
INFORMATION TO USERS 

This manuscript has been reproduced from the microfilm master. UMI 

films the text directly from the original or copy submitted. Thus, some 

thesis and dissertation copies are in typewriter face, while others may 

be from any type of computer printer. 

The quality of this reproduction is dependent upon the quality of the 
copy submitted. Broken or indistinct print, colored or poor quality 

illustrations and photographs, print bleedthrough, substandard margins, 

and improper alignment can adversely affect reproduction. 

In the unlikely event that the author did not send UMI a complete 

manuscript and there are missing pages, these will be noted. Also, if 

unauthorized copyright material had to be removed, a note will indicate 

the deletion. 

Oversize materials (e.g., maps, drawings, charts) are reproduced by 

sectioning the original, beginning at the upper left-hand corner and 

continuing from left to right in equal sections with small overlaps. Each 

original is also photographed in one exposure and is included in 

reduced form at the back of the book. 

Photographs included in the original manuscript have been reproduced 

xerographically in this copy. Higher quality 6" x 9" black and white 
photographic prints are available for any photographs or illustrations 

appearing in this copy for an additional charge. Contact UMI directly 
to order. 

University Microfilms International 
A Bell & Howell Information Company 

300 North Zeeb Road. Ann Arbor, Ml 48106-1346 USA 
313/761-4700 800/521-0600 





Order Number 1S50765 

Payload adaptive control of a flexible manipulator using neural 
networks 

Askew, Craig Steven, M.S. 

The University of Arizona, 1992 

U-M-I 
300 N. Zeeb Rd. 
Ann Aibor, MI 48106 





PAYLOAD ADAPTIVE CONTROL OF A FLEXIBLE 
MANIPULATOR USING NEURAL NETWORKS 

by 

Craig Steven Askew 

A Thesis Submitted to the Faculty of the 

DEPARTMENT OF ELECTRICAL AND COMPUTER ENGINEERING 

In Partial Fulfillment of the Requirements 

For the Degree of 

MASTER OF SCIENCE 

WITH A MAJOR IN ELECTRICAL ENGINEERING 

In the Graduate College 

THE UNIVERSITY OF ARIZONA ; 

1 9 9 2  



2 

STATEMENT BY AUTHOR 

This thesis has been submitted in partial fulfillment of requirements for an ad­
vanced degree at The University of Arizona and is deposited in the University 
Library to be made available to borrowers under rules of the Library. 

Brief quotations from this thesis axe allowable without special permission, pro­
vided that accurate acknowledgment of source is made. Requests for permission 
for extended quotation from or reproduction of this manuscript in whole or in part 
may be granted by the head of the major department or the Dean of the Graduate 
College when in his or her judgment the proposed use of the material is in the in­
terests of scholarship. In all other instances, however, permission must be obtained 
from the author. 

SIGNED: 

APPROVAL BY THESIS DIRECTOR 

This thesis has been approved on the date shown below: 

Malur K. Sundareshan 
Professor of 

Electrical and Computer Engineering 

Date 



3 

TABLE OF CONTENTS 

LIST OF FIGURES 5 

LIST OF TABLES 7 

ABSTRACT 8 

1. INTRODUCTION 9 
1.1. Rigid vs. Flexible Manipulators 9 
1.2. Control Methods for Flexible Robots 11 

1.2.1. Classical Control 12 
1.2.2. Computed Torque Method 12 
1.2.3. Optimal Control 13 
1.2.4. Singular Perturbation Control 14 
1.2.5. Adaptive Control 15 
1.2.6. Nonlinear Control 17 

1.3. Neural Networks 18 
1.3.1. Artificial Neural Networks 19 
1.3.2. Neural Networks in Control 26 

1.4. Contributions of this Thesis 28 
1.5. Organization of Thesis 30 

2. MODELING AND SIMULATION 32 
2.1. Introduction 32 
2.2. Beam Theory and Assumptions 36 
2.3. Development of Kinematic Equations 38 

2.3.1. Hamiltonian 38 
2.3.2. Nonlinear Euler Equations and Boundary Conditions .... 44 
2.3.3. Non-dimensional Euler Equations 48 

2.4. Mode Shapes and Modal Frequencies 51 
2.4.1. Orthogonality of Mode Shapes 53 

2.5. Modal Expansion of Nonlinear and Linear Models 55 

2.6. Observability and Controllability of the Linear Model 59 

2.7. Simulation using MATLAB 62 



TABLE OF CONTENTS - Continued 4 

2.8. Results and Numerical Difficulties 64 
2.9. Pulse Response 66 

3. NEURAL NETWORK CLASSIFICATION APPROACH FOR 
PAYLOAD ADAPTIVE CONTROL 73 

3.1. Introduction 73 
3.2. Control Methodology 75 

3.2.1. Control Objectives 76 
3.3. Identification of Payload 83 
3.4. Neural Network Architecture and Training 90 

3.4.1. Multilayered Static Neural Networks 90 
3.4.2. Backpropagation Learning Algorithm 93 
3.4.3. Network Training for Payload Identification 98 

3.5. Performance of Neural Network-Based Control 100 
3.6. Implementation Issues Ill 

4. ADAPTIVE VARIABLE STRUCTURE CONTROL BY PAY-
LOAD IDENTIFICATION 114 

4.1. Introduction 114 
4.2. Variable Structure Control 115 
4.3. Some Previous Results using VSC for Flexible Manipulators .... 124 

4.3.1. Tip Position VSC 124 
4.3.2. Hub Rotation plus Pole Placement Approach 128 
4.3.3. VSC State Regulator Method 135 

4.4. Payload Identification Plus VSC 145 

5. CONCLUSIONS 158 
5.1. Introduction 158 
5.2. Summary of Results Reported in this Thesis 158 
5.3. Directions for Further Research 161 

REFERENCES 164 



5 

LIST OF FIGURES 

1.1. Sigmoidal Function Transfer Characteristic 21 

2.1. Euler-Bernoulli and Timoshenko motion of the transverse section . 37 

2.2. Single-Link Flexible Manipulator 39 
2.3. Tip Deflection due to Pulse Input, No Payload 67 
2.4. Hub Rotation due to Pulse Input, No Payload 68 
2.5. Tip Deflection due to Pulse Input, Payload: fi = k = 0.5 68 
2.6. Hub Rotation due to Pulse Input, Payload: fi = k = 0.5 69 
2.7. Tip Deflection Comparison, 1 Flexible mode ( ) vs. 4 Flexible 

Modes (-), Payload: fi = k = 0.5 70 
2.8. Maximum Tip Deflection with respect to Payload 71 
2.9. Maximum Tip Deflection with respect to Payload (Enlarged Scale) 72 

3.1. Tip Deflection of Flexible Manipulator Mo 79 
3.2. Hub Rotation of Flexible Manipulator Mo 80 
3.3. Tip Deflection of Flexible Manipulator Mi .5 80 
3.4. Hub Rotation of Flexible Manipulator M1.5 81 
3.5. Tip Response Under Test Control 85 
3.6. Mean Value of Tip Deflection vs. Maximum Tip Deflection, k = fi 87 
3.7. Mean Value of Tip Deflection vs. Maximum Tip Deflection, n  =  \ f i  88 
3.8. Static Multilayer Neural Network 91 
3.9. Nodal Connections in a Static Network 92 
3.10. Neural Network-Based Control System 100 
3.11. Class 1 Range of Tip Deflection 101 
3.12. Class 1 Range of Hub Response 101 
3.13. Class 2 Range of Tip Deflection 102 
3.14. Class 2 Range of Hub Response 103 
3.15. Tip Deflection - No Payload 104 
3.16. Hub Rotation - No Payload 104 
3.17. Tip Deflection - Payload fi = k = 0.4 (Class 1) 109 

3.18. Hub Rotation - Payload fi = k = 0.4 (Class 1) 109 
3.19. Tip Deflection - Payload fi = n = 1.2 (Class 2) 110 

3.20. Hub Rotation - Payload fi = n = 1.2 (Class 2) 110 



LIST OF FIGURES - Continued 6 

3.21. Time Sequence for Practical Implementation 112 

4.1. Tip Deflection, VSC Hub Regulator Control 122 
4.2. Hub Rotation, VSC Hub Regulator Control 122 
4.3. Sliding Line Trajectory, VSC Hub Regulator Control 123 
4.4. Phase Plane Trajectory, VSC Hub Regulator Control 123 
4.5. Tip Deflection, VSC Tip Position Approach 126 
4.6. Hub Rotation, VSC Tip Position Approach 127 
4.7. Phase Plane Trajectory, VSC Tip Position Approach 127 
4.8. Tip Deflection, VSC + Pole Placement Approach 132 
4.9. Hub Rotation, VSC + Pole Placement Approach 133 
4.10. Phase Plane Trajectory, VSC + Pole Placement Approach 133 
4.11. Tip Deflection under VSC control, No Payload 141 
4.12. Hub Rotation under VSC control, No Payload 142 
4.13. Sliding Line Trajectory, No Payload 142 
4.14. Tip Deflection of Arm: Class 0 Payload, NNVSC 146 
4.15. Hub Rotation of Arm: Class 0 Payload, NNVSC 146 
4.16. Tip Deflection of Arm: Class 1 Payload(/i = 0.4), NNVSC 147 
4.17. Hub Rotation of Arm: Class 1 Payload(jz = 0.4), NNVSC 148 
4.18. Tip Deflection of Arm: Class 1 Payload(/z = 0.4), Class 0 NNVSC . 148 
4.19. Hub Rotation of Arm: Class 1 Payload(/x = 0.4), Class 0 NNVSC . 149 
4.20. Sliding Mode of Arm: Class 1 Payload(/i = 0.4), Class 0 NNVSC . 149 
4.21. Tip Deflection of Arm: Class 2 Payload(/i = 1.2), NNVSC 151 
4.22. Hub Rotation of Arm: Class 2 Payload(/i = 1.2) NNVSC 152 
4.23. Tip Deflection of Arm: Class 2 Payload(/z = 1.2) Class 0 NNVSC . 152 
4.24. Hub Rotation of Arm: Class 2 Payload(^ = 1.2) Class 0 NNVSC . 153 
4.25. Sliding Mode of Arm: Class 2 Payload(/i = 1.2) Class 0 NNVSC . 153 
4.26. Tip Deflection Trajectory 156 
4.27. Hub Rotation Trajectory 157 
4.28. Tip Position Trajectory 157 



LIST OF TABLES 

2.1. Parameters of the CIRSSE Single-Link Flexible Manipulator .... 65 
2.2. Modal Frequency Comparison with CIRSSE Arm 65 



8 

ABSTRACT 

Flexible manipulators provide significant advantages over the commonly-used 

rigid robots due to their lightweight properties, but an accurate control of these 

manipulators is more difficult to attain, and it is especially demanding in task exe­

cutions involving changing payloads. This thesis addresses the problem of payload 

adaptive control of flexible manipulators. 

The nonlinear model describing the manipulator dynamics is completely derived 

and is then used for an accurate computer simulation of the flexible manipulator 

motions. Payload identification is implemented by using a novel neural network 

approach to identify distinct payload classes from tip deflection patterns which 

result from different payloads. The identification procedure is then used to se­

lect a controller which best meets the control objectives specifying hub speed and 

maximum tip deflection. Two distinct controller synthesis procedures, one using 

a pole-placement design and one employing a variable structure technique, are de­

veloped. The merits of payload adaptive control are shown by several simulation 

experiments . 



9 

CHAPTER 1 

INTRODUCTION 

1.1 Rigid vs. Flexible Manipulators 

Throughout modern times, industry has continually sought to increase automa­

tion as a means to improve product quality and productivity. This trend shows 

no signs of slowing, and in the past decade, manipulators and robots have been 

implemented on a large scale in some industries. Automation utilizing robotics has 

been shown to be successful in many industrial applications in improving the pro­

ductivity and quality of industry, but there are still some major drawbacks to the 

types of manipulators being widely used today. 

One of the major shortcomings of the robots in use today is their excessive 

weight. In order to ensure a high precision of movement and positioning accuracy, 

strict rigidity is a required characteristic of the links and joints, and the only way 

to satisfy this requirement is to make the robot very heavy. As a result of the large 

weight, larger actuators are required to move them, which in turn consume more 

power. 



10 

If the links were made of lightweight materials such as aluminum alloys or com­

posite materials, the weight of the robot could be significantly reduced. Manipula­

tors composed of these materials enjoy many advantages over rigid robots, including 

the following: 

• Higher speed 

• Smaller actuators 

• Lower energy consumption 

• Safer operation due to reduced inertia since the beam is lighter 

• Lower overall cost 

• Lower overall mass to be transported (especially valuable for space applica­

tions) 

• Lower mounting strength requirements. 

While the above advantages make lightweight or flexible manipulators attractive, 

the main drawback in real world applications is the flexibility introduced by the 

lightweight construction. The use of aluminum alloys or composite materials results 

in links which are strong in compression, but relatively weak in bending. Therefore, 

in order to achieve a high positioning accuracy, more complicated controls must be 

used, and the design of such controls is by no means a simple procedure. 



11 

In order to investigate the problems arising in flexible manipulator control and 

modeling, several mechanical models have been constructed. Some of the more 

well-known ones are: 

1. MIT FLEXBOT - Department of Mechanical Engineering, MIT 

2. ARMA - Department of Electrical Engineering, Ohio State University 

3. RALF - Department of Electrical Engineering, Georgia Institute of Technol­

ogy 

4. Stanford Flexible Arm - Department of Aeronautics and Astronautics, Stan­

ford University 

5. CIRSSE - NASA Center for Intelligent Robotic Systems for Space Explo­

ration, Rensselaer Polytechnic Institute 

6. Colorado State Univ. Flexible Manipulator - Department of Electrical Engi­

neering, CSU. 

These physical models have proven to be valuable testbeds for modeling, system 

identification and controller design and evaluation. 

1.2 Control Methods for Flexible Robots 

Efforts directed to the design of controls for flexible manipulators have increased 

considerably in the past few years. Both modern and classical control techniques 



12 

have been applied to the flexible manipulator, some with more success than oth­

ers. While there exist many methods for control, only some of the more popular 

techniques are discussed here in the interests of brevity. 

1.2.1 Classical Control 

In their pioneering work in 1984, Cannon and Schmitz [14] addressed the prob­

lem of noncollocated sensors and actuators which is inherent with flexible manipula­

tors. They showed that because the sensor and the actuator are located at opposite 

ends of the manipulator (and thus noncollocated), the simple classical PD and PID 

design approaches that work well for collocated systems cannot be applied without 

large vibration resulting, which consequently produces large positioning errors of 

the end-effector. 

A similar conclusion was arrived at by Shung and Vidyasagar [60] for the con­

ventional PI controller. Stabilization was not achieved with this method, and it was 

concluded that the noncollocated nature of the system was the reason. 

1.2.2 Computed Torque Method 

The computed torque method is a technique that is popularly used on rigid 

manipulators, and its extension to the case of flexible robots was conducted by 

De Luca et al. [18]. A dynamic inverse system was designed for use with both 

full order and reduced order models for open loop control, and closed loop control 



13 

using PD control in conjunction with the computed torque method was given. A 

simulation case study of a simplified one-link flexible arm showed the effect of the 

choice of output variables on the stability of the closed-loop system and on the 

overall tracking performance. 

1.2.3 Optimal Control 

A linear quadratic Gaussian regulator (LQG) was first used by Cannon and 

Schmitz [14] on flexible manipulators. This control minimized a performance index 

which was based on the tip position and the torque applied. For the design of 

the LQG regulator, it was assumed that the plant was perturbed by a white noise 

process input, and an optimal observer was designed as well to reconstruct the 

states for feedback control. A similar approach was used by Lee [37], except that 

unlike [14], a nonlinear model was considered and the effect of gravity was modeled, 

as the arm was operated in a vertical plane rather than a horizontal one. 

Another form of optimal control is the so-called Hi optimal control, which uses 

a more accurate norm (the Hi norm) to model the disturbances of the system, 

rather than using the white noise assumption of the LQG compensator. Vinke 

and Vidyasagar [70] designed a controller of this type which minimized the mean 

squared tracking error, while being constrained to a bounded input. This controller 

was realized with a stable factorization approach using a Lagrangian multiplier in 



14 

conjunction with Hi optimization. Promising results were found for two different 

types of models. 

Another approach, this time using Hcontrol, was investigated by Lin [39]. This 

approach uses a two-stage control; first, the rigid body dynamics are controlled with 

a partial feedback linearization control towards a desired state, and then when in 

the vicinity of this state, a robust stabilization control is activated to suppress 

elastic vibrations. The damping of the vibrations is achieved by control, which 

is similar to the #2 control except that a different norm is used to model the 

disturbances. 

1.2.4 Singular Perturbation Control 

The singular perturbation technique is dependent on decoupling the system into 

a "fast" system, composed of high frequency dynamics, and a "slow" system of 

slower dynamics which dominate the overall system dynamics. This technique is 

especially applicable to flexible manipulators, which are distributed parameter sys­

tems containing an infinite number of high frequency modes. 

Siciliano and Book [61] used this technique by decoupling the system into one 

composed of the rigid mode (slow system) and the flexible modes (fast system). The 

convenience of this approach is that well defined procedures used on rigid robots can 

be used to control the slow system. The flexible modes are damped using an optimal 

control with the slow state variables acting as parameters of the performance index. 



15 

A more recent application of singular perturbation control [59] used an inter­

esting actuator in order to dampen the oscillations of the link. The slow system 

variables were controlled in the same manner as [61], but the fast system vibrations 

were damped using distributed control. This distributed control was realized using 

a piezoelectric polymer film actuator which induced a strain along the longitudinal 

axis of the link to dampen the vibrational modes when a voltage was applied to it. 

1.2.5 Adaptive Control 

Adaptive control can be divided into two areas [46]: direct adaptive control and 

indirect adaptive control. In direct adaptive control, the controller parameters are 

directly adapted in a manner which minimizes or improves a specified performance 

index for the system. Indirect adaptive control is realized by updating control 

parameters based on plant parameters which are estimated on-line. There have 

been applications of both of these types of adaptive control to flexible manipulators. 

Direct adaptive control has seen the most application using model reference 

adaptive control (MRAC) techniques, in which it is desired to match a plant output 

with that of a reference model. Sasiadek and Srinivasan [58] used a MRAC scheme 

to make a one-link flexible robot follow a reference model which was a double-

integrator controlled by a simple PID controller. A nonlinearity compensation and 

decoupling control had parameters which directly corresponded to plant parameters 



16 

adjusted by the adaptive scheme. PID control was used in conjunction with the 

adaptive control to further stabilize the system, but the PID gains were fixed. 

Yuh [77] presented a discrete MRAC technique in which the flexibilities of the 

manipulator were modeled as disturbances on a rigid link system. Performance 

results were developed for both collocated and noncollocated systems, which once 

again showed the unsatisfactory performance of collocated sensor-actuator systems 

in damping tip vibrations. In both [77] and [58], no payload changes were simulated 

in the results. 

Most adaptive schemes which account for payload changes utilize indirect adap­

tive techniques, usually with separate identification techniques coupled with self-

tuning regulators. Rovner and Cannon [55] used a Recursive Least Squares (RLS) 

scheme to identify the parameters of the transfer function of the flexible arm and 

then once the convergence of the parameters was complete, regulator gains were cal­

culated using LQG optimal control theory. Several different payloads were tested 

with success, but the payload was never changed while in a continuous motion. 

This problem was addressed by Yang et al. [75] who also compensated for tran­

sients induced when a payload was released. The simulations showed successful 

results, but the arm was moved very slowly during these. Other papers, notably 

[78], present faster frequency domain identification techniques, but these do not 

address the adaptive control of flexible robots. 



17 

1.2.6 Nonlinear Control 

Since the flexible manipulator is characterized by highly nonlinear dynamic equa­

tions, nonlinear control techniques are desirable in order to achieve more accurate 

control than is possible with traditional linear techniques. Lee and Castelazo [36] 

presented a nonlinear scheme using a multiplication of state variables. An itera­

tive design procedure was outlined to reduce the overshoot and the settling times 

resulting from corresponding linear methods by using this state variable coupling 

feedback. Simulation results showed that these performance quantities were indeed 

improved when compared to linear controls. A procedure for designing nonlinear 

pole placement regulator and observer was outlined by Nicosia et al. [48] in 1989, 

and simulations showed the effectiveness of the controller/observer system. 

In the nonlinear method described in [40], the manipulator system dynamics 

was first transformed into error-driven equations by nonlinear feedforward and PID 

feedback control. The system was then stabilized using the second method of Lya-

punov. The control was tested on a robot modeled with flexible links and on one 

with flexible joints. 

Another form of nonlinear control is variable structure control (VSC) which 

is very popular due to the robustness properties resulting from the use of it. In 

this type of control, the nonlinearity is introduced by a controller which switches 

between two or more distinct structures to force the states of the system towards 

a hypersurface known as a sliding manifold. The hypersurface on which the states 



18 

are desired to reside is designed such that the system dynamics are asymptotically 

stable. Applications of this technique for flexible manipulators has been shown in 

[52, 47, 62]. A more detailed examination of these papers and design procedures 

of VSC will be presented in Chapter 4, as the research described in that chapter is 

concerned with the use of VSC as well. 

1.3 Neural Networks 

In the continuing quest for the improvement of robotic operation, it has always 

been a goal to approach human performance in varying degrees. The reason for 

this is simple. When a robot is controlled, it is done classically by deriving the 

differential equations which govern the motion of the arm and then using these 

equations to solve for the required torque to place the end-effector at the desired 

location. On the other hand, when a human wishes to place his or her hand at a 

location, no solution of the dynamical equations are needed. Although the action 

might be less precise, it is much more adaptive and successful. 

The reason for the success of the brain over that of a serial computer is mainly 

due to the structural differences between the two. The brain contains a massively 

connected structure of neurons which can be thought of as processing elements. This 

parallelism has many advantages over the serial connection of most computers today. 

It allows humans to use the great amount of sensing information to respond quickly 

to different situations despite the fact that the delay time of the processing elements 



19 

of the brain has been shown to be much slower than that of semiconductor devices 

[1]. Another advantage is that humans perform control mainly through learning 

and adaptation. These advantages have sparked interest in models of the human 

processing elements, called neural networks. In order to model these biological 

neural networks, a closer look at the underlying physiology is required. 

Studies of the anatomy of the brain have led to estimations that the human 

brain has over 1011 neurons. Each of these neurons receives information from other 

neurons via a matrix of connection weights called synapses. There exist more than 

1000 of these at the input and the output of each neuron, showing the parallel 

nature of the processing in the brain. The output of each neuron is realized by an 

output fiber called an axon, which sends impulses called action potentials along to 

other neurons. The function of this network can be changed or adapted by varying 

the weights of the synapses which determine the criteria of the neuron to fire (or 

output an action potential) or not. This process is known as learning the synapse 

weights. 

1.3.1 Artificial Neural Networks 

Networks whose purpose is to mimic the function of the biological neural net­

works of the brain are known as artificial neural networks, or simply neural networks 

as they are referred to in this thesis. The structure of a neural network can be char­

acterized by processing elements called nodes which are usually nonlinear in nature 



20 

and are organized in layers which are connected in a parallel fashion. The entire 

network may be made up of several layers, each containing many nodes connected 

to one another. 

Processing nodes can be categorized as either static or dynamic. For static nodes, 

an algebraic equation such as 

Vi = fidt,wvx j) (L1) 
j=i 

where ?/,- is the output of node i of the present layer, to,j is the interconnection 

weight associating the output, xj, of node j of the previous layer and node i of the 

present layer. The function /; can take many different forms, but most of the time 

it is a bounded, non-decreasing function such as a sigmoid or a threshold function 

such as that shown in Figure 1.1. Thus (1.1) merely states that the input signals 

are weighted and summed and then nonlinearly processed to produce the output of 

the node, ?/;. 

A dynamic node is characterized by a differential (rather than an algebraic) 

equation of the form 

u{ = -aiUi + &(u, W, b) (1.2) 

where a,- represents a connection weight of self-feedback, W is the weight matrix of 

the nodal connections, b is a vector of external inputs which could be from another 

layer, and <f,- is a nonlinear function of the form discussed earlier in conjunction 

with (1.1). Thus, in this type of node, the nodal output is continually changing. 



21 

Figure 1.1: Sigmoidal Function Transfer Characteristic 

While (1.2) represents a continuous time dynamical model of nodal processing, there 

are discrete models of this type as well. 

The design of a neural network primarily consists of setting the weight values 

of the interconnection matrix. This can be done by two methods. One is known 

as synthesis and involves a systematic algorithm of computational steps which is 

run to arrive at a set of weights which will allow the network to perform a desired 

function. The other is known as learning. In this method, the network is started 

with arbitrary initial weight values and is allowed to adapt or learn the correct 

value of the weights which best satisfies the performance requirements specified for 

the network. This learning is performed by comparing network outputs with some 

desired performance criteria and changing the weights of the interconnections if the 

network is performing inadequately. The advantages of learning are easily seen due 



22 

to the adaptability of the network to different environments. As a result, there has 

been much research in this area during the past few years. 

Training procedures to teach the network (or allow it to learn the correct weights) 

fall into two categories: supervised training and unsupervised training. Brief de­

scriptions of types of neural networks which use each of these training schemes are 

given in the sections below. For more detailed descriptions, two excellent sources 

are [49, 41]. 

Multilayer Static Neural Networks 

A multilayer static neural network consists of an input layer, an output layer and 

a number of hidden layers, which consist of static nodes such as those described 

by (1.1). The processing of signals is in a feedforward direction and no feedback 

or recurrent connections are used. Such a network has been shown to be successful 

in nonlinear function approximation and pattern classification tasks. The training 

algorithm commonly used with this type of network is known as backpropagation. 

This is a supervised training scheme which adjusts the weights of the network by 

comparing the output of the network with the desired outputs and backpropagating 

this error down through the hidden layers in order to adjust the weights to reduce 

the total output error. Networks of this type are used in the research reported in 

this thesis, and a more detailed examination of the network architecture and the 

backpropagation algorithm will be given in Chapter 3. 



23 

Hopfield Networks 

Although originally known as an additive model whose aspects have been stud­

ied as far back as 1943 by McCulloch and Pitts [43], this model has received more 

attention since the detailed examination of its characteristics by Hopfield [25]. This 

type of network was first developed for binary vector inputs as an associative mem­

ory, which could generate a true pattern based on the input of the same pattern 

which had been corrupted with noise or the input of a partial pattern. 

In this associative memory application, patterns are stored by setting the inter­

connection weights according to an outer product rule. The matrix W of weights 

is usually selected as symmetric with all diagonal elements zero. The nodes of this 

network are dynamic in nature, and when the weights are properly adjusted, the 

outputs will converge to a stable state corresponding to the input presented to the 

network. This stability is shown by Lyapunov analysis of an appropriate function 

representing the energy of the system. In this way the output of the network can 

be made to converge to a state which represents the correct pattern for an input 

which consists of a partial or distorted representation of the same pattern. 

Neural networks based on the Hopfield model have found other applications be­

sides that of associative memory. In particular, networks utilizing similar recurrent 

connections and convergence properties have been shown to have better learning 

rates [64, 65], and have also been used in the adaptive control of rigid robots [28, 27]. 



24 

Hamming Networks 

The Hamming network is usually constructed of two subnetworks, one of which 

is a special type known as MAXNET. This subnet computes the Hamming distance 

between the input pattern and a class exemplar. If the Hamming distance between 

a pattern x and the exemplar representing class Cj is smaller than the distance to 

all other class exemplars, then x is deemed to belong to Cj. The Hamming distance 

used in this algorithm is defined as 

H(x,Uj) = N-J2(u<jX{) (1.3) 
i 

where N is the number of features in the pattern, u,j are the weights of the lower 

subnet in which the feature values of the class exemplars are encoded (because these 

weights are determined beforehand, this is considered a supervised network), and 

x; are the feature values of the pattern x. 

Lippman [41] has shown that this type of network serves as a good classifier, 

in particular because of its property of boosting the value of the largest output 

while continually repressing lesser outputs, until finally the only output is that 

corresponding to the chosen class. Because of this binary type output, this network 

is used primarily for binary classification applications. 



25 

Carpenter-Grossberg Networks 

The three previous networks have all used supervised training techniques. An 

example of a neural network which uses unsupervised training, i.e. no feature or de­

sired output information is explicitly made available to the network, is a Carpenter-

Grossberg network which is based on Adaptive Resonance Theory (ART) [15]. This 

neural network considers the first input it receives as an exemplar representing a 

class, and the next input that follows is compared to it. If the distance between the 

two patterns is less than a defined threshold, also called vigilance, the patterns are 

'clustered' together in that class. If the distance exceeds the vigilance, that pattern 

becomes a new exemplar representing a different class. This clustering algorithm 

is known as the leader algorithm, because if the input "follows the leader" it is 

clustered with it, otherwise it becomes a "leader" itself. 

This network performs well with perfect inputs, but the performance is degraded 

in the presence of noise. To counter this, Lippman [41] suggests that weights might 

have to be adapted more slowly and the vigilance or threshold may have to be self-

adjusted during the training phase. 

Kohonen's Self-Organizing Networks 

This neural network model also uses unsupervised training. Once again, the 

inspiration for this model by Kohonen [32] came from biological nervous systems. 

In particular, this network is modeled after special characteristics of some nerves, 



26 

specifically those nerve cells and fibers in the auditory pathway. These cells and 

fibers are arranged anatomically such that the position of the nerve cell has a special 

significance in that it is sensitive to the frequency of sound that is most prevalent 

in that part of the pathway. 

Kohonen's algorithm is for a neural network structure in which all input nodes 

are directly connected to the output nodes. In addition, output nodes have many 

interconnections among themselves as well. Continuous-valued input vectors are 

presented as inputs sequentially in time with no desired output specified. The 

weights of the network are adjusted such that cluster or vector centers will be 

specified after a sufficient number of inputs have been presented. The weights also 

are organized such that outputs are topologically close to physically similar inputs 

and a natural organization results. This can be a benefit by reducing the complexity 

of networks with many layers of processing. A particular application of this network 

is in speech recognition as a vector quantizer. 

1.3.2 Neural Networks in Control 

To date, there has been little, if any, research in controls using neural networks for 

flexible manipulators. However, several papers have been presented in recent years 

which provide applications for rigid robots which show promise in being generalized 

for use on flexible robotic arms. 



27 

Kuperstein and Wang [34] have put forth a design for a neural controller for a 

one-link rigid manipulator that is general enough to be applied to many different 

configurations. They have shown that an unsupervised-learning controller could 

accurately move an unforeseen payload to arbitrary targets with no end-point os­

cillation. The controller is general enough that it could be adapted to many novel 

working environments. 

Rabelo and Avala [53] used neural networks in a hierarchical control scheme in 

which one neural system performed the higher-level trajectory planning task, while 

a second neural system performed the lower-level trajectory control. The trajectory 

planning was initiated by a network which determined if the desired position was in 

the workspace of attainable locations by the arm. A second set of networks mapped 

the possible coordinates of all of the different configurations of the arm which place 

the end-effector in the desired position. A third network completed the trajectory 

planning task by choosing the best solution based on the knowledge available from 

sensor inputs. 

The two papers cited above present neural controllers which can theoretically 

be generalized to flexible manipulators, but a lot of work must be done before this 

can be implemented in practical situations. One recent paper which has used neu­

ral networks in the control scheme does show promise for application to flexible 

manipulators, though. Leahy, Johnson, and Rogers [35] presented a method which 



28 

exploits the efficient pattern classification capabilities of neural networks, in par­

ticular static multilayer networks. In their design, the neural network adapted a 

set of parameters reflecting the mass of the payload in a computed-torque control 

scheme for a PUMA industrial robot arm. This was performed by having the net­

work identify classes based on the error patterns generated which were unique for 

different masses of payload. First a specific trajectory was planned and discretized 

into time intervals, and for each of these intervals one neural network was trained 

to classify the payload on the basis of the position error inputs for that time frame. 

This classification was then used to update the controller parameters to achieve 

better trajectory tracking capabilities. It is clear that such a use of neural networks 

is much simpler and more easily implementable than most control strategies of the 

type of [34] or [53]. These aspects will be discussed in greater detail in Chapter 3. 

1.4 Contributions of this Thesis 

The contributions of this thesis are threefold, and can be summarized as follows: 

1. A nonlinear model is developed for the flexible manipulator using the Energy 

Assumed Modes method. This model is a great improvement over linear 

models, especially for conducting simulation studies, because nonlinearities 

present in the physical manipulator are present in the numerical model. A 

further improvement in accurately modeling the physical system is obtained 

by using the exact modal frequencies of the linearized model as a basis for 



29 

expansion of the nonlinear system. This expansion more precisely reflects 

the actual dynamics of the flexible manipulator than the simpler methods 

prevalent in the literature which assume that the modal frequencies of the 

manipulator are equivalent to those of a simpler unrelated problem such as a 

clamped beam or a hinged beam. 

2. A payload identification scheme using a 3-layer neural network trained by 

backpropagation is developed. This technique classifies the manipulated pay-

load into one of three classes based only on the information concerning the 

tip deflection. Simulation results are obtained which show the importance 

of payload information in the realizations of the control objectives of the tip 

deflection and convergence rates when a regulator control is used. 

3. A variable structure control employing an eigenstructure assignment technique 

is designed for a flexible manipulator and compared to two other VSC tech­

niques and its superiority is shown by simulation. Because VSC has excellent 

robustness qualities that linear control methods do not, it is used in place of 

the previously derived regulator control in conjunction with the payload iden­

tification scheme. In this way a payload adaptive robust control is synthesized 

for the flexible manipulator which is insensitive to external disturbances and 

unmodeled dynamics in addition to being able to adapt the control inputs to 

reflect the payload being carried at the tip of the manipulator. 



30 

1.5 Organization of Thesis 

This thesis is primarily concerned with the demonstration of the use of payload 

identification for flexible manipulators and how control schemes can be adapted us­

ing information about the payload. In Chapter 2, the nonlinear dynamic equations 

of the flexible manipulator are derived. The derivation includes the solution of the 

exact modes of the linearized system and the modal expansion of the nonlinear 

integro-partial differential equations to obtain a set of nonlinear ordinary differen­

tial equations which are used for simulation. The state space form of the linear 

model is derived and the important characteristics of controllability and observabil­

ity are examined. Numerical difficulties encountered when conducting simulations 

are discussed and solutions to these are presented. A simulation of the flexible 

manipulator when subjected to a pulse input is shown for both cases of no payload 

and payload present, and the effects on tip deflection and hub rotation dynamics 

are delineated. 

Chapter 3 concentrates on the use of neural networks to identify classes of pay-

loads being carried by the flexible arm. The tip deflection pattern groupings result­

ing from the excitation of the modes of the manipulator are shown and a multilayer 

backpropagation network is trained to recognize these patterns and classify them 

into one of three payload categories. Control objectives for the arm are presented 

and a linear pole-placement regulator is designed based on these objectives for each 

class. The gains which correspond to the class identified by the neural network are 



31 

implemented in order to drive the states of the arm to zero. Design considerations 

for the placement of the poles and how they correspond to the control objectives 

are discussed and examples are given. Finally, simulations are presented to show 

the advantages gained when the control corresponding to the correct payload class 

is used, supporting the need for payload identification for effective control. 

In Chapter 4, variable structure control methods are explored in an attempt to 

provide a more robust control to be used with the payload identification employing 

neural networks. Three distinct methods are tried and compared, and a method 

which elegantly regulates all states simultaneously is shown to be a superior method. 

Finally, the use of the payload identification scheme in conjunction with VSC for 

all payload classes is presented and the results are discussed. 

The thesis is concluded in Chapter 5 with a summary of the specific contributions 

of the techniques presented and a brief outline of possible directions for further 

research into this problem. 



32 

CHAPTER 2 

MODELING AND SIMULATION 

2.1 Introduction 

The first step in any computer simulation of a dynamical system is obviously to 

find the mathematical description of the system dynamics. This description need 

not be a unique one; indeed there could exist many different mathematical models, 

all describing the same input-output characteristics of a particular physical process. 

The modeling of the one-link flexible manipulator is no different in this aspect. 

There are two major categories of modeling techniques for flexible robots. One 

is the Finite Element Method and the other is the Energy Assumed Modes Method. 

The Finite Element Method (FEM) is so-named because each link is expressed as 

a number of elements, each with a certain degree of freedom. The Energy Assumed 

Modes (EAM) Method gets its title from the fact that it is based on an energy 

method such as Hamilton's or Lagrange's Principle which yields an integro-partial 

differential equation, and is simplified to an ordinary differential equation by ex­

panding the equation with assumed modes. 



33 

The Finite Element Method calculates the inverse and forward dynamics of the 

arm to provide the solutions for torque inputs to generate desired outputs. While 

this is more easily generalized to multi-link flexible manipulators, it provides less 

physical insight and intuition in the design of the control to meet specified objec­

tives. The FEM technique was first used in modeling lightweight robots by Book [11] 

in 1982. Early frequency domain techniques [7, 9] were too computationally inten­

sive to be used in the synthesis of control laws. Bayo and Moulin [8] developed a 

more efficient real-time algorithm in 1989. 

Underlying the assumed modes technique is another choice in the model deriva­

tion. There are generally two options: the assumed modes of the model are based 

on generic vibrational modes derived from a related simpler problem, usually a can­

tilever beam, or the assumed modes are based on the exact vibration modes of the 

linearized model of the single link arm. 

The cantilever beam vibration modes are derived from one of two conditions. The 

beam is either clamped, which means that the hub of the real system is assumed 

to have infinite inertia, or the hub is pinned, which corresponds to a hub in the 

real system which is assumed to have no inertia. It is obvious that the hub of the 

manipulator has finite inertia, and the real system is somewhere in between the case 

of a clamped beam and a pinned beam. For this reason, the assumed modes chosen 

in this manner will never satisfy the actual boundary conditions or the governing 

differential equation of the manipulator. Models based on either of these assumed 



34 

modes are thus only approximations, and a comparative study by [3] concluded that 

the true behavior of the beam is in fact between these two approaches. 

On the other hand, the exact vibration modes allow a simpler orthogonal re­

lationship to be derived, which simplifies the final form of the dynamic model. 

Although it requires more work to derive these exact modes, this is done off-line. 

Once the model is implemented for either simulation or control, the computational 

burden is much less than using the assumed modes based on a cantilever beam. 

Since the assumed modes method theoretically needs an infinite number of modes 

to give full accuracy, the issue of how many modes are needed for effective control 

becomes an important one. Krishnan and Vidyasagar [33] have shown that control 

can be effective using a low order finite set of modes. 

A comparison of both modeling techniques (FEM and EAM) for a two-link 

flexible robot arm was conducted by Hohenbicler, Plockinger and Lugner [24]. They 

concluded that while the accuracy of the FEM is better for more elements or links, 

the calculation time for this method was slower by a factor of more than 100 than 

that of the EAM technique. For this reason, the finite element method has been 

suggested for use as a method of testing the quality of other modeling techniques, 

and not as the preferred technique for simulation. 

Many researchers have used the assumed modes technique for modeling flexible 

manipulators, including [14] and [23]. Cannon and Schmitz were the first to use 

this approach, and their work is regarded as the classical study of the single-link 



35 

flexible manipulator. Of particular interest are those which use the exact modes 

[10, 71, 73], and these provide a more accurate and simpler representation of the 

system dynamics. 

In addition to deriving the exact solution of the linearized vibration modes 

and giving the orthogonality condition between the modes based on the exact 

linearized modal frequencies, Wang [73] has developed a non-dimensional model 

which describes the nonlinear dynamics of a one-link flexible manipulator. The non-

dimensionality feature is attractive because it greatly simplifies the final dynamic 

equation describing the system and allows one to see the relationships between the 

beam parameters and those of the payload easily. By including the nonlinear terms, 

this model will give a more accurate representation of how the real flexible manip­

ulator will respond under different controls. The aim of every model to be used 

for simulation purposes is to be as accurate as possible, and therefore the model 

derived in this thesis will follow this derivation closely. 

This chapter shows in detail the development of the dynamical equations de­

scribing the motion of a single-link flexible manipulator. First the Hamiltonian is 

developed from the expressions for kinetic energy, potential energy and work. The 

governing Euler equations and boundary conditions are found from the Hamiltonian 

and the vibrational or modal frequencies are calculated from these. The nonlinear 

model is expanded along a finite truncated set of these modal frequencies, yielding 



36 

the ordinary differential equations which describe the state-space model of the ma­

nipulator. This model is then simulated using the software package MATLAB, and 

the pulse response of the system is explored. 

2.2 Beam Theory and Assumptions 

The mathematical model of the single-link flexible arm relies heavily on beam 

theory to describe its dynamics, as one would expect. There are two major beam 

theories in mechanics, known as the Euler-Bernoulli Theory and the Timoshenko 

Theory. 

In Euler-Bernoulli theory, the Normal Plane Assumption is used. This assump­

tion states that the complete transverse section of the beam, plane and normal to 

the longitudinal axis of the beam before deformation, remains plane and normal 

after deformation as well. Thus any twisting that might occur during deformation, 

known as shear deformation, is completely neglected using this assumption. 

The Timoshenko theory doesn't use the Normal Plane Assumption; instead it 

uses the more accurate Plane Assumption. The Plane Assumption states that a 

transverse section that is normal and plane before deformation remains plane but 

not normal to the longitudinal axis after deformation [73]. Figure 2.1 shows the 

differences between the two theories. The figure shows the cross-section of the 

beam, one using Timoshenko theory to model its dynamics, the other using Euler-

Bernoulli theory. Because Timoshenko theory uses the Plane Assumption, there is 



37 

Y 

transverse scction section normal axis 

longitudinal axis 

Timoshenko Beam 

X 

Eulcr-Bcrnoulli Beam 

Figure 2.1: Euler-Bernoulli and Timoshenko motion of the transverse section 

an additional rotation of the cross-section which accounts for the section normal 

axis to not coincide with the longitudinal axis of the beam. This additional rotation 

is indicated in Figure 2.1 by the angle /?, and is known as shear deformation. The 

Normal Plane Assumption used by the Euler-Bernoulli model essentially means that 

/? is zero, and the Euler-Bernoulli section normal axis coincides with the longitudinal 

axis. 

The dynamics of the beam can be described by two parameters. One is the 

deflection of the beam from the axis corresponding to rigid rotation, w(s), where 

s is the location on the beam where the deflection is being measured, as shown in 

Figure 2.2. The other is the rotation of the cross-section of the beam, which is ij> 

as shown in Figure 2.1. For the Timoshenko beam, 

V> = w'(s) + /?, (2.1) 



38 

while for the Euler-Bernoulli beam, 

0 = u/(s), (2.2) 

where the (') operator denotes differentiation with respect to the X-axis. 

Thus the Euler-Bernoulli theory describes deformation by only the flexible dis­

placement, w, while the Timoshenko theory describes it by the two independent 

functions w and ij>. While there exist models based on the Timoshenko theory 

[73, 12], the mathematical tractability using the Euler-Bernoulli theory is simpler 

and thus it is the most prevalent in the literature. Based on this fact, the model 

used in this thesis is chosen to follow the Euler-Bernoulli theory. 

2.3 Development of Kinematic Equations 

2.3.1 Hamiltonian 

Figure 2.2 shows a flexible manipulator carrying a load at its tip. The manip­

ulator, which is a simply a flexible beam fixed to a hub, rotates in the horizontal 

plane. The base coordinate system is (X0,K0) and (X, Y) is a local coordinate 

system fixed on the hub. Initially it is assumed that the x-axes of all coordinate 

systems coincide with the base coordinate X0 axis. In the derivation given in this 

section, the operators ( *) and (') denote differentiation with respect to time and 

differentiation with respect to a spatial variable, respectively. 



39 

Y. 

Y 
b vB 

Figure 2.2: Single-Link Flexible Manipulator 

From trigonometry, the base coordinates of a point (xa,yt) on the beam can be 

found as: 

where the variable 9 denotes the rotation of the hub, and 10(5) denotes the tip 

deflection at a distance s from the hub, as shown in Figure 2.2. Notice that there 

are infinite values of u>(s) satisfying (2.3) for a specific (x4,ya), and thus this is a 

distributed parameter system with infinite degrees of freedom. In order to show 

the effect of shear deformation, it will be included in the derivation at first, to be 

general. Later, the equation will be simplified to neglect this term. 

xa = s cos 9 — w(s) sin 9 

ys = s sin 9 — w(s) cos 9 (2.3) 



40 

Thus a point (arj, yg) resulting from the rotation of the plane transverse section 

during deformation is 

xg = x, — 8 sin (ij> + 0) 

ys = y s - S  cos (V> + 0 )  (2.4) 

where 8 is the distance to the longitudinal axis of the beam. The base coordinates 

of a point (xp, yp) located on the payload can similarly be found as 

xp = L cos 6 — w{L) sin 0 + acos(j/> + 6) — + 8) 

yp = L sin 0 — w{L) cos 0 + a cos(x!> + 8) — b sin(0 + 0) (2.5) 

where L is the length of the beam, as shown in Figure 2.2. The dynamic model 

derivation will utilize Hamilton's Principle, which states that 

8 f\T+W -P)di = 0 (2.6) 
Jto 

where 6 in this case represents the variational operator, T is the kinetic energy and 

P is the potential energy of the manipulator-payload system, and W is the work 

done by the external forces on the system. 

Kinetic Energy 

The total kinetic energy is found as 

T = Tb + Th + Tp 



41 

where Tb,Th, and Tp are the kinetic energies of the beam, hub, and payload, respec­

tively. For the beam, 

Tb = l [L T^^ds (2.7) 
i Jo 

where Tcr03,(s) is the total kinetic energy of the cross-sectional slice at the distance 

s from the hub (see Figure 2.2), and is defined as 

TcrUs) = JJA Pb(i2s + Ils)dA = p[&l + AI + Sj>2} (2.8) 

where 

Pb = mass/volume 

p — mass/length 

I = moment of inertia of the beam cross-section 

A = area of the cross-section 

S = I/A and is defined as rotary inertia 

A r(s) = s9 + w(s,t) 

Ay(s) = 6w(s,t). 

Rotary inertia results from the fact that all points in the cross-section do not have 

the same motion, but in fact have different speeds associated with each point. Thus 

the final expression for Tb is 

Tb=1-jo
Lp[Al + Al + Si>2

]ds. (2.9) 



42 

The kinetic energy associated with the hub is simply one half the inertia of the 

hub, I Hi multiplied by the square of the rotational velocity of the hub, or 

Tk = \lHe2. (2.10) 

The kinetic energy associated with the tip load can similarly be described as 

tp = \ jjSp pp(*l + y2p)dSp 

where pp is the mass/volume of the payload, and Sp is the cross- sectional area of 

the payload. This expression can be simplified into 

TP = ^{A2
x(L) + Al(L) + [S^(L) + e](Gxcos^(L) + Gysm^(L))} 

+ ^{4iL) + er (2.11) 

in which 

Mp ~ J Js PpdSp 

and 

jp = fjsppp(a2 + b*)dsp 

are the mass of the tip payload and the moment of inertia of the payload with 

respect to the local frame (a, 6), respectively, and 

Gx = bc&y 

Gy = acAy — bc Ax 

where (ac, bc) are the coordinates of the center of mass of the tip load with respect 

to (a, 6). 



43 

Potential Energy and Work 

From beam theory [67], the potential energy of the beam can be expressed as 

p  =  \  J W W ) *  +  C [ * w  -  •  ( 2 . 1 2 )  

The prime denotes differentiation with respect to the X-axis. For a beam having 

uniform cross-section, D = EI and C = kGA, where E is Young's modulus, G is 

the shear modulus and k is a shape factor depending on the specific shape of the 

beam. As before, I is the moment of inertia of the cross-section and A is the area 

of cross-section. The work done or applied to the manipulator is simply 

W = T 0  (2.13) 

where r is the torque applied at the hub of the manipulator. 

Simplifications 

As was alluded to earlier, some simplifying assumptions were made when mod­

eling the arm. First, S is assumed to be zero. That is, all points on the same 

transverse cross-section have the same velocity as a point on the neutral axis of 

that cross-section. Secondly, Gx and Gv are assumed to be zero, implying that the 

payload is a point mass of moment Jp and mass Mp. Finally, the Euler-Bernoulli 

Assumption is invoked and thus shear deformation, /?, is neglected. When these 

simplifications are implemented in (2.9, 2.10, 2.11, 2.12), the following result is 



44 

obtained: 

(2.14) 

(2.15) 

W = T6. (2.16) 

2.3.2 Nonlinear Euler Equations and Boundary Condi­

tions 

Taking the variation of (2.14, 2.15, 2.16) results in 

Expanding the integrand (and dropping the argument of w for convenience), 

Dw"6w" = Dw"(6w')' 

= (Dw"6w'Y - (Dw")'6w' 

= (Dw"6w')' — [{Dw")' 6w)' + (Dw")"6w. 

Using integration by parts, 

(2.17) 

(2.18) 

Of course, the variation of the work applied is simply 

6W = T60. (2.19) 



45 

For the kinetic energy, the variation is 

6T = IH069+ [L {p[s0 + w]6(s0 + w) + 6((0w)2)}ds 
Jo 

+^6[(L0 + w2(L))2 + (0w(L))2] + + Of) (2.20) 

ST = 6Th + 6Tb + 6TP 

where 6Th, 6Tb, and 6TP, are the variations of the kinetic energy of the hub, beam 

and payload, respectively. The evaluation of the Hamiltonian is simplified if the 

above expressions are described by variations of undifferentiated functions, as op­

posed to time derivatives of functions. Therefore, some manipulation will be done 

to accomplish this for the expressions above. By using the product rule of differen­

tiation, the variation of the kinetic energy associated with the hub is 

6Th = Ih060 - Ih0.60 (2.21) 

where the overline/dot notation f(t) denotes the time derivative of the entire func­

tion f{t). 

Similarly, for the beam , 

rL . . 
8Tb = P {[^0 + + 6w) + 6w6(6w)}ds 

Jo 
r L  .  . . .  

= p {[s# + u>](s£0 + 6tv) + 6w(w86 + 06w)}ds 
Jo 

r L  . . .  
= p {[s(>s0 + w) + 6w2]60 + [s0 + w\6w + 6w8w}ds 

Jo 
r L  

= p I {A$60 + Aw6w + 02w6w}ds 
Jo 



46 

= p f {Ag60 — Ag66 + AW6w — AwSw + 02w6w}ds 
'o 

r L  :  

6Tb — PI {Ae69 + AW6w — A$60 + (0 w — Au,)5t/j}ds (2.22) 
o 

in which 

A $ = s{sO + w) + Ow2 (2.23) 

(2.24) 

Finally, for the payload, 

6TP = Mp[L0 + w(L)](6(L0) + 6w(L)) + 0w(L)(w(L)60 + 06w(L))] 

+ Jp(w'(L) + 6)(6w'(L) + 60) 

= [Mp(L20 + Lw{L) + 0w2(L) + JP(w'{L) + 0)]60 

+ Mp(L0 + w{L))6w{L) + Mp02w(L)6w(L) + Jp(w'(L) + 0)6w'(L) 

= A epay60 + A m6w(L) + Mp02w(L) + w'(L) 

6TP = ABpai/60 + AWl6w(L) + AW36W '{L) 

- ASpay60 + (Mp02w{L) - AWl )6w(L) - A^w'iL) (2.25) 

Aepav = Mp(L20 + Lw(L) + 0W2{ L ) )  +  J p(w ' ( L )  +  0 )  (2.26) 

where 

A„,, = Mp(L0 + w(L)) 

AW2 = Jp(w'(L) + 0). (2.28) 

(2.27) 



47 

Substituting (2.18, 2.19, 2.21, 2.22, 2.25) into the Hamiltonian, 

r STdt - r SPdt + [U SWdt = 0 (2.29) 
J tQ wfQ JfQ 

where 

f STdt = f {Ih666 + f p(Ae66 + Aw6w)ds + AgpavS0 
jto jtq jo 

+ AWi 6w(L) + AW 26W '(L) 

— IH&6& — f p{AgS& + (Aw — 02w)Sw}ds 
Jo 

- ABpayS0 + (62w(L) - AWl)6w(L) + AW2Sw'{L)}dt (2.30) 

/ '" SPdt = f t l{Dw"6w' |£ -(Dio")'Sw |£ + [L(Dw")"6wds}dt (2.31) 
Jto Jt o Jo 

[ t l  SWdt = /'" rSOdt . (2.32) 
Jto Jto 

Noting that all variations at to and t\ are zero, and grouping similar terms, 

/ {(-IhO - f pAgds - ABpay + r)S0}dt -
JTQ J 0 

f l{ [ l(pAw - p02w + (Div")")ds]Sw}dt + 
Jto Jo 

ft l{[02w(L) ~ ̂  + (DW")']6W(L) - (Dw"(L) + ̂ )Sv/ ( L )}dt + 
Jto 

[h{Dw"(0)Sw'(0) - Dw"'(0)Sw(0)}dt = 0 . (2.33) 
Jto 

Thus, the Euler equations describing the dynamics of the nonlinear system are: 

{Dw")" + P(s0 + w - 02w) = 0 (2.34) 

IhO +QjJ0 pKs6 + ™)s + 0w2]ds + ̂ Aepoy = r (2.35) 



48 

with boundary conditions 

uj(0) = 0 (2.36) 

u/(0) = 0 (2.37) 

{Dw"(L))' + Mp{92w{L) -L6 + w(L)) = 0 (2.38) 

Dw"(L) + JP(w'{L) + 0) = 0 . (2.39) 

2.3.3 Non-dimensional Euler Equations 

The Euler equations given above are quite difficult to work with, as they are 

integro-partial differential equations. Some simplifications can be facilitated by an 

expansion of the equations. First, the equations will be linearized and the natural 

modal frequencies will be obtained from the characteristic equation of this set of 

equations. Then, these natural modes will be used as a basis for expansion of the 

general solution of the nonlinear equations. 

The linearization is accomplished by truncating all higher order terms, resulting 

in the following : 

In order to reduce the integral expression in (2.41) to an algebraic one, a rela­

tionship is derived using the boundary conditions. Equation (2.40) is multiplied by 

(Dw")" + p(s9 zZ>) = 0 (2.40) 

(2.41) 



49 

s and integrated over the length of the beam to yield 

jL[s{Dw")" + ps(s0 + u>)]<fc = 0 . (2.42) 
Jo 

Therefore, 

[L ps(s9 + w)ds = - [L s(Dw")"ds = - fL sd(Dw")'. (2.43) 
Jo Jo Jo 

Using integration by parts, and assuming D is a constant, 

- [L sd{Dw")' = -s(Dw")'\% + fL(Dw")'ds 
Jo Jo 

= —LDw"'(L) + Dw" |o 

= -LDw"'(L) + Dw"(L) - Dw"(0). 

By making use of the boundary conditions at the tip given by (2.38, 2.39) and 

noting that 

§- t*epay = JP{w'{L) + S)  + L[Mp(L0 + w(L))], (2.44) 

the following is obtained: 

- ps(s0 + w) + = -Dw"(0) . (2.45) 

This result greatly simplifies the dynamic equations. To simplify the dynamic 

equations further, the quantity u, the total deflection of the arm, is defined as 

v(x, t) = w(x, t) + x0(t) . (2.46) 

Substituting (2.45) and (2.46) into (2.40) and (2.41), the resulting linear model is 

Dv"" + pv = 0 (2.47) 

Ih6-DV"{0) = r (2.48) 



50 

with corresponding boundary conditions 

v ( 0 , t )  =  0 (2.49) 

u'(o,*) = e (2.50) 

Dv"(L) + Jpv'(L) = 0 (2.51) 

Dv'"(L) = Mpv . (2.52) 

One should remember that a dot ( ') denotes the derivative with respect to time 

whereas the prime (') denotes the derivative with respect to the variable along the 

X-axis. 

Before solving for the natural modal frequencies of the system, the model is made 

non-dimensional to simplify the nomenclature of the dynamic equations further. 

The following definitions are substituted into the Euler equations and boundary 

conditions above: 

By using these non-dimensional parameters and using (2.50) as the definition of 6, 

the non-dimensional model is obtained as 

£ = x/L, z = v/L, c2 = (jj-, 

* pL1 V  
PL3 '  

Mp _ Ih 
(2.53) 

*""(£)+ c2*(0 = 0 (2.54) 

with boundary conditions 

z(0) = 0 (2.55) 



51 

Vc>m-z"(o) = j} 

z"{ 1) + c\z'( 1) = 0 (2.57) 

(2.56) 

z"'{ 1) - nc2z( 1) = 0. (2.58) 

Note that a prime now indicates differentiation with respect to the non-dimensional 

coordinate £. 

2.4 Mode Shapes and Modal Frequencies 

To solve for the natural vibrational frequencies of the beam, consider the beam 

while resonating. In this state one can assume that z and 2/(0) = 9 are of the form 

where u is the physical vibrational frequency of the beam. Substituting (2.59, 2.60) 

in (2.54), and also assuming that since the beam is resonating, no external force is 

needed to excite the vibrational modes, i.e., r = 0, the linear model under vibration 

can be rewritten as 

z(s,t) = r(.s)sinu>i (2.59) 

z'(s, t) = z'(s) sinwZ (2.60) 

z"" - m2z(0 = 0 (2.61) 

with boundary conditions 

*(0) = 0 (2.62) 

7?mV(0) + z"{ 0) = 0 (2.63) 



52 

*"(1) - KmV(l) = 0 (2.64) 

z"'( 1) + fim2z( 1) = 0. (2.65) 

m = av is the dimensionless frequency. 

The solution of the linear model under vibration can be written in the form 

z(f) = C\ cos Af + C2 sin Af + C3 cosh Af + C4 sinh Af (2.66) 

where A == y/rri. The coefficients of the solution can be solved from the boundary 

conditions. From (2.62), C\ = —C3, reducing the solution to 

z(£) = Ci(cos Af — cosh A£) + C2 sin A£ + C4 sinh A£ . (2.67) 

Substituting the first and second derivative of (2.67) into (2.63), one more coefficient 

can be solved for as 

<?1 = ^-(C2 + C4). (2.68) 

Therefore the solution can once again be rewritten as 

z{£) = C?2[sin Af+^j-(cos A£—cosh Af)]+C,i[sinh A£+^j-(cosA£—cosh Af)] (2.69) 

or 

2(0 = C2 Z .(0 + C4 Zh(0  •  (2.70) 

The final two boundary conditions at the tip are now utilized in order to solve 

for C2 and C4. 

£2(2"(1) - nm2z'a( 1)) + C4(z"h( 1) - nm2z'h{\)) = 0 

CiW'JX) + nm2z,{\)) + C4{z"'h{\) + fim2zh{ 1)) = 0 



53 

or in matrix form, 
2ll 212 " c 2 "  
221 222 . c* .  

= 0 (2.71) 

where 

zn = z"(l) - «m2^(l) 

212 = 4'(1) - «m24(l) 

*2i = + /im2za(l) 

222 = z'h"{l) + (J.m2zh(l) . 

Thus the modal shape function is 

*({,m) = za{0 - ZU^™\Zh(0 
z12[m) 

and the characteristic function to determine the natural frequencies of vibration is 

(2.72) 

zu(m) z12(m) 
z2 i(m) z22(m) 

= 0 . (2.73) 

Of course, the trivial solution m = 0 corresponds to the rigid mode. In this case, 

the mode shape is simply 

*(0 = £ • (2.74) 

2.4.1 Orthogonality of Mode Shapes 

One can show (see [72] for details) that for two different modal frequencies m,-

and rrij, the corresponding mode shapes Z{ and Zj are orthogonal, which leads to 

the result 

r [z i ,  z j )  =  f l  zmzmw + 77^(0)^(0) + nzi(l)zj(l) + kz'{( l)zj(l) = 0 . (2.75) 
Jo 



54 

Use of this orthogonality property will be another simplifying operation in the 

development of the final state-space dynamic equations, by providing an orthogonal 

basis for the modal expansion of the nonlinear partial differential dynamic equation. 

If two functions are orthogonal, the following relationship exists (the arguments 

of the mode shape functions are left out for convenience), 

[z'Jz'Sd^ 0. (2.76) 

Evaluating this integral by integrating by parts (twice), 

£ z"z'/d( = z'!z) |J IJ + fo zTzidt, = 0. (2.77) 

From equation ( 2.61), z"" = mjzi. Thus, 

[ z"z'3 'di = z?z>. IS -z :z\" IS + fQ m?ZiZjd£ = 0. (2.78) 

Using the boundary conditions, one can now derive this result: 

Jo z"*"dt = m? «l-(O«i(Orff + ̂ (0)2j(l)) + 'ti;»"(1)2:i(1) + #ca;i(1)zj(1) 

= mfR(zi,Zj) = mjR(zj,Zi) = 0. (2.79) 

Thus, 

jf z"z"d£ = (m? - m))R(zi, zj) = 0. (2.80) 

This equation can only equal zero if R(zi,zj) = 0, since the mode shapes mi and 

m , j  a r e  n o t  e q u a l .  T h e r e f o r e ,  i f  t w o  m o d e  s h a p e  f u n c t i o n s  a r e  o r t h o g o n a l ,  R ( z { ,  Z j )  

must be equal to zero. 



55 

Now let the normalized mode shapes for the flexible modes be defined as 

2(0 = 4==, 1 = 1,2, ...,oo (2.81) 
\ ] R { Z i ,  Z i )  

and the normalized rigid mode shape function be 

£ 
y/Q(z0,z0) 

*o(0 = —7====== (2.82) 

where 

Q(zo, zo) = / £2dZ + 7/ + n + k. (2.83) 
Jo 

With the mode shapes normalized, the orthogonality property between mode shapes 

gives the following results: 

0  i f j  
(2.84) 

1 i = j • 

R( z i , z j )  =  6 i j ,  z"z"d£ = m}6 ih  6ij = 

2.5 Modal Expansion of Nonlinear and Linear Models 

For facilitating the use of conventional control algorithms, the partial differential 

dynamic equation needs to be approximated by an ordinary differential equation. 

One way to do this is to use modal expansion, utilizing the mode shapes derived 

above. The response of the arm under a general torque can be defined as 

= )?<(*)• (2-85) 

1=0 

Similarly, for the Euler-Bernoulli model, the first derivative with respect to £ cam 

also be represented as 

= (2'86> 

1=0 



56 

where 

«.(£) = *.'(£)• (2.87) 

The infinite sum is then truncated to a finite one, and represented vectorially as, 

*(&') = £*«'(0?«'(0 = zNi.t)q{t) 
i=0 

or(£,i) = Ajv(f)4(0 

(2.88) 

(2.89) 

where 

9(0 = 

and 

7o(0  • • •  9»(0  

Aw(£) = 

, ZN{i) = *o(0 "• *n(£) (2.90) 

(2.91) Q'o(0 • • • an(0 

Zs{£) and Ayv(£) are the vectors of the n normalized mode shapes. Substituting the 

modal expansions (2.88, 2.89) into the non-dimensional form of (2.14, 2.15, 2.16), 

one obtains the following expressions for the kinetic energy, potential energy, and 

work: 

T = C^[j\qTZT
NZNq + (qTAN(0)\N(0M<}TKWNqm 

+ ijqTAjf{0)AN(0)q + K9TAw(1)Aa?(1)9 + nqTZ%(l)ZN(l)q 

+ ̂ (gTA^(0)A^(0)9)(9
7'M^(l)^(l)9)] (2.92) 

P ~ 2 J0 '̂NTh'uqdt 

W=jf\N(0)q 

(2.93) 

(2.94) 



57 

where 

0 = A*(0)9 = z'N(0)q, WN(0 = ZN{() - £AAT(0). 

Combining all qT()q terms in (2.92) one gets 

(2.95) 

T = y[qTR(ZN, ZN)q + qTCaqqTCulq]. 

R( Z I , Z J )  =  

(2.96) 

From (2.84), 

0  i ^ j  

1 i = j • 

Therefore, R(Zn ,Zn ) = I, the identity matrix. The kinetic energy now is 

T = 7r[qTq + qTCaqqTCuq] (2.97) 

where 

cu = [L WT(Z)WN(()dt + /i^(l)Wjv(l), Cc = A t
n(0)AN(0) • (2.98) 

Jo 

The orthogonality of the mode shapes also simplifies the expression for the po­

tential energy. Since A'N(£) = Z"N(£), one obtains from (2.84), 

' m l  0  •  •  •  0  

[ A'NT(0)A^(0)d£ = 
Jo 

0 m\ 

0 0 mt 

and, since m,- = cw,-, the potential energy can be expressed as 

where 

ft = 

p c Tn = J9 ^9 

"02 0  • • •  0 • 
0 u\  • • •  0 

0 0  • • •  w n . 

(2.99) 

(2.100) 

(2.101) 



58 

At this point, the variations of (2.94, 2.97, 2.100) can once again be calculated 

and substituted into the Hamiltonian to get the final dynamic equation, or the 

Euler-Lagrange equation may be used to achieve the same result. The final govern­

ing equation of the single link flexible manipulator is 

(7 + qTCuqCa)q + {fCuqI - CuqqT)Caq + fig = ^A&(0). (2.102) 

The linearized form of this equation can be found by simply eliminating all higher-

order terms, or simply setting Ca and Cu to zero, to yield 

$ + n? = ^A£(0). (2.103) 

The nonlinear equation given in (2.102) is used for simulation purposes. By in­

cluding the nonlinearities of the dynamics in the simulation model, a more accurate 

prediction of the actual response of the physical beam can be obtained with the 

simulation. This can alert the user to difficulties or short-comings of control meth­

ods being tested, especially controls which are based on the linear model (2.103). 

If the operating point is not set right for these linear controls, the system could 

become unstable. It is far better and less costly to learn this during testing on the 

simulator than if the control was tested on the robot arm itself. For this reason, 

the nonlinear model, despite the extra effort in derivation, is a much better choice 

to represent the dynamics of the flexible manipulator. 



59 

2.6 Observability and Controllability of the Linear Model 

A state-space representation of the linear dynamical equation (2.103) is 

= A H. + BT , (2.104) 

with outputs 

where 

and 

A = 

r 0 i 
0 
w 

w 
S 

S 

0 Inxn 
-n o 

= c (2.105) 

;B = 
AAT(0) 

(2.106) 

C = 

AJV(0) 0 
0 AJV(0) 

WN(1) 0 
0 Wiv(l) 

r(o.5) o 
o r(o. 5 ) .  

(2.107) 

The outputs S and S are the strain and strain rate, respectively. T is the strain 

shape, which is given by 

r(0 = w"N(t). (2.108) 

Before applying control or trying to observe any states of a given system, one 

should check whether the system is controllable or observable or both. If there is 

an uncontrollable or unobservable mode, it can be decoupled through a canonical 

decomposition and the rest of the system can then controlled or observed. 

A simple test [16] for determining the controllability and observability of a system 

is rank(Uc) = n for a controllable system, and rank{U0) = n for an observable 



60 

system, where n is the dimension of the system, and 

Uc= B AB A2B ••• An~ lB (2.109) 

and 
C 

CA 
U0 = CA> (2.110) 

CAn~ l  

These conditions can be checked for simple linear systems, but when A is ill condi­

tioned, and then multiplied with B or C, large errors will result, and the evaluation 

of the rank of the controllability or observability matrices will probably be incor­

rect. As it turns out in the present case, the condition number of A is very large, 

posing an ill-conditioned problem. For example, for fi = k = 0 (no payload), the 

condition number of A as calculated by MATLAB is infinite. 

Therefore another way must be found to check the controllability and observ­

ability of the linear model. One way to avoid the multiplication of the .A-matrix is 

to use the Hautus-Rosenbrock Test [16], which states that if 

where A is the eigenvalue of the associated mode that is being tested, then that 

mode is controllable or observable. When this test is used, the linear model of the 

flexible arm is shown to be completely controllable and observable. But, if (2.109) 

and (2.110) are used, the respective ranks both come out to be 6, erroneously 

indicating that the system is neither controllable nor observable. Thus, the effect 

of numerically unstable methods is clearly seen. 

(2.111) 



61 

What is important to note is the ill conditioned nature of A. Hence, care must 

be taken in all computations of controls to avoid the involvement of A in any 

multiplication. 

Since the linear system is both controllable and observable, the poles of the sys­

tem may be placed theoretically anywhere in the LHP. A simple way to do this 

is with state feedback, but in this system the states cannot be measured directly 

and must be estimated by an observer. The inputs to the observer are the outputs 

shown in (2.105), and these are all easily measurable and have been used in im­

plementations by other researchers. There are several design procedures for linear 

observers that are outlined by Chen [16]. Perhaps the most useful in this case (since 

there are 10 states that must be estimated) is the reduced order observer. Chen 

shows that it is possible to reduce the complexity of the observer by the number of 

the outputs available. The equation describing the observer dynamics is 

where F is a matrix chosen such that all of its eigenvalues have negative real parts 

and are disjoint from those of A, G is chosen such that {F, G} is controllable, and 

H = TB, where T is solved from the equation 

Once these quantities have been solved, the estimated states can be obtained from 

z = Fz + Gy + Hu , (2.112) 

TA — FT = GC . (2.113) 

x = P-1 y  (2.114) 
z 



62 

where 

P= °T • (2.115) 

Note that P must be nonsingular. If it turns out to be singular, a new F or G 

must be chosen and T must be recalculated. It must also be emphasized that a 

numerically stable method be used to solve for T, due to the multiplication of it 

with A in (2.113) (see [2, 5, 20] for details). It is clearly seen that the outputs y, 

reduce the number of states that need to be explicitly estimated. 

Thus, for the case of 4 flexible modes (10 total) states, using the 6 outputs 

requires that only a 4th order observer be implemented to have estimates of all 

states. This reduction of order would greatly reduce the dimension of the observer 

needed and help speed the convergence of the error of the estimated states to zero. It 

is typically required that the dynamics of the observer be 2 - 5 times faster than the 

desired dynamics of the closed-loop system. While there are many interesting design 

considerations for observers, this thesis is concerned with control only. Therefore, 

it is assumed in all simulations that the states are available for feedback. 

2.7 Simulation using MATLAB 

The nonlinear equation given in (2.102) can be simulated entirely within a soft­

ware package known as MATLAB, which is especially powerful with matrix manip­

ulations and includes many built-in commands. These commands are convenient 



63 

because no language-level programming in FORTRAN or C is needed, and the sim­

ulation is self-contained in the software package. The process of simulation can be 

basically broken down into two parts: calculating the parameters, and solving the 

differential equation based on these parameters. 

The first thing that needs to be done is to calculate the eigenmodes, or the vi­

brational frequencies. As presented earlier in (2.73), this can be accomplished by 

computing the determinant and finding those values of m which make the deter­

minant 0. This is done by a combination of a binary search (which locates the 

sign changes of the function) and the f solve function of MATLAB. This built-in 

function locates the zeros of a function, and the binary search gives the starting 

point of the search by f solve, to get a more precise and reliable result. 

After the eigenmodes are calculated, the mode shapes corresponding to each 

eigenmode are calculated, based on the boundary conditions at the tip of the beam. 

The normalization constant is then calculated according to (2.81). Thus, the mode 

shapes divided by the normalization constant give Zn(£), and likewise the param­

eter Ajv(£) is obtained. 

Once these vectors are known, the Ca and Cu matrices in (2.102) are computed, 

and then all parameters are known. These computations are only done once per 

simulation, but must be recalculated for every pay load change. All numerical in­

tegration for the calculations of the parameters was done using standard Euler 

integration. The integration was done twice, once with 90 steps and once with 100 



64 

steps. The two results were then extrapolated to approximate a higher number of 

steps and thus get a more accurate result. 

The differential equation is solved in MATLAB by using the 0DE45 function, 

which is a fourth order Runge-Kutta integration algorithm. The algorithm has an 

adaptive step size to facilitate faster computation of the state time histories. When 

these time histories are computed, the corresponding outputs (0, w, etc.) can be 

calculated and plotted in MATLAB as well. 

2.8 Results and Numerical Difficulties 

There were a couple of checks that were performed to make sure that the param­

eters were being calculated accurately. The eigenmodes were checked against the 

known vibrational frequencies of the CIRSSE flexible arm found in [71]. This arm 

is characterized by the parameters given in Table 2.1. The computed frequencies 

compared very well with the experimental results for the first 5 modes, as shown in 

Table 2.2. After the fifth mode, the accuracy of the calculation decreased. This was 

due to the fact that the exponential functions in sinh and cosh in the computation 

become very large in magnitude for higher frequencies, causing numerical sensitiv­

ity. For this reason, only four flexible modes were included in the model. Many 

researchers only include one or two modes in their models, and hence inclusion of 

four modes should be adequate to approximate the true dynamics of a single-link 

flexible manipulator. 



65 

Parameter Value 

L beam length 1.098 m 

B beam width 1.5875e-3 m 

H beam height 0.103 m 

E material Young's modulus 68950.0e-6 N/m2 

7 beam material density 2.713e3 kg/m3 

Ih  hub inertia 0.007 kg m2 

P beam mass per unit length 0.4436 kg/m 

A beam transverse area 1.6351e-4 ™2 m 

k beam shape factor 0.8497 
Eadj E adjustment factor 0.88 
Ihadj Ih  adjustment factor 2.5 

Table 2.1: Parameters of the CIRSSE Single-Link Flexible Manipulator 

mode number calculated (Hz) experimental (Hz) 

0 0 0 
1 2.9692 2.85 
2 7.2608 7.20 
3 17.9773 18.42 
4 34.7523 35.65 

5 57.2774 58.70 
6 85.4823 88.00 
7 119.348 126.3 

8 158.869 166.6 
9 204.048 214.4 

Table 2.2: Modal Frequency Comparison with CIRSSE Arm 



66 

The mode shapes were also checked to insure that they were indeed orthogonal. 

Again, the orthogonality condition wasn't satisfied after the fifth mode for the 

same reasons as above, since the mode shapes depend on the modal frequencies. 

The orthogonality conditions of (2.84) were checked for the four flexible modes of 

the model and were found to hold. 

The solution of the dynamic equation also had some numerical problems. When 

the input torque changed suddenly, such as when a step input is applied, singu­

larities occurred, and the simulation stopped. After considerable research into the 

code of 0DE45, it was found that the cause of this was the adaptive step size that 

the algorithm uses. In order to prevent the integration from "stepping" over a part 

of the simulation in which a rapid change occurs, and thus inadvertently conclud­

ing that the function has become discontinuous, the maximum step size must be 

limited. After this was done, the simulation performed well, as shown in the next 

section. 

2.9 Pulse Response 

The pulse response of the system was simulated to show the vibrational charac­

teristics of the arm. The input was a 0.1 second pulse of torque with a magnitude 

of 1 N/m, applied at the hub. The tip deflection is shown in Figure 2.3 and the hub 

response is shown in Figure 2.4, with no payload attached to the tip of the beam. 

It can be seen that the flexible modes indeed have been excited, and will continue 



67 

0.25 

0.2 

0.15 

0.1 

| 
£ 0.05 

I 0 
5 -0.05 
a. 
P 

-0.1 

-0.15 

-0.2 

-0.25 
0 0.5 1 1.5 2 2.5 3 3.5 4 . 4.5 5 

Time(s) 

Figure 2.3: Tip Deflection due to Pulse Input, No Payload 

to vibrate forever, because no friction or structural damping has been included in 

the model. The hub will also continue to rotate with constant velocity indefinitely 

as well, for the same reason. Note that the tip deflection is shown in terms of the 

dimensionless parameters; so a deflection of 0.1 means that the deflection is 10% of 

the length of the beam. 

A second simulation is shown and this time the beam is carrying a payload, and 

hence its effects are seen on the dynamics in Figures 2.5 and 2.6. The payload is that 

corresponding to the non-dimensional payload parameters /i = 0.5, and k = 0.5. In 

other words, the mass at the end of the beam was half of the total mass of the beam, 

and the inertia associated with the payload was half the inertia of the hub. Note 

that in all simulations, the inertial and mass parameters of the payload are equal. 

This is an arbitrary choice and the parameters could be different if so needed. 



2.5 

1.S 

4 1 
s 
-§ x 

0.5 

-0.5 

1 •! !— —' 

j / 
A 

1 ! _ i  f \  i  j  
/ V| / i / v w 

1 1  1 
i 

: 

i i 

• 

I 
0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 

Time (s) 

Figure 2.4: Hub Rotation due to Pulse Input, No Payload 

Timccs) 

Figure 2.5: Tip Deflection due to Pulse Input, Payload: fi = n = 0.5 



69 

f 
I 

"O 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5 

Time (s) 

Figure 2.6: Hub Rotation due to Pulse Input, Payload: FI = K = 0.5 

As can be seen, the response is different. The tip deflection has decreased, from 

0.2157 to 0.0494, and the hub rotation is slower. This is expected, because as 

the payload increases, with the same magnitude of torque applied, the beam will 

become more difficult to move and the tip will vibrate less, especially the lower 

frequencies which have larger magnitudes and contribute more to the deflection of 

the beam. To illustrate the dominating effect of the lower frequencies, Figure 2.7 

shows two responses. The solid line in the graph shows the response when the arm 

is modeled with 4 flexible modes, and the dashed line shows the response of the 

beam if only one flexible mode is included in the model. This clearly shows that the 

first flexible mode contributes the most to the tip deflection. However, the higher 

frequencies have an increased effect on the beam dynamics when compared to the 

no payload response, and this can be seen in the response. The no payload response 



70 

0.05 

0.04 

0.03 

0.02 

? 
i. 0.01 

§ I 0 

5 -0.01 
a. 
F 

-0.02 

-0.03 

-0.04 

-0.05 
0 0.5 1 1.5 2 2.5 3 3.5 4 .  4.5 5 

Time (s) 

Figure 2.7: Tip Deflection Comparison, 1 Flexible mode ( ) vs. 4 Flexible Modes 
(-), Payload: fi = k  = 0.5 

has contributions from the higher frequency modes as well, but these axe so small 

in magnitude compared to the dynamics associated with the first flexible mode 

that they are undetectable in the response. For example, the peak value of the tip 

deflection that occurred with only one flexible mode modeled in the system with 

no payload was 0.2152, while the maximum tip deflection with four flexible modes 

was 0.2157. However, the importance of including more than one flexible mode in 

the model when a payload is attached to the arm is clearly seen in Figure 2.7. 

Despite the noticeable effect resulting from the inclusion of the higher frequency 

modes, the maximum tip deflection will continue to decrease with larger payloads. 

One could think of the case of an infinite payload, in which the tip of the beam 

would be fixed, so the tip would not show any deflection and the hub would not be 

able to move freely anymore. This declining trend is seen in Figure 2.8, which shows 



71 

0.25 

0.2 

i 
£ 

0.15 I 
<3 
o. p 

0.1 

.§ a 
s 

0.05 

Dimensionless Payload, Mu = Kappa 

Figure 2.8: Maximum Tip Deflection with respect to Payload 

the plot of maximum tip deflection from many simulations of different payloads.. 

Figure 2.9 shows a closer view of the trend in the range of small payloads. It is 

clearly seen that even small payloads cause a sharp decrease in the magnitude of the 

tip deflection for a step input. The dynamics of the beam are obviously considerably 

affected by the payload of the arm, and the control synthesis procedure that is used 

should either be robust enough to tolerate payload changes or adaptive with respect 

to the payload being carried to be effective in accomplishing the objectives it was 

designed for. 



72 

0.22 

0.2 

~ 0.18 

! 0.16 
o 
C 
c 0.14 

& 
p 0.12 

J a 
z 

0.08 

0.06 

004 
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Dimensionless Payload, Mu = Kappa 

Figure 2.9: Maximum Tip Deflection with respect to Payload (Enlarged Scale) 



73 

CHAPTER 3 

NEURAL NETWORK CLASSIFICATION 

APPROACH FOR PAYLOAD ADAPTIVE 

CONTROL 

3.1 Introduction 

For a rigid or flexible robot to be effective, it must be able to move a large range 

of payloads with accuracy. However, for flexible manipulators, the mass and inertia 

of the payload have a significant effect on the dynamics of the arm [50, 21]. This 

is evident from the two pulse responses shown in Chapter 2, which demonstrates 

that for the same input, the output could be quite different for different payloads 

at the tip of the robot. Thus, it is important to know or have a close approximation 

of the payload in advance, in order to apply the correct control input to produce 

the desired response of the arm. The payload, however, may not always be known, 

and even if it is known, it can be quite cumbersome and inefficient if the control 

has to be changed for each payload. One way to overcome this problem would be 

to design the control for the worst case, usually the heaviest payload, and use that 

control for all of the other lighter payloads. This has been done with rigid robots, 



74 

but of course the accuracy and efficiency is compromised for the lighter payloads. 

For flexible manipulators, designing for the worst case is not always desirable. The 

tip displacement can become larger for different payloads as also shown in the pulse 

response. A method for identifying the payload on-line quickly and accurately is a 

better solution to this problem. 

Leahy et al. [35] have developed such an identification scheme and a correspond­

ing adaptive control which uses the estimated payload for rigid robots. The PUMA 

560 robot was tested with different payloads and controlled along a reference trajec­

tory. The errors due to payload differences from the nominal were then measured 

and fed to a neural network, which classified the payload into one of four categories 

using the errors as inputs. The payload classification of the neural net was then 

used to update the computed torque control at that time to reflect the current 

payload of the arm. It is desired to extend this approach to flexible manipulators. 

This chapter describes the use of neural nets to classify payload and provide an 

adaptive control for flexible or lightweight manipulators. First, the control method­

ology is given. A regulator is designed using a pole-placement technique and the 

effect of the payload on the response of the manipulator while under the regulator 

control is shown with a simple example. Next, the design of the test control to pro­

vide the dynamical information to the neural network is described. The patterns 

derived from this information are then used to train the network and a suitable 

architecture for accurate identification is found. Finally, the results of simulations 



75 

showing the effectiveness of the neural network-based adaptive control that was 

implemented are presented. 

3.2 Control Methodology 

For efficient use of a flexible arm, the vibration of the tip must be damped, while 

at the same time moving the tip to a desired location. If all states have zero values, 

the arm is at rest and is not vibrating. Therefore a regulator control lends itself 

well to flexible manipulators. A standard approach to classic regulator synthesis is 

pole placement design. In this case, the eigenvalues or poles located on the jw-axis 

which are associated with the flexible modes must be shifted into the left-half plane 

to assure asymptotic stability of the state trajectories. 

Since the linearized model that represents a single link flexible manipulator was 

found in Chapter 2 to be both controllable and observable, the poles can be placed 

by simply using state feedback of the observed states, with appropriate gains for 

the desired pole locations. Thus the control would be of the form 

u = — Kx , (3.1) 

where K is a vector containing the feedback gains with which to place the poles 

at the desired locations. These gains can be computed by a simple straightfor­

ward procedure as given in [16]. The system is transformed into the equivalent 

controllable-canonical form, (AC,BC), and then by comparison of coefficients, the 

feedback vector I\c is calculated and is then transformed back into the original 



76 

system coordinates. However, the transformation matrix is 

p = Vcu;x (3.2) 

where Ue is the controllability matrix of the given system model and Uc is the 

controllability matrix associated with the transformed system (y4c, Bc). From the 

discussion given in the previous chapter, it is known that P can't be found accu­

rately. Thus a different design procedure must be used to solve for K. 

Kautsky, Nichols and Van Dooren [30] present four methods for computing robust 

solutions for the multi-input state-feedback pole placement problem (of which a spe­

cial case is the single-input system, which is what the flexible manipulator is). The 

basic idea underlying these algorithms is to choose eigenvectors corresponding to 

the required eigenvalues such that the matrix of eigenvectors is as well-conditioned 

as possible. The multiplication of the A matrix is avoided by using QR decompo­

sition to transform the system. MATLAB has a function which uses this technique 

and checks the accuracy of the calculated feedback vector with the desired pole 

locations. Therefore, it is assured that the feedback vector is calculated correctly. 

3.2.1 Control Objectives 

Now that the poles of the system can be placed accurately by feedback, the next 

issue is where to place those poles. The main advantage of a flexible manipulator 

over a rigid one is its lightweight properties which allow it to be moved faster 

with lower applied torque and this should be exploited by the control strategy to 



77 

move the manipulator quickly, while still minimizing the effects of the flexibilities 

introduced. 

To gain an intuitive feel for how the pole locations affect the response of the 

arm with different payloads, consider the following example. Two manipulator 

systems will be used, one carrying no payload and the other carrying a payload of 

fx — k — \ .5, and will be named as below for clarity: 

Mo: CIRSSE Flexible Manipulator, carrying no payload 

Mi.si CIRSSE Flexible Manipulator, carrying a payload of (i = k = 1.5. 

The parameter values of the CIRSSE flexible manipulator are shown in Table 2.1. 

Two state feedback controls will be calculated, one based on the parameters corre­

sponding to Mo and one based on the parameters corresponding to Mj.5. Thus, the 

payload condition of the arm is assumed known for the synthesis of the control for 

each manipulator system. It is desired to place the poles of both Mo and M1.5 at 

the same location, so that the responses of the manipulators with the same desired 

dynamics can be compared, and the effect of the payload can be seen. The pole 

locations are selected such that the real part of all the poles are located at -1 for 

both payload conditions. It should be emphasized that this choice of poles is an 

arbitrary one, and it was only desired to place the poles in the LHP to ensure an 

asymptotic convergence of the state to zero. These desired closed loop eigenvalues 

require the following feedback vectors in the two cases: first, for Mo, 

K0 = [ 0.5324 0.7709 -4.2841 -13.6899 -36.0126 



78 

0.8905 0.2619 -1.0427 -2.0798 -3.4654 ] (3.3) 

and for Mi .5, 

KI.5 = [ 1.7715 3.4361 -1.8588 -7.1291 -20.7510 

3.2649 0.8696 -0.4125 -1.0675 -2.1060 ] . (3.4) 

The magnitudes of the gains are as one would expect. The rigid mode feedback 

gain in K\& is much larger than the corresponding gain in A'o, and this is required 

in order to be able to move the hub of A/1.5 at the same speed as the hub of MQ. 

One interesting note is that higher frequencies require larger feedback gains in the 

no payload case than in the case of the system with payload. 

Simulations were performed using each of these controls on Mo and M1.5. In this 

way, the consequences of not knowing the payload accurately when the feedback 

gain vector is designed can be seen. The results of the simulations are shown in 

Figures 3.1, 3.2, 3.3, and 3.4. Examination of these results gives much insight into 

the tradeoffs that must be considered when choosing the pole locations. First, 

comparing Figures 3.1 and 3.3, it is clearly seen that when the real parts of the pole 

locations are equal in both cases (i.e., when Mo is controlled using KQ and Mi,5 

is controlled using A'1.5, the real values of all the poles of each system are located 

at -1), the system carrying a heavier payload, Mi.5, produces a larger transient 

maximum tip deflection. This is an intuitive result. Since the two systems must 

converge at the same rate, a larger torque must be applied to the manipulator 

carrying the payload. The inertia of the tip resists the applied torque, and hence, 



79 

0.15 

Feedback Control using gain K_0(-) 

Feedback Control using gain K_1.5( 

0.05 

8 

& 

-0.05 

-0.1 

Time (s) 

Figure 3.1: Tip Deflection of Flexible Manipulator M0 

the larger the inertia associated with the payload, the larger the tip deflection. 

In Figure 3.1, it is seen that the tip deflection is much greater when the control 

Ki.s is used. When this control is used, the closed-loop poles of the unloaded 

manipulator Mo are 

' -0.61 ±.7359.87 
-0.51 ± j218.33 

. _ —0.39 ± j'112.92 
0 —2.88 ±jl7.54 

-9.49 
-0.58 

Thus the closed loop system has deeper LHP poles for the first flexible mode, which 

usually has the greatest magnitude of the flexible modes (as shown in Chapter 2) , 

and for the rigid mode, one pole was moved deeper into the LHP, while the other 

migrated to the right. All other poles were also slower than the poles of the closed 

(3.5) 



Time (s) 

Figure 3.2: Hub Rotation of Flexible Manipulator Mo 

0.2 

0.15 jV '' 
,f^ba4.Cpniro)..Msinggim.K-0(T)i 
Feedback Control usuig gain K_1.5(--) 

0.1 

& 
ex 
P 

-0.05 

-0.1 

-0.15. 

Time (s) 

Figure 3.3: Tip Deflection of Flexible Manipulator Mi.s 



81 

Feedback Control using gain K_0(-)| 

Feedback Control using gain K_1.5(—) 
0.8 

„ 0.6 M 
J 
I 
u 0.4 T2> 
5 

* 0.2 

•0.2 

Time (s) 

Figure 3.4: Hub Rotation of Flexible Manipulator Mi.5 

loop system (all at -1) which used the control (with gain KQ) based on an assumption 

of no payload. Since the first flexible mode has stronger damping, the tip deflection 

goes to zero more quickly with this control. However, the hub still converges slower 

because although one rigid mode pole has much deeper placement, the effect of the 

other pole associated with it slowed the response. 

As can be seen, there is definitely a different output for the two systems having 

the same poles. It is also seen that placing the poles deeper in the LHP, especially 

those associated with the rigid modes, is not a good idea. If this is done, the tip 

deflection increases, which is not desired. If the tip vibrations become excessive in 

magnitude, structural damage could result, the payload could be dropped, or the 

manipulator could strike something close to its path such as a wall. All of these 

consequences must be avoided and hence the speed of the hub convergence is limited 



82 

by how much tip deflection can be tolerated. This criterion varies with the specific 

application, as does the speed required of the manipulator. Hence, these factors 

should be considered before selecting the pole locations. 

One way to insure that the tip deflection is kept below a certain bound would 

be to design a controller which guarantees the fastest convergence for the heaviest 

payload that the manipulator will carry in its tasks, while still remaining below 

the bound on the tip deflection. This method, however, is very inefficient because 

the speed of the arm would be limited by the heaviest payload, which cannot have 

poles as deep in the LHP. The robot would be able to accomplish a larger volume 

of work if the exact payload was known and the control was adjusted accordingly 

for each payload to achieve a nominal response. For each payload, the poles could 

be placed as deep in the LHP as the tip deflection criterion allows. 

As stated earlier, the amount of tip deflection which can be tolerated for safe 

operation varies with each specific application. For all the simulations reported in 

this thesis, the tip deflection was always limited to a maximum of 0.1, in terms 

of the non-dimensional distance of the model. This means that the deflection was 

always less than or equal to 10% of the length of the beam. Thus the stated control 

objectives of all the simulations which will follow are: 

Control Objectives for Flexible Manipulators 

1. The tip deflection must never be allowed to exceed 10% of the length of the 

beam. 



83 

2. The hub is to be rotated ELS fast as possible consistent with meeting Objec­
tive 1. 

3.3 Identification of Payload 

The example of the previous section clearly shows that a payload identification 

scheme would greatly improve the operation and efficiency of the flexible manipu­

lator. Identification has been primarily attempted by using adaptive methods by 

previous researchers, both in the frequency domain [68, 78], and in the time do­

main [68, 55, 66]. However, the time required to identify the payloads turns out to 

be quite long. The study done by Rovner and Cannon [55] required four seconds 

to identify the system parameters, and although the frequency domain techniques 

used by Tzes and Yurkovich [68] perform a more accurate estimation of the param­

eters, the computational burden is increased and the method still requires a lot of 

dynamic data of the beam. This is required for every payload change, and hence 

the robot must be taken off line to get the required data, or a persistently exciting 

control that performs no useful work must be applied to generate the input to the 

estimation scheme. In the example reported in [68], the beam was excited for 6 

seconds before implementing the control. 

Therefore, the efficiency gained by knowing the correct payload would be neutral­

ized by the time required to perform the identification when using these methods. 



84 

However, the general adaptive algorithm outlined by Rovner and Cannon is useful 

in this thesis. 

If, instead of using adaptive techniques, the response of the tip is considered as 

a distinct pattern for each payload, neural networks could be employed to quickly 

identify the payload and implement the correct control. Neural nets have been 

shown to be extremely quick in the solution of pattern recognition problems, and 

many advances have been made in recent years to improve the operation and prac­

ticality of these networks. For this reason, they would be a logical choice to speed 

up the identification of the payload. 

In the previous section, it was seen that the tip displacement varied with payload 

when a feedback control was applied to the beam. It is therefore desirable to use this 

property in order to find some distinguishable classes of payload to be identified 

by a neural network. The range of possible payloads can vary with the needed 

application, and is chosen here for illustrative purposes to range from no payload to 

fi = k = 1.5. The hub is required to move a specified distance starting from an initial 

position to a final destination. Without loss of generality, this final destination 

could be chosen to be equal to zero. In order to provide as much information in the 

patterns as possible, the vibrational dynamics of the beam are to be excited in a 

manner similar to that used in the adaptive techniques [55, 68]. But instead of using 

a control which does no useful work in this time, the hub angle is still moved toward 

the desired position. Thus, a control referred to as the test control is designed to 



85 

0.09 

0.08 

0.07 

 ̂ 0.06 

•g 0.05 

§ 0.04 

•| 0.03 
O. 
p 0.02 

0.01 

0 

-0.01 
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5 

Time (s) 

Figure 3.5: Tip Response Under Test Control 

move the eigenvalue associated with the rigid mode into the left half-plane with all 

other flexible modes left on the jw-axis. This can be accomplished by simply feeding 

back the hub angle 6, and the hub rotational speed, 6, since for a rigid manipulator, 

the rigid mode corresponds to this output. Therefore, pole placement techniques 

can be used to position the eigenvalues of this assumed rigid system which neglects 

all of the flexible modes. The magnitude of the pole associated with the rigid mode 

is kept small in order not to exceed the specified bound on the tip displacement. 

The results of a 0.5 second simulation using this test control are shown in Fig­

ure 3.5 for several different payloads. It is clearly seen in Figure 3.5 that the 

no payload case behaves much differently than the cases with payload, and so it 

would seem that it could be considered a separate class. Within the payload cases, 

the ideal situation would be that in which all payloads are identified separately. 

Mux 0.2 

Mii 



86 

However, this is an impractical solution to the payload identification problem, as 

a reasonably sized neural network could never be trained to identify an infinite 

number of classes. Therefore, two classes are chosen for payloads, one for small 

payloads and one for large payloads, besides the case of no payload (n = 0). As 

it can be seen, the boundary between these two payload classes is not easily deter­

mined. Therefore, specific features of the responses were to be identified, in order 

to better quantify the differences between the three payload categories. 

Many features were examined, including examining the frequency spectra of the 

responses with Fast Fourier Transforms, and calculating the average value of the 

tip displacement, standard deviation of the tip displacement, and the maximum 

value of the tip displacement. These features were plotted against one another 

to show possible groupings of payloads, if any. The most distinct class separa­

tion was found with the plot of the mean value of the tip deflection versus the 

maximum tip deflection. The three classes could be clearly separated by simple 

hyperplanes, as shown in Figure 3.6, so this feature map was used to determine 

the classes. The boundaries specifying the three classes were chosen to be: 

Class 0 No payload 

Class 1 Small Payload, Payload range : 0.2 < p. — k < 0.6 

Class 2 Large Payload, Payload range : 0.8 < FI = K < 1.5. 

Notice that the classes have some separation, and do not include all payloads (for 

instance, /* = K = 0.7). This is necessary, because if all payloads were represented, 



87 

0.042 

0.04 

0.038 

| 0.036 

£ 
o 0.034 

0.032 

0.03 

0.028 
0.05 0.055 0.06 0.065 0.07 0.075 0.08 0.085 

Maximum Tip Deflection 

Figure 3.6: Mean Value of Tip Deflection vs. Maximum Tip Deflection, k = fi 

it would become difficult to choose where the hyperplanes of Figure 3.6 would lie. In 

addition, once the hyperplanes were selected (arbitrarily), the neural network would 

have some difficulty classifying payloads when presented one which is close to the 

boundary between two classes. It is therefore necessary to have some knowledge of 

the types of payloads and ranges of mass and inertia associated with the payloads 

before training the neural network to classify them, in order to achieve accurate 

classification results. 

In the simulations reported in this thesis, the inertia of the payload, «, is always 

chosen to be equal to the mass of the payload, /i. This is an arbitrary choice for 

illustrative purposes only and in fact, in most situations, k ^ fi. Another set of 

simulations was done with k ^ fi to show that distinct classes of payload may be 

found from the tip deflection data as well. Figure 3.7 shows the pattern clusters 

class 2 



88 

0.048 

0.046 class 0 

0.044 
class 1 

| 0.042 

£ 
0.04 0 

1 
0.038 

class 2 
0.036 

0.034 
0.07 0.072 0.074 0.076 0.078 0.08 0.082 0.084 

Maximum Tip Deflection 

Figure 3.7: Mean Value of Tip Deflection vs. Maximum Tip Deflection, k = |/x 

when k = |/x. Although the patterns comprising each group differ between the 

k = (j. and k = \fi cases, it is clearly seen that the payloads can be grouped 

into classes for this case as well. Hence the inertia of the payload and the mass 

of the payload are not required to be equal in order to obtain distinct classes for 

identification. 

Now that the classes have been determined, control feedback gain vectors can be 

found for each class to satisfy the two control objectives as given in Section 3.2.1. 

One vector is found for each payload class. The tip deflection criterion must not be 

violated when using these controls to operate a manipulator carrying any payload 

which is a member of the specific class that the control feedback vector was designed 

for. 



89 

In Section 3.2.1, it was seen that if the desired pole locations were selected to 

be the same for manipulators with different payloads, the one carrying the heavier 

payload had the larger transient tip deflection. Therefore, to find the feedback gain 

vector for a class, the parameters corresponding to the manipulator carrying the 

heaviest payload in that class should be used. The response of the arm carrying 

the heaviest payload will have the maximum tip deflection for that class, and if it 

satisfies the tip deflection criterion, all of the lighter payloads within that class will 

satisfy the criterion as well. 

Thus, a worst case approach is used to synthesize the control for each class. As a 

result, the lighter payloads in each class will have less than maximum convergence 

rates, but this is more efficient than having only one class and using the gains based 

on the heaviest payload only. 

It should be emphasized that consideration of three payload classes(classes 0, 

1 and 2) in the work reported in this thesis is only for illustrative purposes and 

for proving the concept underlying the use of a neural network for the required 

classification. The number of classes can be increased with a corresponding sharper 

control performance resulting, at the expense of employing a larger neural network 

and the consequent increase in training complexity. 



90 

3.4 Neural Network Architecture and Training 

At this point, the patterns could be classified based on the specific bounds of the 

standard deviation and maximum deflection features of each class. However, this 

first requires the computation of each feature, and then a sequential check on both 

features must be done to determine which class the present payload is a member 

of. This sequential computation is quite inefficient when compared to the parallel 

computational abilities afforded by neural networks. 

The neural network is trained off-line with patterns of payloads that the manip­

ulator is likely to carry. The interconnection weights are selected during training 

such that the vector of inputs representing the 0.5 second trajectory generates the 

desired output class which selects the proper feedback gains to be used in the con­

trol. This is done with a far less computational price than the sequential method 

of checking bounds for each class, and so a neural network pattern classification 

approach is clearly superior. 

3.4.1 Multilayered Static Neural Networks 

Many neural network models have been suggested in recent years, and the most 

commonly used networks for nonlinear mapping or pattern recognition tasks have 

been static multilayer networks. These networks consist of an input layer, an output 

layer, and a number of hidden layers. Each layer consists of several nodes, and each 

node is connected to all the nodes of the previous layer, as shown in Figures 3.8 



91 

Input Layer 1st Hidden Layer n-2nd Hidden Layer Output Layer 

L, Lj L{n_„ Ln 

Figure 3.8: Static Multilayer Neural Network 

and 3.9. There is some difference of opinion as to how a network architecture is 

defined. Some researchers disregard the input layer as a part of the architecture, 

since it only performs a linear computation [41]. Others include the input layer in 

counting the total number of layers describing the network [49], and the networks in 

this thesis will follow that definition. Thus, a network consisting of one input layer, 

one hidden layer, and one output layer will be referred to as a 3-layer network. 

Each node in a layer computes an output as a function of all incoming signals. 

A linear node or neuron would simply output a weighted sum of the inputs, but 

the output of a nonlinear node is based on a nonlinear sigmoidal function. The 

use of nonlinear processing nodes has been shown to greatly improve the mapping 

capabilities of the static multilayer network. The sigmoidal function which typically 



t 

92 

nodeN, 

nodeN 

node i  

layer Ly 

Figure 3.9: Nodal Connections in a Static Network 

governs the output of a nonlinear node has been discussed in Chapter 1 and is shown 

in Figure 1.1. The function can be represented mathematically as 

= /(a,-) = ^ . .. — 1 (3.6) 
v ' 1 + exp-(°ri+9') v ' 

with 

"J 

a,- = wjixj • (3.7) 
3-1 

In the above equations, a:,- is the output of node i , a,- is the sum of the inputs 

from the previous layer coming to node i, with wji being the weight associated 

with the interconnection of node j and node i, and rij the total number of neurons 

in layer Lj. The parameter 6; serves as a bias or threshold. If #,• is positive, the 

sigmoidal function will shift to the left along the horizontal axis in Figure 1.1. For 

the nonlinear characteristic shown in Figure 1.1, the value of 0,- is zero. 



93 

3.4.2 Backpropagation Learning Algorithm 

There are several training schemes for multilayer networks, but the one that is 

probably most popular is the backpropagation algorithm, introduced by Werbos in 

1974 [74] and popularized by the work of Rumelhart, Hinton, and Williams [56]. 

It has been shown to be very successful with pattern recognition and deterministic 

problems [4, 22], and has been applied to a wide variety of tasks such as the exclusive 

OR problem [56], speech synthesis and recognition [51, 42], visual recognition [56, 

44], and classification of radar and infrared images [38, 54]. 

The method employed in this approach is a supervised training procedure and 

feeds back the error at the output to the hidden layers, or "backpropagates" the 

error. During this process, the weights of the network are adjusted according to the 

rule 

d E 
Awji = = pSjXi (3.8) 

where Awji is the change or adjustment in the weight between node j  and node i , (i 

is a constant, a;,- is again the output of the ith node, and 6j = Xjj — Xj, with x$ being 

the desired output of node j. It is shown that the backpropagation algorithm, also 

called the delta rule, is in fact a gradient descent learning algorithm for minimizing 

Et, where 

Et = f:kyak-ykr. (3.9) 
jt=i z 

In this equation, n0 is the number of nodes in the output layer, and ytk and yk are 

the desired and the actual outputs of the kth node of the output layer, respectively. 



94 

Since the desired outputs are known explicitly only at the output layer, the delta 

rule should be expressed as a function of the error at the network output, and not as 

in (3.8), since the desired output of a hidden node is not always known. The delta 

rule can be expressed to take this into account according to the following derivation. 

From (3.8), using the chain rule and the definition from (3.7), the partial derivatives 

can be evaluated as 

dE t  dE t  daj dE t  d i nN 
o = a a  = 7T~a 2s w i iX {  = • (3>1°) 
dwji dctjdwij dajdwjifri 

Therefore, 

(3.11) 

This equation can also be expanded using the chain rule in the form 

p-i2> 

Since x j  = f ( a j )  as in (3.6), 

dxj df(otj) 
= Actj) . (3.13) 

daj daj 

Hence an expression for ^ can be found for two cases: first when the node is an 

output node, and second when the node is a hidden node. When the node under 

consideration is an output node , then 

H = (3.14) 

and therefore 

6k = (ydk ~ yk)f'(ctk) (3-15) 



95 

for any output layer node. However, if the node is in a hidden layer, cannot 

be evaluated directly. An equivalent expression made up of known terms and those 

that may be evaluated can be derived as follows: 

dEt (dZk<*k) dE t  

dxj d(Zkak) dxj 

^ W d O k  

dak  dxj 

g dE t  d 
dak dxj 

A d E t  

D Wk]x i  
,J=1 

J = 1,2, • • •, Nj 

Thus, 

and therefore 

dEt — = ^ 6kwkj 
UX3 k=l 

Nk 

skwk j  

k=1 

(3.16) 

(3.17) 

(3.18) 

where 8k is the delta of the succeeding layer computed earlier. This is the result 

that is needed. Starting with the output layer, 6k can be evaluated using (3.15) 

and then the errors can be propagated to the lower layers. The nonlinear sigmoidal 

function of (3.6) can be differentiated with respect to the input as follows to arrive 

at a simple expression for f'{otk) as 

2 e-(°*+0*) 

f  ̂  = (1 + e-(°*+fl*))2 

2 
(1 + e~{°,*+5*)) (1 + 

(3.19) 



96 

The bias terms Oj can also be learned in the same way [49]. They can be imagined 

as simply being another weight from a unit that always has an output of unity. 

The selection of the updating gain /z should be carefully done; its value should be 

kept small, or oscillation (or even divergence) in learning may result. Rumelhart, 

Hinton, and Williams [56] suggest adding a momentum term, 7, to smooth out 

these oscillations. With this addition, the delta rule is modified as 

AWji(n + 1) = /iSjXj + iWji(n) . (3.20) 

The term associated with the constant 7, w j i ( n ) ,  is the change undertaken by 

the weight in the previous iteration. Thus, the change at iteration n + 1 should 

be somewhat similar to the change undertaken at step n, and the rate of change is 

limited to some degree. It has been shown that while 7 tends to dampen oscillations, 

it also slows the learning rate [49]. 

Also note that since this is a gradient descent learning algorithm, there is the 

possibility of becoming trapped at a local minimum of the error space, causing 

oscillation and no further reduction in the error, Et. This is one drawback of the 

backpropagation algorithm. Lippman [41] suggests allowing extra hidden units, 

lowering the gain term /z, and making many training runs with different sets of 

random weights as ways of avoiding getting stuck in local minima. Despite the 

occurrence of this problem, the backpropagation algorithm has been found to have 

generally good performance. 



97 

The various steps in the execution of the algorithm for processing the training 

set of patterns may now be summarized as follows [41]: 

Step 1 Initialize weights: Set all weights and bias terms to random values. The 

net must not be allowed to start with a set of equal weights, or convergence 

is not possible [56]. 

Step 2 - Forward propagation: Present a vector of inputs and desired outputs 

to the network, and calculate the output y0 using (3.6). 

Step 3 - Error Calculation: Compare the actual output y0 to the desired output 

yd-

Step 4 - Weight Adjustment: Adapt weights by using (3.8), where 6j is calcu­

lated using (3.15) if the node is in the output layer, or using (3.18) if the node 

is in a hidden layer. Proceed backwards beginning with the output layer. 

Step 5: Go to Step 2 for presentation of next pattern. 

The patterns can be a new vector presented every trial, or the same vector 

which is cycled through repeatedly until the weights have stabilized. When the 

weights have stabilized and the error is of acceptable value, the network is considered 

trained. 



98 

3.4.3 Network Training for Payload Identification 

The architecture of the network needs to be found first. Unfortunately, there 

are no algorithms to date on choosing a suitable architecture, although in theory 

a 3-layer network (one input, one hidden, and one output layer) has been proven 

to be able to map arbitrary complex decision regions and can therefore separate 

populations of patterns even though they might be intermeshed spatially in the 

pattern space [41, 26, 17, 19]. There is also an uncertainty as to how many hidden 

nodes there should be in each layer. An excessive number of nodes can generate 

noise and increase the training complexity, but can provide fault tolerance [49]. 

Fewer numbers of nodes result in a poorer generalization performance, i.e., when 

the network is presented a pattern which is different from those in the training 

exemplars, the classification accuracy is worse than a similarly trained network 

which has more hidden layer nodes. As a practical matter, the selection of the 

architecture is usually accomplished by a method of trial and error, by progressively 

adding nodes until an architecture is found which satisfies the error requirement and 

is trained in a reasonable time period. 

The neural network used in this thesis was simulated on the public domain soft­

ware package PlaNet. Both networks with one and two hidden layers were experi­

mented with, and the output layer was made up of nonlinear processing elements. 

The input was a two dimensional vector with elements the mean value of the tip 



99 

deflection and the maximum value of the tip deflection, obtained from the test con­

trol data. Note that while the features were computed from the raw data before 

being input to the network, the network can be generalized to identify the classes 

based on the raw data itself and not on the explicit features. 

The output layer consisted of three nodes, one for each class. The desired outputs 

were defined to be an output of a magnitude of one from the node corresponding 

to the correct class, with the other nodes in the output layer giving a value of zero. 

Hidden layers were tested with numbers of nodes that ranged from 6 to 20, and the 

chosen architecture from these experiments was a network with one hidden layer 

consisting of 12 nodes. It was trained in 200,000 cycles through the training set, 

which consisted of 18 input-output training pairs of patterns. 

The patterns corresponded to the responses of the manipulator with payloads at 

0.1 increments of /x and k within each class. The training exemplar set consisted 

of an equal representation for each class, that is, each class had the same number 

of patterns in the training set. This was to ensure that all classes were learned at 

an equal rate. This meant that some patterns were presented to the network for 

training more than once per cycle (such as the pattern for fx = k = 0). 

The training was successful in that all patterns were learned and classified cor­

rectly. The payload class was identified by the node in the output layer with the 

maximum output value. This payload class was then used to update the control 

feedback gains. 



100 

State 
Estimator 

Neural 
Network 

Controller 
Flexible 

Manipulator 

Figure 3.10: Neural Network-Based Control System 

3.5 Performance of Neural Network-Based Control 

Once the network is trained to identify the classes correctly, it could be used 

on-line to select the proper control gains corresponding to the load being carried by 

the flexible manipulator. The control gains are found by using the guidelines stated 

in Section 3.2.1 for each class and are stored. The neural network output determines 

which of the three vectors are selected and implemented. The closed-loop system is 

shown in Figure 3.10. In this architecture, the state estimator can be designed as 

described in [16], so the procedure is not covered here. It is shown in Figure 3.10 

merely to ensure that all states are available for the controller. 

The results of the simulation using the neural network-based control scheme is 

shown in Figures 3.11, 3.12, 3.13 and 3.14. These figures present simulations for the 

smallest payload, the largest payload, and an intermediate payload in each class. 



0.08 

0.06 

0.6 (-) mi 
0.04 

-0.02 

Time (s) 

Figure 3.11: Class 1 Range of Tip Deflection 

\ 
\ B

 
\ 

ii 
i 

o
 ;

 ; 

v mO s 0.4 (4-) 

A 

I j 

\ \ \  |  

\ ! ! 

1 ww_.. 

Time(s) 

Figure 3.12: Class 1 Range of Hub Response 



102 

0.1 

mu «= 0.8 0) 0.08 

0.06 

-0.02 

-0.04 

Time (s) 

Figure 3.13: Class 2 Range of Tip Deflection 

The robustness of the control needs to be particularly noticed. The tip deflection 

bound is preserved for the lightest payload in each class as well as the heaviest. This 

of course is because the control was designed with the heaviest payload in mind, 

which guarantees this result. Another consequence of this design approach is that 

the lighter payloads have hub rotations which are as slow or slower than in the case 

with the heaviest payload in each class, which will always happen if more than one 

payload is in the class. 

Figures 3.15, 3.16, 3.17, 3.18, 3.19, and 3.20 display results with both the correct 

choice of control based on the output of the neural network and the consequences 

of a wrong choice of control. However, the neural network was accurate for all 

simulations of the payloads in correctly detecting the payload class, and the wrong 

control choices are forced only for illustrative purposes. The simulations used a 



103 

I 05 
« 0.4 
•o 
s! 

0.3 

0.2 

0.1 

0 

1 1 I 
i 
i 

! 
| 

m i = 0.8 ( ) 

i m = 1.2 ( -) 

vU 

\t\ 

• \\ 

I 
1 2 3 4 5 6 7 

Time (s)  

10 

Figure 3.14: Class 2 Range of Hub Response 

middle value in each class as the representative payload. Therefore, the value used 

for the class 1 payload was fi = k = 0.4, for class 2 it was n = n = 1.2, and of 

course for class 0 it was /i = k = 0. There were numerous simulations done, but in 

the interest of brevity, only a few representative ones are shown. 

In order to gain more insight from the responses of the arm under various con­

trols, it is necessary to look at the pole locations for each case. The three gain 

vectors are 

KC ias> o = [ 13.0973 98.3546 -106.1394 -114.4789 -202.0499 

7.1663 3.9911 -1.9559 -2.0357 -3.4341 ] (3.21) 

which places the closed-loop poles for the manipulator carrying the Class 0 payload 

(n = k = 0) at 



104 

1 
-

1 ii lis 
./v.... 1 

1 CI us 0 cor trol(-) 

!J 1 
CI 

CI 

iss 1 cor 

iss2coi 

trol(;) 

uol(-) 

' i 
i j 
' j I 

4 5 6 

Time (s) 

10 

Figure 3.15: Tip Deflection - No Payload 

\ 
1 1 1 —I - ! 

\ Class 0 control (-) ( 

\ \ 

Class 1 control (:) | 

V' \ 1 1 1 ! 

\ '• \ I • 1 
I 

Time (s) 

Figure 3.16: Hub Rotation - No Payload 



105 

Ac/om 0 — 

—1.0 ± j'359.87 
—1.0 ± j'218.33 
-2.0 ±jl 12.92 
—21 ± j 18.23 

-3.7 
-4.5 

(3.22) 

Kcias, 1 = [ 11.6013 71.5218 -118.3814 -104.5130 -107.7610 

17.1421 1.1057 -3.8824 -2.0613 -2.0972 ] (3.23) 

which places the closed-loop poles for the manipulator carrying the Class 1 payload 

(fi = k = 0.4) at 

^ Class 1 — 

-0.99 ± j225.57 ' 
-1.94 ± jll9.48 
—9.42 ± j50.25 
-4.71 ±j3.16 

-17.85 
-0.89 

(3.24) 

and 

Kclass 2 = [ 3.2928 17.1249 -90.6244 -251.2564 -115.4626 

7.1230 2.4458 -6.0499 -5.0582 -2.0571 ] (3.25) 

which places the closed-loop poles for the manipulator carrying the Class 2 payload 

(fi = k = 1.2) at 

Fciass 2 = 

" —1.0 ±j221.13 
-4.96 ±jl 15.54 
—14.86 ± j'47.81 
-3.20±j2.57 

-3.41 
-0.68 

(3.26) 



106 

Note that the odd pole locations (i.e. -3.41 and -0.68 of rc/aa«2: why are the 

poles placed there instead of -3.4 and -0.7?) of ciats l and Tcia*s 2 occur because the 

feedback gain vectors Kciass i and Kcia» 2 were designed for the heaviest payloads 

of those classes, or fi = k = 0.6 and fi = k = 1.5, respectively. When these gains 

are used with lighter payloads the poles "migrate" to seemingly odd values in the 

LHP, but as long as they remain in the LHP, this is perfectly acceptable. Keeping 

these observations in mind, and first looking at the simulation of the Class 0 case, 

(Figures 3.15 and 3.16), it is seen that the hub rotation and the tip deflection have 

both reached zero at approximately 3 seconds, under correct payload identification, 

or Class 0 control. The response of the arm when controls bcised on Class 1 and Class 

2 payloads are used in this case is worse. For the Class 1 control, the bound on the 

tip deflection is exceeded, and the hub rotation is slower. This seems to contradict 

the intuitive feeling that the faster the tip moves, the larger the tip deflection. This, 

however is only true in a general sense. Let us look at the placement of the poles 

under Class 0 control and the corresponding locations for the Class 1 control: 

^Claaa 0 — 

• —1.0 ±,7 359.87 
—1.0 ±j218.33 
—2.0 ±jll2.92 
-21 ±j 18.23 

-3.7 
-4.5 

Ac/as a 1 = 

-0.6±j359.86 " 
-0.99±j218.28 
—3.49 ± j'112.12 
-5.87 ± j'18.24 

-44.87 
-0.70 

(3.27) 

The higher frequencies are damped out approximately equally, but the pole 

locations for the lower frequencies are further to the left when Class 0 control is 

used. The main cause for the tip deflection being exceeded, however, is the large 



107 

magnitude of one of the rigid poles. The slower hub response is also mainly caused 

by the placement of the rigid poles. The low magnitude (-0.70) of one of the rigid 

poles causes the hub to move slower, despite the extremely large pole (-44.87) also 

associated with the rigid mode. From this it is seen that it is better to have the 

poles associated with the rigid mode (or in other words, the poles associated with 

the states qQ and q0) be approximately the same in magnitude, so that both of the 

states qo and qo go to zero quickly. 

The response of the arm while under Class 2 control is similar to the Class 1 

control response. Although the tip deflection is smaller, the price paid is a slower 

hub convergence. The pole locations for this control are 

A Class 2 = 

" —0.60 ± j'359.88 ' 
-2.44 ± j'218.29 
—5.48 i.7'111.74 
—4.12 ± j 14.46 

—30.58 
—0.48 

(3.28) 

In this case, two of the flexible modes are damped more heavily than when using the 

Class 0 control, with the flexible mode associated with the highest frequency and 

the flexible mode associated with the lowest frequency being more lightly damped. 

However, instead of the rigid modes being to the right (or more lightly damped) than 

the Class 0 control scenario, they are much the same as in the case of Class 1 control, 

with one much larger pole and one much smaller pole. These pole magnitudes are 

not as large as those with Class 1 control, so it would seem that they should produce 

a smaller transient tip deflection than the Class 1 control. However, this is not the 



108 

case, as the transient tip deflection is larger. The relationship between these rigid 

poles is not clear, and this is one difficulty with the control design using state 

feedback. 

The other two classes of responses (Figures 3.17, 3.18, 3.19, and 3.20) can be 

analyzed in the same manner. From the simulations it is seen that, in general, 

the Class 1 control produced the highest tip deflection when it was applied to 

payloads which were in Class 0 or Class 2. The Class 2 control produced the least 

tip deflection when it was applied to payloads which were members of Class 1 or 

Class 0. The general rule of thumb to follow in design is that the faster the hub is 

rotated, the larger the tip deflection becomes, when both poles associated with the 

rigid mode are selected to be approximately equal in magnitude. 

The simulations clearly show that the adaptive control using payload identifica­

tion is much more effective than using a fixed gain. The fixed gain that would be 

used for this system would be the Class 2 control feedback vector. Figures 3.15, 

3.16, 3.17 and 3.18 clearly show the superiority of adapting the gains to the ones 

corresponding to the class of payload that the manipulator is carrying. In both of 

the lighter payload classes, the hub rotation and tip deflection converge much faster 

when using Class 0 or Class 1 controls. Since a robot is usually implemented in 

tasks which involve a lot of repetition, the time saved by adaptively controlling the 

robot based on the payload it is carrying can drastically improve its productivity 

and usefulness. 



109 

: 

A Class 0 cor 
| A 

Class 1 cor trbl(-) 1 t 

/ 1 
Class 2 coi 

i 
Sol (--) 

| 

\ ; 
i 

! 
t 
i \ ; 

i 

' J \  
i 

i | 

{ i 
| | 

5 6 

Time (s) 

10 

Figure 3.17: Tip Deflection - Payload fi = «; = 0.4 (Class 1) 

0.8 Class 0 control (:) 

0.6 

Class 2 control (--) -
1 0.4 

S 

= 0.2 
.o 
X 

•0.2 

-0.4 

Time (s) 

Figure 3.18: Hub Rotation - Payload /* = K = 0.4 (Class 1) 



110 

0.12 

0.1 

0.08 

0.06 
el 
*, 0.04 
g 
| 0.02 

i  0 
P 

-0.02 

-0.04 

-0.06 

-0.08 

i|M 
Ml 

i—— • j i 
1 | 

pi if 
IfY.I. 

1 ! 
! Class 0 cor t 1 trol (:) 

/ r1 

i Class 1 coi trol(-) 

\ \ 
CI 

§
 

cs M tiol 

V ^ 

§
 

cs M 

V' ^ 
| | / 

\ \  
^ 

\* | / 
j i \ | : 

| | j • ] 

0 1 2 3 4 5 6 7 8 9  1 0  

Time (s) 

Figure 3.19: Tip Deflection - Payload /x = k = 1.2 (Class 2) 

0.8 

0.6 

1 
1 

Class 2 control (-) 
0.4 

g 

0.2 

-0.2 

-0.4, 

Time (s) 

Figure 3.20: Hub Rotation - Payload /z = k = 1.2 (Class 2) 



I l l  

3.6 Implementation Issues 

For practical implementation, there are several issues that should be considered. 

The first is the implementation of the observer once the payload class has been 

identified by the neural network. After the class has been identified, an observer 

must be implemented. This observer must be robust enough to accurately estimate 

the states for all payloads in the range of the class. This may not be practical 

using a standard observer such as those discussed in [16], and therefore more novel 

techniques using nonlinear methods may have to be investigated to design this 

robust observer, such as those discussed in [48, 80]. However, as stated before, this 

thesis is mainly concerned with the controller design and not observer design, and 

therefore this must be reserved for future research. 

Once the observer is implemented after the payload class has been identified, the 

controller would not be implemented until the estimated states had sufficient time 

to converge to their true values. Therefore, the time sequence for implementation 

(as shown in Figure 3.21) would be as follows. At time to, the test control is 

applied to the arm, exciting the beam dynamics. After a period of tin seconds, the 

raw data from that time period is sent to the neural network. The neural network 

then identifies the class of payload, and picks the proper observer parameters cor­

responding to that class. The observer is then activated and allowed t0u seconds 

to converge to the actual state values. During this time of t0\,s seconds, the test 

control is still being applied. After the convergence of the estimator, the controller 



112 

to T 

'lD 1 ̂ t ob« ^ 
t(sec) 

I. * lc ' 

t(sec) 

Figure 3.21: Time Sequence for Practical Implementation 

corresponding to the payload class identified by the neural network is put on-line, 

replacing the test control and remains on-line for tc seconds, or in other words until 

the payload is changed and identification must take place once again. Thus the 

total time that the test control is applied is t0 seconds, as shown in Figure 3.21. It 

is important to note that this figure is made under the assumption that three sets 

of observer parameters are available, one for each class, and the set of parameters 

corresponding to the correct payload class must be implemented to guarantee good 

estimation of the states. 

Another issue is the effect of payload changes during operation. For most ap­

plications, the manipulator is rarely going to have its payload increased unexpect­

edly during operation, but there is always a possibility that the payload could be 

dropped. If this happens after the payload identification has been completed, there 



113 

must be a way of stopping motion and starting the procedure over. This could be 

implemented with what is known as a cross-fire sensor on the gripper of the flexible 

manipulator. This type of sensor simply fires a signal from one finger of the gripper 

to the other finger which has a sensor to detect it. Thus, if the payload is dropped, 

this sensor will alert the control to test the payload condition and then proceed 

with the adapted controller gains. In this way the control can adapt to 'on the fly' 

payload releases or drops. It might be argued that the sensor eliminates the need 

for re-identifying the payload, since if the payload is dropped there is obviously no 

payload on the arm and the no payload control could be implemented immediately. 

However, by performing the identification again, a safeguard is imposed for faulty 

sensor outputs. This is especially important for other control schemes, in which the 

dynamics might become unstable when the loaded manipulator is operated using 

control based on the no payload condition. 



114 

CHAPTER 4 

ADAPTIVE VARIABLE STRUCTURE 

CONTROL BY PAYLOAD IDENTIFICATION 

4.1 Introduction 

In Chapter 3 it was shown that a regulator control using state feedback whose 

design is based on a linear model of the flexible manipulator performed well when 

applied to the original nonlinear model. However, it is known that a regulator such 

as this is not a highly robust control when disturbances are introduced into the 

system. These disturbances could be caused by a number of sources external to the 

manipulator/payload system, such as wind gusts if the manipulator is in such an 

environment. Disturbances could also be introduced if there are dynamics of the 

beam, payload, or actuator which are either unmodeled or modeled poorly by the 

simulator. 

One class of control that has been proven to be quite robust in the presence of 

such disturbances is the so-called variable structure control (VSC). This type of 

control has been used on rigid robots for a number of years for this reason, and it 

has been proven to be a satisfactory control mechanism for nonlinear systems in 



115 

which the model parameters could not be precisely known or which are subject to 

disturbances due to unmodeled dynamics or external sources. Therefore, instead of 

using the less robust linear regulator, the use of variable structure control would be 

an improvement in the neural network control scheme of Chapter 3. 

This chapter describes the implementation of a payload adaptive VSC for flex­

ible manipulators. The basics of variable structure theory are presented and a 

demonstration of robustness in the presence of disturbances is given. Three ex­

amples of implementations of VSC specifically for flexible arms are explained, and 

compared, showing simulations of each. The best scheme among these is selected 

and used in conjunction with the neural network payload identification scheme de­

rived in Chapter 3. Finally, the results of this variable structure scheme when the 

arm is operated while carrying each of the three payload classes are examined and 

compared with the results of the linear regulator control of Chapter 3. 

4.2 Variable Structure Control 

The main characteristic or feature of variable structure control is the sliding 

motion [80]. Sliding motion occurs near a specified manifold or hypersurface when 

the control is constantly switched such that the system state is always directed or 

forced onto this surface in the state space. The hypersurface must be chosen such 

that the dynamics of the system are asymptotically stable while sliding on it. This 

is the first phase of the design. 



116 

The second and final design stage is the selection of a control law such that the 

system state variables are attracted toward the sliding surface at all times. To show 

the basic concepts of VSC, consider the simple second order system 

X 1  = x 2  

±2 = — a iXi  — 02X2 +  bu  (4.1) 

where xj and 12 are the state variables to be controlled and u  is the scalar control 

applied. The parameters a,- and b can be either constant or time-varying, and their 

exact values may be unknown. A discontinuous control is selected such that 

u + ,  s>  0 
u = (4.2) 

u~,  s  <  0 

where 

s  =  Gx  1 +  X2 ,  G  > 0 (4.3) 

and is defined as the switching function. The line at which the control is discon­

tinuous is s = 0. This is the sliding manifold. When the system is sliding, or in 

other words 5 = 0, the following differential equation describes the dynamics of the 

system: 

s  =  Gx  1 + ii = 0 . (4.4) 

The solution of this system is clearly 

x i ( t )  =  x i ( t 0 )e~ G { i ~ t o ) .  (4.5) 



117 

Thus, the order of the dynamics has been reduced by one, and the system behaves 

like an asymptotically stable first-order system with a pole at — G during the sliding 

motion. The dynamics are also independent of b over a specified magnitude range 

[80]. This shows that a properly designed sliding line will give stable motion when 

the system is sliding. 

The control that drives the system state variables to the sliding mode is governed 

by the so-called reaching condition. This is the condition that is necessary for the 

motion of the system states to be drawn toward the switching line. When s is 

positive, the control must assure that s is negative and vice versa. Thus, the 

following are needed 

lim s < 0 ; lim i > 0 (4.6) 
s-o+ s-o— v 

' 

on each side of the switching line. Both conditions may be combined to give the 

reaching condition [69] 

ss  <  0 . (4.7) 

Thus, as suggested in [45], a control which insures that 

s  =  —k sgn(s) , k  > 0 (4.8) 

where 

sgn(s) = 
1  5 > 0  

(4.9) 

- 1  s < 0  

will satisfy the reaching condition in (4.7). This is evident, for s will always have 

the opposite sign of s, and will always force the system states to the sliding line 



118 

3 = 0. Therefore the control can be evaluated as follows: First the expression for i 

is  evaluated and set  equal  to  —ksgn(s ) ,  

s = Gil + x2 

= Gx 2 — a \X \  — 02X2 +  bu  

=  —k sgn(s) (4*10) 

and then u  is solved from the above expression to be 

u  = i(— k  sgn(s) 4- a\X\  + 02X2 — Gx 2 )  . (4-11) 0 

This control is discontinuous and must oscillate to keep the state variables on the 

sliding line 5 = 0. For an ideal sliding mode, the frequency of this oscillation must be 

infinite, which because of switching delays, hysteresis, and other physical realities, 

cannot be achieved. As a result, the state will merely stay in a neighborhood of 

s = 0, continually passing across the sliding line as u switches between two or more 

distinct values. This process is what is known as chattering, and is undesirable in 

any physical system in which rapid switching could damage the control actuators. 

One way to eliminate chattering [13, 63] is to approximate the discontinuous control 

with one that is continuous. This can be done by changing the sgn(s) function to 

a saturation function, i.e. 

satW=(jirsj (4-12) 

where d  is a small positive number. Note that 

sgn(s) = |7j • (4-13) 



119 

Another form of the saturation function that has been used in VSC [47] is 

sat(s) = < 

1 s  >  t  

s / c  | s | < e  

—1 s  <  —e 

(4.14) 

The most attractive feature of using VSC is its robustness to parameter vari­

ations. This can be shown [27] in the following manner. Consider the perturbed 

system dynamics 

Xi  =  x 2  

i 2  = —a 1X1 — a 2 X2 +  bu  +  v  (4.15) 

where u is a term modeling all parameter variations and disturbances. The control 

function given by (4.11) is substituted into the system equations (4.15), resulting 

in 

X j  =  X2 

X2  =  —k sgn(s) — Gx2 + v  (4.16) 

If conditions can be found such that the reaching condition (4.7) is still satisfied in 

the presence of the disturbance, the disturbance will be rejected during the sliding 

motion. This can be shown by evaluating 

s i  =  s (GA i  + X2)  

=  s(—k sgn(s) — Gx2 +  v  +  Gx2)  



120 

= a(-fcsgn(s) + v)  

=  sv  — sk  sgn(s). (4-17) 

The reaching condition is satisfied if 

A: > ~-r . (4.18) 
sgn(s) 

It is seen in (4.18) that only a lower bound is specified for disturbance rejection. 

Thus all disturbances can be rejected if k is made sufficiently large. However, 

this large control gain selection can cause excessive chattering around the sliding 

manifold, and is not desirable. In the specific case of flexible manipulators, large 

control gains can cause excessive tip deflections as well, as will be shown later in 

this chapter. 

To illustrate the application of variable structure control to flexible manipulator 

control, it will be applied to drive the hub angle to zero. In order to regulate the 

hub angle, the output 6 of the manipulator is the error variable used in the sliding 

line equation that the VSC wishes to force to zero. For convenience, the linearized 

equation of the manipulator dynamics from Chapter 2 is once again stated, 

9 + ̂  = p|AN(0)- (4-19) 

The sliding line equation is selected as 

s  =  0  +  G6,  G> 0 (4.20) 

where 6 and 6 are described in terms of the  generalized coordinate q as 

e  =  A N (0 ) q ]  0  =  \ N (0 )q  (4.21) 



121 

and G = 6 is chosen in this example for purposes of illustration. 

Using (4.8), to find the control necessary to satisfy the reaching condition, an 

expression for i is derived to be 

i = 6  +  G6 

= Ajv(0  )q  +  GO 

= AN(O)(^A£(O)-fig) + G0 

= ^lAw(0)A£(0) - AN(0)fi9 + G0 . (4.22) 

Thus, the control is of the form of (4.11), and is 

_  ~fcsgn(s )  +  A N (O)nq-G0 .  

^A„(0)A£(0) 

The control gain k  was chosen to be 3.3 for the simulation (again it is an arbitrary 

choice for illustrative purposes), and the discontinuous sign function was approxi­

mated by a saturation function as shown in (4.14), with e chosen to be 0.3. The 

results of the simulation are shown in Figures 4.1, 4.2, 4.3 and 4.4. 

The control performed well in regulating the hub rotation. The hub angle was 

quickly driven to zero, as shown in Figure 4.2, and the phase trajectory (Figure 4.4) 

of 6 and 6 clearly shows the reaching and sliding phases of the control. The chat­

tering phenomenon is minimal, as a result of the saturation function employed to 

approximate the discontinuous control. However, it can be seen in Figure 4.1 that 

the flexible modes of the beam have been excited by the control applied to the 

hub, causing an undamped tip deflection, which is an expected result. Hence, a 



122 

0.08 

0.06 

0.04 

0.02 

e? 
& 0 

.8 .8 
-0.02 

<3 -0,04 
a. f i  

-0.06 

-0.08 

-0.1 

-0.12 

A A A A A 
1 

/ , 
. V 

L V 

1 2 3 4 5 

Time (s) 

6 7 8 ? 1C 

Figure 4.1: Tip Deflection, VSC Hub Regulator Control 

1 
•a S 
1 

\ \ 
\ 
\ \ 

0 1 2 3 4 5 6 7 8 9  1 0  

Time (s) 

Figure 4.2: Hub Rotation, VSC Hub Regulator Control 



123 ' 

6 

5 

4 

v> 3 

2 

1 

° 0  1 2 3 4 5 6 7 8 9  1 0  

Time (s) 

Figure 4.3: Sliding Line Trajectory, VSC Hub Regulator Control 

o 

-0.1 

-0.2 

I 
£ -0.3 

pi 
X 

-0.4 

-0.5 

"a60 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Xl-Theta 

Figure 4.4: Phase Plane Trajectory, VSC Hub Regulator Control 



124 

different VSC must be designed in order to dampen these flexible vibrations. The 

next section presents several methods which address this issue. 

4.3 Some Previous Results using VSC for Flexible Manip­

ulators 

In recent years, many control methods first devised for use on rigid robots have 

been extended to flexible ones. Variable structure techniques have not been an 

exception to this trend. The disturbance rejection properties of VSC make it es­

pecially appealing for application to flexible arms, where the model must be an 

approximation of the actual nonlinear distributed parameter system of the arm. In 

particular, three recent approaches will be discussed, simulated and compared. 

4.3.1 Tip Position VSC 

A logical solution to the problem of dampening the excitation of the flexible 

modes induced by the hub regulating VSC of the previous section would be to 

instead regulate the tip position. This approach was presented by Qian and Ma [52]. 

The design procedure is very similar to that of the hub regulation scheme except of 

course the sliding line is now changed to 

s  =  x 2  + Gx i (4.24) 



125 

where X\ is the tip position, y« p ,  and x-i  is the time derivative of the tip position, 

lltip. These quantities are functions of q expressed as 

yu P  = Z N ( l )q  ;  j / t .p  =  Z N ( l )q  . (4.25) 

Recall from Chapter 2 that Z n { 1) is the vector of mode shapes of the manipulator 

evaluated at the tip. 

The control that insures that s  =  —k sgn(s) is 

_  - k  sgn(s) + Z N ( \ )S lq  -  Gx 2  , t  n c s  

T = — — '  < 4 ' 2 6 )  

Thus, a very simple control is derived to drive the tip position to zero. However, 

the tip position is a function of both the hub angle and the deflection caused by the 

flexibilities of the arm. Insuring that the tip goes to zero does not insure that the 

hub angle goes to zero as well. The position of the tip is defined in non-dimensional 

coordinates as 

Vtip = Z N ( l )q  =  w + 9 (4.27) 

Therefore, the tip can be driven to zero by simply making the tip deflection, w, be 

equal and opposite in sign to the hub rotation. This approach of course is not a 

desirable method of control, and undesirable results are precisely what occur when 

this method is used, as shown in Figures 4.5 and 4.6. Instead of a reduction in 

the magnitude of the hub angle, it is is actually increased very rapidly, causing the 

tip deflection to become negative, which drives yup towards zero. This requires an 

ever-increasing magnitude of tip deflection, which of course will cause damage to 



126 

-0.2 

-0.4 

1 g 
-0.6 

5  
6 
P -O.R 

•'•2. 0.3 0.25 0.2 0.15 0.05 

Time (s) 

Figure 4.5: Tip Deflection, VSC Tip Position Approach 

the arm and also require a constantly increasing torque. The phase plane trajectory 

(Figure 4.7) shows that the states are unable to stay in the neighborhood of the 

switching line, because the beam will eventually deflect back in the other direction. 

The control is unable to prevent this from happening, and the system becomes 

unstable. 

It should be noted that in Qian and Ma's simulation, the model that they used 

contained some structural damping in the formulation of the linear model used for 

their simulations and design of the control which might have been enough for the 

control to be successful. However, the only simulation results shown in the paper 

were of the tip position, and the actual value of the structural damping term was 

not given. The modeling of the structural damping is not well developed, and it 



127 

1.2 

0.8 
I 
1 j> 0.6 
DO 5 
-O a 
S 0.4 

0.2 

0.25 0.3 0.2 0.15 0.05 0.1 

Time (s) 

Figure 4.6: Hub Rotation, VSC Tip Position Approach 

1.6 

0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 

XI 

Figure 4.7: Phase Plane Trajectory, VSC Tip Position Approach 



128 

is difficult to accurately quantify, and thus a control system should not depend on 

these natural damping terms for successful results. 

4.3.2 Hub Rotation plus Pole Placement Approach 

The drawback in the hub regulation example described in Section 4.2 is that 

the flexible modes were excited. Nathan and Singh [47] proposed to drive the hub 

angle to zero in the same manner, but when the hub has entered a neighborhood 

close to zero, a switching logic adds linear state feedback to the VSC to dampen 

the oscillations of the tip due to the flexible modes. 

The control is constructed in two parts. First, the VSC is designed for the hub. 

The expressions for s, s and the control are the same as (4.20), (4.22) and (4.23), 

respectively, and are re-stated for convenience. The nonlinear saturation function 

(4.14) is substituted into (4.23) as well for a practical implementation to be possible. 

s  =  0  +  G6,  G  >  0 (4.28) 

3  =  ̂ An(0)A£(0)  -  A N (0 )Qq +  GO (4.29) 

-fcsat(s) + \ N (0 )Hq-G6 , t  o n S  

T""= AA«(0)Aj5(0) ' (4'30) 

The second phase of the design is the construction of the pole placement stabilizer, 

which is desired to be of the form 



129 

where w is the stabilizer input and is to be determined later. The total input to 

the system is 

T = TV,C + T, . (4.32) 

Substituting (4.31) and (4.32) into (4.22) gives 

s = —k sat(s) + w . (4.33) 

For w = 0, it is seen that s(<) —* 0 as t  —• oo. 

The stabilizer is designed in a new state space, with state vector z  defined as 

z  =  

9 

s  

P 
P  J 

(4.34) 

where p  and p  are vectors consisting of the n  — 1 flexible modes of the system and 

the time derivatives, respectively, and are given as 

' 

(4.35) 

When the stabilizer is operating, the dynamics of the state vector z  are given by 

the following differential equation 

' 01 ' ' 01 ' 
92 92 p  =  
: P =  : 

. 9n . . 0" . 

i = Fz  +  Ew (4.36) 

where F and E are found as follows by evaluating the time derivatives of the state 

vector components. Using (4.28), 6 is found to be 

6  =  s -G6 .  (4.37) 



130 

Since the stabilizer control is based on a linear pole placement design, the state 

space must be linear, and therefore (4.33) must be stated in its linearized form as 

. ~k  
S  =  3  - F  W  .  

e  
(4.38) 

The final expression that must be solved for is p. By eliminating the rigid mode 

from (4.19), one gets 

(4.39) P  =  ̂ A F ( ° )  -

where 

and 

AF(0) = «i(0) <*2(0) ••• a„(0) 

f lp  = 

Substituting (4.32) into (4.39) gives 

' W? 0 • • 0 
0 • 

• 
0

 

O
 •*

 

0 • • w2 
J 

P  =  
—s + Ajv(0)J2g  — G0  +  W  

A 
AP(0) — FLPP 

where 

Noting that 

A = A*(0)A£(0) . 

(4.40) 

(4.41) 

(4.42) 

(4.43) 

Ajv(0)fi<7 = Af(0)fi/rp, (4.44) 



131 

and substituting (4.37) into (4.42), p  can be expressed solely in terms of the state 

vector z as 

A£(0)s + — Ap(O)0 + P =  rA?(0)AH0)ftF o nF p + MMw . (4.45) 

Combining (4.37), (4.38), and (4.45) into state space form, gives 

01X4 
01x4 
04X4 

—G 1 
0 

£ 

04X1 04X1 

01X4 " 0 ' 
01X4 1 
•^4X4 z + 04X1 W 

04x1 A£(O) 
A . 

w (4.46) 

where I  and 0  are the identity and null matrices, respectively. 

The closed loop poles of this system may be placed with the standard technique 

given in Chapter 3 with a state feedback control 

w = —Ljz  .  (4.47) 

The results of the simulation using this method are shown in Figures 4.8, 4.9, 

and 4.10. The pole locations for the closed loop system were chosen to be 

A = 

—1.50 ±j359.05 " 
-1.50±j216.94 
—1.50 ± j 109.97 

—1.50 ± j6.51 
-6.0 

-11.17 

(4.48) 

The locations of the poles associated with the flexible modes were simply chosen 

to be in the LHP such that the oscillations of the tip were damped. The real poles 

corresponding to the rigid mode were chosen to be at the same locations as those in 

the VSC example for the hub control given in Section 4.2 to show how this method 



132 

0.08 

0.06 

0.04 

0.02 

§ -0.02 
c  
£ -0.04 

-0.06 

-0.08 

-0.1 

-0.12 

Time (s) 

Figure 4.8: Tip Deflection, VSC 4- Pole Placement Approach 

is an extension of  that  example .  These  poles  are  both  determined by  G and k  

and can be calculated explicitly by simply calculating the eigenvalues of F. The 

corresponding feedback vector Lj which places the poles at these locations is 

Lj  = [ -30.5 5.7 243.6 -1284.5 -3094.2 

6394.9 -13.9 -59.6 -130.6 -219.6 ] . (4.49) 

The parameters associated with the VSC were selected as G = 6, and k  = 3.3, as 

they were in the hub VSC example given earlier. It is apparent that the switching 

logic added the stabilizer to the control loop at approximately 2.5 seconds. It is 

clearly seen from the phase plane trajectory plot (Figure 4.10), that the states 

are moved off of the sliding line at this time. The control effort also moved the 

hub as shown in Figure 4.9. The total time for convergence to zero of both the 



133 

0.8 

0.6 
V) 

T3 
£ 
o 0.4 

"5> s 
.o 
S x 0.2 

-0.2 

Time (s) 

Figure 4.9: Hub Rotation, VSC 4- Pole Placement Approach 

0.2 

0.1 

-0.4 

-0.5 

-0.6 0.8 0.6 0.4 0.2 -0.2 

Xl-Theia 

Figure 4.10: Phase Plane Trajectory, VSC + Pole Placement Approach 



134 

tip deflection and the hub rotation was approximately 6 seconds. This is twice as 

slow as the linear regulator control designed in Chapter 3. However, the control is 

more robust in this case. The reason for this is that because the pole placement 

isn't activated until the hub angle is relatively small, the stabilizer control, which 

is simply a linear pole placement controller is actually being applied to a linear 

system. This is because most of the nonlinear effects of the model are due to the 

hub dynamics, which can be neglected when the hub is only required to move a 

small angle. In contrast, the linear regulator designed in Chapter 3 is always being 

applied to a system which is highly nonlinear and is therefore only guaranteed to 

stabilize the system within a region around an operating point. 

The control is successful in accomplishing its task, but it has several disadvan­

tages. First, it must have a switching logic that is based on both the hub position 

and the hub velocity to tell when the stabilizer should be included in the control 

loop. Furthermore, the control is inefficient, because the tip vibrations are not sup­

pressed until the hub has come close to the desired angle. In order to suppress these 

vibrational modes, the hub may have to be moved away from the neighborhood in 

which the stabilizer is operating, thus shutting it off. The control will eventually 

stabilize of course, but the time it takes to accomplish this will not be as fast as 

something such as the linear regulator of Chapter 3. Also, the additional stabilizer 

control is a disturbance to the VSC. This means that the faster the flexible poles are 

wished to be damped, the larger the control gain must be made to insure that the 



135 

reaching condition holds. This larger control gain results in larger tip deflections, 

so the speed is limited as it was using the linear regulator control. 

Both of the previous methods have disadvantages that limit the performance 

of the control. A variable structure control is needed which regulates all states 

simultaneously, rather than merely regulating a specific output as both methods 

so far have tried to do. This characteristic, however, requires a more rigorous 

hyperplane design, in order to make sure that the sliding motion is asymptotically 

stable. 

Such a state regulator VSC method has been explored very briefly by [62], using 

a hyperplane design method suggested in [80]. A much more complete examination 

of this approach to flexible manipulators is given in this section. This approach 

uses a sliding line of the form 

and is based on a specific canonical transformation of the linear state equations 

4.3.3 VSC State Regulator Method 

s  =  Cx  (4.50) 

x( t )  =  Ax( t )  +  Br( t )  (4.51) 

in which, for the flexible manipulator, 

(4.52) 



136 

The canonical form which is needed is obtained through annxn linear transfor­

mation matrix, T, such that 

TB = 0 
B 2  

(4.53) 

where B 2  is mxm and non-singular. The transformation T can be obtained through 

QU (also known as QR) factorization of B, where B is decomposed into 

B = Q U 
0 

(4.54) 

where Q is n  x n  and orthogonal and U is m x m. Therefore, T can be obtained 

by "flipping" the rows of Q T ,  i.e. the last row becomes the first, etc. Hence T is 

an orthogonal matrix as well, and there is no inversion problem numerically, since 

y-l _ ipT 

The new (transformed) state vector is now defined as 

y  =  T  

and the transformed state equations are 

(4.55) 

y( t )  =  TAT T y( t )  +  TBT( t )  

Consider the partitioning of the state vector y  in the form 

(4.56) 

2/(0 = »i(0 
lfe(*) 

y ieR n  m ,  y 2  £  R v  (4.57) 

If the other matrices appearing in (4.56) and (4.50) are partitioned similarly as 

TAT T  = Au Au  
A2I A22 

;  CT r =[C 1  C 2 ]  ,  (4.58) 



137 

then the state equations may be expressed in the form 

2/i(0 = + -^122/2(0 (4.59) 

2/2(0 = Any\{ t )  +  ̂ 221/2(0 + B 2 r ( t ) ,  (4.60) 

and the sliding condition is 

C i y 1 ( t )  +  C 3 y 2 ( t )  =  0 .  (4.61) 

The aim of the first part of this design is to design an asymptotically stable 

sliding mode. While sliding, yi(t) and 2/2M are related by (4.61) 

2/2(0 = -C^cm(t) . (4.62) 

If (4.62) is substituted into (4.59), the state dynamics during the sliding motion are 

described as 

2/i = Mil — A\2F)yi (4.63) 

where 

F = -C^C 1 .  (4.64) 

Thus 2/2 takes on the role of a state feedback control during sliding, and F can be 

appropriately designed to place the eigenvalues in the LHP during this time. This 

technique will insure that all states will be asymptotically stable, which is what 

was initially sought. After F is solved, one way to get a C vector is to fix C2 to be 

Imxm and therefore 

C = [ F  I m x m  ]  T  . (4.65) 



138 

In other situations, different forms of C than the one derived by the above method 

(such as a diagonal form) may simplify the control design [80]. However, for the 

problem of flexible manipulator control, this form for C is satisfactory. 

The second phase is once again the design of the control to bring the states to 

the sliding line. The control structure for this method is based on a procedure 

outlined by Ryan and Corless [57] and has a form consisting of two parts, one linear 

feedback part and one nonlinear part, 

To simplify the design and aid in the understanding of the quantities <r, N,  and M 

as well as the selection of L, the transformed state y is once again transformed such 

that 

(4.66) 

z  =  T 2 y  (4.67) 

where 

mXm 
(4.68) 

T 2  is non-singular and has an inverse given by 

mXm (4.69) 

Thus partitioning z T  into [z i  one obtains 

z \  =  y i \  z*  =  Fy x  + j/2  (4.70) 



139 

and the condition for sliding is z2 = 0. The transformed state equations in z-space 

are 

k \  = Jz \ - \ -A \2Z2  

Z2 — HZ\ -f ^^2 *f B211 (4.72) 

where 

J  =  An-AuF (4.73) 

H = FJ-A22F + A21 (4.74) 

$ = FA\2 + A22 • (4.75) 

Hence, in order to attain the sliding mode and remain there, it is necessary that 

both Z2 and i2 become identically zero. To accomplish this, the linear part of the 

control is used. From (4.72), the control which forces 22 to be zero is 

u L {z )  = -B?[Hz i  + ($ - $*)z2] (4.76) 

where is any matrix with poles in the LHP (in order to force 22 to zero). Trans­

forming L back into the original state space gives 

L =  -B; 1 [H(9-* m ) ]T 2 T.  (4.77) 

This linear control only serves to drive z 2  to zero asymptotically. In order to attain 

sliding in finite time, the nonlinear discontinuous control is implemented. Letting 

P2 denote the positive definite solution of the Lyapunov equation 

P2$* + mTP2 + Imxm = 0 (4.78) 



140 

then P2z2 = 0 only if z2 = 0. Thus, a control may be selected which is discontinuous 

at z2 = 0, and continuous elsewhere, as 

un( z )  =  |  p2 z 2 1 B 2 l p 2 z 2;  z 2  ^ 0 (4.79) 

where a  > 0 and is free to be selected by the designer, and when z 2  = 0, u n  may 

be arbitrarily selected such that | un |< c- Transforming back into x-space, the 

nonlinear control is 

un{x) = (4.80) 

where 

M = T2T. (4.81) 0  P 2  

Note that for the flexible manipulator, B2 is a scalar, and therefore, the control can 

be expressed as 

u n (x ) = —<r5f1sgn(Mx) . (4.82) 

Once again, for practical purposes, the saturation function (4.14) can be used in­

stead of the discontinuous sgn function in implementing (4.82). 

Example for Flexible manipulators 

In order to see how the parameters affect the response of the arm, a simulation 

will be done when it is known that the manipulator has no payload on it. The sliding 

hyperplane was designed such that the poles of the system while sliding were all 1 

unit to the left of the jw-axis, for illustrative purposes. The parameters associated 



141 

0.1 

0.08 

0.06 

0.04 

g 0.02 

P -0.02 

-0.04 

-0.06 

-0.08 

Time(s) 

Figure 4.11: Tip Deflection under VSC control, No Payload 

with the control to satisfy the reaching condition, $>* and a were chosen arbitrarily 

to be -3 and 3, respectively. The simulation results are shown in Figures 4.11, 4.12, 

and 4.13. 

The results show successful state regulation by this method. The control could 

obviously be increased (as the tip deflection is still well below 0.1) in order to 

speed up the response, and it still converges as well with these less than nominal 

parameters as the VSC control of Nathan and Singh which had a maximum tip 

deflection magnitude of 0.1. This shows the superiority of this approach when 

compared to their method. 

The choices of the pole locations and other parameters and how these choices 

affect the response of the arm aren't very well defined. There are no specific algo­

rithms which allow explicit values of tip deflection and hub speed to be incorporated 



142 

0.9 

0.8 

0.7 

I 
I 

0.6 

o 0.5 
el 
5 
•S 0.4 
£ 

0.3 

0.2 

Time(s) 

Figure 4.12: Hub Rotation under VSC control, No Payload 

-0.05 

-0.15 

-0.2 

-0.25 
0 1 2 3 4 5 6 7 8 9  1 0  

Time(s) 

Figure 4.13: Sliding Line Trajectory, No Payload 



143 

as design parameters to date. But there are some general rules which can aid in 

the determination of specific parameters. 

While sliding, the structure of the hyperplane determines the dynamics of the 

arm. The choice of the vector of parameters, C, depends on the eigenvalues of 

the desired dynamics. The poles can be looked at in three groups, the rigid pole, 

the poles associated with the first flexible mode, and the rest of the eigenvalues 

associated with the higher order flexible modes. The first two groups have the 

most prominent effect on the arm dynamics, as one would expect. The rigid mode 

eigenvalue affects the speed of the hub rotation the most, and as a result also affects 

the tip deflection the most as well. As it is moved deeper into the LHP, both the 

hub speed and tip deflection increase. The same is true of the first flexible mode, 

although on a smaller scale for the hub speed, and the tip deflection, despite having 

an initial larger transient magnitude, will go to zero faster. The poles associated 

with the higher modes can be moved deep into the LHP, but no significant effect 

is seen in either the tip deflection or the hub speed. The deeper the poles, the 

larger the feedback gains required to place them there, however, which could result 

in larger costs for the amplifiers used to create the gains. 

The control to drive the states to the sliding hyperplane also affects the response. 

The faster the states are driven towards the hyperplane, the larger the tip deflection 

and the faster the hub is moved. In terms of the z-space in the design procedure, 

the time required to reach the sliding hyperplane from an arbitrary initial state z° 



144 

is given by [80] as 

trench ^ \ 
<2°, P 2 Z °)  Oo\ 

W„(P2) (4'83) 

where ?mtn denotes the minimum eigenvalue of P2, and (•, •) is the usual Euclidean 

inner product on Rm. This relationship shows that a large value of a would produce 

a large tip deflection. For the flexible manipulator, P2 is a scalar, thus the solution 

of the Lyapunov equation (4.78) yields 

« = W- 
(484) 

Thus a choice of a more negative $* will also reduce the reaching time, increasing 

the tip deflection, although it won't be as strong as the effect of a. In light of 

this relationship, a simple way of determining these two design parameters is to fix 

at a location in the LHP, and adjust <7 to reduce the reaching time while still 

making sure that the bound on the maximum tip deflection is not exceeded. This 

is an iterative procedure, so by fixing one parameter and adjusting the other, the 

design process is simpler and faster. 

The reaching time should be minimized because during this time the system is 

not robust to parameter changes and disturbances. Although several researchers 

have stated that the use of VSC is sufficient to eliminate the need for payload 

identification altogether [47, 76], this is not true if the tip deflection is desired to be 

limited during the reaching time period, and if the dynamics are much different than 

expected (i.e. the payload is much different than the control was designed for), the 

control applied to force the system to the sliding hyperplane may fail completely, 



145 

causing the system to become unstable. For this reason, it is still critical to identify 

the payload before using VSC. 

4.4 Payload Identification Plus VSC 

The neural network payload identification scheme from Chapter 3 can be em­

ployed in conjunction with variable structure control to get a truly robust payload 

adaptive control scheme for flexible manipulators. This control scheme will be 

referred to as NNVSC. The neural network that was trained for the 3 classes pre­

viously was used once again so the classes remained the same as before. A VSC 

was calculated for each payload class and its parameters were stored in the same 

manner as with the linear regulator scheme, and the neural net was used once again 

to pick the control associated with the correct payload. These three controls will be 

referred to as Class 0 control, Class 1 control, and Class 2 control in the following 

discussion. The simulation results for the Class 0 payload are shown in Figures 4.14 

and 4.15. Once again the figures show the responses under both correct and in­

correct payload identifications, but the incorrect identifications were forced for the 

sake of comparison and were not actual mistakes of the neural network identification 

scheme. 

The results for the Class 0 payload show the value of identifying the payload 

before applying the VSC. The hub speed is much greater for the Class 0 control, 

converging in about 3 seconds. The tip deflection was also reduced to zero by that 



0.1 

0.08 
Glass 0 control (-) 

0.06 

Class 1 control (--

i I 
Class 2 control (:) 

i 0.04 

i 0.02 

«5 -0.02 

-0.04 

-0.06 

-O.OR 

-0.1 

Time (s) 

Figure 4.14: Tip Deflection of Arm: Class 0 Payload, NNVSC 

0.9 
Class 0 control (-) 

0.8 
Class 1 control (--1 

0.7 

W 
Class 2 control (:); 5 

v 0.5 00 
S 
•o 0.4 
9 
X 

•0.3 

0.2 

Time (s) 

Figure 4.15: Hub Rotation of Arm: Class 0 Payload, NNVSC 



147 

o.i 

0.08 

0.06 

0.04 

| 
0.02 

<3 
o. 
p 

-0.04 

-0.06 

Time (s) 

Figure 4.16: Tip Deflection of Arm: Class 1 Payload(/i = 0.4), NNVSC 

time. The Class 1 and Class 2 controls each operate the beam slower than necessary. 

The inefficiency of the Class 2 control in increasing the tip deflection while also 

resulting in a very slow regulation of the hub angle needs to be particularly noted. 

The results of the simulation of a Class 1 payload (fi = 0.4) are shown in Fig­

ures 4.16 and 4.17. These two figures present the effects of the application of Class 

1 and Class 2 controls to the arm. The Class 1 control is superior and is clearly seen 

in the much faster hub convergence, as expected. However, when Class 0 control is 

used, some interesting results occur, as shown in Figures 4.18, 4.19, and 4.20. 

When Class 0 control is applied, the control obviously is not successful. The 

reason for this result is because the sliding condition is never attained. The reason 

why this behavior happens can be seen by examining the control parameters that 



148 

0.9 

0.8 

Class 1 
0.7 

1 Class 2 control (-• i 0.6 

0.5 

0.4 

.0.3 

0.2 

Time (s) 

Figure 4.17: Hub Rotation of Arm: Class 1 Payload(/z = 0.4), NNVSC 

Time (s) 

Figure 4.18: Tip Deflection of Arm: Class 1 Payload(/x = 0.4), Class 0 NNVSC 



149 

-10 

1 I « "30 
5 

I -40 

-50 

-60 

-70. 

Time (s) 

Figure 4.19: Hub Rotation of Arm: Class 1 Payload(/z = 0.4), Class 0 NNVSC 

Figure 4.20: Sliding Mode of Arm: Class 1 Payload(/x = 0.4), Class 0 NNVSC 



150 

are used for this control. The attainment of the sliding mode depends primarily on 

the linear portion of the control (4.76). Therefore, by examining the vector 

T  =  [  H ( $ - $ * ) ]  ( 4 . 8 5 )  

that results when the feedback gain vector L corresponding to each class is used, 

some insight can be gained as to why a Class 2 control works, but a Class 0 control 

doesn't. The vector T contains the information pertaining to the dynamics of Z2, 

which must be forced to zero in order to attain the sliding mode. When a Class 1 

control is used, 

T = [ 31.4 30.7 50.2 -46.2 23.7 

-9404.5 -5196.2 -2380.8 141.0 38.6 ] . (4.86) 

When a Class 2 control is used, 

T = [ 50.2 40.2 50.6 -44.2 22.60 

-8786.4 -5008.6 -2358.6 145.7 38.9 ] . (4.87) 

It is apparent that the two controls are close enough that the dynamics of Z2 will be 

driven to zero regardless of the payload difference. However, when a Class 0 control 

is used, 

T = [ 24.4 19.1 21.0 -36.4 17.6 

-6651.4 -4089.5 -2152.5 212.5 23.7 ] . (4.88) 

This totally wrong assumption of the parameters associated with the dynamics of Z2 

(which are particularly different for the last five elements of T) does not guarantee 



151 

0.2 

0.15 

Class 1 control (-) 

0.1 • 
Class 2 cbntrol (-): i, 

s 
0.05 

& 

-0.05 

-0.1 

Time (s) 

Figure 4.21: Tip Deflection of Arm: Class 2 Payload(/i = 1.2), NNVSC 

that the control will force z2 to zero. Thus, the sliding mode is never attained, and 

the control drives the system to an unstable state. The results are similar for a 

Class 2 payload, as shown in Figures 4.21, 4.22, and 4.23. 

Although the convergence rate for the hub rotation of the arm carrying a Class 

2 payload is slower when using a Class 2 control than the hub rotation using a 

Class 1 control, the tradeoff is once again tip deflection. The Class 1 control is 

too fast, and exceeds the bound on tip deflection, as seen in Figure 4.21. Another 

interesting consequence of using Class 1 control is that the high frequency poles are 

damped much slower than when Class 2 control is used. Once again the Class 0 

control causes the system to become unstable, which is not unexpected since the 

same control didn't work for the lighter Class 1 payload. 



152 

t lass 1 c< ntrol (-

s\ 
( lass 2 ci niiol (-) 

\ 
s 

Time(s) 

Figure 4.22: Hub Rotation of Arm: Class 2 Payload(/z = 1.2) NNVSC 

120 

100 

I 
g 

P 

Time(s) 

Figure 4.23: Tip Deflection of Arm: Class 2 Payload(/z = 1.2) Class 0 NNVSC 



153 

-10 

I  
0 -20 

5 

1 
* -30 

-40 

-50' 

Time(s) 

Figure 4.24: Hub Rotation of Arm: Class 2 PayloadQz = 1.2) Class 0 NNVSC 

1400 

1200 

1000 

800 

CO 

400 

200 

-200; 

Tune(t) 

Figure 4.25: Sliding Mode of Arm: Class 2 Payload(// = 1.2) Class 0 NNVSC 



154 

The VSC approach is attractive because of its robustness while sliding. But does 

this method perform as well as the approach of Chapter 3? The two techniques are 

compared to find out. When the payload is classified correctly (which was 100 

percent of the time), the control using the variable structure approach converged a 

little faster for all payload classes. However, for VSC, if the payload identification 

scheme does make a mistake for whatever reason and classifies the payload as Class 

0 when it is not, there could be serious consequences, as shown in Figures 4.16, 4.21, 

etc. A confirmation to the classification of no payload by the neural network could 

be obtained by a crossfire-type sensor such as the one discussed in Chapter 3, which 

could provide a secondary indication to check the class output of the network. If the 

two differ, the payload identification could be run a second time. In this context, 

the linear feedback method might be regarded as a better choice, although it can't 

be guaranteed that it is a stable control until it is tried out on an actual flexible 

robot first, in order to account for any unmodeled dynamics or disturbances that 

might occur. 

Therefore, it can be concluded that while the VSC method is a more robust 

control, this property of robustness only occurs while in the sliding phase of the 

trajectory. In order to reap the benefits of the characteristics of the sliding motion, 

the control should ensure that the state of the system will be driven to the sliding 

hypersurface. The simulations shown in this chapter clearly indicate that the choice 

of control is greatly affected by the payload, and a good estimate should be available 



155 

to design the control such that the reaching condition is satisfied. Hence, it is critical 

that the payload be identified to ensure that safe motion occurs while the control 

attempts to drive the state towards the sliding manifold. This underscores the use 

of a fast identification scheme such as the neural network based approach used in 

this thesis. 

To show a real world application of the neural network-based scheme, an example 

of a simple pick and place task performed by the manipulator will be shown. In 

this example, the flexible manipulator was simply desired to pick up a payload of 

fi = k = 0.5, move the hub and tip to one radian, drop the payload and return to the 

original starting point. This is a common task performed by robots, so it provides 

a practical example of how the control must adapt to payload changes. To show 

the superior performance of the NNVSC scheme over that of a fixed gain VSC, one 

simulation was performed with each control. The fixed gain was computed based 

on the heaviest payload in the range of payloads that the flexible manipulator is 

expected to encounter, or in this case fi = k = 1.5. This is the typical "worse case" 

scenario that has been discussed earlier, and if a non-adaptive control is used, this 

must be done to ensure that the bound on maximum tip deflection is not exceeded. 

The results of the simulations are shown in Figures 4.26, 4.27, and 4.28. These 

figures show how much more efficient the NNVSC scheme is than traditional VSC. 

The execution of the task took half the time of the fixed gain VSC for this example, 

showing the productivity gains that are possible with this approach. This once 



156 

0.1 

0.08 

0.06 

0.04 

i i. 0.02 
g 

J 0 

5 -0.02 
o. p 

-0.04 

-0.06 

-0.08 

•010 2 4 6 8 10 12 14 16 18 20 

Time (s) 

Figure 4.26: Tip Deflection Trajectory 

again shows the benefits of payload identification when used in conjunction with 

VSC. 

IjNVSC (-) 

fixed VSC i 



157 

0.9 

0.8 

0.7 7 
I 
I 

0.6 

u 0.5 T3> 
5 
X> 0.4 

£ 
0.3 

0.2 

0.1 

Time (s) 

Figure 4.27: Hub Rotation Trajectory 

1.2 

NNYSC.S-) 
fixed VSC (--) 

0.8 

o. 
P 

0.4 

0.2 

1 6 •  

Time(s) 

Figure 4.28: Tip Position Trajectory 



158 

CHAPTER 5 

CONCLUSIONS 

5.1 Introduction 

In the decade since the first concentrated interest began in flexible robotics, the 

topics of research in this area have progressed in a logical fashion. The central 

issue that was focused on first was effective modeling of the complex dynamics 

which characterize the flexible manipulator. Gradually the research focus shifted 

to the synthesis of controls using these mathematical models. The next step in this 

natural progression is improving the robustness and adaptability of these controls 

to changing parameter values and disturbances to make the control schemes more 

effective and useful in many different environments. The focus of this thesis is in 

this area. 

5.2 Summary of Results Reported in this Thesis 

In Chapter 1, a comparison of the attributes of rigid and flexible manipulators 

was undertaken. Rigid robots are more precise and easier to control, but their 



159' 

excessive weight is undesirable. Flexible manipulators are much lighter and use less 

energy but control for precise end point positioning becomes much more complex. 

The popular control methods for flexible manipulators were briefly described, as 

were the different types of neural networks and their use in control problems. 

Chapter 2 set the stage for the analysis of flexible robots by showing the com­

plete derivation of the nonlinear model to be used to simulate an actual manipulator. 

This chapter explicitly showed the solution of the exact linearized modal frequen­

cies and proved the orthogonality of mode shape functions of these frequencies. The 

expansion of the nonlinear integro-partial differential equations using these mode 

shapes allowed the dynamics to be described by an ordinary differential equation, 

thus allowing familiar control schemes to be used on the manipulator. The control­

lability and observability of the linear model were checked and numerically stable 

methods of determining these properties were suggested. Finally, the pulse response 

behavior of the system was simulated for different payload masses attached to the 

tip of the manipulator. 

Perhaps the biggest influence on a flexible manipulator is the payload which it 

is carrying. This effect on the system dynamics can greatly reduce the effectiveness 

of non-adaptive control schemes. By obtaining information on the type of payload 

at the tip of the manipulator and using this information to tailor the design of the 

controller to better meet the performance objectives specified, both productivity 

and accuracy can be greatly improved. In Chapter 3, the main contribution of 



160 

this thesis was introduced and developed, which specifically is a method to identify 

the payload. A novel scheme was designed using neural networks to quickly and 

accurately identify the class that a payload belonged to. Using only tip deflection 

data, the neural network classified the payload into one of three categories. The 

output of the network was used to choose the appropriate control corresponding to 

the class that the payload belonged to. In Chapter 3, the design of these controls 

was accomplished using linear pole placement techniques. While this control is 

quite effective, its linear nature and application to a highly nonlinear system makes 

it susceptible to other disturbances such as any unmodeled dynamics which may 

exist in an actual flexible manipulator. For this reason, a variable structure control, 

which is nonlinear in nature, was implemented in Chapter 4 to replace the pole 

placement controller. 

Although VSC has been lauded for its robustness properties and some researchers 

have even suggested that payload identification is not necessary when' using this 

control, it should be remembered that the robustness to parameter variations can 

occur only while sliding, and if variations occur which cause the system to stray 

from the sliding hypersurface, the variations must not be so large that the control 

cannot force the state of the system back to the sliding hypersurface. If the payload 

is unknown, the gains used to drive the states to the sliding manifold must be kept 

low to avoid excessive tip deflection. This reduction of gain also reduces the bound 

on allowable maximum parameter variations which can be rejected as disturbances 



161 

by VSC. Therefore, it is critical that the payload be identified even with robust 

VSC. This importance was shown in two simulations in Chapter 4. If the control 

is designed on the basis of a Class 0 payload and is used when the arm is carrying 

a Class 1 or 2 payload, the sliding mode is never attained, and the system becomes 

unstable. In this case, the parameters on the basis of which the control was designed 

are too different from the actual ones to force the system to the sliding hyperplcine. 

These simulations emphatically underscore the need for payload identification when 

using VSC, and the simple neural network scheme developed in this thesis provides 

a fast computationally efficient method to accomplish this. 

5.3 Directions for Further Research 

Because this thesis covers such a wide range of topics, from neural networks to 

pole placement algorithms to variable structure control, a number of directions for 

further research could be pursued. 

The issue of observer design must be addressed more rigorously and implemented 

with this control technique. Since the state variables are required for the control 

algorithms, an effective design method for an observer which can be used for each 

payload class needs to be developed. Likely candidates for this are variable structure 

observers [80] or some other nonlinear techniques [48]. 

Although the static multilayer neural networks trained by the backpropagation 

algorithm performed very well in this application, other types of networks and 



162 

training techniques are available which show improvements over the type used in 

this study. In an effort to improve training times, accuracy and other performance 

requirements, one may investigate the use of other types of neural networks, par­

ticularly recurrent networks with dynamic nodes which have shown much faster 

learning rates and improved performance [65, 64] over the static neural networks 

of this thesis. Another avenue of research which is becoming a popular topic is the 

use of fuzzy logic in pattern recognition tasks, and this also could be applied to this 

problem. 

The time spent on the sliding line, and thus enjoying the benefits of excellent 

disturbance rejection properties, should be maximized when using VSC. This ob­

jective has been shown to be improved by adapting the sliding line using a dynamic 

recurrent neural network [27, 29] on rigid robots. This technique could be extended 

to this problem. Fuzzy logic has been explored in this area as well [31, 79], and 

would be a useful and interesting extension of this research. 

In the design of the pole placement controller, it was difficult to obtain a method 

in which the transient tip deflection could be predicted by the placement of the 

closed-loop poles of the system, to insure that the maximum tip deflection bound 

was not exceeded. A more concrete relationship between these quantities would be 

useful in controller synthesis. 

Finally, a more thorough search of possible features which are identifiable for any 

control by a neural network or other pattern recognition scheme would be useful. 



163 

If some payload dependent features which are always present in the outputs of the 

manipulator could be identified, payload identification could be run on-line all of 

the time and provide more frequent updates of the status of the payload. This 

would increase the adaptability of this method to sudden load changes. Intuitively 

it would seem that some use could be made of the torque applied previously and the 

resulting tip deflection for an update period, since heavier payloads require a larger 

torque to move them. This would also be a very practical direction for research. 



164 

REFERENCES 

[1] J. A. Anderson, J. W. Silverstein, S. A. Ritz, and R. S. Jones, "Distinctive Fea­
tures, Categorical Perception, and Probability Learning: Some Applications of 
a Neural Model", Psychological Review, Volume 84, 1977, pp. 413-451. 

[2] E. S. Armstrong, ORACLS: A Design System for Linear Multivariable Control, 
(Dekker, New York, 1980). 

[3] E. Baribieri and U. Ozgiiner, "Unconstrained and Constrained Mode Expan­
sion for a Flexible Slewing Link", ASME Trans. Journ. of Dyn. Syst., Meas., 
and Cont., Volume 110, December, 1988. 

[4] G. Barna, R. Chrisley, and T. Kohonen, "Statistical Pattern Recognition with 
Neural Networks", Neural Networks Volume 1, No. 1, 1988, p. 7. 

[5] R. H. Bartels and G. H. Stewart, "Algorithm 432, a Solution of the Matrix 
Equation AX+XB=C", Commun. Ass. Comput. Mach. Volume 15, pp. 820-
826, 1972. 

[6] E. Bayo, "Computed Torque for the Position Control of Open-Chain Flexible 
Robots", IEEE 1988 International Conference on Robotics and Automation, 
Volume 1, 1988. 

[7] E. Bayo, "A Finite-Element Approach to Control the End-point Motion of a 
Single-Link Flexible Robot", Journal of Robotic Systems, Volume 4, No. 1, 
1987, pp. 63-75. 

[8] E. Bayo and H. Moulin, "An Efficient Computation of the Inverse Dynam­
ics of Flexible Manipulators in the Time Domain", IEEE 1989 International 
Conference on Robotics and Automation, Volume 2, 1989, pp.710-715. 

[9] E. Bayo, R. Movaghar, and M. Medus, "Inverse Dynamics of a Single-Link 
Flexible Robot", Int. Journal of Robotics and Automation, Volume 3, No. 3, 
Fall 1988. 

[10] F. Bellezze, L. Lanari and G. Ulivi, "Exact Modeling of the Flexible Slew­
ing Link", IEEE 1990 International Conference on Robotics and Automation, 
Volume 2, 1990, pp.734-739. 

[11] W. J. Book, "Recursive Lagrangian Dynamics of Flexible Manipulator Arms 
Via Transmission Matrices", Proc. Second IFAC Symposium on CAD of Mul­
tivariable Technological Systems, West Lafayette, IN., Sept. 1982, pp.5-17. 



165 

[12] Z. -E. Boutaghou and A. G. Erdman, "A Unified Approach for the Dynam­
ics of Beams Undergoing Arbitrary Spatial Motion", , Journal of Vibration 
and Acoustics-Transactions of the ASME, Volume 113, No. 4 October, 1991, 
pp.494-507. 

[13] J. A. Burton and A. S. I. Zinober, "Continuous Approximation of Variable 
Structure Control", International Journal of Systems Science, Volume 17, 
1986, pp. 876-885. 

[14] R. H. Cannon, Jr. and Schmitz, E., "Precise Control of Flexible Manipula­
tors", Robotics Research: The First International Symposium, (MIT Press, 
Cambridge, MA 1984) pp. 841-861. 

[15] G. A. Carpenter and S. Grossberg, "Neural Dynamics of Category Learning and 
Recognition: Attention, Memory Consolidation, and Amnesia", Brain Struc­
ture, Learning, and Memory, J. Davis, R. Newburgh, and E. Wegman, Eds. 
(AAAS Symposium Series, 1986). 

[16] Chi-Tsong Chen, Linear System Theory and Design, Second Edition. (Holt, 
Rhinehart and Winston, Inc., New York, 1984). 

[17] G. Cybenko, "Continuous Value Neural Networks with Two Hidden Layers are 
Sufficient", Mathematics of Controls, Signals, and Systems, Volume 2, 1989, 
pp. 303-314. 

[18] A. De Luca, P. Lucibello, and G. Ulivi, "Inversion Techniques for Trajectory 
Control of Flexible Robot Arms", Journal of Robotic Systems Vol. 6, No. 4, 
August 19S9, pp. 325-344. 

[19] K. Funahashi, "On the Approximate Realization of Continuous Mappings by 
Neural Networks", Neural Networks, Volume 2, 1989, pp. 183-192. 

[20] G. H. Golub, S. Nash, and C. Van Loan, "A Hessenberg-Scheer Method for the 
problem AX + XB = C", IEEE Transactions on Automatic Control, Volume 
AC-24, 1979, pp. 909-913. 

[21] G. Guoguang, "Modeling and Control of a One-Link Flexible Manipulator", 
Master's Thesis, Department of Systems and Industrial Engineering, The Uni­
versity of Arizona, 1991. 

[22] L. Gupta and M. R. Sayeh, "Neural Networks for Planar Shape Classification", 
Proceedings - ICASSP, IEEE International Conference on Acoustics, Speech, 
and Signal Processing, 1988, pp. 936-939. 

[23] Gordon G. Hastings and Wayne J. Book, "Verification of a Linear Dynamic 
Model for Flexible Robotic Manipulators", IEEE 1986 International Confer­
ence on Robotics And Automation, Volume 2, 1986. 



166 

[24] G. Hohenbichler, P. Plockinger, and P. Lugner, "Comparison of a Modal-
Expansion- and a Finite-Element-Model for a Two-Beam Flexible Robot Arm", 
IFA C Proceedings Series n. 10, 1989, pp. 35-39. 

[25] J. J. Hopfield, "Neural Networks and Physical Systems with Emergent Col­
lective Computational Abilities", Proceedings of the National Academy of Sci­
ences, Volume 74, 1982, pp. 2554-2558. 

[26] K. Hornik, M. Strinchcombe, and H. White, "Mulitlayer Feedforward Networks 
are Universal Approximators", Neural Networks, Volume 2, 1989, pp. 359-366. 

[27] A. Karakagoglu, "Neural Network-Based Approaches to Controller Design for 
Robot Manipulators", Phd. Dissertation, Department of Electrical and Com­
puter Engineering, The University of Arizona, 1991. 

[28] A. Karaka§oglu, S. I. Sudharsanan and M. K. Sundareshan, "Identification 
and Decentralized Adaptive Control of Robotic Manipulators using Dynamical 
Neural Networks", Proceedings of the 1991 Int. Joint Conference on Neural 
Networks(IJCNN-91), Seattle, WA, July 1991. 

[29] A. Karaka§oglu and M. K. Sundareshan, "A Recurrent Neural Network-Based 
Adaptive Variable Structure Model Following Control of Multijointed Robotic 
Manipulators", Proceedings of the 31s' IEEE Conference on Decision and Con­
trol, Tucson, AZ, Dec. 1992. 

[30] J. Kautsky, N. I<. Nichols, and P. Van Dooren "Robust Pole Assignment in 
Linear State Feedback", International Journal of Control Volume 41, No. 5, 
1985, pp. 1129-1155. 

[31] A. Knafel, R. Swiniarski, and M. B. Zaremba, "Fuzzy Logic Control for Vari­
able Structure Systems", IEEE Conference on Systems Engineering, 1989, pp. 
419-422. 

[32] T. Kohonen, Self-Organization and Associative Memory, (Springer-Verlag, 
Berlin, 1984). 

[33] H. Krishnan and M. Vidyasagar, "Control of a Single-Link Flexible Beam Us­
ing a Hankel-Norm-Based Reduced Order Model", IEEE 1988 International 
Conference on Robotics and Automation, Volume 1, 1988. 

[34] M. Kuperstein and J. Wang, "Neural Controller for Adaptive Movements with 
Unforeseen Payloads", IEEE Transactions on Neural Networks, Volume 1, No. 
1, March 1990, pp. 137-142. 

[35] M. Leahy, M. Johnson, and S. Rogers, "Neural Network Payload Estimation 
for Adaptive Robot Control", IEEE Transactions on Neural Networks, Volume 
2, No. 1, January 1991, pp. 93-100. 



167 

[36] H. Lee and I. A. Castelazo, "Nonlinear Feedback Control of a Flexible Robot 
Arm", ASME, Dynamic Systems and Control Division (DSC), Volume 6, 1987, 
pp. 307-314. 

[37] J. D. Lee, "Application of Optimal Control Theory to Flexible Robotic Ma­
nipulators", Robotics and Computer-Integrated Manufacturing, Volume 7, No. 
3/4, 1990, pp. 327-344. 

[38] S. Lehar, "Application of Back Propagation to Long Wave Infra-Red Signature 
Analysis", Neural Networks Volume 1, No. 1, 1988, p. 454. 

[39] L. -C. Lin, "State Feedback #oo Control of Manipulators with Flexible Joints 
and Links", IEEE International Conference on Robotics and Automation, Vol­
ume 1, 1991, pp. 218-223. 

[40] S.-H. Lin, S. Tosunoglu, and D. Tesar, "A Controller Design for Compliant 
Manipulators Modeled with Elastic Links and Joints", Proceedings of the 29th 

IEEE Conference on Decision and Control, Part 3, 1990, pp. 1936-1942. 

[41] R. Lippman, "An Introduction to Computing with Neural Nets", IEEE ASSP 
Magazine, pp. 4-22, April 1987. 

[42] L. Liu, L. Lee, H. Wang and Y. Chang, "Layered Neural Nets Applied in the 
Recognition of Voiceless Unaspirated Stops", IEE Proceedings, Part I: Com­
munications, Speech and Vision, Volume 138, No. 2, April 1991, pp. 69-75. 

[43] W.S. McCulloch and W. Pitts, "A Logical Calculus of the Ideas Immanent in 
Nervous Activity", Bulletin of Mathematical Biophysics, Volume 5, 1943 pp. 
115-133. 

[44] H. Midorikawa, "Face Pattern Identification by Back-Propagation Learning 
Procedure", Neural Networks, Volume 1, No. 1, 1988 p. 515. 

[45] R. G. Morgan and U. Ozgiiner, "A decentralized Variable Structure Control 
Algorithm for Robotic Manipulators", IEEE Journal of Robotics and Automa­
tion, Volume RA-1, No. 1, March 1985, pp. 57-65. 

[46] S. Narendra and A. N. Annaswamy, Stable Adaptive Systems, (Prentice-Hall, 
Englewood Cliffs, NJ, 1989). 

[47] P. Nathan and S. Singh, "Variable Structure Control of a Robotic Arm with 
Flexible Links", 1989 IEEE International Conference on Robotics and Automa­
tion, Volume 2, 1989, pp. 882-887. 

[48] S. Nicosia , P. Tomei, and A. Tornambe, "Non-Linear Control and Observation 
Algorithms for a Single-Link Flexible Robot Arm", International Journal of 
Control, Volume 49, No. 3, March 1989, pp. 827-840. 

[49] Yoh-Han Pao, Adaptive Pattern Recognition and Neural Networks, (Addison-

Wesley, Reading, MA 1989). 



168 

[50] T. R. Parks and H. A. Pak, "Effect of Payload on the Dynamics of a Flexible 
Manipulator - Modeling for Control", Journal of Dynamic Systems, Measure­
ment, and Control, Volume 113, September 1991, pp. 409-418. 

[51] S. M.Peeling, R. K. Moore, and M. J. Tomlinson, "The Multi-layer Perceptron 
as a Tool for Speech Pattern Processing Research", Proceedings of the IoA 
Autumn Conference on Speech and Hearing, 1986. 

[52] W. T. Qian and C. C. H. Ma, "A New Controller Design for a Flexible One-
Link Manipulator", IEEE Transactions on Automatic Control, Volume 37, No. 
1, January 1992, pp. 132-137. 

[53] L. C. Rabelo and X. J. Avala, "Hierarchical Neurocontroller Architecture for 
Intelligent Robotic Manipulation", IEEE International Conference on Robotics 
and Automation, Volume 3, 1991 pp. 2656-2661. 

[54] I. P. Roberts, "Neural Network for Radar Terrain Image Recognition", Neural 
Networks, Volume 1, No. 1, 1988, p. 463. 

[55] D. M. Rovner and R. H. Cannon, "Experiments Toward On-Line Identifica­
tion and Control of a Very Flexible One-Link Manipulator", The International 
Journal of Robotics Research, Volume 6, no. 4, Winter 1987, pp. 3-19. 

[56] D. E. Rumelhart, G. E. Hinton and R. J. Williams, "Learning Internal Repre­
sentations by Error Propagation", Parallel Distributed Processing, D. Rumel­
hart and J. McClelland (Eds.), Volume 1, (MIT Press,Cambridge, MA, 1986). 

[57] E. P. Ryan and M. Corless, "Ultimate Boundedness and Asymptotic Stability 
of a Class of Uncertain Dynamical Systems via Continuous and Discontinuous 
Feedback Control", IMA J. Math. Control Information, Volume 1, pp. 223-242. 

[5S] J. Z. Sasiadek and R. Srinivasan, "Dynamic Modeling and Adaptive Control 
of a Single-Link Flexible Manipulator", Journal of Guidance, Control and Dy­
namics, Volume 12, No.6, Nov.-Dec. 1988. 

[59] D. A. Schoenwald and U. Ozgiiner, "On Combining Slewing and Vibration 
Control in Flexible Manipulators via Singular Perturbations", Proceedings of 
the 29th Conference on Decision and Control, 1990, pp. 533-538. 

[60] I. Y. Shung and M. Vidyasagar, "Control of a Flexible Robot Arm with 
Bounded Input: Optimum Step Responses", IEEE Conference on Robotics 
and Automation, Volume 2, 1987, pp. 916-922. 

[61] B. Siciliano and W. J. Book, "A Singular Perturbation Approach to Control 
of Lightweight Flexible Manipulators", The International Journal of Robotics 
Research, Volume 7, No. 4, August 1988, pp. 79-90. 

[62] T. Singh, M. F. Golnaraghi, and R. N. Dubey, "Variable Structure Control 
of a Single-link Flexible Arm Robot", Proceedings of the American Control 
Conference, 1990, pp. 702-703. 



169 

[63] J. -J. E. Slotine, "The Robust Control of Robot Manipulators", International 
Journal of Robotic Research, Volume 4, 1985, pp. 49-64. 

[64] S. I. Sudharsanan, "Equilibrium Characterization for a Class of Dynamical 
Neural Networks with Applications to Learning and Synthesis", Ph.D. Dis­
sertation, Dept. of Electrical and Computer Engineering, The University of 
Arizona, 1991. 

[65] S. I. Sudharsanan and M. K. Sundareshan, "Training of a Three-Layer Re­
current Neural Network for Nonlinear Input-Output Mapping", Proceedings of 
the 1991 Int. Joint Conference on Neural Networks (IJCNN-91), Seattle, WA, 
July 1991. 

[66] K. Sung, P. Kudva, and J. C. S. Yang, "Parameter Identification of a Flexible 
Manipulator", Proceedings of the 1987 International Conference on Systems, 
Man, and Cybernetics, pp. 578-582. 

[67] S. Timoshenko and G. H. MacCullough, Elements of Strength of Materials, 
Third Edition. (D. Van Nostrand Company, Inc., New York, 1949). 

[68] A. P. Tzes and S. Yurkovich, "Application and Comparison of On-Line Identi­
fication Methods for Flexible Manipulator Control", The International Journal 
of Robotics Research, Volume 10, No. 5, October, 1991, pp. 515-527. 

[69] V. I. Utkin, Sliding Modes and their Application to Variable Structure Systems, 
(MIR Publishers, Moscow, USSR, 1978). 

[70] D. Vinke and M. Vidyasagar, "New Techniques for Hi Optimal Control of a 
Flexible Beam", Proceedings of the 1991 IEEE Conference on Robotics and 
Automation, Volume 3, pp. 2592-2597. 

[71] Fei-Yue Wang and John T. Wen, "Nonlinear Dynamical Model and Control 
for a Flexible Beam", Rensselaer Polytechnic Inst. Electrical, Computer, and 
System Engineering, CIRSSE Report # 75, Nov. 1990. 

[72] Fei-Yue Wang, "Frequency Sensitivity and Mode Orthogonality of One-Link 
Flexible Robot Arms: A Variational Approach", SIE Working Paper, Dept. of 
Systems and Industrial Engineering, The University of Arizona, 1992. 

[73] Fei-Yue Wang, "Modeling, Analysis, and Simulation of Lightweight Robot 
Arms with Consideration of Rotary Inertia and Shear Deformation", SIE work­
ing paper, Dept. of Systems and Industrial Engineering, The University of Ari­
zona, 1991. 

[74] P. Werbos, "Beyond Regression: New Tools for Prediction and Analysis in the 
Behavioral Sciences", Ph.D. Dissertation, Harvard University, Cambridge, MA 
1974. 



170 

[75] T. C. Yang, J. C. S. Yang, and P. Kudva, "Adaptive Control of a Single-Link 
Flexible Manipulator with Unknown Load", IEE Proceedings, Part D: Control 
Theory and Applications, Volume 138, No. 2, March 1991, pp. 153-159. 

[76] K. S. Yeung and Y. P. Chen, "Regulation of a One-link Flexible Robot Arm 
using Sliding-mode Technique", International Journal of Control, Volume 49, 
No. 6, June 1989, pp. 1965-1978. 

[77] J. Yuh, "Application of Discrete-Time Model Reference Adaptive Control of 
A Flexible Single-Link Robot", Journal of Robotic Systems, Volume 4, No.5, 
Oct. 1987. 

[78] S. Yurkovich, F. E. Pacheco, and A. P. Tzes, "On-Line Frequency Domain 
Information for Control of a Flexible-Link Robot with varying Payload", IEEE 
International Conference on Robotics and Automation - 1989, Volume 2, pp. 
876-881. 

[79] M. B. Zaremba, "Design of Robust VSS Controllers", Advances in Instrumen­
tation, Proceedings Volume 44, Part 4, 1989, pp. 1647-1652. 

[80] A. S. I. Zinober, ed. Deterministic Control of Uncertain Systems, IEE Control 
Engineering Series, Volume 40. (Peter Peregrinus, Ltd., London, U. K., 1990). 


