, ffrft and age known, the principal stresses at any 

point {p,9) on the tensile surface of the specimen can be calculated by 

r — _ 
^rr ^00 ^^ro' =<^bfApM (2.10) 

and 

o", = ^rr ^00 <T„ -CT, 00 + <^ro' =<^bfl{p^^) (2.11) 

where the normalized principal stress distribution functions are 

/, (p, g) = ^ ^ ^ ̂  +fro{p^Oy (2.12) 

and 

+f^^{p^0y (2.13) 
2 Vv 2 ^ 

Therefore, the stresses on the tensile surface of a thin disk specimen under the 

piston-on-3-ball loading condition are fully determined. In the next chapter, the stress 
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distribution outlined above will be employed to derive a statistical model to describe 

biaxial flexural strength behavior of ceramic substrates under the piston-on-3-ball loading 

condition. 

2.4 Summary 

The piston-on-3-ball loading configuration was determined to best fit our needs 

and be employed as an experimental technique to investigate the biaxial flexural strength 

of ceramic substrates. 

The quasi-static piston-on-3-ball biaxial flexural strength test method has been 

developed as an ASTM standard test method used to measure the biaxial flexural strength 

of ceramic substrates at room temperature. 

For the purposes of further formulation about the piston-on-3-ball loading 

configuration, stress distribution functions were formulated by using Bassali's (1957) 

theory, which was specified by Kirstein and Woolley to provide solutions to the problem 

of symmetrical bending of thin circular elastic plates on equally spaced point supports. 
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CHAPTER 3 

QUASI-STATIC BIAXIAL FLEXURAL STRENGTH UNDER 

PISTON-ON-3-BALL LOADING CONDITION 

The experimental results of the strength of a series of nominally identical ceramic 

specimens typically demonstrate considerable scatter. This phenomenon can be explained 

qualitatively as a result of the scatter in the size of the critical cracks responsible for the 

failure of a specimen of a certain size under certain loading conditions. Therefore, it is 

desirable to use a statistical means to describe the strength behavior of brittle materials. 

In this chapter, statistical models of the strength of thin ceramic substrates with 

surface defects under piston-on-3-ball loading conditions are formulated using BatdorTs 

statistical theory and stress distribution functions derived in chapter 2. As will be shown, 

these models possess the form of a Weibull distribution function, making it possible to 

process the piston-on-3-ball biaxial flexural strength data using a Weibull treatment. 

During this study, it was noted that the thickness of the specimen had no effect on the 

failure distribution. Therefore, it was deemed that a reasonable thickness of the specimen 

disk could be selected for the piston-on-3-ball test in the case where the thickness is so 

small that the deflection of the center of the specimen exceeds half of the thickness (this 

thickness would invalidate the strength evaluation equation specified in ASTM F 394-

78). The strengths of seven different compositions of 8YSZ with dopants were tested 
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using the piston-on-3-ball method under valid test conditions. The results were then 

processed using the derived models. The failure distributions of two different thickness 

groups of 8YSZ specimens were similar, verifying that the thickness, indeed, has no 

effect on the failure distribution. 

3.1 Weibull distributions under uniaxial loading conditions 

Ceramic strength data are typically scattered over a wide range (compared to 

metal materials) and must be processed statistically. The Weibull distribution has been 

widely used in processing ceramic strength data in order to account for the wide 

scattering of such data. Weibull's strength theory of brittle materials is a pure statistical 

model. Previous research activities have mostly been focused on the application of the 

Weibull distribution to interpret strength data on the basis of uniaxial loading conditions. 

The two-parameter Weibull distribution and mean strength for several test methods for a 

volume distribution of flaws are listed in Table 3.1, in which V is the volume of the 

specimen, ob is a threshold value, m is the Weibull parameter, and F is the gamma 

function, which is defmed by 

exp(-t)c/r 

It should be careful that F must be non-dimensional if ob has dimensions of stress so that 

r should be expressed as r/Fo, where K is some chosen unit volume. If ^ is instead 

absorbed into oh then oh must have dimensions of stress times (volume)"'". 
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Table 3.1 
Two-parameter Weibull distribution and mean strength for several test metliods 
with a volume distribution of flaws 

Loading 
configuration 

Probability distribution of strength Mean strength 

Tension 
1-exp 

c y 

J  

r 
1 + -

m 

Pure bending 

Three-point 
bending 

Four-point 
bending with load 

at the quarter 
points 

Four-point 
bending with load 
at the third points 

I-exp 

1-exp 

1-exp 

/ 

1-exp 

< <^0 2{m + l) 

m 
V 

^0 J 

V(/« + 2) 

^0 J 4(w + l)' 

\ (J, V{m + 3) 

6(/n + l)^ 

U2(ra + l)f-r(l •y. m 

•K. 
+ • 

m, 

y '•/m 

4(/» + l)' 

ni + 2 

y 
( 1 ^ 

r  i+— 
m) 

O-o 6{m +1)' 
1/ 

y / m  /n + 3 

y. 

mj 

Although Weibull treatment of strength data of brittle materials has been widely 

applied under uniaxial stress loading conditions, there was no existing mechanism-based 

analytical method for deducing the statistics of fracture under more general stress states 

until Batdorfs theory was published (Batdorf and Crose, 1974; Batdorf and Heinisch, 

1978; Batdorf and Chang, 1979; Batdorf and Sines, 1980). Specific models still need to 

be developed to properly process the strength results obtained from biaxial stress loading 

tests. 
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3.2 Statistical models for piston-on-3-ball loading 

A physics-based statistical model must consider two key factors that dominate 

brittle fracture under multi-axial loading conditions—the statistical nature of fi^cture and 

the multi-axial stress state that causes the fracture. The statistics of fi^cture under multi-

axial stresses have been studied by Batdorf and his co-workers (Batdorf and Crose, 1974; 

Batdorf and Heinisch, 1978; Batdorf and Chang, 1979; Batdorf and Sines, 1980) and by 

Evans (1978). Although Batdorf and his co-workers and Evans proposed two different 

theories for multi-axial fractures, Chao and Shetty (1990) proved that the theories were 

equivalent if the same fracture criterion and flaw size distribution were used. 

Furthermore, they developed failure probability formulations based on Batdorf s theory 

for the test configurations of uniaxial tension, three- and four-point bending, and the ring-

on-ring method (Chao and Shetty, 1991). Although the intrinsic nature of multi-axial 

stress states near the crack tips was not accounted for, these models were an important 

advancement in the interpretation of the statistical nature of multi-axial brittle fractures. 

The Weibull treatment of strength data is usually employed in the ASTM standard 

test methods for uniaxial flexural strength of ceramic materials (ASTM C 1161-94, 1995; 

ASTM C 1211-92, 1995; ASTM C l273-95a, 1995). However, there is no suitable model 

to interpret the results obtained by the ASTM standard test method for the biaxial flexural 

strength of ceramic substrates (piston-on-3-ball method), perhaps due to the lack of 

statistical models for this loading configuration. Although rigorous theoretical proof does 

not exist, some researchers have heuristically fitted their piston-on-3-ball strength data 

with the standard Weibull distribution function and used the Weibull modulus to compare 
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the results obtained firom three- and four-point bending tests that had uniaxial stress states 

at the specimen surfaces (Cattell et al., 2001). This use points out the need for an 

analytical statistical model for the piston-on-3-ball test configuration so the statistics of 

the test data can be interpreted, analyzed, and applied properly. 

In the following, specific statistical models for the piston-on-3-ball method are 

formulated by following the same procedure used by Chao and Shetty (1991), who 

developed statistical models for many other loading conditions, such as uniaxial, three-

and four-point bending, and ring-on-ring loading configurations. The formulations are 

based on studies by two research groups: Batdorf and Crose (1974), who developed a 

general statistical theory for the fiacture of a brittle structure subjected to nonuniform 

multi-axial stresses, and Kirstein and Woolley (1967), who developed equations that 

could be used for evaluating the moments in the piston-on-3-ball loading configuration, 

which can then be used to derive formulations for evaluating the stresses in the tensile 

surface. Kirstein and Woolley's equations for the moments under piston-on-3-ball 

loading condition are summarized in the section 2.3.2. 

The stresses in the tensile surface are the key to the application of Batdorf s 

theory. The resultant specific statistical models for biaxial brittle fi-acture are applied to 

the strength analysis of 8-mol% yttria stabilized zirconia (8YSZ) thin substrates under 

piston-on-3-ball loading conditions. Since the specimens are tested at as-fired conditions, 

the fractures are considered to be initiated at defects in the tensile surface where the most 

significant tensile stresses occur. By SEM examination of the fracture surfaces of the 

tested specimen, Sel^uk and Atkinson (2000) revealed that the fi-acture of 8YSZ thin 
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substrates under ring-on-ring loading conditions was also initiated at defects in the tensile 

surface. Here, only statistical models with fractures caused by surface flaws are 

formulated. Multi-axial fractures initiated at volume flaws can be modeled in the same 

manner. 

3.2.1 Statistical models 

Batdorf and his co-workers developed a statistical theory for the fracture of brittle 

structures subjected to nonuniform multi-axial stress state (Batdorf and Crose, 1974; 

Batdorf and Heinisch, 1978; Batdorf and Chang, 1979; Batdorf and Sines, 1980). 

According to this theory, the probability distribution of strength under certain loading 

condition, which is also referred as the cumulative probability distribution or failure 

probability in the literature, due to surface defects is given by 

where F is the probability distribution of strength; cXcr is, according to Batdorfs 

definition, the remote critical normal stress that causes fracmre when a uniform uniaxial 

stress is applied normal to the plane of a crack; is the highest value that <Tcr can 

achieve; A is the tensile surface area; and Q is the solid angle containing the normals to 

all orientations for which the component of the applied stress normal to the crack plane is 

larger than <Jcr. In the case of a biaxial stress state (Figure 3.1), the solid angle is 

(3.1) 
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Figure 3.1 Critical angle for randomly oriented surface cracks in a biaxial stress 
state. 

where 6^ is the largest angle of the orientation of the crack associated with the critical 

stress <Tcr. All the cracks associated with the critical stress acr with orientation angles less 

than 6cr will lead to fracture. N{acr) is the crack size distribution function on the tensile 

surface, which gives the density of cracks having a critical stress less than or equal to Ocr-

Batdorf and coworkers proposed to represent N{Gcr) by a Taylor series. However, Chao 

and Shetty (1991) used a relatively simple form for the crack size distribution function 

where k and m are the scale and shape parameters, respectively, in analogy to the 

Weibull parameters. 

When Equation (3.3) is used to describe the crack size distribution, the probability 

distribution of strength has the form of 

(3.2) 

(3.3) 
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F = I - exp 

or 

-a"-kmlg 
K 

'^K)=l-exp 

where the scale factor h is evaluated by 

(3.4) 

f ^ \ f \ 

\ ^ b  J  

p dp dO (3.5) 

and To is the radius of specimen. 

Chao and Shetty (1991) considered two failure criteria to determine the solid 

angle. The first one was the critical normal stress criterion, which considered failure to be 

determined solely by the mode I loading of a crack. 

K , = K  ic (3.6) 

where K/ is the mode I stress intensity factor and Kic is the mode I fracture toughness of 

the material. The second failure criterion was the noncoplanar strain release rate criterion 

+ 
U-cJ V 

K. 

CK 
= 1 (3.7) 

/c.  

where Kn is the mode II stress intensity factor and C is a constant. This equation was 

originally suggested by Palaniswamy and Knauss (1978) using the shear-sensitivity 

parameter C as 
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C = J%'0.S2. 

Singh and Shetty (1989a) showed that C took values in the range of 1 to 2 for 

polycrystalhne ceramics under combined mode I and mode II loading conditions. The 

higher the value of C, the lower the shear sensitivity of the material. 

If the crack on the tensile surface is assumed to be in the shape of a half penny, 

the mode 1 and mode II stress intensity factors for a half-penny surface crack subjected to 

general remote loading are as follows (Kassir and Sih, 1966; Sih, 1984): 

K, = (3.8) 
v;r 

and 

yl;r{2-v) 

where ctn and r are normal and shear stresses, respectively, and Mi and Mn are free 

surface and stress gradient correction factors. Since Mr and Mu are approximately equal 

to each other (Smith and Sorensen, 1975; Newman and Raju, 1981), the two fracture 

criteria. Equations (3.6) and (3.7), become 

(T,v=o-,, (3.10) 

and 

o-„ 

IT 

C(2-v)o-„ 
= 1 (3.11) 
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For a general biaxial stress state at an arbitrary location on the tensile surface, the 

normal stress o;vand shear stress rcan be evaluated as 

crfj=— =- ^ ^cos(2») (3.12) 

and 

r = - ^ sin(2^) (3.13) 

By substituting Equations (3.12) and (3.13) into the critical normal stress 

criterion. Equation (3.10), and using Equations (2.10) and (2.11), acr/cTb is found to be 

^ _ (A^cos(2fl„) = (p,0,e„) (3.14) 
CT, 2 2 

Furthermore, by applying differentiation to Equation (3.14), we obtain 

f \ 
d =(/;-/,)sin(20,Jc/^„ (3.15) 

Therefore, by substituting Equations (3.14) and (3.15) into Equation (3.5), the scale 

factor /fl can be obtained as 

n{f:.)T''if.-A)M2eJpde,,dpd0 (3.i6) 

where H(fn) is the Heaviside step function. The reason for employing the Heaviside step 

function is to avoid counting the contributions from compressive normal stresses, since 

the compressive stresses normal to a crack will not cause fracture in brittle materials. An 
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analysis using the finite element method or Bassali's theory shows that the maximum 

principle stresses are compressive in the vicinity of the three support balls on the tensile 

surface. Therefore, fracture cannot occur there. 

The noncoplanar strain release rate criterion takes both the mode I and mode II 

loadings into consideration, which is more proper for shear-sensitive materials. The scale 

factor for this criterion can be obtained by substituting Equations (3.12) and (3.13) into 

Equation (3.11) and using Equations (2.10) and (2.11). Therefore, ajcjb and its 

differentiation are found to be 

<T, 
-^ = a{p.e.e„) 

/ ,  , +4/, 
(3.17) 

2C{2-v) 

and 

ec(p,e,0j 

J 89.. 
de.. 

f \  
o 

V ""A y 
8(/, -/,)'sin(20„)cos(20,J+2 ^ -/Jsin(20„) (3.18) 

de.. ~ N (T 
4 cr 

J 

- (/i + /:)+(/i - /2 )cos(20„,) 

In this case, the scale factor /g is obtained as 

rr/ i-  Mm-I '• dpde (3.19) 
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3.2.2 Sensitivity of the scale factor 

Equation (3.4), as well as Equations (3.16) and (3.19), shows that the probability 

distribution of strength of a thin ceramic substrate under the piston-on-3-ball loading 

condition is in the form of a Weibull distribution. The scale factor Ib is an important 

parameter in the probability distribution. Once the flaw size distribution function in the 

tensile surface, N{<Jcr), is determined, the smaller the scale factor /«, the smaller the 

failure probability at a certain strength level. Therefore, the scale factor Ib can be used as 

an indicator of reliability. The studies of the sensitivity of the scale factor Ib to the 

Poisson's ratio are shown in Figures 3.2 and 3.3, with a specimen geometry (radius of 

specimen ro = 15.9 mm, radius of support circle ri = 12.7 mm, and radius of loading area 

ri = 0.8 mm) recommended by ASTM F 394-78 and a shape parameter w = 7.1. 

0.4 

0.2 

• -
• • 
• -

Critical normal stress criterion 

Noncoplanar strain energy release rate criterion 

0.1 0.2 0.3 04 0.5 

Poisson's ration, i' 

Figure 3. 2 Variation of the scale factor /« for different fracture criteria (C = 0.82 
for the noncoplanar strain energy release rate criterion). 
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• C = 0.82 

•  C = 1 . 0  

^ C= 1.5 

C = 2.0 

• -

t 
t 

0.2 

0.1 0.2 03 04 0.5 

Poisson's ratio, i' 

Figure 3.3 Variation of scale factor Ib witii the noncoplanar strain energy release 
rate fracture criterion witii different values of the shear-sensitivity parameter C 

Figure 3.2 shows that the noncoplanar strain energy release rate criterion is safer 

to use than the critical normal stress criterion if the shear-sensitivity parameter C is 

chosen to be 0.82 as recommended by Palaniswamy and Knauss (1978), especially for 

brittle materials with small Poisson's ratios. This is because the noncoplanar strain 

energy release rate criterion takes mode II loading into account, in addition to the mode I 

loading. 

Figure 3.3 shows that the scale factor Ib depends on the value of the shear-

sensitivity parameter C. With C increasing from 0.82 to 2, the scale factor, Ib, increases. 

When checking the numerical values of these data, it was observed that the critical 

normal stress criterion is equivalent to the noncoplanar strain energy release rate criterion 
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provided the value of C is 2, which is the upper limit proposed by Shetty and coworkers 

(Shetty, 1987; Singh and Shetty, 1989a, b). 

3.2.3 Discussions 

With the cumulative probability distribution functions derived above, it has been 

proven that the Weibull distribution may also be used to describe the biaxial flexural 

strength of ceramic thin substrates under piston-on-3-ball loading conditions. As in the 

cases of three- and four-point bending experiments (Wachtman, 1996), the strength data 

can be fitted to a Weibull distribution function to obtain the Weibull parameters. In the 

case of piston-on-3-ball experiments, the Weibull shape parameter, m, and crack density 

scale parameter, ic, can be identified from a group of piston-on-3-ball test data. Equation 

(3.3) shows that these two parameters characterize the surface flaw population of the test 

material with associated specific material processing parameters. Therefore, they provide 

a method to estimate the fracture distribution of the same material with the same 

processing parameters, but with different geometry and loading conditions. For example, 

we can estimate the strength of a bar with three- or four-point bending conditions using 

the cumulative probability distribution formulations derived by Chao and Shetty (1991). 

Furthermore, with the stress distribution of a structure analyzed using a finite element 

program, the cumulative probability distribution can be numerically calculated following 

the same procedure as that applied to derive the cumulative probability distributions in 

this dissertation. 
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An important observation was made from the derivation of the cumulative 

probability distribution formulae. The thickness, h, of the specimen does not contribute 

anything to the final results as it is cancelled in the process of derivation, which can be 

seen in Equations (2.7)-(2.9). This is because we assumed that the fracture resulted from 

the surface defects. Changing the thickness does not change the surface crack 

distribution. Therefore, it provides us with a flexible way to prepare specimens. It is 

known from fracture mechanics that the geometry of the specimen has strong effects on 

the strength (Hoshide et al., 1998). Thus, in practice, the sizes of the specimens must be 

designed as close as possible to the sizes of the real structures. Sometimes, the actual 

structure must be designed to be very thin (< 0.5 mm), making its use as a specimen for 

piston-on-3-balI experiments impossible since such experiments require that the 

deflection of the specimen must be less than half of the thickness of the specimen to 

obtain valid data. When surface defects are the main fracture initiators, we can use test 

data from a group of reasonably thicker specimens to represent the fracture distribution of 

the thin structure. 
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3 J Experimental results 

The experiments were performed at room temperature with a hydrauiically driven 

material testing system (MTS 810) with a piston moving speed of less than 1.27 >im/sec. 

The outputs of piston loading forces and specimen central deflection signals from the 

MTS 810 controller were recorded simultaneously using a National Instrument PCI-MIO-

16XE-50 multifunction DAQ board that was installed in a personal computer. A data-

acquisition control program was developed using Lab VIEW 6/. Then, MATLAB 5.1 was 

used to process the original data. The statistics toolbox of MATLAB was used to do the 

Weibull analysis. 

A typical loading trace is shown in Figure 3.4, which shows that the load 

increases linearly with deflection until failure, indicating a brittle failure at the peak load. 

The linearity of load with deflection is consistent with the analytical results derived by 

Kirstein et al. (1966). 

The strength data were evaluated by the peak load using the equation for the stress 

at the center of the tensile surface, Equation (2.1). The Poisson's ratios for these material 

compositions are chosen to be 0.315 as suggested by Sel?uk and Atkinson (2000), since 

Poisson's ratio for YSZ ceramics is reported in literatures to be 0.30-0.32 and is relative 

insensitive to both composition and temperature (Kandil, Greiner, and Smith, 1984; 

Hendriksen and Jergensen, 1996). 
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Pure 8YSZ 

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 

deflection (mm) 

Figure 3.4 A typical loading trace of the piston-on-3-ball experiment. 

Table 3.2 lists the strength data obtained from the piston-on-3-ball experiments. 

Then, the data were fitted to the Weibull cumulative probability distribution function 

using the method of maximum likelihood (Jayatilaka, 1979), 

^(o-6)=l-exp 
J  

(3.20) 

where F(oi) is the probability distribution of strength, ofc is the fracture stress, <To is a 

scale factor which usually take a value of the mean of the fracture stress data, Ve is a 

effective volume which is a representative volume in analogy to the volume term in a 

standard Weibull distribution function such as those listed in Table 3.1, and m is the 

Weibull modulus. 
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Table 3.2 
Biaxial flexurai strengtii data (MPa) from quasi-static piston-on-3-ball experiments 
at ambient temperature 

8YSZ 

{h = 0.76 mm) 

8YSZ 

(A = 0.41 mm) 
lA 2A 3A lY 2Y 3Y 

348.5 375.2 353.2 317.8 333.9 301.8 321.1 267.4 

355.7 360.1 344.1 318.9 336.6 182.7 339.3 357.5 

285.8 469.8 397.1 260.7 254.0 245.3 335.2 362.1 

306.6 344.0 336.1 285.7 402.6 326.1 292.0 284.6 

280.1 387.4 219.4 299.6 320.8 307.4 267.8 351.6 

296.3 318.2 268.4 276.7 349.9 250.9 368.2 406.0 

256.7 451.0 382.2 249.5 251.8 375.3 324.6 

346.4 327.3 313.5 301.9 233.2 262.0 330.6 

335.4 336.5 290.2 309.0 245.8 346.0 411.2 

333.3 236.0 330.1 349.7 212.1 314.3 330.4 

330.3 387.5 306.0 290.8 257.3 301.0 

337.1 248.3 296.9 208.0 308.7 245.1 

273.5 273.4 346.9 243.6 232.9 306.7 

302.7 437.6 271.9 230.9 194.9 277.4 

321.2 286.7 210.2 290.4 309.9 

355.0 357.7 288.8 

249.2 378.2 271.3 

283.9 292.3 

337.5 293.6 
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303.9 185.3 

382.6 301.3 

381.2 302.7 

280.3 267.9 

356.2 319.2 

179.6 284.6 

363.5 265.0 

393.2 271.5 

339.1 95.4 

274.1 159.9 

297.4 172.9 

388.9 367.6 

218.2 263.8 

210.9 

275.3 

299.4 

In the case of piston-on-3-balI biaxial flexural strength experiments, the scale factor of 

the crack size distribution function [see Equation (3.3)], is 

- ;r 1 F 
A : = - — ( 3 . 2 1 )  

2 ml^ cj; 

The data are shown as linearized Weibull plots in Figures 3.5-3.11, and the associated 

Weibull parameters are listed in Table 3.3. 
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Figure 3.5 Weibull probability plot of the biaxial flexural strength of 8YSZ from 
the piston-on-3-ball experiments at ambient temperature. 

Figure 3.6 Weibull probability plot of the biaxial flexural strength of 1A from the 
piston-on-3-ball experiments at ambient temperature. 
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Figure 3.7 Weibull probability plot of the biaxial flexural strength of 2A from the 
piston-on-3-ball experiments at ambient temperature. 

Figure 3.8 Weibull probability plot of the biaxial flexural strength of 3A from the 
piston-on-3-ball experiments at ambient temperature. 
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Figure 3.9 Weibull probability plot of the biaxial flexural strength of 1Y from the 
piston-on-3-ball experiments at ambient temperature. 
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Figure 3.10 Weibull probability plot of the biaxial flexural strength of 2 Y from the 
piston-on-3-ball experiments at ambient temperature. 
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Figure 3.11 Weibull probability plot of the biaxial flexural strength of 3Y from the 
piston-on-3-ball experiments at ambient temperature. 
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Table 3.3 
Weibull parameters fitted from experimental results and biaxial Hexural strengths 
at ambient temperature 

Ceramic Weibull Parameters Strength (MPa) 
Alias 

m K Mean std. 

8YSZ 7.44 0.62 310.8 51.1 

(5.24,9.65)* (0.40,0.84) 

lA 8.36 0.61 322.3 46.9 

(4.51, 12.21) (0.31,0.92) 

2A 7.93 0.62 276.9 41.9 

(4.30, 11.56) (0.30,0.93) 

3A 8.69 0.62 333.0 48.0 

(2.13, 15.25) (0.14, 1.10) 

lY 5.68 0.64 257.6 56.5 

(4.37, 7.00) (0.40,0.87) 

2Y 10.04 0.61 317.4 37.7 

(4.48, 15.60) (0.29,0.92) 

3Y 8.81 0.62 342.6 46.0 

(2.69, 14.92) (0.24, 1.00) 

Inside the brackets is the 95% confidence interval. 

In order to verify that the thickness of specimen does not contribute to the final 

cumulative probability distribution form, another group of 8YSZ specimens with 

different thickness were tested. The results are shown in Figure 3.12 and listed in Table 

3.4. The 95% confidence intervals of the Weibull parameters from these two groups of 

tests overlap and their mean strengths are close to each other. These test results also 
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verify the validity of the new model for biaxial flexural strength under piston-on-3-ball 

loading conditions developed in this study. 
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Figure 3.12 Weibull probability plots of the biaxial flexural strengths of 8YSZ with 
different thickness (+, solid line, h = 0.76 mm; o, dashed line, h = 0.41 mm) from the 

piston-on-3-ball experiments at ambient temperature. 

Table 3.4 
Weibull parameters and biaxial flexural strength for 8YSZ with different specimen 
thickness 

Thickness Weibull Parameters Strength (MPa) 

m V, Mean std. 

0.76 7.44 0.62 310.8 51.1 

(5.24, 9.65)' (0.40, 0.84) 

0.41 5.83 0.64 342.6 46.0 

(2.62,9.04) (0.30, 0.98) 

Inside the brackets is the 95% confidence interval. 
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3.4 Summary 

Failure probability distribution function formulae for piston-on-3-ball loading 

conditions have been derived following Chao and Shetty's (1991) procedure for surface 

defects and using Batdorf s theory for biaxial flexural bending statistical model (Batdorf 

and Crose, 1974; Batdorf and Heinisch, 1978; Batdorf and Chang, 1979; Batdorf and 

Sines, 1980), and Bassali's (1957) theory for the evaluation of biaxial flexural bending 

stresses. The final formulae are in a form of the Weibull cumulative probability 

distribution function. Therefore, the experimental data fi-om piston-on-3-ball tests can be 

processed with the Weibull treatment. The Weibull parameters are proven to be the 

characteristics of the population of surface defects. Therefore, these Weibull parameters 

can be used to predict the failure behavior of the tested material under other loading 

conditions. 

Seven different compositions of 8YSZ with dopants were tested using the piston-

on-3-ball method. The experimental results were processed using the Weibull treatment. 

The experimental data of 8YSZ with different thickness verify the fact that the thickness 

of the specimen does not have an effect on the failure probability distribution, which is 

derived from the statistical models. This fact indicates that the fracture of the 8YSZ 

substrates is indeed a result of surface defects. 



77 

CHAPTER 4 

DYNAMIC BIAXIAL FLEXURAL STRENGTH UNDER PISTON-

ON-3-BALL LOADING CONDITION 

In this chapter, a dynamic piston-on-3-ball experimental technique is developed 

for a biaxial flexural strength test of thin ceramic substrates at high loading rates. 

Analytical modeling of the technique guides the experimental design and is used to judge 

the validity of experimental results. 

Although material models have been proposed to describe the dynamic 

constitutive behavior of brittle materials under constant strain-rate loading, few efforts 

can be found to explain such dynamic behavior under constant stress-rate loading, which 

is the condition presenting many dynamic experimental techniques and is significant in 

practical use. In this chapter, a new model for dynamic strength under constant stress-rate 

loading for brittle materials is formulated based on the concept of cumulative damage. 

Pure and doped ceramic material 8YSZ thin sheets are tested with the newly developed 

dynamic piston-on-3-ball method under high stress-rate loading conditions. The 

experimental results with the dynamic piston-on-3-ball loading as well as those with the 

quasi-static piston-on-3-ball loading presented in chapter 3 are used to determine the 

constants in this new model. The model is found to give a good description of the 

dynamic constitutive behavior of brittle thin sheets under biaxial bending. 
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4.1 Dynamic piston-on-3-ball technique 

The solid oxide electrolyzer on a spacecraft has to survive impact and vibration 

during launching from Earth and landing on other planets in order to produce oxygen in-

situ, which is critical to return missions and human space exploration. It is mandatory to 

ensure the structural integrity of the electrolyzer over the duration of the entire space 

mission, which also calls for reliable multiaxial strength data under dynamic loading 

conditions. Unfortunately, there is a lack of experimental techniques that can provide 

such critical data for thin and brittle sheets of materials. In this section, an experimental 

method is presented that can determine the dynamic biaxial flexural strength (dynamic 

modulus of rupture). This new technique is based on a quartz-crystal-embedded split 

Hopkinson pressure bar (Chen, Lu, and Zhou, 2000) and the piston-on-3-ball testing 

configuration. The desired dynamic loading rates can be properly controlled under 

laboratory conditions. The range of loading rates from which valid data can be obtained 

is analytically determined. Using this new technique, the loading rate effects on the 

modulus of rupture of 8YSZ thin substrates are determined. 

4.1.1 Experimental setup 

Although a hydraulically driven material testing system can also provide a ramp 

loading with flexible adjustments to control parameters, it is not proper to perform an 

impact test since the limited dimensions of the system prevent the possibility to obtain the 

transmitted force signal without overlapping with the reflected signal. Since no pure 



79 

transmitted force signal available, it is impossible to judge if the specimen is in a force 

equilibrium state, which is important to avoid the inertial effects on the test results. In 

addition, the load cells used on a hydraulically driven material testing system is based on 

a strain gage technique, which offer only a limited frequency response range that is 

usually not wide enough for an impact test. 

In order to maintain the same experimental conditions, except for the loading 

rates, the test section of the dynamic piston-on-3-ball experimental facility is identical to 

the test section of the standard quasi-static piston-on-3-ball setup. The configuration of 

the dynamic piston-on-3-baII method is shown schematically in Figure 4.1. 

Instrumented hammer 
^Incident bar 

Quartz force transducer 
Transmission bar 

SID 

025.4 mm 

Incident 
bar 

- Supports 
Specimen (thin sheet) 

Figure 4.1 A schematic of the dynamic piston-on-3-ball setup. 



80 

The working principle of the new method is similar to that of a split Hopkinson 

pressure bar (SHPB) (Graff, 1975; Gray, 2000). A valid SHPB test should be the same as 

a quasi-static compression test except for the loading rates. Similarly, the dynamic piston-

on-3-ball test is the same as its standard quasi-static counterpart except for the loading 

rates. 

In the experimental setup shown in Figure 4.1, a PCB impact hammer (model 

086C01), which can output the impulse force signal by its embedded force transducer and 

adjust the impulse shape (loading rate) by applying different hammer tips, is used as the 

dynamic load generator. The incident bar is made of stainless steel with a diameter of 

1.60 mm and a length of 80 mm. The thin specimen is supported by three 3.18-mm-

diameter ball bearings. All of the parameters associated with the piston-on-3-ball setup 

are the same as those suggested in the ASTM standard F 394-78. The transmission bar is 

made of a 32-mm-diameter 7075-T6 aluminum alloy bar with a Valpey-Fisher X-cut 

quartz crystal disk of the same diameter embedded in the middle of the bar about 560 mm 

from the end close to the specimen to directly measure the time-resolved transmitted 

force. This quartz-crystal-embedded transmission bar technique can significantly increase 

the signal-to-noise ratio (SNR) during a SHPB test of a weak material without affecting 

the wave propagation (Chen, Lu, and Zhou, 2000). A National Instrument NI6110 A/D 

board, whose sampling rate per channel can be up to 5 MS/s, is used to sample the force 

signals from the hammer and quartz. A computer program developed using Lab VIEW 6/ 

is used to control the sampling processes during experiments. 
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The test procedure for the dynamic piston-on-3-ball experiment is similar to that 

of a SHPB test (Gray, 2000). An impulse load is applied on the center of the ceramic 

substrate specimen by the hammer through the incident bar. Part of the loading pulse is 

then transmitted through the specimen to the transmission bar. The time-resolved impulse 

forces in the hammer and the transmission bar are recorded simultaneously. Because of 

the wave propagation effects, the force signal from the transmission bar possesses a phase 

delay to the force signal from the hammer. The specimen is broken when the impulse 

force applied by the hammer reaches a high enough amplitude. The impulse peak and the 

loading rate can be determined from the recorded signals. Once the load peak is 

determined, the biaxial flexural strength, o>, at the center of the specimen surface in 

tension can be calculated using equation (2.1) derived by Kirstein and Wooley (1967) for 

quasi-static experiments, which requires the forces on both sides of the ceramic substrate 

to be in equilibrium. 

To obtain the dynamic material strength data without the effects of inertia, which 

is commonly associated with impact loading, the forces on both sides of the specimen 

must be nearly the same during a dynamic experiment. If inertia effects are included in 

the axial force records, material strength data cannot be determined reliably, resulting in 

an invalid dynamic experiment. To examine if the specimen is in dynamic force 

equilibrium, the impulse force histories from both the hammer and the transmission bar 

are recorded; the loading rates can then be calculated from these two force records. The 

specimen is considered to be in dynamic equilibrium if these two loading rates are nearly 

equal to each other before the specimen is broken. When the loading rate exceeds a 
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certain level, it will be impossible to achieve dynamic force equilibrium. As discussed in 

the next section, this sets the upper limit of the loading rate for this experimental method. 

4.1.2 Design of valid dynamic experiments 

To evaluate the biaxial flexural strength of thin substrates without the effects of 

inertia using equation (2.1), it is necessary to maintain the dynamic force equilibrium on 

the specimen through the employment of a nearly constant slope ramp-loading. A ramp-

loading pulse eliminates axial acceleration over most of the loading duration. This 

requirement of equilibrium limits the range of the allowable loading rates within which 

the dynamic force equilibrium can be achieved. Similar to the case of understanding the 

valid strain rate range in SHPB experiments on ceramics (Ravichandran and Subhash, 

1994a), it is important to know the limits of the loading rate for valid results on biaxial 

flexural strength. The loading rate and the frequency components of a force pulse can be 

determined approximately by its amplitude and duration. To determine if a specific 

loading profile can produce valid data, it is necessary to determine the first resonant 

frequency of the specimen within the specific boundaries of the experimental setup. If the 

highest frequency component of the loading pulse is much lower than the first resonant 

frequency of the specimen, the specimen is approximately in its equilibrium state. 

Furthermore, if the loading rate is nearly constant, the brittle specimen will deform at a 

nearly constant velocity, which eliminates the inertia effects. To study the problem of 

specimen dynamic equilibrium, the experimental configuration is modeled as a multi-

body dynamic system as shown in Figure 4.2. 
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Figure 4.2 Free-body diagrams of tiie analysis model. 

In this model, the ceramic substrate specimen is modeled as a single-degree mass-

spring system with mass m and elastic constants Ki and AT? because only the frequencies 

under the first mode of the disk are concerned. The elastic constants Ki and K2 of the 

springs can be assumed to be half the elastic constant obtained fi-om quasi-static piston-

on-3-ball experiments on the ceramic substrate. The incident bar is modeled as a short 

longitudinal rod with length /, cross-section area Ai, Young' modulus £"/, and material 

density pi, while the transmission bar is modeled as a half infinite-length longitudinal rod 

with cross-section area A2, Young's modulus E2, and material density p2. The 'oading 

pulse, F, generated by the hammer is applied to one end of the incident bar. The 

coordinate x and displacement u with subscript I are associated with the incident bar, 

while those with subscript 2 are associated with the transmission bar. One-dimensional 

wave propagation theory is used to model the waves in the two bars. 

In general, the equation of motion for a straight and constant cross-section rod is 

d'u 1 d^u _ Q 

dx' CQ dt^ 
(4.1) 
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where is the bar wave velocity in the elastic rod. The D'Alembert solution 

(Graff, 1975) to this equation is 

m(x, /) = /(.r - Cgt)  + g{x + Co/) (4.2) 

The first term on the right-hand side represents a forward-moving wave and the second a 

backward-moving wave. In an idealized half infinite-length longitudinal rod such as the 

transmission bar, only a forward-moving wave exists. In a short bar such as the incident 

bar, waves travel back and forth and overlap each other. 

To facilitate the computer simulation, spectral analysis method based on a discrete 

Fourier transform (DFT) (Doyle, J., 1989) is applied. Therefore, Equation (4.2) can be 

transformed into 

4r,/)= (4.3) 
n=0 

where N is the length of the DFT, U(x;n) are the DFT components of the displacement 

iifx.t), o)„ is the angular frequency, and n is an index. Substitution of Equation (4.3) into 

(4.1) yields an ordinary differential equation, which has a solution as 

U{x,n)  = ae-""  +be" ' '  (4.4) 

where k = . The coefficients a and b are undetermined amplitudes that 

depend on each frequency. Substitution of Equation (4.4) back into Equation (4.3) yields 
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the final solution, which includes a forward-moving wave and a backward-moving wave 

as the D'Alembert solution, 

u{x, t )  = (4.5) 
rt=0 /I=:0 

Equation (4.5) is a general DFT solution to the longitudinal wave propagation in 

rods and can be applied to both incident and transmission bars. However, the second term 

does not exist in the transmission bar where no backward-moving waves exist. Therefore, 

the displacements of the incident bar and transmission bar are 

"i (4.6) 
/i=0 rt=0 

and 

(4.7) 
n=0 

Boundary conditions must be applied to determine the coefficients a/, bi, and 02. 

One end of the incident bar is subjected to the load F(t) generated by the hammer. The 

other end is resisted by force f|, which is from the spring K/. When the bar material is 

linearly elastic, both forces can be related to the respective displacement gradient at the 

bar ends in the forms of 

dr, 
= (4.8) 

.t,=0 

and 
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dx, 

/V-l 

(4.9) 
.r,=/ /|sO 

The end of the transmission bar is subjected to the force f:, which is the resistive force of 

the spring K2, 

EjA^ 
du2(x2, t )  

dx. 

JV-I 

(4.10) 
.r>=0 

The lumped mass of the specimen moves according to Newton's second law, 

f f ^ "3 f2-f .  ='"—7^ 
dr 

(4.11) 

which should vanish in an ideal dynamic experiment. In addition, the linear elasticity of 

the springs is described by 

f, = ^,[1/3 -M, (/,/)] (4.12) 

and 

^^2 = ^2["2(O,0-"3] (4.13) 

These boundary conditions can be written in terms of the corresponding Fourier 

components as follows: 

• ik^E^A^a^ +ik^E^A^b^ =F 

-ik ,E,A^e- ' ' ' 'a^  +ik ,E^A^e" ' 'b ,  =/, ikJ I 

(4.14) 

(4.15) 

- ik .E.A.aj  =/, (4.16) 
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f i - fy  =-mo)^„Uj 

y; = K^U, - A-.a.c"'*'' -K^b.e"'' 

f ,=K,a,-K,U,  

In matrix form, Equations. (4.14) - (4.19) are written as follows: 

(4.17) 

(4.18) 

(4.19) 

-ik^E\ A\ ik^E^A^ 0 0 0 0 'f' 

ik^E^A^e-'"'' ik^E.A^e'"'' 0 -1 0 0 0 

0 0 ik-^E^A-^ 0 1 0 ^2 0 

0 0 0 -1 1 ma: /. 0 

0 1 0 - K ,  /2 0 

0 0 ^2 0 -I 1 

1 .^3. 0 

(4.20) 

While these equations can be solved explicitly, an examination of the dynamic 

equilibrium of the specimen by means of analyzing the transfer function between fi and fi 

will be made here. From Equation (4.20), the transfer function, between f| and 

f2, which should be unity in an ideal experiment, can be solved. 

/, 
1 -

^2 , 
+ / 

mco_ 
(4.21) 

Since the parameters m and K: are determined by the material and geometry of the 

specimen, and p: and E2 are determined by the transmission bar material (aluminum 

alloy), the only parameter that can be adjusted is the cross-sectional area A2 of the 

transmission bar. Increasing A2 can reduce the deviation of //, from unity. However, the 

choice of A2 depends on the cross-sectional area of the available quartz embedded in the 
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transmission bar. A typical variation of Hi as a ftinction of frequency is shown in Figure 

4.3, with the parameters taken from the experimental setup for this research, where the 

specimen mass m is 3.314x10'^ kg, the specimen elastic constant K: is 0.3569x10^ N/m, 

the transmission bar cross-sectional area A2 is 1.9\12^\Qi^ m", the transmission bar 

material density p2 is 2800 kg/m^, and the transmission bar material Young's modulus E? 

is 72 GPa. As shown in Figure 4.3, the first resonant frequency is 

=1651.7 Hz 

ffl 40 

200 400 600 800 1000 1200 1400 1600 1800 2000 

Frequency (Hz) 

200 400 600 800 1000 1200 1400 1600 1800 2000 

Frequency (Hz) 

Figure 4.3 Variation of/2/fI ratio with frequency (m = 3.314x10'^ kg, K2= 
0.3569x10'N/m,p2= 2800 kg/m\ A2= 7.9173x10"^ln^ and £2= 72 GPa). 
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Figure 4.3 also shows that the specimen is approximately in the equilibrium state 

if the applied load is bandlimited within ///'s 3-dB point, 

/,"• < 892.7 Hz 

Equation (4.21) is very illustrative in determining the highest frequency 

component of the force pulse that can pass through the specimen without significant 

dispersion. In practice, however, it is not convenient to use in judging if the specimen is 

in the equilibrium state, because the frequency analysis of the signal f| is impossible since 

the time history of f| is not available. Therefore, another tool must be devised to ensure 

specimen equilibrium. 

Equation (4.20) also facilities the transfer function Hi between F and fj, which is 

the dynamic force response at the point of the quartz force transducer in the transmission 

bar due to the applied load of the hammer. 

PF ^^ F 

) ^1..  Yi , m(o;\ 

(4.22) 

where = iky £, /I,, ^2 = '^2^2 ̂ 2, and = e'*''. The time histories of both F and f: are 

available from the signal records of a test. 

A typical transfer function, Hi, whose parameters are m (3.314x10"^ kg), AT/ 

(0.3569x10^ N/m), Kj (0.3569x10^ N/m), / (0.08m), p, (7800 kg/m^). A, (2.0111x10-^ 

m^', E, (200 GPa), p2 (2800 kg/m^), A2 (7.9173x10"^ m"), and E2 (72 GPa) is shown in 
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Figure 4.4. Again, these are the actual values used in this research. The first resonant 

frequency is 

= 1344.4 Hz 

60 

"H 20 -

eo 

-20 
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i 

1 
1 

1 
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Frequency (Hz) 

Figure 4.4 Variation off2/F ratio witii frequency (m = 3.314x10"^ kg, Ki = 
0.3569X 10' N/m, K: = 0.3569x lO' N/m, I = 0.08 m, pi = 7800 kg/m^ /I / = 2.0111 x 10^ 

nl^ El = 200G Pa, p2 = 2800 kg/m\ A2 = 7.9173x 10"^ nl^ and E2 = 72 GPa). 

It is shown in Figure 4.4 that the load pulse applied by the hammer will propagate to the 

transmission bar without significant dispersion if the applied load by the hammer is 

bandlimited within HiS 3-dB point. 

=684.1 Hz 
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The first resonant frequency of Hx (Z^"'= 1651.7 Hz)—the first resonant 

frequency of the specimen/transmission bar system—is definitely higher than the first 

resonant frequency of H2 {/"• =1344.4Hz)—the first resonant frequency of the 

incident bar/specimen/transmission bar system—because Hx is a subsystem of Hi. The 

first resonant frequency of a system cannot be higher than that of its subsystem. 

As a result, if the hammer load is bandlimited within f"- , the load will propagate 

through without significant dispersion and, therefore, the specimen is in a dynamic 

equilibrium state. In other words, the specimen is in a dynamic equilibrium state if the 

input load pulse by the hammer can propagate through the specimen into the transmission 

bar without dispersion, i.e., all of the frequency components of the input pulse can pass 

through with gain 1 and without phase distortion. 

The decrease in the first resonant frequency of //,(//'') is due to the incident bar. 

A parametric study shows that the smaller the length, diameter, and mass density of the 

incident bar, the closer the first resonant frequency of Htif"') to the first resonant 

frequency of ). The Young's modulus of the incident bar is not a significant 

factor since the out-of-plane stiffness of the thin ceramic specimen is much lower than 

the stiffness of the incident bar. The effects of the length, diameter, and mass density of 

the incident bar on the first resonant frequency of Hiif"') are shown in Figures 

(4.5)~(4.7), respectively. In these figures, the parameters of the whole system are the 

same as before except for the one being examined. 
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Figure 4.5 Variation of tiie first resonant frequency witii tiie length of incident bar 
(m = 3.314xl0-^ kg, Ki = 0.3569x10® N/m, ii:2= 0.3569x10® N/m, p, = 7800 kg/m\ Aj = 

2.0111x10^ £/= 200 GPa,p2= 2800 kg/m\/42= 7.9173x10-^ m\ and 72 
GPa). 
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Figure 4.6 Variation of the first resonant frequency with the diameter of incident 
bar (m = 3.314x10-^ kg, Ki = 0J569xl0® N/m, ^2= 0.3569x10® N/m, I = 0.08 m,p, = 

7800 kg/m^/I/= 2.0111x10-^ m^ £/= 200 GPa,p2= 2800 kg/m\ /<2= 7.9173x10"^ m^ 
and £2=12 GPa). 
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Figure 4.7 Variation of the first resonant frequency with the density of incident bar 
(m = 3.314x10-' kg, Ki = 0.3569x10' N/m, *0= 0J569xl0' N/m,/ = 0.08iii,p/ = 7800 
kg/m\ Ai = 2.0111X10^ ln^ E/ = 200 GPa,p2= 2800 kg/m\7.9173x10^ m^ and 

£ 2 = 7 2  G P a ) .  

The upper limit of the first resonant frequency of Hiif"'), which is the first 

resonant frequency of ), is determined by the mass and stiffness of the specimen 

provided all of the parameters of the transmission bar are given. Fortunately, ceramics 

usually possess high stiffness, which allows a high loading rate while maintaining 

dynamic equilibrium. Therefore, reducing the mass of the specimen will raise the first 

resonant frequency of Hiif"'). On the other hand, the lower limit in the loading rate is 

set by the length of the transmission bar. The rise time of the loading pulse must be 

increased if the loading rate decreases. When the length of the transmission bar is finite, 

the forward-moving wave and the backward-moving wave reflected from the free end 

will overlap if the rise time of the loading pulse is long enough. The criterion for the 

upper limit of the rise time is as follows: 
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(4.23) 
Co 

where is the rise time of the loading pulse, L\ is the length of the transmission bar 

section between the quartz force transducer and the free end, and cl is the bar wave 

velocity of the transmission bar. 

In summary, the design of a valid dynamic biaxial bending experiment involves 

the proper selection of a set of experimental parameters for a given specimen. When a 

specific thin ceramic substrate needs to be tested for dynamic strength, the specimen out-

of-plane stiffness K is measured by the quasi-static piston-on-3-ball experiment first. 

Then, the highest possible frequency component of the loading pulse is determined by 

Equation (4.21). The aluminum alloy of the transmission bar material is a requirement for 

the quartz-crystal-embedded split Hopkinson pressure bar technique because the 

mechanical impedance of an aluminum alloy is approximately equal to that of the quartz 

crystal. The diameter of the transmission bar is 32 mm, according to the diameter of the 

specimen suggested by the standard of ASTM F 394-78. A proper hammer tip then can 

be designed according to the desired loading rate, where the loading pulse must only 

comprise frequency components with a frequency much lower than the first resonant 

frequency of //,(f"'). At this stage, the hammer impulse spectrum is analyzed to create 

the relation between the loading rate and the highest frequency components in the loading 

pulse. An incident bar is then designed using Equation (4.22). A proper incident bar 

design facilitates judging of the specimen equilibrium by comparing the hammer load 
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signal and the transmission force signal. The specimen is in an equilibrium state if the 

hammer load propagates without dispersion. Finally, the length of the transmission bar is 

determined by Equation (4.23). The length of the transmission bar before the embedded 

quartz should be greater than 20 diameters of the transmission bar (Kennedy and Jonse, 

1969). 

The dynamic piston-on-3-ball experimental setup designed for this research 

purpose is shown in Figure 4.8. Figure 4.9 shows the test section of this experimental 

setup as well as the instrumented hammer. There is also a set of laser device shown in 

these pictures, which is used for the purpose of specimen deflection measurements. 

Figure 4.8 Overall view of tlie dynamic plston-on-3-ball experimental setup 
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Figure 4.9 Test section witii the instrumented hammer and a set of laser device for 
specimen deflection measurements. 

4.1.3 Experiments 

Experiments on 8YSZ substrates and its doped versions are conducted using the 

dynamic piston-on-3-ball technique. 

4.1.3.1 Data processing 

Calibrations of measurement instruments are important for obtaining accurate 

data from experiments. The instrumented hammer has been well calibrated by the 

manufacturer, PCB Piezotronics Inc., with linearity error < 1.0% on the calibration 

certificate. However, the quartz crystal disk embedded in the transmission bar for 

measuring transmitted forces is assembled in the lab. The vender, Valpey-Fisher, 
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provided only a nominal sensitivity. Therefore, it is necessary to calibrate this transducer 

with its accessory, a charge amplifier. 

Many methods can be employed to calibrate the quartz crystal disk embedded in 

the transmission bar. In this research, the well-calibrated hammer is used as a standard 

transducer to calibrate the quartz crystal disk. The calibrating procedure is only hitting 

the end of the transmission bar without the test section installed on. Signals from the 

hammer and the quartz crystal disk are sampled simultaneously. In this case, the force 

generated by the hammer must transmit into the transmission bar without significant 

dispersion. Since the sensitivity of the instrumented hammer is known, the sensitivity of 

the quartz crystal disk can be obtained by comparing these two force signals. 

Another problem must be solved before calculating the final strength of the 

specimen is the 60-Hz electrical noise. It is difficult to apply a physical shield on the 4-

meter long transmission bar (Figure 4.8) to avoid the effect of static electricity. 

Therefore, digital signal processing is a practical method to filter the 60-Hz electrical 

noise, which always exists in the force signals recorded from the quartz crystal disk 

embedded in the transmission bar, as shown in Figure 4.10. The amplitude of the 60-Hz 

electrical noise is large enough to affect the accurate evaluation of the peak load if not 

filtered. 
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Figure 4.10 Typical recorded force signal from the transmission bar. 

Many digital filter design method can be used to design a band-resist filter to 

exterminate the 60-Hz component in this signal. However, even a linear phase finite 

impulse response (FIR) digital filters will inevitably change the wave shape of this signal 

since a digital filter filters 60-Hz electricity noise as well as the 60-Hz component of the 

loading signal. Since the signal needs no real-time processing, a relative simple 

processing method can be applied. The recorded force signal from the quartz crystal disk 

embedded in the transmission bar can be expressed as linear combination of a 60-Hz 

sinusoidal wave and a pulse wave. 

^QuarrX^) = « cos(l 20;zr + «!?)+ S^it) 
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where the first term on the right hand side is the 60-Hz sinusoidal wave with amplitude a 

and phase delay <p, and the second term is the desired pulse wave. We can just over-

sample the quartz crystal disk signal with a large pre-trigger scans as shown in Figure 

4.10. The front part of pure 60-Hz electricity noise then can be used to identify the 

amplitude a and phase delay <p of the sinusoidal wave by employing a non-linear least 

squares data fitting technique such as the function nlinfit provided by MATLAB 5.1 

statistics toolbox. Once the 60-Hz sinusoidal wave is determined, the desired pulse wave 

can be obtained by simply subtracting the 60-Hz sinusoidal wave from the quartz crystal 

disk signal. 

•^r (0 = ^Quarr. i t ) -a  cos(l IQm + (p)  

Here, it has been assumed that the 60-Hz electricity noise is stable within a short period 

of time (-25 ms). 

Typical force traces involving a 32-mm diameter, 0.72-mm thick 8YSZ ceramic 

specimen after removing the 60-Hz electricity noise are presented in Fig. 4.11. Figure 

4.11 shows that the specimen was in the dynamic force equilibrium state, since the 

loading rate in hammer (3.3958>:10^ N/s) was almost the same as in the quartz 

(3.3974xlO^N/s). 
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Figure 4.11 Typical force traces after filtering the 60 Hz noises. 

The transmitted force signal represents the actual load applied on the specimen 

provided the length of the transmission bar before the embedded quartz is larger than 20 

diameters (Kennedy and Jonse, 1969) and the length after the quartz is enough to avoid 

overlapping of the reflected wave on the forward-moving wave. The force peak from the 

hammer is always higher than the force peak from the quartz signal because the specimen 

failure signal needs time to propagate through the incident bar back to the hammer. 

Therefore, the biaxial flexural strength of the specimen should be evaluated using the 

signal recorded by the quartz force transducer in the transmission bar. 
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4.1.3.2 Experimental results 

Dynamic piston-on-3-ball experiments were performed on all the available 

specimens with chemical compositions listed in Table 1.2. 

The strength data were evaluated by the peak load from the quartz force 

transducer in the transmission bar using the equation for the stress at the center of the 

tensile surface, Equation (2.1). The Poisson's ratios for these material compositions are 

chosen to be 0.315 as suggested by Sel^uk and Atkinson (2000), since Poisson's ratio for 

YSZ ceramics is reported in literatures to be 0.30-0.32 and is relative insensitive to both 

composition and temperature (Kandil, Greiner, and Smith, 1984; Hendriksen and 

Jorgensen, 1996). The final experimental results, dynamic strengths, are listed in Table 

4.1 with corresponding constant stress rate. 

It is hard to obtain an overall picture of the dynamic strengths through the limited 

number of data listed in Table 4.1 if the scatter characteristic of the strength of ceramics 

is taken into consideration. An analytical model is needed therefore to describe the 

dynamic strength behavior under high stress-rate loading. The data in Table 4.1 can then 

be used to estimate parameters associated with such model. In next section, a new 

dynamic strength model under constant stress-rate loading is developed with parameters 

identified from these data listed in Table 4.1 using a nonlinear least squares method. 
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Table 4.1 
Dynamic biaxial flexural strength (MPa) / stress-rate (GPa/s) 

8YSZ lA 2A 3A lY 2Y 3Y 

534.3/495.5 372.6/828.7 315.1/692.2 466.2/678.4 380.9/756.2 539.7/1308.1 424.4/1238.9 

518.1/1446.9 364.1/831.8 320.1/482.2 584.0/908.2 186.9/429.5 369.2/578.4 447.6/1010.6 

360.9/404.2 501.5/524.5 526.7/930.9 519.9/1016.9 497.2/1140.2 481.6/1312.1 447.5/404.8 

531.3/500.4 425.8/722.0 550.1/470.3 516.7/1088.0 353.0/1424.2 471.9/1238.2 339.9/435.9 

217.5/494.8 398.9/358.3 457.1/738.9 553.6/490.2 296.1/532.9 492.0/933.4 490.3/578.3 

374.3/402.6 474.5/1332.6 536.4/1450.3 473.2/512.3 440.1/829.8 570.5/1382.6 

719.3/1043.5 373.0/957.7 378.8/405.6 272.4/1024.6 456.8/1092.9 537.9/684.5 

592.3/836.8 319.8/638.4 548.5/510.2 489.1/813.8 407.1/792.5 

459.0/1207.0 252.3/321.2 238.5/500.5 393.4/1016.3 532.9/843.7 

529.4/931.6 249.6/974.5 471.6/980.7 443.2/515.8 378.3/365.5 

516.4/1068.1 

376.8/595.0 

581.8/678.9 

503.7/1350.2 

430.2/1093.6 

367.3/836.3 

465.1/1059.4 

369.2/659.1 
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4.2 Dynamic strength 

The dynamic piston-on-3-ball experimental technique can be used to investigate 

the biaxial flexural strength of ceramic materials under a constant stress-rate loading 

condition. However, it is not economic and practical to obtain a relationship between 

biaxial flexural strength and stress-rate for a ceramic material by conducting a large 

number of experiments at each loading rate. The requirement for a large number of 

experiments at each loading rate is due to the scatter behavior of strengths of ceramic 

materials. Therefore, analytical modeling of strength at high loading rate is important for 

using experimental data to explain dynamic strength behavior of ceramic materials. 

4.2.1 Introduction 

The behavior of brittle materials such as ceramics under high-speed loading has 

been the subject of many studies during the past. Many experiments revealed that rapidly 

loaded structures could bear stresses that considerably exceeded the critical levels under 

static loading conditions (Grady, 1998; Bourne et al., 1998; Clifton, 2000). The most 

recent review of the field of dynamic failure mechanics is that of Rosakis and 

Ravichandran (2000). The development of new experimental techniques for dynamic 

tests and improvements in existing measuring devices made it possible to study the 

process of fracture in brittle materials under high-speed loading (Morozov and Petrov, 

2000). Now, precise dynamic constitutive models can be developed to accurately 
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describe the mechanical responses and failure behaviors of brittle materials under high

speed loading. 

Most modeling efforts on dynamic failure behaviors of brittle materials have been 

based on fracture mechanics and/or damage mechanics. Fracture mechanics is well 

enough developed to describe the crack propagation and dynamic fracture of brittle 

materials. However, it can only be applied when an initial crack is well defmed or 

assumed, with its shape, size, location, and orientation determined. The material bulk is 

considered to be a continuum other than a crack. On the other hand, damage mechanics 

describes the effects of micro-cracking on the mechanical properties (such as elastic 

stifRiess degradation, induced anisotropy, and anelastic strains) of the brittle material as 

micro-cracking develops. Distributed crack models are inevitably included in the 

dynamic material models based on damage mechanics (Mazars and Pijaudier-Cabot, 

1996). 

Freund (1990) formulated a dynamic material model to describe the time-

dependent strength of brittle materials under high strain-rate loading by applying a 

Weibull's crack density model and an effective elastic stiffness model proposed by 

Delameter et al. (1975). He stated that the macroscopic stress in a brittle specimen 

subjected to high strain-rate loading can continue to increase as the macroscopic 

deformation proceeds during the incubation time, which is the delay time between the 

initial crack propagation and the final failure of the structure. During this incubation 

period, the critical level of stress needed to produce crack growth can be reached at many 

other defects in the specimen. Crack growth can thus be initiated at many flaws if the 
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loading is applied rapidly. As the cracks in the specimen continue to grow, the effective 

elastic stiffness of the cracked specimen continues to degrade. Finally, the stress in the 

specimen fails to increase further. The stress at this moment was defined by Freund as the 

impact strength at a certain constant strain-rate. Later on, many researchers modified 

Freund's constant strain-rate model by applying different effective elastic stiffness 

models. For example, Chen and Ravichadran (1992) modified this model using an 

effective elastic stiffness model developed by Kemeny and Cook (1986). Chen (1995) 

modified Freund's model using another effective elastic stiffhess model given by 

Budiansky and O'Connell (1976). 

Most existing constitutive models for high-speed loading are constant strain-rate 

models. In most cases, the constant strain-rate models were developed based on a 

uniaxial loading condition, Ravichandran and Subhash (1994b) developed a constitutive 

model applicable to brittle materials such as ceramics subjected to biaxial compressive 

loading and Rajendran (1994) developed a constitutive model for ceramics under 

multiaxial loading. 

In order to describe the dynamic strength behavior of brittle materials accurately, 

it is necessary to develop high stress-rate models, also. The importance of such models is 

conditioned by two circumstances. First, besides constant strain-rate loading, material 

tests under constant stress-rate loading are also rather routine and equally valuable to 

determine dynamic material behavior. For example, a split Hopkinson pressure bar 

(SHPB) can generate either a uniaxial constant strain-rate (Lambert and Ross, 2000) or 

constant stress-rate loading condition in a specimen if the incident pulse is properly 
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controlled (Gray, 2000; Frew, Forrestal, and Chen, 2001; Frew, Forrestal, and Chen, 

2002). Many other dynamic experimental techniques, such as the drop ball test (DBT) 

(Bouzid et al, 2001) and the dynamic piston-on-3-ball test developed in this dissertation, 

generate a constant stress-rate loading condition in the specimen. Second, in many 

applied problems, the substitution of the real stress velocity by some averaged value for 

the whole process does not lead to a significant error (Morozov and Petrov, 2000). 

Denoual et al. (1997) developed a model for fragmentation of brittle materials 

under constant stress-rate loading using a probabilistic approach. They used a high-speed 

camera in their experiments and observed that the velocities of crack tips were less than 

the velocity of the crack damage wave front (Riou, Denoual, and Cottenot, 1998). A 

crack nucleates when the local tensile stress reaches a critical value and stops when other 

defects nucleate in front of it and relax the local tensile stresses. Based on this 

observation, a model for constant stress-rate loading was formulated through a 

probabilistic approach, which predicated that the dynamic strength of brittle materials 

under constant stress-rate is proportional to ^ where & is the stress-rate applied 

to the brittle material specimen, m is the Weibull parameter of this material under static 

loading, and n is the space dimension {i.e., 3 for volume, 2 for surface, and I for length). 

This model was later successfully used in a numerical simulation of the damage process 

in a brittle material (Denoual and Hild, 2000). 

Bouzid et al. (2001) proposed a damage model to describe the failure of a glass 

under constant stress-rate impact loading. They introduced a damage parameter to 
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describe the degree of damage to the specimen and observed three different damage 

stages in their experiments on a float glass. At low loading rates (< 20 GPa/s), cracks are 

initiated from one site of the specimen without any crack branching. In the middle 

loading rate range (about 1000 GPa/s), multiple fragmentations are caused by numerous 

crack bifrircations. In this range of loading rates, the crack propagation speed is not large 

enough to prevent new crack growths from being initiated in front of the propagating 

crack, causing this crack to stop propagating because of local stress relaxation. At high 

loading rates (about 3630 GPa/s), complete perforation by the impactor is reached 

without signiflcant crack propagation in the glass bulk. 

These various models are based on many ideal assumptions. The complicated 

details of propagation of each crack in the material bulk are avoided. This is necessary in 

order for a model to have a limited number of parameters and to be used in the practical 

processing of experimental data. There are also limitations associated with each model. 

For example, Denoual et al.'s model (Denoual, Barbier, and Hild, 1997) covers only part 

of loading-rate range, and the starting point of this range is unknown. Bouzid et al.'s 

model (Bouzid et al., 2001) shows that the degree of damage is a function of loading rate 

and applied stress, but provides no explicit relationship between loading rates and the 

dynamic strength of brittle materials. These drawbacks make it difficult to design proper 

experiments for these models to identify parameters associated with the dynamic strength 

of brittle materials. The dependence of dynamic failure strength on the loading rate needs 

to be systematically explored in order to better understand the strength-loading rate 

relationships. It is desired to formulate explicit relationships between dynamic strength 
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and stress loading-rate. In addition, fracture mechanics points out that the strength of a 

brittle material is dependent on the loading modes and the loading rates, as well as the 

initial crack sizes and orientations (Lawn, 1993). The dynamic strength of a brittle 

material should then be related to its strength under static loading conditions. 

In the following sections, a new model is proposed to describe the dynamic 

strength of brittle materials under a constant stress-rate loading condition. Experimental 

results performed on thin sheets of 8YSZ and its doped versions with the dynamic piston-

on-3-ball technique. Table 4.1, are used to estimate the parameters associated with this 

new model. This new model is found to give a good description to the experimental 

results. 

4.2.2. Strength Model under Constant Stress-Rate Loading 

Tuler and Butcher (1968) proposed a general failure criterion based on the 

concept of damage accumulation. The spall stress cx is dependent on the stress pulse 

duration in the form 

[< t( / )  -  cTq Y dt  = Constant (4.24) 

where ob is a threshold stress, ts is the time to failure from o(0 = oh, and A is a material 

constant. This model indicates that a longer ts corresponds to a lower spall stress, <Ts = 

c{ts). They found a good correlation between the spall stress values estimated by 
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Equation (4.24) and those obtained experimentally for a spalling layer of aluminum 

specimens. Freund (1990) recast Tuler and Butcher's model in the form 

where a{t)  is a representative stress (such as the remote tensile stress in the case of 

uniaxial loading and/or the central stress on the tensile surface in the case of biaxial 

loading, e.g., piston-on-3-ball loading), cTw is the stress threshold for the beginning of 

damage accumulation, ts is the time required for the stress to start from cTu and to reach its 

maximum level, and p and C are experimentally determined material constants. Freund 

(1990) proved that this model is consistent with his constant strain-rate loading model. 

The new model is based on Tuler and Butcher's (1968) general failure criterion, 

Equation (4.25), which represents a relationship between dynamic strength and constant 

stress-rate with an emphasis on the stress-rate effects. Two idealized assumptions have 

been introduced in the development of this model. First, the threshold stress, cr,„, is 

approximately the same as the strength of the same material under static loading. The 

dynamic strength of a brittle material always increases from its static strength with 

increasing strain rate as commonly observed from experiments (Grady, 1998; Bourne, 

Millett, Rosenberg, and Murry, 1998; Clifton, 2000). Second, the dynamic strength 

depends only on the loading history after the stress load exceeds the static strength. This 

means the loading mode has no effect on the dynamic strength if the stress load is less 

than the static strength. This is consistent with the "weakest link" concept in fracture 

dt = C (4.25) 
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mechanics (Jayatilaka, 1979), which indicates that the critical crack propagation 

determines the strength of a brittle material. In other words, the crack size distribution in 

the material bulk does not change if the applied load is under its static strength. 

Therefore, as pointed out previously, the initial time can be set at the point where stress 

load passes the static strength. The loading stress history after passing (t„ can then be 

expressed as 

(4.26) 

where H(t)  is the Heaviside function and & is the applied constant stress-rate. 

Substituting (4.26) into (4.25), we obtain 

(4.27) 

The stress, o(0, increases linearly from <T„.at t  = Oio the dynamic strength, oi, at t  

ts in this constant stress-rate strength model, i.e.. 

=o-/,+<T,, (4.28) 

By eliminating ts in Equations (4.27) and (4.28), we obtain 

(T, = dr.. 1 + (4.29) 

where the reference stress-rate, cr,, is defined as 
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4.2.3.Modeling of Dynamic Experimental results 

Dynamic piston-on-3-ball experiments were performed on all the available 

specimens listed in Table 1.2 along with their chemical compositions. The dynamic test 

data are listed in Table 4.1. It is very difficult to obtain a group of experimental results 

with identical loading rates since the loading rate can only be controlled within a certain 

range. Therefore, a regular statistical method to process data with the same loading rates 

is infeasible. These data are thus fitted to Equation (4.29) using an overall nonlinear least 

squares method. The threshold stress for each material composition is chosen as the 

corresponding mean strength at the quasi-static state, see Table 3.3. The final resulting 

parameters are listed in Table 4.2. Figures 4.12-4.18 give the fitting curves for a stress-

rate range from 0 to 1600 GPa/s. Although the number of experimental results of some 

compositions is very small, for example, only 5 results for the pure 8YSZ composition 

are available, these fitting curves are close to each other. This indicates that the variations 

of the dynamic strengths of these compositions are not significant, which is consistent 

with the static strength results on these compositions. 
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Table 4.2 
Dynamic strength parameters 

Ceramic Alias Reference stress-rate Parameter 

8YSZ 2574 0.490 

lA 2589 0.414 

2A 2867 0.429 

3A 2530 0.459 

lY 3398 0.434 

2Y 3121 0.454 

3Y 3709 0.470 
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Figure 4.12 Variation of dynamic biaxial flexural strength of 8YSZ as a function of 
stress-rate. 
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Figure 4.13 Variation of dynamic biaxial flexural strength of lA as a function of 
stress-rate. 
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Figure 4.14 Variation of dynamic biaxial flexural strength of 2A as a function of 
stress-rate. 
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Figure 4.15 Variation of dynamic biaxial flexurai strength of 3A as a function of 
stress-rate. 
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Figure 4.16 Variation of dynamic biaxial flexurai strength of 1Y as a function of 
stress-rate. 
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Figure 4.17 Variation of dynamic biaxial flexurai strength of 2V as a function of 
stress-rate. 
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Figure 4.18 Variation of dynamic biaxial flexurai strength of 3Y as a function of 
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4.2.4. Discussions 

The model for dynamic strength at high stress-rate loading as expressed by 

Equation (4.29) recovers the strength at the quasi-static state as the loading rate 

approaches zero. In other words, this model covers the stress-rate range from zero, which 

is not the case for other models in the literature. DenouaPs high stress-rate fracture 

strength model (Denoual and Hild, 2000) and Morozov's high stress-rate yield strength 

model (Morozov and Petrov, 2000) cover only a stress-rate range that starts at some finite 

value. This finite value has to be experimentally estimated for each material, causing 

difficulties in the application of these models in practice. 

Although Equation (4.29) enforces the quasi-static strength to be recovered, some 

precautions concerning the use of this equation are appropriate. First, in spite of the fact 

that Freund's model for constant high strain-rate loading (Freund, 1990) is consistent 

with Tuler and Butcher's criterion (Tuler and Butcher, 1968) and that the modeling 

procedure involves only straight mathematical manipulation, it is still difficult to provide 

rigorous theoretical or experimental proof to verify the validity of this model. Moreover, 

Equation (4.29) holds for specimens with the same threshold stress (static strength), but 

this cannot be guaranteed for individual specimens due to the randomly distributed 

strength of ceramic specimens. The quasi-static strength typically possesses a Weibull 

distribution (see Equation 3.20) (Jayatilaka, 1979) with a mean strength 

(4.30) 
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where F is the Euler function of the second kind. 

As described by Equation (4.29), the dynamic strength under constant stress-rate 

loading is a linear function of the quasi-static strength. Therefore, the dynamic mean 

strength is 

J/  /m 
\+— 
\ mj 

1 + 
^ a-

y ^ r j  
(4.31) 

where the superscript, (D) ,  indicates a dynamic loading condition with a constant stress 

rate. 

Theoretically, we need at least 30 experiments (ASTM C 1161-94, 1995) for each 

stress-rate to estimate the statistical distribution of strength results without a material 

model such as Equation (4.29). This is neither economical nor practical since a huge 

amount of data must be acquired by experiments. With the help of the dynamic strength 

model. Equation (4.29), it is possible to fit all experimental data with different stress-rates 

together. Therefore, this method helps to reduce the minimum requirement for the 

number of experiments. Table 4.2 shows that about 10 experiments are possible to obtain 

relatively stable fitting results. However, the small number of specimens in this study was 

due to the limited number of specimens available, not to the experimental design. 
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4.3 Summary 

An experimental technique for determining the biaxial flexural strength of thin 

ceramic substrates at high loading rates has been developed and verified by experiments. 

The loading configuration is the same as the quasi-static piston-in-S-ball experimental 

technique, making the high loading rate results directly comparable to the standard quasi-

static results. The upper and lower limits of the loading-rate range for a valid experiment 

with a specific specimen were analyzed. 

A new model for dynamic strength under constant high stress-rate loading for 

brittle materials was developed based on the concept of cumulative damage. The 

parameters in this model were experimentally identified using an overall least squares 

curve-fitting technique with all of the data at different loading stress-rates. 

Ceramic material 8YSZ and six of its doped compositions with AI2O3 and 3YSZ 

were tested with the dynamic piston-on-3-ball experimental technique. The experimental 

results show that the new dynamic strength model for brittle materials describes both the 

quasi-static strength and the dynamic strength behavior appropriately. 
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CHAPTERS 

BIAXIAL FLEXURAL STRENGTH AT ELEVATED 

TEMPERATURES UNDER QUASI-STATIC PISTON-ON-3-BALL 

LOADING CONDITION 

The working temperature of electrolytes is 800~1000°C. Many researches 

revealed that ceramic materials show different mechanical behaviors at elevated 

temperatures from that at ambient temperature (24°C). In this chapter, the quasi-static 

piston-on-3-ball experimental technique at ambient temperature is adapted to an 

environment with controlled temperatures. Therefore, piston-on-3-ball biaxial flexural 

strength of ceramic substrates at elevated temperatures can be experimentally 

investigated. This is important to the design of a reliable electrolyte. 

5.1 Introduction 

The mechanical properties of ceramic materials at elevated temperatures are 

different from that at ambient temperature (24°C). Rice (1997) provided a comprehensive 

review in this field. For zirconia material, most research efforts focused on the variations 

of its Young's modulus, tensile strength, and fracture mode with temperatures. 
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While Young's modulus of ceramic materials is one of physical properties, 

relationships between theoretical strengths in shear and tension have been created by 

Frenkel in 1926 and Orowan in 1949, respectively (Kelly and MacMillan, 1986). 

Although these relationships are approximate, they revealed that the strengths of ceramic 

materials are dependent on their Young's moduli. The variations of Young's moduli of 

3YSZ and 8YSZ materials at ambient temperature with their porosities were studied by 

Sel(;uk and Atkinson (1997). 

At elevated temperatures, Kandil, Greiner, and Smith (1984) found that cubic 

phase zirconia single crystals containing 11.1, 12.1 15.5 and 17.9 mol% yttria show a 

typical Young's modulus decrease about 1-2% per 100°C with increasing temperature to 

their limit of testing (700°). However, their results about 8.1 mol% yttria stabilized 

zirconia crystals did not follow the trend. For polycrystalline materials, Shimada et al. 

(1984) reported a continuous decrease of the Young's modulus of 3YSZ with increasing 

temperature till 700°C. Their curve of Young's modulus vs. temperature showed a higher 

decreasing rate before 350°C, which is similar to the Adams et al.'s results (Adams, Ruh, 

and Mazdiyasni, 1997). Adams et al. showed that the Young's modulus of cubic phase 

6.5 mol% yttria stabilized zirconia was 222 GPa at 25°C. It decreased to about 180GPa at 

400°C, and then kept relatively constant with increasing temperature up to 1350°C. 

Adams et al.'s experiments (Adams, Ruh, and Mazdiyasni, 1997) also showed 

that the fast fracture four-point bending flexural strength of cubic phase 6.5 mol% yttria 

stabilized zirconia decreased to about 20% of its ambient temperature value at 
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750°~1000°C, then appeared to increase slightly as the temperature further increased to 

1500°C. Similar trend was reported by Mori et al. (1994) about 8YSZ materials. They 

found that the temperature dependence of bending strength of 8YSZ showed a minimum 

value at 500°C. The strength at 1000°C was 250MPa, almost comparable to that at room 

temperature. They explained that the phenomenon of the high strength of 8YSZ at 

1000°C might be due to the small contribution of plastic deformation. 

The fracture mode of cubic phase 6.5 mol% yttria stabilized zirconia was 

transgranular at low temperatures (<~500°C), mixed mode at intermediate temperatures 

(~500°C-1000°C), and intergranular at high temperatures (>1000°C) (Adams, Ruh, and 

Mazdiyasni, 1997). The four-point flexural strength of the hot-pressed and sintered 

Zyttrite® yttria-stabilized zirconia showed a minimum value at about 760°C and 960°C, 

respectively. The facts that mechanical properties of ceramic materials at elevated 

temperatures behave so differently from that at ambient temperature and that the 

electrolytes work mainly at elevated temperatures show the necessity to investigate the 

strengths of 8YSZ ceramic substrates at elevated temperatures. 
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5.2 Piston-on-3-ball technique at elevated temperatures 

The strength of brittle materials such as ceramics depends significantly on 

specimen size and loading conditions (Weibull, 1939; Richerson, 1992; Hoshide, 

Murano, and Kusaba, 1998). To avoid any possible ambiguity about the explanations of 

experimental data introduced by different specimen geometries and loading conditions, 

the ASTM standard quasi-static piston-on-3-ball experimental technique (ASTM F 394-

78, 1995) is adapted to an experimental method at elevated temperatures, since there is 

still no standard experimental method for measuring biaxial flexural strength at elevated 

temperatures. 

To obtain an elevated temperature test environment, a furnace is designed whose 

temperature is controlled by a WATLOW 982 temperature-controller with a type K 

thermocouple. The temperature rising procedures can then be programmed. The variation 

in temperature during test period can be controlled within ±2°C. In order to maintain the 

same experimental conditions, except for the environmental temperature, the test sections 

of both the ambient and elevated temperature experimental facilities are identical—a 

standard piston-on-3-ball setup. The fixture for the elevated temperature experiments is 

made of SiC, which is inert and oxidation resistant at temperatures up to at least 1200°C. 

The configuration of the quasi-static piston-on-3-ball method at elevated temperatures is 

the same as the quasi-static piston-on-3-ball method at ambient temperature shown 

schematically in Figure 2.2 except that the test section is placed inside the furnace. 
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Flexural strength at elevated temperatures may be strongly dependent on loading 

rate, a consequence of creep, stress corrosion, or subcritical crack growth. Therefore, 

proper loading rates must be carefully chosen to minimize these effects because the 

purpose is to determine the load peak associated with fast fracture of the specimen at 

elevated temperatures. The experiments were performed using a hydraulically driven 

material testing system (MTS 810) with a piston moving speed of about 1.27 |im/sec for 

the 8YSZ ceramic substrates in this research, which is the same as in the ambient 

temperature tests. 

Specimens were placed on the experimental fixture within a cold fumace. A gap 

between the piston end surface and the specimen surface was provided to avoid loading 

caused by thermal expansions during heating up. The piston was perpendicular to the top 

surface of the specimen by adjusting an alignment system manufactured by MTS 

Company. The fumace was then raised to the test temperature at a constant heating rate 

of 3°C per minute to avoid effects of thermal shock, as suggested in the standard three- or 

four-point test methods for flexural strength of advanced ceramics at elevated 

temperatures (ASTM C 1211-92, 1995). The test temperature was then held constant for 

at least 1 hour for the specimen and fumace to come to an equilibrium state. The 

remaining test procedure is the same as that at ambient temperature. 

The effects of thermal expansion have been incorporated into Equation (2.1) by 

introducing a thermal expansion term into all the linear dimensions. The thermal 

expansion coefficients for 8YSZ and its doped versions listed in Table 1.2 were 

determined to be 10.5 ^m/m-°C as provided by MarkeTech International Inc.. Numerical 
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experiments show that this typically will lead to a bias in the flexural strength on the 

order of I to 3%. However, the scatter, or Weibull modulus, will be unaffected if the 

distribution in thermal expansion is not taken into account, since all specimens 

experience the identical error. 

5 J Experimental results 

Quasi-static piston-on-3-ball experiments at elevated temperatures were 

performed on all the available specimens with chemical compositions listed in Table 1.2. 

The strength data were evaluated by the peak load using the equation for the stress at the 

center of the tensile surface. Equation (2.1). The Poisson's ratios for these material 

compositions are chosen to be 0.315 as suggested by Sel^uk and Atkinson (2000), since 

Poisson's ratio for YSZ ceramics is reported in literatures to be 0.30-0.32 and is relative 

insensitive to both composition and temperature (Kandil, Greiner, and Smith, 1984; 

Hendriksen and Jorgensen, 1996). The final experimental results are listed on Tables 

5.1-5.7 with corresponding temperatures. 
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Table 5.1 
8YSZ biaxial flexurai strength (MPa) data at elevated temperatures 

No. 300°C 500°C 800°C 1000°C 

1 247.9 230.2 289.0 281.2 

2 159.1 185.1 190.0 254.9 

3 293.6 222.9 287.3 237.7 

4 276.1 233.0 212.0 

5 112.0 233.0 243.0 

6 192.0 224.4 

7 230.2 

8 220.5 

9 255.7 

10 226.7 

11 235.4 

Mean 213.4 220.8 237.6 257.9 

std. 71.1 20.4 30.1 21.9 
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Table 5. 2 
lA biaxial flexural strength (MPa) data at elevated temperatures 

No. 300°C 500°C 800°C 1000°C 

1 236.8 286.7 

2 203.0 245.2 

3 233.8 229.9 

4 216.1 235.9 

5 196.7 246.0 

Mean 217.1 248.8 

std. 18.2 22.2 
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Table 5.3 
2A biaxial flexural strength (MPa) data at elevated temperatures 

No. 300°C 500°C 800°C 1000°C 

I 263.6 191.2 247.0 258.6 

2 236.5 235.9 275.0 221.6 

3 214.2 210.7 272.2 263.5 

4 150.5 215.4 240.0 247.0 

5 255.5 163.7 207.9 194.0 

6 166.4 242.1 

7 180.3 290.1 

8 222.9 242.6 

9 213.5 289.3 

10 247.6 239.8 

Mean 224.1 204.8 254.6 236.9 

std. 45.3 28.5 26.2 28.9 
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Table 5.4 
3A biaxial flexural strength (MPa) data at elevated temperatures 

No. 300°C 500°C 800°C IOOO°C 

1 177.5 195.0 

2 264.3 196.9 

3 173.7 255.0 

4 151.8 267.6 

5 198.8 199.3 

Mean 193.2 222.7 

std. 43.1 35.5 
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Table 5.5 
lY biaxial flexural strength (MPa) data at elevated temperatures 

No. 300°C 500°C 800°C 1000°C 

1 154.4 223.9 

2 177.1 156.7 

3 162.8 207.1 

4 174.5 184.5 

5 135.5 144.7 

6 206.0 

7 138.2 

8 168.9 

9 132.1 

10 235.4 

Mean 

std. 

160.9 

16.9 

179.8 

37.1 
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Table 5.6 
2Y biaxial flexural strength (MPa) data at elevated temperatures 

No. 300°C 500°C 800°C 1000°C 

1 183.3 159.5 182.2 195.4 

2 209.9 186.6 212.0 213.0 

3 195.2 184.4 173.1 190.2 

4 217.4 171.7 192.6 189.7 

5 233.9 156.6 207.1 232.2 

6 188.8 

7 163.3 

8 221.3 

9 225.6 

10 229.0 

Mean 207.9 171.7 199.5 204.1 

std. 19.6 13.8 22.9 18.4 
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Table 5.7 
3 Y biaxial flexural strength (MPa) data at elevated temperatures 

No. 300°C 500°C 800°C 1000°C 

1 240.3 258.5 

2 204.6 194.6 

3 250.5 224.5 

4 264.0 270.7 

5 220.2 241.1 

Mean 235.9 237.9 

std. 23.7 29.9 

5.4 Discussions 

Some Weibull moduli were obtained by fitting these data into the Weibull 

distribution function. Equation (3.20), using a method of maximum likelihood 

(Jayatilaka, 1979). The linearized Weibull plots for experimental data at 800°C are shown 

in Figures 5.1-5.7, and the associated Weibull parameters, as well as biaxial flexural 

strengths at 800°C, are listed in Table 5.8. The 95% confidence intervals of these Weibull 

parameters are larger than those at ambient temperature in Table 3.3 because of limited 

number of experimental data available at 800°C. Although the large 95% confidence 

intervals of these Weibull parameters show a high level uncertainty of the results, it can 
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still be observed that the Weibull modulus, m, of each material composition at 800°C is 

larger than that at ambient temperature, while the representative volume, Vg, remains 

almost the same. The small increase in the Weibull modulus is probably due to the 

thermal expansion effects on the cracks in the material. As proved in chapter 3, the crack 

size distribution determines the Weibull parameters. Therefore, Weibull modulus 

increases with increasing temperature, which increases the sizes of cracks by thermal 

expansion. 
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Figure 5.1 Weibull probability plot of the biaxial flexural strength of 8YSZ from 
the piston-on-3-ball experiments at 800°C. 
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Figure 5. 2 Weibull probability plot of the biaxial flexural strength of 1A from the 
piston-on-3-ball experiments at 800X. 

Figure 5.3 Weibull probability plot of the biaxial flexural strength of 2A from the 
piston-on-3-ball experiments at 800*'C. 
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Figure 5.4 Weibull probability plot of the biaxial flexural strength of 3A from the 
piston-on-3-ball experiments at 800**C. 

Figure 5.5 Weibull probability plot of the biaxial flexural strength of 1Y from the 
piston-on-3-ball experiments at 800*'C. 
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Figure 5.6 Weibull probability plot of the biaxial flexural strength of 2 Y from the 
piston-on-3-ball experiments at SOOX. 
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Figure 5. 7 Weibull probability plot of the biaxial flexural strength of 3 Y from the 
piston-on-3-ball experiments at 800°C. 
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Table 5.8 
Weibull parameters fitted from experimental results and biaxial flexural strengths 
atSOQoC 

Ceramic Weibull Parameters Strength (MPa) 
Alias 

m Mean std. 

8YSZ 8.48 0.63 237.6 30.1 

(1.4, 15.6)* (0.29, 0.98) 

lA 11.59 0.64 248.8 22.2 

(-16.3, 39.4) (0.15, 1.12) 

2A 11.64 0.60 254.6 26.2 

(2.1,21.1) (0.21,0.99) 

3A 7.61 0.62 222.7 35.5 

(-12.8, 28.0) (0.05, 1.20) 

lY 5.76 0.64 179.8 37.1 

(1.0, 10.5) (0.22, 1.05) 

2Y 10.88 0.60 199.5 22.9 

(1.9, 19.8) (0.19, 1.01) 

3Y 11.05 0.59 237.9 29.9 

(-0.1,22.2) (0.00, 1.18) 

Inside the brackets is the 95% confidence interval. 

The conclusion that Weibull modulus increases with increasing temperature can 

also be observed from the experimental results on the 2A substrates at different 

temperatures. Table 5.9 lists the Weibull parameters fitted from the experimental results 

and biaxial flexural strengths of 2A substrates at different temperatures, and the 

associated linearized Weibull plots are shown in Figures 3.7, 5.8, 5.9, 5.3, and 5.10. 



137 

Table 5.9 
Weibull parameters fitted from experimental results and biaxial flexural strengths 
of 2A substrates at different temperatures 

Temperatures 24°C 300°C 500°C 800°C 1000°C 

m 7.93 7.61 8.80 11.64 12.17 

(4.30,11.56)* (1.05,14.16) (1.10,14.51) (2.14,21.15) (-1.55,25.88) 

V, 0.62 0.59 0.61 0.60 0.57 

(0.30, 0.93) (-0.11,1.29) (0.22, 1.01) (0.22, 0.99) (-0.07, 1.21) 

cTf (MPa) 276.8 224.1 204.8 254.6 236.9 

std.(MPa) 41.9 45.3 28.5 26.2 28.9 

' Inside the brackets is the 95% confidence interval. 
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Figure 5.8 Weibull probability plot of the biaxial flexural strength of 2A substrates 
from the piston-on-3-ball experiments at SOO^'C. 
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Figure 5.9 Weibull probability plot of the biaxial flexural strength of 2A substrates 
from the piston-on-3-ball experiments at 500**C. 
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Figure 5.10 Weibull probability plot of the biaxial flexural strength of 2A substrates 
from the piston-on-3-ball experiments at 1000'*C. 
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The temperature dependences of the piston-on-3-ball biaxial flexural strength of 

8YSZ, 2A, and 2Y are shown in Figures 5.11~5.13. The two-direction error-bars are 

sample standard deviations. The common characteristic of these temperature dependences 

is that the biaxial strengths show a minimum at 500°C. Although the biaxial flexural 

strengths are not as high as those at ambient temperature, this characteristic is similar to 

Mori et al.'s results (Mori et al., 1994). The strengths increase with increasing 

temperatures until at least 1000°C except that the biaxial strength of 2A substrates at 

1000°C is lower than that at 800°C, but still higher than that at 500°C. This is probably 

due to the limited number of experimental data. 

8YSZ 
400 

350 

S 300 

250 

c 
u 
£ 200 

= 150 

.2 100 

50 

0 100 200 300 400 500 600 700 800 900 1000 1100 

Temperature (°C) 

Figure 5.11 Variation of biaxial flexural strength of 8YSZ substrates as a function 
of temperature. 



140 

400 

350 

"S. 300 

250 

CO 

i: 200 

3 150 

0 100 200 300 400 500 600 700 800 900 1000 1100 

Temperature ("C) 

Figure 5.12 Variation of biaxial flexural strength of 2A substrates as a function of 
temperature. 
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Figure S. 13 Variation of biaxial flexural strength of 2Y substrates as a function of 
temperature. 
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Since there are not enough experimental data to form a statistically sound base, 

the conclusion that the biaxial strengths of 8YSZ, 2 A, and 2Y show a minimum at 500°C 

cannot be derived from experimental results of other material compositions listed in 

Table 1.2. However, the general observation that the strengths at 800°C are higher than 

those at 500°C for all the material compositions is consistent with the above conclusion. 

5.5 Summary 

The quasi-static piston-on-3-ball biaxial flexural strength test method, which is an 

ASTM standard test method used to measure the biaxial flexural strength of ceramic 

substrates at room temperature, has been evolved into an experimental technique for 

measuring the biaxial flexural strength of ceramic substrates at elevated temperatures. 

8YSZ and its doped versions listed in Table 1.2 have been tested with this experimental 

technique. The biaxial flexural strengths of these ceramic substrates showed a different 

characteristic at elevated temperatures from that at ambient temperature. 
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CHAPTER 6 

EFFECTS OF DOPANTS ON THE BIAXIAL FLEXURAL 

STRENGTH OF 8YSZ CERAMIC SUBSTRATES 

One of the objectives of this research is to determine a material composition 

among those possible candidates listed in Table 1.2, which have been reported by another 

group that they possess approximately the same electric conductivity as pure 8YSZ 

material. Therefore, the mechanical properties of these material composition candidates 

must be compared. In other words, the effects of dopants on the biaxial flexural strength 

of 8YSZ ceramic substrates must be investigated, since the biaxial flexural strength is the 

main mechanical property concerned in this research. 

6.1 Quasi-static biaxial flexural strength 

The variations of strength as a function of material composition at different 

temperatures are shown in Figures 6.1~6.10 with data from Tables 3.3 and 5.1-5.7. The 

two-direction error-bars are sample standard deviations. 

The AI2O3 additive with amount up to 3 mol% cannot change the biaxial flexural 

strength of 8YSZ material signiflcantly if the scatter characteristic of ceramic materials is 

taken into account. Figures 6.1-6.5 show that the biaxial flexural strengths of 8YSZ, lA, 
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2A, and 3 A are approximately the same with temperature range from ambient to 1000°C. 

Although some differences exist among their mean strengths, the variations are within 

their standard deviations. 
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Figure 6.1 Variation of biaxial flexural strength of 8YSZ material as a function of 
the amount of AI2O3 additive at ambient temperature with error-bars representing 

standard deviations. 
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Figure 6. 2 Variation of biaxial flexural strength of 8VSZ material as a function of 
the amount of AI2O3 additive at JOO^C with error-bars representing standard 

deviations. 
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Figure 6.3 Variation of biaxial flexural strength of 8YSZ material as a function of 
the amount of AI2O3 additive at SOO^C with error-bars representing standard 

deviations. 
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Figure 6.4 Variation of biaxial flexural strength of 8YSZ material as a function of 
the amount of AI2O3 additive at SOO^C with error-bars representing standard 

deviations. 
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Figure 6.5 Variation of biaxial flexural strength of 8YSZ material as a function of 
the amount of AI2O3 additive at lOOO^C with error-bars representing standard 

deviations. 
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Figure 6.6 Variation of biaxial flexurai strength of 8YSZ material as a function of 
the amount of 3YSZ additive at ambient temperature with error-bars representing 

standard deviations. 
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Figure 6.7 Variation of biaxial flexurai strength of 8YSZ material as a function of 
the amount of 3YSZ additive at SOO^C with error-bars representing standard 

deviations. 
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Figure 6.8 Variation of biaxial flexural strength of 8YSZ material as a function of 
the amount of 3YSZ additive at SOO^C with error-bars representing standard 

deviations. 
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Figure 6.9 Variation of biaxial flexural strength of 8YSZ material as a function of 
the amount of 3YSZ additive at 800*'C with error-bars representing standard 

deviations. 
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Figure 6.10 Variation of biaxial flexural strengtii of 8YSZ material as a function of 
the amount of 3 YSZ additive at 1000**C with error-bars representing standard 

deviations. 

The observation that the AI2O3 additive with amount up to 3 mol% cannot change 

the biaxial flexural strength of 8YSZ material significantly is also supported by the fact 

that the Weibull parameters of 8YSZ, lA, 2A, and 3A compositions at ambient 

temperature (see Table 3.3) are approximately the same. Figure 6.11 shows the variation 

of the Weibull modulus, m, of the biaxial flexural strength of 8 YSZ material as a function 

of the amount of AI2O3 additive at ambient temperature. The error-bar represents 95% 

confidence intervals. The associated representative volumes, have the same value, 

0.62, except of a small difference for 2A, whose representative volume is 0.61. The 

variation of the representative volume of the Weibull distribution of the biaxial flexural 

strength of 8YSZ material as a function of the amount of AI2O3 additive at ambient 

temperature is shown in Figure 6.12. At 800 °C, the 95% confidence intervals of the 
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Weibull moduli, Figure 6.13, are much bigger than those at ambient temperature. This is 

probably due to lack of enough experimental data for statistical data processing. 

However, the variation of the Weibull modulus, m, of the biaxial flexural strength of 

8YSZ material as a function of the amount of AI2O3 additive at 800°C is not significant. 

In other words, the AI2O3 additive with amount up to 3 mol% has little effects on the 

biaxial flexural strength of 8YSZ material at 800°C. This is further confirmed by the 

behavior of the Weibull representative volumes of these material compositions, which is 

shown in Figure 6.14. The variation range of the Weibull representative volume of the 

biaxial flexural strength of 8YSZ material as a function of the amount of AI2O3 additive 

up to 3 mol% at 800°C is from 0.60 to 0.64. 

8VSZ lA 2A 

Material composition 

Figure 6.11 Variation of the Weibull modulus, m, of the biaxial flexural strength of 
8YSZ material as a function of the amount of AI2O3 additive at ambient 

temperature with error-bars representing 95% confidence intervals. 
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Figure 6.12 Variation of tiie Weibuii representative volume, of the biaxial 
flexurai strength of 8YSZ material as a function of the amount of AI2O3 additive at 

ambient temperature with error-bars representing 95% confidence intervals. 
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Figure 6.13 Variation of the Weibull modulus, m, of the biaxial flexurai strength of 
8VSZ material as a function of the amount of AI2O3 additive at 800**C with error-

bars representing 95% confidence intervals. 
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Figure 6.14 Variation of tiie Weibull representative volume, y„ of the biaxial 
flexural strength of 8YSZ material as a function of the amount of AI2O3 additive at 

800**C with error-bars representing 95% confidence intervals. 

Although the effects of AI2O3 additive with amount up to 3 mol% on the biaxial 

flexural strength of 8YSZ material are insignificant, it is difficult to make the same 

conclusion to the 3YSZ additive with amount up to 30 wt%. Figures 6.6~6.10 show the 

variation of biaxial flexural strength of 8YSZ material as a function of the amount of 

3YSZ additive at different temperatures. The strengths of 8YSZ and 2Y are in a same 

level at ambient temperature and 300°C. At temperatures range from 500°C to 1000°C, 

the strength of 2Y is obviously lower than that of 8YSZ, regardless of the fact that their 

error-bars cover a common range. In fact, the 3YSZ additive increases the degradation of 

the biaxial flexural strength of 8YSZ material at elevated temperature 500°C and higher. 

The strength of lY is lower and the strength of 3Y is higher than that of the 8YSZ at 
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ambient temperature. In addition, Figures 6.6, 6.8 and 6.9 show that the strength of the 

3YSZ-doped 8YSZ increases with increasing amount of 3YSZ from 10 wt% to 30 wt%. 

The variations of Weibull parameters of 3YSZ doped 8YSZ are more obvious 

than those of AI2O3 doped 8YSZ, which can be seen in Figures 6.15 and 6.17. Although 

Weibull modulus of 1Y is lower than the others at both ambient temperature and 800°C, 

it is difficult to make a conclusion because of the large 95% confidence intervals of the 

other materials, which may be due to limited number of experimental data. However, the 

variation range of the Weibull representative volume of the biaxial flexural strength of 

8YSZ material as a function of the amount of 3 YSZ additive up to 30 wt% is relatively 

small, which is from 0.61 to 0.64 at ambient temperature and from 0.59 to 0.64 at 800°C. 
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Figure 6.15 Variation of the Weibull modulus, m, of the biaxial flexural strength of 
8YSZ material as a function of the amount of 3YSZ additive at ambient 

temperature with error-bars representing 95% confidence intervals. 
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Figure 6.16 Variation of tlie Weibuil representative volume, of the biaxial 
flexural strength of 8YSZ material as a function of the amount of 3YSZ additive at 

ambient temperature with error-bars representing 95% confidence intervals. 

Material composition 

Figure 6.17 Variation of the Weibuil modulus, m, of the biaxial flexural strength of 
8YSZ material as a function of the amount of 3YSZ additive at 800*'C with error-

bars representing 95% confidence intervals. 
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Figure 6.18 Variation of the Weibull representative volume, v„ of the biaxial 
flexural strength of 8YSZ material as a function of the amount of 3 YSZ additive at 

800*'C with error-bars representing 95% confidence intervals. 

In the linear elastic fracture mechanics approach such as the Irwin approach and 

Griffith approach (Jayatilaka, 1979), strength is found to depend on a combination of a 

material property (intrinsic) and a flaw size (extrinsic). The associated material property 

is toughness, K,c, or critical energy release rate, Gic, and it depends on the microstructure 

of the material such as grain size, boundary phase, and additives. In the Irwin approach, 

the mode I fracture toughness for a brittle solid is expressed as 

K,(.=<Jp4cY (6.1) 

where Op is the strength, c the appropriate crack size, and Y a geometrical factor. From 

this relationship, if the value of fracture toughness, K,c, is known for a material, the size 

of a flaw it can tolerate at a given stress can be calculated. Alternatively, if both the 
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strength and fracture toughness are known, it is possible to estimate the critical flaw size. 

Thus, the knowledge of the toughness is important to evaluate the mechanical behavior of 

a ceramic material. In the next section, a micro indentation technique is employed to 

evaluate the fracture toughness of the ceramic materials listed in Table 1.2. The test 

results are used to further evaluate the mechanical properties of these material 

compositions. 

6.2 Fracture toughness evaluation by Vickers micro-indentation technique 

6.2.1 Introduction 

Indentation techniques are well developed for hardness study. The American 

Society of Testing and Materials (ASTM) has developed a standard test method for 

Vickers indentation hardness of advanced ceramics (ASTM C l327-96a, 1996). 

Conventionally, indentation is considered micro when the applied indenter load is less 

than 5 N; otherwise, it is called macro indentation. 

The indentation techniques have also been widely used for studying toughness of 

brittle materials such as ceramics and glasses since the surface crack traces were first 

recognized as being indicative of the fracture toughness of the material by Palmqvist in 

1957. The mode-I fracture toughness {Kic) and microstructure were examined in arc-

melted ZrOi-YiOa alloys with an yttria content up to 8 mol% by Sakuma, Eda, and Suto 

(1983). They found that mode-I fracture toughness (Kk) changed markedly with an yttria 
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content between 1 and 3 mol%, the peak value of about 15 MPa m"^ being observed in 

1.8 mol% yttria stabilized zirconia. The marked change in the mode-I fracture toughness 

{Ktc) with yttria content was found being related to the microstnictural change in the 

alloy. 

In general, the procedure of indentation toughness test includes producing an 

indentation on a plane surface of the material by a standard hardness tester and studying 

the induced cracks by a microscope. With the indenter load and the dimensions of the 

induced cracks, it is possible to evaluate the toughness of the material. For example, the 

Vickers hardness tester usually makes a diamond indentation with cracks emanating from 

the diamond comers as schematically illustrated in Figure 6.19. 

Figure 6.19 Plane view of Viciiers indentation with radial cracks. 
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Many models have been proposed for the evaluation of toughness by using the 

indentation techniques. Ponton and Rawlings reviewed 19 equations published in the 

literature (Ponton and Rawlings, 1989a) and examined these equations by experiments 

(Ponton and Rawlings, 1989b). For most models published in the literature, the da or l/a 

ratio was limited in a range. For example, Niihara et al. proposed the following equation 

based on the Palmqvist cracks which requires l/a to be between 0.25 and 2.5 (Niihara, 

Morena, and Hasselman, 1982). 

where Ktc is mode-I toughness, E Young's modulus, Hy = 0.4636^^ Vickers hardness, 
/ a' 

and P indenter load. 

The advantage of this indentation toughness technique is time and cost effective. 

The specimen preparation is relatively simple, requiring only a plane surface. At least 10 

tests can be performed on a surface of only 100 mm^. However, the disadvantage of this 

technique is the difficulty in accurate measurements of the crack length c or /. The crack 

length is usually measured under an optical microscope. The indentation induced cracks 

are often hard, if not impossible, to observe. Therefore, Ponton and Rawlings 

recommended a minimum indenter load of about 50 N. They believed that only to apply 

indenter load high enough could produce visible cracks for accurate measurement. This 

opinion prevailed in the literature and some researcher claimed that micro indentation 
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produced no cracking (Anton and Subhash, 2000). Thus, almost all indentation toughness 

tests were performed on macro hardness testers. 

In order to improve the observability, the specimen surfaces were polished to at 

least 5 ^m diamond finish by most researchers. Although Ponton and Rawlings claimed 

that processes such as polishing could produce residual stresses on the surface to prevent 

correct test results (Ponton and Rawlings, 1989b), polishing seemed to be a necessary 

process for specimen preparation in the literature. However, almost all the Vickers 

indentation models so far are based on the assumption that there are no pre-existing 

surface stresses. Although proper heat treatment could remove the residual stresses, it 

may change the properties of the material either. 

Thin ceramic substrates are widely used as electrolytes in solid oxide 

electrolyzers. The solid oxide electrolytes are typically made by a tape-cast process. 

After sintering, the products are usually in the form of thin sheets. The thickness of these 

sheets is typically 0.5 mm or less in engineering applications. As a result, indenter load as 

high as 50 N breaks the specimen substrates. Actually, most such thin ceramic substrates 

can only be indented by micro indentation. Cook and Pharr (1990) found that radial crack 

forms extremely early (possibly instantly) in the loading process (typically 0.8 N). This 

fact indicates that indentation cracking is possible on thin sheets if the load is low 

enough, which leads to micro indentation toughness study in this research. 

Since as-fired surface condition is usually used in service and polishing surface 

may get incorrect test results, it is necessary to develop a micro indentation toughness test 

technique for thin ceramic substrates without surface polishing. The critical aspect of this 
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technique is how to observe and measure the micro cracks induced by micro indentations 

effectively and economically. The purposes of this section are to show that micro 

indentation can induce cracks and these cracks can be measured accurately enough for 

the evaluation of toughness by a standard optical microscope. 

6.2.2 Experimental procedure 

The specimens used for these micro indentation toughness tests are those broken 

pieces of quasi-static piston-on-3-ball experimental test specimens. The micro Vickers 

indentation was made using a MICR0MET®3 micro hardness tester which was the 

product of BUEHLER LTD. The indenter load applied was 4.91 N—in practice, the 

indenter load should be determined by trial and error to ensure the c/a to be in a range 

required by the associated model for the evaluation of the fracture toughness. The half-

diagonal length (a) of the indentation was measured directly by the hardness tester. 

The total length (2c) of the induced crack was measured by an IM 35 inverted 

microscope of ZEISS. Under normal lighting conditions, the induced cracks could not be 

observed even the image was magnified 500 times. When the magnification was switched 

to 1000, the image could not be focused anymore due to surface roughness. It seemed 

impossible to observe any cracks by this microscope. However, once a shadow was 

introduced close to the indentation and the focusing was properly adjusted, the expected 

cracks manifested. Figures 6.20 and 6.21 illustrate the effect of shadows for crack 

observation. 



Figure 6.20 Viclcers indentation in 8YSZ. 

Figure 6.21 Tlie same Viclcers indentation as in Figure 6.20 with shadows 
introduced from left. 
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The method to introduce a shadow is only the adjustment of the position of one of 

the illuminating lenses. The IM 35 inverted microscope is a metallurgical microscope. 

The illuminating ray path starts from a light source and a lamp condenser. Afterwards 

there are two illuminating lenses. Sliding the last illuminating lens to the halfway (not 

normal working position) can cast a shadow on the image. The same method was tried on 

a BUEHLER® metallurgical microscope (BUEHLER® VERSAMET 3 

MET ALLOGRAPH) and the same effect was observed. 

6.2.3 Results and discussions 

All the material compositions listed in Table 1.2 were tested using this 

experimental technique. More than 30 tests were performed on each composition. With 

the indenter loads and the dimensions of indentation and cracks, the test results were 

processed to obtain toughness value using the following equations (Sel^uk and Atkinson, 

2000). 

K,c = 0.035 
\ ) V ^ y 

for 0.25 < - < 2.5 
a 

(6.2) 

K,c =0.0143 
' / V ^  /  
- for 1 < - < 2.5 
a) a 

(6.3) 

K,c = 0.055 
/z 0.4 

log 
8.4a 

10 (6.4) 

and 
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K , ^ = H , a 4 - ^ \ ( w ' ' )  ( 6 . 5 )  
\"v 

where E is the Young's modulus, Hv the Vickers hardness, <ft a dimensionless constant 

(taken to be 2.7), P the applied load, a the half length of the indenter diagonal, c the crack 

length from the center of the indent, and / the crack length from the comer of the indent 

(Figure 6.19). In Equation (6.5), 

F = -1.59-0.34a:-2.02x^ +11.23x^ -24.97.r' +16.32x^ 

where x = log^o[yJ. 

The reason for selecting these four equations is not only that they have been 

reported to be valid for the Palmqvist-type cracks and more accurate in determining 

toughness than others, but also that these equations have been used by Sel^uk and 

Atkinson (2000) to evaluate the toughness of 8YSZ ceramic material using macro 

indentation toughness method, therefore making it possible to compare the test results 

from different sources. 

The Young's modulus used in Equations (6.2)~(6.5) to evaluate toughness values 

was chosen to be 216 GPa, which was reported by Sel^uk and Atkinson (2000) to be the 

Young's modulus of 8YSZ ceramic material. Through investigating load-deflection 

curves obtained from quasi-static piston-on-3-ball experiments, the Young's moduli of 

those material compositions listed in Table 1.2 are at the same level. The final results of 

micro Vickers indentation toughness tests are those in Table 6.1. 
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Table 6.1 
Fracture toughness values (AT/c, MPa* m'^) measured by micro VIckers indentation 
technique at ambient temperature 

Equation (6.2) Equation (6.3) Equation (6.4) Equation (6.5) 

Material 
K/c std. Kic std. K,c std. K/c std. 

8YSZ 1.90 0.10 1.22 0.21 1.89 0.13 1.80 0.16 

lA 1.91 0.07 1.21 0.15 1.89 0.10 1.81 0.12 

2A 2.00 0.05 1.41 0.11 2.02 0.06 1.96 0.07 

3A 1.99 0.09 1.33 0.19 2.00 0.11 1.93 0.14 

lY 1.94 0.06 1.25 0.12 1.93 0.08 1.86 0.09 

2Y 2.04 0.08 1.52 0.19 2.07 0.10 2.02 0.11 

3Y 2.23 0.12 2.01 0.32 2.27 0.11 2.24 0.11 

Although the toughness values evaluated by different equations have some 

systematical biases, these results are very useful for material comparison purposes. Table 

6.1 shows that the AI2O3 additive with amount up to 3 mol% has little effects on the 

toughness of 8YSZ at ambient temperature, which is consistent with the observations 

about the biaxial flexural strengths of these material compositions. The toughness of 

3YSZ doped 8YSZ materials increases slightly with increasing 3YSZ additive amount up 

to 30 wt% at ambient temperature. This can be part of the reasons for the behavior of the 

biaxial flexural strengths of 3YSZ doped 8YSZ materials. The biaxial flexural strength of 

8YSZ increases slightly with increasing 3YSZ additive amount up to 30 wt% at ambient 

temperature. 
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To investigate the efTects of surface polishing on the toughness values, another 

group of micro Vickers indentation toughness tests were performed on a surface-polished 

specimen. The test results, which are listed in Table 6.2, confirmed that the surface 

polishing could signiflcantly change the test results. For design purposes, the tests must 

be conducted on a specimen with the same surface condition as that in practical service; 

otherwise, the specimen must be rigorously heat treated to recover the surface condition. 

Table 6.2 
Fracture toughness values (K,c, IVIPa* m"^) of 8YSZ with different surface machining 
finish measured by micro Viclcers indentation technique at ambient temperature 

Equation (6.2) Equation (6.3) Equation (6.4) Equation (6.5) 

State 
Kic std. K,c std. K,c std. K,c std. 

As-fired 1.90 0.10 1.22 0.21 1.89 0.13 1.80 0.16 

Polished 2.22 0.20 1.99 0.58 2.25 0.17 2.21 0.16 
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6.3 Conclusions and discussions 

The following conclusions can be drawn based on the above discussions and some 

of the experimental results from previous chapters. 

• The AI2O3 additive with amount up to 3 mol% has little effects on the 

biaxial flexural strength of 8YSZ substrates at temperatures fi-om ambient 

to lOOOX. 

• Although the 3YSZ additive with amount up to 30 wt% can change the 

biaxial flexural strength of 8YSZ substrates, the effects are slight. The 

biaxial flexural strength of 10-wt% 3YSZ doped 8YSZ is lower than that 

of pure 8YSZ. While the biaxial flexural strength of 30-wt% 3YSZ doped 

8YSZ is higher than that of pure 8YSZ at ambient temperature, the 

improvement is counterbalanced by its lower biaxial flexural strength at 

high temperature (1000°). The 3YSZ additive decreases the biaxial 

flexural strength of 8YSZ at high temperatures. 

• The AI2O3 additive with amount up to 3 mol% does not change the 

dynamic biaxial flexural strength of 8YSZ substrates with stress rate lower 

than 1600 GPa/s, while the 3YSZ additive with amount up to 30 wt% 

degrades the dynamic biaxial flexural strength of 8YSZ substrates slightly. 
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In summary, adding additive of AI2O3 with amount up to 3 mol% or 3YSZ with 

amount up to 30 wt% cannot improve the biaxial flexural strength of 8YSZ substrate as 

an electrolyte material. 

The mechanical properties of ceramic materials strongly depend on their 

microstractures (Rice, 2000). The microstmctures of pure 8YSZ and some of its AI2O3 or 

3YSZ doped composites are shown in Figures 6.22~6.28, which were taken by a field 

emission scanning electron microscope (FE-SEM) (Hitachi S-4500). An intersection 

method was used to estimate the average grain size. Lines are drawn on the SEM pictures 

and the distance between two grain-boundaries is measured along the lines. 

The average grain size of pure 8YSZ is found from Figure 6.22 to be 2.1 nm. 

Figures 6.23-6.25 are the images of microstmctures of AI2O3 doped 8YSZ. The AI2O3 in 

these SEM micrographs show as dark spots, and most of them are segregated at the grain 

boundaries. The average grain size of 1 and 2-mol% AI2O3 doped 8YSZ is 3.0 |im, 

slightly larger than that of 8YSZ. The grain size of 3-mol% AI2O3 doped 8YSZ shows 

larger close to the AI2O3 particles than that elsewhere. The average grain size of 3-mol% 

AI2O3 doped 8YSZ is 1.8 fim, slightly smaller than that of 8YSZ. In general, the grain 

size of 8YSZ with AI2O3 additive amount up to 3-mol% changes insufficiently. This is 

consistent with the biaxial flexural strength behavior of 8YSZ with AI2O3 additive 

amount up to 3-mol%. 



Figure 6. 22 SEM micrograph of pure 8YSZ. 

Figure 6. 23 SEM micrograph of l-moi% AL2O3 doped 8YSZ (lA). 



Figure 6. 24 SEM micrograph of 2-moI% AL203 doped 8YSZ (2A). 

Figure 6. 25 SEM micrograph of 3-moI% AL203 doped 8YSZ (3A). 
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Figure 6.26 SEM micrograph of 10-wt% 3YSZ doped 8YSZ (lY). 

Figure 6.27 SEM micrograph of 30-wt% 3YSZ doped 8YSZ (3Y). 
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Figure 6. 28 SEM micrograph of 50-wt% 3YSZ doped 8YSZ (5Y). 

The microstructures of 3YSZ doped 8YSZ is shown in Figures 6.26-6.28. The 

average grain size of 3YSZ doped 8YSZ keeps in a same level with 3YSZ amount up to 

30 wt%. However, the grain size of 50-wt% 3YSZ doped 8YSZ drastically decreases to 

0.7 (am. The 3YSZ additive acts as an inhibitor of 8YSZ to slow down its grain growth. 

Therefore, it is probably necessary to add 3YSZ additive with amount at least up to 50 

wt% to change the biaxial flexural strength significantly. This is consistent with the 

research results of Allemann et al.'s, who investigated the grain growth of differently 

doped zirconia (Allemann, Michel, Marki, Gauckler, and Moser, 1995). 

The images of microstructures shown in Figures 6.23~6.28 were taken by Brach 

(2000). Unfortunately, there is no material composition listed in Table 1.2 possessing a 
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drastically different microstructure from pure 8YSZ. It thus expects no drastic change in 

their biaxial flexural strength behaviors. 

6.4 Summary 

The biaxial flexural strength of different material compositions listed in Table 1.2 

was compared. No obvious overall improvement to the 8YSZ ceramic substrates in the 

biaxial flexural strength has been observed by adding AI2O3 additive with amount up to 3 

mol% or 3YSZ additive with amount up to 30 wt%. The reason might be that the amount 

of additive is not enough to change the microstructure of 8YSZ drastically. Therefore, 

there is no obvious advantage to use a doped version of 8YSZ listed in the Table 1.2 to 

take place of pure 8YSZ as the electrolyte material. 
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CHAPTER 7 

CONCLUSIONS AND FUTURE WORK 

The conclusions in this dissertation are summarized in the first section of this 

chapter. Then, two topics are discussed in the second section for future work— 

experimental methods as well as associated analytical material models and possible 

solutions to the strength problem of electrolytes. 

7.1 Summary of conclusions 

1. The piston-on-3-ball loading configuration was determined to best fit the 

needs for investigating the biaxial flexural strength of ceramic substrates. 

Specific stress distribution functions for a specimen under the piston-on-3-

ball loading configuration were formulated. 

2. Probability distribution functions of biaxial flexural strength for a 

specimen under the piston-on-3-ball loading condition have been derived 

using different fracture failure criteria. The final formulae are in a form of 

the Weibull cumulative probability distribution function. Therefore, the 

experimental data from piston-on-3-ball tests can be processed with the 

Weibull treatment. The Weibull parameters are proven to be the 
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characteristics of the population of surface defects. These Weibull 

parameters can be used to predict the failure behavior of the tested 

material under other loading conditions. 

3. A dynamic piston-on-3-ball experimental technique for determining the 

biaxial flexural strength of thin ceramic substrates at high loading rates 

has been developed and verified by experiments. The loading 

configuration Is the same as the quasi-static piston-in-3-ball experimental 

technique, making the high loading rate results directly comparable to the 

standard quasi-static results. Analytical modeling of the technique guided 

the experimental design and was used to judge the validity of experimental 

results. The upper and lower limits of the loading rate range for a valid 

experiment with a specific specimen were analyzed and determined. 

4. A new model for dynamic strength under constant high stress-rate loading 

for brittle materials was developed based on the concept of cumulative 

damage. The parameters in this model can be experimentally identified 

using an overall least squares curve-fitting technique for all the data at 

different loading stress-rates. This model avoids the massive requirements 

on experimental data that are neither economical nor practical to obtain. It 

provides an overall insight into the dynamic behavior of the strength of 

ceramic materials. 

5. The quasi-static piston-on-3-ball biaxial flexural strength test method at 

ambient temperature has been evolved into an experimental technique for 
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measuring the biaxial flexural strength of ceramic substrates at elevated 

temperatures, making it possible to investigate the biaxial flexural strength 

of ceramic substrates at elevated temperatures, which has been proven to 

be different from that at ambient temperature. 

6. A new Vickers micro-indentation toughness measurement technique was 

developed and used to measure the fi^cture toughness of ceramic 

substrates without polishing, making it possible to study the mechanical 

properties of ceramic substrates with as-flred surface conditions. 

7. 8YSZ ceramic substrate and its compositions with AI2O3 additive amount 

up to 3 mol% and 3YSZ additive amount up to 30 wt% have been 

experimentally investigated at both ambient temperature and elevated 

temperatures, and under both quasi-static and high stress-rate loading 

conditions. The experimental results showed that the additives could not 

change the biaxial flexural strength of 8YSZ drastically. 
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7.2 Future work 

The following work is still need to be conducted if time and resources are 

available. 

7.2.1 Experimental methods and material models 

For the electrolyte design purposes, it is necessary to investigate the effects of 

temperature and loading rate on the biaxial flexural strength of thin ceramic substrates. In 

this dissertation, quasi-static piston-on-3-ball experimental techniques at both ambient 

and elevated temperatures were employed to investigate the biaxial flexural strength of 

8YSZ and its compositions. A dynamic piston-on-3-ball experimental technique at 

ambient temperature was developed and employed. For the completeness of the piston-

on-3-ball experimental technique series, a dynamic piston-on-3-ball experimental 

technique at elevated temperatures still need to be developed. Although spall strength can 

be measured at elevated temperatures through some explosive loading techniques (Kanel 

et al., 1996), there is no dynamic experimental technique available for measuring 

dynamic biaxial flexural strength at elevated temperatures. 

To develop a dynamic piston-on-3-ball experimental technique at elevated 

temperatures, the main difficulty is the design of fixture. The fixture style of the dynamic 

piston-on-3-ball experimental technique at ambient temperature can be kept, while the 

fixture materials must be chosen to possess their same physical and mechanical properties 
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at elevated temperature at least up to 1200°C. In addition, the mechanical impedance of 

the transmission bar material must be carefully designed if the transmission bar is still 

based on the quartz-crystal-embedded split Hopkinson pressure bar technique (Chen, Lu, 

and Zhou, 2000). 

The Weibull statistical model can be used to describe the strength behavior of 

ceramic material under quasi-static loading conditions. The new model developed in 

Chapter 4 can be used to predict the dynamic strength of ceramic materials under 

constant high stress-rate loading condition. However, there is no model available to relate 

the strength behavior of ceramic materials at elevated temperatures with its other property 

parameters. Although many reports can be found in the literature revealing that the 

strength behavior of ceramic materials is different at elevated temperature from that at 

ambient temperature (Rice, 2000), there is still no comprehensive description about its 

physical mechanism, which can result in an analytical model to predict the strength 

behavior of ceramic materials at elevated temperatures. Discussions were all on some 

specific material compositions. Therefore, theoretical study in this area still needs more 

systematic efforts. 

7.2.2 Possible solutions to the strength problem of electrolytes 

It has been proven that adding AI2O3 additive or 3YSZ additive is not a successful 

solution to the strength problem of 8YSZ substrates as a proper electrolyte material. The 

other intuitive solution might be hot-isostatic-pressing (HIP), which has been widely used 

to successfully improve mechanical properties of materials. The strength of dense yttria 
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stabilized tetragonal zirconia ceramics containing 2-6 mol% Y2O3 was enhanced 

significantly by HIPping (Tsukuma, Kubota, and Tsukidate, 1983). However, HIPping 

may not be always successful to improve the strength of ceramic materials (Koike, 

Tashima, Wakiya, Maniyama, and Oikawa, 1996). In this study, some specimens with 

compositions listed in Table 1.2 were processed by HIPping one hour under 25,000 psi 

pressure at 1500°C temperature. The HIPped specimens were then tested using the quasi-

static piston-on-3-ball experimental technique to measure their biaxial flexural strengths 

at both ambient and elevated temperatures. Tables 7.1 and 7.2 list the test results at 

ambient temperature (24°C) and at an elevated temperature (800°C), respectively. By 

taking scatter characteristic of ceramic materials into account, there is no reason to 

conclude from these biaxial flexural strength data that the HIPping processing can 

improve their mechanical properties, at least their biaxial flexural strength. 

For the purposes of the design of a reliable electrolyzer, the development of 

electrolyte material with high strength is one method. Another method is to design an 

optimal structure to apply proper boundary conditions to the electrolyte. Therefore, only a 

portion of external loads applies on the electrolyte disk. There are many principles that 

can be employed for this purpose such as the concept of dynamic vibration absorber and 

damper (Inman, 2001), in which dynamic external loading mainly absorbed by the 

dynamic vibration absorber and damper, leaving the electrolyzer almost free of loading. 
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Table 7.1 
Biaxial flexural strength data (MPa) from quasi-static piston-on-3-ball experiments 
at ambient temperature (24''C) 

No. 8YSZ lA 2A 3A lY 2Y 3Y 

1 299.2 178.5 354.7 424.4 376.2 335.8 308.7 

2 408.7 398.5 390.8 361.1 332.1 330.3 339.3 

3 351.7 248.7 308.4 295.9 311.1 313.1 350.6 

4 347.6 327.9 313.4 280.7 

Mean 353.2 293.3 345.5 348.7 339.8 326.4 319.8 

Table 7. 2 
Biaxial flexural strength data (MPa) from quasi-static piston-on-3-ball experiments 
at elevated temperature (800"C) 

No. 8YSZ lA 2A 3A lY 2Y 3Y 

I 224.6 269.4 191.6 283.9 215.4 82.1 211.0 

2 221.2 213.5 243.6 252.7 84.4 190.7 227.9 

3 197.6 

Mean 222.9 241.5 217.6 268.3 165.8 136.4 219.4 

The above-mentioned methods may be combined to obtain proper solutions to the 

strength problem of eletrolyte materials. One kind of such solutions may result from 

applying proper electrode coatings to electrolyte substrates. Kumar and S^ferensen (2001) 

studied fracture energy and crack growth in surface treated 8YSZ for solid fuel cell 

(SOFC) applications. The critical part of the electrolyzer is a stack of electrochemical cell 
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whose central portion includes three different layers: two porous electrodes (an anode and 

a cathode) separated by a dense, oxygen ion conducting electrolyte (Figure 1.3). There 

are many possible structures of electrolyzer cell such as a 8YSZ substrate sandwiched 

between thin layers of platinum (forming ductile/brittle/ductile layered structure) or 

perovsicite (forming brittle/brittle/brittle layered structure) electrodes. The porous 

materials for electrodes must possess similar thermal expansion property as the 

electrolyte material, as well as high electrical conductivity at operating temperatures. In 

addition, we can seek some proper electrode materials from possible candidates of 

electrode materials to form an electrolyzer structure, which can enhance the strength of 

the electrolyte substrates. For example, Kumar and S^orensen (2001) found that the 

fi-acture resistance of the surface coated with NiO-8YSZ cermet was increased from 3.5 

to 5.48 J/m~ in the initiation fracture toughness and from 2.8 to 3.8 J/m^ in the arrest 

value, which remained almost unchanged in the case of Ni0-Mn02 coating and NiO-

LSM (lanthanum (0.85), strontium (0.15), and manganite) composite. The proper coating 

material as an electrode can significantly increase the frequencies of occurrence of 

toughening mechanisms such as multiple cracking, grain and crack bridging, and crack 

deflection. Therefore, searching proper electrode materials and coating processes may 

exist some potential for the improvement of the strength of the electrolyte. 
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