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ABSTRACT 

We consider the problem of electromagnetic propagation along a wire which 

passes through an aperture. We begin by formulating an integral equation in terms 

of the electric field at the aperture. The solution of the integral equation allows us 

to determine parameters of interest such as the equivalent admittance, the current 

on the wire, and the electric field. We solve the integral equation using both a 

zeroth order and method of moments approximation for the aperture field. From 

this we are able to compute the admittance and current in the frequency domain. 

We next calculate the current response to a transient pulse excitation. The results 

show that the screen provides little shielding from pulse penetration along the wire. 

Finally, we calculate solutions for the electric field. The results are given in several 

contour plots. 
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CHAPTER 1 

INTRODUCTION 

An important consideration in electromagnetic shielding problems is estab

lishing the degree of exterior to interior coupling that occurs at shield imperfections. 

One type of imperfection that sometimes occurs is a hole in the shield. There have 

been numerous studies done on the coupling of electromagnetic energy through 

an aperture or multiple apertures. The problem was first considered by Rayleigh 

(1897). He simplified the problem by assuming static fields and then solving it 

by using potential theory. Bethe (1944) formulated the problem by means of a 

quasi-static approach. His method was further extended by Chen (1970) and Tay

lor (1973) to include such things as a cavity-backed aperture. Rahmat-Samii and 

Mittra (1977) considered the problem of electromagnetic coupling through an in

finite conducting screen. They obtained a solution by use of an integral equation. 

They then joined with Butler (1978) to extend this work to provide a comprehensive 

study of the aperture coupling problem. The results showed that in many cases the 

coupling is very weak. 

In many practical situations, however, the aperture itself doas not properly 

model the physical geometry. In order for a system or subsystem to communicate 

with other systems or subsystems, it is necessary to pass information through such 

things as pipes and cables. These connections must enter the system through an 

aperture. Such situations tend to be very complex and not easily modelled. It is 

possible to treat a a simpler model where we retain many of the characteristics of the 
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more complex problem. Such models can give insight into the behavior of the fields 

for the more complicated case. Unlike the unobstructed aperture problem, there 

has been suprisingly little work done on the case where there is a line penetration 

through the aperture. Some initial work has been done by Casey (1987) for low 

frequencies. The line penetration drastically changes the behavior of the fields 

around the aperture. The primary effect is to substantially increase the energy 

coupled into the partially shielded system. 

The simplified model that we consider is the problem of a wire penetrating 

an aperture in an infinite planar screen (Figure 1-1). The wire is infinitely long 

and centered in the aperture; the screen extends to infinity in the radial direction. 

Both the wire and the screen are assumed to be perfectly conducting. We specify 

the radius of the wire to be a and the radius of the aperture to be b. We choose a 

cylindrical coordinate system centered such that (p, z) = (0,0) corresponds to the 

center of the wire in the plane of the aperture. This choice divides the problem 

into two regions. Region 1 consists of the half-space z < 0; Region 2 consists of 

the half-space z > 0. We have assumed free space (/x = no, e = eo) in both regions. 

The resulting geometry is ^-symmetric. To further simplify the problem we assume 

that the source is also ^-symmetric. The result is a two dimensional problem with 

variations of the fields in p and z. Because we are mainly interested in the TM 

modes with respect to z, we specify the source to be a <f> directed magnetic current 

source which we call This allows us to decouple the equations and consider 

the TM modes separately. We specify the source to be in Region 1 at a distance d 

from the aperture. 
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Figure 1-1 Side view of a wire with radius a passing through an aperture of 

radius b. 
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Here, we will cover both the frequency and time domain analyses. In chapter 

2, we formulate the expressions for the fields. The solutions for these field expres

sions are dependent upon the solution of an integral equation which we derive with 

the help of two Green's functions and several known boundary conditions. We also 

discuss the behavior of the source in our problem. In chapter 3, we consider the 

integral equation. Because of the complexity of our problem, an exact analytical 

solution which is valid over all frequencies is not possible. We therefore solve the 

integral equation using approximate numerical methods. Both a zeroth order ap

proximation and a method of moments approximation for the electric aperture field 

are considered, and the advantages and disadvantages of each approximation are 

discussed. Next, we formulate equations for the admittance and the current and 

obtain solutions using both approximations. We then proceed with a time domain 

analysis of our problem, where the input is a double exponential transient pulse. In 

chapter 4 we compute solutions for the fields in Region 2 and present several contour 

plots of the electric field. Solutions are first obtained from the general expressions 

for the fields. We then make a far field approximation on the field expressions to get 

a closed form solution. The results are compared to the general case to determine 

the accuracy of the far field approximation. Finally, we present conclusions and 

recommendations for future work in chapter 5. 
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CHAPTER 2 

FORMULATION OF THE INTEGRAL EQUATION 

In this chapter, we obtain an expression for the integral equation across 

the aperture. We begin by considering the TM mode field equations along with 

the boundary conditions. By using Green's theorem, we solve for the magnetic 

field H<F, in terms of the electric field at the aperture and the appropriate Green's 

functions for both Region 1 and Region 2. Two forms of the solution for the Green's 

functions are presented and compared. From these, we decide on which form to use 

in the integral equation. We then choose a source for our problem and determine 

a physical representation for it. By enforcing the continuity of the tangential fields 

in the aperture, we obtain an integral equation for the aperture field. Finally, we 

analyze the Green's function to determine its singularities and their possible effect 

on the integral equation. 

Because we have specified azimuthal symmetry in both the geometry and 

the source, the electromagnetic field equations do not depend on (f> {d/d<j> = 0). 

Therefore the field equations decouple and simplify. A description of the source will 

not be presented here, but rather will be discussed in section 2.3. Let us consider 

the time dependent Maxwell's equations without the electric current source, 

2.1 Field Equations 

V x l  =  —IUIFIH — M 

V x H = ibjeE 

( 2 - 1 )  

( 2 - 2 )  
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where the e iwt time variation is suppressed. Separating (2-1)' and (2-2) into its field 

components, we obtain the TMg mode field equations: 

- 1 ( 2  —  3 )  
¥ JWCo OZ 

i d(PHt(P,z)) 

iueo dp 

dEZdpZ) " d E izZ )  = M* +  ( 2" 5 )  

Since we previously specified the source to be ^-symmetric, it does not excite the 

TEg modes, and therefore, E#, Hp, and Hz are zero. By substituting (2-3) and 

(2-4) into (2-5), we can obtain a second order partial differential equation for H#, 

(V2
pg + k2 - ̂)Ht(p, z) = iueoM# (2 - 6) 

where the Laplacian is given by 

2 _ 1 d_ d_ 
px pdp^dp~^~dz2 

and k = wy'/xoco is the wave number. The source is assumed to be finite in 

extent. The field components Ep and Ez are then easily obtained from (2-3) and 

(2-4). 

To solve for ffy, we need to prescribe the behavior of the fields at the 

boundaries of the two regions. Let us assume an infinitesimally small amount of 

loss in both regions so that we can specify the following boundary conditions on 

Hf. 

lim HAp,z) =0 (2-7) 
p-* 00 r 
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lim Ht(p,z)= 0 (2-8) 
[*|—>00 

Also, the tangential electric fields must vanish on the surface of the wire and the 

screen, i.e. 

lim Eg{p,z) = lim _ 0 (2 - 9) 
p-*a x ' p-fa op 

(">4' <2-10> 

The next step is the conversion of (2-6) into an integral form. This can 

be accomplished by applying Green's theorem to both regions. Green's theorem 

requires that the volume under consideration be bounded. Unfortunately, both 

Region 1 and Region 2 are unbounded. We therefore use the radiation condition in 

the methods shown by Stratton (1941) to allow Green's theorem to handle volumes 

of infinite extent. Because there are no field variations in <f>, we are able to use a 

degenerate form of Green's theorem: 

(9, (Vj, + k? - ±)E t) - (H t, (Vj, + - i)j) = J2 - 11) 

where d£ is the variable of integration over the degenerate surfaces which enclose 

the volume and n is the outgoing normal from those surfaces. The inner product 

(x, y) is defined by 

xy pdpdz (2 — 12) (x,y) = / ; 
JVi 

where V{ denotes the volume of the region under consideration. It should be noted 

that for n in the direction of p, 

(2_13) 

an p dp 
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The variable g represents the Green's function which we choose to simplify (2-11). 

The best choice for our case is described by the following: 

lim d(Wi(','z)) _ 0 ljm g j ( p , z )  = 0 , 
p—*a op p—+0Q * 

lim gi(p,z) = 0 , lim g2(p,z) = 0 , 
z—*—oo Z—>00 

Dm M?l£)=0 
|*|—>o dz 

where j = 1 or 2 depending upon the region of interest and £(•) is the Dirac delta 

function. Physically, the Green's function problem can be described by an infinitely 

long wire joined to an infinite planar screen. The corresponding geometries for g\ 

and <72 are shown in Figure 2-1. 

Substituting (2-6) and (2-14) into (2-11) and applying the boundary condi

tions for our geometry, we obtain /0 roo 
/ ffi(p, z | p\ z')M^(p', z!)p'dp'dz' 

-oo J  a  

- iueo f g\ (/>, z | p\ 0)Epi (p\ 0)p'dp' (2 - 15) 
J a  

#*2(/>»2) = *wco f 92(p,z | p',0)Ep2{p',0)p'dp' (2 - 16) 
J a  

where the subscripts on the fields indicate the region of interest. Note that in go

ing from (2-11) to (2-15) and (2-16), we have switched the prime and unprimed 

variables. To complete the formulation of (2-15) and (2-16) we must obtain ex

pressions for the Green's functions in both regions and also provide a mathematical 

description for the source M#. 
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Figure 2-1 Geometries which describe the Green's functions, g\ and <73. 
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2.2 Green's Function Solutions 

In order to solve (2-14), let us first consider a simple ordinary differential 

equation which we write as 

_ ( I '  '  J, +  a ) j  =  £0lVI ( 2_1 7 )  

pap dp fr p 

lim g(p,p') = 0 
p—*oo 

lim13(M/,y» =0 

P~*a p dp 

A general solution to the differential equation in (2-17) is given by 

< = IAJ, (VXp) + BH[2> (Vxp) p<t> 

\  C J , ( V > ~ P )  + D H { i \ s / \ P )  P >  f /  
(2-18) 

where A, B, C, and D are constants to be determined and the symbols J\ and 

H\ represent the Bessel and Hankel functions, respectively. We can eliminate two 

of the constants by applying the given boundary conditions and by specifying the 

imaginary part of y/X to be negative so that h[2^ (V\p) —• 0 as p —> oo. The 

resulting equation is 

= »<e> (2_19)  

We now enforce the boundary conditions for the continuity of g and the jump 

discontinuity of dg/dp at p = p'. This gives 

— T [ J ' - JO(VXa)42\V\l>)) 9<J 
g{p,p) = < 

(2 - 20) 
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We next integrate the Green's function in (2-20) over the circle at infinity in 

the complex A-plane to obtain a spectral expansion in p. The details are presented 

in Appendix A. The resulting expression for the spectral expansion is given by 

where B(£p) is defined by 

£(&>) = Ji(Sp)Yotia) - J0(£a)Yi(£p) 

The spectral expansion in (2-21) allows us to formulate a special transform pair 

which is very similar to the Weber transform (Stakgold, 1979). From Appendix A 

we get the following modified transform pair: 

M - h  i ( ) 

and 

G(0 = (°° g(e>)BW)ef if' (2 - 23) 
J a  

Consider g\ in (2-14). We perform the modified Weber transform to give 

" (J?+e ~ e) °l=6{z ~ (2"241 

where G\ is the transform of g\ and where we have used the fact that 

•  {jh'h ~ ?) s i M = £ 2 a , ( " )  ( 2  ~ 2 5 )  
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Our Green's function problem has now been reduced to a one dimensional problem, 

namely, 

~(J^ + f c *)  (2  "  26)  

lim Gi(jar,z')=0 
Z — 0 0  

lim a6li''y) =0 
x—»0 02 

where Gi = G\/B(£p'), k\ = k2 — £2, and the imaginary part of kg is assumed to be 

negative. The solution for Gi is easily determined by applying the given boundary 

conditions along with the continuity and jump conditions at z = d. The result is 

Gi{z,z!) = K, 
AknJ 
IT 

cos kzz! z < J 

cos kgz z > st 
(2 - 27) 

To transform (2-27) back to p space, we use (2-22) to obtain 

9i{p,p' I z,z') = H * ( 2  2 8 )  

Because of the symmetry between gi and <72 > we need only replace z by —z and z' 

by —z! in gi to obtain g%. The result is 

92{p,p' | z,z') = < 
—t /q 00 e  tk'Z'cos kzz £d£ z < z' 

-i /0°° —e~ ik'z cos kzz z>z< 
k 

J0 kMHW(ta)HW(ta) 

(2 - 29) 

In (2-28), we formulated the Green's function by using a spectral expansion 

in p and obtaining a closed form Green's function in z. Another form of the same 
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Green's function can be determined by using a spectral expansion in z and the 

closed form Green's function in (2-20). The spectral expansion in this case is well 

known and leads to the following cosine transform pair: 

g{z) = r G{/3) co6 0z dp (2 - 30) 
Jo 

G(/3) = — f g{z') cos fiz' dz' (2 — 31) 
t Jo 

With the help of the cosine transform pair and (2-20), we can get an alternate 

expression for the Green's function in both regions using the same methods that 

which we used to derive (2-28). The final Green's function expression in Region 1 

is 

9i(p,z I P,z)= < 
- Jo00 cos Pz cos  ̂dP p < p' 

?2)l0al (2-32) 
- /o°° %W cos Pz cos dP P > P' 

Ho (W 

where kfy = k2—(32 and the imaginary part of kp negative. Because of the symmetry 

between the two regions, we realize that 

91  (P ,  z \  P ' , z ' )=  92  (p ,  z \ p \  z ' )  (2 - 33) 

The choice of which Green's function form to use is dependent upon nu

merical considerations. The integral in (2-32) is not easily evaluated because of the 

singularity in the integrand at kp — 0. On the other hand, the singularities in the 

integrand in (2-28) are much easier to handle. Indeed, they can be extracted by 

analytical means. We therefore use (2-28) and (2-29) for our Green's functions. 
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2.3 Source Analysis 

Now that the solutions for the Green's functions have been obtained, it 

becomes necessary to specify the source Afy in (2-15). We seek a source which 

produces a TEM-like wave in the region around the aperture. Let us consider the 

following source: 

l><= («.f) (2-34) 
10 otherwise 

where Mo is a constant and d is the distance from the aperture to the source in 

Region 1. The variable c has a finite value and is greater than a. The source 

can be realized by considering a coaxial line joined to a half-space with the inner 

conductor extending into the half-space. A diagram of this is shown in Figure 2-2. 

By substituting (2-28) and (2-34) into the first term on the right hand side of (2-15) 

(which we will call \P) and evaluating the p' and d integrals, we get the following 

expression for 

W = -iueoJ J <71 (p, z | p't z') M°S^ + d) p'dp'dz' 

= — f°° e~ ik 'd cos kgZ d$ (2 - 35) 
* Jo kMH^Ua)H^Ua) 

where rj is the free space impedance given by r/ = \//zo/eo and 

^(£<0 = «M£c)y0(£a) - JotfaWec) 

We may obtain a solution in which all radiated fields are transverse to the 

direction of propagation (in this case, the z-direction) by taking the limit as c —> oo. 

We shall call this solution the TEM solution. We write (2-34) as 

M^p, z) = Mo6(* ^ p g (0) oo) (2 — 36) 
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Figure 2-2 Coaxial line joined to a half-space with the inner conductor extend
ing into the half-space. 
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This allows us to evaluate analytically. Starting with the first equality in (2-35), 

we evaluate the z' integral to obtain 

* = r  r  ^  < 2  -  3 7 )  
<1 h h «) 

Appendix A provides a useful identity for evaluating (2-37) analytically, viz: 

«({) = J-—-—t-7 f B(tfi) dp (2 - 38) 

Substituting (2-38) into (2-37) and evaluating the double integral, we get 

¥ = cos (2 — 39) 
VP 

where we have used the fact that £B(£p) —• 2/(irp) as £ —• 0. Physically, we can 

think of $ as the fields in the Green's function geometry <71 (Fig. 2-1) due to the 

source. For the case where c —• 00, the source launches a TEM wave which is totally 

reflected by the shorting plate at z = 0. This can be plainly seen by rewriting (2-39) 

into the following form: 

* = + ( 2  -  4 0 )  

where the e~xk2 term represents the forward going wave and e tkz  represents the 

reflected wave. 

In taking the limit as c —• 00, we have violated our initial assumption that 

the source is finite in extent. However, Hj, still satisfies the boundary conditions 

which we have specified in (2-7) through (2-11). Unfortunately, because the source 
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has infinite energy, the power propagating in the z direction is unbounded. To 

better understand this problem, let us consider the simple case of an infinitely long 

wire in free space with the source (2-36) located at the origin (d = 0). Since there 

is no shorting plate, only the forward-going wave is present; therefore, we write the 

field components as 

H*TEM = -M2N„ (2 - 41> 

EpTEM = ~M°2p (2 ~ 42) 

EZTEM = 0 (2 - 43) 

where the TEM subscript indicates that the fields are excited by the source in 

(2-36). The power Pz which is propagating in the z direction is given by 

Pz  = 7rRe f EpHf pdp (2 - 44) 
Ja 

Evaluation of (2-44) shows that the power diverges as log p. This is analogous 

to a plane wave in cartesian coordinates where the power is also infinite in an 

unbounded region. In the case of the plane wave, we assume that it is an idealized 

approximation of a physical source which does not produce infinite and is thus 

valid as an approximation. We therefore can use the same argument to justify the 

use of the source in (2-36). Although the idealized source is not realizable, there 

are several advantages to using it here. It allows us to simplify the incident field 

expression analytically rather than having to determine it numerically. Another 

very important advantage is that it allows us to obtain a better understanding of 

the problem. By considering only the TEM mode, we can easily see how the screen 
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affects such parameters as the current on the wire. If we use a physical source such 

as the one shown in Figure 2-2, the results are harder to analyze since both the 

incident field and scattered field contain all the modes. In addition, we shall next 

show that our idealize source is a close approximation to sources of physical interest. 

The physical source which our idealized source approximates is given in (2-

34). Because we will show that this physical source produces a set of fields close 

to TEM over our region of interest, we shall refer to the result as quasi-T-EM. To 

show that this is true, let us again consider the simple case of a wire in free space 

using the source in (2-34). The resulting expressions for the electric field are 

The numerical techniques used to evaluate the integrals in (2-45) and (2-46) will not 

be presented here. Instead, a thorough discussion on this subject will be presented in 

subsequent chapters. For now we will assume that these integrals can be evaluated 

and proceed with the numerical results. 

In order to verify our claim that (2-45) and (2-46) closely approximate the 

fields which are produced by the TEM mode, we will compare them to (2-42) and 

(2-43). We begin by examining the ratios Ep/EpTEM and Eg/Ep for values of p at 

a fixed z. It is hoped that for large values of z the ratio Ep/EpTEM is constant 

and the ratio Ez/Ep is small for any frequency and any value of p. In Figure 2-

3, the ratio \Ep/EpTEM\ is plotted for p going from 0.01 meters to 10 meters for 

three frequencies. The electric field at z = 100 m is considered with a = 1 cm and 

B($p)A(eC) 
(2-45) 
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c = 2 cm. The plots in Figures 2-4 and 2-5 have the same parameters as the plot in 

Figure 2-3 except that z is set to 10 m in Figure 2-4 and c is set to 25 cm in Figure 

2-5. By comparing Figure 2-3 to Figure 2-5, we notice that the only effect of a 

change in source size is to shift the magnitude of the curves without changing the 

position of any curve with respect to the other curves. As c increases the magnitude 

of the ratio increases; therefore, it is preferable to have as large a source as possible 

in order to launch a wave of significant strength. The size of the source is limited 

by the fact that higher order modes are generated in the coaxial line if the value of 

c gets too large. 

Let us now consider the problem of the variation of the ratio \Ep/EpTEM\ 

with respect to frequency. Consulting Figure 2-4, we see that the ratio increases 

only 25% as the frequency increases two orders of magnitude from 1 MHz to 100 

MHz. This small change can be taken into account if any experimental work is done 

under steady state conditions. For example, by plotting the variation of the ratio 

\Ep/EpTEM\, we can correct for the change in magnitude by either increasing or 

decreasing the input power appropriately for different frequencies. We also observe 

(Figure 2-3) that this ratio remains fairly constant for p <0.1 z for the frequencies 

considered. In general, as frequency increases, the region in which the ratio remains 

constant decreases. This indicates that the quasi-TEM result behaves more like 

the TEM mode at lower frequencies and in regions where p <C z. Since the fields 

near the wire are more important in our calculations for the aperture penetration 

problem, Ep is a good approximation for EpTEM as long as the source is far enough 

away from the aperture. 
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In Figures 2-6 through 2-8, ratios of \Eg/Ep\ are plotted using the same 

parameters as those used in the figures for \EP/EPTEM\- For P < 0-1 ZI we observe 

that \EX\ < 0.01|2£p|. This indicates that for large z, Ez closely approximates 

EZTEM for a large region around the wire. We also notice that the source size has 

almost no effect on the ratio \EZ/EP\. 

An alternate method is to show that the current behaves like a TEM mode 

current. An analytical solution was obtained by Wait and Hill (1979) for the infinite 

wire with our physical source. They showed the behavior of the current for large 

values of z to be approximately, 

Since the natural logarithm is very slowly varying, this behavior is close to TEM. 

From the numerical results shown here, we can conclude that although the 

approximate source does not give perfect results, it is close enough if considered 

within its region of validity (i.e., far from the source). For the numerical computa

tions throughout this paper, we will use the idealized source to obtain our results. 

2.4 Integral Equation 

The terms in (2-15) and (2-16) that are as yet unknown are the aperture 

electric fields, Epi (/>', 0) and EP2(p',0). To determine these we invoke the continuity 

of the tangential electric and magnetic fields across the aperture, viz: 

,—ikz 

(2-47) 

Epi {p', 0) = Ep2(p\ 0) = EA(p') p' G (a, b) (2 - 48) 

H<j>i(p,0) = Hf2{p,0) P S (a, 6) (2 - 49) 
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Substituting (2-39) into (2-15) and using the above boundary conditions to equate 

(2-15) and (2-16) at the aperture, we obtain the following Fredholm integral equa

tion of the first kind: 

where we have used the fact that g\ (p, 0 | p',0) = gi{p,Q | p',0). Once we have 

solved the integral equation for EA{P'), all the necessary ingredients are present 

to evaluate (2-15) and (2-16) for the magnetic fields. Unfortunately, the integral 

equation is not solvable by analytical means, and approximate methods of solution 

must be considered. 

Before we proceed further, we need to investigate the behavior of the singu

larity in the kernel of our integral equation. The singularity must be weak enough for 

there to be a solution. The kernel in this case is the Green's function g\(p,0 |  p',0) 

with the singularity located at p = p'. To evaluate the singularity, it is convenient 

to consider the following separation of the integral in the Green's function: 

Although there are singularities in the integrand on the interval (0,2A;), the singu

larities are weak enough that the integral on this interval is well-behaved; therefore, 

the first integral in (2-22) produces no singular behavior in g\. The singularity in 

= »'wc0 f 9i {p, 0 | p',0)EA(p')p' dp' p € (a, b) (2 - 50) 
2*7 P Ja 

(2 - 51) 

where 

n B(Zp)BUp')t 
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gi occurs in the second integral. We can extract the singularity from the second 

integral by subtracting the asymptotic form of fi and adding its integral back into 

the expression. Let $ represent the asymptotic form of ft. We obtain 

/°°n <*£= /°°(n-$)d£ + 5 (2-52) 
J 2k J2k 

where 

_ 2 cos £(p — o) cos £(/>' — a) 
7T Zyfpff 

and 

S = f°° $ dC 
J 2k '2k 

—1 
:[Ci{2k{p - p')) + Ci(2k(p + p' - 2a))] 

TTy/pp 

The symbol Ci represents the cosine integral. Since the cosine integral behaves as 

a natural log function for small arguments, S, and therefore gi, has a logarithmic 

singularity at p = p'. 
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CHAPTER 3 

EQUIVALENT CIRCUIT MODEL 

In this chapter we formulate expressions for the admittance and the current. 

This requires the solution of the integral equation in (2-50). We first solve the inte

gral equation by means of a zeroth order approximation of the aperture field. Next, 

we solve the integral equation by using a method of moments approximation. This 

allows us to solve for the admittance and the current using both approximations. 

We then obtain numerical results for both approximations and compare them. Next, 

an analysis is performed on the circuit parameters. Finally, we consider the time 

domain response to a transient pulse. 

3.1 Formulation of Circuit Para.met.er Expressions 

An important parameter in the equivalent circuit is the current on the wire. 

To obtain the incident current, let us consider the problem of an infinitely long wire 

in free space with the source given by (2-34). An expression for the incident current 

can be formulated by using the equation relating the surface current density Ja to 

the tangential magnetic field at the wire, viz: 

Jg = h X H \p=a (3 - 1) 

where ft is the unit vector pointing outward from the wire. The magnetic field in 

this case is equivalent to the magnetic field in (2-39). The current on the wire is 
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given by 

I{z) = r Ja\p=a adt (3-2) 
Jo 

Substitution of (2-39) into (3-1) and (3-1) into (3-2) gives 

I{z) = I0e~ ikz  (3 - 3) 

where 

_ Moire~ tkd  
Io = 

ri 

Since Jo represents the magnitude of the incident current, results in this work will 

be normalized to this value rather than the strength of the magnetic current source 

M0. 

Returning to the case where the screen is present, we recognize the fact 

that a general expression for the current can be written by using the magnetic field 

expressions from (2-15) and (2-16) in (3-2). This yields the following expression for 

the current on both sides of the screen: 

I(z) = 
ik fb f00 BM EA(P')P ' dp' z> 0 
' Ja Jo ? MP )P /3 _ 4s 

2/„ cos kz - f /~ <K EAW V z < 0 

Since we are interested in the current coupled through the aperture, only the equa

tion for 2 > 0 in (3-4) is pertinent to our problem. 

Again, as in the case of the magnetic field, it is necessary to find EA(P ') 

to solve for I(z). The only exception occurs at the point z = 0. Because of the 

symmetry of the geometry about z = 0, we can obtain an analytical solution for the 
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current at that point. By substituting (2-50) into (2-16) and inserting the result 

into (3-2), we get 

I(z)\z=o=Io (3-5) 

At first this may seem unusual since this means that the screen has no effect upon 

the incident current at the aperture, but because is the same value on both 

sides of the screen at z = 0, the surface currents induced on one side of the screen 

by the magnetic field are the negative of the surface currents induced on the other 

side. Consequently, the screen has no net effect upon the incident current at the 

aperture. 

It is convenient in many cases to consider our electromagnetic model in 

terms of an equivalent circiut model. Much of modern electromagnetic equivalent 

circuit theory is due to Schelkunoff (1943) and Marcuvitz (1951). An equivalent 

circuit model for the present problem has been deduced by Casey (1987) (Figure 

3-1). Since IQ is the incident current, the short-circuit current is represented by 

2ib. The admittance YA is composed of a conductance GA and a susceptance BA-

The voltage VQ is the voltage across the aperture and is defined by 

Vo = f" EA(p) dp (3-6) 
J a 

where the aperture electric field EA(P) is a quantity to be determined from the 

integral equation in (2-50). From the equivalent circuit model, we conclude that 

< 3 " 7 >  

The validity of the circuit model is supported by our result for the current at the 

aperture. We have previously shown in (3-5) that the current in the aperture is 
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2 Jo 

Figure 3-1 Equivalent circuit model for the wire penetrating the aperture. 
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equal to IQ. Let us attempt to deduce this result from our circuit model. The 

admittance can be divided into a part for z < 0 and a part for z > 0 (Figure 3-2). 

Since the geometry is symmetric around the point z = 0, the admittances for the 

two parts are equal. Thus, the current at the aperture must be equal to Jo which 

agrees with our mathematical result. 

Both the admittance and the current are dependent upon the solution of (2-

50), but this integral equation is not solvable analytically. We can, however, render 

the integral equation degenerate by making an approximation on the aperture field 

Ea{P'). A very good low frequency approximation would be the quasi-static solution 

(Meixner, 1972), 

where C is a constant. This approximation accounts for both the edge singularity 

at p' — b and the 1/p' variation of the field away from the wire. Unfortunately, the 

resulting p' integral must still be evaluated numerically; therefore, let us instead 

look for an approximation whereby the p' integral can be evaluated analytically. In 

this vein, a much more analytically appealing idea would be to approximate the 

aperture field by 

where, again, C is a constant. Although this is not a very good approximation 

for the aperture field, it is an adequate low frequency approximation when used 

to calculate equivalent circuit parameters. Indeed, Williamson (1985) has shown 

3.2 Zeroth Order(ZO) Approximation 

(3-8)  

EA(p') = ̂  p' € (a, ft) (3-9) 
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Figure 3-2 Equivalent circuit model referenced to the aperture plane. 
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that circuit parameters such as admittances axe largely insensitive to the localized 

behavior of the aperture field at low frequencies. 

We need now only solve for the constant C. By substituting (3-9) into (2-50) 

and evaluating the integral with respect to p', we obtain 

±=_Kr_Bmm_d (  ,6 ( M )  ( 3—1 0 )  

We next integrate both sides of (3-10) with respect to p from a to 6 and solve for 

C. This yields 

c  = MMl) (3-n) 

where 

"°° A2Ub) 
F = 

kL (3"12) 

We normalize distances by making the change of variable £ = fry in F. The result 

is 

A2 {kin) F= f°° 1 Tj, <*7 (3-13) 
Jo (i -

From (3-13), we can now obtain expressions for both the admittance and 

current in terms of F. Substituting (3-11) into (3-9) and then (3-9) into (3-7) yields 

(3"14) 
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Since the integral F can easily be separated into a real and imaginary term, we can 

separate the admittance YA into its conductance and susceptance terms, viz: 

YA = GA + iBA 

(3-15) 
„ln2(|) ' ' ,ln'(i) 

where 

Re(f) = /' — 
Jo (i — 

A '(kln) ^ 

Mil = I  

0 

dl 

Since F cannot be evaluated analytically, we must use numerical means. In 

attempting to evaluate (3-13) by using standard integration techniques, complica

tions arise due to the singularities in the integrand at 7 = 0 and 7 = 1. These 

singularities must be extracted from the integral and handled analytically. Also, 

because the upper limit of the integral is infinite, we must find a way to truncate 

the integral in such a way that we limit the computation time required to evalu

ate the integral while at the same time maintaining our accuracy. The numerical 

integration techniques which are used here are presented in Appendix B. The final 

form for F is 

AHkh) 1n'(£) 
- I  
+ *!+/' A2(kbBm(ll M 

J a: arcsin(fi) sin OH^^kasin 0)H^(kasin 6) 

. f°° f A2(klrj) 2 sin2 k(b — 0)71 ^ 

72 1 (72 _ 1) 57-Hq1) (A07) #q2) (kai) ^kbriZ J 7 
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+ Ri + * 
Jo H, 

A2(kbBeeO) 

^ (ka sec 0)H^ (ka sec 0) 
dO (3 - 16) 

where 

•Ri=1H2(£) jl + larctan fW^J+r)]}  

= .-(*(* -«))' r°in'M(t-«) .in4*(i - a )  _  _  

irkb [ {2k{b -  a))2  2k(b -a) 

We next consider the current on the wire. Substituting our aperture field 

approximation (3-9) into the integral equation for the current (3-4), we find that 

the integral equation degenerates into a double integral in />' and £. By making the 

same change of variable as that made in (3-13) and evaluating the p' integral, we 

obtain 

!(*) = 8/o fOO 

i!)i> 
A(kbi) e-»**(1-'r3) ̂  

ITTIYa ln(£) Jo (i _ 
rf7 (z >0) (3 - 17) 

Note that the current is a function of YA; therefore, we must solve for F to obtain 

a solution for the current. The numerical integration techniques given in Appendix 

B are also used to evaluate the integral in (3^16). The result is 

I(z) = 
8/0 

7rriYAln(l) sir 
A{kbj)e~ ih<1 -r3)* 

+ 
b\-—\kz 

— R& + 

w; 

a Jarcsij 

.7(1 - '(tar/) 2i(£(ln(4f) + if] 

A(kbBm6)e- i kecoae  

arcsin(5) sin OHq^ [ka sin 6) (A;o sin tf) 
do 

A{ktrt)c-kttf-1) -n* 
+ 

e kzr i  sin k(b — a)7 

(72 _ i) (kai)H^2)  (karf) h2 

<h 

drf 
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„ . A(kbaec0)e"fcartanfl .A 1Q. 
-Ri + t —7-r-i '—fa d.0) (3 - 18) 

Jo '(kasec 9) Hft'(ka sec 0) ) 

where 

^  = §k(£)«" i f a ,{l  + f«ctai i  

and 

Ri = —j— \e~2k* sin 2k(b — a) — (A;(6 — a) + ikz)E\ (2kz — i2k(b — a)) 
2y b/aL 

+ (k(b — a) — tkz)E\{2kz + i2k{b — o))j 

The exponential integral E\ must be specially treated since its argument is com

plex. For small arguments, a series expansion is used to evaluate E\ while for large 

arguments we use Laguerre Quadrature (Todd, 1954). One problem which is not 

taken into consideration in Appendix B is the oscillatory nature of the exponential 

term e-,*a(1_T3)^. For large values of kz, the number of oscillations for 7 between 0 

and 1 is considerable. This behavior is the limiting factor in calculating the current. 

As kz gets larger, the amount of computation time must increase to maintain the 

accuracy of the result until a point is reached at which the amount of time required 

becomes prohibitive. For this reason we can only compute numerical results up to a 

certain value of kz. This exact value is considered in the numerical results section. 

Another problem associated with the exponential term is that the zero crossings 

tend to congregate around the point 7 = 1. Fortunately, the change of variable 

(7 = sin 9) in Appendix B results in a more even distribution of the zero crossings 

over the interval of integration. 
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3.3 Method of Moments (MOM) Approximation 

In the previous section we obtained solutions for the admittance and current 

by making a zeroth order (ZO) approximation for the aperture field. However, this 

approximation is only valid at low frequencies. It would be useful if we could verify 

our approximation using a more general method. One well-known technique is 

the method of moments (MOM) (Harrington, 1968). In this section we repeat the 

analysis done in the previous section except that a MOM approximation is made 

for the aperture field rather than the ZO approximation. 

In the MOM approximation, we choose a set of expansion functions to rep

resent the aperture field, 

EA(J) = (3 - 19) 

where 

£»(/>') = £>,P,M (3-20) 
J'=l 

The ay's are coefficients to be determined; the value N is the number of expansion 

functions used to approximate E^(p'). The pulse functions Py(p') are defined by 

Pi[p') = i 1 VJ<P> K U3 (3 - 21) 
10 otherwise 

where Vj = C7y_i and Uj = Vj + AXj. V\ is the wire radius a, The pulse step Axj 

is defined to be 

Axy = Axix,_1 (3 — 22) 
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where we need to specify a value for x between 0 and 1. Since we also specify N, 

we can determine Axi by recognizing the fact that 

A similar algorithm for the pulse function spacing is used by Butler (1984). Note 

that as x increases, the degree of nonuniformity in the pulse spacing decreases. For 

X = 1, the pulse functions become equally spaced. For the weighting functions we 

choose delta functions located at the center of the pulse expansion functions. They 

are defined by 

The choice of pulses for the expansion functions simplifies the calculation of 

the matrix elements since it allows us to analytically evaluate one of the integrals 

in each of the matrix elements. The choice of the weighting functions is mainly 

determined by the singular behavior of the aperture field at p = b. By choosing 

the delta functions to be located at the center of the pulse functions, we avoid 

numerical instabilities which would result if the weighting function is located at 

an edge singularity. Furthermore, the integration involving the weighting function 

becomes trivial. By substituting (3-19) into (2-50) and taking the inner product of 

both sides of the integral equation with our weighting functions, we obtain 

Axi — ^ (b a) (3 - 23) 

(3-24) 

where Rt = {Ui + V*)/2. 
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for I = 1,N. In matrix form, we have 

(Sn S12 
S21 S22 

V Sn S12 .. 

where the elements Stj and Tt are given by 

SiA (Ti\ 
S23 a2 

— 

T2 

Stj J ^Ttj 

(3 - 26) 

fui 
Stj = / gi{Rt,0 | p',0) dp' 

Jv. 

T t  = 

'v} 

Io*l 
2irkRt 

The evaluation of the elements Stj requires the evaluation of the following double 

integral: 

, = - f3 r BjkRtfiBjkfr) , 

'' Jv, Jo 
St (3 - 27) 

By switching the order of integration, we can evaluate the p' integral analytically 

to obtain 

Sr= r B(kRg)\A(kV j-,) - AjkVn)] J ^ 

" >0 
(3 - 28) 

We next write the integral in a form which will allow us to evaluate it numerically. 

The evaluation of this integral utilizes the same numerical techniques that we have 

used before for the integral in (3-15). An example of these techniques is given in 
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Appendix B. The resulting expression for Sy can now be written as follows: 

%-/* Jo 
+ 

M%) B{kRri)[A{kVri)-A(kVn)\ 

(1--,*)*Hil\ k < n ) H ™ ( k a - i )  '  +  ( l n ( i f )+r)  
drt 

f o i j f )  f  2  
, _ < 1 + — arctan 
kRi \ it 

|(>n(^) + 
r)]} 

r% B{kRtsin0)[A{kUj sin0) - AjkVj sinfl)] ^ 

Jarcsin(5) (ka sin 0) (ka sin 0) 

. rf B{kR t  sec g) [A(kUj sec 0) - AjkVj sec 0)] 

L coe8H(f\kaBec6)H(f\kasec9) 

+ . f°° (B(kRg)\A(kUn) - A(kVn)I 

h I (-,2 _ IjiH^fka^H^fka-,) 

2 cos k"i[Ri — a) 
n^y/kRi 

sin k(Uj — 0)7 sin fc(Vy — 0)7 
| d.1 - (3 - 29) 

where 

^ _ 1 f sin 2&(E7y — iE*) + sin 2k(Uj + Rt — 2a) 
$1 " 2^1 2^Wj 

sin 2k(Vj — Rt) + sin 2k(Vj + Rt~ 2a) __ 

+ k(V^-3t] CHlkiVj - R t)) + k{Vi+J^r2a)Ci(2k(Vi + Rt- 2a)) 

- - Rt)) - k(U< ̂ L~ 2a) Ci(2k(Uj +Rt- 2a))} 



51 

Knowing both Sy and Ti, we then solve for the ay's and obtain the aperture field 

in terms of these coefficients. 

We next substitute the MOM aperture field into the expressions for admit

tance and current. The resultant expression for the admittance is 

-l 

(3 - 30) 
N 

,Ui 
r.i = 2/o| 

This also leads to the following expression from (3-4) for the current on the wire in 

Region 2: 

iji J" 1(1-1 (kai) 

Following the methods used in Appendix B, we rewrite the current as 

•f [AjkUjsmB) - A{kV jsme)\e- ihzCM9 
dQ 

'arcain(ff) sin OH^ {ka sin 0) {ka sin 0) 
I(z) —&«{l V j=l Ua 

r° [A[kUji) -  A(kVji)\e- ih<1 

Jo 

<*• In (Hi.} 7rln(g)e-

7(1 - i^H^ikan^ikan) 2-y[£(ln(^) + if] 

— ^ ln(^)e-<** /l + — arctan ——-r-jt- 1 
2 \ t .irCMVJ + r)./ 

d~t 

• \MkUi sec e) - A(Wj 3ec 0)}c-kzt*ne 
dB 

Jo {ka sec 0)H^2)  {ka sec $) 

.J~ f [A{kUn) -  A{kVn)]t-k*tf-Vh 

+ i 
h I (72_l)i7jff(l)(A;07)H(2)(&a7) 

+ 
sin k{Uj — a)^ sin k{Vj — a)"y 

v. 
.-**7 (3 - 32) 
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where 

$2 = —-— [c 2kzsin2k(Uj — o) — (k(Uj — a) + ikz)E\[2kz — t2k(Uj — o)) 

+ (k(Uj — o) — ikz)E\{2kz + t2k(Uj — o))] 

—[e~2k* sin 2k(Vj — a) — (k(Vj — o) + ikz)E\[2kz — t2k(Vj — a)) 

+ (k(Vj — a) — ikz)Ei{2kz + i2k(Vj — a))j 

The same problems associated with (3-18) are also present here. We refer the reader 

to the paragraph below (3-18) for a description of that problem. 

The ZO approximation does not provide an accurate representation for the 

aperture electric field. We therefore rely upon the MOM approximation to obtain 

a solution which accurately models the aperture field. Since our problem is non-

selfadjoint, we cannot obtain a solution which is mathematically convergent by any 

norm minimization method (Dudley, 1985). Instead, numerical results are presented 

in this section to show the validity of our solution. Results are also presented for 

the admittance and current where the solutions from the two approximations are 

compared. 

Let us begin by examining the MOM approximation for the aperture field. 

As an example, consider the case where ka = 0.1 and b/a = 2. The aperture field is 

calculated using N equally spaced pulse functions (x = 1) with N = 10, 20, and 40. 

Since the aperture size here is much smaller than a wavelength, the solution should 

3.4 Numerical Results 
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be very close to the quasi-static solution. Figures 3-3 through 3-5 illustrates the 

magnitude of the calculated aperture fields from the wire (kp = 0.1) to the screen 

(kp = 0.2). The solid lines represent the MOM approximation for various values of 

N while the dotted line represents the quasi-static solution given by (3-8). The value 

for C is appropriately chosen to fit the MOM curves at kp = ka, and the aperture 

fields axe normalized by the factor P/IQ. AS the number of pulses increases, our 

solution behaves more and more like the quasi-static solution, which is indicative of 

the fact that the MOM solution converges as z -* oo. Also the edge singularity at 

p = b becomes more apparent as N increases. After careful examination of the plots 

for the aperture field, we notice that even for the case where N is large (such as 

N = 40) there are still differences between the solution obtained by MOM and the 

quasi-static solution. This is due to errors in the quasi-static solution. Although 

our quasi-static solution accounts for the edge singularity, it is too inflexible to 

accurately model the aperture field solution. 

Extensive work in electromagnetics has been done using the same expansion 

and weighting functions which we have chosen, but almost all of it has been done 

with equally spaced pulse functions. Because of the presence of an edge singularity in 

our problem, aperture field calculations utilizing nonuniform pulse expansion func

tions are preferable. Let us compare the nonuniform case (Figure 3-6) of x = 0.6 

and N = 8 to the uniform cases (Figures 3-3 through 3-5). It is apparent from these 

plots that even with five times the number of pulse function, the curve obtained 

from uniform spacing is less accurate than that from nonuniform spacing in this ex

ample. This is true for aperture sizes less than a wavelength. As the aperture size 

approaches or exceeds a wavelength, a more nearly uniform pulse spacing becomes 
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Figure 3-3 Diagram comparing the quasi-static solution for the magnitude of 
the normalized aperture electric field to the MOM solution with N = 10 and x = 1* 
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Figure 3-4 Diagram comparing the quasi-static solution for the magnitude of 
the normalized aperture electric field to the MOM solution with N = 20 and x = !• 
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Figure 3-5 Diagram comparing the quasi-static solution for the magnitude of 
the normalized aperture electric field to the MOM solution with N = 40 and x = !• 
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Figure 3-6 Diagram comparing the quasi-static solution for the magnitude of 
the normalized aperture electric field to the MOM solution with N = 8 and x = 0.6. 
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desirable. This is due to the fact that the fluctuation in the aperture field away 

from the edge singularity increases as k(b — a) increases; therefore, the value of x 

approached unity for large apertures, and N must increase accordingly to maintain 

accuracy. 

Although we need the MOM approximation to obtain an accurate solution 

for the aperture field, the ZO order approximation may be useful in calculating a 

solution for the admittauice and current on the wire. It would be advantageous to 

use this approximation since its solution takes only a fraction of the computational 

time that the MOM solution requires. Unfortunately, the ZO approximation is not 

valid at all frequencies; therefore, we must determine the frequency below which 

this approximation is valid. In calculating the admittances and current using MOM, 

eight pulse expansion functions with x = 0.6 were used to represent the aperture 

field for all cases except b/a = 5.0. Because of the large aperture size in that case, 

twelve pulse expansion functions were used with x increasing from 0.7 to 0.9 as 

frequency increases. 

Figures 3-7 and 3-8 compares the conductance and susceptance, respec

tively, resulting from the two approximations. The values axe normalized by the 

constant TJ/ATT and plotted versus ka with ka ranging from 0.01 to 1.0. Three aper

ture sizes are considered, namely, b/a = 1.05, 2.0, and 5.0. In studying the plots of 

the admittance, we see that the difference between the two solutions increases £is 

the electrical size of the aperture increases. Similarly, we can compare the current 

on the wire arising from the two approximations. Figures 3-9 through 3-11 show 

results for the magnitude'of the current at observation points on the wire located at 

z = 0, a, and 100a. Observation locations greater than z/a = 100 are not considered 
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Figure 3-7 Diagram comparing the ZO solution to the MOM solution for the 
normalized conductance as a function of ka .  
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Figure 3-9 Diagram comparing the ZO solution to the MOM solution for the 
magnitude of the normalized current at z f  a  — 0. 
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Figure 3-10 Diagram comparing the ZO solution to the MOM solution for the 
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Figure 3-11 Diagram comparing the ZO solution to the MOM solution for the 
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because of the numerical difficulties associated with large values of kz. The currents 

are normalized by the factor |/o|, and the same three apertures which we used in 

the admittance plot are considered. We again see the trend whereby the difference 

between the two solutions increase as the electrical aperture size increases. In Fig

ure 3-9, we consider the current at the aperture. This case is especially interesting 

in that we know the exact solution at that point. The MOM results for the three 

aperture sizes show almost no error while the ZO results show large deviations from 

the exact answer. This further reinforces our confidence in the validity of the MOM 

solution. 

Overall, the agreement between the two methods is very good for the fre

quency range and aperture sizes considered. The numerical results support the 

claim that the ZO approximation is valid for aperture sizes smaller than 1/10 of a 

wavelength. Also, for aperture sizes up to a half a wavelength the solution using 

the ZO approximation is well within an order of magnitude of the solution rising 

the MOM approximation. We are now able to obtain accurate results using the ZO 

approximation within its range of validity without the computational time required 

by the method of moments. 

To insure the accuracy of our solutions, we now present results which are de

termined exclusively from the MOM approximation. Figures 3-12 and 3-13 present 

results for the admittance with an expanded set of aperture sizes from the previous 

admittance plots. Let us consider the conductance first. From the plot (3-12), 

we observe that the conductance increases as ka increases. We also note that the 

conductance decreases as the ratio b/a increases. We can justify these observations 
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Figure 3-13 The MOM solution of the normalized susceptance for five aperture 
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by considering the physical effect of the screen upon the TEM mode propagat

ing down the wire. In the absence of the screen, the idealized current source M<j, 

generates only the TEM mode which does not radiate any energy from the wire. 

With the screen in place, mode conversion results in the radiation of energy. The 

conductance is a measure of the amount of energy radiated from the wire. As the 

conductance increases, the radiated energy increases. The resulting modal behavior 

cannot be considered TEM anymore, but rather must be thought of as quaai-TEM 

since most of the modal content of the field is close to TEM. For large aperture 

sizes, the quasi-T-EM behavior dominates since there is very little mode conver

sion. This can be seen by looking at the conductance curve for b/a = 5 where the 

conductance is significantly less than for the case of b/a < 1.2. As the aperture size 

decreases, the quasi-TH?M behavior is less dominant due to greater mode conversion 

into the radiating modes. This results in greater radiation losses along the wire, 

hence a larger conductance. The frequency dependence of the conductance can also 

be explained by the fact that greater mode conversion occurs at higher frequencies. 

It is interesting to note that for larger values of b/a, the slope of the conductance 

curves decreases with frequency, and in the case of b/a = 5, the conductance curve 

actually levels out. This indicates that for very large aperture sizes, the conduc

tance is independent of frequency. This is due to the fact that for large aperture 

sizes the modal behavior is nearly TEM. 

The susceptance is dependent upon the capacitive coupling which occurs 

between the wire and the screen. As the aperture size increases, one would expect 

the capacitive coupling to decrease. This is shown by our curves (Figure 3-13) 

where we see that the susceptance values vary inversely with the aperture size. By 
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consulting basic circuit theory we would expect the susceptance to increase linearly 

with frequency for a fixed aperture size since 

BA = uCA (3-33) 

where CA is the capacitance between the wire and the screen. The susceptance 

curves do increase as a function of frequency, but they are not linear. This is due to 

the fact that the aperture capacitance is not the only contributor to the susceptance. 

It just happens to be the major one. It would be impossible to account for all the 

parasitic capacitances and inductances. We will therefore think of the susceptance 

as a frequency dependent capacitive element without quantifying the element's exact 

value. 

Let us now consider the current on the wire. We expand upon the number of 

curves in the previous current plots from three to five to present more aperture sizes. 

Figures 3-14 through 3-16 show plots of the magnitude of the current normalized 

by | Jo | as a function of ka. Three observation points, located at z = a, 5a, and 100a, 

are chosen on the wire. Notice that at a fixed frequency the current decreases as the 

aperture size decreases. This is due to two separate factors. The first factor is that as 

the aperture radius decreases there is more mode conversion away from quasi-TEM 

which results in greater radiation loss. This, in turn, attenuates the current as it 

propagates down the wire. The second factor is that the capacitive coupling between 

the wire and the screen increases as the aperture size decreases. This causes a larger 

reflection of the incident current upon the screen which decreases the current which 

penetrates the screen. The current also slowly decreases as frequency increases, 

thereby allowing lower frequency waves to penetrate the screen more easily. 
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Figure 3-14 The MOM solution of the magnitude of the normalized current at 
z ja  = 1 as a function of ka  for five aperture sizes. 
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Figure 3-15 The MOM solution of the magnitude of the normalized current at 
z/a = 5 as a function of ka for five aperture sizes. 
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Figure 3-16 the MOM solution of the magnitude of the normalized current at 
z/a = 100 as a function of ka for five aperture sizes. 
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It is interesting to note that the decrease in current with frequency is mono-

tonic in all cases except 6/0 = 5. This phenomenon is related to the electrical size 

of the aperture. For k(b — a) « 2.0 or higher, an enhancement in the current occurs 

a short distance down the wire. As k(b — a) increase, the enhancement increases. 

A better picture of this can be seen in Figures 3-17 through 3-19. In these fig

ures, the magnitude of the current normalized by |/o| is plotted as a function of 

z/a for four values of ka and three aperture sizes. For values of k(b — a) < 2.0, 

the current decreases monotonically as the observation point moves down the wire. 

This is expected since energy is radiated from the wire as the current propagates 

down the wire. On the other hand, we see that there is an initial enhancement in 

the current for larger values of k{b — a). It is suspected that the resonance of the 

aperture causes this current enhancement since current enhancement occurs as the 

frequency approaches resonance. 

We observe from Figures 3-17 through 3-19 that the current drops off sig

nificantly faster as the size of the aperture decreases. This agrees with our notion 

about greater mode conversion for smaller apertures. Unfortunately, even for small 

apertures the current decays very slowly as it propagates down the wire. This indi

cates that the behavior of the current is still quasi-TEM, and it further illustrates 

the ineffectiveness of the screen in stopping current penetration on the wire. 
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Figure 3-17 The MOM solution of the magnitude of the normalized current as 
a function of z f a  for b/a = 1.05 at four values of ka. 
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Figure 3-18 The MOM solution of the magnitude of the normalized current as 
a function of z/a for b/a = 2 at four values of ka. 
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Figure 3-19 The MOM solution of the magnitude of the normalized current as 
a function of zja. for b/a = 5 at four values of ka. 
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3.5 Transient Analysis 

Let us consider the problem of current penetration into Region 2 due to 

a transient pulse from Region 1. This requires that we obtain a solution for the 

current in the time domain. Since we already have a means of solving for the current 

in the frequency domain, We use the inverse Fourier transform to calculate the time 

domain current from the frequency domain data. We first obtain expressions for 

both the current and the transient pulse in the frequency domain. We next multiply 

the current and input pulse spectra and take the inverse Fourier transforme to obtain 

our time domain solution. We use an inverse fast Fourier transform (IFFT) routine 

from a signal processing package called SIG (Lager and Azevedo, 1985). 

3.5.1 Transient Pulse 

The transient pulse that we have chosen is the double exponential pulse. 

The time domain expression for this pulse is given by 

where u(t) is the unit step function and Ao is a normalization constant whose value 

is such that the maximum of f(t) is 1. The expression for AQ is 

where to = ln(/?/a)/(/3 — o). We now take the Fourier transform of f(t) to get its 

frequency spectrum, 

m=M'-"  -«-"')«( ')  (3-34) 

e-ato — e-pt0 
(3 - 35) 

(3 - 36) 
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The values of a and /? determine the shape and frequency spectrum of the transient 

pulse. We will consider two cases. In the first case (Figure 3-20), we choose 

a = 1 x 107 and /? = 1 x 10s. This gives us a pulse whose frequency spectrum 

drops approximately 50 dB as the frequency goes from DC to 100 MHz. For the 

second case (Figure 3-21), we choose a = 2 x 109 and /? = 3 x 109. In this case 

the frequency spectrum drops 50 dB over a frequency range of 7 GHz. Because the 

frequency content for this case is much higher relative to the previous case, we refer 

to this pulse as the high frequency pulse and the previous case as the low frequency 

pulse. Also, we note that the rise and fall times of the pulse decrease as the values 

of a and /? increase, respectively. 

The IFFT routine that we use requires that the frequency spectrum of the 

input signal be nonzero over a finite range of frequencies. We must therefore trun

cate the frequency spectrum of the pulse at a finite frequency point. Because of 

this truncation, errors result in our time domain solution. To obtain an indication 

of the amount of error which occurs due to the truncation, we truncate the fre

quency spectrum of the imput signal and perform am inverse Fourier transform on 

it to obtain a time domain solution. For the low frequency pulse we truncate the 

spectrum at / = 255 MHz. Similarly, we truncate the spectrum at / = 8.0 GHz 

for the high frequency pulse. The time domain solutions are given in Figure 3-22. 

The errors are unnoticeable on the plots. Thus, we expect any errors in the time 

domain current solution to be small. 
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Figure 3-22 Plot of the time domain solution for the low and high frequency 
pulse with their frequency spectrums truncated at 255 Mhz and 8 Ghz, respettively. 
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3.5.2 Transient Current Response 

Now that we have the frequency spectrum for the transient pulse, we need to 

also compute the frequency spectrum for the current. Since the frequency spectrum 

of the pulse is truncated at a certain frequency, it is only necessary to calculate the 

current up to that frequency. Using the expression for the current given in (3-31), 

we compute the current at four places on the wire for the low frequency pulse and 

at three places on the wire for the high frequency pulse. Three aperture sizes are 

considered for both cases. To obtain our time domain solution, we must divide the 

frequency spectrum into a number of equally spaced intervals. The IFFT routine 

requires that the frequency points which demarcate the intervals must be a power 

of two. For the low frequence pulse, we consider frequencies ranging from DC to 

255 MHz using 255 frequency intervals. 

The resulting time domain response to the low frequency pulse is shown in 

Figures 3-23 through 3-25. The four curves on each plots represent observation 

points from z = 0.1 m to z = 100 m. The time dependence has been adjusted 

such that the point t = 0 corresponds the the incident pulse being at the aperture 

(2 = 0). It is interesting to note that the size of the aperture has almost no effect on 

the pulse. This is due to the quasi-TEM behavior of the current at low frequencies. 

In the previous section the frequency domain results show the current decaying very 

slowly as it propagates down the wire. The time domain plots bear this out. Even 

at a distance of 100 meters from the aperture, the pulse amplitude is still at 80% of 

its initial value. Another possible effect of the screen is to distort the shape of the 

incoming transient pulse. For the case of the low frequency pulse, the distortion is 
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Figure 3-23 Time domain results due to the low frequency pulse with b/a = 
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Figure 3-24 Time domain results due to the low frequency pulse with b/a — 2. 
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Figure 3-25 Time domain results due to the low frequency pulse with b/a = 5. 
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negligible. There is no noticeable change in either the rise or fall times for any of 

the curves. 

For the high frequency pulse, we consider frequencies ranging from DC to 8 

GHz for 255 frequency intervals. The inclusion of the higher frequencies means that 

current attenuation associated with it should cause a significant decay in the input 

pulse amplitude. The time domain solutions (Figures 3-26 through 3-28) show 

this to be true. As the current propagates down the wire, there is a much greater 

drop-off in the amplitude of the pulse as compared to the low frequency case. Since 

same numerical problems which occur in (3-18) are present here, we are limited in 

the size of kz which we can handle. We must therefore consider observation points 

which are closer to the aperture than in the low frequency case. These point are 

located at z = 0.01, 0.1, and 1.0 meters. We also see that the aperture size has a 

substantial effect on the amount of current which is attenuated. For example, the 

peak amplitude of the current just 1 cm from the aperture is only 70% of its initial 

value for b/a = 1.01, whereas it is still 95% of its initial value for b/a = 5.0. 

Unlike the low frequency case the screen causes a distortion of the transient 

pulse. This is expected since the high frequency content in the pulse is attenuated 

at a different rate than the low frequency content. The rise and fall times of the 

pulse is dependent upon the size of the aperture. As the aperture gets smaller the 

pulse shape begins spreading out. Table 3-1 provides values of the rise and fall 

times at various positions on the wire for aperture sizes of b/a = 1.01 and 5.0. 

If we examine Figure (3-28), we see that there are tiny ripples on the trailing 

end on each of the curves. These tiny ripples are caused by the truncation of the 

input pulse frequency spectrum at / = 8 GHz. We can smooth the curves by 
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Figure 3-27 Time domain results due to the high frequency pulse with b/a = 2. 
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Figure 3-28 Time domain results due to the high frequency pulse with b/a = 5. 
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Table 3-1 Rise and fall times of transient pulse as a function of aperture 
size and position on the wire for the high frequency pulse. 

Rise Time(ns) Falltime(ns) 

z(m) b/a=1.01 b/a=5.0 b/a=1.01 b/a=5.0 

0.0 0.233 0.233 1.42 1.42 

0.01 0.364 0.239 1.92 1.475 

0.1 0.400 0.267 2.26 1.74 

1.0 0.437 0.293 3.32 2.16 
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truncating the curves further out in frequency, but this requires more computation 

time. For our interests it is adequate to recognize this aberration and realize its 

cause. 
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CHAPTER 4 

ELECTRIC FIELD 

In many situations a good understanding of the field pattern within a re

gion of interest is essential to the understanding of the overall problem. Hence, we 

devote this chapter to obtaining contours for the electric field. We begin by formu

lating expressions for the two existing components of the electric field, Ep  and E z .  

The solution of the integrals in these expressions requires a significant amount of 

numerical computation. We next consider the far field case where we look at the 

field distribution far from the aperture in both z and p. This allows us to evaluate 

the integrals analytically. Consequently, we can obtain contour plots using both the 

original electric field expressions and the far-field approximation. 

4.1 Formulation of Electric Field Equations 

In the previous chapter we were able to compute a solution for the aperture 

field by MOM. We now use this result in (2-16) to get the following expression for 

the magnetic field in Region 2: 

g* = - -E -  A(kv n ) \  ^ 

We formulate expressions for the electric field in terms of (4-1) by using (2-3) and 

(2-4). Interchanging the derivatives and integrals, we obtain 

U H^(ka-i)H^(ka-,) 
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^ Jo (1-^hW^hW^) 

The electric field, like the current, cannot be evaluated analytically. We must there

fore use the techniques from Appendix B to put (4-2) and (4-3) into a form which 

permits easy numerical computations. The modified expressions for the electric 

field are written as 

- -*£<*( f' 

;} <h 
Wt + (M^f) + r) ] 

- ̂  I1+! ̂  +r)]}e_ifa 

f°° f B(k,n)lA(kU„) - A(kvn)) 

h \ H$\ka~,)H$\kai) 

2coek^(p — o) \sin ki{Uj - a) _ sin k^jVj- - o)1 kz,A 1 1 

Vm Vwi J J 7 2jtv^ J ir^/y/kp 

. f* BjkrsmllMkUjsml))-AtkV^mt)]^^, ̂  ̂ 

Jarc8in(5) Hq (ka sin 0)Hq (ka sin 0) 



where 

$3 = —-=== ̂ Ei(kz - ik(Uj - p)) - Ei(kz + ik(Uj - p)) 

+ Ei(kz - tk(Uj + p — 2a)) - E\{kz + ik{Uj + p — 2a))] 

- - iHVj - p)) - Ei(kz + ik^ - p)) 

+ Ei(kz — t k(Vj +p — 2a)) — Ei(kz + ik(Vj + p — 2a)) j 

and 

E. = ,*f <J (* A(k" lA{kU> 3in % - A(kVi 3in .in 6 M 
j=i -Ho [kasw.9)H$ ' (fcasin#) 

+ i f°° [ A{*Pi)[A{kUii) - AjkVtf)} __ 

_ 2sink*i(p — a) IsmkijUj - a) _ smk*i{Vj - a)1 kgrj\ i 

*lVXp [ y/ktr; y/kVj J J 7i"2TTV^ 4 

+ ,• /"* A(kPsec°)[MkUisec9) - A(kVjsec fl)] __kztMg /4 _ 

Jo cos2 0H^1\kasecO)H^ t\kasec6) J 

where 

$4 = ~̂ L= ]Ex{2kz - i2k{Uj - p)) + E\(2kz + i2k(Uj -  p ) )  

— E\(2kz — i2k(Uj + p — 2a)) — E\{2kz — i2k(Vj + p — 2a))] 

j==[Ei(2kz -  t2k(Vj - a)) + Ei(2kz +i2k(V3- -  p)) 
VkVi 

— E\(2kz — t2k(Vj + p — 2a)) — E\ (2kz + i2k(Vj + p — 2a)) j 
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These expressions are further complicated by the fact that both p and z are allowed 

to vary. In the evaluation of the current, numerical difficulties arise due to the 

oscillations in the term. This limits the size of kz for which we compute 

the current. For the field expressions these oscillations are still present. In addition, 

there aire oscillations resulting from the term B(kp~f). Thus, we are numerically 

limited by the size of both kp and kz. 

4.2 Far-Field Approximation 

Our inability to calculate the fields for large values of either kz and kp can 

be relieved by the far-field approximation. In the special case where both kz and kp 

are large, we cam obtain approximate expressions for both Ep and Ez. This far-field 

approximation utilizes the method of stationary phase. 

Consider the far field approximation for Ep. In order to facilitate its derivar 

tion we manipulate (4-2) into the following form: 

• [A(kUn) - A(kVn)\ e-M1-7a)^7 (4 _ 6) 

Since there is a singularity in the integrand at 7 = 0, we separate our integral into 

two parts; one where the integral goes from 0 to 6 and one where it goes from 6 

t o  0 0  w h e r e  6  i s  s m a l l .  L e t  u s  f i r s t  c o n s i d e r  t h e  i n t e g r a l  f r o m  0  t o  6 .  B e c a u s e  6  

is small, we take the small argument approximation for the integrand and evaluate 
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the integral to get 

L £a '^^^=-ga ' '^- (4-7)  

For S small, its contribution to the overall integral vanishes. 

Let us now consider the integral from 6 to oo. Since p is large, we approxi

mate the relevant Hankel functions by their leading asymptotic term. A change of 

variable (7 = cos 0) leads to 

ik /•arccoe5_sin9_ 

yjlitkp y~^aj /-too yjzo&o 
EP 

g—t'(Aspco80— gi(kpco»6—^-) 

H^(ka coa 8) H^\ka cos 0) _ 

•  [ A(kUj cos 9) - A[kVj cos 6)] e~ikls^6 dO (4 - 7) 

where the path of integration is shown in Figure 4-1. Note that the path of inte

gration approached 7r/2 since 6 is small. 

We now (Figure 4-2) let 

p = R cos tp (4 — 8) 

z = Ram tp (4 — 9) 

where 0 < ip < tt/2. Substitution of (4-8) and (4-9) into (4-7) gives 

N /•arccoB S • •l. " rarccoso •_ a _ . _ ,. tie r-v / sin 0 

' ~ yJ2nkR cos tp /-too Vcos 6 

e~i g-ikR cob(0—tf>) gi eikR cos($+V0 

Hq^ (ka cos 6) (ka cos 6) 

• [A(kUj cos 0) - ̂(Jfcy,- cos 0)] dd (4 - 10) 

In the first term in (4-10) the point of stationary phase occurs at 0 = ip. In 

the second term there is no point of stationary phase for the values of 0 and ip 
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Figure 4-1 
mation. 

Complex integration path in the 0 plane for the far field approxi-
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+oo 

Figure 4-2 Redefined coordinate system used in the far field approximation 
{p,z -*• R,j>). 
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considered; therefore, the contribution of the second term to the overall integral 

is negligible compared to the first term. Also, the contribution from the interval 

(—too,0) is negligible for R large because of the decaying exponential term which 

appears when 6 is imaginary. Because our integral has finite limits, we must consider 

the contribution at the end points. The contribution at —too is negligible since the 

integrand decays exponentially at 0 —• —too. The contribution at 7 = arccos 6 is 

small because our integral does not encompass the singularity at tt/2. Following 

Bender and Orszag (1978) ,vfelett = 8 — rp and expand cos t around the point t = 0 

to get cost — 1 — f2/2. As a first order approximation, we replace 0 by in the 

other terms in the integrand. The result is 

EP{R,rl)) =* J2aM(kUj cos ~ A(kVj cos V)] 
y/2irkRH§ '(ka coaifr) j—1 

/

art 

.0 

arccos 5—^—^ 2 
e ikRT dt (4 - 11) 

Because almost all the contribution to the remaining integral is near t — 0, we can 

extend the interval of integration to (—00,00) without causing too much error as 

long as R is large. The resulting integral can be evaluated analytically, and the 

final result for Ep is 

tan t/f f! ikR ^ 
EP(R, rf,) =* m 5Z aAA(kUi cos 0) - A(kVJ cos  ̂ )] (4 - 12) 

RHk * (ka cos i/t) 

Following the exact steps which we used to derive Ep, we can obtain a similar 

expression for Ez which we write as 

,-ikR N 
te 

RHq1^ (ka cos rjj) yTj 
EZ(R, if>) = f  — ̂ 2 otj[A(kUj cos rjj) - A(kVj cos rfj)] (4 - 13) 
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4.3 Results and Analysis 

Accurate results for the electric fields close to the aperture can be computed 

from (4-4) and (4-5). A good means of illustrating this is by way of contour plots 

(Figures 4-3 and 4-4). In an attempt to avoid a profusion of plots we consider only 

the case where the wire radius is 1 cm and the aperture radius is 2 cm. The plots 

examines the square region which is delimited by the points z = 0 cm and 3 cm 

and p = 1 cm and 4 cm. The two frequencies that are considered are / = 10 MHz 

and 100 MHz. 

For the region around the aperture, we are interested in the behavior of the 

fields at the edge of the screen and its effect upon the field pattern near it. To aid 

us in this discussion, let us consider a very small localized region around the edge 

of the screen. The region must be small enough so that the circular curvature of 

the aperture is small. This allows us to approximate the screen edge by a straight 

knife edge. A diagram of this is shown in Figure 4-5 where we have redefined the 

coordinate system such that the origin is located at the edge. In Figure 4-5, r is 

the distance from the aperture to the point of interest Q, and r is the angle formed 

by the screen and Q. Since our original geometry was ^-symmetric, we assume that 

the fields do not vary along the knife edge. Jackson (1975) provides a static analysis 

of the edge singularity as a function of r. His expressions for the electric field at a 

knife edge are 

E,(r, T) (4-14) 

,, / \ <*1 T 
ET(r,T) Oi rcos o 

2r5 
(4 - 15) 

where a\ ^ 0 is a constant. 
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Figure 4-3 Contour plot of \Ep/IQ\ near the aperture with b/a = 2, / = 10 
and 100 Mhz. 
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and 100 Mhz. 
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Q 

Figure 4-5 Diagram of the geometry localized to the screen edge where the 
coordinate system is redefined from p,z —» r, r. 
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Returning to our contour plots, we can compare our results to the static 

solutions, (4-14) and (4-15). Because of the different coordinate systems the com

ponents of the electric field Ep and Ez  are in general a combination of Er  and Er. 

For 0 < r < 7r, we expect the field singularity near the edge to dominate since 

both the cos(r/2) and the sin(r/2) are nonzero. From the contour plots we see that 

there is a concentration of field lines at the edge of the screen signifying the edge 

singularity. This corroborates our results. We need to also consider the cases where 

r = 0 and IT. We can equate the field components in one coordinate system directly 

to a field components in the other system for these two cases. For the first case, 

we consider the situation where r = ir. In this instance Ep = —Er  and Ez  = —Er. 

Although there is no way to compare their exact values, we can compare their be

havior. We consider Ep first. From the contour plots it is evident that the field 

singularity is still present in the aperture. A more careful study of these plots shows 

that the field values are higher in the aperture than anywhere else. This indicates 

that the singularity is strongest here. Likewise, the field component Er reaches its 

highest value at r = IT because the term sin(r/2) is at a maximum there. For Ez  

we see that the field value in the aperture is very close to 0 even near the edge. 

This result is mimicked by the static field. Although there is an r 5 singularity in 

the field equation, the cosine term, which goes to 0 as r —• IT, dominates. 

For the case where r = 0, we can equate Ep and Ez  to Er  and Er, respec

tively. Since the tangential electric field must vanish on a perfect conductor, Ep 

must be zero on the screen. Both the contour plot and the static field results bear 

this out. On the other hand, there is a strong singularity present in the contour 

plot for Ez as we approach the edge from above. From the static field equations we 

notice that cos(r/2) is at a maximum which means that Ez is at maximum for the 
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static case. This further supports our numerical results for the electric field near 

the aperture. 

Because the influence of the edge singularity is very localized, the field 

contours begin to take on an entirely different characteristic after only moving a 

small distance from the aperture. A better picture of this can be seen by looking at 

contour plots away from the aperture and expanding the region under consideration. 

Since our plots are away from the aperture, we can obtain contour plots by using the 

far field approximations from (4-12) and (4-13) as well as the general expressions 

from (4-4) and (4-5). We can then compare the plots to determine exactly how 

accurate the far field approximations actually are. For Ez we consider a region 

which is bounded by z = 1 m and 5 m and p — 0.01 m and 4.0 m. Since the 

field concentration for Ep is so close to the wire, we consider a region which is 

smaller and farther from the wire than the region for Eg so that the contour plot 

is more readable. The region that we choose has the samp boundary as Ez  in the z 

direction, but we only consider p going from 0.2 m to 1.0 m. The magnitude of the 

electric fields which we compute from both the general expressions and the far-field 

approximation are given in Figures 4-6 through 4-9. These plots are normalized by 

Jo. For Ez the results are better than expected. Even for values of p which are fairly 

small, the two results are almost the same. Only when we look very close to the 

wire do the two results significantly diverge. This is also true for Ep although not 

to the same extent as for Eg. Ep is more sensitive to the errors near the wire which 

result from making the far field approximation. Overall, the far field approximation 

is accurate for large values of p and z while at the same time requiring only a minute 

fraction of the computational time needed to evaluate the general expression. 
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The circular shape of the contour curves for Ez  are very similar to that 

which is generated by a ring source. This comes as no suprise since we expect a 

small aperture to look like a ring source at a distance far from the aperture. The 

contour plots for Ep shows the field falling off with increasing p. This dropoff is 

proportional to 1 /p, which is indicative of a quaai-TEM behavior. 
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CHAPTER 5 

CONCLUSIONS AND RECOMMENDATIONS 

In this thesis we have provided a thorough discussion of the problem of 

electromagnetic penetration through an aperture with a wire passing through the 

aperture center. We began by formulating expressions for the fields in the situation 

where the source excites only the TMZ modes. Because the source in our problem is 

not physically realizable, we performed an analysis on an approximate source which 

had the same characteristics as our idealized source. We showed that the modal 

behavior of the approximate source is quaai-TEM and that the electric field behav

ior near the wire was the same as that which results from an idealized source. In 

addition, with the aid of the field expressions we were able to derive expressions for 

the admittance and the current on the wire. We then proposed an equivalent circuit 

model which agrees with the admittance and the current expressions. We showed 

that the admittance was composed of a conductance term and a susceptance term. 

The conductance represented radiation loss while the susceptance represented the 

capacitive coupling between the wire and the screen. In order to obtain numerical 

solutions for the circuit and field quantities, an integral equation for the electric 

field at the aperture was constructed. Because the integral equation was not solv

able analytically, we approximated the aperture field in two different ways. The 

first approximation that we considered was the ZO approximation where we used 

only the first term in the series expansion for the field. This approximation had the 

advantage in that it required very little computational time to obtain a solution. 
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Unfortunately, the results were not accurate for an aperture radius larger than half 

a wavelength. 

The second approximation that we made was the MOM approximation. 

For this case the aperture field was represented by a series of nonuniform pulse 

functions. A matrix equation was then formed by using delta functions as our 

weighting functions. This gave us more accurate results than the ZO approximation 

but at the expense of computation time. The need for more computation time was 

somewhat alleviated by the use of certain numerical techniques to speed up the 

evaluation of the integrals in each matrix element. Also by using nonuniform pulses 

as opposed to uniform ones, we were able to obtain accurate solutions with smaller 

matrix sizes. 

The solutions from the ZO and MOM approximations allowed us to calculate 

solutions for both the admittance and the current. These were plotted as a function 

of both ka and zja for various aperture sizes. A comparison of the solutions for the 

two methods showed that the ZO approximation gave accurate results for aperture 

sizes less than 1/10 of a wavelength. The results were also fairly close for apertures 

up to a half a wavelength. The plotting parameters which we considered were 

chosen such that it gave a clear indication of the errors resulting from the ZO 

approximation for a multitude of cases. Thus, we were able to obtain a region of 

validity for the ZO approximation by referencing the plots. We next provided an 

analysis of the numerical results. It became evident from the plots that the screen 

was ineffective in stopping current penetration. We saw that even with very small 

apertures the current in Region 2 was still significant at low frequencies. 
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Once we had sufficiently characterized the current in the frequency domain, 

we proceeded to some transient analysis in the time domain. Assuming a double 

exponential input pulse, we looked at a case where the rise and fall times of the 

pulse were fast and a case where they were slow. Results were then obtained by 

using our frequency domain solutions and an IFFT software package. It was shown 

that the screen had very little effect upon the input pulse with the slower rise and 

fall times. This was due to the fact that the frequency content of the pulse was very 

low which we understood from the frequency domain plots to mean a more TEM-

like behavior. We observed that even at a distance 100 meters from the aperture 

the magnitude of the current pulse was considerable. On the other hand, the input 

pulse with the faster rise and fall times was substantially affected by the screen 

because of the higher frequency content in the pulse. The current pulse lost about 

60% of its initial value over a distance of 1 meter for an aperture size of b/a — 1.01. 

Also the pulse shape began to distort as it propagated down the wire resulting in 

slower rise and fall times. 

We next solved for the electric field in order to obtain contour plots of the 

fields. Solutions were obtained both by a numerical evaluation of the integral in the 

field expressions and by a far field approximation which allowed us to write a closed 

form solution. We studied the singular behavior of the fields near the edge of the 

screen and compared them to the static solution in order to show their similarities 

and to be somewhat confident of our solution. We then considered a region away 

from the aperture so that we could determine the region of validity for the far field 

approximation. It was found that the far field approximation was fairly accurate as 

long as the field locations were not too near the wire. 
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Much of this work can be extended to include variations on the problem. 

Modifications can be made to account for any imperfections such as a wire or 

screen with finite conductivity. With some minor changes in the numerical code, 

we should be able to handle cases where we have a different source. It is also possible 

to consider cases where the dielectric constant of the medium is not homogeneous. 

For example, we could fill the aperture with either conductive or dielectric material 

to improve the shielding properties of the screen. Another possible extension to this 

work would be to improve the solution for the current. Because of the numerical 

difficulties associated with evaluating the current far from the aperture, it would 

be desirable to eventually obtain a closed form solution for the current in much the 

same manner as we did for the fields. Also, Wait (1988) suggests a variation in the 

problem whereby we place a dielectric coating on the wire This results in a single 

mode being excited on the wire without the requirement of having an ideal source 

containing infinite energy. 

Lastly, since all of the work done here has been analytical, we suggest that 

some experimental work be done to verify our results. A possible physical source for 

such an experiment is shown in Figure 2-2. Unfortunately, the aperture size of the 

coaxial line tends to be small to prevent higher order modes from being generated. 

This means that the strength of the incident field will be very small. One way to 

improve this would be to slowly increase the radius of the outer conductor as the 

coaxial line approaches the screen. Although there is some higher mode conversion, 

it is hoped that the expansion of the outer conductor occurs at a slow enough rate 

that this becomes inconsequential. By normalizing the current and fields in Region 

2 to the incident current and fields in region 1, we can determine the validity of our 

analytical and numerical results. 
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DERIVATION OF SPECTRAL EXPANSION 

Stakgold (1979) provides a method by which we can derive the spectral 

expansion associated with a specific Green's function. The Green's function that 

we are interested in is given by (2-20). We begin by considering the following 

integral in the complex A plane for p < p': 

After careful study of (A-l), we see that although there are no poles in the integrand, 

there is a branch cut in the problem. We choose the branch cut to be on the positive 

real axis with the contour of integration as that shown in Figure (A-l). The closed 

contour can be split into several line integrals which are denoted by C1 through 

C4, viz: 

We now let r and 0 go to 0 and R go to oo. The line integrals, C1 through 

C4, axe then evaluated as follows: 

I , i\ j, -*•* I '(vV) 
f ' M d X = — f W ^ r )  

p- / (VAa) - i\ 

(A-l) 

Jc\ JC2 JC3 JCA 

{A -3) 

(A -4) 
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Figure A-l Contour used in the evaluation of the spectral expansion which is 
needed to solve the Green's functions. 
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[  g d X + f  g  d X  =  £  f ° °  ( 2 J l { M * p )  J X { M  $ p ' )  -  J 0 { M * a )  
J C l  J C 3  2  J O  K  

[ ^2)(M^o) I 

After some lengthy algebraic manipulations, we can rewrite (A-5) as 

[  g d X + f  g d X  =  ̂  /°°{2J1(M^)J1(AfV) 
yci Jcz * Jo K 

- IJ (Mia) [Jl MMhp!)HW(Mli>) 
I ° [ H^(M^a) 

.  H^M^H^MU ) \k*) i M  ( x " 6 )  

where the geometric series term in (A-6) is equal to 2. We then make a variable 

substitution of £ = and factor (A-6) to get 

f  g d X + f  a i \  =  2 * i  r  (A-7) 
to to Jo 

where B(£p) = Ji(£p)Yb(£a) — Jo((a)Yi(£p). If we substitute (A-3), (A-4), and 

(A-7) into (A-2), we obtain the following spectral expansion in p: 

> ' J o  { (A 8) 

The spectral expansion in (A-8) allows us to formulate a special transform 

pair, 

sM = J V 

_ f°° 
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and 

G(0 = r 9(P ')BU'P ')P ' dp' (.A - 10) 
Ja 

From this transform pair, we can obtain a spectral expansion for 6 ( £  — £')/£. By 

substituting (A-9) into (A-10) where we change p —• p', we can write . 

g( o = r  g( « )  r  /vw <a - u> 
Jo Ja flj (^«)-Hq (£°) 

This leads us to conclude that 

« L H^((a)Ir®((a) 

By recognizing the fact that 

( A _ U )  

we obtain 

5(r  * r BmB(M r,,., n 
* ( « - « ) - /  ( ! )  { 2 )  € / »  U - 1 4 )  

0 (£a)#o Ua) 

Next, we consider the case where £' = 0. (A-14) then simplifies to 

«({) = ... 2 ... r B(fo') V (A - 15) 

where we are aided by the identity, 

limfVBtfV) = -
f'-»0 7T 

{A — 16) 
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APPENDIX B 

NUMERICAL INTEGRATION TECHNIQUES 

The speed of our numerical computations relies on both the hardware and 

software available. For hardware, we rely exclusively on the VAX 11/750 computer 

to perform all of our numerical tasks. It was found that single precision accuracy 

gave good results for our floating point calculations. The method by which we 

evaluate the Bessel functions in the integrals throughout the thesis is of primary 

importance to our overall computational efficiency. The Bessel function routines 

that are used in our numerical integration routines come from the SLATEC software 

package provided by Sandia National Laboratories. The routines have proven to be 

both efficient and accurate out to the precision of the computer. 

There are numerous integrals throughout this thesis which must be evalu

ated numerically. Fortunately, the integrands in almost all of the integrals behave 

very similarly. We can therefore apply many of the same integration techniques to 

the different integrals. In order to prevent repetitive writing, an example in which 

we explain many of the integration techniques used in this thesis will be applied 

to one of the integrals. The integral on which we have chosen to demonstrate our 

techniques is given in (3-13). We begin by attempting to isolate the singularities in 

the integrand. To this end it is convenient to split the integral into four separate 

pieces: 

f  K{ri) da= f  K{n) d~t+ [ K(~j)  di+ f  K{i) d*i+ f  K( 'y)  d~t 
Jo Jo Js J1 J 2 

= I\ + It + Iz + I<k (B — 1) 
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where if (7) is the integrand in F and 6 is a number less than 1 and bounded by 

Ska < 1. The value of 6 is chosen to allow for the best numerical convergence in I\. 

We can now consider each piece separately. 

In ii, the singular behavior of if (7) at 7 = 0 can be extracted and then dealt 

with analytically. However, great care must be taken in extracting this singularity. 

Initially, if we look at the small argument approximation of if (7), we obtain 

( B ' 2 > 

Unfortunately, there are numerical inaccuracies in the Bessel function routines used 

for our calculations due to the limitations of a digital computer. These inaccuracies 

result in major errors in the evaluation of the integral. Thus, a more accurate 

small argument approximation must be found. After studying the integral, we 

find that the inaccuracies associated with the denominator of the integrand are the 

cause of the problem. A higher order approximation for the Bessel functions in the 

denominator gives 

In'(j) 

il¥(i»(¥> +r)*l 
Hence, the resultant integral becomes 

•*„ ,L\ <B-3) 

h = [' \  A'jkh) taS(i) 
1) -r[f (M¥) + r)2]J 

drj + R\ (B- 4) 

where T is Euler's constant and R\ is the integral of the extracted singularity and 

is evaluated to be 

f^ln^jji + ̂arctan l(ln(^)+r)jj (B - 5) 
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Standard integration techniques can now be utilized to calculate I\. For our case, 

we have chosen to use a combination of Simpson's rule and Newton's 3/8th's rule. 

Real axis integration methods (Johnson and Dudley, 1985) can be used to 

remove the singularity at 7 = 1 and allow for easy numerical evaluation of I2 and J3. 

This involves a change of variable in both I2 and I3 with 7 = sin 0 and 7 = sec 9, 

respectively. This gives 

Integrals 12 and I3 are now in a form where we can use standard methods to evaluate 

them. 

Lastly, let us consider I4. Out of the four pieces, this integral is the most 

time-consuming one to evaluate. Since the interval of integration extends to infinity, 

we must eventually truncate the interval at a finite value. This can only be done if 

the integrand past a certain point contributes only a negligible amount to the total 

integral. Therefore, the point of truncation depends upon the rapidity at which the 

integrand decays to 0 as 7 —• 00. In our case, if (7) does not decay very quickly. 

We can substantially speed up this decay by characterizing the integrand's behavior 

as 7 —• 00 and handling it analytically. We start by obtaining an asymptotic 

approximation for K(7), which we write as 

•in(«) sinOH^{kasin0)HQ^{kasin0) 
(5-6) 

2tsin2 k(b — 0)7 
( B -  8) 

irkfr/3 
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Next, we subtract the approximation from the integrand to improve its rate of decay. 

Finally, we add the solution of the integral for the asymptotic approximation back 

into our equation to realize our final result, 

a = <  r I—, A'(*frT) —2sm'kirh\ *»+* <b-9) 

where 

7rkb 
sin2 2k(b — a) sin4A;(6-o) nrifi.(i ^ 
(2k(i-«))> + 2A(6 — a) ~ 2C'<4*" " "») 

(B —10) 

The integral I\ is also complicated by the fact that its integrand is oscillatory. This 

problem is handled by dividing the integrand into subintervals where the subinter-

vals are defined by the zero crossings in the integrand. We then use our standard 

integration techniques on each subinterval, separately. Once the contribution of 

a subinterval to the overall integral falls below a certain specified threshold, the 

integration process stops. 
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