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ABSTRACT 

The torque exerted by a beam of polarized light on a half-wave plate 

which alters its state of polarization is calculated for several laser wavelengths and 

intensities using electromagnetic theory. The second-order torque that arises through 

the nonlinear interaction is formulated and the numerical values are calculated for 

the 42m crystal class. The experiment used to detect the existence of the torque is 

reviewed and a demonstration experiment is suggested. 
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CHAPTER 1 

Introduction 

The mechanical effects of light come from two basic properties of 

electromagnetic fields, namely the linear momentum carried by a beam of 

electromagnetic waves and the angular momentum carried by a circularly polarized 

beam of light. These properties have been known since the turn of the century.1 

Classically, Maxwell's theory of electromagnetic fields explains the linear 

momentum of a light beam in association with the Poynting vector and hence the 

concept of radiation pressure is explained as a linear momentum transfer from the 

light beam to the material system. Lebedev2-3 and Nicols and Hull4 were among the 

first to verify experimentally the existence of radiation pressure, and the results of 

their experiments were in good agreement with Maxwell's theory. 

The classical concept of radiation pressure has been used in various branches 

of physics. These areas include basic physical phenomena in plasma,5 atomic 

clouds, comet tails and the internal stability of giant stars.6 and several other areas. 

In quantum theory, the concept of radiation pressure is abandoned but the 

momentum transfer itself is seen as the direct mechanical effect. This is well 

observed in the scattering of x rays from free electrons.7 The systems considered 

above are all examples of radiation pressure or forces related to the linear 

momentum of a light beam. 

The second class of mechanical effects arise from the angular momentum of a 

light beam. Angular momentum of a photon or a light wave is a simple concept and 

has been well understood in both quantum mechanics8 and classical electromagnetic 
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theory.9 In the quantum theoretical approach, the angular momentum of individual 

light quanta is related to the spin of photons and the concept is used in 

understanding conservation laws associated with dipole selection rules for electronic 

transitions in atoms and molecules. In the world of particle physics the photon is 

regarded as a particle similar to several other fundamental particles. In this theory 

the angular momentum is quantized. 

Classical electromagnetic theory defines the angular momentum of a light 

wave as associated with the helicity or the state of circular polarization of the 

wave. Thus in the classical picture, a light wave that propagates through a 

medium preserving its state of polarization also preserves its angular momentum. A 

change in the angular momentum of the beam accompanies a mechanical torque on 

the medium. This effect has been studied by several authors and experimental 

evidence is found related to this effect.10 

In the experimental verification of both the radiation pressure or the linear 

momentum, transfer and the angular momentum transfer from a light beam were 

initially performed by detecting the twist of a fiber in high vacuum.2,8 

Experiments were complicated became the available light sources were incoherent 

and thermal and the radiometric forces could easily mask the objective of the 

experiment. For these reasons these effects were considered to be very small or 

negligible in macroscopic situations. 

However, the situation changed and these fields were revived with the 

invention of the laser in 1960's. The laser light, because of its coherence and 

spectral purity, can be focused to tiny spots producing very high optical power 

densities. Interaction of strong laser beams with atomic beams have been 

studied.,,•,2 The momentum transfer from an intense standing wavefield of near-

resonant laser radiation has been measured and the results have been in good 
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agreement with theoretical predictions.13 Recent progress in both theoretical and 

experimental work in the field shows the possibilities for trapping or 

micromanipulation of accelerating atoms. Small neutral particles may be 

micromanipulated' as well.14*16 The ground work has been laid for radiation 

pressure driven interferometers in which a light mirror is suspended to swing as a 

pendulum.17 

The rising interest in the mechanical effects of light motivated the present 

work. With the advent of high-power lasers, some experiments may be redesigned 

to demonstrate the effect of field angular momentum more easily and with perhaps 

greater accuracy. The high intensity of laser beams also necessitates investigation of 

higher-order nonlinear interaction and its contribution to the mechanical effects. 

In this work, numerical calculations are done for the first- and second-order 

torques for a few commonly used crystals and an undergraduate or demonstration 

experiment that can be performed with available lasers is discussed. 
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CHAPTER 2 

Mathematical Formulation of the Torque 

When a beam of light passes through a doubly refracting medium it 

experiences a cyclic change of the state of polarization with the distance of 

propagation. The change in polarization arises because of the two different 

velocities of the orthoganally polarized field components. The change in the state of 

polarization causes a change in the angular momentum of the beam, which 

ultimately is seen as a mechanical torque on the birefringent medium. 

One way to develop an expression for the torque in an anisotropic medium is 

to study the change in angular momentum of a light beam first and then to relate it 

to the torque. Alternatively, as done here, we may calculate the torque directly by 

using the concept of electric dipoles or the polarization in the medium. 

The electric polarization P of a medium can be written as.18 

P - eoxO- E + €0X(2):EE (2.1) 

where 

X1 - first-order susceptibility tensor (second rank) 

X2 - second-order susceptibility tensor (third rank) . 

The first term in Eq. (2.1) is the first-order polarization and the second term 

is the second-order or nonlinear polarization. For centrosymmetric media, the 

second term does not exist. It is possible to expand the polarization P for even 

higher orders but only the terms that include x(1) and x® are pertinent to our 

discussion. The torque that arises from the first-order polarizations is discussed in 

this chapter in detail and the nonlinear part is discussed in Chapter 3. 
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For the polarization that is linear in the electric field, the torque experienced 

by a unit volume of the medium can be written as 

T- P XE - D XE (2.2) 

where 

D - e0E + P - e.E (2.3) 

is the displacement vector which is linear in the electric field, and c - dielectric 

permitivity tensor. 

It will be instructive to study an example of a doubly refracting medium 

whose crystal axes are taken along the X,Y, and Z directions of the laboratory 

coordinate system in space. The E^Ey components of a circularly polarized beam 

propagating in the Z direction are 

EJJ - EQCOS ["*"T v] 
(2.4) 

Ey - EoSin wt"T nyzj 

This state of circular polarization is incident on the crystal face at Z - 0 (see 

Fig. 2.1). We wish to compute the torque on the crystal. 

The dielectric tensor in our choice of coordinates is 

e -

en 0 o 
0 e2Z 0 
0 0 e S3 • e0 

n2_ 0 0 

0 

0 0 

ny 0 
(2.5) 

where n^iiy, and ^ are the refractive indices for light polarized along 1. 2 and 3 

directions. 
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N 

Fig. 2.1. The system of laboratory coordinate axes and the crystal axes 
used in the calculation of the first-order torque. 
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For the special case outlined above we first compute the cross product, 

(2.6) 
n2 - n2 

D x E - y x 
2 e0E2 jsin J^wt-y K+nyJzj - Sinj^y (ny-n^ 

The time averaged torque is found to be 

.T 
- I I D x E dt 

1 Jo 

n2-n2 ~ ^ 
-  — € o E o S i n  Y  ( n y " 1 1 * ) 2  k  ,  

A 

where k is a unit vector along Z direction. The space-averaged torque or the 

torque over a length Z of the crystal is found by 

,2  „2  P z  

r(z) - e0E2 Jsin ^Oy-n^'A dz' , 

where A - cross sectional area of the crystal face. 

After the integration we have, 

- -°r2* °* e0E?AX Sin2 J (iiy - njz k . (2.8) 

The dependence of the torque on the initial direction of the linearly 

polarized incident wave has been discussed by Beth at al and is found in appendix 

A. 

As explained in appendix A, the torque over a distance Z2 - Z( of the crystal for 

initially linearly polarized light can be written as 

?2 nXe0Ejj 
r a Sin 29 jsin y fay-n^ - Sin y (ny-n^j . (2.9) 
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The same expression for the torque can be obtained by using the conservation 

of angular momentum at the faces of the crystal plate. Consider an elliptically 

polarized light wave propagating in the Z-direction in a vacuum. For the purpose of 

calculations, this could be written in different sets of basis vectors. The components 

of the E-vector along the principal axes of the vibration ellipse can be written, 

with amplitudes X0 and Y0 , as 

Take et ,e2 to be the unit vectors along the directions of the principal axes. 

The same light wave can be represented with respect to another arbitrary pair of 

orthogonal X and Y axes in the same plane and the components E[ and E2 along X 

and Y directions will be written as10 

E, • XCosM-kz+S) 

E2 m YCosM-kz-S) 

X and Y are the amplitudes 

25 is the phase difference between the two components. 

Now take e+ » €t +ie2 and e. - -ic2 as a set of basis vectors and consider 

the light wave as a superposition of left and right circular polarized light with 

amplitudes L and R respectively. Then the relationship between the field amplitudes 

in each representation is found10 

- X0 cos(wt-kz) 

where 

X0Y0 - XY Sin25 - L2 - R2 . (2.10) 
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Xj+Yj - X2+Y2 - 2(L2 + R2) . (2.11) 

In classical electromagnetic theory, the field angular momentum density is 

written as9 

Wield - x x g 

- 4r t x (£ x ft) . (2.12) 
c2 

Then for a circularly polarized beam of light the time averaged component 

(L3) of angular momentum parallel to the direction of propagation is found to be, 

L3 - * ± (2.13) 

where 

co - frequency of wave 

U - energy density of the wave field. 

The upper sign is for the left circular polarized wave and the lower is for the 

right circular polarized component. 

The energy per unit area per second that is carried by the left circular 

polarized component can be written 

U+ - | ce0L2 . (2.14) 

Using equations 2.13 and 2.14, the angular momentum carried by the left circular 

polarized component is found to be, 

L3 ~ €0XL2 (2.15) 

Considering the right circular polarized component in the same way and taking 

the directions into account, the net angular momentum transmitted per unit area 

per unit time is 
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Ltot - ^ (L2-R2) = ^XY Sin25 

3 ^ XoY0 . (2.16) 

This is the angular momentum transmitted in vacuum. To find the momentum 

transfer to the crystal, it is necessary to consider the reflection and refraction at the 

boundaries. 

Assume that the birefringent medium is confined between the two planes Z»Z( 

and Z-Z2. The X and Y components of the reflected and transmitted waves at the 

boundary Z-Z, can be found using Fresnel's equations and they are, 

X(Px-l) 
R x - j^+1 

YCn^rO 
^ ny+1 

T 2X 
* " n„+l 

T _n_ 
y " ny+1 

respectively. 

The transmitted component, using the notation in Appendix A can be written 

- Eo Cosfl nx+l 

(2.17) 

T̂T • ** Sin* 

where Eg is the total field amplitude in the crystal and 6 is the direction of the E-

vector with respect to the X-axis at the boundary Z-Zj. Using the Eq. 2.16 and the 
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field amplitudes specified above we can calculate the net angular momentum 

transferred to the crystal plate at Z-Zt and it will be, 

L(Z|) - incident angular momentum - reflected angular momentum 

Xen(nv+nv)XY 
- o./ \J n Sin25i • (2-18) 2ir(nx+lXny+I) ' 

Equations 2.17 and 2.18 can be combined to yield: 

Uz,) 5 (ny + nj Sin20 Sin y K ~ nx) zi • 

With a similar consideration at the boundary Z - Z2 and combining the Eqs. 

(2.17) and (2.18), the net angular momentum transmitted through the crystal plate of 

thickness 7^ -Zt can be1 found and will be equal to 

Uz^) = (ny+nx) sin2fljsin y (ny-n^ - Sin y (ny " ^ij 

This result is identical to the expression for the torque in Eq. (2.9). This 

means that the torque is equal to the excess angular momentum per unit area per 

second flowing in to the crystal at Z-Z( over that flowing out at z - z2. 

Quantum theory of light or the photon concept can be used to derive the same 

result. Each photon has an intrinsic angular momentum +h(-h) associated with its 

left(right) circular polarization. As a beam of light propagates through a 

birefringent medium, the polarization changes and the resulting change in angular 

momentum can be calculated simply by finding the net number of photons which 

change the handedness and multiplying it by the factor h. This will lead to an 

expression independent of h and the result will again be the same as Eq. (2.9). The 

calculation is straight forward and a detailed discussion is found in Ref.10. 
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Now we turn to discuss the Eq. 2.8, the dependence of the torque on other 

parameters. 

r(z) in Eq. (2.8) is plotted as a function of Z in Fig. 2.2. 

The torque is a sin2 function of the thickness of the crystal plate as shown in 

Fig.2.2. r(z) is a maximum when the thickness of the plate corresponds to that of a 

half-wave plate. It is intuitively obvious that the maximum change in angular 

momentum and hence the maximum torque is possible when the polarization is 

changed from left circular to right circular or vice versa and is achieved when a 

half-wave plate is used. 

The magnitude of the torque can be related to the power delivered by the 

light wave. Assuming a uniform cross-sectioned laser beam, the power P can be 

written as19 

P - IA. 

where 

I - the intensity of the optical field and is given by 

I - | Re[E x H*] 

and thus we have 

P - i Re y* Eg for a medium and 

P - i e0
cEjjA for free space 

where 

y - admittance of the medium 

c - speed of light 



X 
2(ny-nx) 

X 

ynx 
z 

Fig. 2.2. Variation of the first order torque with the distance 
of propergation through the crystal plate. 
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Eq - field amplitude 

f0 - permeability of free space. 

The maximum time-averaged torque for this power is written as 

W - J XP (2.19) 

or 

Tmax " 1.06nXP x 10"2 dyne c.m. (2.20) 

where 

n - m average index of refraction in the plane perpendicular to the 

direction of propagation 

X - wavelength of light in micrometers 

P - power delivered by the light beam in watts. 

This means that the torque experienced by the crystal plate depends only on 

the total power delivered to the crystal, the wavelength of the light, and the average 

index of the medium. Clearly, the birefringence of the medium does not affect the 

size of the torque, but determines the thickness of the wave plate. High-power 

densities are not needed. Therefore it is possible to demonstrate this effect more 

easily with average-power cw lasers without exciting any nonlinear interactions in 

the medium. 

Values of the torque for several uniaxial crystals calculated using Eq. (2.20) 

are presented in Table 2.1. Some typical values for the laser power were used in 

the calculation and the direction of propagation of light was taken along the 2 axis 

of the crystal. 

As seen from the Table 2.1, the magnitude of the torque is small and is not 

sufficient to induce changes in optical constants or additional birefringence in the 
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crystal plate. If the crystal plate is hung from a fine fiber (quartz), the torque on 

the crystal can twist the fiber through a very small angle. Each box in the last 

four columns of Table 2.1 shows the torque in dyne c.m., and the twist in degrees 

that can result in a quartz fiber of tortional constant 8.5x10*6 dyne cm rad"1 by the 

torque in the same box for commonly used uniaxial crystals. 

As seen in Table 2.1, 10 W of laser can produce about half a degree rotation. 

Even with less power, i.e., 2 W, a rotation of a tenth of a degree is possible and is 

observable. As will be discussed in the Chapter 4. the rotation may be enhanced 

by using a series of waveplates. 



Table 2.1. Calculated values for the first-order torque indifferent 
uniaxial crystals for several conventional laser lights. 

Laser 
Wave
length 
X (pm) 

Power 
(W) Quartz Calcite Rutile KDP 

He-Ne 0.6328 10x10"' 
r - 1.03x10-° 
0 - 6.9x10— 

r - 1.05x10-'° 
0 - 7.07x10-

t - 1.78xlO-,# 

8 - 1.19x10-' 
r - 1.00x10-'° 
0 - 6.74x10-

He-Cd 0.4412 50x10- 1 
I 

N>
 U

> 

w
 

r - 3.64x10-'° 
e - 2.45x10-

r - 6.22x10-"' 
e - 4.19x10-

r - 3.50x10-'° 
0 - 2.35x10"' 

Ar+ 0.4880 10 r - 8.06x10-
e - 0.54 

r - 8.20x10-
0 - 0.55 

r - 1.30x10-
$ - 0.876 

t - 7.75x10-
0 - 0.522 

Nd:YAG 1.06 1 
r - 1.33x10-
e - 0.09 

r - 1.75x10-
e - 0.12 

r - 3.01x10-
0 - 0.203 

r - 1.68x10-
0 - 0.14 

r - Torque (dyne c.m.) 
0 - Rotation (degrees) 
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CHAPTER 3 

Calculation of Higher-Order Effects 

Since we found that higher powers deliver a large torque, it is also important 

to study the effect of crystal nonlinearities for the sake of completeness. In the 

calculations presented in Chapter 2, the electric polarization of the medium was 

assumed linear with the optical field amplitude, and the effect was termed a first-

order effect. But. in fact, the torque calculated depended on the square of the 

electric field, or the total power delivered to the crystal. 

The torque that can be calculated using nonlinear polarization is taken here as 

higher order terms. The first-higher order term arises from the nonlinear 

polarization to the second order in the electric field. For non-centrosymmetric 

materials, the nonlinear polarization can be written, using the second order electric 

succeptibility x2 as< 

pni . e0x<2>:EE . 

where 

pi* - nonlinear polarization 

x<2 ) - the second order electric succeptibility tensor 

E - optical field. 

In components that can be written as18*20 

if - wgEjE* (3-2) 

where the indices run from 1,2.3. 
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The second-order contribution to the torque on a unit volume of the material 

can (using r - PxE as in the previous chapter) be written as, 

rni „ pni x E 

or 

" eimnPmE„ . (3.3) 

where 

elmn - +I cyclic 

- -1 opposite 

• 0 otherwise 

and each l,m.n can take any value from 1,2,3. Equations (3.2) and (3.3) can be 

combined to yield 

rf - (P^xE), - e0WmjkEjEkEn . (3.4) 

In general each (for I -1,2,3) will be a sum of 18 terms. For most crystal 

classes, not all matrix elements of the Xijk tensor are nonzero. Furthermore, the 

number of independent elements of the Xijk tensor depends on the symmetry 

properties of the particular crystal class. Table 3.1 shows the 27 elements of the 

Xjjk tensor f°r all crystal classes. Interchangability of the optical fields Ej and Ek 

in Eq. (3.2) further reduces the complexity of the x?k tensor. Thus Voigt notation 

can be used by contracting the last two indices in Xjjk» an^ the resulting tensor has 

only 18 elements instead of 27. As shown in Table 3.1, the symmetry properties of 

a particular crystal class further reduce the entries in the Xijk tensor. The symbols 

"o" and "o" represent nonzero elements and are opposite in signs. The elements 

connected with lines are equal in magnitude and the equality is implied by the 

symmetry properties of the crystal class. 
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Table 3.1. The x«k tensor for biaxial, uniaxial, and optically isotropic crystal 
classes. [Source: Zernike, F.. and Midwinter. J. E.. Applied Nonlinear Optics (Wiley 
and Sons. NY. 1973).] 

Zaa 

• r r 
• !*/* 

i * 

222 

* m • 

• 

• v 

• * * 
* ' /* 

• ,ci • 
• V ^ 
• • 

4 

: : I 
t 

• • / • 

• ;m . 

• / •. • 

i X * • • 

: I 

X : X : 

mA* 

•  / *  . 
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4mm 

•' - I * • 
's* ' 

i 2«t 

• • • 

• • • 

32 

422 

n , :  '  n  

S( 3/m) S2m 

S22 23 43m 
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Based on Eq. (3.4) the nonlinear or the second-order torque can be calculated 

for all crystal classes. The size of the effect will be determined by the strength of 

the Xijk terms and the field amplitudes. For the work presented here we calculate 

and compare the nonlinear torque with the linear torque for selected crystal classes 

that are commonly used as nonlinear media in frequency doubling,18 optical phase 

conjugation,21 and several other applications. We show detailed calculations for one 

crystal class. 

KDP (potassium dihydrogen phospate) and its analogues are widely used in 

electro-optics and in nonlinear optics. These crystals belong to the 42m crystal 

class. Any qualitative discussion of one of these materials applies to the group as a 

whole.18 Only the numerical value of each Xijk or djjk element is different for 

different materials. Other useful crystals in nonliner optics are LiNbOs and LiIOs, 

which belong to the crystal classes 3m and 6, respectively. The following section is 

devoted to the discussion of the nonlinear torque in the 42m crystal class. 

For a given crystal class, the magnitude and the direction or the effect of the 

nonlinear torque depends on the direction of propagation of the wave through the 

crystal. Therefore the calculations are performed for two major directions of 

propagation, namely along and perpendicular to the optic axis. 

The complexity of the calculations can be minimized by choosing the space 

axes to coincide with the crystal pricipal axes. 

CASE 1: Wave propagation along the 3 axis of the uniaxial crystal. 

Assume that the crystal 3 axis coincides with the space Z axis and takes space 

X and Y axes along the crystal 1 and 2 axes. 
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For the crystal class 42m the only nonzero elements in the x?-k tensor are 

X|23 X132 

X231 X213 • 

X312 X321 

If Voigt notation18,22 is used these may be replaced by 

d,« 

dm 

dj« • 

The torque calculated using Eq. (3.4) will be 

" -«0 (X312 + X32|)ExEy 

" «o (X312 + X32i)E& 

In contrast to the first-order effect [Chapter 2] the second-order torque lies in a 

direction perpendicular to the direction of propagation. Furthermore the time-

averaged torque in Eq. (3.S) becomes zero unless the frequencies of the two 

participating field components are different. This means that the second-order 

effect is possible only if two optical fields of different frequencies interact in the 

medium. 

To investigate the problem in detail, assume two plane-polarized waves of two 

different frequencies are written in the form 

E, - [X,x + Y,y]exp i(k,z-cj,t) + c.c. 

E2 - [X2x + Y2y]exp HkjZ-o^t) + c.c. , 

where X and Y (i - 1,2) are the field amplitudes in x and y directions and x.y 
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are unit vectors along the crystal axes 1 and 2. Both waves Ei and Ej propagate 

along the crystal 3 axis as required for Eq. (3.5). 

Substituting for Eq. (3.5), the time averaged torque is given by 

rf - 4€0d36|2Y1Y^X, + Yfxjjexp i(2krk2)z + c.c. (3.6) 

if - 4€0d36^2X1X^Y, + Y^Xfjexp i(2k,-k2)z + c.c. (3.7) 

if -0 

for 2Wj - Ct>2 and 

- 4€0d36 j2Y^Y2X2 + YjX'jexp i(2k2-k,)z + c.c. (3.8) 

rf . 4(0d!6r2X2x;Y2 + Y^X|Jexp i(2k;-k,)z + c.c. (3.9) 

r * - 0 .  

for 2u>2 - (<>i . 

As in Chapter 2, the torque over a given length of the crystal is found by 

integrating over a length of the crystal. 

For a plate of thckness z we get, 

rf(z) - 4€oAd36|2Y1Y2X1 + YfX2J. (3.10) 

T5,(z)-4A€od36|^2X1X2Y1+Y2X;j. S"*^a)Z (3.11) 

rf(z) - 0 

for 2o>i - o)2 and 
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rf(z) - 4Ae0d36|2Y1Y2X2+YjX1j. (3.12) 

tffz) - 4Ae0d36^2X,X2Y2+Y1x2j. Sm^ |̂)Z (3.13) 

rf(z) - 0 

for 2cj2 «• «, . 

As seen from Eqs. (3.10) and (3.11), for the case of 2«, - u2, the components 

of the torque r^1 and have optimum values when 

2k, - k2 - 0 . 

This condition in turn demands (since k - nu/c) that 

n,(w,) - n2(a>2) (3.14) 

where nM and n(w) are the refractive indices for the electric fields polarized in 1 

and 2 directions of the crystals for the respective frequencies. 

For the two waves polarized in 1 and 2 directions in a uniaxial crystal, the 

condition 2col"0)2 the Eq. (3.14) cannot be simultaneously satisfied. Therefore 

the effect is not observable in a uniaxial crystal when the direction of propergation 

of the two fields is along the 3 axis. 

Now we turn to see the effect when the direction of propagation is 

perpendicular to the 3 axis of the crystal. 

CASE 2 :Wave propagation along the 2 axis of the uniaxial crystal 

Assume that the crystal 1,2,3 axes coincide with the x,y,z axes in the 

laboratory coordinate system and the two fields propagate along the y axis. The 

fields can have x and z components Ei and Ej are written as: 

E, - XjX exp i(k,y-cj,t) + Z,z exp i(k'y-«,t) + c.c. 
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E2 - X2x exp i(k ̂ y-fc^t) + 2^z exp i(k2z-<o2t) + c.c. , 

where k, and k/ are the wave vectors for the field components of frequency u, 

polarized along 1 and 3 directions; k,' and k2 are the wave vectors for the field 

components of frequency «2 polarized along 1 and 3 directions; and they are given 

by 

1 " c 

, , "ln^) 
Kl " c (3.15) 

w2 ns(«2) 
2 c 

, , wan^cjj) 
k2 - — . 

With the two fields defined as above, the net field components along the x 

and z directions are found to be 

E, - X,exp i(k,y-a>,t) + X2exp i(k'2y-«2t) 

Ej, - Z,exp i(k'ty-«,t) + 2^exp i(k2z-<J2t). 

For a plane wave propagating along the z axis, Eq. (3.5) in the previous case 

is modified as 

rf - 2e0d25exe2 

r f - o  

if - . 

Again we see that the component of the torque along the direction of 

propagation vanishes as in Eq. (3.5). For the crystal class under consideration, the 

torque is transverse to the direction of propagation. The time-averaged torques and 
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the integration over a given length of the crystal can be obtained following the 

same steps as in Case 1. 

The time averaged torque will be 

t^1 - 2e0d25 jz^X'exp i(2k2-k,)y + 2Z2Z*X2exp ifkj+k'j-k'^y + c.c.j (3.16) 

T?-0 

- 2e0d25 JlJ^X'Z^xp i(k2+k'2-k,)y + Z'X^exp i(2k'2-k',) + c.c.J (3.17) 

for (•>] - 2u2 and. 

m 2e0d2S j2Z,Z^X[exp i(k,+k',-k2)y + Z^X'exp i(2k'rk'2)y + c.c.j (3.18) 

t ? - 0  

- 2c0d25 jXjZ^exp i(2krk2)y 2X,X^Z,exp i(k,+k'rk'2)y + c.c.J (3.19) 

for u2 - 2c>)| . 

For all other frequencies which do not match the condition above, the time-

averaged components of the second-order torque will vanish. 

The growth of the torque with the distance of propagation is found to be 

r f ( y )  - 4Ae0d25 
r2v. Sin(2k2-k|)y w Sin(k2+k'2-k',)y 
-2Xi 2k2-k, + i k2+k'2-k', 

(3.20) 

r j - 0  

- 4Acnd-0«25 
2 . Sin(2k'2-k'!)y . Sin(k2+k'2-k,)y 

*r\ 2k'2-k'i 2i^ k2+k'2-k, 
(3.21) 
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for (*>, - 2u>2 and. 

T^(y) • 4Ae0d25 2Z|Z^Xj 

t ^ - 0  

r;' - 4A<0d2S Xjz 

for «2 - 2u]. 

The significance of each term in Eqs. (3.20) through (3.23) depends on the 

relationship between the wave vectors of the two fields. 

Let's define the argument (Akj) of the sine functions in Eqs. (3.20) through 

(3.23) as the phase mismatch. Then we have 

Ak, - 2k2 - k, 

Ak2 - k2 +k'2 -k', 

Ak3 - 2k'2 - k'j 

Ak4 - k2 + k'2 + k, 

Ak5 - k, +k', - k2 

Ak6 - 2k', - k'2 . 

As seen from Eqs (3.20) to (3.23), the torque has a maximum as Ak, •+ 0 and 

oscillates sinusoidally for Akj» 0. Only one Ak can be set to zero for a given 

set of wave vectors. This means that only one term in Eqs. (3.20) to (3.23) survives 

for a given configuration of k vectors and frequencies. Variation of the torque as a 

function of Ak, is depicted in Fig. 3.1. 



Ak 

Fig. 3.1. Variation of each component of the second order torque as 
a function of the phase mismatch Ak. Torque has the 
optimum value when phase matched. 

CO 
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Therefore the maximum torque is obtained when properly phase matched or 

when Akj • 0. For each set of k vectors satisfying Ak{ - 0 and the frequency 

relationship given above, a corresponding relationship between the indices of 

refraction can be found using k - nu/c, and these values are given in Table 3.2. 

Table 3.2. Relationships among the wave vectors, frequencies and indices of 
refraction to get Ak - 0 for the second-order torque. 

Condition needed Relationship Condition on the 
to give Ak - 0. between co, and index of refraction. 

2K'a - YL\ - 2cjj n^wj) - ns(«i) 

2K'j - K'2 - 2 n^Wj) - nj(«i) 

2K, - K2 - 2uj ns(«2) - ni("i) 

K, + K', - K2 «a - 2w, n,(«j) -
n^wj) + ns(«,) 

2 

K2 + K'2 - Kf! «i - 2o)x njfwj) -
n,(«2) + n^Wj) 

2 

The conditions found in Table 3.2 on the index of refraction are exactly the 

same as the conditions required for various types of second-harmonic generation in 

uniaxial crystals. Not all of these conditions are possible in one crystal, but one or 

two conditions can be met in a given crystal. 

For example, the condition in the first row of Table 3.2 can be matched for 

negative uniaxials for two waves propagating along the z axis with the lower 

frequency polarized along the 3 axis. Figure 3.3 shows the variation of the index 

of refraction with the frequency for negative uniaxial and the index match at 

«1 « 2wj. 
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As shown in Fig. 3.2, it is possible to find cj, and w2 so that n^Wj) - n3(w() 

for this crystal class. This is the same condition required for Type 1 (ooe) 

noncritically phase-matched second-harmonic generation in negative uniaxials. 

A similar analysis can be done with each row on Table 3.2. The first three 

rows correspond to noncritical Type 1 phase matching in uniaxial crystals while the 

last two correspond to noncritical Type 2 phase matching. (The conditions of Table 

3.2 were derived assuming a wave propagating in crystal 2 direction, and thus the 

angle phase matching or critical phase matching was not involved.) 

This means that one of the conditions of Table 3.2 is always matched when a 

uniaxial crystal is used for noncritically phase-matched second-harmonic generation. 

Therefore the effect should be readily observable in crystals that are used for 

second-harmonic generation. But the effect will be too small to cause any 

significant effect on the frequency mixing or the birefringence of the material. 

Thus, any attempt to make a measurement of the effect should be done with two 

powerful laser beams having orthogonal polarizations. 

A sample calculation uses the following parameters: 

A - 1 mm2 

X231 " X213 "2d 14 "0-98 x lO"12 m/V 

Z3 - X, -2.7 x 104 V/m (using a watt of laser) . 

The torque rt as a function of the crystal length L will be 

t^(L) -6.6 x 10-ML dyne cm. 

where L is in centimeters. 
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FREQUENCY 

Fig. 3.2. Variation of the refractive index as a 
function of frequency and the condition 
of index matching for a negative 
uniaxial crystal. 
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For a crystal plate of 1 cm the torque will be • 6.6xl0~n when 1 W of 

laser power is used. This is 1000 times smaller than the value obtained for the 

first-order effect. 

The maximum value of the torque that can be obtained using the maximum 

tolerable power on the crystal is about 3.4x10*® dyne cm. The power needed to 

create this torque is about 1.3 kW. It is not advisable to work close to the 

breakdown potential of materials. Since the second-order torque goes with the cube 

of the electric-field amplitude the reduction of the field amplitude from its 

maximum by a facter of 10 results in a torque of about 10~9 dyne cm, which is 

still too small to measure in the presence of other effects, e.g., the first-order torque 

and the radiation pressure effects. 
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CHAPTER 4 

The Experiment 

Calculations presented in previous chapters show the magnitude of torque that 

can be created in a wavepiate using the light from a conventional laser source. 

The resulting mechanical stresses in the wavepiate are too small to induce 

birefringence or changes in optical constants of the material, even with very high 

laser powers such as 100 MW m2. Therefore, any experimental determination of 

the torque should be performed as a direct measurement. This is also not trivial 

because other mechanical or thermal disorders can easily mask the effect of such a 

tiny torque. 

The first and the only experimental investigation on the mechanical torque was 

reported by Beth et al.10 in 1935. The light source used in the experiment was a 

tungsten filament. The observed torque was in the range of 10~" dyne cm. The 

experimental setup used for the detection was extremely complicated because it had 

been designed to eliminate or supress all possible mechanical, thermal, and 

electrostatic disturbances. 

The purpose of the experiment was to observe torque through a rotation of a 

quartz wavepiate hung from a fine quartz fiber. The plane of the quartz 

wavepiate was normal to the fiber and the wavepiate was illuminated normal to its 

surface. The torque on the wavepiate created by the light beam was parallel to the 

fiber and the twist in the fiber was observed by measuring the deflection of a tiny 

beam of light that reflected from a small mirror, which had been attached to the 

fiber. 
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The waveplate and the fiber assembly was placed in a vacuum to avoid 

distortions from stray air currents and the fiber was surrounded by a large copper 

block to minimize temperature fluctuations around the fiber. Mechanical vibrations 

were minimized by placing the apparatus on a cast iron bracket bolted to a brick 

pier. As Beth et al.10 claim, their precautions were sufficient to avoid all 

undesirable effects or disturbances and to measure the torque with a reasonable 

accuracy. 

This chapter reconsiders the experiment and modifies it using new. powerful 

lasers that can provide a much larger torque than the light from a tungsten 

filament. The experiment considered here may be used as an undergraduate 

laboratory experiment or demonstration experiment. 

Table 2.1 shows the magnitudes of the torque that can be created in a half 

waveplate using a conventional laser source. In the case of Ar+ and Nd:YAG 

lasers, the effect is fairly large and can be observed in a simple experiment. The 

apparatus suggested for this demonstration experiment is shown in Fig. 4.1. The 

catalog numbers and the manufacturer for most of the parts are found in Appendix 

B. 

The halfwave plate hung from its center by a fine quartz fiber is placed 

inside a cylindrical glass chamber. The size of the chamber is not critical and can 

be as large as 3 in. in diameter and 7 in. high. The quartz fiber from its upper 

end is attached to a rotational stage that can rotate in a horizontal plans. C in Fig. 

4.1 is a quarter waveplate and L is a linear polarizer. M is a plane mirror placed 

at 45° to the horizontal and is mounted with micro-tilt adjustments so that the light 

beam can be reflected in a vertical direction. The rotation of the waveplate due to 

the torque created by the light wave can be measured by reflecting a light beam 

from the tiny mirror Ml. which is attached to the fiber. The scale zero can be set 



Fig. 4.1. Experimental setup for the proposed demonstration experiment. 
Parts are as follows: 

M - Plane mirror at 45 degrees to the horizontal. 
L1.L2 - Beam expanding unit mounted with X.Y.Z adjustments. 
L - Linear polarizer 
C - X/4 plate 
S - Beam stop to block the central part 
A - X/2 plate 
Ml - Tiny plane mirror 
Q - Quartz fiber 
F - Special fiber holder 
R - Rotational mount 
D - 1/4 inche thick copper plate 
T - X-Y translational stage 
B - metal base with 3 adjustable screws 
B1 - Large metal base 
J - cylindrical glass jar. 



41 

at a desired value by turning the fiber, the mirror Ml and the waveplate 

arrangement, using the rotational stage described above. 

T is a translational stage on which the chamber is mounted to have small 

translations of the chamber in the horizontal plane. These adjustments are needed to 

position the laser beam close to the center of the waveplate. Another alternative is 

to use a system of two mirror at 45° degrees to each other to have a universal 

manipulation of the laser beam. But the need of one mirror to deviate the beam 

from horizontal to vertical will affect the polarization properties of the beam and 

will reduce the efficiency of the device through a loss of intensity at reflections. 

As the beam propagates through the waveplate it is necessary to have the axis 

of the beam as close to the fiber as possible. Not having these two centers and the 

center of mass of the waveplate together can cause unbalanced forces which can 

turn the waveplate slightly about a horizontal axis. Figure 4.2 shows the forces 

and torques acting on the waveplate when the forces do not have a common line of 

action. However, the forces from radiation pressure effects are small, since most of 

the light passes through the waveplate. If the waveplates specified in Appendix B 

are used, the force from the radiation pressure will be less than one percent of the 

waveplate weight. The gravitational forces can have a significant effect, depending 

on the weight of the waveplate. Therefore the fiber should be attached to the 

center of the waveplate. If this is not done, a small mass may be added to the 

edge of the waveplate to level. 

The center of the beam should be blocked to avoid possible scattering from the 

fiber at the center of the waveplate. If a TEMqo Gaussian laser mode is used, 

blocking of the central part of the beam can cause large intensity losses and will 

reduce the overall efficiency. This problem can be reduced by expanding the 

laser beam and making the blocked area as small as possible. Another advantage of 
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Quartz fiber 

T 

r ' -i iwave plate 

T5 

,r m9 

Fig. 4.2. Forces acting on the wave plate. 

T = Tension on the fiber 

mg = Weight of the wave plate 

P = Net force due to radiation pressure 
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increasing the beam cross section to illuminate a larger area of the waveplate is the 

reduction of mechanical instabilities that can arise from radiation pressure effects. 

If a TEMqi+TEMjo or the donut mode is used, blocking the center of the'beam will 

not reduce the efficiency. However, in either the TEMq, + TEM10, or TEMqq case 

it is necessary to expand the beam to bring the radiation pressure effects to a 

minimum. This could be done by placing two microscope objectives, LI and L2, as 

shown in Fig. 4.1. The power of each objective is selected based on the size of 

the crystal plate and the cross section of the beam from the laser source. 

Polarization of the input beam is selected by rotating the quarter waveplate C 

and the linear polarizer L independently about the vertical axis. As discussed in 

Appendix A, the torque is a sine function of the angle 6 between the fast axes of 

A and C. This can be observed by rotating the waveplate C about a vertical axis. 

The chamber together with the X-Y translational stage T should be mounted on a 

sturdy iron block with adjustable screws to avoid other mechanical disturbances. 

Even though the heating effects of about 1 W of laser power are small, the 

effects cannot be ignored. A copper block D can be attached to the upper end of 

the chamber as shown in Fig. 4.1 to receive the laser power and to dissipate it as 

heat to the outside. In Beth's work the fiber was surrounded completely by a 

copper block but such precautions may not be needed when a laser is used because 

the torque observed is not too small. 

The setup described above can be conveniently adapted for two major units as 

shown in Fig. 4.3a and 4.3b. One unit is the chamber with a T-translational stage 

and B base connected to it and the second is C,L,L1,L2, and N connected to the 

heavy base B1 using proper mounts. The height of the base B1 depends on the 

power of the microscope objectives and the size of their mounts. One of the beam-

expander uints (L1.L2) needs translational adjustments along the vertical axis and in 
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the horizontal plane to bring the light beam to a common focus. The plane mirror 

M needs tilt adjustments to project the light beam in the vertical direction. 

With the parts described above, we have all the adjustments necessary to 

accomplish the objective of the experiment. 

Enhancement of the Effect 

In Chapter 2 we found that the torque on the crystal plate was proportional to 

the change in the angular momentum of the beam. The maximum change in angular 

momentum is obtained when the circularly polarized light changes its handedness 

from one to the oiher and therefore the maximum torque is obtained for a single 

pass through a half waveplate. However there are several methods to increase the 

torque and hence increase the twist on the fiber. 

One way to increase the torque and the twist on the fiber is to replace the 

copper block D by a perfect mirror to reverse both the direction and the 

handedness of the light beam and then send the reversed light beam through a 

second quarterwave plate as shown in Fig. 4.4. This was used in Beth's work,10 

which produced a torque twice as large as the torque in a single pass. The 

enhancement is easy to visualize when the direction of propagation and the 

handedness of the light beam are considered. These directions are shown in Fig. 

4.4. The straight arrow shows the direction of propagation while the curved arrow 

shows the handedness of the light beam. 

The second method is to use a series of half waveplates in an arrangement 

strcturally similar to a tunning capacitor of a radio circuit. This can enhance the 

effect to a desired degree but getting the complete mechanical alignment will be 

difficult. 



c 

X 
M 

Fig. 4.3. The two main units of the experimental set up. (a) The top 
part of the two main units of the experimental setup, and (b) beam 
controlling optics attached to the heavy base Bl. 
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i wave plate 

FAST 

i wave plate 

FAST 

i wave plate 

FAST 

Fig. 4.4. A picture very similiar. to that of Beth's 
work showing the handedness and direction 
of propergation of the light when the 
light is reflected back after the first 
pass. This set-up can enhance the torque 
per single pass by a factor of two. 
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If the losses due to the reflections and absorptions at the crystal faces are 

neglected the weight of the stack of the waveplates and the breaking stress of the 

fiber will be the only limiting factors for the torsion or the observable deflection. 

The arrangement consists of two sets of half waveplates. As shown in Fig. 

4.5, one set of half waveplates are connected together at their centers to a unique 

axis which finally is connected to the fiber that suspends the whole set. The second 

set of half waveplates connected rigidly to the chamber with their fast axes 

perpendicular to those of the first set. On each fixed X/2 plate a hole should be 

made at the center for the thin rod that connects the other set of waveplates. 

As light propagates through the lowermost waveplate, it changes its angular 

momemtem and the handedness, resulting in a torque on the waveplate. Then the 

light passes through a fixed waveplate and regains the original handedness and this, 

upon transmission through the next waveplate, creates a torque in the same 

direction as the first. Thus, for an ideal system where absorption and reflection 

losses can be neglected the use of a total of N waveplates in the two sets can 

increase the torque by factor of (N + l)/2. This means that a rotation of a tenth 

of a degree can be increased to one degree by arranging 19 half waveplates as 

above. The number of waveplates that can be used depends on the weight of the 

each waveplate and the breaking stress of the fiber. However, increasing the fiber 

diameter to support more waveplates would not produce positive results, because a 

10% increment in the fiber diameter can cause about 46% reduction in the torsion or 

the twist. Therefore, for the best results, the maximum number of waveplates 

should be used with the minimum possible fiber diameter. Even though it is 

difficult to get the perfect alignment, the concept of stacking waveplates may 

produce a remarkable enhancement. 



Fig. 4.5. The two set arrangement of N half wave 
plates which can enhance the twist on 
the fiber by a factor of N + 1 

I * 

MW — movable set of Wave plates. 
FW — fixed set of Wave plates. 
P — light plastic rod. 
q — Quartz fiber. 
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CHAPTER 5. 

Conclusion 

The first- and the second-order torques resulting from the change in angular 

momentum of polarized light in passing through a crystal plate have been 

calculated. The first-order torque has been measured in an earlier experiment and 

the results, within the limits of error, have been in agreement with theory and the 

work was with an ordinary tungsten filament lamp. Therefore there is no doubt 

that the same experiment can be done to a better accuracy with available powerful 

lasers. 

It is also possible, as we discussed in Chapter 4, to design and build 

commercially the instrument to show the effect of angular momentum of a light 

beam or the mechanical torque exerted on a birefringent medium. This would be a 

great piece of equipment for undergraduate physics and optics laboratories to 

demonstrate a fact where the predictions from both wave and quantum theories of 

light come together. 

As far as the second- and higher-order mechanical effects in crytals are 

concerned, they are still too small to be of a value in practice. Neither the first-

nor the second-order mechanical effects of light in crystals and waveplates can 

induce strains that are large enough to cause any significant change in index of 

refraction or birefringence of the material. Therefore the mechanical effects in 

crystals seem to have a lesser importance, compared to the mechanical effects of 

light on very small particles. 
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If the current interest in the mechanical effects of light is continued, devices 

based on the radiation pressure and the angular momentum of light-related forces 

will help physicists to drive interferometers, to trap and micromanipulate small 

particles, and to do wonders in the years to come. 
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APPENDIX A 

Dependence of the Torque as a Function 

of the Initial Direction of the E Vector 

The torque experienced by the waveplate is a function of the angle 9 between 

the direction of initial polarization and the direction of the fast axis of the crystal 

face.10 In the' derivation presented in chapter 2 this was neglected, and the 

calculations were done for 6 - 45°. 

To derive an expression for the 6 dependence of the torque, assume the same 

coordinate system as in Chapter 2 and take the initial direction of E to be at an 

angle 6 with the X axis. Then the field for the light wave propagated along the +Z 

direction is given by. 

Ejj - Eq CosflCos nx z 

Ey - Eq SinflCosjwt - z • 

Using the equation r - D x E, the torque on a unit volume of the crystal is 

found to be 

Sin20Cos wt-y- nx z 

The time-averaged torque is then found to be 

Sin20Cos 

When averaged over the distance Z2-Z1 of the crystal, the torque is 
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pz-zj 

T(z, .Z2) - J €0E* ^x-Dyj Sin20 Cos y (iiy-n^Jz dz 

- —jj—- Sin2fl jsin y " Sin y (ny_nx)zij 

This gives the variation of the torque as a function of the distance of 

propagation and the angle 0 between the E vector and the fast axis. For a given 

waveplate, the value of z is fixed and the 0 dependence of the torque can be 

studied by changing the initial direction of the E field. Experimental details are 

discussed in Chapter 4. As the circular polarizer or the quarter waveplate is rotated 

about the vertical axis, the magnitude of the torque should trace a sine curve. This 

has been observed in Beth's experiment,10 confirming the agreement with the 

theoretical calculations. 



APPENDIX B 

Suggested puts for the experiment, their catalog numbers, 
specifications and the manufacturer. 

Label on 
Fig. 4.1. 

Name ParaiMters Manufacturer and the: 
catalog number 

A i wave plate thickness — 0.75mm 
aperture • 15 mm 
material -- quartz 
weight * 0.8 gm 
thickness - 1.0 mm 
aperturt — 15 mm 
material * quartz 
weight — 1.06 gm 

ORIEL 
25660 for X « 514.5 nm 
25639 for X • 1.064 nm 

CVI Lasers 
QWWi - 51 - 10 - 2 
for X • 514.5 nm 

C Quarter wave 
plate 

ORIEL 
25610 for X > 514.5 nm 
25689 for X - 1.064 nm 

Q Quartz fiber Radius < 2 m 
Length - 15 cm 

Should be made 1n a gas-
oxygen flame or may be 
custom-made. 

T Translstlonal 
stage 

1" travel 
125 lb. load 
capacity 

ORIEL 16141 
New port 425A-1 

J Clear glass 
Jar — 
cylindrical 

Diameter * 8 cm 
Height - 20 aa 

M Mirror and 
the mount 

Highly reflective 
at 45 at the 
laser wave length. 

Mount — Newport MM 1 I 

L1,L2 Beam expanding 
unit (two mi
croscopic ob
jectives mounted 
with x,y,z 
transactional 
freedom) 

Ratio of the powers 
of the two objectives 
depends on the Input 
and output beam cross 
sections. 

81 Solid metal base Height * 20 aa 
Cross section * 

8 x 15 aa 

R Rotational mount 360° rotation New port RSA-1 

F Fiber holder and 
positioner 

Miniature design, 
versatile with x,y,z 
and «,Q adjustments 

New port FP-2 
L 1 
1 
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