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ABSTRACT 

The magnetic field dynamo in the inner part of accretion disks around 

supermassive black holes in AGNs may be an important mechanism for the 

generation of magnetic fields in galaxies and in extragalactic space. We consider 

dynamo with the necessary helicity generation produced by star-disk collisions. 

Gas heated by a star passing through the disk is buoyant and form rising and 

expanding plume of plasma. Due to Coriolis forces the flow produced by plumes 

have coherent helicity. This helicity is the source of a effect in the a-Q dynamo 

in differentially rotating accretion disk. We apply the mean field dynamo theory 

to the ensemble of plumes produced by star-disk collisions. We demonstrate the 

existence of the dynamo and evaluate the growth rate of magnetic field. The 

estimate of the nonlinear saturated state of the dynamo gives the magnetic field 

exceeding equipartition with the thermal energy in the accretion disk. Thus, 

star-disk collision dynamo can be important in generating dynamically significant 

magnetic fields, which could alter the disk structure and be the source of the 

energy flow in extragalactic jets. We present results of numerical simulations of the 

kinematic dynamo produced by star-disk collisions. It was found that for about 

one star-disk collision per period of rotation of the inner edge of an accretion disk, 

the typical value of the threshold magnetic Reynolds number is of the order of 100. 

The generated mean magnetic field has predominantly even parity. 

We also present theoretical consideration of magnetic dynamo in New Mexico 

dynamo experiment, which is currently under construction. The experiment 

utilizes Couette flow and driven jets of liquid sodium to simulate astrophysical 

a-Q dynamos in the laboratory. We perform numerical simulations with ideally 
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conducting boundary and evaluate the changes, which vacuum boundary conditions 

introduce in our numerical results. We also develop the theory of the MHD Ekman 

boundary layer in differentially rotating conducting fluid. The Ekman layer is 

formed at the end plates in the experiment. We show that the Ekman layer does 

not influence the generation of the large scale magnetic field in the experiment. 
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1 INTRODUCTION 

Classical and quantum electrodynamics are among the best understood basic parts 

of the modem picture of the Nature. Predictions given by electrodynamics were 

verified in the laboratory experiments with very high accuracy. However, the 

knowledge of fundamental equations is not enough to describe and understand 

the absolute majority of events happening in the Nature. The high complexity 

of the basic equations applied to real situations urges people to find some other, 

approximate or phenomenological, ways of explaining and systematizing the 

facts. In view of constant struggle of humanity for prosperity quick and cheap 

phenomenological knowledge is very common in all fields of human existence. 

Although the great variety of things such as motion of fluids, combustion, chemical 

reactions, elasticity of materials, biological life, even the working of the human brain 

itself, have fundamental electromagnetic origins, different approaches rather than 

straight electromagnetic theory are used in these fields. Historically, observations 

of the Earth's magnetic field using the compass (invented in China, 2nd century 

A.D.) and magnetic fields created by natural ferromagnets were at the beginnings 

of using electromagnetic phenomena by men. In the late I8th and early 19th 

centuries the relationship between the current of electric charges and magnetic field 

became established by the experimental works of Ampere (a magnetic field acts 

with a force on the current), Oersted (magnetic field is created by a current) and 
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Faraday (a magnetic field changing in time excites electric currents). J.C. Maxwell 

formulated basic equations of classical electrodynamics in the 19th century. It is 

these equations that were the basis of later developments of the theory of relativity. 

After that development, electric and magnetic fields were united in one four 

dimensional object, the electromagnetic field. The development of the theory of 

radiation by accelerating charges followed soon. Further work on treating more and 

more complex systems of charges was done in plasma physics and was continuously 

advanced during late 20th century and into 21st century. 

1.1. Evidence of Cosmic Magnetism 

Until the discovery by George Hale of the magnetic field on the Sun in 1908, the 

only known magnetic field of celestial bodies was the natural magnetic field of 

the Earth with the strength at the Earth surface of the order of 0.3-0.7 Gauss. 

The observations of the Zeeman doublets and triplets of absorption lines of metals 

in solar spots were described in Hale (1908). The magnetic field of other stars 

have become known to exist since the work of Babcock (1947), who estimated the 

magnetic field in the atmosphere of the Ap-star 78 Vir to be 1500 Gauss using 

Zeeman polarimetric measurements of stellar absorption lines. The attention to 

the magnetic fields in the interstellar medium was drawn after discoveries of cosmic 

rays and increased interest in the acceleration mechanisms and propagation of 

cosmic rays. The existence of the magnetic field for our Galaxy was predicted 

by Alfven et al. (1949) and Biermann (1952), for there was no other possibility 

to explain the observed isotropy of the cosmic rays in the Earth's neighborhood. 

However, the rapid expansion of the knowledge about astrophysical magnetic fields 

started with the astronomy observations covering other bands of electromagnetic 

spectrum beyond traditional optical band. The discoveries of non-thermal radio 
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sources by radio astronomy methods in 50s and 60s lead to understanding the 

important role the magnetic fields play in the balance of the interstellar medium. 

Synchrotron emission by relativistic electrons in magnetic fields turned out to be 

almost universally the mechanism of non-thermal emission in supemovae remnants, 

radio galaxies, radiohaloes of our and other nearby galaxies, quasars, extragalactic 

and galactic jets. The phenomenon of large scale cosmic magnetic fields is closely 

related to the acceleration of energetic particles above thermal distribution. Such 

highly energetic particles are detected as cosmic rays on the Earth and emit X-rays 

and gamma-rays, while interacting with thermal particles, magnetic fields and 

soft thermal electromagnetic radiation. Therefore, the detection of X-ray and 

gamma-ray emitting sources with power law (no thermal cutoff) spectra certainly 

indicates the presence of magnetic fields in the source or near the source. Such 

sources of X-rays and gamma-rays attributed to magnetic activity are young stars 

with strong chromospheric activity. X-ray and gamma-ray pulsars, some white 

dwarfs with strong magnetic field, young supemovae remnants, the gamma-ray 

glow of our Galaxy, nuclei of Seyfert galaxies and quasars, some optical and X-ray 

jets of radio galaxies and quasars, some BL Lac objects and quasars showing 

extremely intensive (up to 10''®erg s~') hard ganmia-ray emission. 

There is a variety of techniques available nowadays to detect the presence 

of magnetic fields and measure their strength and orientation. Below we briefly 

mention such methods commonly in use by astronomers. More detailed descriptions 

for theoretically oriented people can be found in Pacholczyk (1970), Zeldovich 

et al. (1983), Ruzmaikin et al. (1988), Zheleznyakov (1996), and numerous other 

books and reviews devoted to observations of magnetic fields and the theory of the 

physical phenomena invoked. 
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1. Direct measurement of tlie magnetic fields using induction coils or solid state 

detectors. Such measurements are only possible when the magnetometer is 

immersed inside the region with the magnetic field to be measured. Magnetic 

field on the Earth surface was studied by this method starting from 17th 

century. With the advance of the satellite era, magnetometers placed on the 

artificial satellites and space crafts allowed a detailed study of the magnetic 

field around the Earth. Also the magnetic fields of all other large planets in 

the Solar System with the exceptions of Pluto have been observed as well as 

the interplanetary magnetic field induced by the Sun and the plasma wind 

emanating from the Sun. Large planets have dipole magnetic fields with the 

strength of the order of 1G while Earth-like planets are almost devoid of 

magnetic field. 

2. The Zeeman effect in the atomic lines in the atmospheres of stars and of the 

Sun. The atomic levels are split in a magnetic field to a number of levels 

each corresponding to a different values of the projection of total angular 

momentum of the atom on the field direction. The splitting of the energy 

levels of the atom leads to the splitting of spectral lines. The simplest case 

of such splitting is a triplet. The central unshifted component of the triplet 

= t/Q is linearly polarized and two symmetric shifted components 

have right-handed and left-handed circular polarizations. The degree of 

circular polarization of the shifted components is 100% for the line of 

sight parallel to the magnetic field and decreases to 0 for the line of sight 

perpendicular to the magnetic field for both satellites. The shift between 

components depends only on the magnitude of the magnetic field B and 



17 

not on the direction of the magnetic field. The multiplier g depends on 

the total spin and the orbital momentum of the atom, m is the mass of an 

electron. Knowledge of the relative intensities and polarizations of Zeeman 

components allows one to determine both components of magnetic field 

parallel and perpendicular to the line of sight. However, Zeeman splitting 

exceeds the thermal width of absorption lines only for quite strong magnetic 

fields > 10' G. Much weaker fields (down to a few Gauss) can be detected 

by measuring an excess of circular polarization in the line wings. The last 

measurement allows one to determine only the component of the magnetic 

field parallel to the line of sight. The magnetic field on main sequence stars 

varies from 1 to 10"* G and is highly intermittent across the star surface. 

3. Zeeman effect in the absorption radio lines of the atoms and molecules in the 

interstellar space. The physics of this effect is the same as for the absorption 

lines in stellar atmospheres. Due to high spectral resolution and high 

sensitivity of radio observations, very weak magnetic fields of our Galaxy (a 

few micro Gauss) can be detected. However, even in the cold molecular clouds 

the thermal width of the lines is much larger than the distance between the 

Zeeman components. Usually, the measurements are done for the absorption 

lines caused by atoms and molecules (H, OH) in dense and cold clouds in the 

interstellar medium projecting in front of a bright source of radio emission. 

Therefore, the results obtained (fields of the order of 10 to 40 micro Gauss) 

should be higher than the average magnetic field in the Galaxy because the 

magnetic field is amplified in the process of contraction of the gas to form 

such a cloud. The advantage of Zeeman methods is that they result in the 

direct measurements of magnetic fields without making assumptions of the 

parameters of the plasma such as number density of electrons and the energy 
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spectrum of electrons. 

4. Detection of synchrotron emission. The measurements of intensity and 

spectrum of synchrotron emission allows one to obtain rough estimates 

of the strength of the magnetic field. Since the intensity of synchrotron 

radiation depends also on the number density of relativistic electrons (and, 

possibly, positrons in some circumstances), one needs to invoke additional 

information on the number density of relativistic particles. Often this is 

done by minimizing the total energy contained in the magnetic field and 

relativistic particles. This leads to the assumption of equipartition between 

these energies. This method is commonly used for estimating the strength of 

magnetic fields in galaxies, radio lobes, and in the jets in AGN's. Another 

variation of this method is to observe the frequency at which the synchrotron 

emission becomes self absorbed and where the synchrotron spectrum 

experience a sharp change of the power law index. This method is applicable 

to the cores of radio galaxies but suffers from poor angular resolution of 

the radio telescopes at the frequencies about and below the synchrotron 

self absorption cut off (meter wave band). The strength of magnetic fields 

estimated by the equipartition method is a few micro Gauss in the radio 

lobes, and can be larger up to tens micro Gauss in the jets and near the 

ending surfaces of jets. Magnetic fields in kpc scale jets are of the order of 

tens of micro Gauss, while in the bright knots on parsec scales magnetic field 

can be stronger, ~ 10"^ G. In the cores of the radio galaxies, the magnetic 

fields are estimated to be of the order IO~^-IO~^G (Begelman et al. 1984). 

5. Polarization of synchrotron emission. Optically thin synchrotron emission of 

highly relativistic particles is linearly polarized in the direction perpendicular 
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to the projection of the local magnetic field on the plane of the sky. The 

degree of circular polarization is ~ I/7, where 7 is the Lorentz factor of 

emitting electrons, and is small under most circumstances. Mapping of 

the polarization vector of the synchrotron emission allows one to obtain 

information about the orientation of the magnetic fields in radio emitting 

regions. The degree of polarization can be very high for uniform magnetic 

fields. The presence of chaotic components of the magnetic fields, Faraday 

rotation inside the emitting region, and finite size of the beam of the 

radio telescope decreases the degree of linear polarization. Measurements 

of frequency dependent depolarization allows one to estimate the chaotic 

component of the magnetic field. This method is extensively used to obtain 

information about the direction and randomness of the magnetic field in 

galaxies, galactic coronae, and AGNs. 

6. Faraday rotation. The presence of the magnetic field in an elctron-ion plasma 

causes the rotation of the direction of polarization of the linearly polarized 

radiation. If A is the wavelength of radio emission, B is the magnetic field, r 

is the radius vector inside emitting region, Ue = ne(r) is the number density 

of electrons in units of cm~^, then the direction of polarization rotates by the 

angle = RM>?, where the rotation measure RM is given by the integral 

along the line of sight through the magnetoactive region as 

Only the component of the magnetic field parallel to the line of sight can be 

determined from equation (1.1). The method requires independent knowledge 

of Ue, and also estimates of the scale of spatial variability of B and 

Observations of Faraday rotation are often used to estimate the conditions of 

(1.1) 
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the magnetic fields in the intergalactic medium by measuring the wavelength 

dependence of the position angle of polarization vector of the radio emission 

coming from the background radio sources. This method is extensively 

applied to our Galaxy, other galaxies, AGNs, clusters of galaxies, and the 

intergalactic medium at cosmological distances. 

7. Magnetobremsstrahlung gyrolines. Nonrelativistic electrons orbiting around 

magnetic lines of force emit radiation with the spectrum consisting of discrete 

lines located at the multiplies of gyrofrequency a;„ = tiuh- This radiation has 

a large degree of circular polarization, and is 100% circular polarized if the 

line of sight coincides with the direction of the magnetic field. Observations 

of the circularly polarized light from some white dwarfs and the changes of 

the degree and sign of the circular polarization over the optical spectrum 

allowed one to estimate the magnetic field to be ~ 10® G. Gyrolines have 

also been observed in some of the X-ray emitting accreting neutron stars 

(Her X-1) indicating a strong magnetic field 10^^ G. .'Uso observations of 

gyrolines prior to the spacecraft based direct measurements allowed one to 

measure the magnetic fields of Jupiter and Saturn. 

8. The polarization of star light by interstellar dust. The interstellar dust 

particles have non spherical shapes. The effects of the interaction of such 

rotating particles with magnetic field and thermal motion of the surrounding 

gas atoms leads to the conclusion that the preferential orientation of dust 

particles depends on the magnetic field direction: the axis of the particle 

with the largest moment of inertia is oriented predominantly parallel to the 

direction of the magnetic field. This leads to the conclusion that the particles 

scatter and absorb light polarized perpendicular to the magnetic field more 
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efficient than light parallel to the magnetic field. As a result, the component 

of the star light polarized parallel to the magnetic field is scattered out of line 

of sight more than perpendicular component. This mechanism is similar to 

the reddening of the star light; the radiation that reach us becomes polarized 

parallel to the magnetic field (typically by 3% per 1 kpc). This method 

allow one to determine the direction of the magnetic field in the region of 

the Galaxy near the Sun and also in some other nearby spiral galaxies (M31, 

M51). .\n interesting method for the determination of the correlation scale 

of the galactic magnetic field by the observations of the variance of the 

fluctuations of the degree of polarization from nearby stars was proposed by 

Jokipii et al. (1969). The variance should have a different dependence on the 

distance to the star depending on whether the distance is larger or shorter 

than the correlation length of the chaotic magnetic field. By determining this 

distance one obtains the value of the correlation length of the magnetic field 

~ 150-225 pc. The method relies only on statistics and does not invoke any 

particular knowledge about the physical mechanism of the orientation of star 

dust particles. 

There are other methods of the determination of the magnetic field strength, 

less accurate, or used only rarely for very specific circumstances. A short summary 

of the observational results for magnetic fields in different astrophysical objects 

and on different scales is given in the table on page 35 of Zeldovich et al. (1983). 

Further, we will briefly review the evidences for magnetic fields on the largest scales 

of the structure in the Universe - galaxy clusters. 
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1.2. Evidences for Strong Magnetic Fields in Galaxy Clusters 

Magnetic fields beyond our Galaxy are detected by measuring the intensity and 

polarization of the synchrotron emission and by measuring the Faraday rotation. 

The complementary information about the electron density in the intergalactic 

space can be obtained by observing thermal X-ray bremsstrahlung of hot gas in 

the clusters. One uses formula (1.1) to obtain an estimate of the value of the 

component of the magnetic field parallel to the line of sight. Occasionaly, some 

other methods can be used. X-ray fluxes from the inverse Compton scattering of 

thermal infrared and optical radiation by the relativistic electrons give an estimate 

of the number density and energy spectrum of the relativistic particles, which emit 

synchrotron radiation in the magnetic fields of extragalactic jets. Together with 

the radio observation of synchrotron emission this allows one to estimate both 

the strength of the magnetic fields and the energy of relativistic electrons. The 

measurements of the light polarization by dust grains allows one to determine 

the orientation of the magnetic field in some nearby spiral galaxies viewed face 

on. A review of the results for the magnetic fields in radio galaxies, quasars and 

extragalactic jets is given by Begelman et al. (1984). Kronberg (1994) reviews the 

properties of magnetic fields in the clusters and on cosmological scale. Generally, 

the strength of the magnetic fields in radio lobes of AGNs and in the intergalactic 

space in clusters is a few micro Gauss. This magnetic field is comparable to the one 

typically found in the disks of nearby spiral galaxies including our Galaxy (see Beck 

et al. (1996) for the recent review of the galactic magnetism). It is well understood 

that the origin of magnetic fields in the radio lobes of radio galaxies is due to the 

advection of the magnetic field by jets. Jets originate at the central core of the 

radio source, and, therefore, the ultimate origin of the energy and the magnetic 

flux in the radio lobes must be due to the liberation of the gravitation energy in 
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the accretion processes on supermassive (10^-10^° Mq) black holes (Begelman et 

al. 1984; Blandford 1990). 

However, the origin of the magnetic field in clusters is not understood. The 

magnetic field in the clusters with cooling flows can be 10-40 /iG (Taylor & Perley 

1993; Taylor et al. 1999). These strong magnetic fields could be attributed to the 

advection of the magnetic field from outer cluster regions by the converging inflow. 

Recent study of rotation measures in the sample of 16 clusters without cooling 

flows (Clarke et al. 2001) combined with the ROSAT X-ray profiles showed that 

these clusters are permeated with magnetic fields at levels of 5-10(//10 kpc)~^/^ /xG, 

where I is the field correlation length. If the line of sight passes through the region 

of space with N reversals of the magnetic field direction, the averaged magnitude 

of the magnetic field in the whole region must be by \/N times larger than the 

magnitude determined from equation (1.1) assuming the magnetic field to be 

uniform in the whole cluster. This is the reason why the estimate of the magnetic 

field from RM depends on the correlation length L Clarke et al. (2001) determine 

only upper limit for I by studying the distribution of the RM across the surface of 

the extended radio sources embedded in the clusters. The upper limit I = 10 kpc 

comes from the limited angular resolution of the radio telescope. If / < 10 kpc, then 

an estimate of the average magnitude of the magnetic field in the cluster increases. 

The filling factor of the magnetic field in the clusters is close to unity (Clarke et 

al. 2001). 

All clusters without cooling flows have characteristic sizes about 500 kpc. 

Based on the estimates of the magnetic field Clarke et al. (2001) computes the 

total magnetic energy in the cluster, which turns out to be 

Ffl w 1.5 • 10®^(r/500 kpc)^(S/5 ergs, (1.2) 
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where r is the radius of the cluster, /175 is the ratio of the Hubble constant to the 

fiducial value 75 km s~^Mpc~K The total thermal energy in the same volume is 

Eth w 6.4 • 10®2ne(r/500 kpc)^(T/10® K)hji ergs, (1.3) 

where rie is the intracluster electron density in units of 10"^/i75^cm~^. This 

thermal energy is about one half of the binding energy of the intracluster gas in the 

gravitational potential of dark matter (assuming the cluster is virialized). These 

estimates show that the magnetic energy is a nonnegligible fraction of the total 

energy stored in the cluster. One can compare this energy to the energetics of the 

possible sources, which could produce such magnetic field. Star burst events in the 

early galaxy formation epochs can produce no more than ~ 10®^ ergs for a typical 

galaxy cluster (Volk k Atoyan 2000). This energy release causes the outflows from 

the galactic disks to develop. These winds could entrain the magnetic field already 

existing in protogalaxies and spread it over the large volume in the clusters. Volk 

& Atoyan (2000) considered the large and small scale magnetic fields, which could 

be produced in clusters. They obtained the strength of such fields of the order of 

lO"'^ G even after the contraction of the initial cluster gas to its present state has 

happened. Such small fields are not enough to explain the magnetic fields observed 

during recent surveys of RM in the clusters. The kinetic and gravitational potential 

energy of cluster mergers, which could be transformed into the energy of stretching 

and twisting motions of the gas, is another "tap" of the energy for producing the 

magnetic energy Eg. Past cluster mergers events could have released of the order 

of 10®' ergs. 

Another interesting possibility has been suggested by Colgate k Li (2000) and 

Colgate et al. (2001a). The total energy released by the growth of supermassive 

black holes at the center of nearly every gala:qr is large and can be comparable or 
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even larger than that emitted by stars in the universe. Recent observations suggest 

that radiation from Active Galactic Nuclei (AGNs or quasars) might account for 

only ~ 10% of this energy (Richstone et al. 1998). Where did the rest of the energy 

go? We propose that a substantial fraction of this energy has been converted into 

magnetic energy and stored in the large scale magnetic fields primarily external 

to each galaxy, in galaxy clusters and "walls". When material in the accretion 

disk spirals toward the black hole, some fraction of the rest mass energy, Mc^, 

of this material is removed before the material can reach the event horizon. It is 

theoretically possible (e.g., Blandford (1990) and explanations in section 2.5) that 

the energy converted into magnetic fields can be of the order of O.lMc^. This means 

that during the time of the growth of an average mass M ~ 10® Mq black hole, the 

magnetic energy produced can be ~ 2 • 10®^ ergs. Therefore, the action of just one 

radio loud AGN during the life time of the cluster is enough to generate magnetic 

energy estimated by equation (1.2). It is very plausible that a significant fraction of 

galaxies currently seen in a cluster have undergone this process through the QSO 

stage in the past, around 2 « 2. The magnetic fields, which are observed now in 

the clusters, can be the remnants of past radio loud QSOs and radio galaxies. 

The estimates of the total energy of magnetic fields in the radio lobes of radio 

galaxies and AGNs lead to the numbers up to 10®^ ergs (Burbidge 1956; Begelman 

et al. 1984). The magnetic energy currently seen in the radio lobes could provide 

an estimate of the fraction of the gravitational energy converted to the magnetic 

energy during the growth of a supermassive black hole. Unfortunately, all radio 

loud sources are too far for black hole masses to be measured by available dynamical 

or reverberation methods. The minimum energy estimates of the magnetic energy 

and the energy of relativistic particles using the method mentioned in section (1.1) 

for about 100 powerful extragalactic radio galaxies have been recently made by 
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Kronberg et al. (2001). Kronberg et al. (2001) note that there is a good correlation 

between the total energy of the magnetic field and the relativistic particles in a 

source, Etot, and the volume of the source: 70 largest sources outside galaxy clusters 

have a much larger energy content than 30 small sources located within 150 kpc 

of the cores of rich, cooling flow clusters. At the same time, radio luminosities of 

both classes of radio sources do not differ strongly. The acceleration of relativistic 

particles is due to the magnetic fields. Thus, relativistic particles derive their 

energy from magnetic fields, and Etot is the better measure of the initial energy put 

into the magnetic fields by a black hole. Probably, the difference between these two 

classes of radio galaxies should be attributed to the difference in masses between 

black holes or/and difference in the efficiency of creating magnetic energy during 

accretion processes. The differences in pdV work done by the magnetic field against 

the surrounding gas cannot be the only cause for the four orders of magnitude 

scatter in the magnetic energy contents between two classes of sources (Kronberg 

et al. 2001). 

One can suggest that the giant radio sources contain "grown up" black holes 

and are close to the end of their period of activity. Then, the sources with the 

largest ETOT ^ 5 • 10®° ergs contain the black holes with the masses MBH « 2 • 10® Mq, 

which are near the top end of the sample of the black holes in close galaxies with 

known masses (see Gebhardt et al. (2000a); Gebhardt et al. (2000b); Ferrarese 

& Merritt (2000) for the most recent published results). Therefore, during the 

formation and growth of such a black hole the total magnetic energy released is 

« 1.4 • I0~^This is much below the maximum plausible theoretical estimate 

0.lMth(r. However, Kronberg et al. (2001) indicate that their estimates can be off 

by one order of magnitude due to unknown systematic effects. Thus, the value of 

the efficiency « 1.4 • 10"^can be also off by an order of magnitude. Still, a 
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total of ~ 10-100 AGNs in the lifetime of a cluster will fill the cluster 

with the measured magnetic field strength. 

AGNs outside clusters also produce magnetic fields, which will be spread out 

in the intergalactic media analogous to the AGNs in clusters discussed above. The 

proof of such point of view could come from the observations of low intensity long 

wavelength synchrotron emission coming from the outside of clusters. This appears 

to be tentatively supported by the discovery of diffuse, 326 MHz synchrotron 

emission at a radii of a few times the core size of the Coma cluster (Kim et al. 1989). 

The minimum energy calculations together with the observations of R^'I through 

the cluster halo indicated the presence of 10~^-10~® G magnetic field. Kronberg 

et al. (2001) estimates that if all the magnetic energy produced during the period 

of large QSO activity at z « 2 were to be spread uniformly in the intergalactic 

medium with the number density 10""* cra~^ and temperature T = 10"* K, then the 

magnetic field will be approximately in equipartition with the thermal energy of 

intergalactic gas. 

We cannot rule out the possibility of the generation of the magnetic fields by 

the dynamo operating in situ in the clusters and in the gas outside clusters. Future 

high resolution observations of RM and synchrotron emission should provide the 

solution of this problem. The dynamo processes eire crucial for the origin and 

amplification of magnetic fields. 

1.3. Introduction to Magnetic Dynamos 

The need for a magnetic dynamo to produce and amplify magnetic fields observed in 

the galaxies and clusters of galaxies has been long realized. The theory of kinematic 

magnetic dynamos has a long history and is a well developed subject by now. There 
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are few monographs devoted to the magnetic dynamos in astrophysics (Parker 

1979; Zeldovich et al. 1983; Ruzmaikin et al. 1988). Three main astrophysical 

areas, in which dynamos are involved, are the generation of magnetic fields in 

the convective zones of planets and stars, in differentially rotating spiral galaxies, 

and in the accretion disks around compact objects. The importance and need for 

the production of magnetic fields in the central parts of the black hole accretion 

disks in AGN has been pointed out by Chakrabarti et al. (1994) and, recently, by 

Colgate & Li (1997) and Colgate et al. 2001a. The magnetic field generated by the 

dynamo powers jets, which are most likely helices of wound up, strong force-free 

magnetic field dominated by the electromagnetic energy flux. The electromagnetic 

mechanism of the extraction of angular momentum and energy from the accretion 

disk has been proposed by Blandford (1976) and Lovelace (1976). Recently, the 

process of formation of such a force-free helix by shearing of the footpoints of 

the magnetic field by the rotation of the accretion disk has been considered by 

Lynden-Bell (1996) and Lovelace et al. (2001). The magnetic dynamo in the disk 

is the essential part of the whole emerging picture of formation and functioning 

of AGNs according to Colgate et al. (2001b). Black hole formation, Rossby wave 

torquing of the accretion disk, jet formation and magnetic field redistribution 

connected with the particle acceleration in the jets are the key parts of this 

scenario. 

By dynamos we will call any motion of the conducting fluid, which leads to 

the exponential amplification of the magnetic energy at the expense of the energy 

of the motion of the fluid. In turn, the motions of the fluid can be supported 

by the other energy sources. Thermal pressure, heating and gravitational energy 

are the most conmion energy sources in the astrophysical circumstances. The 

exponential growth of the magnetic field from very small seed values, and the 
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development of fluid driven instabilities such as magnetorotational instability 

are dynamos. However, the development of the current driven instabilities (such 

as pinch and kink instabilities of magnetized plasma pinches) are not dynamos, 

since the growing magnetic field component derives its energy from the magnetic 

field energy associated with the currents in the equilibrium configuration. Also, 

stretching of the magnetic field by the flow, which proceeds at the rate slower than 

the exponential is not a dynamo. 

TVaditionally, dynamo theory is divided into two parts: kinematic theory and 

full magnetohydrodynamic (MHD) theory. Kinematic theory supposes that the 

velocity field v is given, and seeks self-excited solutions for the magnetic field B of 

the kinematic equation 

^ = VX(vxB)+7?V2B, V-B = 0, (1.4) 
at 

where rj = -— is the magnetic diffusivity, a is the electrical conductivity of 

the plasma, both assumed constant throughout the volume. Fully self-consistent 

dynamic MHD theory seeks to determine both B and v from the full MHD 

equations with necessarily some non-electromagnetic forces included to support 

the motion. No other external sources supporting the B except the motion of the 

conducting fluid are present. All astrophysical dynamo problems have a preferred 

axis of symmetry. In the case of an accretion flow this is the direction of the 

angular momentum of the flow. Let us decompose the velocity v and the magnetic 

field B into the sum of axisymmetric part with respect to the axis of synunetry, v, 

B, and asymmetric part, V, B' 

B = B + B', v = v-Fv'. (1.5) 

We also divide the axisymmetric vector fields, B and v, into poioidal and azimuthal 
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parts; 

B = Bp(r, 2, t) + B^{r, z, t)e^, where Bp = V x [i4(r, z, (1.6) 

V = vp(r, 2, t) + n(r, 2, i)re0. (1.7) 

Here is the unit vector in the direction of increasing <i>, and (r, (f>, z) are 

cylindrical coordinates with Oz the axis of symmetry of v, .4 is the (^component 

of the axisymmetric part of the vector potential of the magnetic field. The flux 

of the poloidal magnetic field ^'(r, 2,<) is related to .4 as = 2irrA. We see that 

V • B = 0 is automatically satisfied by the expression (1.6) for Bp. Using the 

decomposition, equation (1.5), we can separate equation (1.4) into axisymmetric 

and asymmetric parts as follows 

^ - V X (v X B) - = V X (FxW), (1.8) 
at 
f f O I  
^ - V X (v X B' 4- fv' x B']') - r/V^B' = V x (v' x B), (1.9) 
at 

where v' x B' is the axisymmetric part of the product v' x B' of asymmetric parts 

of V and B, and [v' x B']' is asymmetric part of the v' x B'. The axisymmetric part 

of the induction equation (1.8) can be further decomposed into the equation of the 

evolution of poloidal magnetic flux 4* = 2itrA and the equation of the evolution of 

the toroidal magnetic field 

~  +  U p -  V(r.4) = n  , (1.10) 

^  +rvp •  V =  rBp • V(l + 

(1.11) 

where the use of equations (1.6) and (1.7) was made. 

If both the velocity field V and the magnetic field B are axisymmetric, that 

is V = 0, B' = 0, then equation (1.9) becomes identically equal to zero. The 
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source term for A in equation (1.10) vanishes and this equation for the evolution 

of the poloidal magnetic flux becomes similar to the equation of thermal diffusion 

in moving liquid without sources of heat. It can be proved (e.g., Moffatt 1978) 

that such a problem has only decaying solutions. If I> is a characteristic dimension 

of the region occupied with moving conducting fluid, then the characteristic time 

of the exponential decay of the poloidal magnetic field will be a diffusion time 

scale Tjf = L'^jr}. The only source for the toroidal field is the first term on the 

right hand side of equation (1.11), which is interpreted as a shear of the poloidal 

magnetic field Bp by the differential rotation Vfl. Once .4 and Bp have decayed, 

equation (1.11) poses a similar heat conduction problem in a moving medium with 

the same consequence that -> 0 for the time t -> oo (Moffatt 1978). Thus, we 

arrive at the conclusion that an axisymmetric magnetic field cannot be maintained 

by the fluid motions. This result is known as Cowling's theorem. We emphasize 

that the axisymmetric fluid motions can produce a dynamo but the growing 

magnetic field cannot be axisymmetric. Similar antidynamo theorems are found 

for plane parallel two dimensional Cartesian flows and for purely toroidal flows 

(Moffatt 1978). Therefore, the dynamo requires consideration of essentially three 

dimensional geometry. One cannot obtain dynamos in two dimensional models. 

Although in the case of an axisymmetric magnetic field and velocity field, the 

magnetic field ultimalely decays to zero, the toroidal field can grow temporarily. 

During the time of the decay of the poloidal field, the toroidal field can grow 

by « T^r(BpVn). If rVfi ss Q, then B^ « L'^H/rjBp « HmnBp, where we 

introduced the magnetic Reynolds number with respect to rotation Rmn = 

Also, if the poloidal field is supported from the decay by some source of energy, 

the differential rotation will produce a stationary toroidal field B^ of the same 

magnitude Rmn5p. The temporarily growth of such a magnetic field due to shear 
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is called the Q effect. 

Axisymmetric flows can result in dynamos. The dynamo effect for axisymmetric 

flow is possible only if a finite resistivity is present. The stream lines for the 

axisymmetric flows are the intersections of two families of flux surfaces. When 

streamlines lie on a surface, the infinitesimal distance between two neighboring fluid 

particles can grow only as a power law of the time. Hence, the frozen-in magnetic 

field can grow only as a power of time not exponentially. The presence of finite 

magnetic diffusion can provide positive feedback between different components 

of the growing magnetic field and make this growth exponential. In the limit of 

the very high magnetic Reynolds number Rmn the growth rate of such a dynamo 

approaches zero. Since in cosmic plasmas Rm is always a very large number, the 

dynamos with axisymmetric fluid motions have a very small growth rates and, 

thus, called slow dynamos. If streamlines do not lie on a surface but fill a spatial 

domain, the exponential separation of two adjacent fluid particles is possible. 

This can only happen for nonaxisymmetric flows (e.g., V ^0). Many stationary 

flows with the velocity field described by smooth functions have stochastic regions 

with the intricate behavior of fluid particle trajectories. A classical example 

of such a flow is so-called ABC flow proposed by Arnold (1980). This results 

in the exponential growth of the frozen-in magnetic field. However, a sharp 

exponential decrease in some spatial scales of the magnetic field occurs. Magnetic 

field becomes concentrated in the narrow sheets or narrow filaments in which the 

frozen-in picture is invalid for any conductivity. The thickness of these structures 

of strong magnetic field is estimated asl ^ L Magnetic field continues to 

grow exponentially in the kinematic approximation and the growth rate remains 

constant for arbitrarily small resistivity. Because of the last property such dynamos 

are called fast dynamos. A classical picture of the fast dynamo mechanism is 
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stretch-twist-fold process (Sakharov 1982; Vainshtein & Zeldovich 1972). There 

are strong indications that the fast dynamo action is typical for chaotic Sows (Lau 

k Finn 1993; Finn 1992; Finn et al. 1991). 

Three dimensional turbulence is a good example of the chaotic flow, which 

typically occurs in cosmic plasmas. Therefore, three dimensional turbulent velocity 

field has a strong dynamo action. In addition to the turbulence fluid can have some 

large scale regular motions. Let us suppose that at some moment of time a very 

weak uniform seed field was introduced in the turbulent fluid. .\ny seed magnetic 

field is quickly amplified by turbulence and cascades down to smaller scales until 

it reaches the largest of either resistive scale corresponding to the scale I in the 

fast dynamo picture or the scale where hydrodynamic approximation breaks down 

and kinetic effects becomes important. The growing magnetic energy reaches 

equipartition with the kinetic energy of the turbulent motions at small scales. 

Kinematic approximations becomes invalid and the turbulence becomes essentially 

MHD turbulence. However, the magnetic field on a large scale does not have 

enough time to change substantially during the process of the formation of small 

scale MHD turbulence. The total energy of MHD turbulence much exceeds the 

energy of the large scale magnetic field. The further evolution of the magnetic field 

is not understood and is the subject of active theoretical and numerical research. 

The question of the amplification of the magnetic fields on the scale comparable 

to the size of the system is of particular interest and importance, since observed 

cosmic magnetic fields have a regular component, which is typically not weaker 

than the chaotic component (e.g., Zeldovich et al. 1983; Ruzmaikin et al. 1988 for 

a review). 

The main stream of the astrophysical dynamo theory of large scale magnetic 
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fields is the mean field dynamos, when one is looking for an exponential growth 

of large scale field, while averaging over small scale motions of the conducting 

plasma. In the situations when there is a preferred symmetry axis, the large scale 

flow is often axisymmetric while small scale motions are nonaxisymmetric. In 

this case one can regard B and v in equations (1.8) and (1.9) as a large scale 

or mean magnetic field and velocity, and B' and V as fluctuating magnetic field 

and velocity. Then, the evolution of the mean axisymmetric field is described 

by equation (1.8). Equivalently, the mean axisymmetric field is described by the 

system of equations (1.10) and (l.Il) in terms of .4 and B^. The term v' x B' is 

the source term for the mean magnetic field in equation (1.9). This term can be 

interpreted as a mean electromotive force arising due to correlated fluctuations of v' 

and B'. The 0-component of this electromotive force is the only source of poloidal 

magnetic field flux A in equation (1.10). In order to find the mean electromotive 

force v' X B' one needs to determine fluctuating magnetic field B' from solving 

equation (1.9). As we described above, the kinematic approximation can be 

justified by considering the growth of the mean magnetic field B until it comes 

in equipartition with the kinetic energy of the mean velocity field v. However, 

equation (1.9) alone is insufficient to determine B' and V, since the fluctuating 

magnetic field is strong enough to cause the backreaction on v*. Moreover, B' 

should be larger than B in the astrophysical case of very large Rmn-

Despite many attempts the self-consistent problem of calculating v' x B' is 

not solved until now. Great simplification occurs if one assumes the kinematic 

limit for the small scale field and treats as a given fluctuating velocity with 

simple statistical properties. Then, equation (1.9) becomes a linear equation for 

B' with the B acting as a source term in the right hand side of equation (1.9). 

Therefore, its solution for B' depends linearly on B, and the mean electromotive 
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force, v' X B', also depends linearly on B. Expanded in Taylor series such a linear 

dependence can be represented in the general form 

Q D .  
v' X B' = UikBk - (1-12) 

where the coefficients aik and 0ijk depends only on the statistical properties of 

fluctuating velocity field at the point Xk. Even under such an assumption, deriving 

the coefficients aik ^ijk remains a difficult problem. Further simplifications 

are possible when one can neglect the term [V x B']' in equation (1.9). This 

approximation, known as a first-order smoothing approximation, is justified either 

when the Reynolds number for fluctuating velocity V'I'/T] is small or when the 

fluctuations are a collection of random waves with the small amplitude u't'/I' C 1. 

Here v', I', and t' are the characteristic values of the fluctuating velocity, spatial 

scale of fluctuations, and time scale of the variability (Moffatt 1978). Another 

limiting case, which is more relevant to high Rm plasmas, is to ignore the diffusion 

of the magnetic field and to solve the induction equation in Lagrangian coordinates 

using the frozen-in approximation. 

When the small scale velocity field v* is isotropic relation (1.12) becomes 

(Moffatt 1978) 

v 'xB '  =  qB - X B. (1.13) 

The coefficients a and 0 can be estimated for an incompressible random velocity 

field in the Lagrangian approach as (Moffatt 1978; Ruzmaikin et al. 1988; Kulsrud 

1999) 

a = -J (v" • (V X V)), (1.14) 

^ = 5(V")- (1-15) 

Here r is the time of the decorrelation of the Lagrangian velocities, i.e. the time 

of the "memory" of a fluid particle about the past history of its velocity. The 
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<> brackets denote averaging over the statistical ensemble and in practice can 

usually be replaced by the averaging over the volume larger than the typical scale 

of the random flow, V, but smaller than the scale of the change of the statistical 

properties of v* and smaller than any large scale of the variability of the mean 

flow and mean magnetic field. The random velocity field is not necessarily to be a 

turbulence. An ensemble of helical vortices appearing and dissapearing randomly, 

a collection of waves with random phases can be examples of a random velocity 

field in equations (1.14) and (1.15). For the case of random motions with very 

high Rm, equations (1.14) and (1.15) should be taken only as an approximate 

estimate. Moffatt (1978) discusses the validity of these estimates and considers 

more restrictive situations, when one can derive more accurate formulae for tensors 

OLij and 0ijk-

If the mean large scale flow and large scale magnetic fields are axisymmetric, 

than the averaging over small scales (i.e., averaging denoted by <> brackets in 

expressions (1.14) and (1.15)) is equivalent to the averaging over the (p-angle, 

denoted by the bar in equations (1.8-1.11). Substitution of expression (1.13) for 

the mean electromotive force, v' x B', into equations (1.10) and (1.11) results in 

the following system of equations for the evolution of mean axisymmetric magnetic 

Since a has the dimension of velocity, it is natural to introduce the magnetic 

Rejuolds number with respect to a as Rma = ai/,5, where we neglect the 

microscopic diffusivity, r/, compared to the turbulent diffusivity, The magnitude 

field 
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of a is always smaller than the magnitude of the velocity of random motions, v'. 

The relative importance of the Q- and a-efFects in equations (1.16) and (1.17) 

depends on the ratio, Rmn/RjUa. If Rmn •C Rma, then the source term for the 

toroidal magnetic field in the right hand side of equation (1.17) is dominated by 

the terms proportional to a. In this case Q-efFect can be neglected. The a-effect 

acts twice, generating not only A from but also B from A. When Rma is large 

enough to counterbalance turbulent dissipation, magnetic field can be exponentially 

amplified. The resulting dynamo is called the a^-dynamo. In the opposite case, 

when Rmn » Rma, one can ignore terms proportional to a compared to the 

rBp • VQ term in equation (1.17). The toroidal magnetic field is generated by the 

shearing of the poloidal magnetic field by the differential rotation. The Q-effect is 

still essential in generating A from B^. To maintain a field the dynamo number 

D = RmoRmn must exceed some critical value. This type of dynamo is called a~Cl 

dynamo. Generally, the growing modes of -dynamos are steady and the growing 

modes of a-Q dynamo are oscillating (Roberts & Soward 1992). Parker (1955) 

explained the oscillating behavior of a-il dynamo by demonstrating the existence 

of dynamo waves. 

The behavior of turbulent dynamos at the nonlinear stage (i.e. in full 

MHD limit) is not yet fully known and is in the process of active investigations 

(Vainshtein & Cattaneo 1992, Vainshtein et al. 1993, Field et al. 1999). However, 

as has been argued by Vainshtein & Cattaneo (1992) the growth of magnetic fields 

as a result of the action of a kinematic dynamo should lead to the development 

of strong field filaments with a diameter of the order of L/Rm^^^, where L is the 

characteristic size of the system and Rm is the magnetic Reynolds number. The 

field in the filaments reaches equipartition value much earlier than the large scale 

field, causing the suppression of the a effect due to the strong Ampere force acting 
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in the filaments and preventing further helical twisting of the filaments. As a result, 

turbulent a-Q dynamos may be able to account for the generation of the large scale 

magnetic fields only at the level of of the equipartition value. Thus, finding 

the mechanism for producing and maintaining large scale helical flows resulting 

in a robust a effect is very important for generation of large scale magnetic fields 

approaching the equipartition magnitude. 

There are two mechanisms which can cause exponential growth of the magnetic 

fields in the accretion disk. Historically, the first mechanism considered is a 

turbulent mean field dynamo in the disk (Pudritz 1981a; Pudritz 1981b; Stepinski 

& Levy 1988; Stepinski & Levy 1990; Riidiger et al. 1995; Reyes-Ruiz k Stepinski 

1999). In these works the existence of helical turbulence in the accretion disk was 

postulated and the back reaction of excited large and small scale magnetic fields on 

the statistical properties of the turbulence was neglected. However, the accretion 

disk is stable with respect to radial perturbations because the angular momentum 

in the Keplerian flow increases outwards and the Rayleigh stability criterion is 

satisfied. The black hole accretion disk is subject to convective instability in its 

radiation dominated inner part (Bisnovatyi-Kogan k Blinnikov 1977; Pietrini k 

Krolik 2000). However, the sustainment of convective turbulence is only possible 

if an external source of heat is present in the midplane of the disk (Stone k 

Balbus 1996). Moreover, the convection causes the transport of angular momentum 

inward, which would stop the accretion flow. It is very likely that the convection 

c a n n o t  p r o v i d e  t h e  n e c e s s a r y  o u t w a r d  t r a n s p o r t  o f  a n g u l a r  m o m e n t u m  ( R y u  k  

Goodman 1992; Stone k Balbus 1996). 

Another mechanism is the development of the magnetorotational instability 

(MRl) with further development of turbulence. The presence of a very week seed 
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vertical magnetic field makes the differentially rotating fluid unstable if the angular 

velocity decreases outwards (Chandrasekhar 1961). Recently, a large amount of 

work has been done on investigating the manifestation of MRI in the accretion 

disks. This work is summarized and reviewed by Balbus k Hawley (1998). The 

development of MRI leads to the effective transport of the angular momentum in 

the accretion disk outwards (Hawley k Balbus 1999). The mechanisms are not 

distinguishable at a nonlinear stage, when the turbulence is dynamically coupled 

with the back reaction of growing small scale and large scale magnetic fields. 

1.4. Outline of This Work 

In this work we consider the dynamo mechanism resulting from the expansion of 

buoyant plasma clouds or plumes produced by star-disk collisions. Since the energy 

in such a plume exceeds the energy in largest turbulent eddy of the turbulence in 

the accretion disk, the resulting magnetic field strength can be larger than in the 

turbulent dynamo model. In chapter 2 we estimate the efiBciency of the dynamo 

driven by star-disk collisions. We estimate the frequency of star-disk collisions 

(section 2.1), describe the physical parameters of the standard accretion disk model 

as it applies to AGN accretion disks (section 2.2), estimate the size and velocity 

of the plumes produced by star-disk collisions (section 2.3). Then, we evaluate 

the conditions for the excitation of the dynamo, its growth rate and the structure 

of eigenmodes (section 2.4) using the mean field theory with the averaging of the 

magnetic field over the many plumes. We conclude chapter 2 with the evaluation 

of the saturated strength of the magnetic field produced by the dynamo and a 

comparison to MRI. In chapter 3 we describe the numerical code developed to 

simulate kinematic dynamos. In chapter 4 we show by means of direct numerical 

simulations that the types of fiows produced by rising plumes in differentially 
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rotating corona of the disk are capable of efficient dynamo action. 

We use the same kinematic dynamo code to simulate differential shearing of the 

magnetic field and the dynamo activity for the New Mexico dynamo experiment. 

Chapter 5 describes our work related to the New Mexico dynamo experiment. 

After reviewing a short history of dynamo experiments (section 5.1) and describing 

the experimental setup for the New Mexico dynamo experiment (section 5.2), we 

begin our study with the analysis of the production of the toroidal magnetic field in 

one dimensional model of the shearing fiow with a discontinuity near the end plates 

of the experimental device (section 5.3). Further analysis of the MHD boundary 

Ekman layer in a diffierentially rotating conducting liquid near the end plates of 

the experimental device is performed in section 5.4. An analysis performed in 

section 5.4 leads us to the estimate of the strength of the magnetic field when the 

kinematic approximation for the experimental dynamo is still valid. In section 5.5 

the influence of the conductivity of the outside medium on the growth rate of the 

dynamo is investigated in the framework of the simple one dimensional model of 

the kinematic dynamo. A similar study of the dependence of the magnitude of 

equilibrium toroidal magnetic field on the conductivity of the outside medium 

is performed in section 5.3. In section 5.6 numerical results related to the New 

Mexico dynamo experiment are described. 

Finally, chapter 6 contains conclusions and the discussion of numerous 

questions unanswered in the present research and some more speculative 

consequences of the star passages through the disk. This part cannot be separated 

from some criticism of our work as well. 

Gaussian (CGS) units are used throughout this work. 
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2 A DYNAMO DRIVEN BY STAR-DISK COLLISIONS 

We consider a thin accretion disk around the black hole, the system, which 

presumably exists in all AGNs and many ordinary galactic nuclei. The kind of 

the djmamo we consider in this work operates in the following way. Suppose, 

at a given moment of time there exists an initial weak poloidal magnetic field 

in the disk. Such a field can be produced by the Biermann battery mechanism 

(Chakrabarti et al. 1994), which can excite a field of about 10"® G in the inner 

part of Shakura-Sunyaev accretion disk. Another source of seed field could be the 

field advected due to the accretion from the outside of the disk. The source of 

the outside field can be galactic seed field produced by turbulent dynamos in the 

galactic gas or convective dynamos operating in the convective zones of stars or in 

the convective envelopes of collapsing evolved stars. As we will show below, there 

is no need to elaborate further on the sources of seed magnetic fields advected by 

the accretion disk, since the star-disk collision driven dynamo has a high enough 

growth rate, and, therefore, any seed field would grow quickly to the saturated 

value. From here on, we will assume that the seed magnetic field is produced by 

the Biermann battery mechanism in the accretion disk. 

When the initial poloidal field is sheared by the differential rotation in the 

disk, a larger toroidal field develops. The effective diffusivity of a large scale 

magnetic field in the disk and the corona of the disk should be much higher than 
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the microscopic diffusivity due to Coulomb collisions in plasma. There are two 

different reasons for such an anomalous diffusivity. The first one is due to a high 

level of turbulence that might be expected in the accretion disk and the corona 

of the disk. The hydrodynamic Reynolds number for the plasma flow at near 

Keplerian velocities in the corona of the accretion disk are enormous, therefore, the 

turbulence should be present. The properties of turbulence in plasma should be 

affected by the magnetic fields, but on large scales, where the large scale motions 

are much faster than the Alfven speed, one should expect the turbulence to be 

little affected by the magnetic field and the effective turbulent diffusion exists. 

.\nother possible source of enhanced resistivity is microscopic collective effects in 

plasma. The toroidal field could diffuse out into the corona of the disk due to this 

anomalous resistivity. This growth of the toroidal field due to differential rotation 

is linear in time until it is balanced by the anomalous diffusivity in the disk. This 

process is the same as in the standard dynamo theory in the thin Shakura-Sunyaev 

accretion disk (see section 1.3). The resulting value of the toroidal field is still 

much smaller than the value at equipartition with the thermal pressure in the disk. 

The dynamo mechanism investigated in this work operates only in AGN 

accretion disks since it is driven by the star passages through the accretion disk. 

When a star passes through the accretion disk it creates a radiative heat wave, 

or shock driven heating wave, which heats up a local region of gas in the disk. 

This hot gas becomes buoyant and rises above the surface of the accretion disk. 

Simultaneously this rise of the gas is accompanied by the sidewise expansion of the 

hot plume. Due to the gravitational potential of the central massive black hole, 

the plume produced by the passing star falls back to the disk surface after a half 

of the Keplerian period at the radial distance &om the black hole where the star 

has passed the disk. Due to the Coriolis forces acting on a sidewise expanding 



43 

plume, the plume rotates around the axis parallel to the angular momentum of the 

accretion disk. The resulting motion of the gas is helical. This helicity is what 

produces the dynamo effect. Qualitatively, the helical motion of plumes twists 

toroidal field amplified by the shearing motions in the disk and in the disk corona 

and acts as a source for the poloidal field. In turn, this new poloidal field becomes 

sheared into more toroidal field. Since there is a coherence to the many additions 

to the toroidal field from many plumes and if a cascading of the field down to small 

scales (or any other losses of the energy of the large scale magnetic field) is not too 

fast, this leads to a positive feedback and exponential excitation of the magnetic 

field. The cartoon drawing illustrating this qualitative sequence of physical process 

is on the left panel of Fig. 2.1. 

Although the whole velocity field is mirror symmetric with respect to the 

midplane of the disk, the regions with different signs of helicity are spatially 

separated. Locally, at each point the helicity is nonzero. The existence of only 

global mirror symmetry does not limit the dynamo growth. 

In order to proceed further one needs to address the following questions: 

1. What is the distribution of stars in coordinate and velocity space in the 

central star cluster of an AGN ? 

2. What is the velocity, density and conductivity of the plasma in the disk and 

in the corona of the disk ? 

3. What is the hydrodynamics of the flow resulting from the passage of the star 

through the disk ? 

Each of these questions is a difficult problem to consider by itself. In the following 

three sections we present a brief (far from complete) analysis of each of the 



44 

problems based oa published research and our own considerations. 
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Figure 2.1 {Left) A schematic drawing of an a-D dynamo in an accretion disk. The 

initial quadrupole poloidal field (panel A) is sheared by the differential rotation in 

the disk, developing a strong toroidal component (panel B). As a star passes through 

the disk, it heats a fraction of the matter of the disk, which expands vertically and 

lifts up a fraction of the toroidal flux as an expanding plume (panel C). After the 

plume and loop of flux is rotated by rv 1r /2 radians, reconnection allows the new 

poloidal flux to merge with the original flux (panel D). {Right) A liquid sodium 

dynamo experiment, mimicking the accretion disk dynamo. The conducting fluid 

between the two cylinders is rotated differentially ( Couette flow), shearing the radial 

component of an external quadrupole field into a toroidal field. Jets are driven off

axis, resembling the star-disk collisions. The resistivity of the fluid ensures the 

reconnection. 
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2.1. The Frequency of Star Disk Collisions in the inner Star Cluster 

By now there is a strong observational evidence (e.g., van der Marel 1999; 

Kormendy et al. 1998; van der Marel et al. 1997) that many galactic nuclei contain 

massive dark objects in the range of « 10® - 10®A/©. Numerical simulations of 

the evolution of central dense stellar clusters indicate that they are unstable to 

the formation of black holes, which would subsequently grow to larger masses 

by absorbing more stars (Quinlan k Shapiro 1990). Recent observations and 

interpretation of the very broad skewed profiles of iron emission line (e.g., Tanaka 

et al. 1995; Bromley et al. 1998) in Seyfert nuclei provide direct evidence for strong 

gravitational effects in the vicinity of massive dark objects in AGNs. This leaves us 

with almost no escape from the fact that nuclei of AGNs indeed harbor black holes 

(Fabian et al. 1995). The observations of star velocities and velocity dispersion are 

used to obtain an estimate of the mass of the supermassive black hole. However, 

the resolution is only enough to estimate the number density of stars at about 

1 pc for M32 and M31 and about 10 pc for nearest ellipticals. In line with these 

observations we assume a star density n(l pc) « 10'' — 10® MqPc~^ at 1 pc (Lauer 

et al. 1995). 

One needs to rely on the theory of central star cluster evolution in order 

to obtain the number density of stars closer to the black hole. The subject of 

the evolution of a star cluster around a supermassive black hole has drawn a lot 

of interest in the past. The gravitational potential inside the central 1 pc will 

be always dominated by the black hole. Bahcall & Wolf (1976) showed that, if 

the evolution of a star cluster is dominated by relaxation, the effect of a central 

Newtom'an point mass on an isotropic cluster would be to create a density profile 

n oc However, for small radii (w 0.1 — Ipc) the physical collisions of stars 
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become dominant over two-body relaxation. Also, the disk matter produces drag 

on star orbits, which accumulates over many star passages. The result of star-disk 

interactions is to reduce the inclination, eccentricity, and semimajor axis of an orbit, 

finally making the star trapped in the disk plane moving on a circular Keplerian 

orbit (Syer et al. 1991; .\rtymowicz et al. 1993; Artymowicz 1994; Rauch 1995; 

Vokrouhlicky & Karas 1998). Closer to the black hole (< 100 gravitational radii) 

general relativistic corrections for the star orbital motions and tidal disruption of 

stars by the black hole must be taken into account. Considering all the effects 

mentioned above together with the fact that the star-star collisions cannot be 

treated in Fokker-Plank (or diffusion) approximation, the modeling of the central 

star cluster becomes a difficult endeavor, which has not yet been completed, as far 

as I can determine. 

To obtain a plausible estimate of the number density and velocity distribution 

of stars in the central cluster we will follow the recent work of Rauch (1999), which 

addresses all the effects on the star distribution mentioned above, except the drag 

by the disk. Rauch (1999) showed that star-star collisions lead to the formation 

of a plateau in star density for small r because of the large rates of destruction 

of stars by collisions. We adopt the results of model 4 from Rauch (1999) as 

our fiducial model. This model was calculated for all stars having initially one 

solar mass. The collisional evolution in model 4 are close to the stationary state, 

when the combined losses of stars due to collisions, ejection, tidal disruptions and 

capture by the black hole are balanced by the replenishment of stars as a result 

of two-body relaxation in the outer region with n oc density profile. Taking 

into account the uncertainties in the the observed star density at 1 pc by an order 

of magnitude, the fact that model 4 has not quite reached a stationary state can 

be accepted for the purpose of order of magnitude estimates. For the mass of the 
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black hole M = 10® Mg Mq we approximate the density profile of model 4 as 

n = ng • 10® for r > 10"^ pc, 
pc"' \lpc/ 

n = ns • 3 • 10® for lOr^ < r < 10"^ pc, (2.1) 
pc* 

n = 0 for r < lOrj, 

where rt = 2.1 • lO"** pc • iV/g''^ is the tidal disruption radius for a solar mass star. 

We shall comment further on the influence of the drag by the disk on the 

above density profile. Following the formula [1] from Rauch (1999) the probability 

that the solar mass star on the elliptic orbit with eccentricity e and the minimum 

distance from the black hole Tmin ^vill experience a collision with another star 

during one orbital period is 

(\ -3/4 
, (2.2) 

where Vg = 2GM/c^ = 3.0 • 10^' - Mi cm = 9.5 • 10"® • iV/g pc is the radius of the 

event horizon of the black hole. 

The structure of the standard a-disk model by Shakura &: Sunyaev is described 

in details in section 2.2. Here we cite the formulae for surface density and radial 

mass distribution taken from section 2.2.1. The surface density of the disk in the 

inner radiation dominated part is (see equation (2.19)) 

where a,, is the "a"-parameter of the disk model, /g is the ratio of the luminosity 

of the disk to the Eddington limit for the black hole of mass M, e is the fraction 

of the rest mass energy of the accreting matter, which is radiated away. The 
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expression (2.3) is valid for 

r < Tab = 236 Tg 

For typical values a,, = 0.01, e = 0.1, Ig = 0.1, Ms = 1, we obtain rab = 2.210"^ pc. 

By integrating surface density (2.3) one can obtain the total mass of the disk inside 

radius r (assuming r Vg) 

where the radius r^g, inside of which the mass of the disk would be equal to the 

mass of the black hole, is given by (see equation (2.31)) 

The total mass of the inner part of the disk enclosed inside r < Tab is obtained by 

integrating expression (2.6) and is given by formula (2.33). This mass is generally 

small compared to the mass of the central black hole. 

When the disk becomes self gravitating, it may become subject to a 

gravitational instability. In section 2.2.1 we check that by calculating the Toomre 
KC 

parameter Q = —^ (e.g. Binney & Tremaine 1994). The gravitational instability 
TTGS 

develops if Q < 1. As follows from the analysis in section 2.2.1 the disk has a 

well defined radius of stability rq, such that for r > rg it becomes unstable. In 

the case when TQ < Tab, the expression for rq is given by formula (2.48). For 

the values a,, = 0.01, e = 0.1, Ie = 0.1, Ms = 1 the radius of stability rq falls 

close to the radius of transition Tab between radiation dominated and gas pressure 

dominated parts of the disk. The development of the Jeans instability should 

lead to the formation of spiral patterns and fragmentation of the disk (Shlosman 

Begelman 1989), which will happen on the radial inflow time scale at a radius 

(2.5) 

(2.6) 
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» rq. Therefore, for estimating the drag produced by the disk on the passing stars, 

we can limit ourselves to consider only the inner portion of the disk at r < Tab 

and use equation (2.3) for the disk surface density. The gas beyond Tab may also 

influence the motion of stars. Lack of knowledge about the plasma distribution at 

a distances beyond rg makes it even more difficult to model the evolution of the 

central star cluster. 

The orbital period of the star is 

The typical velocity of the star relative to the disk is about Keplerian velocity at 

the radius of the passage. Since the speed of sound in the disk is much smaller 

than the Keplerian velocity, stars pass through the disk with highly supersonic 

velocities. The drag force on the star consists of two components. One is the 

direct drag produced by intercepting the disk material by geometric cross section 

of the star. Assuming that the star has a solar mass and radius, this force is equal 

to Ffirag = ttRqPvI, where p is the mass density of the gas in the disk, v, is the 

velocity of the star relative to the disk gas. Radiation drag is negligible compared 

to gas drag as soon as the speed of sound is nonrelativistic, i.e. c, < c. The other 

component of the drag force is due to deflection of the gas by the gravitational field 

of the star. Rephaeli k Salpeter (1980) found that the latter component is nonzero 

only for supersonic motion and gave the following expression for that force in the 

limit V, Cj 

(2.7) 

(2,8) 

where A is a Coulomb logarithm. The ratio of the two forces is 

Pdrag 
(2.9) 

Fgrav G2iW|4hiA" 
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Using for u, its Keplerian value v, = {GM/r) and using for Coulomb logarithm 

its maximum possible value A = r/iZ©, one obtains the ratio of forces as 

1.03 10" ( G M V  

l+0.191i>(Mj^) Wr J • 

One can see from equation (2.10) that the force due to the direct interception of 

gas by the star is much larger than the drag caused by the gravitational pull for 

all values of r of interest to us r < lO^r^. Thus, we can consider the change of 

momentum caused by the disk on passing stars as purely due to interception of the 

gas by geometrical cross section of the star ttRq. 

The characteristic time needed to substantially change the star orbit as a 

result of star-disk interactions tdiak is approximately equal to the time needed for 

the star to intercept the disk mass equal to the mass of the star. A star will pass 

through the disk twice per one orbital period. Assuming that for all stars having a 

solar mass and radius the ratio of the orbital period to tdisk is 

t„b 2S7ri?| 
Tdisk = — « —V}—• 

Uiak 

Using expression (2.3) for S in the region r < Vab one obtains 

Corresponding star-disk interaction time scale tdisk's given by 

= 1-58 • LOV • (5^) (1 - VS) • 

and is independent of the semimajor axis of the star orbit. As was shown by Rauch 

(1995) the secular evolution of all orbital elements of a star happen at the same 

time scale tdisk froni equation (2.12). The ratio of Tdisk to ^coH (equation (2.2)) is 

given by 

— = 1.8 • 10"^ rig ^ f ~ X 
Tcou ® 3-e ® VO.OI/ \01J 
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For orbits with rmm < 30rg one has Tdiak < TcM and the effect of star-star collisions 

dominates over the effect of star-disk collisions (assuming typical parameters for 

the disk). For the radii SOr^ < rmin < the orbit evolution is more influenced by 

the drag from the disk rather than by star-star collisions. Only a fraction of stars 

from the outer region located beyond « lOOOrg will not be put into the disk plane 

by star-disk drag. Results of Rauch (1995) shows that it takes a considerably longer 

time than t^isk to reorient the retrograde star orbits. During this reorientation 

process the semimajor axes of initially retrograde star orbits decreases by « 10 

times. Before the alignment process for such stars could be completed they will 

move in radius closer than a 30rg into the star-star collisions zone, where their 

orbital inclinations would be randomized. Another factor preventing all stars from 

being trapped into the disk plane is that there are always a fraction of stars which 

are injected by two body relaxation into the neighborhood of the black hole from 

large (much larger than r,j) radii. These stars can be brought directly into the 

region r < SOr^ (or close to it) and contribute to a collisional core of the stellar 

cluster. 

To summarize, both star-disk and star-star collisions can be important for 

determining the distribution fimction in the central star cluster. However, it 

seems unlikely that the drag by the disk can trap all stars into the disk plane and 

depopulate the central ft 10"^ pc of the stars not in the disk plane. The trapping 

of stars by the disk will reduce the numbers of stars given by (2.1) but this requires 

more evolved computations, which are beyond the scope of the present work. 

Both star-star collisions and the effect of trapping by the disk of the stars having 

lower eccentricities faster than the stars having larger eccentricities lead to highly 
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eccentric orbits of stars in the central « 10"' pc. Drag by the disk will also lead to 

prograde orbits prevailing over the retrograde orbits. However, for our purpose, we 

assume that the star density is given by equations (2.1), all stars have e = 1 and 

their orbits are randomly oriented in space. 

We shall use the number density of stars n given by equation (2.1) in order to 

evaluate the rate of star-disk collisions. The flux of stars through the disk coming 

from one side of it is nt;/4, where we assume that all stars have the same velocity 

V = \/2rQK (parabolic velocity) and distributed isotropically. One obtains then for 

Ms = 1 

1 I r r \ 
-ni; = 2.4• 10"'®—T^SITTTI—) r>10^pc, 
4 cm^s \ 10"^ pc J 

1 1 / r \ 
-nv = 2.4 • 10"'® —=- ns ( r— ) for lOrj < r < 10"^ pc, (2.14) 
4 CM^S V10" PC / 

-nv = 0 for r < lOr^. 
4 

Integrating the flux of stars coming from both sides of the disk over an area of 7rr^ 

inside some given radius r, one can estimate the rate of star-disk collisions occurring 

at the disk on the scale of that radius r. Let us define the time ATc = ATc(r) as 

the inverse of this rate, i.e. one star passes through the disk area inside the radius 

r during the time ATc on average. The result is (see equation (2.1)) 

2ir r r \ 

2K 1.9-10"^ . ,-_2 /o 
ATc = TTTTT:—Zm ^ < r < 10 V, {2.1o) 

ATc = 00 for r < lOrj (no collisions), 

where 2Tt/^lic{r) = Tic{r) is the period of Keplerian circular orbit at the radial 

distance r &om the black hole. We see that the number of star-disk collisions 
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happening per one Keplerian period, Tfcir), grows as oc inside the collisional core 

of the star cluster, e.g. within « 10"^ pc. For the outer region of the stellar cluster 

beyond « 10"^ pc this number continues to increase with r but slower, as oc 

The later increase is solely due to the increasing Keplerian period, T/c (r) oc 

while the rate of the star-disk collisions per unit time through the 7rr^ area remains 

constant in the region r > 10"^ pc. 

2.2. The Physics of the Accretion Disk and the Corona 

In the subsequent estimates we will have the following disk parameters: the radius, 

where the star-disk collisions occur, the Shakura-Sunyaev viscosity parameter aj,, 

the ratio of the disk luminosity to the Eddington luminosity Ie, and the radiated 

fraction e, of the rest mass accretion flux, Mc^. We will assume these parameters 

to be within an order of magnitude of their typical values for the dynamo problem: 

following 

a„=0.01, /E = 0.1, £ = 0.1, r = 10-2pc. (2.16) 

The flux of stars passing through the disk, nv/A peaks at the radii inside 

r = 10"^pc (see section 2.1), therefore we need to know the physics of the 

accretion disk at r ~ 10"^ pc. Below, we will define the gravitational radius as 

Tg = 2GM/(^ = 3.0 • 10'^Mg cm = 9.5 • lO'^Mg pc. All formulae for the structure 

of Shakura-Sunyaev disk are written for an arbitrary value of the black hole mass 

M = lO^iV/giV/Q. However, we will consider only M = 10® Mq whenever we invoke 

the model for the star distribution in the central cluster, because the best available 

model of the central star cluster was calculated for the M = 10®M© (section 2.1). 

Finally, the accuracy of the expressions for the disk parameters is only one 

significant figure in all cases, and we keep two or even three figures only to avoid 

introducing additional round off errors, when using our expressions. Similarly, we 
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should not be concerned about small jumps of values across the boundaries with 

different physical approximations; it requires a more elaborate treatment to find 

the exact matching solutions, although the physical principles are unchanged. 

We use formulae from the Shakura k Sunyaev (1973) article to obtain estimate 

of the state of the accretion disk. We assume a Schwarzschild black hole with the 

inner edge of the disk being at Sr^. However, since we consider primarily star-disk 

collisions happening at ~ lO^fj, general relativistic corrections are less than a 

few per cent and so can be neglected for our approximate treatment of star-disk 

collision hydrodynamics. All expressions for disk quantities below are taken from 

Shakura & Sunyaev (1973) and verified in later textbooks by Shapiro & Teukolsky 

(1983) and Krolik (1999). 

The inner part of the disk (part (a) as in Shakura & Sunyaev (1973)) is 

radiation dominated and the opacity is dominated by Thomson scattering. In 

the next zone (part (b)) the opacity is still Thomson, while the gas pressure 

exceeds radiation pressure. In the outer most zone (part (c)) the opacity becomes 

dominated by free-free and bound-free transitions. The boundary between parts (a) 

and (b) tab is given by an expression 

The boundary between parts (b) and (c) rjc is given by the following expression 

One can see that, generally, r^c > 10 ^pc. Therefore, we may limit our 

consideration to zones (a) and (b) only for the purposes of star-disk collisions. 

(2.17) 

(2.18) 
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2.2.1. Radial Dependencies of Vertically Averaged Parameters 

First, we will list the parameters resulting from solving for the vertically averaged 

distributions inside the zone (a). The surface density is 

- I . , .  

= 4.2 

The half thickness of the disk is 

if  = 2.6.10-cm^(3L)- 'M,(l-y^).  (2.20) 

Hence, the dependence of H upon the radius of the star is only due to general 

relativistic corrections. So, the disk has asymptotically constant thickness for 

values of r » Tg (Shakura k Sunyaev 1973; Krolik 1999). The corresponding 

density is 

S _3 0.01 f l g V ^  r  c \2 
p = — = 7.5 • 10 g cm ' 2:21 V 

\0.l) VO.J 

3/2 ' ' 

At the luminosity of an AGN 

I = 1.3.10^5 Mg erg s-\ (2.22) 

the mass flux is 

iV/ = 0.23Meyr-'(5j!.) (k) M, = 1.4.10==gs"'(k) M,. (2.23) 

The energy emitted from the unit surface of one side of the disk per unit time 

IS 

®  ( ' -  V ? )  =  ( T )  [ U )  
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(2.24) 

The effective temperature near the surface of the disk is 

T^, 7; = 1900 K 

(2.25) 

Shakura & Sunyaev (1973) give the solution for radiative transport in the vertical 

direction for an optically thick disk with assumed local thermodynamic equilibrium 

at each z in the disk. The volume emission due to viscous heating is included in 

the solution. Using this calculation with Thomson opacity, KT = 0.4cm^g~\ one 

obtains (section 2a of Shakura & Sunyaev 1973) the temperature at the midplane 

of the disk 

Since the disk is very opaque for Thomson scattering one can neglect unity in the 

expression (2.26), and one obtains 

Using expression (2.25) for the effective surface temperature T, in the equation (2.27) 

one obtains 

Note that the terms describing the dependence on the accretion rate cancels out as 

well as general relativistic correction term. Therefore, T^pd in the inner parts of 

accretion disk does not depend on the accretion rate, but is determined only by 

(2.26) 

(2.27) 

r„.p</ = 7.9 10''K 
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the mass of the central black hole and the viscosity parameter The radiation 

pressure in the midplane of the disk in the zone (a) is 

P ,  =  =  1 . 0 7 . 1 0 = e r g ( l o ^ ) " " •  ^ . 2 9 )  

By integrating the surface density (2.19) one can obtain the total mass of the 

disk inside radius r (assuming r » r^) 

(\ 7/2 
, (2.30) 

where the radius r,j, inside of which the mass of the disk would be equal to the 

mass of the black hole, is given by 

r., = 1400r, • M,-" (^)'" (^) . (2.31) 

Since the total mass of the disk grows very rapidly with the radius r, the 

gravitational potential of the disk would dominate the gravitational potential of the 

black hole for r > r^g. This follows from comparing expressions (2.17) and (2.31); 

^sg > T^ab general. More exactly, the condition r^g > ra6 reduces to 

The dependence of the left hand side of equation (2.32) on the black hole mass M% 

and viscosity parameter is weak. One also expects the efficiency of radiation e 

to be within the order of magnitude from the value 0.1. The largest variations are 

expected for the luminosity Ig- However, even for /b = 1, still rat < r,g. Generally, 

the mass of the inner zone of the disk is small compared to the mass of the black 

hole. Further, we assume Tab < r^g to be always satisfied. The total mass of the 

inner part of the disk enclosed inside r < Tab is 

M(r.) = 1.83.10= Me Ml'^ , (2.33) 
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which is, generally, much smaller than the mass lO^AfgAfe of the black hole. 

In the zone (b) the surface density is given by 

2 . . . "^/® / Av V -6/7 ./ /„ n 1 \ 
= 4.4 • 10 g cm" (;) ©-""'"(IT?) 

The integral of this surface density from Tab to any given r gives the mass inclosed 

between Tab and r as 

Now we can estimate the value of r = r,g such that iV/(,(r,j) = 10® M^Mq 

(neglecting the contribution from the part (a) of the disk). Neglecting 1 compared 

to the ratio r,g/rab > 1, one obtains 

The logarithmic mdth of the zone (b), i.e. the ratio rbdrab, is given by 

-2/21 
^bc 
Tab •"(.%)""«.-(A 

i.e. almost a constant, depending on all parameters of the disk and the black 

hole very weakly. Depending upon parameters, r^g maybe inside or outside the 

Tbc- However, as we show next, the disk in part (b) is unstable to fragmentation 

caused by self gravity. Thus, the exact position of with respect to Tbc is 

unimportant. The expression for the radiation flux Q and surface temperature of 

the disk % remains the same as in the part (a) of the disk. This is given by the 

expressions (2.24) and (2.25). For the temperature at the midplane of the disk one 
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can obtain from formula (2.26) 

=3.5 . lO'K (^)-"' (2.38) 

The characteristic thickness of the disk is given by 

Then, from expressions (2.34) and (2.39), one can obtain vertically averaged density 

in the zone (b) as 

S (S)- (IJH)" 0.) 

The corresponding values of the radiation pressure, Pr = and the gas 
tj 

pressure Pg = 2TikTjnpd at the midplane are 

By computing the ratio of Pr to Pg one can recover the expression (2.17) for the 

radius, Vat, where Pr = Pg-

When the disk becomes self gravitating, it may become subject to gravitational 
KCs 

instability. Let us check this by calculating Toomre parameter, Q = —^ (e.g. 
TTGL 

Binney k Tremaine 1994). The epicyclic frequency, k, is equal to its value for the 

point mass, M, located at the position of the black hole, or /c = = (GAf)^/^/r^/^, 

since the mass of the disk is small compared to the mass of the black hole. Sound 
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kT nd Pr 
speed is equal to c] = —— in zone (b) and to = — in the zone (a) (the 

TTlp p 
coefficient close to 1 is neglected). Substituting appropriate expressions we obtain 

for the sound speed in the zone (b) 

in the zone (a) 

The Tootnre parameter becomes in the zone (a) 

2 , _ _o / \ -9/2 
^-Mi-

and in the zone (b) 

-2/5 . / \ -27/20 

The gravitational instability develops if Q < 1. One can see from expressions (2.45) 

and (2.47) that Q rapidly decreases with increasing the radius. Thus, the disk has 

a well defined outer radius of gravitational stability, rq, such that Qirq) =1. For 

our fiducial parameters, rq is close to the ra6. At the outer edge of the zone (b) 

one has 

Q(r.) = 2.0.10- , (2.47) 
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Large values of Q„, small masses of the central black hole, and low accretion rates 

cause the Q to increase and can cause the radius rq to become larger than Tab- As 

follows &om expression (2.45) the value for rq (when rq < rab) is 

Assuming a range of parameters 1 > a„ > 10"^, 10"^ < iV/g < 10^, 10"^ < /^ < 1, 

and € « 0.1 the lowest possible location of rq will be at « 6rg, i.e. in the vicinity 

of the inner edge of the disk, where the Toomre stability criterion is not directly 

applicable. On the other hand, the stable region of the disk can extend over 

the whole of zone (b) and into the outermost zone (c) as well. At the radius of 

r = 0.01 pc and A/g = 1, which corresponds to the location of the broad line region, 

the disk would be unstable for the fiducial set of parameters. However, at higher 

values of accretion rates /B < 1 and larger values of > 0.1 the stable part of the 

disk will include 0.01 pc. 

Now we will consider vertical profiles of the disk in zones (a) and (b), where 

the dominant opacity is Thomson scattering. We will consider both radiation 

and gas pressure, and thus make no distinction between zones (a) and (b) in our 

equations for vertical structure. We assume the disk to be in LTE. The local 

energy production due to viscous stresses is assumed to be proportional to the 

local density. The last assumption is the only possibility in the case of radiative 

pressure supported disks. However, it is not consistent with the a prescription for 

the viscous stress (Krolik 1999). This means that the a-parameterization can only 

be used as a parameterization of the vertically averaged stress, not at each value of 

4/9 

(2.48) 

2.2.2. Vertical Structure of the Disk 
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the height z. The uncertainty in the vertical profile of viscous heating makes the 

subsequent calculations of the vertical profiles of the physical quantities in the disk 

very approximate. 

Let us denote P = Pg +Pr to he a. total pressure, which is the sum of radiation 

pressure Pr and gas pressure Pg. Let q{z) be the vertical radiative flux, £(2) is 

the column of gas starting from the equatorial plane of the disk. So is the total 

surface density of the disk (denoted by S in section 2.2.1), Sr is the radiation 

energy density per unit volume, T{Z) is optical thickness by Thomson scattering 

from the surface of the disk, and rg is the optical thickness through the whole disk. 

iVccording to these definitions, S is zero at the midplane, 2 = 0, of the disk; S 

approaches Eo/2 far above the disk midplane, r = ro/2 at 2 = 0 and r approaches 

zero far above the disk midplane. In the zones (a) and (b) Thomson scattering is 

the dominant source of opacity and we will assume that K{Z) = 0.4cm^g"^ and is 

independent on 2. Then, one has r = «:(Eo/2 — E), and so TQ = KEQ. .'VS we will 

see shortly, the optical thickness of the disk is always very large. Therefore, we will 

use the diffusion approximation for the radiation transport. One has the following 

system of equations 

and the density p is expressed through the total column as 

dS 
dz' 

Two of these equations can be integrated immediately. The integral of 

1 - viscous heating, 

= —^2 hydrostatic equilibrium, (2.49) 

^ ~ (^) ^ viscous heating, (2.50) 

3^% = —q{z) radiative transport, (2.51) 
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equation (2.50) is 

q = (2.53) 
2-0 

where we made use of the boundary conditions 9 = 0, and S = 0 at the disk 

midplane 2 = 0, and recovered the surface luminosity from one side of the disk Q, 

given by the expression (2.24) (in either zone (a) or zone (b)). Substituting the 

expression (2.53) for q into equation (2.51) and using the relation (2.52) one can 

integrate the radiation transport equation (2.51) to obtain 

I 3/c Q >2 
— ^rls=0 • 

C L(0 

For r » 1 one has Sr = aT^, Pr = £r/3. The temperature at the midplane of the 

disk is Tjnpd = T{z = 0). Then, the solution for the radiation transport can be 

recast into 
r 30 

= • P.54) 

For very large optical depth TQ the surface temperature is much less than the 

temperature at the disk midplane (see equations (2.26) and (2.27)). Therefore at 

S = So/2 one should have Sr < convenient to denote the dimensionless 

combination in equation (2.54) as 

3Q 
ro=e. (2.55) 

The parameter ^ should be less than 1 but still very close to 1. The equation (2.55) 

can be inverted to express temperature at the midplane of the disk via ^ as 

Now we substitute the expressions for e via S (2.54) and p via E (2.52) into 

the equation of vertical hydrostatic equilibrium (2.49). For the gas pressure we use 

the expression 
2 2kT 

P9 = = —P. (2.57) 
O TTlp 
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where for p we substitute from equation (2.52) and use for the temperature its value 

derived from er = aT* and expression (2.54) for £r- This leads to a second order 

differential equation for S. We introduce the dimensionless variable a = 2S/So for 

the column thickness. In terms of this variable the equation of vertical hydrostatic 

equilibrium is 

^<r{2) - (2.58) 
cLo iTip TTtp cLz r 

For the half thickness of the disk, we introduce characteristic scale 

h = R—, 

aT  ̂
where the speed of sound, c„ is evaluated at the midplane of the disk as c, = 

3p 
So 

and p = —. Note, that we take into account only radiative pressure support, when 
2n 

defining h. Therefore, h should be close to the actual half thickness of the disk, H, 

(from section 2.2.1) in the radiation pressure dominated zone (a). In the zone (b) 

it should he h<^ H since we neglected the gas pressure support, which dominates 

in the zone (b). With this definition, h becomes 

We introduce dimensionless height C as 

C = |. (2.60) 

After defining C one more dimensionless combination remains present in 

equation (2.58). It can be expressed via the estimated ratio of gas to radiation 

pressure at the midplane of the disk. Using expressions (2.54), (2.57), (2.56) for Prt 

Pg, Tmpd and using the parameter h given by expression (2.59), one substitutes for 
So . 

the density p = — in the expression (2.57) for the gas pressure and arrives at the 
2n 
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following expression: 

^ ,2.61) 
Pr rapd V^OC/ (kQ)^ H 

Here we have defined the right hand side of it as a parameter c. Note, that this 

expression of the ratio Pg to Pr is only approximate and valid only in the zone (b) 

(see note above on the definition of h). We \vill use the expression (2.61) only as a 

definition of the value of e. The dimensionless parameter e replaces the gravity term 

GMfr^ in the hydrostatic equilibrium equation (2.58). For small radii r < Tab, 

then € < 1. For r ~ rat, then c ~ 1, and for larger radii r » rat, then e > 1. 

Finally, the equation (2.58) contains only dimensionless parameters and variables 

and reduces to the following 

1 ri r 
^(C) - (1 - (2.62) 

This is a second order nonlinear differential equation with the boundary conditions 

cr = 0 at C = 0, (2.63) 

0- = 1 at C 00. (2.64) 

The density p{z) is a continuous function of z across the plane, 2 = 0 and has 

symmetric values on both sides of that plane. Therefore, one has —r- = 0 at 
aC 

C = 0. This condition is automatically satisfied for any solution of equation (2.62) 

as soon as it satisfies boundary condition (2.63). Also a cannot exceed the 

equation (2.62). 

At a given radius r the values of Q and tq should be taken from section 2.2.1. 

However, the value of the parameter ^ should come from the boundary condition 

for the radiative pressure at the top surface of the disk. This boundary condition 

is similar to one used for calculating the radiative pressure supported atmospheres 
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of luminous giant stars. Near the surface of the disk, r ss 1, the diffusion 

approximation (2.51) is no longer valid. But the thickness of the surface layer with 

r of a few is small compared to the total thickness of the disk, TQ. Therefore, one 

can neglect the production of the heat in the surface layer and use the condition 

of radiative equilibrium. Assuming LTE, the Eddington approximate solution of 

radiative transfer near the disk surface gives the temperature profile as 

fr< = Q(i  + 2«(is.-s)) .  (2.65) 

One needs a smooth transition of this solution into the solution (2.54) of radiative 

transfer for large optical depths r » 1 under diffusion approximation with the 

viscous heat source. Writing cr = oT'* one can rearrange expression (2.54) in the 

following way 

3 V /n ,  ^  /-^^o/2~S 3 _ ^^So/2 —fct cc\ 
jT j . (2.66) 

Since TQ = KEQ » 1 and So/2 - S < So/2, one can see that the last term in 

equation (2.66) is small compared to the third term for r ~ 1. Terms linear in 
y /2 — y 

are the same for the Eddington approximate solution (2.65) and for the 
So/2 

diffusive approximation (2.66). In order for the solutions to match each other, their 

terms independent of S must also be equal, which results in the requirement for 

the midplane temperature 

\q = (2.67) 

flc 3 
Since ro > 1, nearly cancels —«SoQ in equation (2.67). Then the 

4 16 
remainder can be recast into the condition determining the value of Substituting 

expression (2.56) for into the equation (2.67), it can be transformed into the 

condition determining the value of ^ as follows: 

f = (2.68) 
 ̂ 3TI) 
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For the radiative pressure in the vertical direction in r ~ 1 zone, one still has 

the same expression as in the zone of LTE blackbody radiation field (e.g., Sobolev 

1985), namely, Pr = \aT*. At S = So/2, the Eddington approximation (2.65) 

results in 

P = Pr = ^, (2.69) 
oc 

since the gas pressure = 0 at the top surface of the disk, and S = Eo/2. At 

the same time one can check that the substitution of the value (2.68) for ^ into 

the radiation density distribution over the vertical height given by equation (2.54) 

and into the expression (2.56) for the temperature at the disk midplane, leads 

to exactly the same value of radiation pressure at S = 0 as in equation (2.69). 

Thus, the relation (2.68) is equivalent to the boundary condition (2.69) for the 

pressure at the top surface of the disk (which would be P = 0 in the absence of 

radiation pressure). Once the parameter ^ is found, the parameter e is computed 

using formulae (2.61). One can see that for large C the solutions of the type 

a constant, da/d^ 0, satisfy the equation (2.62). Since dcr/dC is proportional 

to the density, only solutions of equation (2.62), which have a positive derivative 

everywhere, are acceptable. Under this condition it is obvious that if a constant 

at C -> 00) then it is necessary that da/dd^ 0 at C -> oo. This means that at the 

disk surface defined by = 1, the density becomes zero automatically. 

We solved the boundary value problem for equation (2.62) with the boundary 

conditions (2.63) and (2.64) numerically by adjusting the starting value of the 

derivative da/d^ at C = 0 such that for large values of C the solution a approaches 

1. The resulting profiles of CT(C) and da/dQ are shown in Figs. 2.2, 2.3, 2.4 for a 

number of values of r both inside zone (a) and inside zone (b). When the support 

is provided by radiation pressure, the density profile is flat up to z = 2/i. The 

disk has a well defined sharp surface at around z = 2/i. When the gas pressure 
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dominates over the radiation pressure, the density profile inside the disk is close to 

a Gaussian shape, since the temperature decreases only slightly for E < So/2, but 

not close to Eo/2 according to the equation (2.54). 

The formulae are listed in Appendix A, which provide numerical expressions 

for vertical profiles of r, p, T, effective temperature at the surface T,, Pg, Pr and 

the ratio of Pg/Pr by means of the function (r(() and parameters of the disk - black 

hole system. 
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Figure 2.2 Vertical profiles of physical quantities in the disk. Plots are for r = r ab/10, 

M 8 = 1, ass = 0.01, E = 0.1, and lE = 0.1. CGS units are used on axes. 
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Figure 2.3 Vertical profiles of physical quantities in the disk. Plots are for r = r ab, 

M 8 = 1, O:ss = 0.01, E = 0.1, and lE = 0.1. CGS units are used on axes. 
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Figure 2.4 Vertical profiles of physical quantities in the disk. Plots are for r = 4r ab, 

M 8 = 1, 0!88 = 0.01, E = 0.1, and lE = 0.1. CGS units are used on axes. 
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2.3. The Physics of Star Passage through the Accretion Disk 

It has been now long realized that the passages of stars forming the central part of 

the star cluster in AGNs through the accretion disk lead to the stripping off of the 

outer envelopes of stars and to the changes of the momentum of the stars. This 

makes an important impact on the dynamics of stellar orbits and the evolution 

of the central star cluster, may contribute to providing gas for accretion and can 

account for part of the observed emission from AGNs (Syer et al. 1991; Artymowicz 

et al. 1993; Artymomcz 1994; Rauch 1995; Vokrouhlicky k Karas 1998; Landry k 

Pineault 1998). Zurek et al. (1994) considered the physics of plasma tails produced 

after star-disk collisions (see also Zurek et al. 1996). They suggest that emission 

from these plumes may account for the broad line spectrum of quasars. Here 

we suggest another consequence of stars passing through the accretion disk, the 

generation of magnetic fields. Zurek et al. (1994) and Zurek et al. (1996) focused 

only on a small fraction of the disk material directly entrained by the passing star. 

The fraction of the accretion disk much larger than the diameter of the star will be 

heated by the shock wave produced by the star. The propagation and weakening 

of the shock wave inside the disk occurs after the star leaves the disk. A channel of 

the hot plasma in the disk will be formed. The plasma in the channel is buoyant 

and will rise above the disk surface. Two plumes expanding on both sides of the 

accretion disk will be formed. The central part of the hot plasma channel will have 

a higher temperature than the outer part. Therefore, the central part will be more 

buoyant and will rise and expand more than the outer part of the channel. The 

estimates and detailed calculations of the whole process have not been performed. 

We will assume that the typical radius of expanded plumes near their maximum 

height is L Then, the plumes rise to the height a I above and below the disk 

surface during one quarter of the Keplerian period at the radius of the star-disk 
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passage. During the next one quarter of the Keplerian period plumes subside back 

to the disk surface and expand to the radius of » 2/ in the radial and azimuthal 

directions. We will assume that I is larger than the disk thickness H but is of the 

same order of magnitude as the disk thickness H. Since H r the size of the 

plume is much smaller than the radius at which star-disk collision happens. 

Let us consider the neighborhood of a point r = tq at the midplane of the 

disk where some star disk collision occurs. One can introduce local Cartesian 

coordinate system x, y, z in the Keplerian rotating frame with the origin at the 

point r = To such that the x-axis is directed radially outward, y-axis is directed 

in the positive azimuthal direction, and z-axis is perpendicular to the disk plane. 

Then, the effective gravitational and centrifugal potential in the Keplerian rotating 

frame in the neighborhood of the point r = tq is 

G M  , 2  „  O N  

The thermal energy of the hot column of gas is a fraction of the losses of the 

kinetic energy of the star due to the hydrodynamic drag by the plasma in the disk. 

The latter energy loss during one passage is F^ag^H = 2HnRQfwl = 7rii|Su^ 

The amount of the hot material in the plume is proportional to E. Therefore, the 

specific thermal energy of the gas in the plume is proportional to vl. The size of 

the plume is determined by equating the effective potential to the specific thermal 

energy, which leads to a scaling law of the plume size with the radius, I oc r. 

The radial extend of the plume should be somewhat less than its vertical extend 

because the density drop in the disk is the fastest in the vertical direction. The 

action of the Coriolis force leads to the shape of the horizontal cross section of the 

plume being elliptical. This corresponds to the fact that epicycles of particles in 

the gravitational field of a point mass are ellipses with the axis ratio 2 and epicyclic 
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frequency is fl/f. We did simple ballistic calculations of trajectories of particles 

launched from some point at the mid-plane of the disk with initial velocities in 

different directions in horizontal plane. We obtained that at the time of maximum 

height of the plume, w T/f/4, the position angle of the major axis of the ellipse 

is approximately —7r/4 from the outward radial direction Cr- At the time of the 

fall back to the disk plane, fn Tk/2, the major axis of the ellipse is close to the 

azimuthal direction. 

2.4. Mean Field Theory for the Star Disk Collision Driven Dynamo 

We start with estimating the microscopic conductivity and viscosity in the accretion 

disk. At r ss Tab the temperature in the midplane of the disk is about 10 eV and 

reduces down to about leV at the surface of the disk (see section 2.2). At the 

density of the plasma p a 10~^gcm~^ it is a good approximation to consider the 

plasma as a fully ionized. The conductivity of pure hydrogen fully ionized plasma 

due to Coulomb collisions is (e.g., Lifshits & Pitayevskii 1982) 

where is the mass of an electron and we take for the electron Coulomb logarithm 

Le the value Lg « 20. Since the inner parts of the accretion disk are radiatively 

dominated, it is interesting to calculate the possible contribution to the conductivity 

due to the radiative drag force acting on the electrons conducting current. Using 

the expression for the radiative pressure force acting on the electron moving in a 

photon field due to Compton scattering of photons (Rybicki k Lightman 1979) one 

can estimate the conductivity due to the photon drag as 

(2.70) 

3 Ce^Tle 
2 (TtoT^ 

(2.71) 
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where rig is the number density of electrons and (x-r is the Thomson cross section. 

We see that cTr » (Tk ^ the zone of the accretion disk, r » rat, important for the 

dynamo. This means that the conductivity is determined by the Coulomb collisions 

in that zone. 

Even in the innermost part of the accretion disk at r « 3rg with Tmpd « 100 eV 

and p « 10"'^ gcm~^ one has ar « 7 • 10'® s"^ and o"/<- « 9 • 10'® s~^ Still the 

conductivity of the plasma is determined by Coulomb collisions. However, the 

radiation drag on electrons becomes dominant in the corona above the innermost 

part of the accretion disk when p < 10"'"* gem"' and < 10'° cm"'. Effects can 

arise due to the anisotropy of the radiation field at a significant (> H) height 

above the disk (Bisnovatyi-Kogan & Blinnikov 1977). Because the radiative flux is 

directed out of the disk and the radiative force on electrons is much larger than 

on protons, an electromotive force arises which does not have a potential. This 

electromotive force can generate currents and magnetic fields in the corona of the 

disk and closing through the accretion disk itself in excess of that produced by 

thermoelectric Biermann battery mechanism. 

Viscosity of a fully ionized hydrogen plasma is due to ion-ion collisions. The 

kinematic viscosity is given by (e.g., Lifshits k Pitayevskii 1982) 

where nip is the mass of the proton, Ui« ng is the number density of ions. We take 

for the ion Coulomb logarithm Li the value L, a 20 and neglect the presence of 

helium and other heavy ions in the plasma. The microscopic coefficient of magnetic 

diffusivity calculated using expression (2.70) is 

J5/2 
u = 0.4—775 

rrip' riie'^Li s 

(2.73) 
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The magnetic Prandtl number is 

Pm = - = 1.5 • 10® (lo-Tgcm-a) (f^y) • (2.74) 

At r ss Tab the Reynolds number with respect to Keplerian rotation is evaluated as 

Re„ = = 9.10" (^) (^) . (2.75) 

The magnetic Reynolds number with respect to Keplerian rotation at r w Tab is 

We see that the values of Ren and Elmn are enormous. Therefore, the development 

of hydrodynamic and MHD instabilities leading to the turbulence in the disk seems 

inevitable. In particular, the magnetorotational instability (see section 1.3) develops 

and leads to the excitation of turbulence necessary to sustain the Shakura-Sunyaev 

accretion disk (section 2.2). Near the inner edge of the accretion disk at r % 3rg 

one has Ren = 90, Rmn = 10^°. The large values of magnetic Prandtl number are 

typical for cosmic plasmas as opposed to the laboratory dynamo experiments with 

liquid metals (see section 5.1). 

The number of plumes produced by star-disk collisions is large. At any given 

moment of time there exist ~ 10"* plumes inside the r ~ 10"^ pc (see section 2.1). 

Therefore, the distance between neighboring plumes is ~ 10~^r and radial and 

azimuthal sizes of plumes cannot exceed ~ 10~^r. The magnetic field on the scale 

of the order of r will be the average over many individual plumes. The properties 

of plumes are statistically independent and the appearance of plumes can be 

considered £is a random noise process. It is attractive to apply mean field theory 

for the generation of the large scale magnetic field by plumes. The averaging over 

the patches of the disk surface exceeding sizes of plumes is well justified. The 
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averaging over the vertical direction is more problematic, since the sign of helicity 

produced by plumes is different above and below the disk midplane. Thus, the 

typical size of a plume is of the same order as the vertical scale of the change of 

helicity. Still, using the mean field theory is the only effective tool we can apply 

to obtain estimates. The random motions induced by the star-disk collisions 

are clearly statistically anisotropic due to the existence of a preferred direction 

perpendicular to the disk plane. Still using isotropic expressions (1.14) and (1.15) 

provides so much simplifications that for our purpose of obtaining the proof of 

principle estimate we will use expression (1.13) for the isotropic mean electromotive 

force with the coefficients a and /3 given by expressions (1.14) and (1.15). The Rm 

is very high so we can neglect microscopic diffusivity completely and consider only 

effective magnetic diffusion 0 given by expression (1.15). 

The averaging over statistical ensemble <> in equations (1.14) and (1.15) 

is replaced by averaging over many neighboring plumes. The correlation time 

r is approximately half of the Keplerian period, r = T/f/2. The half thickness 

of the slab with the helicity produced by plumes is about the vertical extent of 

a plume, I. We assume the dependence of a on z as a = aoz/l, where ao is a 

characteristic value of helicity which can vary with the radius r. This assumption 

for a satisfies symmetry requirement that a(—2) = —0(2) while exact knowledge of 

the dependence of a on 2 is beyond our accuracy. We assume that I > H and that 

a = aoz/l in the whole region -I < z <1, i.e. we neglect the fact, that helicity is 

almost zero inside the disk for —H < z < H. We also assume to be uniform over 

—l<z<l. The fact that the maximum height of the plume is I means that the 

characteristic vertical velocity of the plasma in the plume is v', « Vfcl[r. We assume 

that the characteristic velocity of the sidewise expansion of the plume is v'^ « v'j2. 

Then, by the time TkI'I the plume expands to « 1(2 in horizontal dimension (we 
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neglect the fact that the shape of the plume becomes elliptical). We estimate 

V X v* 55S -2^K, V' • (V X V) « -2v'gQf( = = 2vf + « 15/4i;^ 

for the plume. Let us introduce the filling factor q — q{r) equal to the fraction of 

the surface of the disk covered by plumes. Then, averaging <> is reduced to the 

multiplication of the values for one plume by q. From expression (1.14) we have 

Oo = (2.77) 

and from expression (1.15) 

/3 = (2.78) 

Our estimate of ^ coincides with the estimate of the characteristic value of /3 for 

an ensemble of supernovae explosions occurring at the midplane of the Galaxy 

considered by Ferriere (1993) (formula [35] in that work). The numerical coefficient 

in our estimate of /3 is different from Ferriere (1993). 

The dynamo activity is present inside the thing layer with thickness I < r. 

This situation is the same as for the traditional model of the Galactic 

dsmamo. We can use the extensive theory of the a-fi dynamo in thin disks 

developed in the connection to the Galactic dynamo. An extensive treatment of 

a-Q Galactic d}mamo can be found in Zeldovich et al. (1983) and Ruzmaikin 

et al. (1988). One looks for the solution of equations (1.16) and (1.17) in the 

a-Q limit when Rma Elmn- Since the thickness of the disk 2H is small, one 

can neglect radial derivatives of the magnetic field compared to the ^-derivatives. 

In this way the problem becomes local with the eigenfirequency of the dynamo 

determined by solving the one dimensional eigenvalue problem in z-direction. This 

local approximation is similar to the local approximation we used in section 2.2.2 

to derive the vertical structure of the accretion disk. We will use results from 

Ruzmaikin et al. (1988) and replace their parameters with ours. The important 
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parameter is the dynamo number 

The D is negative for anticyclonic vortices and dQiddr < 0. 

Any arbitrary vector field C = C(r, <j>, z) can be decomposed into the sum of 

parts even and odd with respect to the reflection z -> —2, C = C + C°. The 

following transformation rules are valid for an even field: 

c;(-2) = cj(z), C5(-J)=C5(2), C;(-J) =-C^(Z), (2.80) 

and for an odd field: 

C°(-2) = -C°W, c;{-z) = -c;{z), Cti-z) = Ctiz). (2.81) 

Often even fields are called quadrupole type fields and odd fields are called dipole 

type fields. The last terminology reflects on the largest scale modes possible within 

each symmetry class and allows one to visualize fields of each symmetry type 

easily. The even and odd decomposition of an arbitrary field C can be performed 

as follows: 

C'ir, 0,2) = i(C(r, 2) + C(r, 4i, -z)), (2.82a) 

C'fir, 1^, z) = 5(C(r, z) + C{r, iji, -z)), (2.82b) 

CHr, z) = i(C(r, z) - C(r, A -z)). (2.82c) 

C;(r, z) = j(C(r, ft z) - C(r, A -z)), (2.82d) 

c;(r,ij,z) = i(C(r,0,2) -C(r,^,-z)), (2.82e) 

Ct(r, z) = i(C(r, 0,2) + C(r,-2)). (2.82t) 

One can check that for any volume V symmetric with respect to the plane 2 = 0 

[ C^dV= f (C^)2 dV+ f {Cf dV. (2.83) 
Jv Jv Jv 
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This implies that if C = B is a magnetic field, than the energy of the magnetic 

field is equal to the sum of energies of its even and odd components. The even and 

odd components of solutions of equations (1.16) and (1.17) decouples if the mean 

velocity field is even, vpr{-z) = vpr{z), vp^^-z) = -upz(2), ^(-z) = ^^(z), the 

coefficient a is antisymmetric with respect to reflection z -z, and the coefficient 

/3 is symmetric with respect to reflection z -> —z. Thus, even (quadrupole) and 

odd (dipole) modes will have different growth rates. The axisymmetric magnetic 

field is even if A{-z) = -A(z), B^{z) = B4,{-z) and is odd if A{-z) = .4(z), 

B^-z) = -B^z). 

The medium above and below the disk is rarefied but still highly conducting 

since r} given by formula (2.73) does not depend on the number density of particles. 

The density of particles in equilibrium non-magnetized disk falls off with z 

precipitously; oc exp(—when the gas pressure dominates and even steeper 

when radiation pressure dominates (see section 2.2.2). This means that even a small 

magnetic field will have a significant influence on the dynamics of the disk corona. 

Thus, the kinematic dynamo approximation does not work in the disk corona. 

Force-free approximation V x B = AB could be adequate to describe the magnetic 

field evolution at [zj > /. In the particular case A = 0 force-free magnetic field 

satisfies vacuum equation V x B = 0. Reyes-Ruiz k Stepinski (1999) investigated 

the a-fi turbulent dynamo in accretion disks with linear force-free coronae. They 

match axisymmetric solutions of the dynamo equations (1.16) and (1.17) inside 

the disk to the solutions with constant fi o( a. force-free equation V x B = fiB 

outside the disk. They find that the results for dynamo eignevalues and dynamo 

eigenmodes do not change significantly with the value of The a-quenched 

satiurated mode also depends weekly on fi. Thus, in order to obtain estimates for 

the star-disk collisions driven dynamo we can assume that fi = Q and the magnetic 
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fields obey the vacuum conditiou V x B = 0 outside the disk. Note, however, 

that some of the poloidal magnetic field lines obtained in Reyes-Ruiz ic Stepinski 

(1999) have inclination angles to the surface of the accretion disk less than 60°. 

This means that MHD outflow should start along these poloidal magnetic field 

lines (Blandford k Payne 1982). The presence of the MHD outflow would make 

the force-free approximation invalid. 

The eigenvalue problem for the a-fi dynamo in the thin slab —l{r) < z <l{r) 

with the vacuum outside the slab (Ruzmaikin et al. 1988) can be reduced to solving 

a one-dimensional eigenvalue problem in the 2-coordinate. In this way, the local 

growth rate of the dynamo 7(r) is obtained. The growth rate of the global mode 

r is very close to the maximum value of 7^ = 7(rm) over the disk radius. The 

corresponding eigenmode is localized in the ring of the disk near radius r^. The 

characteristic radial width of the eigenmode for the dynamo numbers, that are not 

much exceeding the threshold limit, is ~ (Ruzmaikin et al. 1988). The 

most easily excited mode of the dynamo has quadrupole symmetry and is steady. 

The excitation condition of this most easily excited mode is D < -7r''/16 for the 

vertical dependence of the a-coefficient a = aaz/l (Ruzmaikin et al. 1988). The 

excitation condition varies somewhat depending on the choice of the profile of the 

a-coefficient but is of the same order as the number for the linear profile of a. 

The growth rate of the lowest steady state quadrupole mode near the excitation 

threshold is 

Substitution of expression (2.79) for the dynamo number into equation (2.84) 

(2.84) 

The growth rate for large dynamo numbers \D\ »7r'*/16 is 

T = 0.i^y/m- (2.85) 
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results in 

, = p.86) 

Thus, the dynamo is excited when q is smaller than the threshold value 

64 
9 < ?c = ^ « 0.034. (2.87) 

When q is smaller than qc, the growth rate increases with decreasing q until q 

reaches some value qm- The growth rate decreases for q smaller than q^- The 

value of qm can be found by calculating the derivative of dj/dq with 7 given by 

expression (2.86). It turns out that 

9m = ^9c«8.4-10-^ (2.88) 

The maximum growth rate &t q = qm is 

7m = ~ 0.08n/f. (2.89) 

For q<^qm the growth rate decreases to zero as 

7 = O-STTv/qfiic. (2.90) 

We see that the filling factor q is the crucial parameter for the dynamo. Let us 

estimate q. The cross section area of the plume is « 7r/^/4, the number of plumes 

present at any moment of time on one side of the disk is 2 • nu/4 •TkI2. Assuming 

the velocity of stars being y/2vic one obtains 

= \nv2'—  ̂= sPiiP'nT ,̂ q — -nv2——— = v27rnrr. (2.91) 
^ to ^ 

Using expression (2.14) for the flux of stars, nu/4, one obtains 

r r \  
q = 5.6' 10 cm ^risl^ ( —;— ) for r > 10 ^ pc, 

\ 10"'' pc / 

q = 5.6• 10"^^cm~^nsl^ (—^—) for lOrt <r < 10"^pc, (2.92) 
\ 10"'' pc / 

q = 0 for r < lOrj. 
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Using the scaling law of I with the radius, I oc r, (see section 2.3) we obtain the 

following dependencies of g on r 

'  =  '  ( 1 .3.10''cm) (1?%) ' ^ 

^  =  ̂ " ° ( l .3- l 'o'»cm) (10^) !'"••<'•<10-= PC, (2.93) 

9 = 0 for r < lOrj, 

where I2 is the value of / at r = 10"^ pc. We see that q is a monotonically increasing 

function of radius. The discontinuity of g at r = lOr^ is, of course, the consequence 

of our crude model for the distribution of stars in the central star cluster. In reality, 

q decreases to 0 inside the tidal disruption sphere r < rt smoothly. The maximum 

value of q is determined by the position of the outer edge of the accretion disk 

subject to the condition of gravitational instability (see section 2.2.1). We see that 

the radius r^, at which q = q^, can always be found in the accretion disk. 

The outer edge of accretion disk rq is generally located in the radiative 

dominated zone (a) (see equation (2.48)). Also, generally, rq > lOrt but 

rq < 10"^ pc for M = 10® M©. Therefore, the second expression in equation (2.93) 

is the most appropriate to use in order to estimate the maximum value of 9 in the 

disk at its outer edge q{rq). We would also like to compare I to the half thickness of 

the disk H and take formula (2.20) for the H in the zone (a) for M = 10® A/©. Since 

H does not depend on r in the zone (a) apart from general relativistic correction, 

the rescaling of I with respect to H does not change the radial dependence of q (we 

omit the general relativistic correction): 

9 = 8.0 10-^715 (l5n) (2-94) 

where k is the value of f at r = lOrt. Now we need to use the radial dependence 

of q (2.94) to substitute it into expression (2.86) to determine the maximum of 7 
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over the radii. This maximum value 7jv/ is different from 7m since the last value 

was obtained by maximizing the 7 as a function of g at a fixed r. Let us write 

according to equation (2.94): 

-3/2 

with 

• "-"'(ik) ' 

fiK.=2.08 10-'s-', „=8.0 10-=n5(^) (^t) ' (2.95) 

Then, the expression (2.86) for 7 becomes 

7 = -TrqiQf^t 
4 

3/2 

+ 
5v^ 

(2.96) 

It is clear from expression (2.96) that the maximum growth rate is achieved at 

r = lOrt. In fact, the boundary lOrt for the constant density core of the central 

star cluster (see section 2.1) was defined by us somewhat voluntary. 

In reality, there are stars crossing the disk at r < lOrj. Let us account for this 

decrease of the number of stars by assuming the dependence 

3+A 

(2.97) 

with some positive value of a for r < lOrt. Then, expression (2.96) is modified as 

follows 

7 = -Trqtfiift _L. F JL) 
4 VlOrJ ^ 5y/7f^\10rt/ 

a/2 

(2.98) 

Now 7 reaches maximum at the radius 

rxf = lOrt 
— I I 3+0 

(2.99) 

When a is small, < 10^. For larger values of a the value of decreases 

and becomes larger than lOrt by a factor of a few. The decreasing of the number 
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density of stars for r < lOre can be accounted for by decreasing of q according to 

expression (2.97) with variable a > 0: a is 0 at r = lOrj and increases with the 

decrease of r. Then, the result for the value of means that at first, 7 \vill grow 

with decreasing r until the point r = r\f{ot) is achieved. Further, for smaller r, 

7 will start to decay. The position of the point r = rxi{a) depends on the exact 

dependence of a(r) and the ratio h/H. Since there are no stars below rj, the point 

of the maximum growth rate of the dynamo cannot be located inside rj. If one 

takes a « 1, /t « lOH, Ig = 0.1, and c = 0.1, than TM W 6rt. The expression (2.98) 

at radius (equation (2.99)) gives the maximum growth rate 7m as follows 

(3^) " (5^^) 

We see that is positive for any value of a and qt. This means that the dynamo 

will be always excited regardless of the size of plume and the number density of 

stars. This is in concordance with our previous analisys of the behavior of 7 as a 

function of q. The dynamo number (formula (2.79)) is 

For one fiducial set of parameters k = lOH, Ig = 0.1, e = 0.1, ns = 1 the filling 

factor at r = lOrj is = 8 • 10"', the dynamo number at r = lOfj is D = -25. 

The growth rate at r = lOr^ is 7t = O.OS^Kt- The dynamo operates close to its 

maximum efficiency 7m given by expression (2.89). The expression (2.100) with 

a = 1 gives 7m = 0.140^4, which is slightly larger than jt- We conclude that the 

maximal growth rate of the dynamo is achieved close to the inner radius of constant 

density core of central stellar cluster (lOr^ in our model) and can be estimated as 

7~0.inK:(r). (2.101) 

We also comment on the case of large dynamo numbers (|£)| Tr'^/ie) at 

r = lOn. This happens when qt C 10"^, i.e. for small plume size or ns -C 1 
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(equatiott (2.95)). In this case the growth rate at r = lOrj should be calculated 

using expression (2.90), which results in 

= (2102) 

The ratio of 7^/ given by formula (2.100) to 7^ is 

7 j v / _ 3  +  a  1  /  a  

7t 3 + 2aO.S^/TT V3 + 2Q!/ 

For a = 1 and I = 2H this ratio is equal to 2.7. Therefore, within the factor of a 

few, expression (2.102) gives the correct estimate of the growth rate of the dynamo 

for the case of small values of qt. Moreover, for small qt, the radius determined 

by expression (2.99) tends to become larger than lOrj. If > lOrj, then the 

maximum growth rate of the dynamo occurs exactly at lOrj, since the decrease 

in the number of stars, approximated by introducing a, leads to growth rates 

decreasing with the decreasing radius for r < lOr^. We conclude that the dynamo 

reaches its maximum growth rate at r « lOr^. 

The ratio of the toroidal to the radial magnetic field in the growing mode 

inside the volume occupied by plumes is 

Br ' ' 5^ 

Using expression (2.95) for the value of q at lOrt one has 

As in all a-Q dynamos, the generated toroidal field is larger than the poloidal field. 

However, the toroidal field in the vacuum outside the region of dynamo activity 

vanishes, because the normal component of the current at the vacuum boundary 

must be zero. If there is force-free magnetic field above the plume region, then 
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the toroidal magnetic field generated by the dynamo penetrates into this region 

(Reyes-Ruiz & Stepinski 1999). However, due to the quadrupole symmetry of the 

poloidal magnetic field, the toroidal field in the force-free corona has the opposite 

direction from the toroidal field inside the disk. Axial component of the magnetic 

field, Bz, is much smaller than the radial component inside the slab occupied by 

plumes, J5j « l/rBf. However, the radial component of the magnetic field decreases 

down to the value comparable to B, at \z\ = I. The quadrupole poloidal field in 

the corona is weaker than than the poloidal magnetic field inside the disk by the 

factor l/r. The structure of the force-free corona above the dynamo generation 

region cannot be determined without further knowledge about boundary conditions 

at the outer boundaries of the force-free region or physical processes, which limit 

the applicability of force-free ideal MHD approximation in the corona (i.e., fast 

reconnection of magnetic fields). If one requires that the magnetic field in the 

force-free region vanishes for \z\ » /, as Reyes-Ruiz k Stepinski (1999) assume, 

then, the toroidal magnetic field is comparable to the poloidal field in the corona. 

In this case, the toroidal magnetic field in the force-free corona is much smaller 

than the toroidal magnetic field inside the disk. Also, as we mentioned above, the 

growing quadrupole field is concentrated in the ring with the radial width Ar of 

order 

Ar = a 0.6r, ^1) ' Y) ' 

and exponentially decreases outside this ring, for |r — r\i\ > Ar. 

2.5. Estimate of the Saturated State of the Dynamo 

The consideration of the star-disk collisions djmamo in section 2.4 was in kinematic 

limit. In reality, the kinematic stage of the dynamo can only be a short transient 

period in the life of accretion disk. The magnetic fields, which are observed in jets 
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and radio lobes of AGNs, should be the result of the saturated, non-linear stage 

of the dynamo. Let us estimate the strength and the structure of the saturated 

magnetic field. A strong enough field vvill resist twisting of the anticyclonic 

motion of the plumes. The dynamo saturates when the toroidal magnetic field 

is strong enough to limit the a-effect. This happens when the tension force due 

to the curved toroidal magnetic field becomes comparable to the Coriolis force 

causing the plume to rotate (in the Keplerian rotating frame). The Coriolis force 

is w 2^lKPpVr, where pp is the density in the plume, Vr is the radial velocity 

of the expansion of the plume. The magnetic stress counteracting the Coriolis 

force is -^(BV)B « BlAdjAirAlVr, where A0 is the angle of the twist of the 
47r 

plume at the time At since the beginning of the expansion of the plume. This 

angle is estimated as Ad « The radial velocity of the plume expansion is 

Vr VK^l2r = Putting all these estimates together results in the following 

estimate for the saturation value of the magnetic field 

This means that the a-effect will be suppressed by the magnetic field in 

equipartition with the kinetic energy of the plume expansion. The saturation value 

of the magnetic field, which is expected from the development of turbulence caused 

by the magnetorotationai instability (Balbus & Hawley 1998) as well as from the 

turbulent a-Q dynamo in the accretion disk (Riidiger et al. 1995; Reyes-Ruiz k 

Stepinski 1999), cannot exceed equipartition value = pc^ with the thermal 

energy of the plasma in the disk. Here p is the average density of plasma in the 

disk (formula (2.21) in the zone (a)) and c, is the average sound speed in the disk 

(formula (2.44 in the zone (a)). In the zone (a) the numerical value for Be, is 

(2.104) 

(2.105) 
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The ratio of to Bgq is 

[KL 
y  p H -

(2.106) 

Depending on the ratio pp/p the saturated magnetic field in the star-disk collision 

dynamo can be either smaller or larger than Beq. In the first case, the star-disk 

collision generated magnetic fields will be smaller than the magnetic fields generated 

by magnetorotational instability. In the second case, the magnetic field is strong 

enough to change the vertical structure of the disk, particularly, to cause it to 

be thicker than without a magnetic field. Also, the toroidal magnetic field in the 

disk is subject to the Parker instability which causes the magnetic field to emerge 

above the surface of the disk as nonaxisymmetric bubbles of magnetic field lines. If 

^05 > Beq the characteristic time of the rise of bubbles is a Keplerian rotation time. 

Simultaneously, the footpoints of the bubbles will be sheared by the differential 

rotation of the disk, which will cause rapid expansion of the bubbles. 

The magnetic field is generated by the star-disk collisions dynamo far from 

the innermost parts of the disk and the black hole. The energy which is carried 

away from the surface of the disk of radius r by the Pointing flux or hydromagnetic 

wind is (e.g., Blandford 1990; Livio et al. 1999) 

Here Bp and B^ should be evaluated close to the surface of the disk. In both cases 

of a force-free helical magnetic jet or hydromagnetic outflow one obtains Bp ̂  B^ 

(Blandford 1976; Blandford & Payne 1982; Krasnopolsky et al. 1999). Using the 

estimate of the magnetic field given by the equipartition value, equation (2.105), 

one obtains for 10®Mq central black hole that 

Lm « ̂ ^^(7rr^)12icr oc BpB^r^^ ,̂ 
47r 

(2.107) 

(2.108) 
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Note, that this value of the magnetic luminosity of the disk does not depend on 

the accretion rate in the disk, M. It exceeds the Eddington limit of w 10''6ergss~^ 

for 10® MQ black hole. The equipartition estimate above is applicable to the total 

magnetic field in the disk, while only regular component of the magnetic field (mean 

field) with the magnetic field lines extending far from the disk surface causes the 

energy and momentum losses of the disk. Therefore, the estimate (2.108) should 

be considered as upper limit on the magnetic luminosity. The angular momentum 

fiux from the surface of the disk is associated with the energy loss. Since the 

angular momentum loss due to magnetized outflows cannot exceed the angular 

momentum decrease of the gas spiraling down to the black hole, the energy flux 

into magnetized outflow is also limited by half of the gravitational binding energy 

of the gas at the innermost stable orbit. This amounts to the value from 3% to 

20% of the flux of the rest mass energy in the accretion flow, M(?. The interaction 

of the magnetic field with the plasma below the innermost stable orbit and in the 

vicinity of the black hole horizon is also important for evaluating the efficiency of 

the conversion of the gravitational energy into the energy of the magnetic fields in 

jets, radio galaxies and clusters of galaxies. 

The advection of the magnetic field by the accretion flow in a thin disk 

does not lead to significant amplification of the field in the inner parts of the 

disk. This is shown by Reyes-Ruiz & Stepinski (1996) and Lubow et al. (1994) 

for the advection of the field having dipole symmetry. If the turbulent viscosity 

coefficient in a thin disk is of the same order of magnitude as the turbulent 

magnetic diffusivity coefficient, the magnetic field is dragged by the accretion flow 

only slightly and remains almost uniform over the whole surface of the disk. The 

advection of the quadrupole field generated by the dynamo may be different. The 

degree of the amplification for the quadrupole field may be stronger than for the 
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dipole field. The subject of the advection of the magnetic fields produced by the 

star-disk collisions dynamo clearly needs further investigation. More research is 

also needed on MHD and radiative hydrodynamics calculations of the saturated 

state of the dynamo and comparison of the dynamo to the magnetic field produced 

and supported by magnetorotational instability. 
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3 KINEMATIC DYNAMO CODE 

We have justified order of magnitude estimates of the growth rate and threshold 

magnetic viscosity parameter for the dynamo by direct numerical simulations. For 

that purpose we wrote 3D kinematic dynamo code evolving magnetic field under 

the influence of advection in a prescribed velocity field and diffusion. Unlike most 

MHD codes, our code solves evolution equations for the vector potential of the 

magnetic field rather than for the magnetic field itself. This chapter contains a 

detailed description of the method, equations and numerical technique. 

3.1. Basic Equations 

We start with the equations describing evolution of fields in nonrelativistic 

quasineutral plasmas 

where a is the conductivity of the plasma. Substituting the expression for the 

current j firom the equation (3.3) into Ohm's law, equation (3.4), and introducing a 

V B = 0 ,  (3.1) 

(3.2) 

(3.3) 

(3.4) 
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c2 
coefficient of magnetic diffusivity rj as T] = -— we obtain Ohm's law in the form 

Aire 

E  +  - v x B  =  - V x B .  ( 3 . 5 )  
c c 

It is the two Maxwell's vacuum equations (3.1) and (3.2) and Ohm's law, equation 

(3.5), that we need to solve for a given velocity field v and resistivity field T). 

The conventional and widely accepted way of writing and solving MHD 

equations (or MHD without the hydrodynamical part as in our case) is to obtain 

a single equation for the evolution of the magnetic field and solve it together, if 

necessary, with the equations for the evolution of the hydrodynamic variables (e.g. 

Landau k Lifshits 1982). Let us first follow this approach. Substitution of the 

electric field E from the equation (3.5) into Faraday's law, equation (3.2) results in 

dB 
^  =  _ V x  ( r ; V x B ) + V x  ( v x B ) .  ( 3 . 6 )  
at 

Let us introduce vector potential for the magnetic field A as 

B = V X A. 

This definition automatically satisfies constrain V • B = 0. Substitution of the 

above expression for B into equation (3.6) leads to 

V X + 7JVXVXA-vx(VX A)^ = 0, 

which implies the existence of some function $(r, t) such that 

9A 
^^ + 7?Vx Vx A-vx (Vx A)+cV$ = 0. (3.7) 
at 

If some A provides a solution to the magnetic field evolution equation (3.6), then 

it is possible to find such fimction $ such that A will be a solution of equation 

(3.7). Conversly, one can fix $ in equation (3.7). Then the solution of this equation 



95 

for A with the appropriate boundary and initial conditions will provide us with 

the solution for B of equation (3.6). Thus, the choice of the function $ does not 

influence the solution for a magnetic field. Note that this freedom in choosing $ is 

related to gauge freedom in A corresponding to the same solutions for a magnetic 

field. Indeed, for any arbitrary function x the new vector potential A' = A + Vx 

will have the same curl and corresponds to the same magnetic field as A. Changing 

from A to A' in the equation (3.7) leads to 

dA' d 
^ + /yV X V X A' - V X (V X A') - ̂ (Vx) + cV$ = 0. 
at at 

Let us write $' = $ r-, then for A' and we have exactly the same equation 
c at 

as an original equation (3.7) for A and The resemblance of the transformation 

rule for $ under gauge transformations to the transformation rules for the scalar 

potential of the electromagnetic field leads us to suspect that $ should be associated 

with the scalar potential for an electric field 9. 

To verify that $ is indeed the scalar potential for an electric field we will make 

the substitution of potentials directly into Ohm's law (3.5) without taking the curl 

of it. Magnetic and electric fields can be expressed via potentials as 

B = V X A, (3.8) 

_ _ 1 dA 
E = -Vv3 - (3.9) 

Switching to potentials instead of fields satisfy the vacuum pair of Maxwell 

equations (3.1) and (3.2) automatically. Indeed, this is merely the fact that electric 

and magnetic fields are components of general time-space 4-dimensional tensor 

of the electromagnetic field, which can be derived from 4 components [op, A) of 

4-dimensional electromagnetic vector field (e.g. Landau & Lifshits 1988a). The 

only physically nontrivial equation, which we need to solve, is Ohm's law (3.5). 
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When we use potentials instead of fields according to equations (3.8) and (3.9) the 

Ohm's law (3.5) transforms to 

SA 
— + 7/V X (V X A) - V X (V X A) + cVyj = 0, (3.10) 
at 

where we have multiplied both sides of equation (3.5) by the speed of light c. This 

equation is exactly the equation (3.7) with ^ = tp + constant. Since the scalar 

potential (p is always defined with an accuracy of adding an extra constant, we see 

that our function $ is indeed identified with (p. There is no extra constrains for any 

solution of the equation (3.10) of the evolution of vector potential. Any solution of 

equation (3.10) satisfying boundary and initial conditions for the magnetic field 

should give a physical result for the evolution of the magnetic field. The equation 

(3.10) is of the same second order in space derivatives as equation (3.7) for the 

evolution of the magnetic fields and no more complicated than that. 

The gauge freedom can be used to simplify the procedure of solving of the 

equation (3.10). The scalar potential (p may be chosen to be an arbitrary function 

by an appropriate choice of gauge transformation. Indeed, as one can see from the 

gauge transformation rules 

(3.11) 

A ' = A  +  V x  ( 3 . 1 2 )  

it is enough to choose x = c j {ip -  'p')dt to set ip to any desirable new value of (p. 

Since equation (3.10) is invariant under transformations (3.11) and (3.12) the new 

values of (p and A must obey the same equation as the old ones. For instance, one 

can choose to set v? = 0, in which case the remaining equation for A takes the form 

dX 
— + r/V X (V X A) - V X (V X A) = 0. (3.13) 
at 
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Initial and boundary conditions for A should obey the gauge chosen. One 

can see, that (3.13) requires three separate boundary and initial conditions for 

the components of A. This number is the same as the number of boundary 

and initial conditions required to solve the equation for the evolution of the 

magnetic field (3.6). Note, however, that there is still a freedom to add Vx to the 

boundary and initial conditions for A, where x is an arbitrary time independent 

function. Although any arbitrary initialization of A can be allowed, some of those 

initializations would result in the same magnetic field B, which corresponds to that 

the initial magnetic field must obey the constrain V • B = 0. Therefore, the choices 

of initial magnetic field are more limited than the choices of the vector potential. 

We have the following requirements for the boundary and initial conditions for A: 

1. The total number of boundary and initial conditions must be equal to three. 

2. Boundary and initial conditions should be consistent with the gauge used. 

3. The physical boundary conditions and initial conditions for magnetic and 

electric fields (or any other quantities) specific to a particular problem must 

be satisfied. 

The last requirement means that the physical boundary conditions must be 

derivable from the boundary conditions equations imposed on A. The reverse 

is not necessarily to be true, i.e. for one specific physical boundary conditions 

there may be many possible boundary conditions for A. The situation with the 

boundary conditions for A is analogous to the situation with the initial conditions 

for A. Once any proper set of boundary and initial conditions for A satisfying all 

three requirements above has been established, the equation (3.13) has a unique 

solution. Since the corresponding equation for the magnetic field (3.6) has also a 
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unique solution, one should get exactly this solution for B when taking curl of the 

solution for A. 

If one wants to evolve the magnetic field directly, then in addition to the 

equation of evolution (3.6) the magnetic field must obey the constraint V • B = 0, 

which should be specified as an initial condition. Although it follows from (3.6) 

that, once initialized to 0, V • B will be kept to be equal to 0, the numerical 

methods used to solve (3.6) introduce discretization and round off errors, which 

often accumulates resulting, after a sufficiently long time in that V • B is no longer 

0 (i.e. Lau & Finn 1993). Special procedures are employed in the codes dealing 

with the magnetic fields. However, in the case of the evolution of vector potential 

there are three equations (3.13) to solve, while there are four dynamic variables 

in them (i.e. three components of A and one scalar function f). Therefore, one 

can utilize this one extra degree of freedom in choosing ^ for a suitable gauge 

constraint without actually imposing any constraints on three components of A. 

This will allow us to have freedom in which gauge to choose and at the same time 

will not introduce the necessity of taking special measures in order to ensure that 

the gauge will be maintained correctly throughout the computing period. At any 

moment of time during the computations we can use the current values of A to 

calculate (p according to the gauge equation. This can be used to obtain an 

electric field according to equation (3.9). Magnetic field is than obtained by taking 

the curl of A. This way V • B vanishes automatically within the discretization 

error associated mth approximating curl by finite differencing. Similarly, Faraday's 

law (3.2) is fulfilled automatically within numerical errors of taking curls and time 

derivatives between two consequent time steps. Finally, Ohm's law (3.5) is satisfied 

also within discretization errors of calculating spatial derivatives at one time step. 
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In the simulations presented in this work we used the following gauge 

c<^ — V • A + 7/V • A = 0 (3.14) 

One can show that for this gauge the basic equation (3.10) reduces to 

where ej are unit vectors in Cartesian coordinate frame and we assume Einstein 

summation rule without making distinction of lower and upper indices. All the 

above about the gauge, boundary and initial conditions is relevant to the choice of 

the gauge (3.14) and resulting equation (3.15). We choose the gauge (3.14) because 

the resulting equation for A has a similarity with the equation for the advection of 

a vector quantity. It has the familiar advection term (vV)A and diffusion term 

ryV^A. The term -4*^^ corresponds to a stretching term (BV)v in the equation 

for the advection of the magnetic field. Finally, (V * A) VTJ term is associated with 

the non-uniformity of electric conductivity. Note, that the equation (3.15) is valid 

both for incompressible and compressible flows. 

Finally, we present equations (3.15) written out in cylindrical coordinate 

system r, 0, z (corresponding unit vectors are er, e^, ej) 

'-'ihilli-'i) 
r)n 

(3.16) 

(3.17) 
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Id A" dA' 
r  d < f > ^ d z  

4- -5—. The gauge condition (3.14) takes the 

form 

cip — v''A^ + v'^A'^ + v'A' — T} 
IM^ dA' 
r d<f) dz 

(3.19) 

Also expressions for the magnetic field components in cylindrical coordinates under 

the gauge condition (3.19) are 

.Although the use of the vector potential eliminates the problem with the divergence 

cleaning, the boundary conditions in terms of vector potential may be somewhat 

more complicated and not so obvious from intuitive physical standpoint than the 

boundary conditions for magnetic fields. In this work we used perfectly conducting 

boundary conditions at all boundaries of the cylinder. There is no agreement 

or clarification in the literature on what boundary condition to use for a thick 

accretion disk dynamo simulations. For example, Stepinski k Levy (1988) used 

vacuum boundary conditions outside some given spherical domain for solving mean 

field dynamo equations in axial symmetry. Khanna &: Camenzind (1996a, 1996b) 

also considered an axisymmetric mean field dynamo in the disk and in the corona 

surrounding the disk on the Kerr background gravitational field of a rotating black 

hole. They used artificial non-physical boundary conditions that the poloidal 

r  d z '  d z  d r '  

B' = 
rar r d<l> 

(3.20) 

3.2. Boundary and Initial Conditions 



101 

magnetic field is normal to the rectangular boundary of their computational 

domain and poloidal component of the current density vanishes near the boundary. 

However, the main goal of these investigations was to demonstrate that certain 

types of helicity distributions inside the disk produce a dynamo. As soon as the 

boundary of numerical domain is extended far enough from the region of large 

helicity and large differential rotation, the influence of the boundary conditions on 

the process of the generation of the magnetic fields far inside from the boundary 

should be small. Since both the Keplerian profile of the angular rotational velocity 

and the frequency of star-disk collisions have increasing values toward the central 

black hole the approach of removing the boundary to a distance is applicable in 

the case of our simulations. So, we have chosen a perfectly conducting rotating 

cylindrical boundary as a simple boundary condition prescription. We checked that 

the results of our simulations do not strongly depend on the position of the outer 

boundary. 

The magnetic fields near the rotation axis are strongly influenced by the 

presence of the black hole and general relativistic effects associated with the black 

hole. Magnetic field lines in the region close to the rotation axis, probably, have 

their footpoints on the black hole horizon or in the region between the black hole 

and the inner edge of the accretion disk. Therefore, one should expect that this 

region of the magnetosphere will be also strongly influenced by relativistic effects 

of the black hole. The subject of the influence of the central black hole on the 

magnetic fields produced by the dynamo belongs to the theory of "Electrodynamics 

of the Black Holes" (e.g., see the chapter "Electrodynamics of Black Holes" in 

Froiov &: Novikov 1998). Since the number density of stars should decrease near 

the black hole due to their capture by the black hole and tidal disruption, one 

should not expect the star-disk collisions dynamo to operate effectively in this 
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region, where strong relativistic effects are important. Therefore, for the purpose 

of this work we replace the region close to the axis of symmetry by imposing an 

inner cylindrical boimdary (also perfectly conducting). This may be adequate for 

the real astrophysical situation in the coronae of the accretion disks, since there is 

a highly conducting plasma there. 

We choose as an initial condition pure poloidal magnetic field. This field can 

be represented as a sum of two fields, with even and odd symmetries with respect to 

the plane of the disk. The field is contained within the computational boundaries 

such that normal component of the magnetic field is zero on all boundaries. 

Let us consider the perfectly conducting rotating boundaries. There is no 

magnetic flux penetrating the boundaries. This means that the normal component 

of the magnetic field must always remain 0 on the boundary. If the velocity of the 

boundary is v^, than the tangential component of electric field in the rest frame 

of the moving boundary E + -v x B is also 0 on the boundary. This is Ohm's 
c 

law (eqn.(3.5)) with r; = 0. Let us also impose the condition that V • A = 0 on 

the boundary. Therefore, after introducing potentials according to equations (3.8) 

and (3.9) and substituting for ^ from the gauge equation (3.14) we transform the 

boundary conditions to the tangential component of the equation (3.15) with no 

resistivity ?/ = 0 
dX .udv'' , . 
AR == TO?®" -

Let us consider only time independent boundary conditions. Taking into account 

that the normal component of velocity is equal to 0 on the boundary one can 

transform the boundary condition for the tangential component of the electric field 

on the cylindrical boundaries r = constant to 

19^;^,. .IdA'^ AdA' .dA"^ 
r dtp r aq> r dip T a<p r dtp az 
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+ = (3.22) 
az dz dz r aq> 

and on top and bottom boundaries z = constant to 

+ ^A^ = (3.23) 
or or or r r o<f> 

r d<f> r a<l> r 0(f> or r 

One can see that boundary conditions, equations (3.21-3.24), contain only 

tangential components of A. The boundary conditions above will be satisfied for 

any tangential velocity distributions on the boundaries, if we impose the condition 

that the tangential components of A on each boundary are equal to 0. Together 

with the condition V • A = 0 we have now the following set of boundary conditions 

1 
-—(rA^) =0, = 0, -4^ = 0 on the r = constant boundary (3.25) 
rdr 

and 

dA^ 
.4'" = 0, -4'^ = 0, = 0 on the 2 = constant boundary. (3.26) 

dz 

This forms a complete set of three boundary conditions for three components of 

A on each boundary, which are compatible both with the physical requirements 

for fields on a perfectly conducting boundary and the gauge condition (3.19). One 

can also see, that the equations (3.25-3.26) are consistent in the comers of the 

cylindrical domain. 

3.3. ^fumerical Scheme 

We use finite differences predictor-corrector scheme to solve equations (3.16-3.18) 

in cylindrical coordinates. For approximating advection and stretching terms we 

use central differencing, which gives second order accuracy in the coordinate. The 
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diffusion term is approximated by the usual 7 point scheme. Since the numerical 

method is explicit, it requires the stability condition to be satisfied. Let us denote 

discretization intervals in coordinates and time as Ar, A(^, Az, and At and define 
J/At rjAt 7/At . ^ UrAt ^ u^At quaatite = ^, Cr = C. = 

Cz = ^—. Then, the stability conditions that we used in our simulations are 

Sr + Sif, + Sz < (Cr + + C.)^ < 2(Sr + 30 + Sj). (3.27) 

One can show that these conditions follow from the local linear stability analysis 

of the dynamo equations (3.16-3.18). Before doing each new cycle of predictor-

corrector calculations we set up the value of the time step At. First, we choose some 

reasonable value of At dictated by the accuracy requirements or how frequently we 

want to obtain output measurements from our simulations. Then, we decrease the 

value of At until the first of the conditions in equation (3.27) is satisfied. After 

that we check the second condition in (3.27) and see, if it is satisfied. If not, then 

we decrease At further. One can see, that the second condition in equation (3.27) 

will be always satisfied at some value of At since the right hand side depends on 

At quadratically while the left hand side depends on At linearly. The first stability 

criterion is usual for the diffusion equation and means that the diffusion per one 

time step propagates no further than through only one grid cell. The second 

condition is specific for central differences in the advection term and means that 

the distance the magnetic field is advected during one time step At is less than the 

distance through which the field diffuses per one time step At (e.g., Fletcher 1991). 

In practice, we insure ourselves against instabilities by putting a safety coeflScient 

of 0.9 in the inequalities (3.27). We have never found problems with the stability, 

when using this procedure in actual numerical simulations and test nms. 

When coding the boundary conditions (3.25-3.26) we used second order one 
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sided difference schemes for approximating normal derivatives at the boundaries. 

The resulting expressions for one sided derivatives have been solved for the 

unknown value of the component of A at the node on the boundary. Boundary 

conditions have been updated after both predictor and corrector steps. In the (f> 

direction seamless periodic boundary conditions have been used, i.e. we make the 

first and the last grid points in the (t> direction identical and corresponding to <? = 0 

and <i> = 2'K and use the same difference scheme as for other values of (f> to update 

these points. Also we used the same seamless treatment of lines (j> = 0 and ^ = 27r 

at the radial cylindrical boundaries and at the top and bottom boundaries. 

The code is able to treat both the domains with an inner radial boundary and 

the domains including the symmetry axis. In the latter case, there is a singularity 

of the grid at r = 0, namely, all grid points having r = 0 and all values of (j> 

from 0 to TT coincide. One needs a special treatment of grid points at r = 0 

ensuring the regularity of Cartesian components A', A' of A and the correct 

asymptotic behavior for A"", and .4®. If the values of Cartesian components 

at r -> 0 are AQ' asymptotical behavior of polar components is 

.4'" .4o cos + -4o sin <i>, AJ sin Aq COS (f>, A^ -> Ag. To impose these 

asymptots we first interpolate AJ, Aq, and Aq by calculating the average over 0 of 

the Cartesian components of vector potential at grid points situated on a ring with 

radius AR. We take this average for Aq, Aq, and Aq. Then, we assign the values 

of the components of A in the cylindrical coordinate system at r = 0 according to 

A^{(f>) — Aocos0 +Agsin*^, A'^{<f>) = Aq sin0 +Agcos*^, A^(0) = Ag. This finalizes 

the prescription for the boundary condition at r = 0. When the symmetry axis 

r = 0 is included into the computational region, the code slows down considerably 

because of the small (A^Ar) distance between grid points in the <f) direction and, 

therefore, more restrictive limitations on the time step imposed by the first of the 
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conditions (3.27). 

3.4. Code Testing 

In the process of writing the code we performed tests for various parts of the code 

and, then, for the complete code itself. 

1. The diffusion part of the code has been tested by reproducing the analytic 
dA 

solution for the eigenmodes of the diffusion equation — = T/V^A with at 
A = 0 boundary conditions. A variety of different eigennumbers have 

been tested and decay rates are found to be in excellent agreement with 

analytic expressions. The code preserves the shape of eigenmodes with very 

high accuracy even for very moderate number of nodes. Coupling between 

equation (3.16) for A*" and equation (3.17) for has been tested by evolving 

nonaxisymmetric eigenmodes. 

2. The advection part of the code has been tested by computing the advection 

by the uniform flow of the magnetic field of the type B = Bn, where n is 

a fixed vector of unit length (we made a few nms with different directions 

of n). Another test for the advective part of the code was the advection by 

the uniform flow of nonuniform magnetic field. This nonuniform magnetic 

field was directed along a fixed vector of unit length n everywhere. But the 

magnitude of the magnetic field B was changing linearly in the direction 

perpendicular to n, i.e. the gradient of the magnetic field magnitude, VB, 

had a constant value and was directed perpendicular to n. The current 

density corresponding to such a magnetic field is uniform. Therefore, the 

magnetic field does not diffuse but is only advected. The boundary conditions 

for the vector potential A for these tests were set to a time-dependent explicit 
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value computed from the known solution for the purely advected magnetic 

field. We observed that the magnitude of the magnetic field was preserved 

with high accuracy in the first instance and was advected with the velocity 

of the flow in the second instance. Small problems with the increase of the 

dispersion of the scheme were observed near the axis of symmetry for the 

domain extended to the r = 0 point. But when the resolution of the grid was 

increased to 41x81x41 (number of nodes in r, (f>, and z directions respectively) 

the delayed advection of the field was occuring only in the inner two radial 

zones adjacent to r = 0. This indicates that the averaging procedure for the 

treatment of the degenerate axis r = 0 described above introduces increased 

dispersion in the code. Since this effect was confined to the small region of 

the whole computational space and becomes smaller with the increase of the 

resolution of the code, we believe that it has no influence on the dynamo 

simulations presented in this work. Moreover, in all our simulations the 

velocity of the flow at the axis r = 0 were close to be zero, and the helical flow 

was always occuring at a considerable separation from the axis of symmetry. 

3. Both advection and diffusion parts of the code were tested by reproducing 

analytic solutions for the decaying eigenmodes for the diffusion of magnetic 

field as in the first test in this list, but in the fluid rotating with constant 

angular velocity. Boundaries were also rotating with the same angular 

velocity. One should expect the decay rates to be the same as in the case, 

when the fluid and vessel were at rest. This was indeed observed with the 

high accuracy. The shape of the eigenmodes was in excellent agreement with 

analytic calculations. Nonaxisymmetric modes were advected by the fluid 

rotation preserving their shape with good accuracy. 
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4. We tested the code by performing simulations of dynamos in axisymmetric 

flow. We compared the results of such simulations to the results obtained 

by using 2-D kinematic dynamo codes, one evolving vector potential and 

another one evolving magnetic field. Both codes were written and tested by 

J.M. Finn separately from our effort. The 2-D codes solve for one Fourier 

component of A or B. The 2-D code evolving magnetic field has a divergence 

cleaning procedure for V • B. The flow was axisymmetric, Beltrami flow with 

V X V = Av. For the interior of the domain 0 < r < /?<, and 0 < z < L one 

can obtain the following analytic solution for the Beltrami flow: 

where Jo{x) and J],{x) are the Bessel functions, jn is the first root of 

The 3-D kinematic code picks up the fastest growing mode of the dynamo. 

In the case of axisymmetric flows the nonaxisymmetric modes of the field 

(oc with different azimuthal wavenumber m evolves separately. The 

fastest growing mode in our simulations was with m = 1. The growth rates 

and the structure of the m = 1 modes obtained with 3-D and both 2-D codes 

agree remarkably well. 

•2 2 

Ji{x) = 0, Ag = ^ -h . The solution can also be written in terms of the 

flux function ^(r, 2): 

AB$ 
r 
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We also studied the convergence with respect to the grid resolution and found 

that for a magnetic Reynolds number Rm (defined as the product of maximum 

velocity and minimum of L and Ro) of about 200 the simulations converge for 

the grid resolution of about 41x61x41 in and z directions respectively for 

axisymmetric Beltrami flows described previously in this section. The convergence 

of the code depends on the spatial scales of the velocity field v, i.e. on a the 

value of the local Reynolds number. In order to be conservative we performed 

separate convergence tests for each separate problem solved with the code. For 

the convergence test we performed one higher resolution simulation for the 

typical parameters of the setup and compared results with the bulk of analogous 

simulations, which were done at lower resolution. In practice, we increased the 

number of nodes in each direction by 1.5 times, which results in about 1.5'* w 5 

times longer processor time needed to do the simulation. Convergence was 

considered as achieved if the difference in exponential growth or decay rates for the 

magnetic field was not more than 10"^. 
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4 SIMULATIONS OF A STAR-DISK COLLISION DYNAMO IN AN 

ACCRETION DISK 

4.1. Model of the Flow 

Following the description in section 2.3 we adopted a simplified model for the flow 

for the input into our kinematic dynamo code. We use dimensionless units with 

the unit of length equal to the radius at which star-disk collisions occur, the unit 

of velocity equal to the Keplerian velocity at this radius. Then, one turn of the 

disk at unit radius takes 27r dimensionless units of time. The disk is assumed to 

have constant thickness as in the radiative pressure dominated zone (a) of the 

"standard" Shakura-Sunyaev accretion model. Its top boundary is at a: = Ztop 

and bottom boundary is at 2 = zi„f We usually put the disk at 2 = 0 in the 

middle of computational cylindrical domain, then, Zbot = —Ztop- However, we will 

preserve separate notations for top and bottom boundaries keeping in mind further 

development of the present calculations. To simplify the problem further we assume 

that all star-disk collisions happen at unit radius, but are randomly distributed 

in azimuthal angle along r = L Such assumption roughly corresponds to the 

distribution of stars with the cutoff at r = lOn discussed and used in chapter 2 

for the mean-field dynamo calculations. Also, an essential feature of star-disk 

collisions is that the numbers of stars crossing the disk in both directions are 
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equal on average. We consider two models for the position of star-disk collisions 

preserving this property. In the first model we assume that collisions happen in 

pairs: at each time there are two collisions at r = 1, one with the star going up 

through the disk and the other at the opposite point on the circle r = 1 with 

the star going down through the disk. Thus, at any moment of time the flow is 

symmetric with respect to inversion relative to the central point of the disk. The 

second model considers random directions of plumes as well as random distribution 

of plumes over the circle r = 1. In the next sections we describe the results 

obtained with both models. 

The plume flow is interposed onto a background Keplerian differential rotation 

occupjring the whole computational domain VK = A star-disk collision is 

simulated by a vertically progressing cylinder of radius fp in the corotation frame 

that starts at the bottom of the disk located at ^ = ztot, penetrates the disk, and 

emerges to a height of h above the disk. At the same time the cylinder axis moves 

with the local Keplerian velocity. By the time the plume reaches its highest point 

the axis of the jet cylinder rotates by 7r/2. The cylinder does not rotate with 

respect to the rest frame. Therefore, in the frame rotating with the Keplerian 

velocity, it untwists by 7r/2 radians during the time it rises. At the same time the 

axis of the cylinder moves by 7r/2 radians participating in Keplerian rotation with 

the disk. The length of the cylinder increases with time and its velocity, Vp^ « vk. 

The vertical velocity of the gas inside the cylinder is constant and is equal to t/pj. 

After the time the plume rotates by 7r/2 it is stopped and the velocity field is 

restored to be pure Keplerian differential rotation everywhere. This very simplified 

flow field captures the basic features of the actual and complicated flow produced 

by randomly distributed star-disk collisions. We also feel that fiurther elaboration 

on the details of the flow field like taking a more realistic distribution of star-disk 
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collisions in r, introducing a weak and distributed downflow, is not warrant at 

the present initial stage of simulations until actual hydrodynamic calculations 

have been performed. Our model flow and the simplified assumption about the 

frequency of star-disk collisions and the distribution capture qualitative features 

important for the excitation and symmetry properties of the dynamo. Because of 

finite resolution of the code we are unable at present time to perform simulations 

directly relevant to the mean field approach, i.e. when plume radii are much smaller 

than the radius of the disk where star-disk collisions occur. 

Since equations (3.16-3.18) require spatial derivatives of the velocities, we 

apply smoothing of discontinuities in the flow field described above. Also we 

introduce smooth switching on and off of the plumes in time. For all three 

components of velocity Vk we use the same interpolation rule for two plumes 

Here 2,t) and are smoothing functions for plume 1 and 2 

correspondently. Each function s is close to 1 in the region of space and time 

occupied by the plume and is close to 0 in the rest of space and during times when 

the plume is off. Transition firom 1 to 0 happen in a narrow layer at the boundary 

of the plume and during the interval of time short compared to the characteristic 

time of the plume rise, and vf„2 are velocities of the flow of plumes 1 and 2, 

is the velocity of the flow outside the regions occupied by the plumes. For 

spatial derivatives of the velocity components, one have from (4.1) 

It is easy to extend this approach for the case of arbitrary number of plumes. 

+ (1 - Si - (4.1) 

(4.2) 
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Let us assume that the cylindrical jet going upward (in the positive direction 

of the z axis) is launched at the position of the axis of the jet at r  = TQ and (f> = <i)o-

We keep tq = 1 for all plumes and the initial (t>Q is randomly taken between 0 and 

2t. Let us denote this plume as number 1 and the symmetric plume going down 

from the equatorial plane as number 2. Then, after time {t - tp) from the starting 

moment of the plume t — tp, its position is 

where Q/fo = ^K{ro) is the Keplerain angular rotational velocity at r = ro and in 

the simulations presented in this work, HKQ = 1. The position of the axis of the 

symmetric plume is 

The radii of both plumes are Tp. The bottom surface of the plume 1 is at 2 = Zbot, 

the top surface of the plume 1 is at Zi = Zbot + Vpz{t - tp), the top surface of the 

plume 2 is at z = Ztop, the bottom surface of the plume 2 is at 22 = ^top - - tp). 

Due to sjrmmetry, Z2 = —The velocity field inside the upward jet is 

<i>l ='f>0 + {t — ^p)^0f^/f0t (4.3) 

<f>2 = 01 +7r. (4.4) 

v[ = ronKosm{(f>-<f>i), 

vf =rofi/foco5((^-(^i),  

(4.5) 

(4.6) 

(4.7) 

The velocity field inside the downward jet is 

t/j =rofiicosin((^-02), 

vt =rofiK-oCOs((^-(^), 

(4.8) 

(4.9) 

(4.10) 
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We choose the following interpolation functions 

1 1 7"'^^ 
= I n + ~ arctan ^ 

' 2 TT 2rpA 

and 

5 ,=  I -  +-a rc tan-^  
1 1 

2 ^ AV/(2I -26ot)^+A2 

2 T ^^{Ziap - 22)2 +A2 

S(!) (4.11) 

S((). (4.12) 

Here r[^  = rl  + r^ -  2rorcos{( t> -  <i>i)  is the distance from the axis of the plume 1, 

r'2^ = r§ + - 2rorcos{<j> - (^2) is the distance from the axis of the plume 2, A is 

the thickness of the transition layer of the functions Si and S2 from their value 1 

inside the plume to 0 outside the plume, A Vp. The square root expressions in 

2-parts of Si and S2 ensure that the thickness of the transition layer in z direction 

is never less than A, even just after the plumes are started, when the differences 

(21 - Zbot) and {ztop - 22) are zero. We choose A = 0.01. 

The function S{t)  ensures a smooth "turning on" and "turning off" of the 

plumes at prescribed moments of time. If plumes are to be started a.tt = tp and to 

be terminated at t = td {td > tp), then we adopt the following form of the function 

S{t)  

S{t)  = 0,  

5(4) = ^ + |sin(7r^^), 

5(i) = l, 

5(t)=0, 

for t  < t p  —  5 t / 2 ,  

for t p  — 5 t / 2  < t  < t p +  S t / 2 ,  

for t p  +  5 t / 2  < t  < t d  —  S t / 2 ,  

for t d  —  5 t / 2  < t  < t d +  5 t / 2 ,  

for t > td + St/2. 

where St is the length of the transition period. 5 = 0 corresponds to the flow 

without plumes, 5 = 1 corresponds to the flow with plumes. One needs to ensure 

that St <td — tp. We took St = {td — tp)/5. The cycles with the cylindrical jets 

present are interchanged periodically with the cycles without such jets and with the 
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pure Keplerian rotatiou only. The time between two subsequent collisions is Aip 

and we always have Atp > U — tp, such that at any time only one pair of plumes 

are present. This eliminates the occurrences of overlapping jets, modeling of which 

is beyond the scope of the present paper. Note, that during the time U ~ ip the 

disk makes only about a quarter of a turn. 

Our second model of random direction of the plumes introduces obvious 

changes into expressions above. Namely, we set sa = 0 in equations (4.1) and (4.2), 

and we intermittently use either expressions (4.5-4.7) for the velocity, when the jet 

is directed upward, or expressions (4.8-4.10), when the jet is directed downward. 

We use the same "switch" function S{t) for both models. 

Finally, let us list parameters, which influence for the growth of the dynamo in 

our model: magnetic diffusivity T], radius of the plumes RP, frequency of star-disk 

collisions Atp, vertical velocity of the plume Vpz, and the duration of the plumes 

t d  t p ,  

4.2. Boundary Conditions and Asymptotic Solutions 

We adopted constant magnetic diffusivity T] of the plasma everywhere inside 

computational cylindrical domain both inside and outside the plume flow and the 

disk. 

Because the equations for the evolution of the magnetic field B and vector 

potential A are of the parabolic type, the boundary conditions will always influence 

the solutions inside the computational region. However, the distribution of the 

frequency of star-disk collisions is concentrated towards the center meaning that 

most of dynamo activity happens in a limited region of space (around r = 1 in our 

dimensionless units). If one is willing to disregard the relatively small a-effect for 
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r » 1, then solutions of the field equations in the region r 3> 1 can be obtained 

analytically. If one sets a = 0, = 0, vp = 0, and fi = Q/cCr) in equations (1.16) 

and (1.17), the resulting equations for axisymmetric magnetic field in a purely 

rotating flow are 

Equation (4.13) is a diffusion equation for the poloidal magnetic field without 

sources. Its solutions are determined by boundary conditions imposed on the 

poloidal magnetic field. Equation (4.14) is a diffusion equation for the toroidal 

magnetic field but with the source term due to fi-effect. We see that the evolution 

of poloidal magnetic field is decoupled from the evolution of the toroidal magnetic 

field (unless boundary conditions mix them together). After one knows the solution 

for the poloidal field, one can solve equation (4.14) to find the toroidal magnetic 

field. If one looks for stationary solutions of equations (4.13) and (4.14) then the 

outer boundary condition is very important to determine the solution. However, 

in the case of dynamo the magnetic field in the dynamo domain r « 1 grows 

exponentially. This growing field diffuses into the surrounding conducting medium 

according to equations (4.13) and (4.14). The phenomenon is analogous to the skin 

layer in plasma. The growing magnetic field decreases exponentially outward from 

the generation region. Therefore, if the growth rate is sufficiently high such that 

the skin depth is smaller than the distance to the ideally conducting boundary, the 

boundary conditions at the boundary do not influence the dynamo process. 

Let us consider equation (4.13) written in spherical coordinates g,  9 ,  and ( f t  

such that 6=0 and 0 = TT corresponds to the synmietry axis of the system. In 

the case of time-dependent flow described in section 4.1 there are no eigenmodes 

(4.13) 
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with some fixed frequency. Instead, the magnetic field can be represented as an 

integral over frequencies in Fourier transformation. However, in the case of growing 

(and possibly oscillating) magnetic field, there is a characteristic growth rate 7 of 

the dynamo averaged over few plume pulses. In addition, the magnetic field will 

possess oscillating Fourier components associated with the period of the emergence 

of plumes and, possibly, some intrinsic oscillatory behavior of the dynamo. We 

consider the behavior of one such Fourier component assuming the dependence 

A cc e\p{-iut), where complex u is the sum of the real and imaginary parts as 

w = w' + 27. The 7 is the average growth rate of the dynamo, while w' can take on 

a whole range of values, including the frequency of plumes, the Keplerian period, 

all its harmonics, etc. We impose the boundary condition for A on some sphere of 

radius Qin such that Qin > 1 but still is of the order of 1. We assume that the 

value of .4 at 0 = Qin is dictated by the dynamo process inside Qin. Then, for one 

Fourier component equation (4.13) becomes 

A I d f 2dA\ 1 -

= FAIL' 

where 
. 1 a / 1 

sin Odd \ dd J sin^0 

is the angular operator acting on A. In spherical geometry, equation (4.15) 

has separable variables Q and 9. Thus, we look for solutions in the form 

A = Ri{Q)Qi{d) exp{—iut). 

The operator L commonly occurs in problems with axisymmetric flows, when 

solving the equation for the stream fimction. Since the magnetic field should be 

finite on the axis 6 = 0, the quantity 

^-^^(sm0A) 
smOoB 
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must be finite at = 0 and at 6 = Tr (see the definition of A, equation (1.6)). The 

eigenvalues and eigenfiinctions LQi = XiQi satisfying these boundary conditions 

are 

A| =  - / ( /  + 1), Q i =  s m 9 P l { c o s 9 ) ,  (4.16) 

where prime denotes the differentiation of the Legendre polynomial P/(x) with 

respect to x and i = 1,2,3,... Besides these eigenvalues, A = 0 is also an eigenvalue 

with the eigenfunction Qo = (1 — cos 9)/sin0. The first three eignefunctions given 

by formula (4.16) are 

Qi = sin 9, Qz = sin 9 cos 9, Q3 = sin 0 ^cos^ ^ ~ ' (417) 

The angular dependence Qi{9) determines the symmetry of the solutions. The 

mode proportional to Qo describes the radially directed magnetic field with nonzero 

total flux through the sphere from 0 = 0 to 0 = TT. All terms with I > 1 corresponds 

to the magnetic field with vanishing total flux through the sphere from 0 = 0 to 

0 = TT. The Qo term cannot be excited by the dynamo operating inside because 

of V • B = 0 condition. This is also clear from the fact that Qq -^00 when 9 

which means that the vector potential cannot be well defined for a magnetic field 

with V • B ^ 0. The terms with I > 1 represent multipole expansion of the 

magnetic field in the far zone of the generation region. RI{Q)QI{9) is a dipole term, 

R2(g)Q2(0) is a quadrupole term, and so on. 

For the radial part of the solution we obtain the equation 

^ - ̂ ^^Ri = 0. (4.18) 
Q dg ^ T} 

We introduce a new variable z  =  Q / X  where 

,  ̂  1(7+«V) 
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Then, equation (4.18) reduces to the Bessel equation of imaginary argument. 

Solutions of this equation which vanishes at g oo are given in terms of modified 

Bessel function Ku{z) as 

The Bessel functions of half-integer order can be expressed through elementary 

functions (e.g., Abramowitz k Stegun 1972). Thus, we obtain for the dipole and 

quadrupole terms 

Finally, collecting all the terms together and retaining only the leading dipole and 

quadrupole terms, we obtain the following solution for A 

A = ai sin (l + -] e""*" + 
20 V Sj 

where the coefficients ci and 02 should be determined by the condition of the 

continuity of harmonics of A at the siuface g = The values of Oi and 02 

are determined by the dynamo action inside the radius 0,„. We see that both 

dipole and quadrupole components (and all higher multipole components) decay as 

oc Using the expression (4.19) for x one obtains 

where we assumed 7 > 0 and u' > 0. The thickness of the skin layer is determined 

by the real part of the expression under the exponent in equation (4.21). The larger 

the growth rate 7, the faster is the magnetic field decays with the radius. Also, 

oscillating modes with cj' > 0 decay faster with the radius than the steady modes 

with ui' = 0. Thus, far from the dynamo source one should expect the magnetic 

field to be growing in time, steadily, without oscillations. 

Ki+ii2{z) 

(4.20) 
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The characteristic length of the exponential decay of the field, is found from 

equation (4.21) as 

silmulations of the dynamo that the magnetic field in the zone outside of dynamo 

activity but inside the outer radius of our computational domain is very closely 

approximated by expressions (4.20). When Q is approaching the radius of the 

outer boundary /?2, the solution (4.20) starts to "feel" the boundary condition 

as an ideally conducting boundary and the numerical results at g > R2 are not 

approximated by formula (4.20). 

We start with showing some representative results of the simulations. Our 

computational domain is the space between two cylinders with the inner radius 

Ri = 0.2 and the outer radius R2 = 4, filled with a media having uniform 

magnetic diffusivity r/. The computational space is limited from below by the 

surface 2 = —4 and from above by the surface 2 = 4. We use dimensionless 

units described in section 4.1. All boundaries of the computational volume are 

ideally conducting. There is no magnetic field penetrating the boundaries, and the 

boundary conditions (3.25) and (3.26) are applied. 

We choose the initial magnetic field to be purely poloidal. An initial even 

poloidal field establishes a primarily radial field within the midplane of the 

cylindrical volume, \z\ < 1/3. The total length of the cylindrical volume is 8. The 

initial field is concentrated toward the inner parts of the disk and is shown in 

Fig. 4.1 by arrows. The position of the accretion disk is shown by the solid lines. 

(4.22) 

For a steady magnetic field I,  = y/rj/j .  We have checked with numerical 

4.3. Results of Numerical Simulations 
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Ztop — 1/3, Zi^t — 1/3. 

Keplerian differential rotation generates toroidal field. At the same time 

poloidal field diffuses toward the outer boundary and becomes distributed over 

the volume more uniformly. We show an illustrative run for the magnetic 

diffusivity T) = 0.01. The magnetic Reynolds number for rotation at r = 1 is 

Rmn = — = 100. The toroidal magnetic field reaches the saturation value 
V 

~ B^Rm^ determined by the balance between the source term r——B and the 
dr 

diffusion term rjiy^B'^ - r~'^B'^) in the equation (4.14) for the evolution of the 

toroidal field in the axisymmetric case with purely toroidal flow. In purely toroidal 

flow the magnetic field will decay away after an initial growth of the toroidal field. 

Fig. 4.2 illustrates the poloidal magnetic field obtained after few revolutions at 

r = 1, Fig, 4.3 shows the contours of toroidal field at the same moment of time 

as on Fig. 4.2. The time evolution of the fluxes of magnetic field in the process of 

winding up the even magnetic field is shown in Fig. 4.6. 

We also showed the analogous simulation of the process of winding up the odd 

(dipole) poloidal field in Figs. 4.4 and 4.5 (poloidal and toroidal fields) and Fig. 4.7 

(evolution of the fluxes). 

Note, that toroidal field produced from the initial quadrupole field (and any 

even symmetry field) has the same sign all over the disk thickness as well as in 

some space above and below the disk. In contrast, the toroidal field produced from 

the initial dipole field (and any odd symmetry field) is zero at the equatorial plane 

and has opposite signs in the upper and lower half of the disk thickness. 

We now look at how rising and twisting jets of plasma deform the wound up 

toroidal magnetic field and create poloidal field from the toroidal field. At first, 

Figs. 4.8 and 4.9 illustrate the action of the rising plume on the poloidal magnetic 
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field when no differential rotation of the fluid is present. The initial magnetic field 

here is a quadrupole like field shown on Fig. 4.1. The radius of the inner cylinder 

is 0.2 and the radius of the plume is 0.2. The velocity of the plume is equal to 

the Keplerian velocity at r = 1 and plume axis rotates 7r/2 radians in (direction 

before it disappears. Fig. 4.8 is a side view on the plume, Fig. 4.9 is a view on the 

plume from the top. One can clearly see the rise of the field lines of the quadrupole 

field from the midplane of the disk by the plume flow. Because the plume flow 

is strongly compressible at the head of the plume, a narrow layer of enhanced 

magnetic field near the top boundary of the plume is formed. Magnetic field 

diffuses inside the plume from this layer. On the top view one can see the twisting 

of magnetic field lines by the unwinding flow in the plume. It creates toroidal field 

from the poloidal field. 

More importantly. Figs. 4.10, 4.11, and 4.12 illustrate the action of the 

same plume on the primarily toroidal magnetic field wound up from the initial 

quadrupole field (as in Fig. 4.3). The plume rises through the differentially rotating 

fluid with the Keplerian profile of angular velocity. We look at the evolution of the 

magnetic field in the reference frame rotating with the Keplerian angular velocity 

at the radius where the center of the plume is located. Fig. 4.10 is the side view 

from r-direction. Fig. 4.11 is the top view, and Fig. 4.12 is the side view from 

^i-direction. Only the neighborhood of the plume is plotted. Shown by arrows is 

the flow velocity in the reference frame corotating with the base of the plume with 

the angular velocity at the point of the location of the plume. That is, the arrows 

represent the vector field v* = v — n/f(ro)re^. As with Fig. 4.8, the side view 

from r-direction on Fig. 4.10 shows the lifting up of the toroidal field by the rising 

plume. The view from the ^-direction shows the toroidal magnetic field dragged 

into forming the loop of poloidal field. The top view shows the twisting of the 
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toroidal magnetic field and the creation of the poloidal field &om the toroidal field, 

i.e. a-effect. The resulting loop of flux translated and rotated from the toroidal 

plane is shown at the time of maximum jet extension. After that time the jet 

velocities are smoothly set to zero. 

Next, we continue the simulation by repeating the passage of the plumes 

through the initial poloidal field and toroidal field produced by Q-effect. We 

apply the model of the flow described in section 4.1. Below we present the results 

for a representative run for the model with the plumes randomly distributed 

along the circle r = 1 and launched in periodic intervals in random directions 

up and down through the disk. In this run we have the following parameters 

(in dimensionless units introduced in section 4.1): Ri = 0.2, i?2 = 4, = 0.01, 

Tp = 0.3, Atp = 7r/2 + 0.4, td-tp = 7r/2, Vpt = 1, Zbot = -1/3, Ztop = 1/3 and the 

centers of plumes are located on the circle r = 1. The run is started with the initial 

field being purely poloidal. The initial poloidal field is the linear superposition 

of odd and even magnetic fields shown in Fig. 4.4 and Fig. 4.2 respectively. Odd 

components contributes 5% of the total energy of the initial field. The remaining 

95% of the total energy is the energy of the even field. Definitions and explanations 

of odd and even fields are given above in section 2.4, formulae (2.80-2.83). The 

first plume is launched at the moment t = 0.2 after the beginning of the simulation, 

and the subsequent plumes are launched in periodic moments of time with the 

period Atp. The simulation is done until time t = 640. By that time the magnetic 

field grows by ~ 10 orders of magnitude and some non-linear effects could start to 

be noticeable. The time of the simulation is limited by the computational power. 

The resolution of the most of dynamo simulations is 41x81x41 nodes in radial, 

azimuthal and vertical directions respectively. Although this resolution seems to 

be quite modest to resolve the plumes (there are typically only about 6x6 nodes to 
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resolve the cross section of a plume) we checked the convergence of our simulations 

by performing trial runs with 61x121x61 resolution. The growth rate of the dynamo 

and the structure of the growing magnetic fields do not change with the increased 

resolution. We also performed trial runs with the larger size of the computational 

domain: —6 < 2 < 6 and 0.2 < r < 6 with 61x121x61 resolution. We did not 

observe significant changes of the growth rates and magnetic field structure of the 

dynamo when increasing the size of computational domain. 

The time evolution of the total energy of the magnetic field integrated over 

the computational volume is presented in Fig. 4.13 as well as the time evolution 

of the fractions of total energy of odd and even components of the magnetic 

field. An arbitrary value of the initial magnitude of the magnetic field is used. 

The initial rapid growth of the energy is due to rapid build up of the toroidal 

magnetic field. After a couple of revolutions at r = 1 the dynamo effect overcomes 

the linear growth of the toroidal magnetic field and the growth of the magnetic 

energy becomes exponential. The magnetic field experiences oscillations with the 

period equal to Atp due to the repeated actions of single plumes. More significant 

oscillations of odd and even components of the field occur on the time scale of the 

diffusion over the region of dynamo activity a 100. Despite the significant variation 

of the fraction of the odd field, which can become up to 30%, even (quadrupole) 

field dominates. Since the flow does not have symmetry with respect to reflections 

2 -> -2, the odd and even components of magnetic field are coupled to each other 

and grow with the same exponential rate. 

The time evolution of the fluxes of three components of the magnetic field is 

shown in Fig. 4.14. We calculate the fluxes of magnetic field through the following 

three surfaces: the flux of Br through the part of cylindrical surface r = 1/2 limited 
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by lines z = 0, z = A, <l> = 0, and (^ = 7r/2; the flux of through the rectangle 

in the plane <f> = 0 limited by lines z = 0, 2 = 4, r = i2i, and r = i?2; the flux 

of Bg through the half of the ring in the plane z = -2 limited by lines r = Ru 

r = R2, (f> = 0, and <P = TT. Then, we divide each of the three fluxes by the areas of 

the corresponding surfaces. In this way, the values of the magnetic field averaged 

over the surfaces, < Br >, < >, and < >, are obtained. The time evolution 

of the logarithms of these averaged values of the magnetic field is presented in 

Fig. 4.14. All three fluxes grow exponentially (if averaged over fluctuations) with 

the same growth rate 7 = 0.026. The growth rate of the mean square of the 

magnetic field plotted on the Fig. 4.13 is equal to 27. Note that we chose to plot 

0.5 In I < > I on the top-left plot in Fig. 4.13, such that the slopes of the plots 

of time evolution of magnetic energy and magnetic fluxes will be expected to be 

the same. The value of < B^ > is larger than the values of poloidal fluxes meaning 

that the toroidal field is predominant in the dynamo, which is also in the agreement 

with the conclusion from the mean field theory. While radial and toroidal fluxes 

grow monotonically, the flux of the axial magnetic field experience oscillations 

mth exponentially growing amplitude. The z-flux remains zero on average. This 

is due to the fact that both dipole and quadrupole growing magnetic fields have 

zero 2-flux through the surface described above. However, the 2-flux experiences 

oscillations due to individual plumes creating nonaxisjrmmetric magnetic field. 

In Fig. 4.15 we plotted the fraction of the energy of the magnetic field, which 

resides outside of the region of dynamo activity. In particular, we separated 

the whole computational domain into two: the inner domain is the part of 

computational domain satisfying —2 < 2 < 2 and r < 2, the outer domain is the 

rest of computational domain satisfying |2| > 2 or r > 2. Initially the fraction 

of the outer energy grows because of the diffusion of the initial magnetic field 
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outside of the central region (i.e., compare the poloidai field on Fig. 4.1 and on 

Fig. 4.2). However, after the dynamo action sets in, the skin effect described in 

section 4.2 occurs. The skin depth of the steady growing magnetic field given by 

equation (4.22) for r/ = 0.01 and 7 = 0.026 is I, = 0.6. Thus, the outer domain 

is in the zone of pure diffusion of the magnetic field, when the variations due to 

individual plumes are smoothed out. The average value of the outer fraction of the 

magnetic energy is « 0.06 of the total magnetic energy. This is roughly consistent 

with the estimate one can obtain from the skin depth analysis of section 4.2, 

~ 0.6/e « 0.2. The field in the outer region is predominantly even similar to the 

inner region. The time dependence of the fraction of even field in Fig. 4.15 follows 

closely the time dependence of the fraction of the even field in Fig. 4.13. Note, 

however, more smooth curves in Fig. 4.15 than in Fig. 4.13. Rapid oscillations of 

the field caused by individual plumes are smoothed out by the diffusion when such 

oscillations propagate into the outer domain. Only slow variations of the dynamo 

magnetic field remain present in the outer domain. 

Another diagnostic of our simulation is to calculate the time behavior of the 

magnetic fluxes through the surfaces in the outer part of computational domain. By 

looking at the time evolution of these fluxes we can leam about the time evolution 

of the magnetic field in the asymptotic diffusion region outside the plumes. We 

calculate the averaged radial magnetic field, < Br >, using the magnetic flux 

through the following cylindrical surfaces: radial flux 1 through the part of the 

surface r = 2 limited by lines 0 = 0, 0 = 7r/2, z = —1/3, and z = 1/3; radial flux 2 

through the part of the surface r = 3 limited by lines (l> = 0, (j) = 7r/2, z = —1/3, 

and 2 = 1/3; radial flux 3 through the part of the surface r = 3 limited by lines 

0 = 0, 0 = 7r/2, 2 = 2, and 2 = 4; radial flux 4 through the part of the surface 

r = 3 limited by lines (^ = 0, (^ = 7r/2, 2 = —4, and 2 = —2. The first two radial 
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fluxes describe the evolution of the magnetic field close to the equatorial plane. 

The third and fourth fluxes describe the evolution of the magnetic field in the outer 

comers of the computational domain. We plot these four radial fluxes in Fig. 4.16. 

We calculate three fluxes of the toroidal magnetic fleld, or equivalently, < > 

through the following rectangular areas of the plane 0 = 0: toroidal flux 1 through 

the rectangle limited by lines r = 2, r = 4, z = -1/3, and z = 1/3; toroidal flux 2 

through the rectangle limited by lines r = 2, r = 4, 2 = 3, and 2 = 4; toroidal 

flux 3 through the rectangle limited by lines r = 2, r = 4, 2 = —4, and z = -3. We 

plot these three toroidal fluxes in Fig. 4.17. We calculate two fluxes of the axial 

magnetic field, or equivalently, < Bg> through the following ring-shaped surfaces: 

axial flux 1 through the quarter of the ring in the plane 2 = 2 limited by the lines 

(^ = 0, 0 = 7r/2, r = 3, and r = 4; axial flux 2 through the quarter of the ring in the 

plane z = -2 limited by the lines (^ = 0, 0 = 7r/2, r = 3, and r = 4. We plot these 

two axial fluxes in Fig. 4.18. One can see that all the radial, toroidal and axial 

fluxes calculated do not change sign during the exponential growth of the dynamo 

(after the time t as 100). Their signs (not shown in Figs. 4.16-4.18) corresponds to 

the dominance of the steady growing quadrupole magnetic field in the asymptotic 

outer region of the dynamo. 

Finally, we present a vector plot of the poloidal magnetic field at the final time 

of the simulation t = 640. In Fig. 4.19 we plotted two vector plots of the magnetic 

field at the plane 0 = 0; on the top plot the length of arrows is proportional 

to the magnitude of the poloidal magnetic field, on the bottom plot all arrows 

have unit length and the direction of arrows indicate the direction of the same 

magnetic field as on the top plot. The concentration of the magnetic field toward 

the central region with the plumes is clearly visible on the top plot. The imaging 

with arrows picks up only the region of the strong field while the arrows outside 
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this region are so short that they cannot be pictured at all. The bottom plot 

illustrates the structure of the poloidal field in the asymptotic outer region. This 

structure can be described as a "shifted quadrupole" implying the presence of a 

significant dipole component. The toroidal field is 'V' 20 times stronger than the 

poloidal. The direction of the toroidal field agrees well with the direction of the 

field produced by the stretching of the poloidal field by the Keplerian differential 

rotation. The structure of the field at different (j) positions is similar to that at 

^ = 0. The nonaxisymmetric variations of the field are most significant at the 

location of the plumes at r a 1 and quickly decay outwards. Each individual plume 

perturbs the magnetic field significantly, which is reflected in the oscillations of 

fluxes in Fig. 4.14. The three dimensional plot of the dynamo magnetic field is 

presented in Fig. 4.20. Here we plotted only poloidal component of the magnetic 

field on the two meridional slices, 0 = 7r/2 and <f> = 37r/2, in the computational 

domain. In order to smooth out the strong contrast between magnitudes of the 

magnetic field in the inner and outer region of computational domain, we plotted 

a vector field The dominance of the quadrupole magnetic field in the 

outer asymptotic region is obvious from Fig. 4.20. In the central region for ^ a 1, 

the field is strongly perturbed by individual plumes, and the nonaxisjrmmetric field 

caused by the action of each single plume is visible. In Fig. 4.21 we plot the slices 

0 = 0 and (^ = TT for the same 3D magentic field as in Fig. 4.20. We also show the 

contours connecting the points with the equal magnitude of the toroidal field on 

the meridional planes. Contours are spaced logarithmically and indicate the strong 

amplification of the toroidal field in the central part of the computational domain 

analogous to the poloidal field radial dependence. 
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Figure 4.1 Evolution of the initial even (quadrupole) poloidal magnetic field under 

differential rotation with the Keplerian angular velocity nK = r-312 . Initial poloidal 

magnetic field is shown. 
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Figure 4.2 Evolution of the initial even (quadrupole) poloidal magnetic field under 

differential rotation with the Keplerian angular velocity nK = r-312 . The poloidal 

magnetic field at the timet= 140 is shown. 
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Figure 4.3 Evolution of the initial even (quadrupole) poloidal magnetic field under 

differential rotation with the Keplerian angular velocity OK = r-312
. The contours 

of equal magnitude of the toroidal magnetic field at the timet= 140 are shown. 
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Figure 4.4 Evolution of the initial odd (dipole) poloidal magnetic field under 

differential rotation with the Keplerian angular velocity nK = r-312
. The poloidal 

magnetic field at the timet= 210 is shown. 
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Figure 4.5 Evolution of the initial odd (dipole) poloidal magnetic field under 

differential rotation with the Keplerian angular velocity nK = r-312
. The contours 

of equal magnitude of the toroidal magnetic field at the time t = 210 are shown. 
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Figure 4.6 Evolution of fluxes of three components of magnetic field for the 

simulation presented in Figs. 4.1-4.3. Natural logarithms of the absolute values 

of fluxes are plotted vs. time. The flux of Br is calculated through the cylindrical 

surface limited by lines 0 = 0, (^ = 7r/2, 2 = 0, and 2 = 4. The flux of B. is 

calculated through the surface limited by lines r = Ri, r = R2, 0 = 0, and 

The flux of Bp is calculated through the surface limited by lines r = Ri, r = R2, 

2 = 0, and 2 = 4. 
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Figure 4.7 Evolution of fluxes of three components of magnetic field for the 

simulation presented in Figs. 4.4-4.5. Natural logarithms of the absolute values 

of fluxes are plotted vs. time. The flux of Br is calculated through the cylindrical 

surface limited by lines 0 = 0, ^ = 7r/2, 2 = 0, and z = 4. The flux of Bz is 

calculated through the surface limited by lines r = Ri, r = R2, 0=0, and <l> = t. 

The flux of B^ is calculated through the surface limited by lines r = Ri, r = R2, 

2 = 0, and 2 = 4. 
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Figure 4.8 Distortion of the magnetic field by a single cylindrical plume rising in a 

fluid, which is at rest. Side view from ^-direction. The bundle of field lines of the 

initial even magnetic field is shown distorted by the plume in vertical direction. The 

arrows indicate the velocity vector of the flow. In the projection, a few arrows at 

different depths through the plume are plotted as they originate at the same point 

of the image plane. The corkscrew motion of the plume is clearly seen on the side 

view. 
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Figure 4.9 Distortion of the magnetic field by a single cylindrical plume rising in a 

fluid, which is at rest. Top view from the z-direction. The bundle of field lines of 

the initial even magnetic field is shown. Arrows indicate velocity vector of the flow. 

The time is the same as on Fig. 4.8. 
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Figure 4.10 The distortion of the toroidal magnetic field by a single cylindrical plume 

rising in a differentially rotating fluid. Side view from r-direction. The bundle of 

field lines of initial purely toroidal magnetic field is shown. Arrows indicate the 

velocity vectors of the flow in the frame corotating with the base of the plume. 
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Figure 4.11 Distortion of the toroidal magnetic field by a single cylindrical plume 

rising in a differentially rotating fluid. Top view from z-direction. Same explanations 

as in Fig. 4.10. 
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Figure 4.12 Distortion of the toroidal magnetic field by a single cylindrical plume 

rising in a differentially rotating fluid. Side view from ^-direction. Same 

explanations as in Fig. 4.10. 
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Figure 4.13 Half of the logarithm of the B 2 averaged over all computational domain 

is plotted vs. time in the top- left plot. Time evolution of the fractions of the 

energy of the odd and even components of the magnetic field is in the top- right and 

bottom- left plots. The sum of the fractions of odd and even components is always 

equal to 1. 



142 

Radial flux Toroidal flux 
I 

g / ~ 

-0 

Qlfl / 1\-' 
£! 

~ ll ~lfl 

~ ~0 :So 

l / 
r ~~ 

r"" 
~/ 

~-

(' 
"( "( 

g 
0 LOO ~00 300 I 0 LOO ~00 300 -tOO 300 600 

I I 

Axial flux 

~0 

~lfl 
..51 

g 
I 

~ 
I 

0 LOO ~00 300 -100 .500 6oO 

Figure 4.14 The time evolution of logarithms of the absolute values of the 

components of the magnetic field averaged over the surfaces described in the text. 

Exponential growth of all three components is evident. 
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Figure 4.15 The ratio of the energy of the magnetic field in the outer domain to the 

total energy of the magnetic field in the computational domain. The time evolution 

of the fractions of energy of the odd and even components of the magnetic field in 

the outer domain is in the top-right and bottom-left plots. The sum of the fractions 

of odd and even components is always equal to 1. 
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Figure 4.16 The time evolution of logarithms of the absolute values of the radial 

component of the magnetic field averaged over the four surfaces described in the 

text. 
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Figure 4.17 The time evolutiou of logarithms of the absolute values of the toroidal 

componeat of the magnetic field averaged over the three surfaces described in the 

text. 
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Figxire 4.18 The time evolutioa of logarithms of the absolute values of the axial 

component of the magnetic field averaged over the two surfaces described in the 

text. 
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Figure 4.19 The vector plots of the poloidal magnetic field of the growing dynamo 

at the time t = 640 in the plane ¢ = 0. The length of the arrows on the top plot is 

proportional to the magnitude of the poloidal magnetic field. Arrows on the bottom 

plot have unit length and are directed along the poloidal field. 
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Figure 4. 20 Three dimensional plot of the poloidal magnetic field of the growing 

dynamo at the time t = 320. The length of arrows scales as 1/3 power of the 

magnitude of the poloidal magnetic field. The planes cjJ = 7f /2 and cjJ = 37f /2 are 

shown. The boundaries of the cylindrical region shown are z = ±4, R1 = 0.2, 

R2 = 4. 
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Figure 4.21 The visualization of the same simulation as in Fig. 4.20 but with the 

slices taken at¢= 0 and¢= 1r. The arrows show the vector field Bp/1Bpl 213 . The 

logarithmically spaced contours of the equal values of the magnitude of the toroidal 

magnetic field are shown. 
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5 SIMULATIONS IN SUPPORT OF NEW MEXICO DYNAMO 

EXPERIMENT 

5.1. Introduction to Dynamo Experiments 

Although there has been a large effort in theoretical and numerical work on 

understanding and modeling magnetic dynamos (see chapter 1) the experimental 

verification of these theoretical ideas and predictions is just in its initial stage. 

The principle of self-excited dynamo was introduced to physics and engineering 

by Werner von Siemens in Germany in 1867. The numerous versions of electric 

generators built since utilize this principle. However, there is a big difference 

between this technical version of the dynamo and dynamos operating in cosmic 

objects. In generators currents are restricted to flow in a specially arranged wires, 

which are isolated from each other and where there motions are restricted by 

frames, axes, etc. In the case of bodies and media in space the electric currents 

can flow in the whole volume of the conducting media, and in many mstances the 

motion of the media itself is unrestricted and can be influenced by the electric 

currents and magnetic fields. Therefore, it is of high interest to create a uniform 

flow of conducting liquid in the laboratory capable of dynamo action. Such a 

demonstration can validate the dynamo principle in its applications for generating 

magnetic fields in cosmic bodies and also allow one to test the results of dynamo 
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simulations, particularly in the range of parameters, where numerical simulations 

are difficult. 

The necessary condition to observe self-excitation of the magnetic field is 

a flow with high enough magnetic Reynolds number. Due to large sizes and 

large velocities of cosmic bodies, the magnetic Reynolds number is usually huge. 

Gravitational forces hold cosmic objects against disruptions by vigorous motions 

and the same gravitational forces often cause vigorous motions in space plasmas. 

One cannot rely on gravitational forces on laboratory scales, the only other 

forces being limited by the strength of materials used and the power of motors. 

This creates experimental difficulties to reach even modest magnetic Reynolds 

numbers in laboratory devices and explains the slow progress with the construction 

of dynamo experiments. Historically notable is the experiment of Lowes and 

Wilkinson in England where two ferromagnetic rigid metallic cylinders were rotated 

in a metal block at rest (Lowes & Wilkinson 1963; Lowes & Wilkinson 1968). 

Electric contact between moving cylinders and the block was maintained by using 

mercury as a lubricant. The magnetic saturation and remanence of ferromagnetic 

materials strongly influenced the results of this experiment although self-excitation 

of magnetic fields was observed. An important step in experimental modeling of 

the dynamo was made in a liquid-sodium facility in Riga (Latvia), where a mean 

electromotive force were observed to occur along an external magnetic field applied 

to a liquid sodium flow through two channels wound about each other, i.e. an 

a-effect (Steenbeck et al. 1968). Liquid sodium seems to be the most suitable 

material for dynamo experiments because of a number of reasons. Sodium has high 

electric conductivity rj w 810 cm^s"^ at the temperature w 110° C slightly above 

the melting point at 98° C. It is one of the few metals, which can be easily liquefied 

at modest temperatures. The low density of sodium (0.92 gcm~^) allows one to 
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operate with larger volumes of sodium within the limitations on the vessel strength 

and the power required to maintain the motion of the sodium. 

After many years of research and preparations an exponentially growing 

dynamo mode was observed in the experiment conducted in a liquid-sodium facility 

in Riga (Latvia) (Gailitis et al. 2000a). The experiment uses the Ponomarenko 

type dynamo (Ponomarenko 1973) with the back-flow surrounding the spiral 

flow of liquid sodium in an innermost cylindrical tube. The presence of the 

back-flow is necessary for the dynamo to become a standing wave in the laboratory 

frame (Gailitis 1996). Ponomarenko flow is, probably, the most simple model 

of a kinematic dynamo. At the same time it has very low threshold magnetic 

Reynolds number, which made it very attractive to realize in the experiment. The 

experiment consists of three nested stationary cylindrical tubes: innermost tube 

contains the helical sodium flow driven by the propeller, middle tube contains the 

back flow of sodium with no rotation, outer tube is filled with sodium at rest. 

After a first failed attempt (Gailitis et al. 1987) the experiment now works stable 

and the authors reported about observations of back-reaction saturated state of 

the dynamo (Gailitis et al. 2000b, Gailitis et al. 2001). 

Another successful dynamo experiment of another kind was built in Karlsruhe 

(Germany). This experiment verifies the ability of a regular spatial arrangement 

of vortices to amplify the magnetic field. Such a system of vortices parallel to 

the rotation axis occurs in thermally driven convection flows in rapidly rotating 

bodies (e.g. the experimental work by Busse & Carrigan 1976). The dynamo 

action associated with an infinitely extended spatially periodic helical velocity 

field was studied analytically by Roberts (1970) and Roberts (1972). If 2a is the 

spatial period of the flow pattern and u is the characteristic velocity scale, T] is the 
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magnetic diffusivity of the liquid, then it was found that the critical condition for 

the excitation of the dynamo is UC/T/ > 2t:. Further theoretical considerations and 

computations of the dynamo in the Robert's periodic flow pattern but limited to 

the finite spatial cylindrical domain with the size d'> a can be found in Busse 

(1975) and Busse et al. (1996). Each vortex in this pattern has a helicity not 

connected with the helicity in the other cell (but the signs of helicities are the same 

for all vortices). It is the collective action of all helical vortices, which enables 

the dynamo to operate. The Karlsruhe two-scale dynamo experiment consists of a 

cylindrical container with the system of channels inside it. The flow of sodium is 

driven through the channels by external pumps. Channels have deflectors inside 

them, which generate vortex motions. Walls of the channels are made of conducting 

material (stainless steel). By means of 52 channels the periodic pattern of the flow 

is organized inside the cylindrical container. The generation of mean magnetic field 

in the experiment can be understood in the framework of mean field theory with 

anisotropic tensor aik (Radler et al. 1998). Direct numerical simulations of the 

dynamo action were performed by Tilgner (1997). The growth of the magnetic field 

starting from the initial seed value of ^ 1 Gauss up to % 190 Gauss was observed 

in the experiment (Stieglitz k Miiller 2000). The magnetic field reached the 

back-reaction, saturated limit and the growth of the predicted non-axisymmetric 

mode m = 1 was observed. 

There are a number of other dynamo experiments, which are under discussion 

or preparation. Each of these experiments is designed to test different flow patterns 

capable of dynamo action. We just list them here without going into details, which 

can be found in the appropriate references. As of the time of writing of this work, 

dynamo excitation was not observed in any of these experiments. 
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1. A dynamo experiment with the von Karman axisymmetric flow in the 

cylinder between two differentially rotating top and bottom plates has 

been built in Cadarache (France) (Odier et al. 1999; Bourgoin et al. 2000). 

The development of MHD turbulence with the spectrum consistent with 

Kolmogorov phenomenology was observed although the bulk of the magnetic 

energy was at the frequencies smaller than the frequency of the rotation of 

the plates. 

2. Non-stationary helical axisymmetric flow in a toroidal chamber with diverters 

occurs when the rotating chamber is suddenly stopped. An experiment to 

observe the dynamo emerging in such a flow of liquid sodium is planned in 

Perm (Russia) (Denisov et al. 1999; Frick et al. 2000). 

3. An experiment using first thermal convection and then propeller driven 

poloidal flow to generate the a-effect in the rotating liquid sodium was built 

at the University of Maryland (USA) (Pefliey et al. 2000). 

4. A dynamo experiment is planned in Madison (USA) to realize the type of 

axisymmetric flow considered by Dudley & James (1989) and Holme (1997). 

The spherical rotating container is filled with liquid sodium. Impellers at 

the bottom of the container produce poloidal flow, which, due to the Coriolis 

force, creates a large scale vortex and helicity necessary for the dynamo. 

5.2. New Mexico Dynamo Experiment 

Another magnetic dynamo experiment has been proposed by S.A. Colgate. The 

design and initial construction phase of this experiment is underway at the New 

Mexico Institute of Mining and Technology located in Socorro (USA). People 

involved in the conceptual design, engineering, mechanical design, and theoretical 
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considerations of the experiment are associated with the New Mexico Institute 

of Mining and Technology and Los Alamos National Laboratory both located in 

the State of New Mexico, and so we will refer to the experiment as a New Mexico 

Dynamo Experiment. 

The experiment is designed to test the concept of an astrophysical dynamo in 

a rapidly rotating system in the laboratory. The design drawings of the experiment 

are shown on Figs. 5.1 and 5.2. The experiment consists of two coaxial cylinders 

rotating with different angular velocities. The space between cylinders is filled 

with liquid sodium. The volume of sodium between cylinders is limited by two 

plates. One of the plates (referred to as a top plate) is solid while the other plate 

(referred to as a bottom plate) has two circular openings symmetric with respect 

to the rotation axis of the apparatus. There is also a circular axially symmetric 

space between the outer cylinder and the bottom plate. Periodic pulses of sodium 

flow are driven by a piston through the two holes in the bottom plate. Sodium 

flows out of the circular holes and returns back to the volume below the bottom 

plate through the circular axially symmetric space between the outer cylinder and 

the bottom plate. During the rise of the flow plume it expands sideways. Due 

to the Coriolis force acting on the sideways expansion in the rotating frame, the 

plume also rotates in the direction opposite to the direction of the rotation of the 

vessel. Such a rotating motion of the plume in the frame rotating with the vessel 

corresponds to an unwinding helical motion, which provides the effect of producing 

poloidal magnetic field out of toroidal magnetic field. We called such £ui effect 

as an Q-effect. Therefore, one can call the magnetic dynamo in the New Mexico 

Dynamo Experiment to be of a-Q type. 

The first stage of the experiment includes only those parts necessary to 
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create the differentially rotating sodium flow in the space between outer and inner 

cylinders. No parts designed for driving plumes are present at this first stage 

of the experiment. We will call it the fi-Phase of the experiment. The second 

complete stage of the experiment includes the piston driving the periodic sodium 

plume pulses and the hydraulic system for providing the power to the piston. 

Technical drawings of the mechanical setup are shown on Figs. 5.1 and 5.2. These 

drawings were created by Howard Beckley of New Mexico Institute of Mining and 

Technology. We reproduce them here with the kind permission of the author. 

On Figs. 5.1 and 5.2 the test-space is from the left side of the dividing plate. 

The dividing plate has two openings for the plumes and was referred above as 

the bottom plate. The leftmost plate in Figs. 5.1 and 5.2 was referred above as 

the top plate. It is a solid plate limiting the test-space between differentially 

rotating cylinders. To the right from the bottom plate there are two coaxial 

plenum cylinders with the openings for the passage of sodium. Periodic circulation 

of sodium is enforced by the motion of the piston inside the inner reservoir plenum 

cylinder (Fig. 5.2). All cylinders and end plates except the inner cylinder are 

rigidly attached to each other and will be rotating with the same angular frequency 

ill. The inner cylinder will be rotating faster than the outer cylinder to create 

differential rotation of the sodium in the test-space. The whole device is turned 

into rotation by the primary drive shaft shown on the right side of the drawings 

(Fig. 5.2). The inner cylinder has its own high speed drive shaft, which is shown 

on the left side of the drawings (Fig. 5.2). The sodium will be heated and liquefied 

by the hot mineral oil driven by the recirculating system through the space inside 

the inner rapidly rotating cylinder. This oil will be used subsequently to maintain 

the thermal balance of the sodium, slightly above the melting temperature and 

also to prevent the further heating of the sodium due to the friction heat produced 
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during the operation of the experiment. The expected temperature of the sodium 

in the experiment is 110° C. One more use of the mineral oil is to isolate the liquid 

sodium from the rotating seals. The density of oil is 0.96 of the density of the 

sodium at 110° C. Therefore, the oil will float to the center of the rotating device. 

The resulting oil coating will also ensure the isolation of liquid sodium from the air. 

The maximum shear is desired in the rotational flow between the cylinders, yet 

maintaining stable flow. Let us consider stationary laminar viscous flow between 

two differentially rotating infinite cylinders as a first approximation. Such flow 

is known as Couette flow. Let us choose cylindrical coordinates r, z, with the 

axis r = 0 being the symmetry axis of the experimental device and the plane 

z = 0 being the bottom plate of the test-space (the one with the openings for the 

plumes). If Ri is the radius of the inner cylinder, R2 is the radius of the outer 

cylinder, Qi is the angular velocity of the inner cylinder, Q2 is the angular velocity 

of the outer cylinder, then the radial distribution of the angular velocity of the flow 

n(r) is given by (e.g. Landau & Lifshits 1988b) 

^ i(Q,-n2)i2?i22 

R^-Rl B^-R\ • 

In the case of very high hydrodynamic Reynolds number of the flow one can obtain 

a simple stability condition of the Couette flow (e.g. Landau & Lifshits 1988b). 

The flow is stable if and only if nii?f < The difference in between inner 

and outer radius is Afi = Qi — For a stable flow AQ < ^1(1 — Rl/R^). 

Therefore, in order to maximize the shear one should use the flow on the margin 

of stability, i.e. when QiR^ = The New Mexico Dynamo Experiment is 

designed to have this marginally stable ratio of angular velocities of the cylinders. 

Namely, R2/R1 = 2 and = 4. In the case of marginally stable Couette flow 
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the angular velocity profile becomes 

and the profile of the rotational (toroidal) velocity becomes 

= (5.3) 

The geometrical parameters of the experimental setup are: radius of the outer 

cylinder is R2 = 30.5 cm, wall thickness of the outer cylinder is Ai2 = 3.2 cm, 

test-space length is L = 30.5 cm, wall thickness of the bottom and top end plates 

is AL = 3.2 cm, radius of the inner cylinder is Ri = 15.25 cm, the length of the 

space filled with liquid sodium below the bottom plate is Li = 35.6 cm, radius of 

the plume ports is Vp = 4.9 cm, the radial distance from the center of the plume 

port to the rotation axis of the cylinder is Rq = Ri+rp = 20.15 cm, the width of 

the annular space between the outer cylinder and the bottom plate for the sodium 

sink is s = 2.6 cm. The size of the device is desired to be as large as possible, but is 

limited by the available standard bearings, drive belts, material handling and local 

machine tools for finishing. 

The material for both cylinders, top and bottom end plates, two ported 

reservoir plenum cylinders is aluminum alloy 5083H. This alloy has the necessary 

strength to sustain the centrifugal pressure of rotating sodium and is widely used 

in industry. The high and low speed driving shafts, left and right flanges are 

made of steel. Now we list the physical properties of the materials, which are of 

interest to the problem of magnetic dynamo. We take the information from the 

reference book by Chemical Rubber Company (1978) and convert the numbers to 

CGS units. The viscosity of liquid sodium at 110° C is TJ^SC = 6.5 • 10"' gcm"*^ s~\ 

density is p = 0.92 gem"', kinematic viscosity is f = J]VUCIP = 7.1 • 10"'cm^s~^ 
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electric resistivity is p = lO/xOhm • cm, electric coaductivity is <t = 8.8 • 10^® s~\ 

corresponding kinematic magnetic diffusivity is r/ = c^/(47r£r) = 810cm^s~K 

The electric resistivity of aluminum alloy 5093H at the temperature 20° C is 

4/iOhm • cm, corresponding electric conductivity is 1.54 -10^^s"^ We could not 

find data for the electric conductivity of the alloy 5093H for higher temperatures. 

At the same time the electric resisitivity of pure aluminum increases by 40%, when 

the temperature rises from 20° C to 110° C. Electric resistivity is equal to the 

inverse of electric conductivity. For the lack of better data an assumption that the 

conductivity of the alloy 5093H behaves in the same way as the conductivity of 

aluminum seems to be reasonable for our purposes since the thickness of the walls 

is a small fraction of the size of the test-space. With such an assumption we will 

use for the resistivity of the aluminum walls at experiment temperature 110° C the 

value increased by 40% from the value at 20° C. Thus, the electric conductivity of 

the material of the walls will be = 1.1 • 10^^ s~^ and corresponding kinematic 

magnetic diffusivity is T}M = 650cm^s"^ The conductivity of the aluminum alloy 

is higher than the conductivity of liquid sodium only by 25%. Electric conductivity 

of steel parts is about 20 times smaller than sodium. Since the steel parts occupy 

only a small volume near the rotation axis of the device, they also move slower 

than the bulk of sodium. The influence of the conductivity of the steel parts on the 

magnetic fields in the system will be small, and we will assume the conductivity of 

steel parts to vanish, i.e. treat them as vacuum. 

The analysis of stresses and energy dissipation in the experiment (Beckley k 

Colgate 2000) indicates that the maximum possible frequency of rotation of the 

outer cylinder is limited by the yield limit due to the centrifugal pressure and is 

< 33 Hz. This corresponds to ilz < 207 s~K The angiilar velocity of the inner 

cylinder is always four times larger than the rest of the device and is limited by 
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Qi < 828 s ^ We define the global hydrodynamic Reynolds number of the Couette 

flow in the experiment as 

^ Sl,R,{R,-R,) jg 

V 

The magnetic Reynolds number for the rotational Couette flow is defined in a 

similar way as 

^ m2^R2-Ri) ,5 5) 
r} 

The ratio Re^/Rmn = = Pm is a magnetic Prandtl number. For sodium 

at 110° C one obtains Pm = 8.8 • 10"®. The maximum Reynolds numbers 

corresponding to the maximum possible frequency of rotation are Ren « 1.3 • 10^ 

and Rmn « 120. 

The magnetic susceptibility of aluminum at 18° C is XM — 6 5 • 10"^ and the 

magnetic susceptibility of sodium at the same temperature is Xffa = -16-10~® 

(Chemical Rubber Company 1978). We will assume the magnetic permeability of 

both metals ^ = 1 + \-KX to be 1. The accuracy of such an assumption is much 

higher than the uncertainties introduced by insufficient knowledge about the actual 

flow and its turbulent properties. However, steel used for some parts of the device 

has ferromagnetic properties with the permeability at zero magnetic field of 

the order of 10"*. Such high magnetic permeability and nonlinear ferromagnetic 

properties may influence the results of the experiment although to much lesser 

extend than in the experiment of Lowes and Wilkinson mentioned above. We give 

some consideration of the influence of materials with high /z in Appendix B. For 

the rest of this chapter we will not consider high n or ferromagnetic materials and 

will assume n — \ everywhere. As a consequence, we do not make the distinction 

between B and H. 

The actual flow in the experiment is more complicated than the laminar 
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Couette flow. Plumes of liquid sodium will interact with rotational flow and some 

other flow pattern will be established. Moreover, because of the very high Reynolds 

numbers and strong perturbing action of the plumes small scale hydrodynamic 

motions of the fluid (turbulence) should develop. Even in the first stage of the 

experiment, when there are no plumes present, the flow is not Couette flow 

everywhere. The top and bottom plates are rotating with the same velocity as 

the outer boundary. Because of the viscosity of the sodium a boundary layer will 

develop near the top and bottom boundaries. The sodium close to the top and 

bottom boundaries tends to rotate slower than the sodium further away from the 

boundary at the same radial distance. This induces radial circulation of the flow 

in the thin layer near the end plates. Such a boundary layer with meridional 

circulation is known as an Ekman layer. 

The experiment will also have two current coils to produce the initial magnetic 

field. The coils consist of a many turns of wire wrapped up in the toroidal direction 

(see schematic representation on Fig. 2.1 (b)). The cross section of each coil is 

quite small, so one can treat them as a single loop of toroidal current. Coils will be 

located near the top end comer and bottom end comer of the outer cylinder. The 

directions of the current in the top and bottom coils are opposite, so the poloidal 

magnetic field produced by the current in the coils is quadrupole (see Fig. 2.1 (b)). 

However, the coils can be moved and the direction of the current can be reversed, 

so the bias magnetic field can be also applied in one direction over the test-space. 

All three components of the magnetic field will be measured by miniature Hall 

detectors placed inside the sodium at a various radial distances as well as placed on 

the surface of the outer cylindrical wall and on the surfaces of the end plates. The 

quick response of Hall detectors will allow one to record the detailed time evolution 

of the magnetic field. 
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Because of these complexities we have not created a complete MHD model of 

the experiment but did approximate calculations, which are described in the rest 

of this chapter. Our modeling of New Mexico Dynamo Experiment begins with 

the evaluation of the magnetic field shearing at the interface between differentially 

rotating sodium and solid end plates. A simplified one dimensional model to 

illustrate the production of toroidal magnetic field (Q effect) is considered in 

section 5.3. In the section 5.4 we analyze the influence of the Ekman layer on the 

magnetic field. The results obtained in sections 5.3 and 5.4 are used to justify the 

assumptions made in numerical simulations of the Q phase of the experiment. Then, 

we proceed with the modeling of the dynamo generation phase of the experiment. 

In section 5.5 we consider a one dimensional model of the exponential magnetic 

field growth in order to evaluate the effects of the conductivity of the media 

surrounding the sodium test-space. We present results of numerical simulations of 

the growth of the dynamo with the simplified flow field in section 5.6. 
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Figure 5.1 The detailed design drawing of the rotating components of the rl-Phase of 

the New Mexico Dynamo Experiment. By comparing Figs. 5.1 and 5.2 the labeling 

of the various components can be compared and identified in the two drawings. The 

main cylinder of radius R1 = 30.5 em rotates between two bearing mounts with 

three bearings. In the rl-Phase no plume piston, or hydraulic drive is shown, even 

though the constructed aluminum parts of Fig. 5.2 show the port plate and two 

ported reservoir plenum cylinders. These parts are necessary to define the plume 

end of the Couette flow annular space. 
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Figure 5.2 The design drawing of both the rotating components as well as the 

plume drive mechanism of both the a- and D-Phases of the New Mexico Dynamo 

Experiment. 
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5.3. One Dimensional Model for the Production of the Toroidal Magnetic Field 

An important feature of the a-fi dynamo experiment is the existence of a thin 

shear layer of differentially rotating fluid near the top and bottom boundaries of 

the vessel. This boundary layer is known as an Ekman layer. The width of the 

layer is of the order of r ReQ^^^ (see section 5.4), where r is the characteristic radius 

of the vessel and Ren is the characteristic value of the Reynolds number for the 

rotation of the conducting fluid in the vessel. For the experiment at maximum 

frequency the thickness of the Ekman layer will be ~ r/3000 (see section 5.2). 

Since the width of the Ekman layer is so small, one can neglect the structure 

of the inside of the layer for the evolution of the magnetic field and replace the 

actual shear viscous layer by ideal discontinuity of the flow at the boundary of the 

vessel. We will justify this approximation in the following section 5.4. 

Let us now consider a simplified one dimensional problem illustrating the 

production of the magnetic field by the sheared flow bounded by non-moving 

boundaries. The geometry will be as follows. There is a slab of conducting liquid 

with uniform magnetic difFusivity TJ located between —L and L in x-direction 

and infinite in y and z directions. This slab is bounded by two planes of ideally 

conducting material, located at x = —L and x — L and extending infinitely in 

both y and z directions. These planes of ideally conducting material remain at 

rest. We will assume that the spatial dependence of all quantities is on x only. 

There is a uniform magnetic field Bx = constant, which is perpendicular to the 

ideally conducting boundaries and is frozen into the boundaries. Initially there is 

no other components of magnetic field present and the liquid inside the slab is at 

rest. At the moment of time i = 0 the liquid inside the slab starts to move with the 

velocity Vy — Vy{x) in y direction. This shear motion is analogous to differential 
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toroidal rotation near the end plates of the experimental device. The Bx field is 

analogous to the axial component of the magnetic field and By field is analogous to 

the toroidal component of the magnetic field in the actual device. Plane geometry 

allows us to perform simple analytic calculations still preserving the essential 

properties of discontinuous flow near the end plates in the experimental device. 

Let us consider the case, when the velocity V y { x )  has no discontinuity at the 

boundary x = -L but only at the boundary x = L. To simplify calculations, let 

us take the shear dvy/dx = s to be constant. Then, one has the following profile of 

the velocity inside the slab 

Vy = 3{x-hL). (5.6) 

This shear flow will lead to the appearance and growth of the y component of 

the magnetic field By. It is easy to see from the inductance equation that the Bx 

component of the magnetic field will remain unchanged. The only component of 

induction equation, which does not vanish, is 

dBy dvy „ . df^By 

The surface current layers can form at the boundaries x = —L and x = L, therefore, 

By may not be zero at the boundaries. However, the tangential component of the 

electric field must be zero at the boundaries. The only component of the electric 

field, which is not identically zero because of the geometry of the problem, is Eg 

_ _ dBy 
cE: = VyBx + r?-^. (5.8) 

One has to satisfy that Fj = 0 for ar = —L and x = L. After some time the 

creation of By due to shear will be balanced by the diffusion due to finite resistivity 

and the magnetic field will reach a stationary value. The stationary solution of 
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equation (5.7) satisfying boundary conditions for Ez is 

D n LsBx sBx 2 /•(: n\ 
By = Ca X - -r—x'', (5.9) 

V 27? 

where C2 is an arbitrary constant left undetermined from the boundary conditions. 

To find value of C2 one needs to consider initial problem with initial By = 0. 

However, we can avoid solving the full time dependent diffusion equation by 

considering the evolution of the total y magnetic flux 

"L 
$ = / BJx) dx. = /^5j,(x)( 

Integrating equation (5.7) over — L < x < L  one obtains 

dt ^ dx 

L 

+ BxVy\_^ , 
-L 

which is zero due to boundary conditions Ez = 0 with given by equation (5.8). 

Therefore, the flux $ is a conserved quantity. Being initially zero, it has to remain 

zero. The condition $ = 0 with By given by equation (5.9) allows to determine 
L^s 

C2 = -x—Bx- Then, the final solution of the problem is 
OTI 

By - —Bx 
2 1 / X 

3 21 L 
(5.10) 

The maximum and minimum values of the magnetic field are achieved at the 

boundaries and are 

B,(-£) = B,(I) = 

We see that the stationary value of By ~ RmBx as one expects in the general case 

of the toroidal field production. Another important result is the reversal of the sign 

of By field near the region of the discontinuity of the flow at x = L. The presence 

of the conducting boundaries requires that the total flux of the y-component of 
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the magnetic field remain zero. This causes the diffusion of the reversed magnetic 

field from the vicinity of the boundary x = L inside the whole slab. This reversed 

magnetic field near the boundary a: = I is produced by velocity discontinuity 

at this boundary, which generates the field opposite in the direction to the field 

generated over the volume of the slab. 

We also solved numerically for the time-dependent evolution of By according 

to equation (5.7). Initially, it was assumed that By{x) = 0. The time sequence of 

the simulation is shown on Fig. 5.3. One can see that initially the magnetic field 

grows uniformly across the whole slab except near the r = L boundary, where 

strong reversed field appears immediately. Further growth of the field due to 

velocity shear is accompanied by diffusion of the fields of opposite signs. Finally, 

the cancellation of the fields with opposite signs due to diffusion balances the 

growth due to velocity shear and the profile of the field approaches the stationary 

state given by equation (5.10) (the last plot in a sequence in Fig. 5.3). 

Let us now consider the case, when the slab with the sheared magnetic field 

is surrounded by a uniform medium with finite conductivity T]Q. Let this medium 

occupy the space symmetrically on both sides of the slab between —Lj and —L and 

between L and Lb. Let us assume that the region with this medium is bounded 

by two infinite perfectly conducting plates located at x = —and x = Lb. The 

other conditions of the problem will be the same as for the case above, that is, 

the conductivity inside the slab is T], x-component of magnetic field Bx is uniform 

e v e r y w h e r e ,  v e l o c i t y  p r o f i l e  i s  g i v e n  b y  e q u a t i o n  ( 5 . 6 )  i n s i d e  t h e  s l a b  — L < x < L ,  

while the medium outside the slab —L < x < L is at rest. Now one needs to solve 

equation (5.7) inside the slab for —L < x < L. Outside the slab one has a pure 
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diffusion equation 
9B, S'B, 

At the boundaries x = —L and x = L the conditions of the continuity of By and 

the continuity of the tangential component of the electric field must be satisfied. 

Using expression (5.8) for one reduces the latter condition to the continuity 
dB 

of VyBx + The boundary condition at x = —L{, and x = Li, for perfectly 

conducting boundaries is dSy/dx = 0. 

In the stationary case all solutions of equation (5.11) are linear functions in x. 

The boundary conditions at x = —L^ and x = Li, limit possible solutions in the 

spaces -Lb < x < -L and L < x < constants only. Because of this, the 

electric field E, must be zero at the boundaries x = —L and x = L. These are 

the same boundary conditions that were used for the deriving stationary solution, 

equation (5.9). The value of Ca depends on the initial condition for the By. In 

order to find C2 we first re^vrite equations (5.7) and (5.11) as one equation valid in 

the whole space —Li, <x < Lt, 

where we introduced the function 

{7/ for — L < X < L, 

Tjo for — Li, <x < -L and L <x < Lb. 

The continuity of E^ at x = —L and x = L follows from the equation (5.12) 

and there is no need to impose the boundary conditions at x = —L and x = L 

separately. By integrating equation (5.12) in x from —Lb to Lb one obtains the 

following equation for the evolution of the total magnetic flux through the whole 

space —Lb <x < Lb 
_ dBy 

dt dx 

Lb 
+ , (5.13) 

-Li 
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where 
'Li 

$' = f By{x) dx. 
J-u -li 

In equation (5.13) the right hand side vanishes due to the boundary conditions at 

X = -Lb and x = Lb- Therefore, the total magnetic flux is conserved during 

the evolution of the magnetic field. Taking 5y = 0 as an initial condition for By 

one has $' = 0 and the constant C2 can be obtained by demanding the integral 

A _ 
277 V 316/ 

whole stationary solution inside — L < x < L i s  

of expression (5.9) for By to be zero. This gives Cz = ^ ) and the 

sL^ 

the constant values of By in outside space being given by 

B{-L) = —BJI--^] for - L b < x < - L ,  (5.15) 
Tf oLb / 

B{L) = -—BJI-\':^] for L < x < L b -  (5.16) 
TJ \ iLb / 

Note, that the solution for By does not depend on the value of T]Q and is also 

v a l i d  f o r  r / o  0 0 ,  i . e .  f o r  a  v a c u u m  o u t s i d e  t h e  s l a b  — L  < x  <  L .  W h e n  L b  =  L ,  

the solution (5.14) transforms to the solution (5.10). However, in the limit rjo-^0 

and Lb > L the solution (5.14) is different from the solution (5.10). This means 

that even a very small but finite resistivity of the medium outside will cause, over 

a long period of time, the magnetic field to diffiise out of the slab -L <x <L into 

surrounding medium. While the characteristic time of establishing the profile (5.10) 

is of the order of the diffusion time ~ the characteristic time of establishing 

the profile (5.14) is ~ LI/tjq and is much longer for tjq rj. 

The effect of considering finite resistivity of the medium outside the slab with 

shear flow is to increase the value of the stationary magnetic field by a constant 
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value —fir—TT— with respect to the case with ideally conducting boundaries at 
T) 3X/5 

X  =  - L  and x  =  L .  This increase is the larger, the further away the conducting 

boundaries are, i.e. the larger the Lb is. For Lb oo the magnetic field in the 

space X < —Lb has the same value but the opposite sign as the magnetic field in 

the space x > Lb- The maximum positive value of the stationary magnetic field 

(equation (5.15)) is always smaller (or equal) in absolute magnitude compared to 

the maximum negative value of magnetic field. 

We also solved numerically for the time-dependent evolution of By according 

to equations (5.7) and (5.11). The initial field was By{x) = 0. An example of such 

a simulation is shown in Fig. 5.4. In the case of a large magnetic diSusivity, r/o, 

of the outside medium the magnetic field diffuses into space -Lb < x < -L and 

L <x < Lb quickly. In particular, the time for the field to spread to a point with 

some coordinate x > L is « (x — L)^fTjQ. If this time is small compared to the 

time t elapsed since the turning on the shear flow, then the magnetic field between 

L and x will be close to the vacuum field, which does not depend on x. In other 

words, if one wants to approximate vacuum by a medium with high resistivity, the 

corresponding magnetic diffusivity of such a medium must be r]Q > {Lb — L)^/t, 

where t is the characteristic time of the change of the magnetic field inside the slab. 

If t is the time scale for the magnetic field inside the slab to reach a stationary state 

t a L'^Jt], then ?7o ^ vi^b — L)^/L'^. For the parameters used to plot Fig. 5.4, one 

has t fa 10, TJO/T] » 16. The last requirement is barely satisfied and so the magnetic 

field in the region with magnetic diSusivity r/o does not reach a constant value at 

t = 10 but does become constant by t = 300. This concept of the required TJQ to 

represent vacuum correctly is also applicable to the real case of the experimental 

dynamo setup or simulation of astrophysical dynamos. Finally, the magnetic field 

reaches steady state shown in the plot t = 300 in Fig. 5.4 and is given by the 
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formula (5.14). 

In the case of r/o < r f ,  the magnetic field first reaches the quasi-steady state 

close to t = 100 in Fig. 5.3. After that the process of slow growth of the field 

in highly conducting regions begins on a diffusive time scale ~ — L)^/r/o. On 

the same time scale the field inside the slab is adjusted to take the steady state 

shape shown in the plot t = 300 in Fig. 5,4. For TJO ~ 77 the growth of the field 

to stationary values inside the slab and outside the slab happens on the same 

time scale and the final steady state is the same as one showed on plot t = 300 

in Fig. 5.4. All the temporal behavior described above was observed in numerous 

numerical experiments while solving equations (5.7) and (5.11). 
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Figure 5.3 The time evolution of the sheared magnetic field (see text) in a box 

limited by perfectly conducting boundaries. The parameters are: L = 1, s = 1, 

Bx = 1, TJ = 0.1. The six plots correspond to six moments of time. The magnetic 

field reached a stationary state in the last plot at t = 100. 
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Figure 5.4 The time evolution of the sheared magnetic field (see text) in a box 

surrounded by a resistive medium. The parameters are: L = 1, s = 1, Bx = 1, 

'TJ = 0.1, 'T}o = 10., Lb = 5. The six plots correspond to six times. Magnetic field 

reached a stationary state on the last plot at t = 300. 
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5.4. Magnetohydrodynamic Ekman Layer 

Let us now go back and consider the boundary layer of liquid sodium formed near 

the top and bottom end plates, where fluid rotates faster than the end plates. 

Let us go to the reference frame rotating with the angular velocity Q2 of the 

outer cylindrical wall and the end plates, which are attached rigidly to the outer 

cylindrical wall. In this frame the bulk of the sodium between the cylinders rotates 

with angular velocity u = il{r) - fia- Using expression 5.1 for Couette profile n(r), 

one obtains 

For the marginally stable Couette flow used in the experiment (equation 5.2) this 

expression transforms to 

Below we consider the case of stationary and axisymmetric MHD flow of an 

incompressible viscous liquid in the vessel, ignoring complex effects of the 

interaction of the plumes with the walls of the vessel and non-stationary turbulent 

motions caused by plumes. We start with the full system of stationary MHD 

equations for the incompressible fluid with constant values of 77 and u in the 

rotating frame (e.g., Landau & Lifshits 1982) 

(5.17) 

(5.18) 

V-B=0 ,  

Vx  (UxB) -h77V2B =  0 ,  

V • U = 0, (5.19) 

(5.20) 

(5.21) 

^  =Ux(VxU)-2 (122  xU)  

- ^ (Bx  VxB)+I /V2U,  
4xp 

(5.22) 
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where P is the pressure of the liquid. This system of equations must be solved 

with the following boundary conditions: all components of the velocity U must 

vanish at the boundaries at rest in the rotating frame (end plates, outer cylinder) 

and U = (fii — il2)Rie^ at the boundary of the inner cylinder. Magnetic field has 

a source (bias coils) outside the test-space and the problem of the evolution and 

stationary state of the magnetic field must be solved for the whole region both 

inside and outside the test-space while taking into account the geometry of the 

conducting walls and vacuum space surrounding the device. 

First, we relax the no-slip boundary condition at the top and bottom end 

plates and allow the sodium to have an arbitrary tangential velocity at the end 

plates. We denote the quantities for such a stationary purely toroidal flow by the 

subscript 0. Thus, the toroidal velocity of such a flow is Uo = wre,^, the pressure is 

Pq, the stationary magnetic field is BQ. 

5.4.1. The Back Reaction of the Magnetic Field on the Rotational Velocity Profile 

Unlike the case of the accretion disk, where the Keplerian toroidal motion is 

determined by the gravitational pull of the central massive body, the profile of 

the angular velocity of the fluid in the New Mexico Dynamo Experiment is solely 

determined by the viscous transport of angular momentum. In the astrophysical 

accretion disk, the viscous transport of angular momentum only determines the 

accretion rate and the inflow velocity. The azimuthal stress needed to alter 

Keplerian rotational profile is comparable to the gravitational force. This stress is 

estimated as In the Couette flow, the viscous azimuthal stress is of order 

pfQ. If the circular motion of the fluid in the experiment had been driven by 

gravitational force as in an astrophysical situation, then the viscous stress would 

have been a factor of uj(fir^) a Re^^ smaller than the stress needed to influence 
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the profile of the azimuthal velocity. Of course, there is no gravitational force 

causing the fluid to spin in the experiment, and so the distribution of angular 

velocity depends on a weak viscous force. As such, any small force in the toroidal 

direction can significantly alter the rotation of the fluid. If such a force dominates 

over the viscous stress, the steady state motion of the fluid is determined by that 

force rather than viscosity and, hence, will not exhibit Couette profile. 

The wound up magnetic field produced by differential rotation of the fluid 

could exert such a torque on the fluid. In this subsection, we evaluate the effect of 

the presence of the wound up toroidal magnetic field on the angular velocity profile 

of the liquid and put an upper bound on the magnitude of such a magnetic field, 

which still does not alter the Couette profile. We illustrate the effects of the wound 

up field by considering the following simplified one dimensional problem. 

Instead of finite length cylinders let us take infinite cylinders without end 

plates. Let us assume that there is a purely radial initial magnetic field imposed 

everywhere inside the volume of sodium between outer and inner cylinders. The 

divB = 0 implies that such a radial magnetic field must be 

Bor = B2—, (5.23) 
r 

where we denote the amplitude of the radial magnetic field at the outer radius as 

82- Of course, such a magnetic field should have a source inside the inner cylinder. 

If the assumption of a wire made of magnetic monopoles along r = 0 axis seems 

too unphysical for the reader, one can imagine a thin tube of toroidal currents 

along the axis r = 0 located inside the inner cylinder. By choosing the distribution 

of such currents, one can create the divergence free magnetic field, which has only 

a radial component at the surface of the tube. Magnetic field lines go through the 

cylindrical boundary of the tube and get collected inside into strong axial magnetic 
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flux. This flux emerges from the open end of the tube, which is located far from 

the ends of the cylindrical vessel with sodium (we make the vessel very elongated 

but finite length). The magnetic field lines close through the sodium back to the 

cylindrical wall of the tube. The z-component of such a field will be smaller the 

farther away the end of our current carrying tube is located. Now we can neglect 

this small z-component of the magnetic field and have the magnetic field purely 

radial in the whole volume of the sodium. Let us consider an equilibrium state 

of rotation, where the wound up toroidal field reaches its stationary value 

balanced by resistive diffusion. The velocity profile is also stationary, when the 

azimuthal magnetic stress is balanced by the viscous stress in the liquid. 

Under the assumption that no quantities depend on z and 0, equations (5.19) 

and (5.20) are satisfied automatically if Bqt OC 1/r. The poloidal components 

of equation (5.21) for the evolution of the magnetic field are also satisfied for 

Bor oc l/r (equation (5.23)). The toroidal component of equation (5.23) is 

The z-component of the momentum equation (5.22) vanishes, and the radial 

component of equation (5.22) reduces to 

For any distributions of Bo^ { r )  and u j { r )  one can find the distribution of radial 

pressure Pq such that the equation of radial momentum balance (5.25) will be 

satisfied. The ^component of equation (5.22) is 

The boundary conditions for the toroidal magnetic field Bq^ follows &om the fact 

that there is no axial current flowing inside the inner radius r = Ri and also the 

(5.24) 

(5.25) 

(5.26) 
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net axial current through the space filled with sodium is zero. A net axial current 

cannot be present in a stationary system, for it will mean the accumulation of the 

charge at one of the end plates of the long cylinder. This means that J3o0(^i) = 0 

and BoipiRi) = 0. The boundary conditions for the angular frequency distribution 

are no-slip boundary conditions at the outer and inner walls, uj{Ri) = f2i — ^2) 

uiR-i) = 0. The system of two second order ordinary differential equations (5.24) 

and (5.26) with the four boundary conditions should have a unique solution. 

Let us first introduce dimensionless variables in equations (5.24) and (5.26). 

We write 

R 
r = r'R2, u = fiaw', 

= Rin„-=-^Bj6(r) (5.27) 

Tj n2 — Xti 

and omit primes in r' and u' in the dimensionless equations. Then, the system of 

two equations (5.24) and (5.26) takes the form 

I d, , u 1 d f db\ 1, 

B l f l l  I  d 1  d  /  d ,  , \  a  

q2 
The dimensionless combination in equation (5.29) determines the ratio of 

Aitpvt] 
magnetic forces to dissipative forces due to viscosity and resistivity. It is known 

as the Chandrasekhar number. Note, that the Chandrasekhar number does not 

depend on the velocity of rotation, but is solely determined by the applied poloidal 

magnetic field and the dissipative properties of the conducting liquid. We introduce 

the notation 

where U\ = —^ is the Alfven velocity with respect to the poloidal magnetic field. 
47rp 
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When Ch ^ 1 the magnetic field is too weak to influence the rotation profile of the 

liquid. On the contrary, if Ch » 1 the magnetic stress of the toroidal field is very 

strong and brakes the difierential rotation of the fluid such that the fluid rotates 

with constant angular frequency throughout the volume except thin boundary 

layers near the outer and inner cylinders. The existence of boundary layers is 

necessary to satisfy the no-slip boundary conditions for the flow. Because the whole 

drop of angular velocity, — CI2, occurs across boundary layers, the viscous stress 

is large and is balanced by magnetic stress. The production of toroidal magnetic 

field (left hand side of equation (5.28) also occurs only in the boundary layers for 

Ch > 1. The toroidal field diffuses into the volume of the sodium and dissipates 

there due to Ohmic losses. Thus, increasing the strength of the applied poloidal 

field should lead to locking up the rotation of the sodium into solid body rotation. 

It turns out that the system of equations (5.28) and (5.29) can be solved 

analytically. The equation (5.29) can be transformed to 

where Ci is the constant of integration. We express the derivative of u from this 

integral as 
dui b C\ 
^ = ch^-:;x- (5.31 

The other equation (5.28) can be identically rewritten as 

After substitution of expression (5.31) for the derivative of u one obtains the 

which has an integral 

Chr6 - r^^  =  Ci ,  
dr 

d f ^ b  ^  I  d b  b  _ d u  

dr^ r dr dr 
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equation for b 

^ + ~-(Cl. + l)^ = 4. (5.32) 

This equation can be solved if one looks for the solution in the form of powers of r, 

namely, b = or", where a and are constants, which need to be determined from 

the equation. In this way, one obtains the general solution of equation (5.32) as 

b = C2r'^^ + C3r-'^^ + ~. (5.33) 
r Ch 

Using the solution for b, equation (5.31) can be integrated to result in the general 

solution for w 

w = Ch , ^ - Ch-=^= + C4. (5.34) 
>/Chn-l >/ChTT+l 

Four boundary conditions allow us to determine the values of four constants in 

expressions (5.33) and (5.34). In terms of the dimensionless quantities b, u and 

the dimensionless radius r extending from ri to 1, the boundary conditions are 

b{ri) = 0, 6(1) = 0, uj{ri) = (fii - ̂ 2)/^2, w(l) = 0. After some algebra one 

obtains the final solutions satisfying boundary conditions as follows 

f i i - f i 2G( r )  
n, H(n)' 

where functions ff(r) and G(r) are 

/f(r) = (VCb +1 +1) (1 - ^^>/Ch+r-i _ ^ 

(\/Ch +1 - 1) (1 - ^ (5 37) 

G(r) = (1 - ~ ~ ^.x/ch+T+tj ^-VCh+i ^ 

!1 . (5.38) 
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Both H { r )  and H { r i )  are zero, when the Chandrasekhar number is zero. In 

order to obtain limiting case of Ch —y 0 we expand the denominator and numerator 

of expression (5.35) in small parameter Ch. The first terms of such an expansion 

recover the expression (5.1) for the general Couette profile in the absence of the 

magnetic field. 

Consideration of the opposite limit Ch » 1 is more difficult. First of all, 

ri < 1 means that we can neglect high positive powers of ri in comparison to 

1. Second, we can neglect 1 in comparison to \/Ch +1 in the places, when the 

sum like vCh+T + 1 enters as a coefficient in the expression (5.37), not when 

it is present as a power. After both these simplifications and canceling out the 

multiplier vCh+T from the numerator and denominator one obtains 

(l - - 1 
uj = — • ' . , (5.39) 

^-vch+r+i ^ ̂ ->/Eh+r-i ^ ' 

When r is not close to 1, we can also neglect large positive powers of r in 

expression (5.39) and also neglect 1 in comparison to large negative power of r. 

After dividing the denominator and the numerator of the expression (5.39) by 

f-vch+i obtain in the case of r not close to 1 

/ \ -vCE+T 

. = . (5.40) 
"2 FT 

When the ratio r/ri is not close to 1 (and r/ri > 1 always) the power of this ratio 

is small in expression (5.40) and can be neglected. Thus, we come to the following 

expression for the dimensionless angular velocity profile at the radii not close to 

the outer and inner boundaries 

fli - Qa rl 

fia 1 + rf ^ ^ ^ 

As one could expect from physical intuition, the angular velocity is indeed constant 

throughout the whole volume except at the thin boundary layers near inner and 
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outer walls. The angular velocity of the sodium locked up in the solid body rotation 

is intermediate between the angular velocities of the inner and outer cylinders. As 

it is evident from expression (5.41), this intermediate value depends only on the 

ratio of the radii of the cylinders, the smaller the inner radius ri the smaller the 

difference between angular velocity of locked up sodium and angular velocity of the 

outer cylinder. 

When r is sufficiently close to ri one can no longer neglect the large negative 

power of the ratio (r/ri) in expression (5.40). Instead, let us write r = ri -l-Jr, 

where 6r is very small such that we can expand the numerator of expression (5.40) 

in Sr. The zero and first order terms of such an expansion result in 

— n2 f, 5rVCh~H^\ 

^2 \ n{rl + 1) J' 

The angular velocity experiences a steep drop from the value at the inner boundary 

ni/n2 across a layer of the thickness 5r ss ri(Ch + 1)"^'"^ to the intermediate 

value given by expression (5.41). To consider the boundary layer near the outer 

boundary r = 1 we need to go back to expression (5.39) and assume r = 1 — (Jr. 

Then, the first term of the expansion in 5 will be 

which means that the rotation of the sodium is stopped in the boundary layer of 

thickness 6r « (Ch + 1)"^''^ near the outer cylinder (in the frame corotating with 

the outer cylinder). 

The inner boundary layer thinner is by a factor of « ri than the outer 

boundary layer. Using equation (5.41) for the intermediate frequency of rotation 

one can see that the drop of angular velocity across the outer boimdary layer 

is smaller by a factor of rf than the drop of angular velocity across the inner 
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boundary layer. The drop of azimuthal velocity across the inner boundary layer in 

physical units is 

A rr (^^1 ~ n2)i2li?2 
XnU04>- ^^^2  

and across the outer boundary layer is 

^ „ (fl, -

We see that \nUo4,Ri = and the drop of azimuthal velocity is also 

larger in the inner boundary layer. 

The expression (5.36) for the toroidal magnetic field b in the limit Ch -> 0 

takes the form 

(' - "-I) - L) 

in the limit Ch -> cxi one obtains the following expression 

fil - ̂2 n 1 

^2 r rf -f 1 x/ChTT 
6 = (5.43) 

For large values of Ch the lack of differential rotation in the bulk of the fluid leads 

to a strong decrease of the value of equilibrium toroidal magnetic field. Going back 

to the physical value for (5.27) one obtains the limiting expressions for the 

magnetic field for Ch ^ 0 

and for Ch cx 

= (0, - %)R^ ^ 1 (5 45) 
V rj 1 + rf r 

One can see that the limiting value of Bq^ does not depend on the strength of the 

applied radial field but is completely determined by the difference in the angular 

speeds of the cylinders and magnetic Prandtl number of the sodium. The fact that 
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Bo0 oc 1/r in expression (5.45) means that the axial current sustaining azimuthal 

magnetic field is concentrated near the inner and outer boundaries inside the 

boundary layers, while the bulk of the fluid is current free. 

Let us substitute the parameters of the New Mexico Dynamo Experiment (see 

section 5.2) in the solution obtained. The Chandrasekhar number (equation (5.30)) 

becomes 

For the maximum value of fia = 33 Hz the value of the toroidal magnetic field 

(equation (5.27)) becomes 

From expression (5.46) we see that a fairly week magnetic field of the order of 

the natural magnetic field existing on the surface of the Earth is sufficient to get 

a Chandrasekhar number larger than 1 and so have an effect on the equilibrium 

profile of the rotational velocity in the apparatus. The profiles of uj{r) and 6(r) 

for different values of the poloidal magnetic field B2 in the experiment are shown 

on Figs. 5.5 and 5.6. Note that the Chandrasekhar number does not depend on 

the absolute angular velocity of rotation, therefore, the profiles w(r) and 6(r) are 

also independent on how fast the sodium is rotating. The locking of the rotation of 

the sodium into solid body rotation and emergence of boundary layers are clearly 

visible on Fig. 5.5. The dramatic decrease of the value of the produced toroidal 

magnetic field in the device is evident from Fig. 5.6. The ratio of the maximum 

of Bq^ to the poloidal field at the outer boundary B2 decreases from « 10 for 

^2 < 1G to a 0.6 for B2 = 30 G. 

Although the poloidal magnetic field in the experiment will not be purely 

radial, the qualitative effect of the wound up toroidal magnetic field on the profile 

(5.46) 

= 60B2b{r). (5.47) 
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of angular rotational velocity should be the same as for a purely radial field 

considered here: the rotation locks up into solid body and the strength of the 

toroidal magnetic field decreases. In the actual flow, hydrodynamic turbulence 

should develop since the Reynolds number is very large and the Kelvin-Helmholtz 

instability will develop in the boundary layers near the inner and outer cylinder. 

The existence of turbulence greatly increases the transport of momentum in the 

flow and eflFectively increases the value of the kinematic viscosity v. .Another reason 

for the development of turbulence in the flow is the magneto-rotational instability, 

which can also operate in the boundary layers, where the large radial gradient of 

angular velocity exists. Instabilities and turbulence will cause broadening of the 

boundary layers due to the effectively increased viscosity. Also, for a given B2 the 

enhanced viscosity will cause the decrease of the Chandrasekhar number (see the 

definition (5.30)). Therefore, it will require the field to be much stronger than 

a few Gauss to alter the I/r^ Couette rotational profile. It is not easy to make 

quantitative predictions on the level and importance of turbulence and instabilities, 

and this interesting subject is beyond the limits of the present work. 

For the rest of this chapter, we assume that the applied magnetic field is 

sufficiently small and that the overall motion of the liquid in the bulk of the 

test-space is not altered by the magnetic torque. However, the level of turbulence 

is still not sufficient to cause the increase of the diffusivity of the magnetic field 

beyond the microscopic value r/ corresponding to conductivity of liquid sodium. It 

is seen from Fig. 5.5 that the rotational profile is not influenced by magnetic fields 

until Ch < 10. If one substitutes the turbulent viscosity Uturt for the microscopic 

viscosity u in definition (5.30) of Chandrasekhar number and requires that Uturb < 

this leaves us with the range of magnetic fields B2 < • 1G a 300 G, in 

which our assumption about the level of turbulent transport of momentum can be 
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valid. Such magnetic fields are higher than the natural magnetic field of the Earth 

and are plausible for the experiment taking its technical constraints into account 

(Colgate (2000)). 

After completion of the work described in this subsection, our attention came 

to the work of .\rora k. Gupta (1972), where the same problem of the equilibrium 

Couette profile of the flow of conducting viscous fiuid with the imposed external 

radial magnetic field was considered. Arora & Gupta (1972) obtained the same 

analytical solution as we did in equations (5.33) and (5.34). Subject to the same 

boundary conditions as ours, .\rora & Gupta (1972) obtained the same result as 

we did in equations (5.35) and (5.36). Qualitative conclusions and trends described 

by Arora k Gupta (1972) are also the same as ours. A further generalization of 

the solution described in this subsection is to include the presence of uniform axial 

magnetic field and axial flow. This is found in Weinstein (1990). This most general 

case of a stationary MHD cylindrical flow of a viscous conducting liquid depending 

only on the radial coordinate r also allows solutions in the form of power laws of r. 

Finally, a recent investigation of the stability of the solution (5.35), (5.36) indicates 

that a radial magnetic field has stabilizing eflect on the onset of the instability (Ali 

1994). 
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Figure 5.5 Equilibrium profiles of dimensionless angular velocity uj vs. dimensionless 

radius r for the laminar MHD Couette flow (equation (5.35)). Labels on the curves 

indicate the value of the radial magnetic field at the outer boundary r = 1. 



189 

OG 

3C  

10  G  

J L i_a. X J. t I L 

0.5 0.6 0.7 0.8 0.9 1 

r 

Figure 5.6 Equilibrium profiles of the dimensionless toroidal magnetic field b vs. the 

dimensionless radius r for the laminar MHD Couette flow (equation (5.36)). Labels 

on the curves indicate the value of the radial magnetic field at the outer boundary 

r = 1. 
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5.4.2. On the Influence of the MHD Ekman Layer on the Kinematic Dynamo 

Problem 

Now we apply the no-slip boundary conditions for the flow near the top and 

bottom end plates. This will cause the development of Ekman layers near the 

end plates, where the velocity of the flow substantially differs from pure toroidal 

rotation. This will change the global meridional circulation of the fluid in the bulk 

of the test-space (the Ekman current). The phenomenon of an Ekman layer is well 

known in geophysical hydrodynamics, where it emerges as a layer in the air near 

the surface of the rotating Earth, as a layer near the bottom of water basins and 

near the free surface of water basins subject to the interaction with the wind. The 

description of the hydrodynamical Ekman layer can be found in Prandtl (1952) 

(page 356). As before, we work in the frame rotating with the angular velocity 

n2- In the bulk of the test-space the radial equilibrium pressure Pq is determined 

from the equation of radial pressure balance (5.25). However, at the top and 

bottom plates the velocity of the fluid sodium is zero, cj = 0. The gradient of Pq 

becomes uncompensated by the centrifugal and Coriolis force due to the rotation 

of the sodium with angular frequency w, given by the value of p(ru^ -f- 2rn2w). 

This extra pressure gradient drives the radial flow near the end plates. This flow 

is directed inward, i.e. from the region of higher uncompensated pressure to the 

region of lower pressure. In the stationary state the speed of the radial flow must 

be constant; therefore, the driving pressure gradient must be compensated by 

the viscous stresses in the layer and by the extra forces due to the magnetic field 

perturbed by the radial flow. When magnetic fields are absent or very small, only 

the viscous stress is capable of counter-acting the radial pressure gradient in the 

Ekman layer. Since the uncompensated pressure is of the same order as the total 

pressure in the vessel {u ~ Q2)) the velocity of the radial flow will be of the order 
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of rotational velocity in the bulk of the test-space, i.e. about wr. The thickness 

of hydrodynamical Ekman layer must be small in order that viscous stress in the 

layer due to shear of radial velocity balance the uncompensated pressure. If we 

denote by ^ = 5{r) the width of the Ekman layer, then one obtains the estimate of 

the width of the Ekman layer as 

S « (5.48) 

Using the definition of the Reynolds number (5.4) one obtains 

J « a fla/SOOO, (5.49) 

an estimate given in the beginning of section 5.3. The maximum Reynolds number 

for the flow in the Ekman layer is 

Re,« « Ren^^ « 3000 (5.50) 
u 5 

and is smaller for lower rotation rates of the outer cylinder. This value of Reynolds 

number falls in the transition region between laminar and turbulent flows in 

boundary layers (e.g., page 112 of Prandtl 1952). Our consideration below is based 

on the equations of laminar flows, which may or may not be applicable to the 

actual experiment. 

Although the radial flow velocity in such a thin Ekman layer is large, the total 

volumetric rate of radial flow is small due to the small thickness of the Ekman 

layer. This inward directed flow adjacent to the end plates closes through two 

large scale meridional vortices in the bulk of the test-space. The typical velocity 

of the fluid in such vortices will be of order ^2^18JL and is too small to cause a 

significant influence on the magnetic field for Rmn ~ 100. However, due to the 

small thickness of the Ekman layer and large velocity gradients in the Ekman layer, 
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the question of its influence on the evolution of the magnetic fields needs more 

elaborate consideration. Besides, the presence of the magnetic field sheared in the 

Ekman layer can cause back-reaction on the flow in the layer itself. Especially 

important seems to be the shearing of the axial component of magnetic field by the 

radial flow in the Ekman layer and the resistance of the axial magnetic field to the 

flow in the layer. 

There has been some work done in the past considering the MHD Ekman 

layers (or Ekman-Hartmann layers as sometimes referred to in the literature), when 

the applied magnetic field is directed along the axis of rotation and is uniform in 

space. Oilman & Benton (1968) considered the problem of the flow of a viscous, 

incompressible, conducting fluid in the presence of an infinite, flat, insulating 

boundary which rotates at a speed Hq. Outside the boundary layer the fluid rotates 

uniformly with the speed fii = QqCI + e) slightly higher than the speed of the 

boundary and there is a uniform magnetic field aligned with the rotation axis. An 

exact solution for the flow and magnetic field was obtained to the first order in 

the small parameter e. It was found that the increase of the strength of imposed 

magnetic field causes the boundary layer to become thinner, suppressing the radial 

liquid flow, the Ekman suction, and inducing the radial current in the layer, which 

closes through the axial current in the volume of the liquid. The extension of 

this work by Oilman k Benton (1968) to consider the boundary with an arbitrary 

conductivity was performed by Loper (1970). It was shown that the conductivity of 

the plate does not influence the structure of MHD Ekman layer found in the work 

by Oilman & Benton (1968). Another extension of this work by Oilman & Benton 

(1968) to consider arbitrary ratios between Qq and ^2 was done by Benton &: Chow 

(1972). Although quantitative results of Benton & Chow (1972) differ fi:om the case 

of small e, their qualitative conclusions about MHD Ekman layer are the same as in 
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Gilman & Benton (1968). Another type of analysis of the MHD Ekman layer was 

considered by Gupta (1972). This author considers the motion of the conducting, 

viscous fluid parallel to the flat isolating plate in a frame rotating with angular 

frequency Q. Far outside the Ekman layer, fluid moves uniformly with constant 

velocity and a uniform magnetic field parallel to the rotation axis is applied. Since 

in this case outside the boundary layer (UV)U = 0, the pressure balances the 

Coriolis force only (after taking correction for the centrifugal pressure), which is 

proportional to U. Thus, the pressure gradient driving circulation in the Ekman 

layer is linear for this type of flow. Gupta (1972) derives the same qualitative 

conclusions about the influence of the axial magnetic field on the properties of the 

Ekman layer as in the work by Gilman k Benton (1968). 

Here we perform a local analysis of a stationary MHD Ekman layer along 

the lines of Gupta (1972) but consider an imposed magnetic field having all three 

components. We write for the velocity U, magnetic field B and pressure P 

U = Uo + u, B = Bo + Bi, P = Pq-\-Pi, (5.51) 

where u, Bi and Pi are the deviations of the velocity, magnetic field and pressure 

from their values for purely toroidal shear flow caused by the existence of the 

Ekman layer. The spatial scale of the varying UQ, BQ and Pq is of the order of the 

size of the vessel, where vertical and radial dimensions of the experimental device 

are comparable. The spatial scale of the variations of u, Bi and Pi is of the order 

of the thickness of the Ekman layer S, which is much smaller than the dimension 

of the device. Also, the quantities u, Bi and Pi should vary most rapidly in the 

direction across the boundary layer (^-direction) and much more slowly in the 

direction parallel to the end plate. For definiteness we consider the Ekman layer 

near the bottom plate z = 0 at some radial position r, which is not very close to 
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the inner or outer cylinders. Our treatment is invalid close to the comers of the 

device where essentially two dimensional flow should ensue. Positive values of z 

correspond to the sodium filled space, while negative values of z correspond to the 

material of the end plate. 

First of all, substituting expressions (5.51) into equations (5.19) and (5.20) we 

see that the u and Bi must be divergence free vector fields 

Next, we substitute expressions (5.51) into the inductance equation for the magnetic 

field (5.21) and take into account that Uq and Bq already satisfy equation (5.21). 

We obtain the following equation 

V x (u x Bo) + V x (Uo x Bi) + V x (u x Bi) -f rjV^Bi = 0. (5.54) 

According to what was said above about the general structure of Ekman layer, one 

should expect that the value of u has the same order of magnitude as the value of 

Uq but be essentially nonzero only inside the Ekman layer. Thus, we obtain the 

following order of magnitude estimates for the four terms on the left hand side of 

equation (5.54) 

The ratio of the fourth term to the third and second terms is nl{SU^ = 

where we introduced the magnetic Reynolds number with respect to the thickness 

of the Ekman layer as 

V • u = 0, 

VBi=0. 

(5.52) 

(5.53) 

V x (u x Bo) ^ V x (Uo x Bi) -
0 0 

(5.55) 
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If one uses the estimate for the 5 given by expression (5.49) one obtains for the 

value of Rmj 

Rms « Ren^/^— « (5.56) 
T] vRen 

For the Ren « 1.3 • 10^ and Rmn « 120, corresponding to the maximum rotation 

speed of the experiment (see section (5.2)), Rm^ « 3.3 • 10"^, This is smaller for 

lower speeds of rotation, in proportion to As soon as Rm^ <C 1 we are able 

to neglect second and third terms in equation (5.54) compared to the fourth term. 

Thus, after dropping these terms we obtain an approximate inductance equation 

V X (u X Bo) + = 0. (5.57) 

Order of magnitude estimates of terms in this equation show that 

Bi ~ BqSUqIt] ~ BoRmtf. Therefore, Bi < Bq and can be considered a 

perturbation of the large scale magnetic field Bq. 

We neglect the small z-component of the velocity in the Ekman layer (see 

discussion above) and keep only z-derivatives of u and Bi in the inductance 

equation (5.57). The characteristic scale of the variation of Bq is of order of the 

size of the vessel for purely toroidal flow in the experiment or order i22Rnin^^^ 

for nonstationary flows caused by the plumes. Because of the high magnetic 

Prandtl number, both scales are much larger than the thickness of the Ekman 

layer. Therefore, we can neglect terms containing spatial derivatives of Bo and Uo 

compared to the terms containing z-derivatives of u and Bi. After doing so, we 

can neglect all dependencies on r in our local analysis. Thus, leaving the most 

significant terms in the expression V x (u x Bq) we write out equation (5.57) in 

components as follows 

„ dur d^Bir 
(5-58) 



196 

(5.59) 

(5.60) 

With the same order of accuracy equation (5.53) becomes dBu/dz = 0 with the 

solution Bu = constant. This also satisfies equation (5.60) automatically. Bqz 

can be considered as constant across the boundary layer, so the integration can be 

readily performed in equations (5.58) and (5.59) resulting in 

where Cr and are integration constants. For z » (J the deviations from the 

Couette flow Uo vanish. This means that Ur -> 0, -> 0 and the derivatives 

dBir/dz 0, dBy^/dz 0 in the sense that outside the Ekman layer the magnetic 

field Bi no longer varies on the scale of 5 but still could vary on much larger scales. 

Therefore, the integration constants must be zero and we arrive at the following 

solution 

The remaining boundary conditions for the values of Bir, Bi^ and Bu for z > J 

should come from the matching to the global large scale solution for the corrections 

to the magnetic fields Bi. When considering such large scale solutions the 

existence of the Ekman layer manifests itself in the boundary condition for jumps 

of tangential components of Bi across the top and bottom end plates. The jumps 

of tangential components of Bi can be found by integrating equations (5.61) 

(5.61) 

(5.62) 
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and (5.62) across the Ekman layer, namely 

1 f^°° 
filrlin - 5lr|out = Bq^ / Ur dz, 

V Jo 
(5.63) 

1 
-fil^lout — Bqz j U^dz, 

r) Jo 
(5.64) 

where the subscripts in and out mean inside the sodium and outside the sodium. 

Now we turn to the consideration of the force balance in the Ekman layer, 

equation (5.22). We substitute expressions (5.51) for U, B and P in the force 

balance equation (5.22) and take into account that the force balance equation 

is already satisfied by the functions Uo, BQ and Pq. Then, we are left with the 

following equation 

First, we consider terms in equation (5.65) involving a magnetic field. The term 

Bi X (V X Bo) does not contain the z-derivative across the Ekman layer of the 

perturbation of the magnetic field Bi and, therefore, is smaller than the term 

Bo x (V x Bt) by the ratio 5/R2- The term Bi x (V x Bi) is smaller than the 

term Bo x (V x Bi) by the ratio of Bi/Bo ~ Rmj. Therefore, one can leave only 

one magnetic term Bq x (V x Bi) in equation (5.65) as soon as Rm^ 1. Taking 

into account only z-derivatives in the remaining term and using expressions (5.61), 

(5.62) and dBu/dz = 0 for the 2-derivatives of the perturbation of magnetic field 

Bi, one can write this term in coordinates as 

(UoV)u + (uV)Uo + (uV)u + -Vpi = -2(02 x u) + i/V^u -
P 

[Bo X (V x Bi) + Bi X (V X Bo) + Bt x (V x BO]. (5.65) 

I {.Bor'^r -^00^0) • (5.66) 
Airpq 
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We see that the magnetic force is directed against the velocity in the Ekman layer 

in the horizontal plane r-<f). In the case of a purely axial field Bqz there is no 

z-component of the magnetic force and we obtain the approximation for magnetic 

drag forces used by Gupta (1972). If there are horizontal components of the 

magnetic field J5or and Bq^, then magnetic force has a vertical component as well. 

Continuity equation (5.52) for axisymmetric flow is 

+ ^ = (5.67) 

From this equation one obtains the estimate for the Ekman suction velocity as 

^ ^ rr r. u, -Ur ~ s-Uq. Equation ( 
r R2 

flux function ^'(r, 2) such that 

S 6 
u, -Ur ~ s-Uq. Equation (5.67) is satisfied automatically by introducing the 

r R2 

Ur = —-T-, (5.68) 
r oz 

(5.69) 
r or 

Similar to all other components of u and Bi, Uj changes much more rapidly in the 

2-direction in the boundary layer than in r- or fli-directions. 

One can see that all terms in the force balance equation (5.65) can be of the 

same order ~ Uq/Rz- To that order the 2-component of equation (5.65) takes the 

form 
1 BP R 
-V. = T̂ (Bo,«r + B»u<). (5.70) 
p OZ ATTfUT] 

Since far from the boundary layer the pressure should match the equilibrium 

pressure in the vessel, = 0, one has the solution of equation (5.70) as 

r+oo p-tOO Q 
Pi = - / -^{BoyUy + BqxUx) dz. 

Jz ^TTTJ 

q2 
An order of magnitude estimate for the value of Pi is Pi ~ ——UqS. At the same 

4nT} 
time, Pq ~ pUq, Since the magnetic field Bq is produced in the experiment due 
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to the motion of the characteristic velocity Uq, the pressure of the magnetic field 

Bq/Stt cannot substantially exceed the pUq. Therefore, we obtain that Pi < Po Rmj 

and the change of pressure in the Ekman layer is small compared to the equilibrium 

pressure in the vessel. It follows then that the order of terms with VPi in r- and 

(^components of equation (5.65) is Rm^C/o/^2 and terms with VPi can be 

neglected from the r- and ^-components of equation (5.65). 

We now will write out the remaining most significant terms in equation (5.65) 

with an order of magnitude ^ UHRi. Note, that although the vertical velocity in 

the Ekman layer Uz is very small, it cannot be neglected wherever the 2-derivatives 

of r and 0 velocity components are multiplied by u^. Thus, the equations of the 

force balance parallel to the end plates takes the form 

We introduce dimensionless variables for r and Uq^ = ur according to the 

expressions (5.27) in section 5.4.1 and will omit the primes for dimensionless 

variables. We will choose the linear velocity of rotation of the outer cylinder 

02^2 as a unit of any component of velocities and will use dimensionless velocities 

normalized with respect to the n2^2- In addition, we introduce the rescaled 

variable z' internal to the Ekman layer according to 

and will also omit the prime in the expressions to follow. Following the notation of 

(5.71) 

(5.72) 

(5.73) 
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Gupta (1972) we introduce a magnetizatioa parameter as 

1400 G 

where the last expression was evaluated for the parameters of the sodium in 

the experiment. Only the axial component of the magnetic field Bqz enters 

equations (5.71), (5.72). Therefore, the structure of the MHD Ekman layer depends 

only on the magnetic field component perpendicular to the boundary. and 

components lead to the appearance of an additional vertical pressure gradient near 

the end plates (equation (5.70)), which is balanced by the additional stress in the 

end plates, and does not influence the structure of the Ekman layer. 

Then, the dimensionless version of system (5.71) and (5.72) takes the form 

In terms of dimensionless variables the boundary conditions for Ur and are: 

These boundary conditions are quite obvious. However, we cannot specify the 

boundary conditions for and at the irmer cylinder. There is a discontinuity of 

the toroidal component of the velocity at the boundary at the inner comer of the 

test-space. Such a discontinuity leads to the break down of thin boundary layer 

approximation adopted in our analysis. One needs to consider the particularities 

-2ur - Mu^ + 

(5.75) 

(5.76) 

^^^12=0 — TUl, ^0|r=l — 0) 

^[a=0 ~ 0» ^rU-too ~ Oi '^rlrsl ~ 0. 

(5.77) 

(5.78) 



201 

of the flow near the comer, where MHD equations are essentially two dimensional. 

This interesting problem is beyond the scope of the present work. We should 

only mention, that due to the smallness of the region near the inner comer (the 

size is of the order or less than the Ekman layer thickness) the influence of the 

exact flow profile near the comer on the magnetic fields produced in the kinematic 

dynamo should be small. The approximation of the thin boundary layer is also 

not applicable in the vicinity of the outer cylinder for 1 — r ~ (5(r). However, 

because of the continuity of the boundary conditions near the outer corner, the 

zero boundary conditions for the velocity components in the Ekman layer at r 1 

are good approximations. 

For r close to 1 the angular velocity of the fluid u becomes small. Therefore, 

the components of the velocities inside the Ekman layer Ur and should also be 

small close to the outer wall. When Ur <IC 1, < I and w < 1 one can neglect the 

left hand sides of the equations (5.75) and (5.76) which are quadratic in a small 
duj 

parameter except for the term UrT—. Then, there remains just with the right hand 
dr 

du 
sides which are linear in Ur and plus the term Urt—. If du/dr < 1, this last 

dr 
term also disappears. We arrive at a geostrophic approximation in this case, where 

the motions in the Ekman layer are sufficiently slow that one can neglect inertia 

forces represented by the left hand sides of equations (5.75) and (5.76) compared 

to the Coriolis terms 2u^ and —2up in the right hand sides of equations (5.75) 

and (5.76). It is just such a linear system in the geostrophic approximation, which 

was solved by Gupta (1972) and in many works on hydrodjmamical Ekman layers 

(e.g. Prandtl 1952). Under the conditions of the experiment, the angular velocity 

of differential rotation wfij is comparable or even exceeds the angular velocity of 

the rotation of the reference frame 02- This is why the geostrophic approximation 

is generally not applicable in our case. 
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It is coavenient to introduce the complex variable 

Q = u^- iur. (5.79) 

Then, one also has 

z — 1 — i — 
= u0 = 2 (c+c). = 

where C is the complex conjugate of C- Subtracting the radial force balance 

equation (5.75) multiplied by i from the azimuthal force balance equation (5.76), 

using the definition (5.79) of C and expressions (5.80), one obtains the following 

third order system of equations for the unknown functions C = C(^i and 

^ = ^'(r, z) 

i 
^ = 5r(C-C). (5.82) 

This can be solved provided one uses the boundary conditions, which follow from 

the expressions (5.77) and (5.78) 

CU = -rw, CUoo = 0, C|r=i=0, (5.83) 

*51^=0 = 0, <5^1=0. (5.84) 

For r close to 1 the linear part of equation (5.81) becomes 

0-(m + 2i)c +  ̂ jr(c-o=o (5.85) 

and one does not need to invoke equation (5.82). For any given r equation (5.85) is 

a forth order linear ordinary differential equation with respect to z on the real and 



203 

imaginary parts of ( having constant coefficients. We look for the solutions of this 

equation in the form Ur oc e°", a The characteristic equation for a becomes 

a"* - 2Mq2 + 4̂ + = 0. (5.86) 

Formally, all four of its complex solutions can be written as 

= ±\1M± 22^1 +(5.87) 

The relation between and Ur is 

lav , iV/ 

By definition of the value of square root we will always mean the one having a 

non-negative real part, that is, the complex phase of the value of a square root 

ip should be in the interval —7r/2 < <p < 7r/2. Then, the values of the subscript 

of a corresponding to the following four possible choices of signs of the square 

roots in expression (5.87) are: 1 -> ++, 2 —h, 3 -> 4—, 4 —. As it is 

seen already from the solution for a (5.87), the structure of the MHD Ekman 
1 du 

layer crucially depends on the sign of the quantity 1 + rr—. If the flow does 
2 ar 

not rotate differentially, du/dr = 0, then the solution for Ur and will be 

oscillating and decaying to zero for 2 -> 0. This is the classical picture of Ekman 

layer (e.g. Prandtl 1952) and also the picture for the MHD Ekman layer (Gupta 

1972). The same is true for differentially rotating flows with du/dr > 0 and with 

du/dr > —2fT. However, if the gradient of angular velocity towards larger radii is 

steep enough such that dufdr < —2/r; then this causes a qualitatively different 

structure of the Ekman layer. 

1 dui 
Let us consider first the case when 1 + -r— > 0. In this case we have 

2 ar 

Qi = a2 = —ai, as = di, 04 = —di, (5.89) 
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where a'^ and a'l' are real and positive, > a'l, and are given by the expressions 

riM 
" i - y V  4  

M2 I du M 

The condition C -> 0 for 2 +oo means that only the terms cx e"*' and oc 

should be left in the solution. After satisfying the boundary conditions (5.83) at 

2 = 0 we obtain the solution 

Ur = , e~°''sin(a'i'z), (5.92) 

f  f f  

U0 = -ra;e"°''*cos(ai2). (5.93) 

We plot these vertical dependencies of Ur and U^=ur + on Figs. 5.7 and 5.8. 

In Fig. 5.9 there are two dimensional plots of Ur vs. across the Ekman layer. 
1 du 

The plots are done for several values of the differential rotation parameter -r— 
2 dr 

and for several values of the magnetization parameter M. The negative sign of Ur 

means flow toward the center of the vessel in the Ekman layer. The influence of 

differential rotation (negative duldr) is to increase the width of the Ekman layer 

and increase the radial flow Ur. Both these effects result in a large enhancement 
1 duj 

of the Ekman suction flow. When -r— approaches —1, the width of the Ekman 
2 dr 

layer without an applied magnetic field {M = 0) grows to infinity and also the 

maximum value of Ur in the layer increases infinitely. An applied magnetic field 

causes the layer to become thinner and decreases the radial velocity in agreement 

with previous studies described above. According to equations (5.63) and (5.64) 

this means that the ratio BI/BQ: also decreases with the increase in BQ^. The 

influence of the magnetic field is stronger for the differentially rotating case, as 

is seen from Figs. 5.7 and 5.8. This can be also observed from expressions (5.90) 

and (5.91) above. 
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Qualitatively, the effect of differential rotation on the Ekman layer can be 

understood, if one looks at equation (5.72) for the force balance in the 0-direction. 

The first term in the right hand side of this equation is the source of the term with 

dufdr in the linear equation (5.85). It represents the azimuthal stress arising from 

the radial flow near the end plate which transfers angular momentum. The term 

d{r'^uj)/dr is proportional to the specific angular momentum of the rotating fluid. 

In the linearized case, when w <d and u < 1, the term d{r^u)fdr is equivalent to 

the r^du/dr. For du/dr < 0 the sign of this term is opposite to the sign of the 

Coriolis term in the left hand side of equation (5.85). Thus, it tends to cancel out 

the effect of the Coriolis force, which counteracts the viscous drag represented by 

the last term in equation (5.85). In order to maintain the force balance, the radial 

velocity Ur needs to be larger. However, the increase of Ur helps to maintain the 

balance only until the differential rotation is not strong enough to reverse the sign 

of the Coriolis term. One can see from equation (5.85) that this will happen when 

--7-(r^u;) + 2 < 0. In the limit w <C 1 this condition is equal to the expression 
rdr 
under the square root in equation (5.87) within a factor of 2. 

The plot U^-Ur in Fig. 5.9 shows the direction of the velocity near the end 

plate. The angle if between the velocity vector in the Ekman layer and the 

(^direction at 2 = 0 is 

The classical value for i/j is 7r/4 (e.g., Prandtl 1952). Applying a magnetic field 

causes ip to decrease, which corresponds to the suppression of Ekman circulation 

by the magnetic field. For M oo tp 0. Differential rotation with the angular 

velocity increasing toward the center of the vessel causes (p to increase. The limiting 

case of that is duj/dr = —2/r and M = 0, then, ip = 7r/2. This also corresponds to 

1 
(5.94) 
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the enhancement of Ekman circulation by the differential rotation. However, even 

in a differentially rotating fluid the increase of the strength of the magnetic field 

always causes a decrease of (p. 

1 du 
Let us consider the case, when 1 + rr— < 0. In this case there are two 

2 dr 
sub-cases possible. The first one is when all roots of a given by expression (5.87) 

are real. This can only happen if M > 0, i.e. in the presence of a magnetic field. 

Another case is when two of the roots (5.87) are real and two are imaginary. The 

last sub-case will be always realized in the absence of an applied magnetic field for 

M = 0. 

First, we consider the case of all a being real. Then, we have from 

equation (5.87) 

at = jM-2^-l-ir^, aa =-ai,  

as = \ lM + 2^-1 -  a4 = -0:3. 

Here ai > 0, aa > 0 and Q3 > ai. The condition C -> 0 for 2 -l-oo means that 

only the terms a and oc e"''® should be left in the solution. After satisfying the 

boundary conditions (5.83) at z = 0 we obtain the solution 

Ur = — - e-"^-'), (5.95) 

= -^(e +e (5.96) 

We plot these vertical dependencies of Ur and =ur + u^ on Figs. 5.10 and 5.11. 

In Fig. 5.12 there are two dimensional plots of Ur vs. across the Ekman layer. 

The plots are done for several values of the differential rotation parameter 
2 dr 

and for several values of the magnetization parameter M. For any given doj/dr 
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there exists a critical value M = Mc{ r )  such that solutions (5.95) and (5.96) are 

well defined only for M > Mc- This Mc is given by 

Although mathematically different, the profiles of U^{z) and Ur{z) for the case of 

complex Q and the case of real a look qualitatively similar. When M is close to Mc, 

the width of the Ekman layer is large and becomes infinite in the limit M -> M^ 

The increase of M suppresses the Ekman layer: its width decreases and the Ekman 

suction velocity Ur also decreases for higher magnetic fields. Therefore, very high 

magnetic fields always cause the Ekman layer to vanish regardless of differential 

rotation. For strong magnetization, M » Mc, the effect of a larger magnitude of 

du/dr is to suppress the radial fiow in the Ekman layer, but there is little influence 

on the width of the layer. However, for small enough M > Mc, further decrease of 

the modulus of du/dr up to a limiting value of -2/r starts to cause the increase of 

the width of the layer as well as the enhancement of the radial velocity in the layer. 

Next, we consider the case when two values of a are real and two are imaginary. 

This case is realized for magnetization parameters M < Mc, where Mc is defined 

by equation (5.97). Now the roots of equation (5.86) become 

The condition C 0 for 2 +oo means that only the terms oc should 

be left in the solution. However, because of the boundary condition Ur|2=o = 0 

the only possible solution of such type for Ur is identical zero. Then, due to 

relation (5.88), should vanish also. This is in contradiction to the boundary 

(5.97) 

where 

(5.99) 
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conditioa u,^|2=o = —Thus, we conclude that solutions of boundary layer type, 

which would vanish for 2 oo, do not exist in this sub-case. If one relaxes the 

boundary condition at z 00 and only demand that the velocity components 

possible. After satisfying the boundary conditions (5.83) at 2 = 0 we obtain the 

solution 

Here the value of the constant C2 remains undetermined. The only requirement 

imposed by the boundary conditions (5.77) and (5.78) at r = 1 is that C2 = 0 at 

r = 1. The velocity profile oscillating in the 2-direction should be subject to the 

Kelvin-Helmholtz instability and should quickly evolve into a turbulent state since 

the Reynolds number on the scale of the thickness of the Ekman layer 5 is of the 

order of 3000 (see estimate (5.50)). 

There is a smooth transition between solutions for the Ekman layer in different 

regions of parameter space M and The solutions are continuously matched 
2 ar 

1 du 
across the line 1 + -r— = 0. Near the line M = Me the solutions given by 

2 dr 
formulae (5.95) and (5.96) become infinitely extended toward the region of large 2 

and match to non-vanishing solutions (5.100) and (5.101). 

The plausible profile of the angular velocity in the New Mexico dynamo 

experiment under back reaction of the magnetic field is given by equation (5.35). 

Its limit for Ch 0, Couette profile, is given by equation (5.1). The criterium 

for distinguishing different solutions of the Ekman layer structure for the angular 

are finite far from the end plate, then terms oc cos(q!'i 2) and a sin(a'i2) become 
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velocity profile (5.35) takes the form 

1 rfcj , Wi 
1 + rr— = 1 + Ph _>/Ch+l-l ri )r 2 dr 2H{ri) 

- (l - ^->/ch+r-ij (5J02) 

and for the Couette profile for Ch 0 becomes 

l d u _  r \  t j j \  

2^ dr r^l—rl 
1 + = 1 - (5-103) 

One can see that the Couette profile has an extended Ekman layer at the radii 

y/l-ri  

If wi > l/r? - 1 in the Couette profile, the whole end plates ri < r < 1 will 

have an extended Ekman layer described by solution (5.100) and (5.101). In the 

other limit, when wi < 1 - in Couette profile, the whole end plates ri < r < 1 

will have a narrow Ekman layer described by solution (5.92) and (5.93). In the 

intermediate case, when I-rf < wi < l/r? — 1, some part of the end plates closer 

to the center of the cylinder will have a thin Ekman layer and the other part will 

have an extended Ekman layer. In the case of the critically stable Couette flow 

in the experiment cJi = 3, ri = 1/2, we see that Wi = l/r^ — 1, meaning that the 

Ekman layer will be extended. However, close to the outer boundary r = 1 in the 

transitional zone from extended to thin layer, nonlinear terms, neglected in our 

analysis will become important (because the thickness of the layer much exceeds 

the small value of y/i^l^z) and so will modify the structure of the Ekman layer. 

Depending on the values of the angular rotational velocity of the inner cylinder 

ui and the Chandrasekhar number, Ch, different cases for the Ekman layer are 

possible for the magnetized case given by expression (5.102). Since the increase of 

Ch causes a steeper angular velocity gradient near the outer cylinder, the region 
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of the thin Ekman layer should become smaller with an increasing magnetic field. 

Note, that since = 0 for the solutions presented in section 5.4.1, M = 0 always. 

We plotted the values given by expression (5.102) for the case of marginally stable 

Couette flow wi = 3 and rt = 1/2 on Fig. 5.13. Since these considerations are 

meaningful only for the case of small w, only parts of the curves on Fig. 5.13 plotted 

by solid lines should be considered. One can see that for w < 1/2 the differential 

rotation is always strong enough to make the Ekman layer near the outer wall of 

the cylinder of the extended type. 
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Figure 5.7 Azimuthal velocity profiles in the MHD Ekman layer. The top plot is for 
1 du 

no differential rotation, the middle plot is for -r— = —0.5, and the bottom plot is 
2 dr 

1 du 
for = —0.9. The dimensionless scaled coordinate z (see equation (5.73)) is on 

the horizontal axis. Solid lines are for M = 0, dashed-dotted lines are for M = 0.3, 

dotted lines are for M = 1, short dashed lines are for M = 3, and long dashed lines 

are for M = 10. 
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Figure 5.8 Radial velocity profiles corresponding to the azimuthal velocity profiles 

plotted on Fig. 5.7 for the same values of parameters and using the same notations. 
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Figure 5.9 Plots of radial vs. azimuthal velocity components (Ekman spirals) 

corresponding to the azimuthal velocity profiles plotted on Fig. 5.7 for the same 

values of peurameters and using the same notations. 
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Figure 5.10 Azimutbal velocity profiles in MHD Ekman layer. The top plot is for 
1 d(j 1 du 1 doj 
-r— = —1.1, middle plot is for -r— = —2, bottom plot is for -r— = —11. The 
2 ar 2 dr 2 dr 
dimensionless scaled coordinate z (see equation (5 J3)) is on the horizontal axis. On 

the top plot solid lines are for M = 0.7, dashed-dotted lines are for M = 1; on 

the middle plot solid lines are for M = 2.1, dashed-dotted lines are for M = 2.3. 

Dotted line is for M = 3 on the top and middle plots and for M = 7 on the bottom 

plot. On all plots the short dashed lines are for M = 10, long dashed lines are for 

M = 30. 
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Figure 5.11 Radial velocity profiles corresponding to the azimuthal velocity profiles 

plotted on Fig. 5.10 for the same values of parameters and using the same notations. 
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Figure 5.12 Plots of radial vs. azimuthal velocity components (Ekman spirals) 

corresponding to the azimuthal velocity profiles plotted on Fig. 5.10 for the same 

values of parameters and using the same notations. 
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Figure 5.13 The quantity D = 1 + -r— is plotted vs. radius r for magnetized 
2  ar 

Couette flow given by equation (5.35) and Chandrasekhar number given by 

expression (5.46). The curves correspond to the curves on Fig. 5.5 and have the 

same strength of the magnetic field. Parts of curves, where w < 1/2, are plotted by 

a solid line, parts of curves, where w > 1/2, are plotted by dashed line. 
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5.5. One Dimensional Problem to Illustrate the Influence of Boundary Conditions 

on the Growth Rate of the Djmamo 

In order to have an idea of how vacuum boundary conditions aSiect the growth 

rate of the magnetic dynamo, we considered a simple one dimensional model. 

The model is as follows. The whole space is divided by two infinite parallel  z-y 

planes into three regions: a plane parallel slab extending from -L to +L in 

x-direction and extending to infinity in y and z directions, the half of space for 

X > +L and the half of space for x < ~L. The first region, the slab, is assumed 

to be filled with the conducting medium having magnetic diffusivity while the 

whole space outside this slab is filled with the conducting medium with different 

magnetic diffusivity 7/0. Conductivities of all three regions are assumed to be 

constant throughout the regions and have jumps only at the boundaries separating 

the regions. We will consider the magnetic field having only one non-vanishing 

component, By, everywhere. We will assume that all quantities depend on x and 

z only, and the dependence on 2 is in the form <x exp{ikzz). The limiting case 

fcj = 0 is not mathematically different from the general case k, ^ 0. Therefore, 

one can consider only one mode in z and write By = B{x) exp{ikgz). We postulate 

the existence of some kind of dynamo activity inside the slab between x = —L and 

x = +L. This dynamo activity recreates the y-component of magnetic field at a 

local rate dBy/dt = %By. We assume the rate 70 to be constant throughout the 

slab. Certainly, dynamo activity must involve at least 2D motions of the fluid and 

3D magnetic fields, but here is our main assumption for this section: we reduce 

all effects of flows and other components of magnetic field to a single local rate 

of amplification of y component of magnetic field 70. We also postulate that no 

dynamo activity is present at x < —L and x > +£. We will demand the magnetic 

field to vanish far from the slab, i.e. for x —00 and for x +00. Now, we will 
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find global modes and global growth rates 7 in such system. 

We consider the following system of equations for diffusion and dynamo 

production 

dB 
^ = 7?V2Bj, + 7oBy for - L < x < + L ,  (5.104) 

dB 
= T]oV^By for X < -L and x > +L. (5.105) 

at 

With the ansatz By = B{x) exp{'yt + ikiZ) the equations become 

FFIO 
'yB = ri^ + joB-T)klB for -L<x<+L, (5.106) 

d^B 
j B  = ~  for X  < ~ L  and x > +L. (5.107) 

The solutions of equations (5.106) and (5.107) must satisfy boundary conditions 

at X = —L and x = +L. Since the conductivity is finite on both sides of the 

slab, the tangential component of the magnetic field By must be continuous at 

the boundaries (no infinite current density j can be present at the boundaries). 

The normal component of the magnetic field vanishes everywhere by the definition 

of the problem itself. The second boundary condition is the continuity of the 

tangential components of the electric field. This can be transformed using Ohm's 

law E = j/<T. Therefore, the continuity of the tangential components of the electric 

field reduces to the continuity of the tangential components of 77 curl B. Since the 
dB 

only nonzero component of the magnetic field is By, one has Ey = 0, Ez = 
c ax 

Thus, we have two matching conditions for B{x) to be satisfied at the boundaries 

X — —L and x = +L 

B continuous, (5.108) 

dB .  
T]— contmuous, (5.109) 

ax 

The solution of equation (5.106) inside the slab — L  < x  <  L i s  

B=Cie'^+C2e-'^, (5.110) 
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where C\ and Ci are some constants to be determined from matching at the 

boundaries, and we denote 

+ (5.111) 
n 

Note that, in the formula (5.110) x must be nonzero. The special case x = 0 will 

be considered in section 5.5.4. 

5.5.1. General Dispersion Relation 

Let us first rewrite the basic equations (5.106) and (5.107) in self-adjoint form. Let 

us introduce the following notations 

r/(x) =  ̂

and 

T] for — L <x < +L, 

T/o for X  < - L  and x > +1, 

7d(x) = < 
7o for — L <x < -fL, 

0 for X < -L and x > +L. 

Then, equations (5.106) and (5.107) can be written as one equation 

^ ̂  ~ T}{x)klB. (5.112) 

For -L < X < L the equation (5.112) is identical to equation (5.106) and for x > L 

and X < —L the equation (5.112) is equivalent to equation (5.107). Further, one 

can show that any continuous solution B [ x )  of equation (5.112) also automatically 
dB 

satisfies the second of boundary conditions (5.109). Indeed, if the function 

is not continuous at x = —L or x = L, its derivative is infinite at the boundary. On 

the other hand, all other terms in equation (5.112) remains finite at the boundaries. 

Another way of showing this is to integrate both sides of equation (5.112) over a 

small interval —L — e < x < —L + e in the neighborhood of x = —L boundary. 
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This results in 

r-t+t r  o / x .  r  ^ d B \  ,  J B  
7 / B{x) dx = vix)—\ -  riix)— 

J -L - i .  dx dx 

/

—£(+c /•—£»+€ 
7d(i)B(x)dx— / r\{x)k\B{x)dx. 

•L-t J-L—f 

x=—L-t 

Here all integrals can be evaluated using the mean value theorem in the interval 

-L-e < X < -L + €. It is obvious that all integrals vanish in the limit c 0. 

Taking the limit e -> 0 one obtains the boundary condition, equation (5.109), 

again. 

Now we will use the fact that the second order differential operator in the 

left hand side of equation (5.112) is self-adjoint to prove that its eigenvalue 

7 can be real only. Indeed, let us multiply both sides of equation (5.112) by 

complex conjugate function B'{x) and integrate over the whole x from -oo to 

/

+00 f+OO 
\B{x)\ '^dx, [2 = I 7d(x)|B(x)pdx, 

•00 J —00 

/

+00 

rj{x)kl\B{x)\ '^dx, all of them being real and positive for any nontrivial 
•00 

solution of our problem. Then, one obtains 

/

+OO J / JD \ 

Jh 
/

+00 

T]{x) 
•00 

dB ^ 
dx + h-h. (5.114) 

Let us integrate the first term on the right hand side of equation (5.113) by parts 

and take into account that B -> 0 when x -> ±00. Then, equation (5.113) becomes 

c+00 

n( nA 
dx 

The derivative dBfdx is always finite (meaning finite current density everjwhere) 

and the integral in equation (5.114) is always real and positive. It follows now from 

equation (5.114) that 7 can be real only. The sign of 7 will depend on the relative 

contributions of the terms on the right hand side of equation (5.114). 
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It now follows from the definition of x, equation (5.111), that ^ is always 

real. This means that x itself can be either real or imaginary number. Both these 

two cases will be considered separately below. For deriving the dispersion relation 

for the eigenvalues of x we will not distinguish between those two cases and will 

allow for X to be a general complex number. For definiteness, we will assume that 

Re X > 0. 

As we mention in the beginning of this section, B{x) is assumed to decay 

away from the slab. This is possible only if the solutions for B outside the slab are 

exponents decaying at x -oo and x -> +oo. This requires that the choice of the 

solution of equation (5.107) at x < —L is 

B = (5.115) 

and the solution of equation (5.107) at x > £> is 

B = (5.116) 

where C_ and C+ are some constants, and 

k? = kl + (5.117) 
Vo 

Since 7 is real, kf must also be real. Here we require that kf > 0, k' .  is always 

real and the behavior of B for i > L and x < -L is always non-oscillating. This 

requirement means that 7 > -tjo/:?. Also in expressions (5.115) and (5.116) we 

assumed that k'g>0 and, therefore, have left only solutions decaying far away from 

the slab. 

Substituting expressions (5.110), (5.115), and (5.116) into the boundary 

conditions (5.108), (5.109) one can obtain the following system of four equations 

for four coeflScients C_, C+, Ci and Co 

CiTjxe'"^ - 0211X6"^ = (5.118a) 
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- CiTixe-"^ = -C+rjokU''^'^, (5.118b) 

Cie""^ + Cae^^ = (5.118c) 

Cie"^ + = C+e-'^'^, (5.118d) 

The solution of this system exists when the determinant of the 4 by 4 matrix of 

coefficients is zero. After a little algebra this results in 

= ±6^"^, (5.119) 
xq + rjok'^ 

where either -f or — signs are valid solutions. It is easy to show that if the 

denominator in equation (5.119) vanishes, the solution can exist only in the case 

when the numerator vanishes as well, i.e., when x = 0 and k', = 0. We will not 

consider this case, because for k'^ = 0, the magnetic field does not vanish at infinity. 

In turn, one can solve for x in the left hand side of equation (5.119) to rewrite it 

in the following way 

^ = (5.120) 
Mo y -th(xL) 

Here, cth corresponds to choosing the + sign in expression (5.119), while th 

corresponds to choosing the — sign in expression (5.119). The solution for the 

coefficients C is 

Ci = ±C2, (5.121a) 

C- = C2e^^'^(±e-'''' + e''^), (5.121b) 

= C2e*-^(±e''^ + e-"^), (5.121c) 

where we express Ci, C+, and C_ versus C2 and ± signs correspond to ± signs 

in the dispersion relation (5.119). One can see from equation (5.121) that the sign 

+ corresponds to a solution symmetric with respect to the plane x = 0, the sign — 

corresponds to a solution antisymmetric with respect to plain x = 0. 
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5.5.2. Results for Oscillating Solutions 

First, consider the case of oscillating solutions inside -L < x < L. In this 

case, < 0 and one can write x = ik, where one can regard fc > 0. Using 

expressions (5.111) and (5.117) and introducing dimensionless combinations kL, 

k,L, —, —— one can rewrite equation (5.120) as 
m V 

T] kL _ 

^  y /fc2I2 + i ̂_jfc2p + 2^ - k^L^^ 

cotan (kL) 
(5.122) 

-tan{kL) 

Note, that for any solution kL of equation (5.122), —kL \vill also be a solution of 

the same equation. This is what Is expected from the original equation (5.119) and 

from the symmetry of the problem with respect to the plane x = 0. Once kL is 

found, the growth rate can be calculated from equation (5.111) as 

7 = yo-v{kl + k'^), (5.123) 

and the value of k'^ can be calculated using expression (5.117) as follows 

which coincides with the square root expression in the denominator of 

equation (5.122). As we mentioned earlier, we consider only the case when k'̂  is 

real. Therefore, the expression under the square root in equations (5.122) and 

(5.124) is always positive. The fimction on the left hand side of equation (5.122) 

is a monotonically increasing fimction of kL, Indeed, let us denote the function on 

the left hand side of equation (5.122) as 

g{kL) = ̂  . (5.125) 
Vo 

^klL^ + J (-fc2i2 + - ib2L2 j 
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Then, one has 

9ikL) JJo |'^2X2 i f_k2l2 + 2!^ - jk2£2^ J 

and 

^ = 3  f i  V  
d[kLY \Vo) (i . ir2 , n {  L2r7 , 7ot.' t.2 

^ > 0. (5.127) 

The function g{kL) is 0 at fcl = 0 and rises to infinity, when kL approaches the 

value of 

when the expression under square root in equation (5.122) vanishes. On the 

other hand, both -tan {kL) and cotan {kL) functions on the right hand side of 

equation (5.122) decreases monotonically from +oo to —oo over the interval in 

kL from (n - l)7r/2 to n7r/2, where n is any integer number. It is easy to see 

that the equation (5.122) must always have at least one solution in the interval 

0 <kL < 7r/2. Let us denote the solutions of the equation (5.122) as A:„L such that 

each solution belongs to the interval (n — l)7r/2 < knL < nit/l. Then, the smallest 

p o s i t i v e  s o l u t i o n  i s  k i L ,  0  <  k ^ L  <  7 r / 2 .  I t  a l w a y s  e x i s t s  a s  s o o n  a s  k f  > 0 .  

Now, we will consider the dependence of kiL on the ratio TJ/TJQ, when other 

parameters of the problem kzL, 'IQL'^IT] are constant. By differentiating both sides 

of equation (5.122) one can obtain the rate of change of the solution kL with 

respect to the parameter ///t/q as 

kmax^ (5.128) 
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where -F{kL) is a derivative of the right hand side of equation (5.122) defined as 

the ratio of 77/r/o. If TI /TIQ is very small (vacuum outside), then the value of 

g{kL) defined by expression (5.125) is also very small for kL not close to the 

limiting value of fcmax^'- If # 0, then the value of kmax^i becomes very large 

(see expression (5.128)), therefore, g{kL) is close to zero in the whole interval 

0 < kL < 7r/2. This means that the smallest positive solution of equation (5.122) is 

very close to 7r/2. If k^ = 0, then kmaxL = y/joL^/r}. Now, if '^qL'^/t} > 7r^/4, then 

the value of g{kL) is sti l l  close to zero in the whole interval 0 < kL < 7r /2 and kiL 

is close to 7r/2. However, if yoL"^11] < 7r^/4, then the function g{kL) rises steeply to 

infinity when kL -4 y/yoL^/r] and the root kiL will be very close to y/yoL^/rj. 

As the ratio 77/770 increases, this smallest positive solution kiL decreases. In 

the limit of very large TJ/TJO (perfectly conducting media outside) the function 

g{kL) (5.125) becomes 

Therefore, the smallest positive solution of the dispersion relation (5.122) must be 

close to 0. Indeed, for fcL -C 1 one has cotan(fc£) «s l/{kL) and the main order of 

the expansion of equation (5.122) in the small parameter kL is 

F{kL) = { 
I 

k siir(fcL) 

It is clear that 
d{kL) 

dinM 
is always negative and kL always decreases with increasing 

(5.129) 
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The solution of the equation (5.129) is 

The number of solutions of dispersion relation (5.122) depends on the value 

of the ratio t;///o. For Tf/rjo 0 and fej ^ 0 there are an infinite number of 

(nonnegative) solutions fc„L = n7r/2, where n is any nonnegative integer. For 

v/vo 0 and k, = 0, all solutions but the largest one are still given by formula 

kjiL = n7r/2, but n > 0 cannot exceed the integer part of the ratio 
TT 

The largest solution is kL = y/joUJ^. With increasing Tj/rjo the number of higher 

eigenmodes oscillating inside -L <x <L decreases being equal to the integer part 

of the ratio 2kmaxLfTf. The solution ki exists unless Ar^ax > 0- 7o < then 

femax vanishes when r]/riQ approaches the value of 

1 
Vo max 

For this maximal possible value of the ratio the only one remaining solution 
77 77 

ki turns into zero. There are no solutions with real A:', for — > — 
% Vo 

The number of solutions knL is minimal for a perfectly conducting media 

outside the slab -L < x < L. According to equation (5.123) the dimensionless 

growth rates corresponding to these solutions are 

7n =7o-'7(A:? + A:^)- (5.132) 

The smallest value of ki results in the largest growth rate 71. This means that 

for general initial conditions for By after a long enough time the mode with 

k = ki will dominate over all other modes with higher and lower growth rates 

7„ (not to mention decajdng or oscillating in time modes). The dependence of 

ki on the magnetic diSiisivity 7/0 outside the slab, from equation (5.132), shows 
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that the growth rates 7„ are always monotonically decreasing functions of 

When the slab is surrounded by an ideal conductor, rjo = 0, the highest growth 

rate is 7i = 7o — when the slab is surrounded by vacuum, % -> +00, the 
TT^ 

highest growth rate is 7i = 70 - r]kl -  r}k\,  where kl = for fcj ^ 0 and 

kl = min —) for k^ = 0. 
4L^ Tf 

We find the solutions k],L of the dispersion relation (5.122) numerically. 

We plot a few of the dependencies of k^L on the ratio rj/rjo on Fig, 5.14 and 

Fig. 5.15. These plots illustrate the analysis of the behavior of the solutions of 

equation (5.122) described above. 

5.5.3. Results for Non-oscillating Solutions 

We turn our attention now to the case when > O i n  expression (5.111). In this 

case equation (5.120) can be rewritten using expressions (5.111) and (5.117) in the 

following form similar to the equation (5.122) 

-cth (x£) 
(5.133) 

-th (xZ-) 

xL _ 

^klL^ + i (-fc2L2 + ^ 

As for the case lot any solution xL of equation (5.133), —xL will also be a 

solution of the same equation. Once a solution of the dispersion relation (5.133) is 

found, the growth rate can be calculated from equation (5.111) as 

7 = 7o + ^/(><^-fcz), (5-134) 

and the value of k', can be calculated using expression (5.117) as follows 

it; = ^kl-\-^(-kl + ^ + x^y (5.135) 

As before, we consider only the case when k'^ is real. Therefore, the expression 

under the square root sign in equations (5.133) and (5.135) is always positive. It is 
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convenient to denote left hand side of equation (5.133) as 

f ixL) = (5.136) 

™ JkU' + J + ^ + 

First and second derivatives of f{xL) are 

9/ , + 
13/2 

> 0, (5.137) 
d{>cL) Tlo |-^2£2 + i  f^_k2l2 + 0^ + ]" 

and 

d{xLY \r]o) |-^2i2 J + ̂  + 

Therefore, the function f { x L )  monotonically rises for ail x .  The value of f { x L )  is 

0 at xL = 0 and rises to asymptotic value of ./— when xL oo. 
V Vo 

Since the ratio TJ /TJQ is always positive, it is obvious from the equation (5.133) 

and the behavior of the function f{xL) that there are no positive solutions for xL. 

5.5.4. The Case of x = 0 

The case of x = 0 with x being defined according to equation (5.111) means that 

the equation (5.106) inside the slab —L<x<Lis now d^B/dx^ = 0 with the 

solution 

B = Ci+C2X, (5.139) 

where Ci and C2 are some constants to be determined from the matching at the 

boundaries. Outside the slab we still have the same solutions, equations (5.115) 

and (5.116), with k', defined according to equation (5.117). As before we require 

the solution to be exponentially decaying away from the slab, i.e. >0, and will 

limit ourselves by considering k'^>0 only. The problem is symmetric with respect 
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to plane x = 0 and the case of < 0 is reduced to the case of > 0 by change of 

X variable to —x. Boundary conditions, equations (5.108-5.109), should be applied 

to the problem. Because of the symmetry of the problem only solutions symmetric 

or antisymmetric in x are possible. For symmetric solutions one has Ca = 0 in 

equation (5.139). Then, the derivative of the solution inside the slab is zero and 

can be matched at the boundaries x = L and x = -L only to JB = 0 solution. 

Therefore, any nontrivial symmetric solutions are not possible. For antisymmetric 

solutions one has C\, = 0. Then, signs of dBldx and B must be the same at the 

boundary x = L, At the same time, for outside exponentially decaying solutions 

at infinity, the signs of dBldx and B at x = L must be opposite. Clearly, these 

requirements for the signs of the function B{x) from both sides of the boundary 

X = L are incompatible with boundary conditions, equations (5.108-5.109) for 

any nonzero solution B{x).  The same consideration of the signs of B and dB/dx 

is applicable to the other boundary x = -L. Thus, any nontrivial antisymmetric 

solutions are not possible either. 

The absence of any nonzero solutions can be proved by an explicit derivation 

of the dispersion relation similar to what was done in section 5.5.1. Let us write 

down the corresponding expressions for completeness. The system of equations 

obtained from the matching at the boundaries is 

= 0 ,  

Ci+C2L-C+e-^=^=0,  

rfC2 - = 0, 

T1C2 + k'gT]Qe~'̂ -̂ C+ = 0. 

(5.140a) 

(5.140b) 

(5.140c) 

(5.140d) 

The determinant of the matrix of coefficients of this system is 

D+ = 2k',T}Qe ^*'=^(77 + Lk'^Tjo). (5.141) 
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It is always positive and cannot be zero for any k[ > 0. In the case k'^ <0 the 

requirement that the solution decays far from the slab means that one needs to 

interchange and C_ in the solutions, equations (5.115) and (5.116), outside of 

the slab. Namely, the solution of equation (5.107) at x < -L is 

B = (5.142) 

and the solution of equation (5.107) at x > L is 

B = (5.143) 

Boundary conditions applied to the expressions (5.139), (5.142), and (5.143) leads 

to the system different from the system (5.140) by only changing k'^ by -k',. 

Therefore, the determinant of the system in the case k^ < 0 is obtained from 

expression (5.141) by changing k'^ by -fc'j. This determinant is 

£>_ = 2k%e^'^'^{-v + Lk%). (5.144) 

For any k'. <0 the expression (5.144) is positive, which completes the formal proof 

that nontrivial solutions of the problem are not possible in the case of x = 0. 

5.5.5. Conclusions from One Dimensional Modeling 

We used two one dimensional simplified models to obtain an understanding and 

insight into how the changes of the resistive properties of the medium surrounding 

the magnetic dynamo influence the growth rate of the magnetic field. In both 

models we considered the evolution of only one component of the magnetic field 

tangential to the boundaries between different regions in the models. In this section 

we considered a model when the dynamo is embedded in a uniform media with 

finite resistivity extending to infinity and calculated the dependence of the growth 

rate of the magnetic field on the resistivity of the outside medium. The growth 
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rate of all eigenmodes in such a system turned out to decrease with a decrease of 

the conductivity of the outside medium. Physically, this result can be understood 

in terms of the diffusion of the magnetic field outside of the slab with the source of 

the magnetic field caused by the dynamo. The lower the conductivity of the outside 

medium relative to the conductivity of the medium inside the slab, the faster the 

magnetic field diffuses into surrounding space and the slower is the overall growth 

rate of the eigenmode. 

In Appendix C we describe in details another one dimensional similar problem. 

In this problem the dynamo is surrounded by the vacuum region, which in turn 

is bounded by a perfectly conducting walls. We calculated the dependence of the 

growth rate of the eigenmodes in such a system on the distance to the perfectly 

conducting walls. It turned out that the growth rate decreases with the increasing 

distance to the perfectly conducting walls (unless the magnetic field does not 

exist in the vacuum region at all). This result can be explained by the balance of 

energy. The work done by the dynamo source goes into building up the energy of 

the magnetic field inside the slab and in the surrounding vacuum. The larger the 

vacuum region, the larger the fraction of the energy of the vacuum magnetic field 

with respect to the total magnetic energy. It takes more time to build up this extra 

vacuum energy compared to the case, when the perfect conductor immediately 

surrounds the dynamo slab and prevents magnetic field &om spreading into 

vacuum. 

The results of consideration of one dimensional problems in the last two 

sections leads us to believe that the numerical computations of more complex 

three dimensional problem with an actual dynamo operating will show the same 

dependence on the resistivity of the medium surrounding the dynamo device 
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(vacuum is of particular importance for the actual dynamo experiment) and the 

growth rate will be less than the growth rate of the magnetic field in the numerical 

calculations with the ideally conducting boundaries surrounding the dynamo 

region. 
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Figure 5.14 The smallest positive wavenumber k1L (plots in the left column) and 

corresponding highest growth rate r 1L2 /TJ (plots in the right column) for oscillating 

solutions inside the slab. The horizontal axis is the decimal logarithm of the ratio 

TJ/TJo· The local growth rate ')'oL2 /TJ = 5. The upper plots are for kzL = 0, middle 

plots are for kzL = 1, lower plots are for kzL = 2. 
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Figure 5.15 The smallest positive wavenumber k1L (plots in the left column) and 

corresponding highest growth rate ry1L2 /rJ (plots in the right column) for oscillating 

solutions inside the slab. The horizontal axis is the decimal logarithm of the ratio 

rJ/rJo· The local growth rate ry0L 2 /rJ = 1. The upper plots are for kzL = 0, middle 

plots are for kzL = 1, lower plots are for kzL = 2. 
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5.6. Numerical Simulations of the Dynamo Excitation in the Experiment 

We perform numerical simulations of the dynamo activity using the code described 

in chapter 3 and the same flow model described in section 4.1 that is used 

for simulations of the dynamo due to star-disk collisions. We use the same 

dimensionless units as in section 5.4. Namely, the unit of length is the outer 

radius of the test space, R2, the unit of velocity is the azimuthal velocity of the 

outer cylinder, 02^2- Therefore, the outer cylinder makes one revolution during 

dimensionless time 27r, the inner cylinder makes one revolution during dimensionless 

time 7r/2. Critical Couette velocity profile is assumed, H = 1/r^ in our units. 

The inner radius is 1/2 in our units, the length of the test space is 1. In order 

to account for the conducting material inside the inner cylinder we extended our 

computational region toward r = 0.2 and assumed solid body rotation for r < 0.2 

with the angular velocity equal to the angular velocity of the inner cylindrical wall 

of the test space. We performed simulation with ideally conducting boundaries 

of the computational space. We realize that this is a very rough approximation 

to the actual experimental setup, when there are finite thickness aluminum walls, 

vacuum outside the device and a large volume of sodium in the plenum cylinder 

below the test space. The latter should also influence the magnetic field. When the 

boundaries of the computational space are ideally conducting, the magnetic field 

inside is not affected by the properties of outside materials, nor by any currents 

flowing outside the ideally conducting boundaries. 

We work in the cylindrical coordinate system with the axis of rotation 

centered on the axis of synmietry of the device. The z = —0.5 plane is the bottom 

plate of the test space, the z = 0.5 plane is the top plate of the test space, the 

r = 1/2 cylinder is the inner boundary of the differentially rotating region, and 
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the r = I cylinder is the outer boundary of the test space. Unlike the simulations 

for the star-disk collision dynamo, we assume that there is a bias magnetic field 

produced by external coils and frozen in the ideally conducting boundaries. To 

approximate this field we choose the initial conditions in the form Ar = 0, Aj = 0, 

.40 = r{z + 0.5). Then, the initial magnetic field is Br = -r, = 2{z + 0.5), 

B^ = 0. This poloidal field satisfies the equation V^B = 0 and, therefore, is 

unchanged if only rotation is present. The rotation produces toroidal field from 

this poloidal field. Both the poloidal and stationary state toroidal fields are shown 

in Fig. 5.16 for Rmn = 120. The ratio of the toroidal field to the poloidal field 

is 'v' 20 and depends on the position of measurement inside the test space. The 

toroidal field near the top end plate has the opposite sign from the toroidal field 

in the middle of the test space. The reversal of the sign of the toroidal magnetic 

field can be understood in terms of the conservation of total flux of the toroidal 

magnetic field through the cross section of the cylindrical computational space. 

Since this space is bounded by an ideal conductor, the total magnetic flux cannot 

change. Initially, the toroidal magnetic field was zero, so the total net flux of the 

toroidal magnetic field should remain zero. Therefore, regions of the magnetic field 

with different signs must exist in the rotating liquid. This situation is modeled 

in a one-dimensional approximation in section 5.3. Similar results for a change 

of the sign of the sheared magnetic field was obtained in that section. Note, that 

according to the analysis of section 5.3 the toroidal field changes sign near the top 

end plate (where the toroidal velocity of the fluid is discontinuous) regardless of 

the resistivity of the media outside the rotating liquid (i.e., aluminum or vacuum). 

Of course, there is no actual discontinuity of the fluid velocity near the end plates 

of the test space. Instead, the Ekman layers develop at the end plates. However, 

according to the results of section 5.4, the approximation of the Ekman layer 
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by a mathematical discontinuity of the toroidal velocity near the end plates has 

very little effect on the structure of the magnetic fields excited in the conducting 

rotating fluid. The reversal of the sign of the toroidal magnetic field is illustrated 

in Fig. 5.17. .\lthough we have not performed numerical simulations with vacuum 

outside the liquid sodium, we believe that in the case of vacuum, the reversal of 

sign of the toroidal magnetic field will still be observed. The same should happen 

if one puts a layer of electric insulator between sodium and aluminum walls to 

electrically insulate the top wall from the liquid sodium. 

Next, we modeled the kinematic dynamo produced by jets of sodium together 

with the Couette differential rotation. We take the radius of the jet fp = 0.21, 

the position of the center of the jet at TQ = 0.71, and the vertical velocity of 

the flow inside the rising cylinder Vpz = 0.63. This geometry corresponds to the 

experimental setup described in section 5.2, the radius of the jet is chosen to be 

the maximum possible, and the vertical velocity of the liquid in the jet requires 

only moderate power of the piston driving mechanism. The vertical velocity of the 

plume is chosen such that the plume reaches the top end plate during the time 

when the fluid at the radius if the plume rotates by the angle TT. During this same 

time the plume rotates clockwise by tt radians in the local Couette rotating 

frame. Such a timing should maximize the release of the poloidal magnetic field due 

to the diffusion out of the twisting plume into surrounding liquid. After the plume 

reaches the top end plate, the velocity field of the flow is smoothly set back to the 

pure Couette profile without further poloidal motions. There are two identical 

plumes ejected simultaneously through the two orifices located symmetrically with 

respect to the rotation axis of the device. We performed simulations with different 

time intervals between consequent plumes ejections. We looked at the various rates 

of: (1) one pair of plumes per one revolution of the outer cylinder (i.e., per 27r 
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units of time), (2) one pair of plumes per two revolutions of the outer cylinder, (3) 

one pair of plumes per three revolutions of the outer cylinder, and so on, until the 

dynamo could no longer be excited. Typical curves of the energy growth and the 

growth of magnetic fluxes of three components of the magnetic field are presented 

in Figs. 5.18 and 5.19. The dependence of the growth rate of the dynamo vs. the 

rate of plumes (the rate is the inverse of the number of revolutions of the outer 

cylinder, N, per one ejected pair of plumes) is shown in Fig. 5.20. One can see that 

the threshold for the dynamo excitation is somewhere between one pair of plumes 

per 4 revolutions and one pair of plumes per 5 revolutions. The smallest point on 

the graph for N = 5 may not converged have numerically, and so is likely to be 

below the axis where 7 = 0. 
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Figure 5.16 The top panel shows the poloidal magnetic field and the bottom panel 

shows the contours of equal values of the toroidal magnetic field. The toroidal 

magnetic field is shown after the steady state between stretching and diffusion of 

the magnetic field is reached. 
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Figure 5.17 The stationary state of the bias magnetic field deformed by Couette 

differential rotation is shown. The colour coded is the magnitude of the magnetic 

field. The poloidal magnetic field is Br = -r, Bz = 2z. The toroidal magnetic field 

has different signs near the ideally conducting end plates and in the middle of the 

volume. 
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Magnetic Energy 

Figure 5.18 Part of one simulation for one pair of plumes per three revolutions 

shomng exponential growth of the dynamo. The small spikes on the graph are due 

to the action of each single plume. The slowly rising and decaying arches are due 

to the production of the toroidal field from the fraction of the poloidal field added 

by the plume. 
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Figure 5.19 The time dependencies of four radial, three toroidal, and two axial 

fluxes are shown for the same simulation as in Fig. 5.18. The fluxes are calculated 

through the surfaces positioned in the computational domain in the same way as in 

section 4.3, Figs. 4.16-4.18. 
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Figure 5.20 The dependence of the growth rate of the dynamo on the plume rate. 

N is the number of revolutions of the outer cylinder from one ejection of a pair of 

plumes to the next ejection of a pair of plumes. 
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6 CONCLUSIONS 

1. In this work we have proposed the mechanism for the amplification of 

magnetic field due to the helical action of the expanding and rotating clouds 

of gas produced by the stars passing through an accretion disk. Since the 

energy density in such a plume exceeds the energy density in the largest 

turbulent eddy of the turbulence in the accretion disk, the resulting magnetic 

field strength can be larger than in the turbulent dynamo model in the same 

accretion disk. 

2. The estimates based on the modeling of the central star cluster in a typical 

AGN (central black hole mass is ~ 10®iV/Q) result in about 10'' gas clouds 

produced by star-disk collisions existing at a given moment of time above the 

surface of the accretion disk. The density of star-disk collisions is uncertain 

by an order of magnitude. The flux of stars passing through the disk is 

maximized at r « 100-200rg and decreases for smaller r due to the capture of 

stars by the accretion disk into the disk plane and tidal disruption of stars, 

where = 2GMf(^ is the gravitational radius of the central supermassive 

black hole. The clouds rise to a typical height of a few disk thicknesses. More 

accurate values for the sizes of plumes are yet to be determined. 

3. We developed the mean field theory with the averaging of the magnetic field 

over the many plumes existing at a given moment of time above the disk 
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surface. The results from the mean field theory show that the conditions 

for the dynamo excitations are always met regardless of the uncertainties in 

the rate of star-disk collisions and size of plumes. Suppose q = q{r) is the 

average fraction of the disk surface covered by plumes. Then the condition 

for the excitation of the dynamo isq < 0.034. This condition is determined 

by the balance between mean a-effect and the enhanced diffusion of the 

magnetic field due to the mixing by a large number of plumes. For the most 

probable values of parameters the maximum kinematic dynamo growth rate 

occurs at w 100-200rg. The growth rate of the fastest growing mode is 

ss O.inff(rAf). The fastest growing mode has even (quadrupole) symmetry. 

Toroidal field in the growing mode dominates poloidal field by 10 times. 

4. The strength of the magnetic field in the saturated state of the dynamo can 

exceed the equipartition value with the thermal pressure in the disk. The 

simulations of the nonlinear development of magnetorotational instability 

(MRI) in accretion disks show that the magnetic field supported by MRI 

approaches the equipartition with the thermal pressure in the disk but still 

below the level of the thermal pressure in the disk. Such a strong magnetic 

field can have significant implications for the structure of the inner part of 

the accretion disk. 

5. We simulate numerically the kinematic dynamo with the type of flow such as 

produced by rising plumes in a differentially rotating corona of the disk. We 

have developed a kinematic dynamo code for this purpose. The code evolves 

the vector potential of magnetic field and, therefore, allows one to avoid the 

cleaning procedure to keep V • B = 0 during numerical simulations. Our 

model of the flow with rising and unwinding cylinders produces dynamo gain. 
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The growing magnetic field has predominantly even (quadrupole) symmetry, 

which is in a concordance with the results from the mean field theory. The 

growth rates obtained in the numerical experiment are also < 0.10/^ similar 

to the mean field theory approach. 

6. We use the same kinematic dynamo code to simulate differential shearing 

of the magnetic field and the dynamo activity for the New Mexico dynamo 

experiment. We review a short history of dynamo experiments and describe 

the experimental setup for the New Mexico dynamo experiment. The goal of 

the New Mexico dynamo experiment is to reproduce the a-fi type of dynamo 

in the laboratory. The experimental setup consists of two cylinders rotating 

with different angular velocities in the ratio 4:1 such that a critically stable 

Couette flow of liquid sodium is formed between the two cylinders. Two jets 

of liquid sodium are driven through the differentially rotating liquid sodium 

from two circular orifices in the end plate of the device. The expansion of 

the jets causes them to unwind similar to the way the plumes produced by 

star-disk collisions are expected to do. 

7. We analyze the production of the toroidal magnetic field in one dimensional 

model of the shearing flow with a discontinuity near the end plates of the 

experimental device. We found the presence of the reversed sign of the 

toroidal magnetic field near the end plates of the experimental (test) space 

filled with liquid sodium. We confirmed such a sign reversal by the direct 

numerical simulations in an axisymmetric model using the purely toroidal 

flow in the actual experimental geometry. 

8. We developed the theory of the MHD boundary Ekman layer in a differentially 

rotating conducting liquid near the end plates of the experimental device. We 
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show that for the purpose of calculating the evolution of the magnetic field 

on scales of the apparatus radius and length, one can replace the actual flow 

in the boundary layer by a mathematical discontinuity. We derive a nonlinear 

system of equations governing the structure of the MHD Ekman layer in 

non-geostrophic approximation. We also calculate the velocity and magnetic 

field profiles in the Ekman layer in the region close to the outer cylinder, 

where the equations governing the structure of the MHD Ekman layer can be 

linearized. We found that for a large enough differential rotation and weak 

enough magnetic field that the solutions localized to the thin layer do not 

exist. This property of the Ekman layer exists only in differentially rotating 

liquids and may lead to the development of turbulence (Taylor columns) in 

differentially rotating liquids. 

9. We perform numerical simulations of the kinematic dynamo for the New 

Mexico dynamo experiment. We use a simplified flow model consisting of 

rising cylinders surrounded by the fluid rotating with the Couette profile. 

The fluid inside the cylinders does not rotate with respect to the laboratory 

frame, but only participates in the vertical rising motion. There are two such 

cylinders present, which corresponds to the two jets of liquid sodium driven 

symmetrically with respect to the rotation axis in the actual experiment. We 

applied perfectly conducting boundary conditions and also considered the 

presence of the conducting material inside the inner cylindrical boundary of 

the space filled with liquid sodium. We investigated the dependence of the 

growth rate of the dynamo on the rate of the ejections of the plumes. For 

the maximum magnetic Reynolds number for the rotating fluid achievable in 

the experiment, Rmn = 120, the threshold for the dynamo excitation is one 

ejection of a pairs of plumes per four revolutions of the outer cylinder. This 
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is at the limit of the power of the experiment. 

10. We investigate the influence of the conductivity of the outside medium on 

the growth rate of the dynamo in the framework of a simple one dimensional 

model of the kinematic dynamo. The growth rate is highest for ideally 

conducting boundaries and decreases with increasing the resistivity of the 

outside medium. This suggests that in the actual experiment the dynamo will 

require more plume ejections to obtain an exponential growth than the value 

predicted by the calculations with ideally conducting boundary conditions. 
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APPENDIX A 

EXPRESSIONS FOR THE VERTICAL DISK PROFILES 

Here we list the formulae, which provide numerical expressions for the vertical 

profiles of r, p, T, effective temperature at the surface T,, Pg, Pr and the ratio of 

PglPr by means of the function a(C) computed in section 2.2.2 and parameters of 

the disk - black hole system. 

The first list of formulae are for the zone (a). Each formula has two parts: the 

first one involves the ratio rc^fGM and the second one involves the ratio r/Vab-

For zone (a) expressions we assumed K = 0.4cm^g~^; we omit ^ « 1 at all places 

except in the term (1 - ̂cr^), and we neglect the term 1 - W — in the expressions 

containing rat. The the formula (2.17) was derived neglecting this term, and 

so there is no reason for keeping general relativistic correction term further in 

expressions involving ro6. We also list an expression for the physical height z by 

means of the dimensionless C- This expression does not depend on r other than by 

means of the general relativistic correction term. 

(A.1) 
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Next we list the same quantities for the zone (b). In the zone (b) we will 

always neglect factor 1 - f!j since T » T 9 in zone (b). In similar manner to the 

zone (a) we assumed "'= 0.4 cm2 g-1, we omit ~ ~ 1 at all places except the term 
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(A.17) 

(A.18) 

(A.19) 

(A.20) 
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APPENDIX B 

ON THE INFLUENCE OF FERROMAGNETIC MATERIALS FOR NEW 

MEXICO DYNAMO EXPERIMENT 

Here we estimate the influence of the presence of parts made of ferromagnetic 

steel on the magnetic fields produced by the rotating liquid sodium and current 

coils. Our goal is to estimate the difference between the values of magnetic field B 

for the device as it would be if ferromagnetic parts will be replaced with material 

with magnetic permeability = 1 and for the actual device with ferromagnetic 

steel used for driving shafts, tubes and flanges. We are interested in the value of 

B inside the sodium. The geometry of materials and the device is assumed to be 

axisymmetric, which is appropriate for the first fi phase of the experiment with 

only axisymmetric toroidal flow present. We assume = 1 for all other materials 

except ferromagnetics, where fi« 10''. 

All conducting currents in coils, currents induced in sodium, aluminum, and 

steel by the inductive electromotive force should be considered as external currents 

with current density j versus magnetization currents in ferromagnetics, which 

produces magnetization of the material (magnetic moment of the unit volume) M. 
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Then, there is a definition of H from 

B = H + 47rM. (B.l) 

The quantity M is not zero only inside ferromagnetics, therefore, outside 

ferromagnetics B = H. We assume that for small fields the magnetization is 

proportional to the H 

M = xH. (B.2) 

It follows from (B.l) and (B.2) that 

B = (B.3) 

with ^ = 1 + 47rx. The Maxwell equations to solve are 

div(/iH)=0, (B.4) 

ATT 
c u r l H  =  — ( B . 5 )  

c 

where we regard ^ as a function of the position in space r, such that ^ = 1 outside 

ferromagnets and fi = lO"* inside ferromagnets. Suppose that the [x was set to 1 

in the whole space while the current distribution j and geometry of currents was 

not changed. One can find some solution for the fields in this case, which we will 

denote as Bq = Hq. These fields will satisfy the following equations 

divHo=0, (B.6) 

curlHo = —j. (B.7) 
c 

Also, HO and Bq are continuous everywhere. Now, the actual fields with 

ferromagnets present can be represented as 

H = Ho + Ht, (B.8) 

B = ̂ Hq + ̂ HT. (B.9) 
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Our goal is to first to find the Hi and then to find the difference for the B field, 

which will be equal to B - Bo = (/i - l)Ho Outside ferromagnetics {fx = 1) 

this difference reduces simply to the value of Hi. So, we need to find Hi to meet 

our goal. Using expression (B.8) for H in the equations (B.4-B.5) and using 

equations (B.6-B.7) for Ho one can obtain the system of equations for Hi 

Hq • + div (^Hi) = 0, (B.IO) 

curlHi=0. (B.ll) 

The general solution of equation (B.ll) is Hi = -V$mi where is some 

function, which is analogous to electrostatic potential and can be named as 

"magnetic potential". This function must be continuous and single valued in the 

whole space. However, it can have discontinuous first derivatives at the places 

where the interfaces between ferromagnetic materials and ^ = 1 materials are 

located. Introducing into equation (B.IO) one obtains 

Ho 'VM-div( f iV^J=0 (B.12)  

If one calculates the divergence of equation (B.l) and takes into account the 

relations (B.3) and (B.6), one can also express the divergence of Hi via the 

divergence of magnetization as 

div Hi = —47rdivM. (B.13) 

Note, however, that M itself depends on the value of Hi inside the magnetic 

material. Therefore, equation (B.13) cannot be used directly as a source equation 

for Hi. 

Both outside magnetic material and inside magnetic material satisfies the 

Laplace equation = 0. The solutions of this equation outside and inside 



257 

the magnetic material should be matched at the boundary using the continuity 

of the potential (this ensures continuity of tangential components of Hi) and 

the following relation between normal to the boundary components of the outer 

magnetic field ffinout and the inner magnetic field Hinin 

Hon{l — ^^)+ Hlnmit ~ Hinin = 0. (B.14) 

In the real case of shafts in the form of an elongated cylinder with finite length 

and the Ho being produced by coils, this problem cannot be solved simply without 

numerical modeling or expensive analytical calculations. 

Instead of using the real poloidal field, Ho, produced by coils we considered 

the assumption of uniform Ho directed parallel to the axis of symmetry. This 

assumption is poor and allows to estimate the effect only by order of magnitude. 

First of all, let us notice that the toroidal static magnetic field is not influenced 

by the presence of any axisymmetric volume filled with magnetic material. .\s 

can be easily seen, the solution for the magnetic field will be Hi = 0 in this 

case. This solution is a potential field in the whole space and satisfies boundary 

conditions (B.14) because of the trivial vanishing of normal components of all 

fields. Since the basic equations (B.3-B.5) are linear in magnetic field, the solution 

for static toroidal and poloidal static fields are independent of each other. The 

situation is different for time-dependent fields, for non-axisymmetric current 

distributions, or for non-axisymmetric magnetic bodies, but we will not consider 

further these complications. Now we consider two approximations for the geometry 

of magnetic materials. The first one is the sphere with the radius a. We assume 

that a <C i2, where R is the outer radius of the cylinder filled with sodium and also 

approximately the radius of bias coils. This approximation may be appropriate for 

the region of flanges. For the spherical body the solutions for components of H are 
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(e.g., Landau & Lifshits 1982) 

Hinin = -^Hon, Hmaut = 2Ho^. (B.15) 
f i-^2 n + 2 

The magnetic field Hi outside the sphere is pure dipole with the dipole magnetic 

moment given by 

m = (B.16) 
H + 2 

Therefore, the magnitude of Hi at the distance R from the sphere will be 

For characteristic sizes a ~ 10 cm, i? ~ 30 cm one has Hi ~ //o/30, so this is a 

small correction for the magnetic field in the region of the sodium test-space near 

the coils. For the inner region in the sodium the size is about i? ~ 15 cm and the 

correction already becomes significant. 

Next we consider a model of a very long elliptic magnetic body embedded in 

a uniform magnetic field parallel to the long axis of such body. This model may 

account for the influence of the long shaft driving the inner cylinder. If one looks 

closely at the end of such a body the shape is parabolic. This approximation is 

also poor because the large but finite length of the shaft with high /x introduces 

significant corrections to the solution. Of course, Ho is variable along the shaft in 

the real experimental device. For the infinitely long ellipsoidal rod the solution for 

components of H are (e.g., Landau k Lifshits 1982) 

Hnlin = 0, Hinout = ^On(M ~ 1)- (B.18) 

Outside the parabolic end of the rod one needs to solve the Laplace equation with 

boundary conditions (3.18). Since inside the paraboloid Hi = 0 the solution is 

analogous to the electrostatic potential outside a perfectly conducting paraboloid 
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with vanishing electric field inside. Such a solution is obtained using parabolic 

coordinates a and r (e.g., Kom k. Kom 1984). The surfaces of constant a are 

confocal paraboloids ranging from a degenerate case of a line for = 0 to infinity 

for a -> +00. Surfaces of constant r are confocal paraboloids with the same focal 

point as paraboloids a = constant but symmetrically reflected. The relations 

between cylindrical coordinates r and z {z axis is the axis of the rod and is along 

the direction of Bq, 2 = 0 is the common focal point of all parabolae) and parabolic 

coordinates are 

r2 = a2(22 4.a2), (B.19) 

r2 = r2(-22 + r2), (B.20) 

(B.21) 

2Z = T^- (B.22) 

The Laplace equation has separable variables in parabolic coordinates and the 

general solution, which depends only on cr and vanishes at infinity, is 

(B.23) 
a 

where C is a constant, which should be determined from the boundary 

condition (B.18). One can calculate the modulus of Hi corresponding to the 

solution (B.23). It is 

if. = |V«„| = , . (B.24) 

The 2-component of the Hi is given by 

Hu = -§• (B.25) 

This component parallel to the axis of the paraboloid depends only on cr, i.e. 

is constant Jilong the surfaces of constant a. We will identify one of the surfaces of 
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constant (J with the surface of the magnetic paraboloid, (Jo = a 112 . The distance 

a/2 is the focal distance of the paraboloid (J = a, and the radius of the circular cross 

section of the paraboloid at the position of the focal point is a. Approximately, 

we identify 2a with the radius of the shaft, which is ~ 4 em (with the steel tube 

around it). Thus, a~ 2 em. Since H1z given by equation (B.25) is constant on the 

paraboloid (J = a112 and also H0 is directed along z and constant on the paraboloid 

(J = a112 , the boundary condition (B.18) will be satisfied on the whole surface 

(J = a112 , if C = a312 Ho(J.l- 1). This completes the solution for H 1 . Now the 

modulus of H1 is derived from equation (B.24) as follows 

a312 H0 (J.l - 1) 
HI = (JJr2 + (J4 . 

(B.26) 

The point z = 0 approximately corresponds to the point close to the end of the 

shaft and the plane z = 0 passes close to the plate with the holes for the plumes in 

it. At z = 0 plane the module of H 1 is 

f.J,- 1 (a)3/2 
H1=Ho-- - . 

yl2r 
(B.27) 

The scaling H1 ex ( r /a) - 312 remains along any direction z = K,T, where K, is some 

constant specifying the direction. For example, at some point with r = z (top 

distant corner of the test-space sodium volume) one has 

f.J,-1 (a)3/2 
HI= Ho - ' 

V8+6V2 r 
(B.28) 

which is about 2.5 times less than the value given by expression (B.27). We 

obtained very different results from the case of the spherical magnetic body above. 

The value of H 1 given by expression (B.27) is proportional to J.l, which means strong 

magnetization of the rod. Also, H 1 decays as 3/2 power of radius compared to the 

3 power for a spherical body. However, the value of the "reference size" a is smaller 

for the case of the rod compared to the radius of the sphere. Assuming r"' 30 em 



261 

and n = 10"* one has Hi ~ lOO/To- The influence of such a rod is large and will 

definitely change the poloidal magnetic field in the sodium. However, because of 

the large value of /i, our estimate is very sensitive to the ratio of the radius to the 

length of the rod and should be reduced considerably. In the saturated state the 

e f f e c t i v e  F I  o f  t h e  f e r r o m a g n e t i c  r o d  r e d u c e s  t o  a b o u t  1 0 0 ,  t h e n  H I H Q .  

As a conclusion to this Appendix we mention that the influence of elongated 

bodies (like the shaft) on the poloidal magnetic field in the sodium is larger than 

the round or plate-like bodies (like flanges, short steel tubes). Therefore, one should 

avoid using long ferromagnetic shafts in the experiment. Also any ferromagnetic 

parts should be as close to axisymmetric as possible to avoid their influence on the 

toroidal magnetic fields, which are expected to be an order of magnitude larger 

than the poloidal fields. 
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APPENDIX C 

ONE DIMENSIONAL MODEL WITH VARIABLE DISTANCE TO 

CONDUCTING WALLS 

Here we consider another variety of one dimensional model, which would also 

illustrate the influence of vacuum outside the dynamo region on the growth rates 

of the modes of the magnetic field produced by the dynamo. As in section 5.5 

we consider a plane parallel slab extending from —L to L in the x-direction and 

extending to infinity in y and 2-directions. The slab is assumed to be filled with 

the conducting medium having the magnetic diffusivity // everywhere inside the 

slab. There is a vacuum region outside this slab bounded by two ideally conducting 

infinite planes located at x = -L(, and x = Li, (certainly, Lb> L). As in section 5.5 

we cons ider  the  magnet ic  f ie ld  having  only  one  nonvanish ing  component ,  B y ,  

everywhere. We will assume that all quantities depend on x and z only, and the 

dependence on 2 is in the form a exp(iAri2). Particularly, By = B(x)exp 

For convenience of notations we will omit the exponential dependence on time and 

z dependent multiplier in all expressions to follow. Because these multipliers are 

always present in any expression for any field variable and its derivatives, this does 

not lead to confusion. Again, we postulate the existence of some kind of dynamo 

activity inside the slab between x = —L and x = -\-L. This djmamo activity 
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recreates the j/-component of magnetic field at a local rate dByldt = joBy. We 

assume the rate 70 to be constant throughout the slab. The problem is to find 

global modes and global growth rates 7 in such a system. 

One needs to solve the equation (5.104) or equation (5.106) inside the slab 

—L < X < L but direct limit r/o +00 of equation (5,105) is not applicable in the 

vacuum region. Instead, one has to use a more restricting requirement that the 

current in the vacuum region vanishes. This condition is curlB = 0. If only the 

By component of the magnetic field is present, it reduces to two equations in the 

r e g i o n s  - L i ,  < x  <  — L  a n d  L  < x  < L \ ,  

The solution of these equations is B [ x )  = constant. Moreover, B = 0 if fcj # 0. 

The solutions of equations (5.106), (C.1-C.2) must satisfy boundary conditions 

at four surfaces x = —Lb, x = —L, x = L, and x = !&. At the boundaries 

with finite conductivity, x = -L and x = L, the tangential components of the 

magnetic field must be continuous, since the current density j must be finite at such 

boundaries. However, at the boundaries with ideally conducting walls, x = —Lb 

and X = LB, the currents with infinite current density can exist (surface currents). 

Therefore, one should not expect continuity of the tangential components of the 

magnetic field at these boundaries. Indeed, the magnetic field on the outer sides 

of conducting boundaries (for x < —Lb and x > Lb) should not be influenced by 

the processes happening inside the conducting boundaries. For example, if at the 

moment of time i = 0 the magnetic field was very small everywhere (so called "seed 

field" for the dynamo to amplify), it will remain the same small value for x < —Lb 

and X > Lb, while the tangential magnetic field By will develop a discontinuity at 

(C.l) 

(C.2) k:B = 0. 
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x = - L and x = L due to the surface currents. 

Next, one needs to satisfy the continuity of the tangential components of 

the electric field on all boundaries. Inside the slab - L < x < L the y and z 

components of the electric field can be derived from the magnetic field using Ohm's 

law E = j/ a, which results in 

Ey = 0, E _ !!_ 8By 
z- c ax . (C.3) 

. 18B . 
In the vacuum regwn one needs to use Faraday's law--~= curiE to denve the 

c ut 
electric field. The components of Faraday's law results in 

(C.4) 

(C.5) 

(C.6) 

The Gauss's law in vacuum is divE = 0, which results in 

(C.7) 

The solution of equations (C.4) and (C.5) is Ey = constant. There is no electric 

field present inside ideal conductor. Therefore, the continuity of the tangential 

component of the electric field at the boundaries x = - Lb and x = Lb means that 

Ey = 0 everywhere in the vacuum region. Further consideration differs significantly 

for the cases kz = 0 and kz f. 0. 

C.l. The case of kz = 0 

Let us first assume that kz = 0, i.e. all quantities depend on x coordinate only. 

Then, it follows from equation (C.7) that Ex = constant. The value of Ex does 
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not enter the remaining component, equation (C.6), of the Faraday's law. Also 

it does not enter in the boundary conditions. Any desirable value of the Ex can 

be achieved by putting extra charge on the conducting boundaries. We will not 

consider x component of the electric field further. Now, the equation (C.l) in the 

case of kz = 0 implies that B can be arbitrary constant. Let us denote the value 

of this constant in the vacuum region - Lb < x < - L as B 0 _ and in the vacuum 

region L < x < Lb as Eo+· Now one needs to solve the equation (C.6) for Ez with 

the boundary conditions Ez = 0 at x =±Lb. The solution is 

Ez = 1(x + Lb)Bo- for - Lb < x < -L, 
c 

Ez = 1(x- Lb)Bo+ for L < x < Lb. 
c 

(C.8) 

(C.9) 

The solution for the magnetic field inside the slab - L < x < L is still given by 

the equation (5.110) with x given by formula (5.111) (special case x = 0 will be 

considered later in this Appendix). Using the values of Ez outside the slab provided 

by equations (C.8) and (C.9) one can write the continuity of Ez at the surfaces 

x = - L and x = L in the following form 

(L ) dB I C -xL C xL 
'Y b- L Eo- = TJ dx x=-L = TJ IXe - TJ 2xe ' 

"!(L- Lb)Bo+ = TJ ~! lx=L T]C1xexL- T]C2 xe-xL. 

Continuity of B(x) at the surfaces x =-Land x =Lis 

B C -xL + c xL o- = 1e 2e , 

B C xL + C -xL O+ = le 2e . 

(C.lO) 

(C.11) 

(C.12) 

(C.l3) 

Now we have a system of four equations (C.l0-C.l3) for four unknown 

coefficients C1 , C2 , B 0_, and Eo+· Nonzero solutions exist when the determinant of 
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the matrix of the system is zero. After some algebra one can obtain the following 

dispersion relation for x 

(L, - L) (;:+ x) = { 
-th(xL) 

-cth(xL) 

Corresponding solution for the coefficients is 

c2 = ±C1, 

Eo-= Cl(e-xL ± exL), 

Eo+= Cl(exL ± e-xL), 

(C.14) 

(C.15a) 

(C.15b) 

(C.15c) 

where we express C2 , E 0_, and Eo+ versus C1 , + sign corresponds to the th 

function in the dispersion relation (C.14), - sign corresponds to cth function in 

the dispersion relation (C.14). One can see from equations (C.15) that the sign 

+ corresponds to a solution symmetric with respect to the plane x = 0, the sign 

- corresponds to a solution antisymmetric with respect to plain x = 0. Because 

of the symmetry of the problem all possible solutions are either symmetric or 

antisymmetric. 

Let us first prove, that the growth rate 'Y can only take real values. For this 

purpose we multiply both sides of equation (5.106) by complex conjugate function 

E*(x) and integrate the resulting equation across the interval -L < x < L. After 

integrating the term with the derivatives in equation (5.106) by parts, one obtains 

1L ldEI 2 dElL "(l = 7J -L dx dx + E*ry dx· -L + "(ol- ryk;I, (C.16) 

where we denote I= I: IE(x)l2 dx. Now we substitute for the values of rydE/dx 

at the x = - L, x = L their expressions by means of boundary conditions, 

equations (C.10-C.ll). Equation (C.16) now becomes 

1L ldEI 2 
"(l = 7] -L dx dx- (Lb- L)'Y [ IEI21x=L + IEI21x=-LJ + "(ol- ryk;I (C.17) 
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Let us denote Ii , , . 
-i, I dx 

the following expression 

=/. dx. One can solve equation (C.17) for 7 to obtain 

^ A "T* (TO V^Z)^ /Q IG] 
f + (£»-I)( |B|^U + |BPU,) '  

Since all quantities in equation (C.18) are real and the denominator in 

equation (C.18) is positive, the value of 7 should be always real and bounded. 

According to the expression (5.111) one can now conclude that x can be either real 

or imaginary only, but it cannot have both real and imaginary nonzero parts. 

It is easy to see that the dispersion relation (C.14) cannot have real solutions 

for X because the signs of the right and left hand sides of the equation (C.14) are 

always different for any real value of x. For imaginary values of x one can write 

X = ifc, where k is real. Now equation (C.14) takes the form 

tan(fcZ-) 
(C.19) 

-cotan(fcL) 

The growth rate 7 is expressed through k as 

7 = 7o - Tik'^. (C.20) 

If some A: is a solution of equation (C.19) then —k is also a solution of 

the same equation. The left hand side of equation (C.19), the function 

f { k )  =  { L I ,  —  L )  \  ̂  —  k ]  approaches +00 a Ar 0 and monotonically decreases 
\Tjk J 

for all values of k  { L b  >  L  and 70 > 0). While the right hand sides of 

equation (C.19) monotonically increase. Then, one can see that there are always 

exist an infinite number of the positive solutions of the equation (C.19) kn such 

that (n — l)7r/2 <kn < mv/2, n nms through the integer numbers from I to +cx3. 

According to the equation (C.20), the highest growth rate of the mode corresponds 

to the lowest value of k, i.e. ki in our notations. 
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Now we will investigate how kn and corresponding values of 7„ (equation (C.20) 

depend on the distance to the conducting wall Lb providing the size of the gap L 

is fixed. Function f{k) > 0 if fc < y/'^oh /{^) < 0 if A: > y/'folr}. The roots 

kn of equation (C.19) with different signs of /(fcn) have different dependence on 

Lb. If f{kn) > 0, then the value of the root Ar„ increases with the increase of the 

distance Lb; if f{kn) < 0, then the value of the root kn decreases with the increase 

of the distance Lb. However, the root with a given number n stays always at the 

same side from the point k = s/jofrj regardless of the value of Lb (as soon as 

Lb- L>0). In particular, ki < fr} and f{ki) > 0 always. This means that the 

value of ki always increases with increasing the distance Lb- Corresponding growth 

rate, equation (C.20), always decreases with the increasing the distance Lb. When 

L = Lb (no vacuum region outside the slab) the growth rate 71 = 70 and decreases 

• 1 -P FfO ^ TT _ . . 
to either 70 — if ./— > —, or 0, if . /— > —. It is interesting to notice 

4L^ y r; 2L y r/ 2l 
that the value of 71 remains always positive regardless of the values of 70, or Lb. 

Other modes have positive corresponding values of 7„, if < y/jolrf, and negative 

values of 7„, if KN > \/%/T]. In turn, this means that if the eigenvalue 7„ is 

positive, it always decreases when the conducting boundary is moved further away 

from the slab (increasing Lb); if the eigenvalue 7„ is negative, it always increases 

when the conducting boundary is moved further away from the slab. The sign of 

7n cannot change with changing the ratio of Lb/L, i.e. the growing modes always 

remain growing and the decaying modes always remain decaying. To summarize, 

the absolute values of all 7„ decrease with increasing the distance Lb, but the signs 

of 7„ remain unchanged, and there always exist eigenmode with positive growth 

rate 71. 
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Written in the dimensionless form, dispersion relation (C.19) becomes 

( Lb _ 1) (10L2 __!__ _ kL) = { tan(kL) . 
L TJ kL -cotan(kL) 

(C.21) 

The dependencies of the first three dimensionless eigenvalues knL and lnL2 /TJ on 

the ratio Lb/ L are illustrated in Figs. C.1-C.2. These dependencies were obtained 

by solving dimensionless dispersion relation (C.21) numerically. On Fig. C.1 we 

made plots for the relatively high value of 1oL2 /TJ = 17, which falls in between 1r2 

and (37r /2) 2 . Therefore, first three lower branches of the dispersion curves shown 

in Fig. C.1 have positive growth rates. The fourth branch has negative 1, but not 

shown on Fig. C.l. On Fig. C.2 we made plots for the relatively small value of 

loL2 /TJ = 1, which is less than (7r/2) 2 . Therefore, only the branch k 1 (Lb/L) has 

positive growth rate 11 , while other two higher branches have negative values of I· 

Finally, let us consider special case x = 0. In this case the solution for the 

magnetic field inside the slab is given by equation (5.139). The growth rate is 

now 1 = lo (see equation (5.111)). Using expressions (5.139) for the derivatives 

~~ lx=L and : lx=-L the boundary conditions for tangential electric field, 

equations (C.10-C.ll), together with the continuity of B(x) at x =-Land x = L, 

results in the following system of linear equations 

lo(Lb- L)Bo- = T]C2, 

lo(Lb- L)Bo+ = TJC2, 

It is easy to show that the necessary condition for this system to have nonzero 

solution is 

TJ + L = 0. 
lo(Lb- L) 
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For any positive /o and Lb > L this condition cannot be satisfied and, therefore, 

there are no solution of the problem with kz = 0 and x = 0. 

C.2. The case of kz =/= 0 

When kz =/= 0 the solution of equations (C.l-C.2) for the magnetic field in vacuum 

region is B(x) = 0. This means that the electric field in the vacuum region 

must be potential. The y-component of the electric field Ey = 0 and one needs 

to solve equations (C.6) and (C.7) to determine Ex and Ez components. For 

By = 0 equation (C.6) means that the electric field is potential. Substituting 

in equation (C.6) for the value of Ex its expression obtained by means of 

equation (C. 7) one obtains second order differential equation for Ez 

(C.22) 

The boundary conditions for equation (C.22) is the vanishing of the Ez at the 

ideally conducting boundaries x = - Lb and x = Lb. It is easy to see that all 

solutions of equation (C.22) will be as follows 

Ez = 2E+sinh (kz(Lb- x)) for L < x < Lb, 

Ez = 2E_sinh (kz(Lb + x)) for - Lb < x < -L, 

where E+ and E_ are constants of integration. 

(C.23a) 

(C.23b) 

The solution for the magnetic field B inside the slab - L < x < L is still 

given by equation (5.110) in section 5.5 with x determined by equation (5.111). 

The special case x = 0 will be considered later. For now let us assume that 

x =/= 0. At x = - L and x = L the magnetic field B must vanish. Therefore, 

we have the following linear system to find the values of constants cl and c2 in 
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271 

(C.24a) 

(C.24b) 

Nontrivial solutions exist only if e2"'£- e-2xL = 0, that is when e4"'L = 1, which 

has solutions 

xL = ikL = imr 
2 

(C.25) 

with n being any integer nonzero number. We see that x can take only 

purely imaginary values, meaning that the growth rate 'Y can be real only (see 

equation (5.111)). The solution for the coefficients is 

(C.26) 

and the solution for the magnetic field is 

(C.27) 

where C2 can be any complex number. Of course, by choosing C2 either real in the 

case of odd n or imaginary C2 = iC~ in the case of even n, one can always have the 

value of B(x) to be real. In particular, one has 

B = 2C~sin(;~ x) for n =2m, 

nn 
B = 2C2 cos( 2L x) for n =2m+ 1, 

where m is any integer. 

(C.28a) 

(C.28b) 

Now the continuity of Ez at the x =-Land x = L boundaries (equation (C.3)) 

will give us the expressions for constants E+ and E_ via C2 . For even values 

n = 2m one obtains 

(C.29) 
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for odd values n = 2m+ 1 one obtains 

(C.30) 

Thus, odd n correspond to the solutions forB and Ez symmetric with respect to the 

plane x = 0 and even n corresponds to the solutions for B and Ez antisymmetric 

with respect to the plane x = 0. 

The eigenvalue 1 is given by equation (5.123). With the expression (C.25) for 

k, one has 

(C.31) 

In the case kz =I= 0, the growth rate 1 is independent of the distance to the 

conducting walls Lb. This result can be understood, if one remembers that 

magnetic field does not penetrate from inside the slab with dynamo action to the 

vacuum region -Lb < x < -L and L < x < Lb. The results for growth rates, 

equation ( C.31), coincide with the growth rates obtained in the end of section 5.5.2 

for oscillating modes in the system of the dynamo slab surrounded by the vacuum 

with infinite extend. 

Finally, let us consider the case x = 0. In this case the solution for the 

magnetic field inside the slab is given by equation (5.139) with some constants 

C1 and C2 . At x = - L and x = L boundaries the magnetic field B must vanish. 

These requirements leads to that C1 = 0 and C2 = 0 in expression (5.139) for the 

magnetic field. Therefore, the magnetic field must vanish everywhere and nonzero 

solutions of our problem are not possible in the case kz =!= 0 and x = 0. 
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Figure C.l The wavenumber kL (left column plots) and corresponding growth rate 

')'L2 /'TJ (right column plots) for oscillating solutions inside the slab. Horizontal axis 

is the decimal logarithm of the ratio Lb/ L. The local growth rate is ')'oL2 /'TJ = 17. 

Upper two plots are for first branch of the dispersion curve ( k1 and ')'1), middle two 

plots are for the second branch of the dispersion curve (k2 and ')'2 ), and the lower 

two plots are for the third branch of the dispersion curve ( k3 and ')'3 ). 
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Figure C.2 The wavenumber kL (left column plots) and corresponding growth rate 

ryL2 /TJ (right column plots) for oscillating solutions inside the slab. Horizontal axis 

is the decimal logarithm of the ratio Lb/ L. The local growth rate is ry0 L 2 /TJ = 1. 

Upper two plots are for first branch of the dispersion curve (k1 and ry1), middle two 

plots are for the second branch of the dispersion curve (k2 and ry2), and the lower 

two plots are for the third branch of the dispersion curve (k3 and ry3). 
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