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Abstract

We present techniques for obtaining precision distance measurements using the

baryon acoustic oscillations (BAO) through controlling systematics and reducing

statistical uncertainties. Using the resulting distance-redshift relation, we can infer

cosmological parameters such as w, the equation of state of dark energy.

We introduce a new statistic, ωℓ(rs), for BAO analysis that affords better control

over systematics. It is computed by band-filtering the power spectrum P (k) or the

correlation function ξ(r) to extract the BAO signal. This is conducive to several

favourable outcomes. We compute ωℓ(rs) from 44 simulations and compare the

results to P (k) and ξ(r). We find that the acoustic scales and theoretical errors we

measure are consistent between all three statistics.

We demonstrate the first application of reconstruction to a galaxy redshift sur-

vey. Reconstruction is designed to partially undo the effects of non-linear structure

growth on the BAO, allowing more precise measurements of the acoustic scale. We

also present a new method for deriving a smooth covariance matrix based on a

Gaussian model. In addition, we develop and perform detailed robustness tests on

the ξ(r) model we employ to extract the BAO scale from the data. Using these

methods, we obtain spherically-averaged distances to z = 0.35 and z = 0.57 from

SDSS DR7 and DR9 with 1.9% and 1.7% precision respectively. Combined with

WMAP7 CMB observations, SNLS3 data and BAO measurements from 6dF, we

measure w = −1.08 ± 0.08 assuming a wCDM cosmology. This represents a ∼ 8%

measurement of w and is consistent with a cosmological constant.

The preceding does not capture the expansion history of the universe, H(z),

encoded in the line-of-sight distance scale. To disentangle H(z), we exploit the

anisotropic BAO signal that arises if we assume the wrong cosmology when calcu-
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lating the clustering distribution. Since we expect the BAO signal to be isotropic,

we can use the magnitude of the anisotropy to separately measure H(z) and DA(z).

We apply our simple models to SDSS DR7 data and obtain a ∼ 3.6% measurement

of DA(z = 0.35) and a ∼ 8.4% measurement of H(z = 0.35).
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Chapter 1

Introduction

1.1 Astronomy, Cosmology and Dark Energy

Mankind has always been fascinated by the cosmos and what lies beyond the limits

of our planet Earth. Indeed, entire civilizations have been built based on patterns

dictated by astronomical phenomenon. The Mayan culture of Mesoamerica is es-

pecially notable, with the detail of their structures, i.e. number of steps, number

and direction of doors, number of decorative elements, etc., all patterned on the

natural phases observed in the moon, sun and stars. For millenia, humans have

been observing the skies, seeking to understand the secrets of our universe: How

was it created? How did it become the way it is now? However, it is only recently,

with the flourishing of astronomy as a science, that we became equipped to answer

these questions.

The sub-field of cosmology within astronomy is directly concerned with these

issues. Data show that the universe was formed in an event known as the Big Bang

which was accompanied by a period of rapid expansion. This allowed the originally

hot and dense universe to cool and form subatomic particles. Over time, these

coalesced into atoms, stars and galaxies.

In the early 1900s, the expansion of the universe in our present epoch was first

posited both theoretically and through observations (Slipher, 1913; Lemâıtre, 1927;

Hubble, 1929). However, it was not until the late 1990s that the most perplexing

discovery of modern cosmology was made: that the expansion is in fact accelerat-

ing! The first conclusive evidence came by observing Type Ia supernovae, which

should have appeared much brighter had the universe been static (Riess et al., 1998;

Perlmutter et al., 1999). Then arose the question of what causes this accelerated ex-
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pansion. Naively we would expect, that if the universe were dominated by matter,

then gravity would eventually cause the universe to decelerate and perhaps even

collapse back onto itself. However, the above evidence for the contrary suggests

that our universe has an additional component that is dominating its behaviour, a

component now known as “dark energy”.

General relativity provides some clues as to what dark energy is due to its ap-

parent link to the cosmological constant Λ. This was first introduced by Einstein

into his field equations to, ironically enough, make the universe static (Einstein,

1917). Since then, it has been found that a Λ-like term can arise from scalar fields

parameterizing the potential energy of the vacuum. If the vacuum has a positive

energy density, then its corresponding pressure is negative, which is precisely what

is needed to counteract gravity and accelerate the expansion of the universe (Ratra

& Peebles, 1988; Frieman et al., 1995).

Nonetheless, whether or not vacuum energy is in fact dark energy remains a

point of contention. Although indirect observations of dark energy via cosmological

probes indicate that it is very similar to a cosmological constant in the present

epoch (e.g. the work presented in Chapter 4), the measured value of Λ is many

orders of magnitude smaller than that predicted from vacuum energy arguments

in standard particle physics. Introducing elements of supersymmetry (Golfand &

Likhtman, 1971) may reconcile observation and theory, however, these methods

require a large amount of “fine-tuning” (Cremmer et al., 1983). Other attempts

to save vacuum energy as a candidate for dark energy evoke string theory (Kachru,

Kumar & Silverstein, 1999) and even wormholes (Coleman, 1988). However, a much

simpler yet still physically plausible model involves a vacuum energy that somehow

redshifts away with time (Barnard et al., 2008). Such a process can result in the

very small vacuum energy density observed today that resembles a cosmological
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constant. In these models, dark energy has become known as quintessence.

The main concern of the cosmologist lies in testing and ruling out these models.

Since dark energy does not appear to radiate and hence cannot be directly observed,

cosmologists use a number of observations to indirectly probe the macroscopic prop-

erties of dark energy such as its equation of state w. This equation of state relates

the energy density of dark energy ρ to its pressure p,

p = wρ. (1.1)

The value of w varies with different models of dark energy, for example, if dark

energy corresponds to a cosmological constant, then w = −1. To determine the

time variability (if any) of dark energy, we need to know w in the local universe as

well as in the higher redshift universe. Therefore, measuring w is currently the key

goal in observational cosmology.

1.2 Cosmological Probes of Dark Energy

At the present, many experiments are in the process of taking data for the purposes

of measuring w. In the low-redshift universe, the most popular cosmological probes

of dark energy are Type Ia supernovae, weak gravitational lensing, galaxy clusters

and the baryon acoustic oscillations (BAO). Higher redshift techniques such as ex-

tracting the BAO signal in Ly-α absorption lines from quasar spectra (e.g. Slosar

et al. (2009)) and tracing the reionization history using neutral hydrogen 21cm

emission (e.g. McQuinn et al. (2006)) are currently under development.

This thesis will focus on the low-redshift BAO method which will be detailed

in §1.3. The following gives a brief overview of the other indirect probes of dark

energy employed at low redshift. These techniques all benefit from having accurate

redshift measurements such as those provided by spectroscopic observations (e.g.

the Sloan Digital Sky Survey). However, improved photometric redshift techniques
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are being explored in many upcoming large-scale surveys due to the relative ease in

acquiring photometric data (e.g. the Dark Energy Survey and the Large Synoptic

Survey Telescope).

1.2.1 Type Ia Supernovae

Type Ia supernovae occur when the cores of carbon-oxygen white dwarfs heat up and

ignite a themonuclear explosion as they approach the Chandrasekhar mass (1.4M⊙).

The heating is a result of the white dwarf accreting mass from a red giant companion

(Whelan & Iben, 1973) or coalescing with another white dwarf (Iben & Tutukov,

1984; Webbink, 1984). The peak magnitude of the resulting explosion is related

to how fast the supernova’s light declines from this peak (Phillips , 1993). Hence,

by measuring the supernova light curve, we can predict its peak luminosity. This

facilitates their use as “standard candles” (Colgate, 1979) for measuring cosmological

distances.

The distance measured using Type Ia supernovae is known as the luminosity

distance,

DL =

√
L

4πF
, (1.2)

where L is the intrinsic luminosity of the supernovae and F is the flux observed on

Earth. Since there are many Type Ia supernovae at various different redshifts z, we

can measure DL as a function of z. This relationship depends on the properties of

dark energy because they affect the expansion rate of the Universe which sets the

distance scales we measure. The value of w can then be determined by fitting model

DL − z curves to the data. Such was the technique employed in the initial discovery

of the accelerated expansion of our Universe discussed in §1.1.

The key observational challenges to the supernova method include uncertainties

in the absolute magnitude of Type Ia’s as well as reddening by dust. It has been

shown that Type Ia absolute magnitudes may evolve with redshift (Riess et al.,
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1999; Drell, Loredo & Wasserman, 2000; Howell et al., 2007) which affects their

calibration as standard candles. However, this appears to be a minor effect (Riess

et al., 1998; Schmidt et al., 1998) and the cosmological parameters obtained by

assuming a non-evolving model are mostly 1σ consistent with an evolving model

(Linden, Virey & Tilquin, 2009). Reddening occurs when intergalactic dust alters

the apparent magnitudes that we observe (Aguirre, 1999). This is also a small effect

and can be corrected for using appropriate reddening models (Perlmutter et al.,

1999; Reindl et al., 2005; Nobili & Goobar, 2008; Chotard et al., 2011).

1.2.2 Weak Gravitational Lensing

Gravitational lensing is the bending of light from distant sources due to massive

objects such as galaxy clusters (known as lenses), that lie along the line-of-sight.

Weak lensing arises when the source and the lens are not perfectly aligned, but

are sufficiently close in the plane of the sky. The lens distorts the shape of the

source and also magnifies its brightness. Since the same lens affects all sources that

lie along the same line-of-sight, the distortion of the sources, known as the shear,

is correlated at different redshifts. This correlation is related to how galaxies are

distributed in the universe which in turn is regulated by cosmological parameters

such as w (Kaiser, 1992, 1998; Hu, 1998).

The key observational challenges of the weak lensing approach lie in measuring

the galaxy shapes to determine their shear. Uncertainties arise because it is difficult

to disentangle the intrinsic galaxy shape, distortions caused by lensing and distor-

tions caused by other factors such as telescope optics and atmospheric blurring (e.g.

Kitching, Taylor & Heavens 2008). Galaxies that appear lensed but are in fact

merely intrinsically aligned on the sky pose additional complications (e.g. Bridle &

King 2000; Catelan, Kamionkowski & Blandford 2001).
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1.2.3 Galaxy Clusters

Galaxy clusters are the largest gravitationally bond structures in the universe. They

reside in the most massive dark matter halos which are thought to be formed through

gravitational processes only, i.e. independent of gas physics, star formation and

feedback (Haiman, Mohr & Holder, 2001). This implies that the abundance of

clusters as a function of redshift depends only on a few factors such as the geometry

of the universe. Since this geometry is linked to the expansion of the universe and

hence dark energy, it is possible to measure w by counting the number of clusters

at various different redshifts (e.g. Bahcall & Fan 1998; Blanchard & Bartlett 1998;

Viana & Liddle 1999).

The prevailing challenge in this approach is that we do not observe all clusters

that fall within a given survey area due to limited survey sensitivities. This effec-

tively imposes a minimum mass on the detectable galaxy clusters which needs to

be included in the models used to extract w. However, predicting this mass from

observed quantities introduces a major source of systematic error. Current mass

errors fall at the ∼ 10% level for all mass estimation techniques (e.g. from X-ray

gas measurements (Kravtsov, Vikhlinin & Nagai, 2006), Sunyaev-Zel’dovich effect

measurements (Hallman et al., 2006) and weak lensing measurements (Becker &

Kravtsov, 2011)).

1.3 The BAO Method

The baryon acoustic oscillations (BAO) method is one of the most powerful probes

of dark energy and is the main focus of this thesis. The following serves as a general

introduction to BAO and forms the basis for understanding the contents of this

thesis.
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1.3.1 Introduction to BAO

The interactions between matter and photons in the early universe give rise to

the BAO (see §1.3.2) which are essentially sound waves propagating through the

primordial plasma. Signatures of these waves are left on the photon and baryon

distributions, which can still be observed today. The existence of the BAO was first

theorized by Sakharov (1966); Peebles & Yu (1970) and Sunyaev & Zeldovich (1970)

as an observable effect in the cosmic microwave background (CMB), the relic photons

from the primordial universe. It has since been detected with high fidelity in the

Wilkinson Microwave Anisotropy Probe (WMAP; Bennett et al. 2003) observations

of the CMB (Hinshaw et al., 2003, 2007; Nolta et al., 2007; Larson et al., 2011).

In terms of the baryons, the BAO phenomenon gives rise to a characteristic scale

in their distribution. This is known as the acoustic scale which has a magnitude of

∼ 150 comoving Mpc. In the low redshift universe, the BAO can be detected in the

clustering signal of galaxies (formed from the baryons), which can be measured from

large galaxy surveys as described in §1.3.3. This characteristic scale can be used

as a “standard ruler” for measuring the distance to the median redshift of a galaxy

sample (Eisenstein, 2002, 2003; Blake & Glazebrook, 2003; Hu & Haiman, 2003;

Linder, 2003; Seo & Eisenstein, 2003; Matsubara, 2004; Amendola, Quercellini &

Giallongo, 2005). Again, since the distances we measure are related to the expansion

history of our universe and hence the properties of dark energy, we can fit models

to measured distance-redshift relations and infer quantities such as w. Further

elaboration on this method can be found in §1.3.4.

The BAO scale was first proposed as a standard ruler for measuring the proper-

ties of dark energy by Eisenstein (2002); Blake & Glazebrook (2003); Hu & Haiman

(2003); Linder (2003) and Seo & Eisenstein (2003). The first detections came in

2005 by Eisenstein et al. (2005) using the luminous red galaxy sample (Eisenstein
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et al., 2001) from the third data release (DR3) of the Sloan Digital Sky Survey

(SDSS) and by Cole et al. (2005) using the 2 Degree Field Galaxy Survey (2dF).

Since then, numerous BAO studies have been performed on successive SDSS data re-

leases (Tegmark et al., 2006; Hütsi, 2006; Padmanabhan, White & Eisenstein, 2007;

Percival et al., 2010) as well as galaxy surveys such as the 6 Degree Field Galaxy

Survey (Beutler et al., 2011) and WiggleZ (Blake et al., 2011a,b,c). In particular,

Chapters 3 and 4 of this thesis present BAO results based on the SDSS data release

7 (DR7) luminous red galaxy (LRG) sample and the latest SDSS data release 9

(DR9) constant-mass (CMASS) galaxy sample.

Spectroscopic surveys allowing the accurate measurement of redshifts greatly in-

creases the power of this method, as the radial distances inferred from these redshifts

provides an extra dimension along which the BAO scale can be measured.

Since the BAO method makes use of a standard ruler and is therefore purely

based in geometry, it is argued to have the least systematic error of all the avail-

able dark energy probes. However, small complications resulting from non-linear

structure growth, galaxy bias and redshift-space distortions do arise. These will be

described in more detail in §1.3.5.

To fully harness the potential of the BAO technique in obtaining precision mea-

surements of the properties of dark energy, robust distance measurements are inte-

gral. This thesis details practical techniques for achieving high-precision distance

measures using the BAO.

1.3.2 Physics

The following description of BAO physics is adapted from Eisenstein, Seo & White

(2007) and the review articles Eisenstein & Bennett (2008) and Weinberg et al.

(2012).

The baryon acoustic oscillations are a relic of early universe physics beginning
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with tiny density perturbations seeded by inflation (Sakharov , 1966; Peebles &

Yu, 1970; Sunyaev & Zeldovich, 1970). These perturbations consist of dark matter,

baryons, photons and neutrinos. The neutrinos decouple and stream off early on

and are thus not a major concern for BAO. The temperatures in the early universe

are very high so all the gas is completely ionized. As a result, there are many free

electrons which serve as a large source of opacity to the photons due to Thompson

scattering. This effectively traps the photons inside the baryons and locks them

together into a single fluid.

The perturbation continues to grow through accruing the surrounding mass and

contracts further due to self-gravity. This further increases the temperature inside

the overdensity which subsequently increases the amount of radiation pressure from

the photons. Eventually this pressure becomes so large, that the photons can push

the photon-baryon fluid outwards from the center of the perturbation in a spherical

pressure wave. As pressure waves are essentially sound waves, this pulse travels

through the surrounding medium at the sound speed, cs, defined as

c2
s =

∂p/∂T

∂ρ/∂T
=

c2

3

4ρr

4ρr + 3ρb

(1.3)

where T is the temperature, p is the pressure and ρ is the density. The subscript r

denotes radiation and the subscript b denotes baryons.

The dark matter only interacts gravitationally and hence remains near the center

of the initial perturbation. It exerts a restoring force on the photon-baryon fluid due

to its gravitational attraction to the baryons. The competition between this inward

pulling gravitational force and the outward pushing radiation pressure determines

how far the sound wave propagates through the plasma. At recombination, the uni-

verse has expanded and cooled sufficiently for protons to begin capturing electrons.

This removes the source of opacity locking together the photon-baryon fluid, causing

the photons to decouple and stream away forming the CMB. Losing the radiation
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pressure propagating them forward, the baryons are left behind in spherical shells

centered on the initial overdensity. The radius of these shells is a characteristic scale

known as the sound horizon or the acoustic scale and can be calculated as

rs =

∫ t∗

0

cs(t)

1 + z
dt =

∫ ∞

z∗

cs(z)

H(z)
dz (1.4)

where t∗ and z∗ are the time and redshift of recombination respectively and H(z) is

the Hubble parameter. Using reasonable values for these parameters, we find that

rs ∼ 150 comoving Mpc. The fact that this scale is characteristic and unvarying is

essential for its utility as a cosmological standard ruler (see §1.3.4).

With time, most of the baryons in the shells are drawn towards the overdensities

of dark matter which have largely remained at their original positions. However,

some dark matter is also drawn towards the baryons that were deposited in these

spherical shells. This results in small (∼ 1%) baryon and dark matter excesses,

known as acoustic peaks, at separations corresponding to the acoustic scale. These

regions where the dark matter and baryons are relatively concentrated act as seeds

for the subsequent formation of dark matter halos through gravitational accretion.

As the universe continues to evolve, galaxies begin forming in these dark matter

halos. Hence, we would expect to see slight excesses in the clustering distribution

of galaxies at separations corresponding to the acoustic scale.

The acoustic scale corresponds to a harmonic sequence of oscillations in Fourier

space, where an analogous story can be told. The name baryon acoustic oscillations

stems from this phenomenon. In Fourier space, the spherical sound wave is akin

to a plane wave perturbation (Bond & Efstathiou, 1984; Holtzman, 1989; Hu &

Sugiyama, 1996; Hu & White, 1996; Eisenstein & Hu, 1998). If, at the time of

recombination, the sound wave travels a distance such that the baryons are deposited

on the crest of another wave, then constructive interference occurs. Conversely, if the

baryons are deposited at the trough of another wave, destructive interference occurs.
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Hence we can think of the sound horizon as the wavelength of the fundamental mode

for a series of harmonics corresponding to these oscillatory interference patterns.

In this simple picture, these harmonics could continue to arbitrarily small wave-

lengths (or high wavenumbers, k). However, a process known as Silk damping (Silk,

1968) prevents this from occurring. This process arises due to the non-zero mean

free path of photons undergoing Thompson scattering which allows photons to dif-

fuse through the baryons for small distances or large k. The diffusion scale is around

8h−1Mpc and is determined by the plasma composition which dictates how far a pho-

ton can typically travel before being scattered. This diffusion of photons effectively

smooths out the baryon distribution at small scales, inhibiting any characteristic

patterns in baryon deposition. As a result, the higher harmonics are damped out,

and analogously, the acoustic peak is broadened. This is what sets the ∼ 8h−1Mpc

intrinsic width of the acoustic peak.

1.3.3 Measurement

As mentioned in the preceding section, the acoustic signal is imprinted on the clus-

tering distribution of galaxies which traces the underlying dark matter. Therefore,

before we can use BAO for cosmology, there are two essential measurements we must

make. The first is a statistical measure of galaxy clustering which can be made from

large galaxy surveys in the low redshift universe. The second is a distance measure

to the median redshift of the galaxy sample from the galaxy clustering statistic using

the BAO. This section is intended as a simple introduction to these measurements.

Complications are discussed in §1.3.5. Due to the difficulty in observing galaxies at

high redshift, measuring the BAO at high-z is more difficult. BAO techniques such

as using the Ly-α forest in quasar spectra (e.g. Slosar et al. 2009) and neutral hy-

drogen 21cm emission (e.g. McQuinn et al. 2006) to trace dark matter are currently

under investigation.
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To measure the clustering distribution of galaxies in an ensemble sense, we typ-

ically use the correlation function, ξ(~r), or power spectrum, P (~k), statistics. These

are Fourier transform pairs with ξ(r) in configuration space and P (k) in Fourier

space. We mainly concern ourselves with ξ(~r) in this thesis. ξ(~r) measures the

excess probability of finding two galaxies with a certain separation ~r relative to a

random distribution. The BAO phenomenon results in an excess of baryons and

dark matter, and hence galaxies, at characteristic separations corresponding to the

acoustic scale (rs ∼ 150 comoving Mpc). Therefore, if we measure the galaxy corre-

lation function, we expect to see a small excess in the clustering distribution known

as the acoustic peak at |~r| ∼ rs.

The formal definition of the galaxy (or matter) correlation function is

ξ(~r) = 〈δ(~r′)δ(~r′ + ~r)〉, (1.5)

where δ(~r′) = (ρ − ρ̄)/ρ̄ is the fractional overdensity at location ~r′. In practice, to

calculate the correlation function, we begin with a measurement of galaxy positions

from a large galaxy survey. Note that since the BAO scale is very large, it is

necessary to use data from galaxy surveys that cover a very large volume such as

the SDSS. With these positions, we can calculate the distance from each galaxy to

every other galaxy. Spectroscopic surveys are best because they provide distance

information in the line-of-sight direction, however, it is possible to do purely angular

BAO analyses (in the plane of the sky) with a penalty in precision (see §1.3.4). We

then specify bins in r and µ = cos(θ), where θ is the line-of-sight angle between

two galaxies, and count the number of galaxy pairs with separations that fall within

each bin. We must also generate a reference set of particles with random positions

in the same survey geometry since the correlation function compares data sets to
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random distributions. We then estimate the correlation function as

ξ(r, µ) =
DD − 2DR + RR

RR
− 1, (1.6)

where DD is the number of data-data pairs, DR is the number of data-random pairs

and RR is the number of random-random pairs. This is more commonly known as

the Landy-Szalay estimator (Landy & Szalay, 1993) and is analyzed in detail by

Bernstein (1994). Other estimators such as that proposed in Hamilton (1993) are

viable as well.

Recently, we also introduced a new clustering statistic for analyzing BAO known

as ωℓ(rs). This new statistic preserves the favourable properties of the traditional

ξ(~r) and P (~k) statistics but also eliminates some of their associated systematics.

This is detailed in Chapter 2.

The extraction of the acoustic scale (which subsequently leads to a distance

measure) from the data is typically achieved by assuming a model for a chosen

clustering statistic that includes the acoustic scale as a parameter. We can then fit

this model to the data to obtain the best-fit value of the acoustic scale. If we take

a χ2 approach in finding the best-fit, then by calculating χ2 at various values of the

acoustic scale, we also map out its associated error distribution p ∝ exp(−χ2/2).

In configuration space, this effectively centroids the acoustic peak in the correlation

function. This value of the acoustic scale and its probability distribution are the

key measurements needed for inferring cosmological parameters. However, in order

to perform these measurements, one must accurately model the covariance matrix

between the various scales where the clustering statistic is measured as well as

develop an unbiased model template for the fitting. This covariance matrix is a

measure of the statistical uncertainty in the clustering statistic which propagates

into the statistical uncertainty of the measured distance scale. It has 2 principle

components, sample variance and shot-noise. In Chapter 3, we present a new method
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for estimating covariances as well as a robust BAO model for measuring the acoustic

scale from the correlation function.

In Fourier space, the covariance is simple in the limit that the density field is

Gaussian. This simply means that the amplitudes of the initial density fluctua-

tions δ(~k) are drawn from Gaussian distributions with standard deviations equal to√
P (~k). Since P (~k) ∝ δ2(~k), the standard deviation in P (~k) is σP ∼ P (~k). The

finite size of the survey truncates the number of modes measured, which amounts to

dividing σP by the square root of the number of independent modes. This is ∝ V/2,

where V is the survey volume. The sample variance resulting from this truncation

can be quite high at large scales near where the BAO is found. The BAO signal

itself however, is fairly weak, making galaxy surveys that cover very large volumes

necessary to obtain a robust BAO detection. This constitutes the sample variance

component of the statistical uncertainty.

Due to the finite number of galaxies in the survey, shot-noise also contributes to

the error with a magnitude equal to 1/n, where n is the number density of galaxies

(Kaiser, 1986). This brings the total variance in the power spectrum to

σ2
P ∝ 2

V

(
P (~k) + 1/n

)2

(1.7)

in the Gaussian limit. Since the correlation function and the power spectrum are

Fourier transform pairs, we can also transform this variance into configuration space

to give the variance in the correlation function as in Equation (3.9) in Chapter 3.

Lastly we note that in the following chapters, ξ(r) will be used to refer to the

angle-averaged correlation function (i.e. the monopole of ξ(~r)). If the clustering

distribution of galaxies is truly isotropic (as it is thought to be on large scales), then

the monopole contains all possible clustering information. However, certain obser-

vational effects (see §1.3.5) and cosmology-dependent assumptions may introduce

some anisotropy into the clustering. Hence, the location of the acoustic peak may
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appear at slightly different positions along the line-of-sight and transverse directions.

The effects of this anisotropic BAO signal bleeds into the higher order multipoles

and can be used to put further constraints on cosmology as detailed in Chapter 5.

This is a manifestation of the Alcock-Paczynski test (Alcock & Paczynski, 1979)

which uses the measured anisotropy of an object that is known to be isotropic to

infer the true cosmology of the universe.

1.3.4 Application to Cosmology

The measured acoustic scale and its error/probability distribution are the essential

ingredients for BAO cosmology. This section outlines how the BAO can be used as a

standard ruler and how the measured acoustic scale (BAO size) can be transformed

into a distance measure.

The size of an object such as the characteristic scale of the BAO can be measured

in two primary directions. The first is in the transverse direction where the angular

size (∆θ) of the BAO in the plane of the sky can be measured. The second is in the

line-of-sight direction where its size (∆z) along the redshift axis can be measured.

The true size of an object (r⊥) and its measured transverse angular size are related

to the angular diameter distance to redshift z (DA(z)) by

DA(z) =
r⊥

1 + z
∆θ, (1.8)

where z is the redshift of the object, or in the case of BAO, z is the median redshift

of the galaxy sample. The true (r‖) and measured sizes in the line-of-sight direction

are related to the Hubble parameter H(z) by

H(z) =
c∆z

r‖
(1.9)

Spectroscopic measurements are needed in order to obtain distance information in

this direction. In theory, the BAO should lie at the same location along the line-of-

sight and transverse directions, so rs = r‖ = r⊥.
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Since we know what rs should be (this has been measured to 1.1% accuracy by

WMAP in Jarosik et al. (2011)), we can infer DA(z) and H(z) from the measured

BAO sizes, ∆θ and ∆z, along the transverse and line-of-sight directions respectively.

However, typically the signal-to-noise in the line-of-sight direction is poor due to the

size limits on surveys, so we instead measure the spherically averaged correlation

function or power spectrum (the monopole), which in turn leads to the measurement

of a spherically averaged acoustic scale. From this we can infer the spherically

averaged distance to redshift z which is defined as

DV (z) ∝ 3

√
D2

A(z)

H(z)
. (1.10)

One can see that DV (z) contains 2 powers of the transverse distance scale DA(z)

along the 2 orthogonal directions in the plane of the sky and 1 power of the radial

distance scale which is dependent on H(z). We develop and test the necessary tools

for obtaining a robust measurement of DV in Chapter 3. We then apply these tools

to the SDSS DR7 data in Chapter 3 and the SDSS DR9 data in Chapter 4.

The problem with measuring DV is that it does not allow us to separately con-

strain DA(z) and H(z), the latter of which is especially important because it de-

fines the expansion history of the universe. Padmanabhan & White (2008) propose

a method for breaking this degeneracy between DA and H by using information

from the higher order multipoles which reflect any anisotropies in the clustering.

Anisotropic clustering arises due to observational effects, but it may also arise if

one assumes the wrong cosmology when calculating the correlation function. These

incorrect assumptions result in incongruent distance measures which make the BAO

appear at different locations along the line-of-sight and transverse directions. The

resulting anisotropic BAO signal can be used as an Alcock-Paczynski test to sepa-

rately and directly measure DA and H . Chapter 5 extends the toolkit developed in

Chapter 3 to anisotropic BAO analysis and applies it to the SDSS DR7 data using
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the multipole technique of Padmanabhan & White (2008).

The error distribution of the measured acoustic scale can be propagated into

the error distributions of DA, H or DV . These can then be fed into a Markov

Chain Monte Carlo (MCMC) algorithm, such as CosmoMC (Lewis & Bridle, 2002),

which measures the values of the cosmological parameters. The dependence of the

expansion rate of the universe on its energy content (i.e. matter, dark energy,

curvature and radiation) implies that H(z), which measures the expansion rate,

and the distances we measure such as DA(z) are functions of the properties of these

constituents. Specifically,

DA(z) =
c

1 + z

∫ z

0

dz

H(z)
(1.11)

H(z) = H0

√
Ωm(1 + z)3 + Ωκ(1 + z)2 + ΩX exp

[
3

∫ z

0

1 + w(z)

1 + z
dz

]
,(1.12)

where Ωm, Ωκ and ΩX are respectively the density ratios of matter, curvature and

dark energy at the present day to the critical density of the universe. The fractional

density of radiation Ωr is on the order of 10−5 at the present day, a value so small that

it is negligible and hence not included in the equations here. w(z) is the equation

of state parameter for dark energy discussed in §1.1. Here, ΩX corresponds to an

arbitrary dark energy model. Dark energy evolves with time as

ΩX(z) = ΩX exp

[
3

∫ z

0

1 + w(z)

1 + z
dz

]
. (1.13)

If dark energy is due to a cosmological constant Λ, then ΩX becomes ΩΛ and w(z) =

−1. The integral in Equation (1.13) then goes to a constant implying the dark energy

density parameter ΩX = ΩΛ does not evolve with time.

MCMC codes start with an initial guess for the cosmological parameters such as

ΩX or w and calculate the expected observables (such as DV (z)) in this cosmology.

The probability distribution of DV (z) measured from the data is used to determine
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the likelihood of the calculated value and hence, the likelihood of the input cos-

mology. Through a series of rejections and acceptances, the code converges on the

cosmological parameters that match the data best. By measuring DV (z) at various

redshifts, we better constrain the distance-redshift relation which results in tighter

measures of the cosmological parameters. In addition, distance measures from the

CMB (high redshift) and supernovae methods can be combined with BAO mea-

surements to further improve the precision of the measured cosmology. This has

been demonstrated numerous times in the literature, e.g. Efstathiou et al. (2002);

Percival et al. (2002); Spergel et al. (2003); Tegmark et al. (2004); Komatsu et al.

(2009); Percival et al. (2010); Reid et al. (2010); Blake et al. (2011a,b,c) and Beutler

et al. (2011). We perform a similar analysis in Chapter 4 for the latest SDSS DR9

data.

1.3.5 Complications

Owing to the simple, geometric nature of the BAO method and the fact that it man-

ifests at large spatial scales which are mostly linear (see §1.3.5.1), it is fairly devoid

of systematic error and is therefore limited by the statistical uncertainties described

in §1.3.3. This is in contrast to the other major dark energy probes discussed in

§1.2. The major goal of this thesis is to discuss methods of limiting the impact

of systematics and also improving the statistical precision of BAO measurements.

Hence, this section gives a brief introduction to the major sources of uncertainty

in BAO measurements. In addition to the 3 dominant complications listed in this

section, other complications such as the effects of binning and the uncertainty in

the cosmic number density of galaxies (the integral constraint) have some minor

influence on the measurement of the BAO as well. The new clustering statistic we

introduce in Chapter 2 addresses these minor complications.
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1.3.5.1 Non-linear Structure Growth

The first major source of uncertainty in the measurement of the acoustic scale is

due to non-linear structure growth. The amplitudes of the initial overdensities are

very small. During the early stages of their growth, they merely accrete matter

from their surroundings by gravitational attraction and have little interaction with

each other. As a result, the various modes of the density perturbation grow in-

dependently. This is the regime of linear structure growth. However, as these

overdensities become more massive, they begin exerting gravitational pulls on each

other. The modes no longer grow independently, but rather develop complicated

couplings with each other, giving rise to non-linear structure growth (e.g. Jain &

Bertschinger (1994); Meiksin et al. (1999); Meiksin & White (1999); Scoccimarro et

al. (1999)). Fortunately this occurs predominantly on small scales where the gravi-

tational interaction between structures is non-negligible. The BAO remains largely

unaffected, but in order to obtain the percent-level precision measurements required

for cosmology, we must consider the consequences of this non-linear evolution.

Non-linear structure growth has 2 main effects on the BAO (Seo & Eisenstein,

2005; Amendola, Quercellini & Giallongo, 2005; Springel et al., 2005; Jeong & Ko-

matsu, 2006; Huff et al., 2007; Ma, 2007; Eisenstein, Seo & White , 2007; Angulo et

al., 2008; Wagner, Müller & Steinmetz, 2008; Crocce & Scoccimarro, 2008; Sanchez

et al., 2008; Seo et al., 2008; Smith et al., 2008; Padmanabhan & White, 2009;

Seo et al., 2010; Mehta et al., 2011). The first is a smearing of the acoustic peak

which results from the movement of the overdensities. This makes centroiding the

peak more difficult and leads to a statistically less precise measurement of the BAO

scale. The second is a small shifting in the position of the acoustic peak from its

predicted linear theory position. This can distort the acoustic scale we wish to use

as a standard ruler. Analogously in Fourier space, the acoustic oscillations become
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increasingly more damped at high k and the wiggles shift slightly in position.

Many studies have aimed at quantifying the significance of the BAO shift using

perturbation theory and simulation methods. For example, Padmanabhan & White

(2009) compute a value for the shift using 2nd order perturbation theory. Crocce &

Scoccimarro (2008) perform a similar calculation using renormalized perturbation

theory. Seo et al. (2010) use N-body simulations to quantify the shift for dark

matter only, while Mehta et al. (2011) perform a similar analysis on mock galaxy

catalogues. All of these studies find shifts of ∼ 0.3% at z = 0, which is far below

the statistical precision expected from BAO analyses (about ∼ 5% for a 1h−1 Gpc

survey; Weinberg et al. 2012).

Furthermore, the effects of non-linear evolution on the BAO can be partially

removed by applying a procedure known as reconstruction (Eisenstein et al., 2007).

This procedure can be thought of as running gravity backwards: shifting dark matter

or galaxies back along their displacement vectors to their expected linear theory

positions. Through performing this procedure, we can remove some of the smearing

of the acoustic peak which subsequently allows us to centroid it more precisely.

While it is impossible to remove all the effects of non-linear structure growth using

the simple 1st order technique presented by (Eisenstein et al., 2007), it certainly

gains us a considerable amount of precision (about a factor of 2). Any residual

acoustic peak smearing can be modeled by applying a Gaussian smoothing of the

acoustic oscillations in Fourier space using the prescription in Eisenstein, Seo &

White (2007). A detailed description of reconstruction is given in Chapter 3, where

we demonstrate, for the first time, its utility on an actual galaxy survey. We show

that the statistical precision of our BAO scale measurement improves by almost

a factor of 2 when we apply reconstruction to SDSS DR7 data. In the past, this

procedure has been studied on N-body simulations such as Seo et al. (2008); Noh et
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al. (2009); Seo et al. (2010) and Mehta et al. (2011), which serve as solid foundations

for our analysis.

1.3.5.2 Redshift-space Distortions

Another source of uncertainty in BAO measurements is due to redshift-space distor-

tions. These are observational effects that distort our measurements of redshift and

our subsequent measure of clustering along the line-of-sight direction. The origin of

these distortions is the peculiar velocity of galaxies on small scales and the coherent

infall of galaxies on large scales. These motions add additional red or blue-shifts

to the true cosmological redshifts of the galaxies which translate into the galaxies

appearing slightly further or closer along the line-of-sight than they actually are.

On small scales, the distribution of galaxies appears slightly elongated along the

line of sight. This is known as the Finger of God (FoG) effect. On large scales, the

clustering of galaxies appears squashed along the line-of-sight, an effect that has

been studied and parameterized by Kaiser (1987).

Both of these effects alter the shape of the monopole clustering statistics coher-

ently at all scales (including the BAO scale), which may slightly broaden the peak

further. Hence, they must be accounted for with some degree of fidelity in our fitting

templates so as to not confuse these broadband effects with the BAO information.

Numerous analytic models have been proposed for modeling redshift-space distor-

tions (Kaiser, 1987; Peacock & Dodds, 1994; Cole, Fisher & Weinberg, 1995; White,

2001), but it is unclear how well these fare at the precision levels required for BAO.

Fortunately, since broadband effects are smoothly varying with scale and present

regardless of whether the BAO exists or not, they are mostly separable from the

acoustic information. This means that we can introduce additional marginalization

(or nuisance) terms into the template to remove the unwanted broadband power

without having to accurately model these effects.
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In Chapter 5, we find that using simple redshift-space distortion models when

we attempt to analyze the anisotropic BAO signal can lead to small biases in the

measured anisotropy and inferred errors. This suggests that the simple models plus

the additional marginalization is not enough to completely separate out redshift-

space distortions from Alcock-Paczynski information (i.e. the “fake” anisotropy we

introduce by assuming the wrong cosmology when calculating the correlation func-

tion). At our current levels of statistical precision, these biases are not detectable.

This does however suggest that when the quality of data improves in the future, we

will need to go to more accurate models such as discussed in Reid & White (2011).

1.3.5.3 Galaxy Bias

Lastly, a discussion of how galaxy bias may complicate BAO measurements is given

here. Since we cannot directly observe dark matter, we use galaxies as tracers of

the underlying dark matter distribution. However, galaxies only form in the most

massive dark matter halos, so they are inherently biased tracers. This bias shows

up as a multiplicative offset between ξ(r) or P (k) of the galaxies and the matter. At

large scales, this bias is well-approximated by a constant; however, in truth there is

some slight variation with scale due to non-linear structure growth. This variation

may cause the acoustic peak to experience a small shift. Padmanabhan & White

(2008) use perturbation theory to measure the approximate magnitude of this shift

while Mehta et al. (2011) accomplishes similar aims using N-body simulations. Both

studies find shifts ∼ 0.5% at z = 1, with slightly higher shifts for more biased tracers.

This is, again, much smaller than the statistical uncertainties in BAO measurements.

As with redshift-space distortions, galaxy bias is a broadband effect which we can

attempt to marginalize out using nuisance parameters. Since we are only interested

in the BAO information, this approach is much simpler than trying to derive com-

plicated models of galaxy bias (e.g. Bernardeau et al. 2002 and Jeong & Komatsu
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2009). We perform detailed tests of a fitting template that uses marginalization

parameters for the broadband (i.e. redshift-space distortions and scale-dependent

bias) in Chapter 3 and apply it to SDSS DR7 and DR9 data in Chapters 3 and 4 to

measure the acoustic scale and the spherically averaged distance DV . In Chapter 5

we use an extension of this fitting model to measure the anisotropic BAO signal in

SDSS DR7 which gives us separate constraints on the transverse and line-of-sight

distance scales defined by DA and H respectively.
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Chapter 2

A New Statistic for Analyzing Baryon Acoustic Oscillations

We introduce a new statistic ωℓ(rs) for measuring and analyzing large-scale struc-

ture and particularly the baryon acoustic oscillations. ωℓ(rs) is a band-filtered,

configuration space statistic that is easily implemented and has advantages over the

traditional power spectrum and correlation function estimators. Unlike these esti-

mators, ωℓ(rs) can localize most of the acoustic information into a single dip at the

acoustic scale while also avoiding sensitivity to the poorly constrained large scale

power (i.e., the integral constraint) through the use of a localized and compensated

filter. It is also sensitive to anisotropic clustering through pair counting and does

not require any binning of data. We measure the shift in the acoustic peak due

to nonlinear effects using the monopole ω0(rs) derived from subsampled dark mat-

ter catalogues as well as from mock galaxy catalogues created via halo occupation

distribution (HOD) modeling. All of these are drawn from 44 realizations of 10243

particle dark matter simulations in a 1h−1 Gpc box at z=1. We compare these shifts

with those obtained from the power spectrum and conclude that the results agree.

We therefore expect that distance measurements obtained from ω0(rs) and P (k) will

be consistent with each other. We also show that it is possible to extract the same

amount of acoustic information by fitting over a finite range using either ω0(rs) or

P (k) derived from equal volume surveys.

2.1 Introduction

Previous analysis of the baryon acoustic oscillations (BAO) have been conducted

using the traditional power spectrum and correlation function statistics. Although

analytically they are both perfectly adequate, the estimators used to derive them
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from simulations and observational data are subject to numerous difficulties.

The largest survey scales are always poorly constrained due to effects such as

the integral constraint making it a challenge to estimate the correlation function

ξ(r) accurately at these scales. The integral constraint arises due to the fact that

we do not know the cosmic number density of any population of mass tracers (de

Lapparent et al., 1988; Baumgart & Fry, 1991; Peacock & Nicholson, 1991; Hamilton,

1993). Many techniques used to estimate ξ(r) (Peebles, 1973; Sharp, 1979; Hewett,

1982; Blanchard & Alimini, 1988; Landy & Szalay, 1993; Hamilton, 1993) take the

number density of tracers in the survey volume to be the true number density. This

assumption effectively ignores all power at scales larger than the survey size while

simultaneously increasing the correlation between scales smaller than the survey size

which causes the off-diagonal covariance matrix terms to be larger than they would

be otherwise.

Limited survey volume and awkward survey boundaries are the major concerns

when trying to estimate the power spectrum P (k). Typically, the measured power

spectrum is a convolution of the window function, the Fourier transform of the

selection function of the survey, and the underlying true power spectrum (Feldman

et al., 1994; Park et al., 1992; Baumgart & Fry, 1991; Peacock & Nicholson, 1991;

Kaiser & Peacock, 1991). Therefore, these P (k) estimators are biased. In the limit

of infinite volume, the window function should be a delta function. However, real

surveys have finite volume and hence the window function has a finite albeit very

small width. This induces an artificial smoothing at small separations in k when

attempting to deconvolve the window function from the observed density field. Pair

counting estimators, like those for ξ(r), avoid this issue because the relative positions

of all tracer particles and hence the true distribution is recorded.

Estimating ξ(r) and P (k) also requires the binning of data. When any binning
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process is invoked, one must carefully define any averaging used to derive the value

in each bin. To reduce these errors, bin sizes are made smaller which increases the

dimensionality of the covariance matrix, making it even more difficult to estimate.

Also, survey boundaries need to be addressed with special care.

In the study of large scale structure, we are also interested in any anisotropies in

the distribution of objects. These can result from the bulk motions of objects (Pee-

bles, 1980; Davis & Peebles, 1983; Kaiser, 1987) as well as assumed models for the

Hubble parameter H(z) and the angular diameter distance DA(z) while calculating

object separations along the line of sight (LOS) and transverse directions respec-

tively. Since, at large scales we would expect the distribution to be isotropic, any

anisotropy can be deconstructed into velocity field information which in turn pro-

vides us with constraints on Ωm, the derivative of the growth function f = dlnD/dlna

and the anisotropic parameter β = f/b, where b is the galaxy bias (Kaiser, 1987;

Hamilton, 1998; Peacock et al., 2001; Hawkins et al., 2003; Tegmark, Hamilton

& Xu, 2002; Zehavi et al., 2002; Song & Percival, 2008; Percival & White, 2009;

White et al., 2009). After modeling these anisotropies, any residual anisotropies

can be used to constrain DA(z)H(z) (Alcock & Paczynski, 1979). If our assumed

H(z) or DA(z) models are incorrect then the distribution of objects will still appear

anisotropic after the bulk motion effects are removed. The magnitude of this resid-

ual anisotropy can be used to infer the true underlying cosmology (Padmanabhan

& White, 2008; Okumura et al., 2008).

Anisotropic information can be extracted from the redshift-space correlation

function and to a lesser extent from the redshift space power spectrum (Szalay et

al., 1998). If one imagines a wide angle survey, P (k) estimators that rely on a Fourier

transform from a Cartesian grid will suffer because an arbitrary wave vector (~k) will

not necessarily be parallel to the LOS (Cole, Fisher & Weinberg, 1994, 1995; Zaroubi
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et al., 1995; Szapudi, 2004). This means that each ~k mode will contain information

about both the LOS and transverse distributions. After averaging to obtain the

spherically averaged power spectrum, any anisotropies in the distribution of survey

objects will have been erased. Instead of taking a spherical average, one can also

analyze the full 3D P (~k) through Legendre decomposition into radial and angular

components. However, an infinite sum is required and applicability is limited to the

linear regime (Heavens & Taylor, 1995; Percival et al., 2004). Pair count estimators

for ξ(r), on the other hand, record the distribution of tracers accurately because

they record each pair’s angle to the LOS as well as their separation. This means

that any anisotropies in the distribution of galaxies will become obvious. Statistics

sensitive to anisotropic clustering are desirable as they offer us a means to probe

the underlying cosmology.

It is also aesthetically pleasing, to localize the acoustic information into a single

feature at the acoustic scale. This is true for ξ(r) but not for P (k), which has

oscillatory acoustic features.

Although all of the above mentioned disadvantages of ξ(r) and P (k) are minor,

it is still beneficial to derive a new statistic that does away with as many of the

above setbacks as possible. ωℓ(rs) is an example of such an alternative.

The organization of this chapter will be as follows. In §2.2, we introduce ωℓ(rs),

including its properties and computation. In §2.3, we describe the simulations,

halo occupation models and analysis methods we use to derive acoustic peak shifts

through implementation of the monopole ω0(rs). We demonstrate the mutual con-

sistency between the peak shifts measured from the same simulations using ω0(rs)

and P (k) in §2.4. This is indicative of the agreement we expect between distance

measures from ω0(rs) and P (k). We also show that with a reasonable finite fit-

ting range and our current choice of filter for computing ωℓ(rs), we can extract the
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same amount of acoustic information using either ω0(rs) or P (k) from equal volume

surveys. Finally, we state the main results of this chapter in §2.5. Details of the

matter and galaxy model P (k) results discussed in this chapter can be found in

Seo et al. (2010) and Mehta et al. (2011) respectively (hereafter referred to as S&M

collectively).

2.2 The ωℓ(rs) Statistic

2.2.1 Equations and Properties

We expand the angle dependence of the power spectrum and correlation function

out as a series of Legendre polynomials in µ = r̂ · ẑ = cos(θ), where θ is the LOS

angle:

ξ(r, µ) ≡
∑

ℓ

ξℓ(r)Lℓ(µ) (2.1)

∆2(k, µ) ≡ k3P (k, µ)

2π2
=
∑

ℓ

∆2
ℓ(k)Lℓ(µ) (2.2)

so that

ξℓ(r) = iℓ
∫

dk

k
∆2

ℓ(k)jℓ(kr) (2.3)

where jℓ is the spherical Bessel function of order ℓ and Lℓ is the Legendre polynomial

of order ℓ.

Imagine we have a filter, Wℓ(r, µ, rs) = Wℓ(r, rs)Lℓ(µ), which we take to be

compact and compensated (
∫

r2 dr Wℓ(r, rs) = 0) with a characteristic scale rs. We

define our statistic as the redshift-space correlation function, ξs(r, µ), convolved with

the filter as a function of filtering scale rs.

ωℓ(rs) ≡ iℓ
∫

d3r ξs(r, µ)Wℓ(r, rs)Lℓ(µ) (2.4)

=
4πiℓ

2ℓ + 1

∫
r2 dr ξℓ(r)Wℓ(r, rs) (2.5)

=

∫
dk

k
∆2

ℓ(k)W̃ℓ(k, rs) (2.6)
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with

W̃ℓ(k, rs) ≡ (−1)ℓ 4π

2ℓ + 1

∫
r2 dr Wℓ(r, rs)jℓ(kr) (2.7)

where the iℓ has been inserted for later convenience. By making the filter com-

pensated, we reduce the sensitivity to the poorly constrained power at large scales

and the dependence on the uncertain mean density in the sample. The correlation

function is defined such that ξ(r, µ) + 1 ∝ n−2 (Peebles, 1980). Integrating the left-

hand side of this equation against Wℓ(r, rs)Lℓ(µ)d3r results in ωℓ(rs) scaling directly

with n−2 following equation (2.4). The constant term integrates to 0 as the filter

is compensated. Hence, any uncertainty in n enters as a pure multiplicative offset

in ωℓ(rs), which is less likely to overwhelm the acoustic signature at large scales.

This in essence, eliminates sensitivity to the integral constraint, which is a small

effect to begin with. This feature of the filter also makes the statistic measured in

different subvolumes of a survey more independent. We expect that this will make

internal error estimates from methods such as bootstrap or jackknife more robust

(Padmanabhan et al., 2009). Some useful expressions for evaluating the filter are

given in Appendix 7.

Following Padmanabhan, White & Eisenstein (2007) we consider a low order,

smooth compensated filter. For simplicity we assume Wℓ is independent of ℓ, though

we could of course choose different weights for each multipole1. In terms of x ≡

(r/rs)
3, the filter

W (x) = (2x)2(1 − x)2

(
1

2
− x

)
1

r3
s

(2.8)

satisfies W (0) = W ′(0) = W (1) = W ′(1) = 0 and
∫

dxW (x) = 0. The suggested

form in configuration space (top panel of Figure 2.1) has a broad hump peaking

1For example, we could make the k-weight for ℓ = 0 and ℓ = 2 equal. Doing so facilitates

the computation of Q(r) = ξ2(r)
3/r2

R

r

0
ξ(r′)r′2dr′

−ξ0(r)
= 4/3β+4/7β2

1+2/3β+(1/5)β2 (Hamilton, 1992), when trans-

formed to rs space, since it involves both the monopole and the quadrupole. This ratio is useful for
estimating the anisotropic parameter β, however, it has limited applicability outside linear theory.
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Figure 2.1: (left) The filter Wℓ(r/rs) in configuration space. There is a broad hump
matching the width of the acoustic peak in ξ(r) which peaks at r ≃ 0.65 rs and
a sharp (negative) spike at 0.9 rs with a width on the order of 10%. A filter of
this shape will smear a feature, such as the acoustic peak in ξ(r), by only a small
amount which means that the acoustic information will be well localized in ωℓ(rs).
Its compensated nature implies that ωℓ(rs) is not sensitive to the integral constraint.

(right) The filter W̃ℓ(krs) for ℓ = 0. The insensitivity of this filter to large scales

is reflected in the fact that it is singly compensated and W̃ℓ ∼ k2 as k → 0. At
small scales W̃ℓ(krs) → cos(krs)/(krs)

4. This is a much more rapid drop-off than
observed in the kernel for ξ(r), which scales as (kr)−1. These properties of the filter
imply that ωℓ(rs) only probes a narrow range of scales in Fourier space, and that it
is insensitive to large scale fluctuations or poorly constrained small-scale structure.
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at r ≃ 0.65 rs that matches the width of the acoustic peak in ξ(r) and a sharp

(negative) spike at 0.9 rs of width O(10%). This filter will smear a feature, such as

the acoustic peak in ξ(r), by very little which means that the acoustic information

will be localized in ωℓ(rs), however, not as localized as in ξ(r). Obviously, given

sufficient signal-to-noise, measuring ωℓ(rs) for many rs values would allow resolution

in ξ(r) even below the intrinsic width of W (r/rs) (see §2.2.3).

With this choice of Wℓ the window function W̃ℓ can be computed analytically

(see Appendix for numerical details) or numerically via fast Hankel transforms. We

show W̃ℓ(krs) for ℓ = 0, in the bottom panel of Figure 2.1. Since the filter is singly

compensated, W̃ℓ ∼ k2 as k → 0, reflecting insensitivity to large scales. At small

scales W̃ℓ(krs) → cos(krs)/(krs)
4, a much more rapid convergence than evinced by

the kernel for ξ(r), which scales as (kr)−1. Thus ωℓ probes a narrow range of scales

in Fourier space and is insensitive to fluctuations on large scales or poorly measured

or modeled small-scale structure. One can choose the range of k to be sampled by

appropriate choice of rs: more information from high k modes can be included by

using smaller rs.

As an example, the linear theory monopole statistic ω0(rs) is plotted in Figure

2.2. Plotting r2
sω0 versus rs gives a convenient vertical range. The acoustic infor-

mation is mostly localized into a single dip around the acoustic scale (see §2.4.2.1).

2.2.2 Computation

It is possible to adapt ωℓ(rs) into a sum over unbinned pair counts for any sample of

mass tracers following the methods described in Padmanabhan, White & Eisenstein

(2007); there is no need to first compute ξ(r, µ) via binning of data. Pair counting

allows us to record each galaxy’s angle to the LOS (µ) accurately. Hence, like ξ(r),

ωℓ(rs) is sensitive to any anisotropies of the tracer distribution in clusters (discussed

in §2.1).
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Figure 2.2: Linear theory monopole statistic ω0(rs). The acoustic information can
be seen around the acoustic scale, mainly localized into a single dip feature.
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The redshift-space correlation function can be estimated as

ξs(r, µ) =
DD(r, µ)

RR(r, µ)
− 1, (2.9)

where DD(r, µ) is the number of data tracer pairs separated by r and have LOS

angle corresponding to µ. RR(r, µ) is the analogue for randomly distributed points,

normalized to the data counts by a factor of N2
D/N2

R. Here, ND and NR are the

total number of data and random points respectively. When analyzing observational

data, the number of random points needs to be much larger than the number of data

points to keep the shot-noise in RR smaller than that in DD, especially at small

r. For simulation data, however, it is not necessary to use a very large number of

random points to compute RR smoothly at small scales (elicited below).

Equation (2.9) implies that Equation (2.4) can be rewritten as

ωℓ(rs) = iℓ
∫

d3rWℓ(r)Lℓ(µ)
DD(r, µ)

RR(r, µ)
. (2.10)

The −1 integrates to 0 due to the compensated nature of the filter.

The RR piece is purely geometrical and is dependent only on the survey geometry

(encoded in Φ(r, µ)) and the number of random points. Hence we can write RR as

RR(r, µ) = 2πnDNDr2Φ(r, µ)drdµ (2.11)

where nD is the number density of data points which is easily calculable for surveys

with well defined boundaries. The above equation defines Φ(r, µ) to be any mismatch

between infinite sized surveys/simulations and finite sized ones due to the presence

of boundaries. The nDND factor is due to the normalization of the RR counts as

mentioned above. For observations, Φ(r, µ) can be computed via binning methods

and then fit using a smooth function Φ̂(r, µ). Note that the binning mentioned here

is only required in the computation of the RR counts; there is no need to bin the
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data. In the case of simulations in a periodic box, Φ̂(r, µ) is constant as the volume

is effectively infinite.

With these points in mind, we can now pick arbitrarily small bins when com-

puting the DD counts since RR has been approximated by a smooth function and

hence does not suffer from shot-noise induced through pair-counting. As is such, we

may employ a binning scheme in which there is either zero or one DD pair per bin.

This step reduces the integral in Equation (2.10) to a sum over DD pairs as in

ωℓ(rs) = iℓ
∑

i∈DD

Wℓ(ri)L(µi)

nDNDV Φ̂(ri, µi)
. (2.12)

Since the estimator can be written as a summation, there is no longer a need to bin

data at all.

2.2.3 Covariance Matrix

Since ωℓ does not require the binning of data, we can in principle estimate it at

as many rs values as we wish without affecting the signal in the adjacent values:

there is no bin which is made smaller. However adjacent points become increasingly

correlated as the rs spacing decreases, compromising the usefulness of very fine

sampling.

In the Gaussian limit, the covariance matrix is

Cov [ωℓ(rs), ωℓ′(r
′
s)] =

2(2ℓ + 1)(2ℓ′ + 1)

V

×
∫

k2dk

2π2
W̃ℓ(krs)W̃ℓ′(kr′s)Iℓℓ′(k) (2.13)

with

Iℓℓ′ =
1

2

∫
dµLℓ(µ)Lℓ′(µ)

[
∑

L

PL(k)LL(µ) + ℵ
]2

(2.14)

where
∑

PL(k)LL(µ) is the legendre decomposition of the full 3D power spectrum

P (~k) and ℵ is shot-noise. Assuming Poisson shot-noise, ℵ = n̄−1, where n̄ is the

number density of the mass tracer.
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2.2.4 Summary of Key Features

We conclude this section with a summary of the key features and advantages of

ωℓ(rs) over ξ(r) and P (k) estimators.

1. ωℓ(rs) has a compensated filter that reduces sensitivity to poorly constrained

large scale power and hence the integral constraint. ξ(r), on the other hand,

experiences these problems. The compensated filter also makes ωℓ(rs) mea-

sured in different subvolumes of the survey more independent which is impor-

tant for attaining robust error estimates from methods such as bootstrap and

jackknife.

2. The filter is approximately compact in both configuration and Fourier space.

The smoothness in configuration space leads to the steep drop-off at high k in

Fourier space. This effectively minimizes the impact of large k or small scale

power which is not well constrained in large cosmological surveys. The filter is

localized in configuration space which means that, unlike in P (k), the acoustic

information is localized in ωℓ(rs). However, it is not as localized as in ξ(r) (see

§2.4.2.1).

3. Like ξ(r), ωℓ(rs) can be easily adapted into a pair count statistic, so the

relative positions of tracers and each pair’s angle from the LOS is accurately

recorded. Hence, it estimates the underlying galaxy distribution without the

need to deconvolve a window function (as in the case of P (k)) and is sensitive

to any anisotropies in the clustering of tracers. The anisotropies can be used

to determine the underlying cosmology. P (k) estimators do not typically allow

this type of analysis.

4. There is no need to bin data when computing ωℓ(rs), unlike when estimating

ξ(r) and P (k).
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While the setbacks of traditional P (k) and ξ(r) estimators are minor, it is bene-

ficial to have a statistic like ωℓ(rs) which combines many of the advantages of both.

2.3 Simulations and Analysis Methods

A major goal in developing this new statistic is to use it for better measuring and

calibrating the acoustic scale. The monopole statistic ω0(rs) is especially useful in

this regard as it is a direct map from the traditional 2-point correlation function and

power spectrum. Therefore, any results obtained from BAO analysis via these three

statistics is readily comparable. As with the quadrupole of the power spectrum P2(k)

(Padmanabhan & White, 2008), anisotropic BAO analysis can be performed using

the quadrupole ω2(rs). However, as the main goal of this chapter is to give a broad

introduction to the ωℓ(rs) statistic and a simple demonstration of its application,

we defer detailed discussion of ω2(rs) and anisotropic BAO to a future paper (the

analysis of anisotropic correlation functions is discussed in 5).

In this section, we implement ω0(rs) through the use of pure dark matter N-

body simulations. It is possible to model a variety of different galaxy populations

and biases through application of appropriate HODs to the halos found in the sim-

ulations. This is important in demonstrating the robustness of the ωℓ(rs) statistic

over a diverse set of galaxy populations. We compute ω0(rs) for dark matter and

the mock galaxy populations created via the HODs, and demonstrate how it can

be used to measure the shift in the acoustic peak. This quantity is important in

constraining the precise size of the acoustic scale, which may be slightly different

from that predicted by linear theory due to nonlinear structure growth. In order

to quote the shift with accurate errors, we use a resampling technique described in

§2.3.4 which gives us a large number of shifts from which to calculate a mean and

a standard error of that mean.
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2.3.1 Simulations

Our simulations were performed using a code developed by Metchnik and Pinto

which employs a new method (Metchnik & Pinto, 2010) to compute N-body forces

under periodic boundary conditions. Rather than resorting to the Fourier methods

of PM schemes or using Ewald sums to represent periodicity, this new method

represents periodicity directly, expressing the force on a particle as due to the rest

of the simulation volume and an infinite sum over its periodic images.

This is made more efficient by partitioning the computational domain into a

three-dimensional grid. The acceleration on particles within a grid cell is divided

into two parts: a near field and a far field. The near field is that due to the other

particles in the cell and to particles in the adjacent 26 cells. In these calculations,

the near-field acceleration was computed using the direct, O(N2) method, with

Plummer softening.

The far field acceleration on particles in the cell due to each more distant cell on

the grid is represented as a Taylor series expansion based on the multipole moments

in the distant cell. The contribution from all periodic images of the distant cell is

included by recognizing that the multipole moments in a cell are identical to those

in all of its images. Thus, the sum over images depends only on the (fixed) geometry

of the grid and need be performed only once. The (relatively) small set of values

which results provides a simple and rapidly-evaluated relation between the multipole

moments in distant grid cells and the Taylor coefficients of the expansion for the

acceleration in a given cell, all under periodic boundary conditions. The acceleration

due to all of the periodic images of the cell and its 26 neighbors is included in a

similar manner.

The calculations described here used order-16 expansions, providing an overall

force accuracy per particle which agrees with Ewald summation to better than six
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decimal digits. Overall, the method is significantly faster and requires significantly

less memory than other methods for computing accelerations in large, periodic N-

body problems, while providing accelerations to machine precision for all particles.

Time integration was performed using a standard kick-drift-kick algorithm, using

independent time steps for each particle.

We derive our results in redshift-space at z = 1 from a set of 44 simulations with

10243 dark matter particles in each. The simulations were performed in 1h−1 Gpc

periodic boxes with the WMAP5+SN+BAO best-fit cosmological parameters: Ωm =

0.279, ΩΛ = 0.721, h = 0.701, Ωb = 0.0462, ns = 0.96 and σ8 = 0.817 (Komatsu et

al., 2009) which implies a particle mass of 7.2 × 1010h−1M⊙. The initial conditions

are generated via the second-order Lagrangian perturbation theory code of Sirko

(2005) at z = 50 with no extra power for the box scale.

2.3.2 Halo Occupation Distributions

We use a simple friends-of-friends (Davis et al., 1985) method with a linking length

equal to 0.16 of the interparticle spacing to identify the collapsed dark matter halos

in our simulations. We then populate these halos with galaxies by applying simple

HODs based on the form

〈Ng(M)〉 = [1 + (M/Msat)
γ ]exp(−Mcen/M) (2.15)

where M is the halo mass, Mcen is the minimum mass for a halo to contain a central

galaxy, Msat is the minimum mass for a halo to contain at least one satellite, and

γ is an exponential parameter that we set to 1 (Guzik & Seljak, 2002; Berlind et

al., 2003; Kravtsov et al., 2004; Zheng et al., 2005). We assign a central galaxy to

a halo if M > Mcen, this is a good approximation to 〈Ncen(M)〉 = exp(−Mcen/M).

The central galaxy is taken to be at the halo’s center of mass and assigned the

center of mass velocity. If a halo is assigned a central galaxy, then the number of
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satellite galaxies is determined by generation of a random integer based on a Poisson

distribution with mean equal to 〈Nsat(M)〉 = (M/Msat)
γ. We then randomly pick a

corresponding number of halo particles and assign their positions and velocities to

the satellites.

In order to compare the peak shifts derived using ω0(rs) and P (k) in a range

of models, we apply three different HODs to our simulations. The properties of

these HODs are described in Table 2.1 and obtained by adjusting the values of

Mcen and Msat. We also list the properties of a dark matter (DM) only case that

is merely a 0.4% subsample of the particles in each simulation. We compute ω0(rs)

in redshift-space via the pair counting method detailed in §2.2.2 within the range

5h−1Mpc ≤ rs ≤ 200h−1Mpc using 5h−1Mpc spacing. We also compute σ8, the RMS

mass fluctuation within a 8h−1Mpc radius, using a similar pair counting method

derived from the configuration space equation for a general radius R (Zehavi et al.

(2005))

σ2
R =

∫ 2R

0

1

R3

[
3 − 9

4

r

R
+

3

16

( r

R

)3
]

r2ξ(r)dr. (2.16)

2.3.3 Fitting ω0(rs) to Measure the Peak Shift

We fit the redshift-space ω0(rs) using the form

Psim(k) = B(k)Pm(k/α) + A(k) (2.17)

where

B(k) =
(b2

1 + b2
2k + b2

3k
2)

1 + rscalek
(2.18)

and A(k) transforms into A(rs) = a1r
−9
s in rs space. Such a form for A(k) is mo-

tivated by the fact that we want to marginalize over the shape of the correlation

function at small scales (i.e., the contribution of the 1-halo term). Expanding Equa-

tion (2.8), we see that W (x) = (−4x5 + 2x4 − 8x3 + 2x2) 1
r3
s
. This implies that the
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Table 2.1: HOD properties. HODs are referred to by the designations under the “Model” heading throughout the
paper.

Model Total # Satellite Mcen Msat n̄ 2 n̄P0.2 ℵnonlin

of Galaxies1 Fraction (%) (h−1M⊙) (h−1M⊙) (h3Mpc−3)

DM 4 × 106 - - - 0.004 4.60 0.0

HOD1 2 × 106 5 1.4 × 1012 9.2 × 1013 0.002 5.78 450.0

HOD2 1 × 106 5 2.6 × 1012 1.5 × 1014 0.001 3.59 700.0

HOD3 3 × 105 5 6.4 × 1012 3.1 × 1014 0.0003 1.59 1550.0

1Number of DM particles in the DM only case.
2The nominal Poisson shot-noise is n̄−1.
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highest order term in rs is r−9
s . At small scales, this is the term that will dominate

in the transformation from ξ(r) to ω0(rs) as defined by Equation (2.4).

Pm(k) is the template power spectrum we use for our fitting. To account for the

degradation of the acoustic peak through nonlinear evolution and redshift distor-

tions, the template model Pm(k) is obtained from the linear power spectrum Plin(k)

at z = 1 by the modification

Pm(k) = [Plin(k) − Psmooth(k)]exp(−k2Σ2
nl/2) + Psmooth(k) (2.19)

where Psmooth is the dewiggled power spectrum described in Eisenstein & Hu (1998)

and Σnl is a nonlinear parameter used to degrade the peak (Eisenstein et al., 2005;

Tegmark et al., 2006; Crocce & Scoccimarro, 2006; Eisenstein, Seo & White , 2007;

Crocce & Scoccimarro, 2008; Matsubara, 2008a). To allow maximum flexibility

in our marginalization, we marginalize over Σnl and the other nonlinear nuisance

parameter in equation (2.18), rscale.

Our scale dilation parameter α represents the shift in the acoustic peak. Un-

der this formalism, α > 1 indicates a shift towards smaller scales and α < 1 in-

dicates a shift towards larger scales. Physically, α is the ratio between the lin-

ear theory acoustic scale (150 Mpc) to the measured acoustic scale. Since all the

terms in the fitting function are additive, the basis functions Pm(k/α)/(1 + rscalek),

kPm(k/α)/(1 + rscalek), k2Pm(k/α)/(1 + rscalek), and r−9
s for a fixed α, Σnl and

rscale can be easily mapped into rs space (if necessary) using equation (2.6). A

least-squares fit using the mapped basis functions is then performed against ω0(rs)

from the simulations to obtain values for the linear nuisance parameters b1, b2, b3

and a1. As we are interested in the acoustic feature, we use a fitting range of

30 ≤ rs ≤ 200h−1Mpc. For an rs spacing of 5h−1Mpc, this implies 28 degrees of

freedom in the fit, where the number of degrees of freedom is defined as the differ-

ence between the number of data points being fit and the number of parameters in
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Table 2.2: Fit results for each HOD model. Fitting range: 30 ≤ rs ≤ 200h−1Mpc.
σα is the error on the mean α of the 44 simulations.

Model α − 1 σα Σnl rscale χ2 bias 1 σ8

(%) (%) (per d.o.f) (b)

DM 0.0457 0.2333 6.66 19.99 0.92 1.25 0.63

HOD1 0.1065 0.2243 5.61 19.78 0.94 2.04 1.11

HOD2 0.1634 0.2449 5.85 19.98 0.86 2.28 1.25

HOD3 0.4897 0.3326 6.27 20.04 0.72 2.77 1.55

1Bias is not equal to 1 for the DM only case because we are working in redshift
space.

the fitting form.

We assume that the errors on ω0(rs) can be well approximated by the covariance

matrix C assuming Poisson shot-noise (see §2.3.4) with the addition of nonlinear

shot-noise (see equation (2.20) and surrounding text). We also assume that the

monopole (ℓ = 0) dominates P (~k) so that all higher order contributions to the power

spectrum are effectively zero. This amounts to computing C using P (~k) = Pm(k)

as the input power spectrum, where we take a fixed Σnl = 7.0h−1Mpc at z = 1 in

redshift-space following Seo et al. (2008). We normalize this power spectrum to the

amplitude of the redshift-space power spectrum through multiplication by the bias

squared defined initially as b2 = (σ8,case/σ8,matter)
2. The values for σ8,case are given

in Table 2.2 and σ8,matter = 0.506 in real space at z = 1 in linear theory. We want to

ensure that the input power spectrum to the covariance matrix calculation is as close

as possible to the simulation data so that the covariance matrix is a reliable estimate

of the errors. To do this, we marginalize over the average ω0(rs) of the 44 simulations

for each case to obtain a value for the leading order term that scales Pm(k): b2
1 in
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the fitting form of equation (2.18). We then iterate this marginalization and scale

b2 by the values of b2
1 obtained until the output b2

1 from this iterative fitting is close

to 1. We expect that scaling Pm(k) by this final value of b2 will approximate the

simulation data well and hence be valid input to the covariance matrix calculation

for the resampling techniques described in §2.3.4.

The shot-noise we enter into the calculation of C includes a nonlinear component

(quoted in Table 2.1) in addition to the Poisson shot-noise n̄−1 as described in Equa-

tion (2.13). This additional shot-noise is a result of nonlinear structure formation

on small scales. We estimate this nonlinear shot-noise as

ℵnonlin =

∫ rnonlin

0

4πr2[ξ(r) − ξlin(r)]dr (2.20)

where ξ(r) is the correlation function averaged over the 44 simulations for each

HOD, ξlin(r) is the linear correlation function at z = 1 and rnonlin is the scale above

which nonlinear effects become unimportant. We take rnonlin to be 10h−1Mpc. The

resulting ℵnonlin is a rough estimate of the excess small scale correlation due to

nonlinear evolution. Since it makes little difference whether all of this extra shot-

noise comes in at zero separation in r or through the extended effects of the one-halo

term, which is only important at small r, we assume the excess correlation to be

a spike at r = 0 for convenience. When transformed into k space, this gives a

constant and becomes extra white noise that we add on to every mode equally, in

addition to the Poisson shot-noise. For the subsampled DM case, the linear and the

measured correlation functions were sufficiently similar at 1-10h−1Mpc to warrant

taking ℵnonlin = 0 for this case. Alternatively, one can also account for nonlinear

shot-noise by computing the covariance matrix using the nonlinear power spectrum,

but this is more computationally challenging.

The χ2 likelihood indicator corresponding to the best-fit linear nuisance param-
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Figure 2.3: ω0(rs) averaged over all 44 simulations for HOD1 (black diamonds).
Overplotted are a fit obtained through the form in Equation (2.17) (red crosses) and
a 0th order fit in Pm(k/α) (purple dots), both over a range of 30 ≤ rs ≤ 200h−1Mpc.
One can see that the 0th order fit already appears quite good with χ2 = 2.20 per
dof. However, by introducing additional nuisance parameters, the quality of the fit
over the specified range improves further to χ2 = 0.94 per dof.

eters for fixed α, Σnl and rscale is then

χ2 = (~ω0 − ~m)T C−1(~ω0 − ~m) (2.21)

where ~ω0 is ω0(rs) measured from the simulations, ~m is the best-fit model and C−1

is the inverse of the covariance matrix. We compute the best-fit values of α, Σnl

and rscale by minimizing χ2 of the fits for the DM case and for each HOD using a

generalized reduced gradient method from IDL. We quote the bias for each case as

σ8,case/σ8,matter multiplied by the additional scaling factors of b1 described above.

We plot ω0(rs) averaged over all 44 simulations for HOD1 in Figure 2.3. Over-

plotted are the marginalization obtained through the form in Equation (2.17) and
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a 0th order fit obtained by just a rescaling of Pm(k/α), i.e. b2Pm(k/α) where b is

the only fit parameter. Although the 0th order fit already appears quite good, one

can see that introducing additional nuisance parameters improves the quality of the

fit even more over the fitting range. The χ2 per degree of freedom (dof) improves

from 2.20 to 0.94.

Using this fitting technique, we derive values of bias, α and associated errors for

each of our three HODs and our DM case via the resampling methods described in

the following section.

2.3.4 Resampling Methods

We use two different methods to measure the mean peak shift α and the scatter in

the mean σα for each case in Table 2.1. The first is a modified jackknife technique

in which we randomly select M out of N simulations at a time without replacement,

average their ω0(rs) and fit this average. We repeat this 1000 times and extract an

average α and a scatter in α. This scatter needs to be rescaled by an additional

factor of f =
√

M/
√

N − M in order to reflect the scatter associated with the mean

of α for N simulations. For our simulations we have N = 44 and take M = 22.

With this choice of M , f = 1 and so the scatter in α reflects the error in the mean

of α. This method is useful in that it provides us with a large set of α’s from which

we can accurately derive a mean α and σα.

The fit results for the subsampled DM case as well as for each HOD model

are quoted in Table 2.2. The average values of Σnl and rscale are also included

for completeness, however the focus of this chapter is on α. The values of α we

obtain are 1σ consistent with those derived using the perturbation theory results of

Padmanabhan & White (2009). The somewhat low value of χ2 per dof for HOD3

suggests that we are overestimating the amount of nonlinear shot-noise. We are

also approaching the shot-noise limited regime for HOD3 as evidenced by the fact
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Table 2.3: Difference in mean α between ω0(rs) and P (k).

Model 〈∆αωP 〉

(%)

DM 0.0516 ± 0.1205

HOD1 0.0076 ± 0.0672

HOD2 0.0205 ± 0.0600

HOD3 0.1035 ± 0.0665

n̄P0.2 ≈ 1.6. We note here that we used χ2 only to find the best-fit α for each HOD,

not to generate the errors. Hence, the fact that our reduced χ2 values are slightly

deviant from unity does not hinder the error estimation.

The second method we use is jackknife resampling. The results obtained using

this method are in good agreement with the first method. This indicates that the

error estimates obtained using our first method are robust in comparison to more

traditional methods.

By using these resampling techniques, any non-Gaussian effects not accounted

for by assuming a Gaussian covariance matrix while fitting (as in §2.3.3) will be

reflected in σα.

2.4 Comparison to the Power Spectrum

2.4.1 Comparison from Simulations

An important step in implementing this new statistic is to show that it produces

consistent results when compared to established methods and can therefore be an

effective calibrator of the acoustic scale. We do this by comparing the peak shifts

measured from the same set of simulations via the new ω0(rs) statistic and the
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Figure 2.4: α from ω0(rs) versus α from P (k) for HOD2 (top) and DM (bottom).
The data points are from a resampling technique in which we randomly pick M = 22
simulations out of N = 44 total and fit the averaged ω0(rs) from these M simula-
tions. We repeat this 1000 times and hence obtain 1000 values of α. The scatter
on α needs to be rescaled by

√
M/

√
N − M to reflect the true scatter on the mean.

For our choice of M , this scaling factor is equal to 1. Hence the scatter in the
plot truly reflects the scatter on the mean of α. The red cross marks the mean α
values with their associated errors. The central grey line has unity slope and passes
through the mean. The two outer grey lines delineate the 1σ boundaries associated
with ∆αωP . As the data points lie largely in between the 1σ lines with a slope
similar to unity for both HOD2 and the DM case (see Table 2.3), we conclude that
the two α sets are consistent with each other. The same correlation is observed for
HOD1. HOD3 shows 1.6σ agreement between ω0(rs) and P (k). This slightly larger
discrepancy may be due to the fact that shot-noise is becoming significant in this
low number density case. Also, shot-noise may affect P (k) and ω0(rs) differently
or the nuisance parameters may not be fully handling the scale-dependence of a
high-bias HOD such as HOD3. The large scatter in the DM case is likely due to the
subsampling of matter in the computation of ω0(rs) but not in P (k). The overall
agreement between the ω0(rs) and P (k) results imply that distance measures will
be consistent between the two.
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traditional P (k) method (see S&M for details).

As we use the same 1000 random sets of M simulations as S&M, there should be

a 1:1 correspondence between the α’s derived from ω0(rs) and P (k) for the DM case

and for each HOD. It should be noted that S&M use different P (k) fitting forms from

the one detailed in §2.3.3. They employ two fitting forms, both of which can also

be described by equation (2.17). The first form has B(k) as a 2nd order polynomial

and A(k) as a 7th order polynomial. The second form uses Pade approximants

for B(k), i.e., B(k) = b0(1 + c1k + c3k
2 + c5k

3)/(1 + c2k + c4k
2) and a 2nd order

polynomial for A(k). We have chosen a different form in this work to induce better

convergence of the integral from Fourier space to rs space while transforming the

basis functions. We compare the α’s measured from ω0(rs) against those measured

from P (k) by Seo et al. (2010) (DM) and Mehta et al. (2011) (HODs) using the

first form. It should also be noted here that the P (k) results obtained for the DM

case by Seo et al. (2010) utilize the full DM sample whereas we have subsampled to

reduce computation time in this work. The methodology used to derive the P (k)

results are described in detail in Seo et al. (2010).

Figure 2.4 shows α from ω0(rs) versus α from P (k) for the 1000 fit iterations

performed on HOD2 (top) and DM (bottom). The red cross indicates the mean

α values with their associated errors. The central grey line is a line with slope

unity that passes through the mean. The two outer grey lines indicate the 1σ

boundaries associated with ∆αωP = αω −αP . The mean difference between αω and

αP along with the standard deviation is quoted in Table 2.3 under 〈∆αωP 〉 for the

DM case as well as each HOD case. The plots indicate that the correlation between

αω and αP is 1σ consistent with a line of slope unity that has a y-intercept of 0

for both HOD2 and the DM case. This implies that the two α sets are consistent

with each other. The same holds for HOD1 as evidenced through the table, but
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HOD3 is slightly more deviant with 1.6σ agreement between ω0(rs) and P (k). The

larger discrepancy between the HOD3 results may be due to the fact that shot-

noise is becoming significant in this case (as shown in §2.3.4). It could also be that

shot-noise affects P (k) and ω0(rs) differently or the nuisance parameters are not

fully handling the scale-dependence of a high-bias HOD such as HOD3. The large

scatter in the DM case is likely due to the fact that we have subsampled the matter

in our computation of ω0(rs) but not in P (k). The α’s from most of the cases

are 1σ consistent between ω0(rs) and P (k), indicating that distance measures will

be consistent between the two statistics. This also indicates that any systematics

introduced by using the different fitting forms for P (k) and ω0(rs) are minor. Hence

we conclude that ω0(rs) is a well-tuned statistic for analysis of BAOs.

2.4.2 Theory Constraints on σα

As we wish to promote ω0(rs) as an alternative method for analyzing the BAO, it

is necessary to show how much acoustic information can be extracted from ω0(rs)

relative to P (k) and ξ(r) for surveys of the same size. If our fitting ranges were

infinite, then by the definitions in §2.2, all three estimators should yield the same

amount of BAO information. However, in reality, fitting ranges are finite.

We investigate the effects of this by shifting the acoustic feature in the linear

theory ω0(rs), P (k) and ξ(r) by a given α and then running our fit algorithms to see

how well we can recover this input α. For ω0(rs) we fit between rs = 30-210h−1Mpc

in rs spacings of 2.5h−1Mpc; for P (k) we fit between k = 0.0-1.2hMpc−1 in log(k)

spacings of ∼ 0.002; and for ξ(r) we fit between r = 20-200h−1Mpc in r spacings

of 1h−1Mpc. We use the same fitting technique as described in §2.3.3 but with

different forms for B(k) and A(k) that are then transformed to r and rs space to

fit ξ(r) and ω0(rs) respectively. This means that the fitting forms for P (k), ξ(r)

and ω0(rs) all derive from the same B(k) and A(k) functions. By enforcing this
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Figure 2.5: χ2 versus α for fits in ω0(rs), P (k) and ξ(r). We shift the acoustic feature
from linear theory by a given α (here αgiven = 1.0) and run our fit algorithms to see
how well we can recover this input. For ω0(rs) we fit between rs = 30-210h−1Mpc,
for P (k) we fit between k = 0.0-1.2hMpc−1 and for ξ(r) we fit between r = 20-
200h−1Mpc. The parabolic shape of the curves is due to the fact that ω0(rs), P (k)
and ξ(r) are derived from a Gaussian random field in linear theory. The width
of the parabola at χ2 = 1 is then the theoretical σα of the fit. The ω0(rs) and
P (k) curves overlap nicely, implying that the σα ratio between ω0(rs) and P (k) is
∼ 1. This indicates that for the given finite fitting ranges, ω0(rs) and P (k) contain
equal amounts of acoustic information (trivially true for infinite fitting ranges by
definition of ω0(rs), however, real surveys are finite in size). Hence, the same amount
of acoustic information can be obtained through either ω0(rs) or P (k) analysis of
equal volume surveys.
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consistency between fitting forms, any potential systematics that may arise due to

the use of different fitting forms for each statistic can be avoided.

We pick B(k) = b, where b is the large-scale bias, and A(k) to be the cold dark

matter-only power spectrum multiplied by a set of cubic spline functions specified

at k = 0.01-1.09hMpc−1. The spline points are picked so that seven of them are

logarithmically spaced in the range k = 0.01-0.25 and seven of them are linearly

spaced in the range k = 0.25-1.09 giving a total of 14 spline points. The basis

functions specified by the small k spline points are necessary to allow flexibility

in the marginalization of ω0(rs) at large scales. The derivative is also specified at

the first spline point to derive an additional spline function. The spline functions

are taken to be natural (i.e., second derivative equal to 0) at the first and last

spline points, beyond which linear extrapolations are implemented. This choice of

A(k) ensures convergence when transformed to rs space and makes the fits in P (k),

ξ(r) and ω0(rs) readily comparable. We assume a survey volume of 1h−1 Gpc with

ℵ = 1000 (i.e., one million particles). As a cross check, we confirmed that this new

fitting form does in fact give similar results to the form used in §2.3.3.

Figure 2.5 plots the χ2 versus α for ω0(rs), P (k) and ξ(r). Here the input α is

equal to 1. If ω0(rs), P (k) and ξ(r) are derived from a Gaussian random field as they

are in linear theory, we would expect that χ2 versus α be parabolic as shown in the

figure. The width of the parabola at χ2 = 1 is then the theoretical σα from the fit.

The overlap between the ω0(rs) and P (k) curves indicates that the ratio of σα for

ω0(rs) to P (k) is ∼ 1. This means that for the given fitting ranges ω0(rs) and P (k)

contain equal amounts of acoustic information. Since volume is proportional to χ2

which is proportional to σ−2, an important implication is that we are able to obtain

the same amount of acoustic information using either ω0(rs) or P (k) analysis of

equal volume surveys. We emphasize here that the results presented in this section
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assume idealized linear theory forms for P (k), ξ(r) and ω0(rs). In practice, numerous

physical and observational effects distort the measured statistics from these ideals.

However, we expect that the features described in §2.2 will reduce the impact of

troublesome observational effects in any BAO analysis using ω0(rs).

2.4.2.1 Locating the Acoustic Information

It is useful to track down where the acoustic information lies and how it changes with

α in ω0(rs), ξ(r) and P (k). This is reflected in the derivatives dω0/dα, dξ/dα and

dP/dα after marginalizing out the broadband shape. To do this, we calculate the

residuals from the P (k) fits described in §2.4.2 for α = 0.996 and α = 1.004. These

residuals should be representative of the acoustic signature after the broadband

shape has been marginalized out. We then take dP/dα as the difference between

these residuals divided by 1.004 − 0.996 = 0.008. The transformations of dP/dα

into rs and r space then give us dω0/dα and dξ/dα respectively. We have plotted

dP/dα in the top panel of Figure 2.6, dξ/dα in the middle panel and dω0/dα in

the bottom panel. If one plots the ratio of dP/dα to P (k)/k, one is left with the

approximate shape of the signal-to-noise ratio 2 (SNR). This is plotted in the top

right-hand corner of the top panel in Figure 2.6. One can see that the SNR is small

at k < 0.05hMpc−1, indicating that the small k ringing in dP/dα is merely noise

from the spline basis functions attempting to match the shape of P (k) at these

scales, and is not indicative of the shift in acoustic information with α. The shifting

of the acoustic information with α is only truly evident at k > 0.05hMpc−1 where

the SNR is larger. It is evident from these plots that the acoustic information is

not as localized in ω0(rs) as in ξ(r), but it is still reasonably well localized. The

bottom panel of Figure 2.6 indicates that the optimal fitting range that will include

2The noise term σP = P (k)/
√

dN where dN = k2dk is the number of modes out to k. For
constant increments in k, dN ∝ k2 and hence σP ∝ P (k)/k
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all of the acoustic information encoded in ω0(rs) is somewhere within the range

rs = 30-300h−1Mpc.

The top panel of Figure 2.7 shows how σα changes as the minimum rs of the

fitting range is stepped up from 30-80h−1Mpc with the maximum rs of the fitting

range fixed at 300h−1Mpc. The bottom panel of Figure 2.7 shows how σα changes

as the maximum rs of the fitting range is stepped down from 300-120h−1Mpc with

the minimum rs of the fitting range fixed at 30h−1Mpc. The regions of the plots

where σα begins to modulate are blown up for clarity. One can see that when

the minimum of the fitting range is larger than 40h−1Mpc, σα begins to deviate,

indicative of missing some of the acoustic information. This also happens when the

maximum of the fitting range is smaller than 200h−1Mpc. Hence, the minimum

fitting range that allows one to extract all of the acoustic information appears to

be rs = 40-200h−1Mpc. Hence, to ensure we are encapsulating all of the acoustic

information, we picked the fitting range to be rs = 30-210h−1Mpc in Figure 2.5.

2.5 Conclusions

We have presented a new statistic ωℓ(rs) for analyzing baryon acoustic oscillations.

This new statistic is advantageous over the traditional methods used to estimate

ξ(r) and P (k) as it does away with many of their setbacks. Estimators of ξ(r) are

sensitive to poorly measured large scale power through effects such as the integral

constraint, whereas the compensated nature of the filter Wℓ(r) used to compute

ωℓ(rs) circumvents this problem. We expect that this feature of the filter will also

make ωℓ(rs) measured in different subvolumes of a survey more independent which

makes error estimation methods such as bootstrap and jackknife more robust. Esti-

mators of P (k) give the true density field convolved with a window function making

the measured statistic biased. Attempting to deconvolve the window function intro-
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Figure 2.6: (top left) dP/dα calculated from the residuals of the P (k) fits after
marginalizing out the broadband shape. The change in P (k) with α captured by
dP/dα should correspond to how the acoustic information is shifted as α changes.
The ratio of dP/dα to P (k)/k approximates the shape of the signal-to-noise ratio
and is shown in the top right-hand corner of the plot. The fact that the ratio is very
small at k < 0.05hMpc−1 indicates that all the ringing in dP/dα at these scales is
just noise from the spline basis functions attempting to match the broadband shape
of P (k) at these scales. Hence, this small k ringing does not actually reflect the
shifting of acoustic information as α changes. The ratio is larger for k > 0.05hMpc−1

indicating that the oscillations in dP/dα at these k truly reflect the shifting of
acoustic information with α. (top right) dξ/dα obtained by transforming dP/dα.
This shows where the acoustic information is located in configuration space and
how it changes with α. (bottom) dω0/dα obtained by transforming dP/dα to rs

space. This shows where the acoustic information is located in rs space and how
it changes with α. Comparison with the middle panel indicates that the acoustic
information is not as localized in ω0(rs) as it is in ξ(r), however, it is still reasonably
well localized. All of the acoustic information is located within rs ∼ 30-300h−1Mpc,
indicating that the optimal fitting range for ω0(rs) is somewhere within these limits.
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Figure 2.7: (left) Plots how σα changes as the minimum rs of the fitting range is
stepped up from 30-80h−1Mpc with the maximum rs of the fitting range fixed at
300h−1Mpc. The deviation of σα at rs,min larger than 40h−1Mpc indicates that
some of the acoustic information is being missed by these fitting ranges. (right)
Plots how σα changes as the maximum rs of the fitting range is stepped down from
300-120h−1Mpc with the minimum rs of the fitting range fixed at 30h−1Mpc. The
deviation of σα at rs,max smaller than 200h−1Mpc indicates that some of the acoustic
information is being missed by these fitting ranges. The above analysis implies that
in order to extract all of the acoustic information, one needs to fit between rs = 40-
200h−1Mpc at minimum.
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duces artificial smoothing at small separations in k due to their near delta function

shapes in real observational surveys. ωℓ(rs), on the other hand, does not suffer

from this as it is a pair count statistic. Pair counting estimators allow us to record

the relative locations of tracer pairs as well as their angles from the LOS direction.

This provides us with an accurate map of the underlying galaxy distribution. The

fact that LOS angle is recorded also means that any anisotropic clustering should

be apparent in ωℓ(rs). Hence we expect that it can also be used to probe the un-

derlying cosmology. In addition, there is less need to worry about binning related

issues when computing ωℓ(rs) as we never need to bin the data. The smoothness

of the filter in configuration space causes the rapid fall-off of the filter in Fourier

space. This reduces the impact of large k modes or small scales which are not well

constrained in large cosmology surveys. The localized nature of Wℓ(r) is conducive

to minimal smearing of the acoustic information so that it is mostly concentrated

in a single dip around the acoustic scale. This translates to a cleaner representation

of the acoustic information when plotted, as opposed to the oscillatory features of

P (k).

We also showed that with the present form for Wℓ(r) and a finite fitting range

encompassing the acoustic scale, it is possible to extract the same amount of acoustic

information using either ω0(rs) or P (k) from equal volume surveys. It is important

to note that these results were obtained through analysis of idealized linear theory

forms for P (k), ξ(r) and ω0(rs). In practice, the measured forms of these statis-

tics are distorted by various physical and observational effects. However, we expect

that the features described in §2.2 will reduce the impact of troublesome observa-

tional effects in any BAO analysis using ω0(rs). We also demonstrated where the

acoustic information is located in ω0(rs), ξ(r) and P (k) and how it changes with α.

From this analysis, the minimum fitting range required to extract all of the acoustic
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information from ω0(rs) appears to be rs = 40-200h−1Mpc.

We compared the acoustic peak shifts derived using ω0(rs) to those derived

using P (k) for a pure DM case as well as for three halo based galaxy models. The

results for the DM and the higher number density cases are all much better than 1σ

consistent with each other. The low number density case is slightly deviant with 1.6σ

agreement between ω0(rs) and P (k). This may be a result of approaching the shot-

noise limited regime or our lack of understanding of shot-noise in general and how it

may affect P (k) and ω0(rs) differently. It may also be caused by our fitting form not

handling the scale-dependence of high-bias models in full. The general consistency

between ω0(rs) and P (k) is encouraging and implies that distance measures will be

consistent between the two methods. From this and the features listed above, we

conclude that ω0(rs) is a well-tuned new statistic for BAO analysis.
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Chapter 3

A 2% Distance to z = 0.35 by Reconstruction Baryon Acoustic

Oscillations

We present results from fitting the baryon acoustic oscillation (BAO) signal in the

correlation function obtained from the first application of density-field reconstruc-

tion to a galaxy redshift survey, namely, the Sloan Digital Sky Survey (SDSS) Data

Release 7 (DR7) luminous red galaxy (LRG) catalogue. Reconstruction works to

partially remove the effects of non-linear structure growth on the BAO by recon-

structing the linear matter density field from the observed galaxy density field using

the continuity equation. The algorithm we employ is an extension from that first in-

troduced by Eisenstein et al. (2007), including the effects of survey geometry as well

as redshift-space distortions. We also introduce more careful approaches for mea-

suring the acoustic scale from the data using suitable covariance matrix and fitting

models for galaxy correlation functions. Our covariance matrix technique guarantees

smooth diagonal and off-diagonal terms by fitting a modified Gaussian covariance

matrix to that calculated from mock catalogues. Our proposed fitting model is

effective at removing broadband effects such as redshift-space distortions, scale de-

pendent bias and any artifacts introduced by assuming the wrong model cosmology.

These all aid in obtaining a more accurate measurement of the acoustic scale and its

error. We validate our reconstruction and fitting techniques on 160 mock catalogues

obtained from the LasDamas simulations. We find that the nonlinear BAO damping

scale Σnl is reduced from 8.1h−1Mpc to 4.4h−1Mpc in the LasDamas mocks after

reconstruction. This sharpening of the BAO peak allows us to centroid it better

leading to a factor of 1.6 reduction in the scatter between sound horizon measure-

ments obtained from the mocks. We then apply these techniques to the DR7 LRG
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sample and find that the error on the acoustic scale decreases from ∼ 3.5% before

reconstruction to ∼ 1.9% after reconstruction, a factor of 1.8. We also see an in-

crease in our BAO detection confidence from ∼ 3σ to ∼ 4σ after reconstruction with

our confidence level in measuring the correct acoustic scale increasing from ∼ 3σ to

∼ 5σ. Using the mean of the acoustic scale probability distributions produced from

our fits, we find Dv(z)/rs = 8.89 ± 0.31 before reconstruction and 8.88 ± 0.17 after

reconstruction where z = 0.35 is the median redshift of the LRG sample.

3.1 Introduction

The baryon acoustic oscillations (BAO) lie at sufficiently large scales such that

they are not significantly affected by non-linear structure growth, which dominates

the complicated formation of stars and galaxies at small scales. However, in the

present era of precision cosmology, these small effects are becoming increasingly

more important to quantify. An understanding of these effects can be achieved

through perturbation theory-based approaches as well as using full cosmological

simulations (Seo & Eisenstein, 2003; Jeong & Komatsu, 2006; Huff et al., 2007;

Guzik, Bernstein & Smith, 2007; Eisenstein, Seo & White , 2007; Angulo et al., 2008;

Crocce & Scoccimarro, 2008; Smith et al., 2008; Seo et al., 2008; Padmanabhan &

White, 2009; Seo et al., 2010; Mehta et al., 2011). These studies have found that

non-linear structure growth has 2 notable effects on the BAO, namely a smearing

effect and a shifting effect. Seo et al. (2008, 2010) & Mehta et al. (2011) have shown

that any shifting of the BAO is small, on the ∼ 0.5% level, which is well below the

statistical precision of any current BAO distance measures. However, the smearing

of the acoustic feature can significantly degrade our ability to accurately centroid

the BAO, which results in a poorer measurement of the acoustic scale.

The BAO smearing is well understood (Eisenstein, Seo & White , 2007; Crocce
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& Scoccimarro, 2008; Matsubara, 2008a,b; Padmanabhan & White, 2009; Seo et

al., 2010) and originates from large-scale gravitational flows at small scales (∼

20h−1Mpc). It can be modeled as a Gaussian damping of the BAO with an associ-

ated smoothing scale of Σnl (Eisenstein, Seo & White , 2007). Since the origin of

this smearing is gravitational and we understand gravity reasonably well, Eisenstein

et al. (2007) proposed a method to “run gravity backwards” in order to partially

undo these non-linear effects on the matter density field. This procedure is known

as reconstruction and effectively reverses the smearing of the BAO feature. Recon-

struction has been tested extensively on N-body simulations (Padmanabhan et al.,

2009; Noh et al., 2009; Seo et al., 2010; Mehta et al., 2011) and has been shown

to sharpen the BAO feature which simultaneously improves distance constraints.

We emphasize here that reconstruction is not a deconvolution of non-linear effects

from the 2-point statistics used to measure the clustering of galaxies such as the

correlation function. The operation is performed on the measured matter density

field itself.

The work outlined in this chapter demonstrates the first application of recon-

struction to a galaxy redshift survey. The Sloan Digital Sky Survey (SDSS) Lu-

minous Red Galaxy (LRG) Data Release 7 (DR7) sample is currently the largest

dataset for performing low redshift (z = 0.35) BAO measurements and hence we will

use it for our reconstruction here. This paves the way for applying reconstruction

to future BAO surveys such as the Baryon Oscillation Spectroscopic Survey (see

Chapter 4).

Since the goal of all BAO galaxy surveys is to measure the acoustic scale to

high precision, we also intend for this chapter to present a viable procedure for

attaining this goal. We include a discussion of the necessary statistical tools, such

as a new method for deriving a reliable, smooth covariance matrix, and a robust
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fitting framework for measuring the acoustic scale. We use our mock catalogues

to demonstrate that making slight adjustments to our fiducial model parameters

such as Σnl (used to model the degradation of the BAO signal due to non-linear

structure growth), the fitting range, the number of marginalization terms and the

input cosmology, do not alter the measured acoustic scale. A similar exercise is also

performed for various reconstruction parameters with likewise consistent results.

This indicates the robustness of our techniques.

Using these tools and the DR7 LRG sample, we measure the acoustic scale to

3.5% before reconstruction and 1.9% after reconstruction. Our post-reconstruction

result is the highest precision measurement of the acoustic scale at z = 0.35 obtained

through galaxy surveys to date. Without reconstruction, we would need to increase

the survey volume by nearly a factor of 3 to achieve this same factor of 1.8 reduction

in the error. We also find that both measures of BAO significance we consider

improve by at least 1σ after reconstruction.

The contents of this chapter will be as follows. In §3.2 we introduce the Las-

Damas and DR7 datasets used in this chapter. §3.3 details the methods we use

to measure the acoustic scale including a discussion of reconstruction, covariance

matrices and fitting models. §3.4 gives a qualitative discussion and comparison of

the effects of reconstruction on the overall shape of the real and redshift-space cor-

relation functions based on results from mock catalogues. §3.5 & §3.6 present the

fitting results to the LasDamas mocks in redshift space and real space respectively

with a more quantitative discussion of the effects of reconstruction on the mea-

surement of the BAO scale. Finally we apply reconstruction and present our key

distance constraints from the DR7 LRG data in §3.7. We conclude in §3.8. §3.3.1

& §3.4 in addition to the reconstruction robustness tests described in §3.5 & §3.7

are paraphrased from Padmanabhan et al. (2012a).



76

3.2 Datasets

3.2.1 Simulations

We use the Large Suite of Dark Matter Simulations (LasDamas; McBride et al. 2012,

in prep) to calibrate our reconstruction parameters, fitting template and covariance

matrix. The LasDamas collaboration 1 has provided publicly available mock galaxy

catalogues based on these simulations for the Sloan Digital Sky Survey (SDSS) data

release 7 (DR7) luminous red galaxy (LRG) sample.

The LasDamas simulations were run assuming a flat ΛCDM cosmology with

Ωb = 0.04, Ωm = 0.25, h = 0.7, ns = 1.0 and σ8 = 0.8. Although various box

sizes were implemented, the 40 simulations used to construct the LRG mocks were

2.4h−1 Gpc on a side with 12803 particles in each. The initial particle positions

were set using second-order Lagrangian perturbation theory at z = 49. To construct

mock galaxy catalogues from the simulations, the dark matter halos were populated

according to halo occupation parameters tuned to match the observed clustering

of the DR7 LRGs. In addition, the mock catalogues include observational effects

such as redshift-space distortions and mimic the angular selection function of the

LRG sample. The redshift range covered by the mocks is 0.16 < z < 0.44. We

note that this is slightly different to the flux-limited LRG sample described in the

following section which will be employed in this study. To address this point, we

downsample the radial selection function to match the flux-limited region of the

LRG selection at z > 0.36. Our region of interest, the SDSS Northern Galactic

Cap, covers ∼ 7200 deg2 on the sky. The resulting geometry allows 4 mocks to be

constructed from each simulation and hence we have a total of 160 mocks for our

analysis.

1http://lss.phy.vanderbilt.edu/lasdamas
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3.2.2 SDSS DR7

Our main goal in this chapter is to demonstrate the methods needed to obtain

precision measurements of the BAO scale from galaxy surveys. In this study, we

perform this measurement on the SDSS (York et al., 2000) DR7 (Abazajian et al.,

2009) LRG sample.

The SDSS has taken photometric observations of ∼ 10, 000 deg2 on the sky and

obtained spectroscopic followup of nearly a million of these detected objects. It

uses a dedicated 2.5m telescope (Gunn et al., 2006) at Apache Point Observatory

which has a specially designed wide field camera (Gunn et al., 1998). Photometric

observations were taken in the ugriz bands (Fukugita et al., 1996; Smith et al., 2002)

by drift scanning the sky under favourable conditions (Hogg et al., 2001). These

images were then fed through an automated pipeline that performed the necessary

astrometric and photometric calibrations. The pipeline also detected and measured

the photometric properties of the observed objects (Pier et al., 2003; Ivezić et al.,

2004; Tucker et al., 2006; Padmanabhan et al., 2008). Select subsamples (Strauss

et al., 2002; Eisenstein et al., 2001) were then designated for spectroscopic followup

using a 640 fiber spectrograph.

The DR7 LRG sample is part of the last data release of SDSS-II, the second phase

of SDSS which was completed in 2009. The LRG sample was selected according to

the prescription in Eisenstein et al. (2001). This selection was optimized to identify

the most luminous (and hence most massive and highly biased) galaxies which can

be observed out to high redshifts. Since the volume encompassed by equal angles

on the sky increases with redshift, we can probe the large volumes necessary for

cosmological studies using these luminous galaxies. The LRGs tend to be old systems

with uniform spectral energy distributions that exhibit a strong 4000Å break. This

gives them a distinct colour-flux-redshift relation which allows them to be uniformly
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selected over a wide redshift range. Our sample matches exactly that of Kazin et

al. (2010) and we refer the interested reader there for details of its construction. We

use the flux-limited LRG sample in the SDSS Northern Galactic Cap only. This

sample spans a redshift range of 0.16 < z < 0.47 and has a number density of

∼ 10−4h3Mpc−3.

3.3 Methods

A variety of statistics such as the correlation function, the power spectrum, and

more recently ωℓ(rs) (obtained through band-filtering the power spectrum or the

correlation function with filtering scale rs; Xu et al. 2010) are available for measuring

clustering and the BAO scale. The measurement of this scale is affected by non-

linear structure growth. Hence, in order to obtain an accurate measurement of

the acoustic scale through fitting the observational data, we must first employ an

algorithm known as reconstruction to partially undo the effects of this non-linear

evolution. We also need to develop a technique that returns reliable error estimates

for our chosen clustering statistic (i.e. the covariances between different scales)

and a method to marginalize out the broadband (non-BAO) information from the

statistic. In this section, we discuss these techniques in detail.

3.3.1 Reconstruction

3.3.1.1 Understanding Reconstruction

A pictorial summary of the reconstruction procedure is given in Figure 3.1. A de-

tailed description of the panels is given in the caption. Reconstruction attempts

to partially undo the large-scale gravitational flows that smear the BAO feature

(Eisenstein et al., 2007). The peculiar motions of particles is not a dominant ef-

fect here. The displacement field induced by the gravitational interaction between

particles is completely defined by the particle distribution. This means that the
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Figure 3.1: A pictorial explanation of density-field reconstruction and how it can
improve the precision of acoustic scale measurements. The panels correspond to thin
slices through a cosmological simulation. The particles representing the BAO fea-
ture are highlighted. The insets show the positional rms of the highlighted particles
relative to the blue center (solid line-current, dashed line-initial, dotted line-before
reconstruction). (top left) The initial smooth density field in the early universe. (top
right) The present-day density field. Here we have evolved the simulation using the
Zel’dovich approximation (Zel’dovich, 1970). The red ring marks the radius of the
initial BAO ring. The particles in the BAO ring have spread out, causing the BAO
feature to smear as evidenced by the larger rms shown in the inset. (bottom left)
The density field at the present day with the Lagrangian displacement field over-
plotted as the blue arrows. The displacement field here has been smoothed using a
Gaussian with 10h−1Mpc width. Reconstruction aims to estimate this displacement
field from the present-day observed density field. We can then move the particles
back along these displacement vectors (bottom right panel) to their linear-theory
positions. One can see that the recovered BAO ring is not perfectly circular due
to the smoothing of the displacement field, however, it does show a significant im-
provement. Analogously, the rms radius does not return to its initial state but is
much tighter than before reconstruction. The actual reconstruction algorithm ap-
plied to the data is slightly more complex than what is illustrated here, but this
figure clearly demonstrates the basic principles and effectiveness of reconstruction.
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observed galaxy distribution we use to measure the BAO scale is also responsible

for the BAO smearing and hence serves as the basis for reconstruction. From the

observed density field we can infer the large-scale motions that smear the BAO.

Running these motions backwards allows us to undo this smearing.

The illustration in Figure 3.1 is based on slices through an N-body simulation

where the particles constituting the BAO are highlighted for clarity. The top left

panel shows the initial state of the universe, where the distribution of particles is

very smooth. The top right panel shows the distortion of the BAO ring as non-linear

structure growth occurs. The bottom left panel shows the predicted displacement

field using our reconstruction technique and the bottom right panel shows the parti-

cles shifted back along their approximate displacement vectors, thus restoring them

to their linear-theory positions and ending reconstruction. These figures emphasize

that reconstruction works at the level of the actual density field and utilizes infor-

mation beyond what lies in the 2-point statistics used to analyze galaxy clustering.

3.3.1.2 A Reconstruction Algorithm

This section gives an account of our reconstruction algorithm which is based on

the version first proposed by Eisenstein et al. (2007). The underlying theoretical

considerations are detailed in Padmanabhan et al. (2009) & Noh et al. (2009) and

the method itself has been validated on simulations in Seo et al. (2010) & Mehta et

al. (2011). This description is adapted from Padmanabhan et al. (2012a).

Before we can perform reconstruction, we must first estimate the unreconstructed

power spectrum P (k) or correlation function ξ(r). These 2-point statistics are used

to measure the clustering of galaxies from redshift surveys. In this work we focus on

the correlation function which can be measured using the Landy-Szalay estimator

(Landy & Szalay, 1993)

ξ(r) =
DD − 2DR + RR

RR
(3.1)
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where DD, DR and RR are the number of galaxy-galaxy, galaxy-random and

random-random pairs with separation r. The random points serve as a baseline

for measuring the correlation function and are generated in a manner in which they

are randomly distributed according to the angular and radial selection functions of

the galaxy survey. We weight the galaxies and random points using the approximate

minimum variance weighting proposed by Feldman et al. (1994)

wi =
1

1 + n̄(zi)P (k0)
(3.2)

where n̄(zi) is the number density at redshift zi and P (k0) = 40000h−3Mpc3 is an

approximate value for the power spectrum near the BAO scale.

Using the unreconstructed ξ(r) we can compare it to the matter correlation

function at large scales and estimate the linear galaxy bias b. We must also estimate

the linear growth rate f = d log D
d log a

∼ Ωm(z)0.55 (Caroll, Press & Turner, 1992; Linder,

2005), where D(a) is the linear growth function and a is the scale factor. Ωm(z) is

the matter density relative to the critical density at redshift z,

Ωm(z) = Ωm(1 + z)3 H2
0

H2(z)
(3.3)

where H(z) is the Hubble parameter at redshift z and H0 is the present-day value.

Next, we embed the survey into a volume that is much larger than the volume

of the survey. This is necessary because the gravitational potential (and hence the

displacement field) is sensitive to these regions, especially at the survey boundaries.

In our implementation, we use 200h−1Mpc padding. We then smooth over the

density field using a Gaussian with smoothing length l to avoid having to deal with

highly non-linear effects at small scales < 10h−1Mpc. We experiment with various

values of l and pick a fiducial value of 15h−1Mpc (see §3.4).

We fill in the density field in the larger volume through generating constrained

Gaussian realizations of the data (Hoffman & Ribak, 1991; Zaroubi et al., 1995). The



82

constrained Gaussian realizations are generated using the Hoffman-Ribak algorithm.

Suppose we organize the observed density field into a vector δ and we wish to

generate a constrained realization density field δ̄ where the 2 are related by the

projection P, i.e. δ = Pδ̄. Then we have

δ̄ = δ̄U + C̄C
−1(δ − Pδ̄U) (3.4)

where δ̄U is an unconstrained Gaussian realization generated using an assumed

power spectrum P (k). C is the covariance matrix from the data as defined by

Cij = 〈δ(ri)δ(rj)〉 (3.5)

and C̄ is the analogous quantity between the data and the constrained realization.

This technique also provides an interpolation over any gaps within the volume of

the redshift survey.

We now arrive at the point where we can actually estimate the displacement

field Ψ. Nusser & Davis (1994) showed that to first order, the displacement field

and the density field in redshift space (our observed space) can be related as

∇ · Ψ + β∇ · (Ψsŝ) = −δgal

b
(3.6)

where Ψs = Ψ · ŝ is the line-of-sight displacement (note that this is essentially

the continuity equation). δgal is the galaxy density field and is roughly related to

the matter density field as δmatter ∼ δgal/b, where b is the linear galaxy bias. The

second term results from large-scale redshift-space distortions. Since we cannot

directly observe line-of-sight positions but rather must infer them through redshifts,

the clustering of galaxies along the radial direction will appear distorted. This is

because galaxies have intrinsic motions that impart additional redshifts on top of

cosmological redshift. At large scales, these motions are due to the coherent infall

of galaxies towards overdense regions, known as the Kaiser effect (Kaiser, 1987).
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The magnitude of these distortions is related to the linear growth rate f . Hence, in

addition to partially undoing non-linear structure growth, reconstruction can also

correct for the Kaiser redshift-space distortion.

If we assume that the displacement field is irrotational, we can write Ψ = ∇φ for

some scalar field φ. Equation 3.6 then becomes similar to Poisson’s equation, with

an additional redshift-space distortion term. The derivatives can be converted to

finite differences and we can solve for φ using the resulting linear equations. From

φ we can calculate Ψ and shift the galaxies by −Ψ to recover their linear-theory

positions. The galaxies must be shifted by an additional −fΨs to undo the Kaiser

effect. A set of random points must also be shifted by −Ψ to ensure that we are

not removing power from the density field. We denote this shifted random set as

S. Note that the random points used can be a subset of the original randoms (if

that original set was large enough), or a completely separate set. The reconstructed

correlation function can then be calculated as

ξ(r) =
DD − 2DS + SS

RR
. (3.7)

We compute correlation functions in both real and redshift space with and with-

out reconstruction from SDSS DR7 LRG mock catalogues created using the Las-

Damas simulations (see §3.2.1; McBride et al. 2012, in prep). We also compute

the correlation functions of the SDSS DR7 LRG data (see §3.2.2) before and af-

ter reconstruction. All correlation functions were computed in 3h−1Mpc bins from

2.5-197.5h−1Mpc.

3.3.2 Covariance Matrices

In past studies involving observational data, the most common method for deriving

the covariance matrix was to construct it from mock catalogues generated from

either simulations (Hamilton, Rimes & Scoccimarro, 2006; Takahashi et al., 2009) or
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perturbation theory approaches (Scoccimarro & Sheth, 2002). Perturbative methods

are less accurate than we would like and as we will show, the covariance matrices

calculated from mocks can still be noisy, even if the number of mocks used is large.

One can also assume the smooth Gaussian covariance matrix from linear theory,

however this neglects the non-linear contribution to the noise. Hence, it is necessary

to devise a scheme for approximating the mock covariances with a smooth function

or find alternate methods to regularize the matrix. In this chapter, we present a

robust approximation scheme, which we will show produces a faithful representation

of the expected covariances.

We perform the analyses in this chapter using the correlation function statistic

and hence, we require an estimate of the correlation function covariances. As men-

tioned previously, the most obvious choice is to use the covariance matrix calculated

directly from the mock catalogues. The value of the ith row and jth column of such

a covariance matrix is

Cij =
1

N − 1

N∑

n=1

[ξn(ri) − ξ̄(ri)][ξn(rj) − ξ̄(rj)], (3.8)

where N is the total number of mocks, ξn(r) is the correlation function calculated

from the nth mock and ξ̄(r) is the average of the mock correlation functions. How-

ever, we find that the covariances calculated from 160 mocks are still noisy (see

Figure 3.2). To obtain a smooth approximation to the mock covariances, we in-

troduce a new technique which involves fitting a modified form of the Gaussian

covariance matrix to the data using a maximum likelihood approach.

The simplest analytic form we can write down for the covariance matrix assumes

a Gaussian random field in which all Fourier modes grow independently. Such a

Gaussian covariance matrix is guaranteed to be smooth along the diagonal and off-

diagonal elements and is a suitable starting point for deriving an approximation to
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the covariances calculated from the mocks. It has the form

Cij =
2

V

∫
k2dk

2π2
j0(kri)j0(krj)[Pc(k) + ℵ]2 (3.9)

where V is the volume of each mock, ℵ is the shot-noise and

j0(kr) =
sin(kr)

kr
(3.10)

is the 0th order spherical Bessel function. It does not intrinsically include the effects

of survey geometry or redshift-space distortions, however, these can be incorporated

into the volume and Pc(k) terms as shown below. ℵ has 2 basic components, linear

shot-noise and non-linear shot-noise. In the standard Gaussian covariance matrix,

the linear shot-noise is assumed to be Poisson, which implies ℵlin = n̄−1. Realisti-

cally however, surveys span a range of redshifts, so n̄ is dependent on z. In addition,

we must also consider the non-linear shot-noise which arises due to non-linear struc-

ture growth at small scales. This is typically not included in the calculation of the

standard Gaussian covariance matrix. We will address these issues in more detail

shortly.

Due to the binning of data in our correlation function calculations, we must also

adjust our Gaussian covariance matrix calculation to reflect this. We estimate the

correlation function by taking the ratio between the number of galaxy pairs and the

number of pairs of randomly generated particles in various radial and angular bins.

Assuming that we spherically average over the correlation function itself and not

the pair-counts, the value of the binned correlation function at the bin center ri is

ξ(r̄i) =

∫
Ω

∫ ri2

ri1
d3rξ(r)

∫
Ω

∫ ri2

ri1
d3r

(3.11)

=
3

r3
i2 − r3

i1

∫

Ω

∫ ri2

ri1

r2dr
dΩ

4π

∫
k2dk

2π2
P (k)j0(kr) (3.12)

where the bin limits are (ri1, ri2) and ξ(r) is the true unbinned correlation func-

tion. In reality, this is an approximation as the correlation function we measure
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also depends on the weighting determined by the random paircounts which encode

information about the survey geometry and distribution of galaxies. Analogously,

we may write the expression for the binned covariance matrix as

Cij =
2

V

3

r3
i2 − r3

i1

3

r3
j2 − r3

j1

�

∫

Ω

∫ ri2

ri1

r2dr
dΩ

4π

∫

Ω′

∫ rj2

rj1

r′2dr′
dΩ

4π

′

�

∫
k2dk

2π2
j0(kri)j0(krj)[Pc(k) + ℵ]2. (3.13)

This can be shown to give

Cij =
2

V

∫
k2dk

2π2
∆j1(kri)∆j1(krj)[Pc(k) + ℵ]2 (3.14)

where

∆j1(kr) =
3

r3
2 − r3

1

[r2
2j1(kr2) − r2

1j1(kr1)]

k
, (3.15)

j1(kr) =
sin(kr)

(kr)2
− cos(kr)

kr
(3.16)

is the 1st order spherical Bessel function. Here, we have intentionally written Equa-

tion (3.14) to resemble Equation (3.9).

The input power spectrum Pc(k) determines the sample variance of the signal.

In redshift space before reconstruction, we take Pc(k) to have the form,

Pc(k) = b2
0

∫ 1

−1

(1 + βµ2)2F (µ, k)Pt(k)dµ (3.17)

where (1 + βµ2)2 is the standard model for the Kaiser effect (Kaiser, 1987) with

β = f/b0, f ∼ Ω0.6
m and b0 equal to the large-scale bias. F (µ, k) is a streaming

model term used to account for the Finger of God (FoG) effect. We take this term

to be exponential in configuration space and hence

F (µ, k) =
1

(1 + k2µ2σ2
s )

2
(3.18)
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in Fourier space, where σs is the dispersion within a cluster and is typically around

3-4h−1Mpc. A Gaussian form for F (µ, k) can also be used; however, we find little

difference between the results. Kaiser squashing and FoG are known as redshift-

space distortions which affect our measurement of cosmological redshift. These

effects arise from the redshifting of galaxies due to their intrinsic (non-expansion

related) motions along the line-of-sight direction which are not observed in the

transverse direction.

We determine b2
0 by matching the configuration space transform of Pc(k) to the

average of the mock correlation functions at r = 50h−1Mpc. This ensures that the

amplitude of Pc(k) matches the average clustering amplitude in the mocks.

Our template power spectrum, Pt(k), takes on the form

Pt(k) = [Plin(k) − Psmooth(k)]e−k2Σ2

nl
/2 + Psmooth(k), (3.19)

where Plin(k) is the linear power spectrum at z = 0. Psmooth(k) is the dewiggled

power spectrum described in Eisenstein & Hu (1998) and Σnl is a smoothing param-

eter that is used to model the degradation in the acoustic peak due to non-linear

evolution (Crocce & Scoccimarro, 2006; Eisenstein, Seo & White , 2007; Crocce

& Scoccimarro, 2008; Matsubara, 2008a; Seo et al., 2008). Before reconstruction,

the overall shape of the acoustic peak in the template matches the data best when

Σnl ∼ 8h−1Mpc; hence we fix Σnl = 8h−1Mpc. We will show that varying this value

has little affect on the resulting covariance matrix later in this section.

In order to address the z dependence of n̄, we use the fact that Equation (3.9)

is really just the transform of the variance in Fourier space, [Pc(k) + ℵ]2/V , to the

expected covariance in configuration space. One can then imagine building up the
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inverse of this variance, I2(k), as an integral over volume,

I2(k) =

∫
dV

[Pc(k) + ℵ]2

=
cΩ

H0

∫ zu

zl

[
Pc(k) +

1

n̄(z)

]−2

�
r2(z)√

Ωm(1 + z)3 + ΩΛ

dz, (3.20)

where we use

dV =
c

H0

r2(z)√
Ωm(1 + z)3 + ΩΛ

dzdΩ (3.21)

for a flat universe and assume n̄(z) has no angular dependence. zu and zl are the

upper and lower redshift limits of the survey respectively. Now we can redefine the

binned Gaussian covariance matrix, Equation (3.14), as

Cij = 2

∫
k2dk

2π2
∆j1(kri)∆j1(krj)P

2(k) (3.22)

where P2(k) = [I2(k)]−1. We calculate a model for n̄(z) that suits the DR7 data

from the LasDamas random catalogue and scale this to other cosmologies when

necessary using the appropriate volume ratios.

Since our binned Gaussian covariance matrix does not include non-linear shot-

noise, it underpredicts the mock covariance matrix. However, one can imagine

applying some modifications to the Gaussian covariance matrix so that its shape

better emulates that of the mock covariance matrix. We assume a modification to

the Gaussian covariance matrix of

Cm
ij = 2

∫
k2dk

2π2
∆j1(kri)∆j1(krj)P

2(k; c0, c1, c2) + c3 (3.23)

where P2(k; c0, c1, c2) corresponds to an I2(k), Equation (3.20), in which we make
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the substitution

Pc(k) +
1

n̄(z)
→c0Pc(k) +

c1

n̄(z)

∫ 1

−1

(1 + βµ2)2F (µ, k)dµ

+
c2

n̄(z)
(3.24)

=

[
c0b

2
0Pt(k) +

c1

n̄(z)

]

�

∫ 1

−1

(1 + βµ2)2F (µ, k)dµ +
c2

n̄(z)
. (3.25)

The c0 term accounts for any remaining large-scale bias discrepancies between Pc(k)

and the mock data. The c1 term is used to represent any effects streaming or Kaiser

squashing may have on shot-noise. This is associated with non-linear shot-noise.

The c2 term corresponds to the standard Poisson shot-noise from linear theory. The

c0, c1 and c2 are parameters we use to scale the amplitudes of the various components

that go into the Gaussian covariance matrix in order to modify its shape and c3 can

be associated with the integral constraint which manifests itself as an additive offset

in the correlation function.

The likelihood of any such Cm(c0, c1, c2, c3) given a set of mock catalogues is

L =

N∏

i=0

Li (3.26)

=

N∏

i=0

(2π)−q/2(det Cm)−1/2e−χ2

i /2 (3.27)

where N is the total number of mocks and q is the number of points to fit. χ2
i =

~xi(C
m)−1~xT

i where ~xi = ξi(r)−ξ̄(r) is a vector of dimension q. ξi(r) is the correlation

function calculated from the ith mock and ξ̄(r) is the average of the mock correlation

functions. Equation (3.27) can be re-written as

L = −2 logL = Nq log(2π) + N log(det C) +

N∑

i=0

χ2
i . (3.28)
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We would like to find Cm corresponding to the maximum of the likelihood function.

This is equivalent to finding the Cm that corresponds to the minimum of L.

Using a downhill simplex minimization scheme and fixing σs = 4h−1Mpc, we

arrive at c0 = 0.89, c1 = 0.46, c2 = 1.34 and c3 = 2.32 × 10−7 for redshift space

before reconstruction. Here, we have fixed the value of σs to reduce computation

time, however, it is possible to include it as a parameter in the maximum likelihood

fit. Allowing σs to vary gives σs = 3.9h−1Mpc with most modification parameters

changing by less than 1%. Only c1 changes by ∼ 3% due to its partial degeneracy

with σs (when σs is increased, a larger damping effect is placed on the power spec-

trum term which can be compensated for by making c1 larger). The fact that the

likelihood of the fixed σs case is 0.99 of the unfixed case also suggests that fixing σs

is reasonable.

We also investigate the outcome of fixing c0 = 1, i.e. assuming that the sample

variance given by our model power spectrum suits the data perfectly. This does

not change the log likelihood significantly and we find that the acoustic scales and

errors measured from the mocks as well as the DR7 data are consistent with the

case where c0 is allowed to vary. In addition, we find that changing the value of Σnl

that goes into Pt(k) makes very little difference to the resulting covariance matrix.

Using Σnl = 9h−1Mpc instead of Σnl = 8h−1Mpc only changes all the modification

parameters and the maximum likelihood by < 1%.

The black dots in the top panel of Figure 3.2 show the diagonal (i.e. the j = i

elements) of the mock covariance matrix in redshift space before reconstruction

and the black crosses show the corresponding diagonal of the modified Gaussian

covariance matrix. Likewise, the 6th off-diagonal (i.e. the j = i + 6 elements)

is overplotted in red. The noise in the mock covariance matrix is obvious. It

is evident from the plot that the modified Gaussian covariance matrix is a good
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Figure 3.2: The diagonal (black) and 6th off-diagonal (red) of the mock (circles)
and modified Gaussian (crosses) covariance matrices in redshift space before recon-
struction (top) and after reconstruction (bottom). The mock covariance matrix
shows clear signs of noise. The modified Gaussian covariance matrices take on the
form given in Equations (3.23 & 3.24) with σs = 4h−1Mpc. Before reconstruction,
c0 = 0.89, c1 = 0.46, c2 = 1.34, c3 = 2.32 × 10−7 and after reconstruction c0 = 0.89,
c1 = 0.30, c2 = 1.45, c3 = 1.87 × 10−7. One can see that the modified Gaussian co-
variance matrices are good smoothed approximations to the mock covariance values.

smooth approximation to the mock covariance values. Hence, we use the modified

Gaussian covariance matrix derived from this maximum likelihood technique with

fixed σs = 4h−1Mpc as our estimate of the expected errors on the mock correlation

functions. The fitting technique described in §3.3.3 utilizes this covariance matrix.

In redshift space after reconstruction, we take the input power spectrum Pc(k)

to be

Pc(k) = b2
0

∫ 1

−1

F (µ, k)Pt(k)dµ (3.29)

which is just Equation (3.17) without the Kaiser term since our reconstruction

algorithm is designed to undo Kaiser squashing. We assume Σnl = 4h−1Mpc and

retain σs = 4h−1Mpc since we did not apply any FoG compression. Fitting for

the parameters of the modified Gaussian covariance matrix using the maximum
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likelihood prescription, we find c0 = 0.89, c1 = 0.30, c2 = 1.45, c3 = 1.87 × 10−7.

The diagonals and 6th off-diagonals of the post-reconstruction mock and modified

Gaussian covariance matrices are plotted in the bottom panel of Figure 3.2. One can

see that, as in the pre-reconstruction case, our modified Gaussian approximation fits

the mock covariances well.

In the post-reconstruction case, we also test that by using a different cosmol-

ogy from LasDamas to derive Pt(k), it is still possible to obtain a modified Gaus-

sian covariance matrix that suits the mock data using our maximum likelihood

method. In Figure 3.3, we show P(k; c0, c1, c2) for the WMAP7+BAO+H0 cos-

mology (Komatsu et al., 2011) divided by the corresponding LasDamas values

(solid line). For reference, the WMAP7 cosmological parameters of relevance are

H0 = 70.2±1.4, 100Ωbh
2 = 2.255±0.054, Ωch

2 = 0.1126±0.0036, ns = 0.968±0.012

and σ8 = 0.816 ± 0.024. The dotted (dashed) lines are for cosmologies derived by

adding (subtracting) the 1σ errors from the WMAP7 values quoted above. One can

see that the 3 lines are all ∼ 1 to within ∼ 5% near the acoustic scale indicating that

the modification parameters are capable of adjusting the power spectrum and the

noise terms in the Gaussian covariance matrix to match the LasDamas covariances.

In §3.5.2, we show that using these different covariance matrices yield consistent

acoustic scale measurements and errors to those obtained using the correct Las-

Damas cosmology.

3.3.3 Fitting the Acoustic Feature

To measure the acoustic scale, we fit a model of the correlation function or power

spectrum in some fiducial cosmology to the data and measure the shift in the acoustic

peak position relative to this fiducial cosmology. We parameterize this shift by α

defined as

α =
[DV (z)/rs]

[DV (z)/rs]fiducial
(3.30)
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Figure 3.3: The ratio of P(k; c0, c1, c2) terms (see Equation (3.23) and surrounding
text) found in the definition of the modified Gaussian covariance matrix (MGCM).
These MGCMs were all fit to the covariances calculated from the LasDamas mocks
in redshift space after reconstruction. The numerator corresponds to MGCMs
constructed using 3 non-LasDamas cosmologies. The denominator corresponds to
the MGCM in the LasDamas cosmology. The 3 non-LasDamas cosmologies are
WMAP7+BAO+H0 (solid line) and the 1σ limits of this cosmology (+1σ is shown
as the dotted line and -1σ is shown as the dashed line). It is seen that the 3 lines
are all ∼ 1 to within ∼ 5%. This indicates that if we input a power spectrum with
cosmology different to LasDamas, our modification parameters can balance this in-
put and the noise terms to recover a covariance matrix that matches the expected
LasDamas covariances fairly well.
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where DV (z) ∝ 3

√
D2

A(z)/H(z) is the spherically averaged distance to redshift z and

rs is the sound horizon (Eisenstein et al., 2005).

Typically in Fourier space, this requires a fitting model of the form

P (k) = B(k)Pm(k/α) + A(k). (3.31)

Here, Pm(k) is the template power spectrum based in linear theory. A(k) and B(k)

are functions involving nuisance parameters that can be used to marginalize out the

broadband shape of the power spectrum (i.e. scale-dependent bias and redshift-space

distortions). The broadband shape does not contain BAO information but may bias

the measurement of the BAO scale if not accounted for properly. These terms can

also help mitigate the effects of using the wrong model cosmology. Analogously, in

configuration space we have

ξ(r) = B(r)ξm(αr) + A(r). (3.32)

In order to obtain an accurate measure of the acoustic scale, we require this fitting

model to be robust. This simply means that if we slightly change the parameters

that go into the model, the measured value of α should always be consistent. For a

fitting form where this is true, even if we use model parameters that are not optimal,

we will still measure the correct acoustic scale. This is necessary since we use this

fitting form to derive the acoustic scale in the SDSS DR7 data and in practice we

are not certain of the exact model parameters to use.

In Fourier space, Padé approximates and basis functions based on cubic splines

work well for both A(k) and B(k), while high order polynomials may also be used for

A(k). This has been demonstrated for simulated data (e.g. Seo et al. (2008); Pad-

manabhan & White (2009); Seo et al. (2010); Mehta et al. (2011)) as well as SDSS-II

observational data (e.g. Tegmark et al. (2006); Percival et al. (2007, 2010)). How-

ever, high order polynomials and cubic spline forms do not transform particularly
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nicely to configuration space due to poor numerical convergence of the integration.

In configuration space, there have been attempts to model the scale-dependent

bias associated with the B(r) term such as in (Blake et al., 2011a). As for A(r), an

array of forms have been used. In theoretical works (Crocce & Scoccimarro, 2008;

Sanchez et al., 2008) and the DR6 motivated observational work (Sanchez et al.,

2009), A(r) was motivated by perturbation theory and contained derivatives and

integrations of the linear theory correlation function. Other works based in simula-

tions (e.g. Cabré & Gaztañaga (2011)) and SDSS observations (e.g. Eisenstein et

al. (2005); Kazin et al. (2010)) did not use an A(r) term at all. However, as we will

show in this work, having a non-zero A(r) term aids greatly in removing unwanted

broadband information and ameliorating errors in the assumed model cosmology.

This is especially true if one is to take B(r) = B and delegate the marginalization

of scale-dependent bias to the A(r) term, as is done in most correlation function

analyses. We note here though, that the form for A(r) does not need to be compli-

cated as we show next.

We fit the mock redshift-space correlation functions ξs(r) over the range 30 <

r < 200h−1Mpc using the fiducial form (justification to follow)

ξfit(r) = B2ξm(αr) + A(r) (3.33)

where

A(r) =
a1

r2
+

a2

r
+ a3. (3.34)

The parameters of the fit are B2, α, a1, a2 and a3. The latter are linear nuisance

parameters.

As mentioned above, the scale dilation parameter α represents how much the

acoustic peak in the data is shifted relative to that in the model. Therefore, it is

our measurement of the acoustic scale and the parameter we are most interested in
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extracting robustly from our fits. An α > 1 indicates a shift towards smaller scales

and an α < 1 indicates a shift towards larger scales.

The template correlation function, ξm(r), takes on the form

ξm(r) =

∫
k2dk

2π2
Pm(k)j0(kr)e−k2a2

, (3.35)

where Pm(k) = b2Pt(k) and Pt(k) is defined as in Equation (3.19). We perform

the transformation from Fourier space to configuration space using an additional

Gaussian term to provide high-k damping for the oscillatory transform kernel j0(kr).

This is conducive to better numerical convergence in the integration. We pick a =

1h−1Mpc, a scale small enough such that the effects of the damping will not be

significant within our fitting range.

The b2 term is a constant normalization factor that we obtain by taking the ratio

of the mock correlation function being fit and the configuration space transform of

Pt(k) at r = 50h−1Mpc. This ensures that the fitting normalization B2 is of order

unity. The normalization must be positive, so we perform our fits with the non-linear

parameter log(B2). Note that B2 can vary substantially as long as the A(r) function

can compensate. This creates large variation in the amplitude of the acoustic peak

which is not physically motivated. We find that the scatter in B2 can be large with

values being as high as ∼ 2.1 and as low as ∼ 0.3, especially in the mocks where the

acoustic signal does not appear to be as strong. This is summarized in Figure 3.4

where we have plotted B2 versus best-fit α obtained through fitting the 160 mock

correlation functions in redshift space. For a careful description of the information

plotted, please see the figure caption. To disfavour extreme values of B2, we place

a weak Gaussian prior on log(B2) with a mean of 0 and standard deviation of 0.4.

For simplicity, we also apply this prior to redshift space with reconstruction and

real space with and without reconstruction.

We pick the form for A(r) in Equation (3.34) due to its simplicity. In addition
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Figure 3.4: The values of B2 versus α fit from the mocks in redshift space before re-
construction. To ensure that B2 is non-negative, these values were obtained through
fitting the 160 mock redshift-space correlation functions using the non-linear param-
eter log(B2) instead of B2. The solid red line indicates the median B2 value and the
solid black line indicates the mean. The dashed red lines indicate the 16th and 84th
percentiles of B2 (quoted with the median B̃2). The dashed black lines correspond
to the 1σ deviations from the mean (quoted with the mean B2). One can see that
B2 can reach values as high as ∼ 2.1 and as low as ∼ 0.3. This substantial variation
is possible because the A(r) term can compensate, and is therefore not physically
motivated. Hence to disfavour these extreme values, we place a weak Gaussian prior
on log(B2) that has mean equal to 0 and standard deviation equal to 0.4.
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Table 3.1: Fit results to average mock correlation functions

α Σnl

(h−1Mpc)

Redshift space w/o reconstruction 1.003 8.1

Real space w/o reconstruction 1.002 6.6

Redshift space w/ reconstruction 1.003 4.4

Real space w/ reconstruction 0.999 3.0

to the fiducial A(r) form in Equation (3.34), we will also be analyzing various

other forms of A(r) throughout this chapter. We will refer to A(r) = 0 as poly0,

A(r) = a1/r
2 as poly1, A(r) = a1/r

2+a2/r as poly2 and A(r) = a1/r
2+a2/r+a3+a4r

as poly4. Note that the fiducial form corresponds to poly3.

We find that going up to the constant term in A(r) as in the fiducial form gives

a good fit to the average of the mock correlation functions. This is shown in Figure

3.5 where in the left panel we have plotted the fits to the average mock, redshift-

space correlation function (black crosses) using Equation (3.33) and various forms

for A(r). The poly0, poly2, fiducial form and poly4 cases are shown as the dotted

green, dash-dotted blue, solid black and the dashed red lines respectively. The

corresponding residuals are shown in the right panel.

We have also allowed Σnl to vary in these fits and find that for the fiducial

form, Σnl = 8.1h−1Mpc. This is close to the value of 8h−1Mpc we assumed in

the estimation of the covariance matrix. The results from fits to the mean mock

correlation functions using the fiducial form are summarized in Table 3.1.

The χ2 per degree-of-freedom (dof) goes down from 2.7 for poly0 to 1.4 for the

fiducial form. The decrease from the fiducial form to poly4 is much smaller (only
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Figure 3.5: (left) Fits to the average redshift-space correlation function of the mocks
(black crosses) using Equation (3.33) with A(r) being poly0 (dotted green line),
poly2 (dash-dotted blue line), fiducial form (Equation (3.34)) (solid black line) and
poly4 (dashed red line). (right) The corresponding residuals of the fits (note that
the fitting range is 30 < r < 2000h−1Mpc). One can see that the fit using the
fiducial form matches the data better than the fits with poly0 and poly2. However,
the improvement between the fiducial form and poly4 is negligible as reflected by
the similar shapes of the solid and dashed curves. These results motivate our choice
of A(r) given in Equation (3.34). We have also allowed Σnl to vary in these fits.
Using the fiducial form, we find Σnl = 8.1h−1Mpc, which is close to the value we
assumed in deriving the covariance matrix.

∼ 0.2) as evidenced by the similarity in shape between the solid curve and the dashed

curve. Although the value of χ2 per dof is still large for the fiducial form, we note

that the error bars expected when fitting each individual mock will be much larger

and thus result in reasonable values of χ2 as will be shown in §3.5.1. In principle

we could further lower χ2 by taking A(r) out to higher orders of r, however we then

run the risk of having the nuisance parameters fit the noise in the data.

Recall that our ultimate goal is to measure the acoustic scale, α, from the data.

This can be done by finding the value of α that gives rise to the best-fit model to

the data. Our models are non-linear in α and the normalization factor log(B2), so

we can nest a linear least-squares fitter inside a non-linear fitting routine, which in

our case is a downhill simplex. The former calculates a1, a2 and a3 for each value



100

of α and B2 the latter steps to. Then, to find the best-fit α, we use the non-linear

fitter to minimize the χ2 goodness-of-fit indicator

χ2(α, B2) = [~d − ~m(α, B2)]T C−1[~d − ~m(α, B2)] (3.36)

where ~d is the correlation function measured from the mocks and ~m(α, B2) is the

best-fit model at each α and B2. C−1 is the inverse of the covariance matrix.

Recall that we use the modified Gaussian covariance matrix (MGCM) described in

Equation (3.23) of §3.3.2 here.

Based on our fiducial form defined in Equations (3.33 & 3.34), we define a fiducial

model for redshift space over a fitting range of 30 < r < 200h−1Mpc. ξm(r) is derived

from the LasDamas cosmology using Σnl = 8h−1Mpc. We denote the fiducial model

with subscript [f ] throughout this chapter unless otherwise stated. We perform

the above prescribed fitting algorithm on all 160 of our mock catalogues using the

fiducial model to obtain a best-fit value of α for each.

For redshift space with reconstruction, we use the same fiducial fitting form

defined by Equations (3.33 & 3.34). In this case we find Σnl = 4.4h−1Mpc when

fitting the average of the mocks. The results from these fits are also summarized

in Table 3.1. The factor of 1.8 reduction in Σnl versus the pre-reconstruction case

corresponds to a sharpening up of the acoustic peak after reconstruction as shown

in Figure 3.7 of the next section, attesting the effectiveness of reconstruction.

We define the fiducial model in redshift space after reconstruction to be identical

to the pre-reconstruction model except with Σnl = 4h−1Mpc. This is the same value

as that used to derive the MGCM for post-reconstruction redshift space. This is

not a bad approximation as we have just shown the fit to the average of the mock

correlation functions has Σnl = 4.4h−1Mpc.
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3.4 Reconstructing Simulations

In this section we outline the major results from reconstructing the LasDamas

mocks. A more detailed discussion of the fitting results and robustness checks of the

fitting model are given in the next 2 sections. Here we will only concern ourselves

with qualitative results from the reconstruction technique and the insights we glean

from these.

Figure 3.6 shows the average 2D correlation function of the 160 mocks in real

and redshift space, both before and after reconstruction. Real space is in the left

column and redshift space is in the right column. The pre-reconstruction result is

shown in the top row and the post-reconstruction result is shown in the bottom row.

The line-of-sight direction (r‖ or s‖) is on the x-axis and the transverse direction

(r⊥ or s⊥) is on the y-axis.

Real space is free of the redshift-space distortions caused by the additional red-

shifting of galaxies due to their peculiar motions. As discussed previously, these

affect our measurements of galaxy positions along the radial direction. Hence, we

do not expect the real-space 2D correlation function to show any anisotropy. The top

left panel of Figure 3.6 demonstrates this nicely where we see a circular (isotropic)

BAO ring. In the presence of redshift-space distortions (top right panel), we see that

the clustering indeed appears highly anisotropic with maximal distortions along the

line-of-sight direction. The squashing seen at large scales is due to the Kaiser effect

discussed previously and the elongation at small scales is due to the Finger-of-God

(FoG) effect. The FoG arises from the virial motions of galaxies within their host

halos.

We see that after reconstruction, the redshift space 2D correlation function be-

comes much more isotropic at the BAO scale. This is reflected in the recovery of

a circular BAO ring in the bottom right panel and indicates that the Kaiser cor-
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Figure 3.6: The average 2D correlation functions of the mocks before and after re-
construction in real and redshift space. (top left) 2D correlation function in real
space before reconstruction. (bottom left) 2D correlation function in real space
after reconstruction. (top right) 2D correlation function in redshift space before
reconstruction. (bottom right) 2D correlation function in redshift space after recon-
struction. The line-of-sight direction is on the x-axis and the transverse direction
is on the y-axis. One can see that in real space, the clustering is isotropic due to
the lack of redshift-space distortions and the BAO feature appears as a ring at the
BAO scale. However, in redshift space, the clustering is highly anisotropic due to
the non-cosmological motions of galaxies with the distortion greatest along the line-
of-sight direction (Kaiser and Finger-of-God distortions). After reconstruction the
anisotropy is reduced in redshift space at large scales reflecting the success of our
Kaiser correction. Most importantly, we see that in both real and redshift space, the
BAO ring is more prominent than in the pre-reconstruction case. This implies that
reconstruction was effective at removing the degradation of the acoustic feature due
to large-scale flows arising from non-linear structure growth.
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rection we apply during reconstruction is effective at large scales. At small scales

the clustering still appears anisotropic as we do not apply any corrections for the

FoG effect. In fact, the FoG appears to be enhanced after reconstruction suggesting

that reconstruction tends to blow up collapsed objects such as dark matter halos.

In addition, since our reconstruction technique is only to first-order, the highly non-

linear small scales will not experience as significant a correction. We note here that

this small-scale anisotropy has no effect on the acoustic scale.

Most importantly, we see that the BAO signal stands out much more clearly

after reconstruction. This indicates that our reconstruction technique was effective

at partially undoing the smearing of the BAO by non-linear structure growth. A

similar increase in contrast is seen in real space after reconstruction as well (bottom

left panel of Figure 3.6). Here we have performed the reconstruction using b =

2.2, f ∼ Ω0.55
m and a smoothing length of = 15h−1Mpc which will henceforth be

denoted the fiducial reconstruction parameters. We have also assumed an input

power spectrum for generating constrained Gaussian realizations corresponding to

the LasDamas cosmology.

Spherically averaging over the mock redshift-space 2D correlation functions gives

the monopole correlation functions. The average of these is shown in Figure 3.7 with

the post-reconstruction real-space average overplotted as the dashed blue line. One

can see that the BAO peak has sharped up after reconstruction, corresponding

to the increased contrast seen in the 2D correlation function. This again implies

that we were successful at partially removing the effects of non-linear structure

growth on the BAO. The amplitude of the correlation function overall is also reduced

due to the removal of Kaiser squashing. The reconstructed real and redshift-space

correlation functions do not match perfectly at small scales which again suggests

that the reconstruction technique is breaking down on these scales. However, the
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Figure 3.7: The average spherically averaged redshift space correlation function
of the mocks before and after reconstruction. The post-reconstruction real space
correlation function is overplotted as the dashed blue line. One can see that the
redshift space and real space results do not match exactly at small scales, indicating
that our reconstruction scheme is breaking down at these scales. Most importantly,
we see that the BAO peak has sharpened up significantly after reconstruction: Σnl

decreases from 8.1h−1Mpc to 4.4h−1Mpc. This implies that our reconstruction tech-
nique is successful at partially undoing the effects of non-linear structure growth on
the BAO.



105

similarity of the two at scales larger than 30h−1Mpc indicates that reconstruction

is very effective in removing large-scale redshift-space distortions.

The change in shape of the correlation function before and after reconstruction

has a simple physical interpretation. Reconstruction takes pairs and redistributes

them over different scales which implies that the area under ξ(r) must be conserved.

The transferring of pairs from small < 20h−1Mpc scales to larger scales ∼ 50h−1Mpc

is due to the reversing of galaxy infall towards overdense regions (the Kaiser effect).

The correlation function is higher at scales slightly smaller than the BAO scale be-

fore reconstruction due to pairs flowing out from the BAO ring (recall that these

flows are what cause the smearing of the BAO). After reconstruction, these pairs are

moved back into the BAO ring, sharpening up the BAO peak. This sharpening can

be quantified using the BAO damping scale Σnl used to model the degradation of the

acoustic peak due to non-linear structure growth in our fitting model. As discussed

in the previous section, fitting the average redshift-space correlation function of the

mocks gives Σnl = 8.1h−1Mpc before reconstruction and Σnl = 4.4h−1Mpc after re-

construction. Hence, the damping is nearly a factor of 2 smaller after reconstruction

which is consistent with theoretical estimates (Padmanabhan et al., 2009).

The most important reconstruction parameter is the smoothing length l. When

we perform reconstruction, we must infer the displacement field from the matter

density field which is roughly related to the measured galaxy density field by the

galaxy bias. However, galaxies are finite points and therefore do not smoothly trace

the underlying matter distribution. Hence we smooth over the galaxy density field,

effectively smearing the galaxy “spike” across its surroundings to better approximate

the matter density field. If l is too small, we smooth over fewer galaxies which

increases the noise in our reconstruction. However, if l is too large, the estimated

displacements are reduced leading to less effective reconstruction (in fact, if the
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Figure 3.8: The average redshift-space correlation function of the mocks after recon-
struction for various reconstruction smoothing scales l. We see that using a fairly
large smoothing scale already has a noticeable affect on the BAO peak. Choosing
l = 10h−1Mpc, however, introduces significant distortions of the correlation function
at small scales, indicating a breakdown in your algorithm. Since it is optimal to
select the smallest reasonable smoothing scale, we take l = 15h−1Mpc as our fiducial
value.
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smoothing length is infinite, the estimated displacements are 0). Hence it is optimal

to choose the smallest smoothing scale possible. For the LRG number density,

n ≤ 10−4h3Mpc−3, the power spectrum amplitude becomes comparable to the shot-

noise at k ∼ 0.15hMpc−1, which suggests a smoothing length & 10h−1Mpc.

Figure 3.8 shows the average correlation function of the mocks in redshift space

after reconstruction for various smoothing lengths. The unreconstructed correlation

function is overplotted as the dashed line. One can see that the correlation function

becomes noticeably distorted for l = 10h−1Mpc. Also of note is that even with a

fairly large smoothing scale of 25h−1Mpc, the sharpening up of the acoustic peak is

significant. This reflects the fact that large-scale flows are what smear the acoustic

peak: as long as we do not smooth on scales significantly larger than these flows,

we will recover a more prominent acoustic peak. Since we would like to choose the

smallest smoothing length that is reasonable, we pick l = 15h−1Mpc as our fiducial

reconstruction value.

3.5 LasDamas Redshift Space Fitting Results

3.5.1 Without Reconstruction

We now concern ourselves with presenting the results and validating the reconstruc-

tion and fitting techniques described in §3.3.3 for measuring the acoustic scale. We

begin with the LasDamas mocks in redshift space without reconstruction. Through

fitting the mocks using the fiducial model, we find that a few of the mocks do not

give compelling measurements of α due to their relatively weak acoustic features.

We attempt to identify which mocks have poorly constrained values of α by per-

forming our fits at different test values of αi using our fiducial model and measuring

the resulting χ2. This allows us to calculate
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p(αi) =
e−χ2(αi)/2

∑
j e−χ2(αj )/2∆α

, (3.37)

the probability of measuring the acoustic scale to be α = αi from a particular mock.

Here, the denominator is a normalization factor equivalent to integrating over all

test values of α where ∆α is the difference between the test values. We calculate a

mean and a standard deviation for our p(α) distributions as

〈α〉 =
∑

i

αip(αi)∆α (3.38)

σα =

√∑

i

[αi − 〈α〉]2p(αi)∆α. (3.39)

A small standard deviation indicates that the best-fit α measured from the mock is

well constrained. Conversely, a large standard deviation indicates that it is difficult

to measure an accurate value of α from the mock.

In Figure 3.9, we have plotted the fit results using the fiducial model for 2

of our mock redshift-space correlation functions, ξs(r), that appear to have well

constrained values of α (upper 2 panels) and 2 that do not (lower 2 panels). These

are representative of the other well and poorly constrained mocks in our set. For a

detailed description of the information plotted, please see the figure caption.

The left column in each set shows the actual fit to the mock correlation function

using the fiducial model. The best-fit values of α and their corresponding minimum

χ2/dof are given on the plots. In comparing the well constrained mocks to the poorly

constrained mocks, we can see that in order to obtain a fairly certain measurement

of best-fit α, the mock must have a prominent acoustic peak. If one ignores the

best-fit models which can be used to guide the eye, the acoustic features in both of

the poorly constrained mocks are much weaker than in the well constrained mocks.

The middle column in each set shows the ∆χ2 = χ2(α) − χ2
min curve for each

mock. The χ2(α) here is the same as that which appears in Equation (3.37) and
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(Figure 3.9 continued)

Figure 3.9: Sample fit results from the fiducial model for our redshift-space mocks,
ξs(r). (rows 1+2) Results from mocks that have well constrained measures of α.
(rows 3+4) Results from mocks that have poorly constrained measures of α. (left
column) Actual fits using the fiducial model. The model (black line) is overplotted
on the mock data (black crosses with error bars). The dotted blue line corresponds
to the A(r) term in the model and the dashed red line corresponds to the B2ξm(αr)
term. Comparing rows 1 & 2 with rows 3 & 4 suggests that there must be a fairly
prominent acoustic peak in order to obtain a well constrained measurement of α.
(middle column) The ∆χ2 = χ2(α)−χ2

min curve. The large differences in χ2 between
the minimum and the plateaus of the well constrained cases indicate that we have
robust detections of the χ2 minimum and hence the best-fit α which corresponds
to this minimum. In the poorly constrained mocks, the difference is much smaller
and there may be double minima at small ∆χ2 from each other, indicating a poor
detection of the best-fit α. (right column) The p(α) distribution versus α (black
line) calculated from χ2(α), Equation (3.37). The red line is the same curve but
with a 15% Gaussian prior on log(α). We say best-fit α is well constrained in a
mock, when the standard deviation of the p(α) distribution is small, and not well
constrained when the standard deviation is large, even after the prior is applied. In
some mocks, we see significant χ2 differences between the minimum and the plateau,
however, the σα measured may still be large. This is due to a downturn in the χ2(α)
curve at α ∼ 0.7 (see the second row). Such a downturn is not physically motivated
because it is caused by the model attempting to hide the acoustic peak in the larger
errors at large r. Hence, we introduce the prior on log(α) to suppress this effect.
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χ2
min is the minimum of χ2(α), i.e. χ2 at the best-fit value of α. One can see that

for the well constrained mocks, the curve is nearly parabolic around the minimum

(expected if α is Gaussian distributed) and then plateaus at extreme values of α.

The height in ∆χ2 of these plateaus can be used as a proxy for the significance

of the χ2 minimum. In the poorly constrained mocks, the plateau occurs at much

smaller ∆χ2 values. In addition, there may be double minima at small differences

in χ2. These indicate that we are not detecting the χ2 minimum (and hence best-fit

α) robustly.

In the right panels, we use these χ2(α) curves to calculate their corresponding

p(α) distributions using Equation (3.37). These are plotted as the black lines. The

red lines include an additional 15% Gaussian prior on log(α), i.e. χ2(α) → χ2(α) +
(

log(α)
0.15

)2

. We apply this weak prior because in some of the cases where the best-

fit α should be well constrained, i.e. in the second row where the ∆χ2 curve is

nicely parabolic around a minimum that is at a significant ∆χ2 ∼ 15 away from

the plateau, we still measure a large σα from the p(α) distribution. This is due

to a slight downturn in the χ2 versus α curve (and hence an upturn in the p(α)

distribution) at α ∼ 0.7. At these small α, the acoustic peak in the model is getting

pushed out to large r. Here, the error bars are larger so the fitter is having an

easier time hiding the acoustic peak in the errors. Since this downturn in χ2 is not

physically motivated, we apply this prior to downweight the χ2 values at extreme

α. One can see the effectiveness of the prior by noticing that the upturn in p(α)

disappears after the prior is applied to the mock in the second row.

As mentioned previously, the acoustic scale is well constrained in the mocks that

have very small standard deviations in α. In these cases, the inferred standard de-

viation can become even smaller after the prior is applied, not due to any dramatic

change in the general shape of the curve but rather because the tails become sup-
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pressed by the prior. The mocks where α is not well constrained, however, have

very broad distributions with large standard deviations even after a prior is applied.

This suggests that we may segregate the well constrained mocks from the poorly

constrained mocks by setting a cutoff in the standard deviation after applying the

prior on log(α). We also note here that, after applying the prior, the mean α of the

p(α) distribution should be fairly close to the best-fit α from the fiducial model for

the well constrained mocks. This is indeed what we observe. Any discrepancy is

likely due to the fact that the p(α) distribution is not exactly Gaussian.

A plot of the standard deviations versus the best-fit α values from the fiducial

model are shown in Figure 3.10. The median of the standard deviations is indicated

by the solid grey line and the 98th, 84th, 16th and 2nd percentile levels are indicated

by the dashed grey lines. We see that the poorly constrained mocks mostly lie at

standard deviations larger than 7% (indicated by the black horizontal line in the

plot). Hence, we make a cutoff in standard deviation at 7% and take all mocks that

lie above this cutoff to have poorly constrained measurements of α (circled in black).

Both of the poorly constrained mocks shown in Figure 3.9 fall into this category.

For our redshift-space mocks before reconstruction, we find that 8 (5%) have fairly

poor measurements of α. The mean and median values of the best-fit α from the

fiducial model are given in the plot after removing the poorly constrained mocks.

We use this procedure to remove these poorly constrained mocks from our α-fitting

sample before proceeding. Note that they are still included in our covariance matrix

derivation.

Using the fiducial model, we find ᾱ = 0.999 ± 0.033 and α̃ = 1.003±0.030
0.034 after

removing the poorly constrained mocks as just described. Here and throughout this

chapter we quote the mean of any quantity x and its standard deviation (rms scatter)

from the mocks as x̄ and we quote the median with the 84th/16th percentiles from
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Figure 3.10: The standard deviations of p(α) for the redshift-space mocks plotted
against their best-fit α values measured using the fiducial model. A large standard
deviation indicates that α is poorly constrained in its corresponding mock. The
solid grey line indicates the median of the standard deviations while the dashed
grey lines indicate the 98th, 84th, 16th and 2nd percentiles. We see that most of
these poorly constrained mocks fall above a standard deviation of 7%. Hence we
impose a 7% cutoff (black horizontal line) in standard deviation and remove all
the mocks with standard deviations above this cutoff from our fitting sample. The
mocks with uncertain α measurements based on this metric are circled. There are 8
of such mocks, which is 5% of our sample. The mean and median values of best-fit
α measured using the fiducial model after removing the poorly constrained mocks
are listed on the plot.
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the mocks as x̃. Note that to obtain the standard error on the mean, one should

divide the rms by
√

N , where N is the number of mocks. If we take the rms as

an estimate of the error on the acoustic scale in a single mock, we see that before

reconstruction, we expect a ∼ 3 − 3.5% measurement.

It is important to recall here that α measures the shift in the acoustic peak

location relative to the fiducial cosmology used to construct the fitting model. Since

we know the true LasDamas cosmology and we construct our model using this

cosmology, we should recover a mean α = 1, i.e. no peak shift, if our fitting method

is unbiased. This is indeed what we see. The very small discrepancy is likely

due to non-linear structure growth which we expect will shift α by ∼ 0.5% or less

(Padmanabhan & White, 2009; Mehta et al., 2011).
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Table 3.2: Redshift space fitting results for various models. Here we test the effects of varying fit parameters on our
measured acoustic scale from the mocks. The first column indicates how the fiducial model was changed. The second
and third columns show the mean and median α values of the mocks. The fourth and fifth columns show the mean and
median differences in α between the fiducial model and the model listed in column 1 on a mock-by-mock basis. The
last column shows the mean χ2 value from the mocks.

Model ᾱ1 α̃ ∆α2 ∆̃α χ2/dof

Redshift Space without Reconstruction

Fiducial [f ] 0.999 ± 0.033 1.003±0.030
0.034 – – 52.96/52

Fit with 15% larger Ωm using fiducial A(r).3 0.998 ± 0.034 1.001±0.029
0.035 −0.002 ± 0.002 −0.001±0.001

0.002 53.29/52

Fit with ns = 0.96 using fiducial A(r). 1.001 ± 0.033 1.004±0.030
0.034 0.002 ± 0.001 0.001±0.001

0.001 52.92/52

Fit with Nrel = 4 using fiducial A(r). 1.006 ± 0.033 1.008±0.032
0.033 0.007 ± 0.005 0.006±0.001

0.001 52.85/52

Fit with Σnl → 0. 0.996 ± 0.036 0.997±0.032
0.032 −0.003 ± 0.020 −0.004±0.013

0.013 54.29/52

Fit with Σnl → Σnl + 2. 1.001 ± 0.034 1.005±0.028
0.034 0.002 ± 0.005 0.002±0.004

0.005 53.28/52

Fit with poly0. 0.995 ± 0.035 0.996±0.034
0.030 −0.004 ± 0.012 −0.003±0.007

0.008 56.03/55

Fit with poly2. 0.997 ± 0.033 1.002±0.030
0.035 −0.002 ± 0.004 −0.001±0.002

0.003 54.44/53

Fit with poly4. 0.999 ± 0.033 1.002±0.031
0.033 0.000 ± 0.001 0.000±0.000

0.000 51.81/51

Fit with 50 < r < 200h−1Mpc fitting range. 1.000 ± 0.033 1.004±0.030
0.033 0.001 ± 0.005 0.001±0.003

0.003 45.73/45

Fit with 20 < r < 200h−1Mpc fitting range. 1.002 ± 0.033 1.004±0.033
0.033 0.003 ± 0.008 0.003±0.006

0.006 59.45/57

Continued on next page
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Table 3.2 – continued from previous page

Model ᾱ α̃ ∆α ∆̃α χ2/dof

Fit with 70 < r < 150h−1Mpc fitting range. 0.999 ± 0.033 1.001±0.033
0.031 0.000 ± 0.010 −0.000±0.009

0.008 21.83/22

Fit using mock covariance matrix. 1.002 ± 0.027 1.003±0.025
0.026 0.003 ± 0.022 0.003±0.018

0.017 52.80/52

Redshift Space with Reconstruction

Fiducial [f ] 1.001 ± 0.021 1.001±0.020
0.022 – – 53.69/52

Fit with 15% larger Ωm using fiducial A(r). 1.001 ± 0.021 1.001±0.020
0.022 −0.000 ± 0.001 −0.000±0.001

0.001 51.86/52

Fit with ns = 0.96 using fiducial A(r). 1.002 ± 0.021 1.002±0.020
0.022 0.001 ± 0.000 0.001±0.000

0.000 51.84/52

Fit with Nrel = 4 using fiducial A(r). 1.006 ± 0.021 1.006±0.020
0.022 0.005 ± 0.001 0.005±0.001

0.001 51.95/52

Fit with Σnl → 0. 1.001 ± 0.022 1.001±0.022
0.020 −0.000 ± 0.004 −0.001±0.004

0.003 53.83/52

Fit with Σnl → Σnl + 2. 1.002 ± 0.021 1.001±0.022
0.020 0.001 ± 0.004 0.001±0.002

0.004 53.99/52

Fit with poly0. 1.000 ± 0.021 1.000±0.019
0.020 −0.002 ± 0.004 −0.001±0.004

0.004 57.34/55

Fit with poly2. 1.000 ± 0.021 1.001±0.021
0.022 −0.001 ± 0.002 −0.001±0.001

0.001 55.41/53

Fit with poly4. 1.001 ± 0.021 1.001±0.021
0.022 −0.000 ± 0.000 −0.000±0.000

0.000 52.68/51

Fit with 50 < r < 200h−1Mpc fitting range. 1.001 ± 0.021 1.000±0.023
0.021 0.000 ± 0.002 0.000±0.001

0.002 46.58/45

Fit with 20 < r < 200h−1Mpc fitting range. 1.005 ± 0.021 1.004±0.022
0.020 0.004 ± 0.003 0.004±0.003

0.003 60.06/57

Fit with 70 < r < 150h−1Mpc fitting range. 1.001 ± 0.026 1.003±0.022
0.019 −0.000 ± 0.012 0.000±0.004

0.005 22.69/22

Continued on next page
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Table 3.2 – continued from previous page

Model ᾱ α̃ ∆α ∆̃α χ2/dof

Fit using mock covariance matrix. 1.004 ± 0.017 1.003±0.017
0.014 0.003 ± 0.015 0.001±0.015

0.010 54.22/52

1 Note that the error quoted with the mean is the rms scatter from the mocks and not the standard error in the mean.
To obtain the standard error, divide the rms by

√
N , where N is the number of mocks.

2 ∆α = α[i] − α[f ], where i is the model listed in column 1.
3 We scale the measured sound horizons to the LasDamas cosmology where necessary.
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To verify the robustness of our covariance modeling and the fiducial model, we

compare the α values we measure from the fiducial model to those we measure

when the fiducial model parameters are slightly changed or if we fit using a different

covariance matrix. A summary of the results of these fits can be found in Table 3.2,

where we have removed the mocks with poorly constrained measurements of α.

Our first test is to see whether we can recover the true acoustic scale using our

fiducial model but with Pm(k) derived from slightly different cosmologies to that

used by LasDamas. Figure 3.11 shows the α values derived from these incorrect

cosmologies versus the α values obtained through fits using the fiducial model (i.e.

with the correct cosmology). The α values obtained from the incorrect cosmologies

have been scaled to the correct cosmology where necessary by multiplying the ratio

of the sound horizons, rs,lin(correct)/rs,lin(incorrect), where the rs,lin are calculated

using Equation (6) in Eisenstein & Hu (1998). For a more detailed discussion of

the sound horizon calculation, please refer to Paper III. The figure caption gives an

explicit description of the items plotted. Note that we define ∆α ≡ αy−axis−αx−axis,

where we always have αx−axis equal to the values of α measured using the fiducial

model.

The top left panel shows the α values from a fit using A(r) = 0 (i.e. poly0) and

a cosmology with a 15% larger value of Ωm (and hence Ωb). This difference should

give rise to an acoustic scale that is about 5% smaller. The top right panel shows

the results from the same fit with the fiducial A(r) form instead of poly0. We expect

the mean and median ∆α values to be ∼ 0 if we can recover the true acoustic scale

using an incorrect cosmology template (i.e. if the α values plotted on the 2 axes

are perfectly correlated). We see that this result is recovered with ∼ 0.2% scatter

when we fit using the fiducial A(r) form. This is ∼ 1% smaller than the scatter

found when fitting with poly0, another indication of the advantages of fitting with
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(Figure 3.11 caption on next page)
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(Figure 3.11 continued)

Figure 3.11: Validation of our fitting method using LasDamas mocks: varying tem-
plate cosmology. Here we have plotted the redshift-space α values measured using
the fiducial model (i.e. using the true LasDamas cosmology) on the x-axis versus
the α values measured using templates derived from slightly different cosmologies
on the y-axis. For the incorrect cosmology templates, we have performed the fits
using poly0 (left) and the fiducial A(r) form (right). The α values from the incor-
rect cosmologies have been scaled to the correct cosmology where necessary. The
red cross indicates the median α values with their 16th and 84th percentiles. The
red lines indicate the 16th and 84th percentiles of ∆α = αy−axis − αx−axis. These
values are given in the plots. Overall, we see that the fiducial A(r) form is better
at recovering the correct acoustic scale than poly0 and that our fiducial model is
robust in recovering the correct acoustic scale even when the template power spec-
trum is derived from a slightly different cosmology. (top) Results when we fit with
a template cosmology where Ωm is 15% higher than LasDamas. (middle) Results
when we fit with a template cosmology where ns = 0.96. (bottom) Results when we
fit with a template where there are 4 relativistic neutrino species. We see that the
∆α offset is larger in this case, especially when fitting with the fiducial A(r) form.
This ∼ 0.6% offset is likely a result of the template BAO shape deviating slightly
from that in the mock data.
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a non-zero A(r).

The middle left panel of Figure 3.11 shows the α values from fits using poly0

and a cosmology with ns = 0.96 plotted against the results from the fiducial model

(ns = 1.0). The difference in ns should not affect the position of the acoustic scale,

but only the shape of the model. The analogous results using the fiducial A(r)

form instead of poly0 are shown in the middle right. The correct acoustic scale is

recovered with ∆α very close to 0 and ∼ 0.1% scatter when the fiducial A(r) form

is used. The corresponding poly0 fit does a poorer job with a scatter in ∆α ∼ 0 of

about 1%. Overall, the fiducial model seems to be able to recover the true acoustic

scale even if its power spectrum template has a slightly different cosmology. This

and the previous example show how important it is to fit with a non-zero A(r) term

if we are not certain of the true model cosmology to be used (i.e. in the case of

actual observations).

The y-axis of the bottom panels in Figure 3.11 correspond to α values measured

using poly0 (left) and fiducial A(r) (right) with a template cosmology consisting

of 4 relativistic neutrino species (Nrel = 4) instead of the standard 3. We use the

same Ωm, Ωbh
2, and epoch of matter-radiation equality as the Nrel = 3 case, so

that the rough shape of the power spectrum is preserved. This requires H0 = 74.3

km/s/Mpc. As in the previous cases, the scatter in ∆α is smaller if we employ the

fiducial A(r) rather than poly0. However, we find a mean offset of 0.6% when using

an Nrel = 4 template, after scaling by the appropriate sound horizon. We believe

this is because the shape of the template around the BAO feature is slightly different

from the Nrel = 3 case, e.g., because the baryon fraction in this model is different.

While the 0.6% offset is much smaller than the statistical errors of the DR7 data set,

larger surveys might need to iterate their fits to converge to a sufficiently accurate

template when investigating variations in the number of relativistic species.
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(Figure 3.12 continued)
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Figure 3.12: Validation of our fitting method using LasDamas mocks: varying fit-
ting/model parameters. This figure is akin to Figure 3.11 in that the left panels show
similar plots of redshift-space α values measured using the fiducial model (x-axis)
versus those measured using models in which the fiducial parameters are slightly
tweaked (y-axis). However, instead of varying the template cosmology, here we vary
other fiducial model parameters such as Σnl (top), the order of A(r) (2nd row) and
the fitting range (3rd row). The tight correlations shown in all of these plots indicate
the robustness of our covariance matrix estimators and the robustness of our fiducial
model to small changes in model parameters. The right panels show corresponding
plots of the measured best-fit χ2 values. In all cases we see that the χ2 values shift
by reasonable amounts given the addition or subtraction of degrees-of-freedom as we
change the fiducial parameters. (top) Results when we fit using Σnl = 10h−1Mpc.
(2nd row) Results when we fit using poly4. (3rd row) Results when we use a fitting
range of 50 < r < 200h−1Mpc. (bottom) For completeness, we show the compari-
son between fits using the mock covariance matrix (Equation (3.8)) and fits using
the MGCM. A correlation between the 2 sets of α can be seen, but the noisiness
of the mock covariance matrix is responsible for the larger scatter. Similarly, the
corresponding χ2 plot shows a fair bit of scatter. However, the average χ2 values
obtained using these 2 different covariance matrices match nicely.
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Next we test how changing the value of Σnl in Pm(k) of the fiducial model affects

the measured acoustic peak position. In the top left panel of Figure 3.12, we plot

the α values measured using fits with Σnl = 10h−1Mpc versus those derived from the

fiducial model (Σnl = 8h−1Mpc) in redshift space. One can see a tight correlation

between the 2 sets of α with consistent mean and median values. The mean and

median ∆α values are consistent with 0 and only have ∼ 0.5% scatter. The top

right panel shows the corresponding χ2 values from the fits. The number of degrees

of freedom is calculated by subtracting the number of fitting parameters (5 in our

fiducial form: B2, a1, a2, a3 and α) from the number of data points being fit (57

for our fiducial fitting range of 30 < r < 200h−1Mpc). The tight correlation in α

and the very small change in χ2/dof between the 2 models suggest that the value

of α is not sensitive to small changes in Σnl. However, if we use a less sensible

value of Σnl like Σnl = 0h−1Mpc which corresponds to no acoustic peak smearing

(very unlikely, especially before reconstruction), ∆α is still consistent with 0 but

the scatter increases to 1 − 2%. This suggests that the fiducial form defined by

Equations (3.33 & 3.34) returns consistent values of α as long as a reasonable value

of Σnl is used.

The left panel of the 2nd row in Figure 3.12 shows the α values measured from

fits using an A(r) that is an order higher than the fiducial form (i.e. poly4) versus

the α values measured using the fiducial model. Again, a tight correlation exists

between the 2 sets of α with the mean and median values agreeing nicely. The

mean and median values of ∆α are consistent with 0 and have negligible scatter.

The right panel in the 2nd row shows the analogous plot for the χ2 values. One

can see that the average χ2 decreases by ∼ 1 as one expects when increasing the

number of nuisance parameters by 1. This suggests that continuing to increase the

order of A(r) beyond that in the fiducial model offers little improvement to the fits.
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However, as long as one does not increase the order to a point where noise in the

data is being fit, one should measure consistent values of α. When A(r) is taken

to be an order less than fiducial (i.e. poly2), the scatter goes up slightly to ∼ 0.3%

and when poly0 is used, the scatter increases to ∼ 1%. Hence, decreasing the order

of A(r) is feasible, but decreasing the order by too much will give a less consistent

measurement of α.

Finally we test how adjusting the fitting range affects our measurements of α.

Changing the minimum of the fitting range from 30h−1Mpc (fiducial) to 50h−1Mpc

seems to have little affect on α. The 3rd row of Figure 3.12 shows the α and χ2

values obtained using these 2 fitting ranges. One can see that the mean and median

α values agree nicely and that the 2 sets of α values are obviously correlated. ∆α

is again consistent with 0 and has very small scatter (∼ 0.4%). The χ2 values

decreased by about 7 on average, which is expected since the number of data points

fit decreased by 7. We perform similar experiments by shifting the fitting range to

20 < r < 200h−1Mpc and 70 < r < 150h−1Mpc. In both cases, ∆α = 0 lies within

slightly larger scatter (∼ 0.7−1%). In the prior case, this is likely due to non-linear

effects at small scales coming into play. These effects are not well modeled by our

fitting template. In the latter case, the larger scatter is likely caused by some of the

acoustic information being cut out by using such a small fitting range.

For completeness, we also show the α values obtained through using the mock

covariance matrix (Equation (3.8)) versus those obtained using the MGCM and the

fiducial model. Since the mock covariance matrix is noisy, we expect there to be

significant scatter in the α versus α and χ2 versus χ2 plots. These are shown in the

bottom panels of Figure 3.12. A correlation between the two α sets is still visible,

but it is not as tight as those in the upper panels. ∆α is still consistent with 0 but

the scatter is now ∼ 2%. Note that the average χ2 values of the 2 cases match well.
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This indicates that the MGCM is a reasonable approximation to the covariances we

expect in our mock data.

3.5.2 With Reconstruction

Next we study the LasDamas mocks in redshift space after reconstruction. We

find that after reconstruction, our ability to constrain the acoustic scale in each

individual mock as measured by the standard deviation of α is greatly improved.

We plot σα before reconstruction against those after reconstruction in Figure 3.14.

The black diagonal line is the 1-1 line. One can see that only a few of the mocks

have larger standard deviations after reconstruction but they are not much larger.

Most of the points lie significantly below the line with the median change in σα equal

to 1.1% as indicated on the plot. Hence, in general, reconstruction can significantly

improve our ability to constrain α.

One can also see that after reconstruction, there are no longer any poorly con-

strained mocks that lie above the 7% cutoff (black horizontal line) imposed in the

unreconstructed case. The solid grey line indicates the mean σα after reconstruction

and the dashed grey lines correspond to the 98th, 84th, 16th and 2nd percentiles,

similar to Figure 3.10 for redshift space without reconstruction.

As we saw in §3.5.1, the mocks where α is well constrained have strong acoustic

features. Figure 3.14 showed that in reconstructed redshift space our measurements

of best-fit α should be much more reliable. This implies that the acoustic peak in the

poorly constrained mocks from before should be more prominent after reconstruction

as we would expect. In Figure 3.13, we show the same 2 poorly constrained mocks

as in Figure 3.9. The fit results from both of these mocks clearly demonstrate how

effective reconstruction is. The acoustic peaks can be clearly seen now and the

χ2 minima corresponding to the best-fit α values are significantly different from

the plateau values. The p(α) curves have also become more Gaussian in shape
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Figure 3.13: The same poorly constrained mocks as in Figure 3.9 after reconstruc-
tion. One can see that reconstruction has improved our ability to obtain a solid
measurement of α in both cases. The acoustic peaks are now clearly visible, there
are significant differences in χ2 between the minima of the ∆χ2 curves and the
plateaus, and the p(α) distributions are now regular Gaussians with standard de-
viations ∼ 1.9 and ∼ 2.5 times smaller than before reconstruction. This type of
improvement is characteristic of the other previously poorly constrained mocks in
our sample and again emphasizes the utility of reconstruction.
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Figure 3.14: The standard deviations of p(α) for each mock before reconstruction
versus those after reconstruction. The diagonal black line is a 1-1 line to guide
the eye. Only a few of the mocks have slightly larger standard deviations after
reconstruction, most of the mocks lie very much below the diagonal line. The median
change in standard deviation is 1.1% which implies that our ability to constrain α
increases significantly after reconstruction. Note that also, after reconstruction,
there are no longer any poorly constrained mocks with standard deviations larger
than 7% (black horizontal line), the cutoff imposed in Figure 3.10. The grey solid
and dashed lines are as in Figure 3.10.
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with standard deviations much smaller than before (by factors of ∼ 1.9 and ∼ 2.5

respectively). These are characteristic of the improvements seen for the other mocks

which were poorly constrained before reconstruction.

In Figure 3.15, we have plotted the distribution of (αbf − ᾱ)/σα which is a proxy

for the signal-to-noise of our α measurement. Here, αbf is the best-fit value of α for

each mock and ᾱ is the mean of the best-fit values. The distribution before recon-

struction is shown in black and the distribution after reconstruction is shown in red.

One can see that both distributions are roughly Gaussian. A standard K-S test gives

a Dn value of ∼ 0.05 before reconstruction and ∼ 0.08 after reconstruction (recall

that a value close to 0 indicates a better match to the normal distribution). These

correspond to 83% and 28% probabilities that our pre- and post-reconstruction val-

ues are drawn from a Gaussian distribution. Hence α is sufficiently Gaussian which

implies that the standard deviation of p(α) is representative of the error on α for

each mock.

The fiducial model measures a mean ᾱ[f ] = 1.001 ± 0.021 and a median α̃[f ] =

1.001±0.020
0.022 from the post-reconstruction mocks (recall that before reconstruction

these were ᾱ = 0.999± 0.033 and α̃ = 1.003±0.030
0.034). Hence, the rms (standard devi-

ation) of the measured α values drops by about a factor of 1.6 after reconstruction.

Such an improvement is a direct consequence of reconstruction sharpening the BAO

peak, allowing a more precise centroiding of its location. We know that V ∝ σ−2,

where V is the survey volume required to achieve a variance σ2. Therefore, we would

have to increase the survey volume by ∼ 2.5 times to achieve this same factor of 1.6

decrease in the error.

Next, we again tweak the fiducial model parameters slightly and test the ro-

bustness of our fitting form and our covariance matrix. The results of the fits are

summarized in Table 3.2 and in Figure 3.17. This figure is essentially analogous to
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Figure 3.15: The distributions of (αbf − ᾱ)/σα before (black) and after (red) recon-
struction, where αbf is the best-fit value of α for each mock and ᾱ is the mean of
the best-fit values. This is a good measure of the signal-to-noise ratio of our best-fit
α values. Both distributions are nearly Gaussian as indicated by the small K-S Dn

values shown in the plot. Before reconstruction, our K-S value implies that there
is an 83% probability that our values are drawn from a normal distribution. After
reconstruction there is a 28% probability, which is still non-trivial. This implies
that α is sufficiently Gaussian and hence the σα values measured from p(α) are
representative estimates of the error on α for each mock.
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Figure 3.11 and Figure 3.12, however, we have replaced the scatter plots with his-

tograms of ∆α = α[i] − α[f ]. Here, α[i] are the slightly tweaked models as indicated

by the titles. Note that in general, the scatters in the mean and median α and ∆α

values from the various fits are smaller after reconstruction, another indication of

its effectiveness.

The various panels of Figure 3.17 show ∆α values for different tweaks to the

fiducial model. The median values are marked by the red lines (see caption for

more details). Further cases are summarized in Table 1. The only case that shows a

relatively large scatter in ∆α is when we fit using the mock covariance matrix instead

of the MGCM; this can be attributed to the higher noise in the mock covariance

matrix. Also, as in the pre-reconstruction case, we see that for Nrel = 4, ∆α ∼ 0.5%

which is slightly larger than the other cases. However, in general, ∆α ∼ 0 with very

small scatter.

It should also be noted here that the cases which had noticeably larger scatter

in ∆α before reconstruction (Σnl = 0h−1Mpc, poly0 and fitting ranges of 20 < r <

200h−1Mpc and 70 < r < 150h−1Mpc), no longer do post-reconstruction. This is be-

cause reconstruction undoes non-linear structure growth and brings the correlation

function closer to its linear theory form (i.e. ξs(r) → ξm(r) and Σnl → 0h−1Mpc).

The consistency in the measured values of α indicate that after reconstruction, our

fiducial model is even more robust against changes in model parameters.

The left panel of Figure 3.16 shows the α values measured using the WMAP7

cosmology and its MGCM described in §3.3.2 versus the α values measured using

the MGCM for the LasDamas cosmology. One can see that, after rescaling by the

ratio of the sound horizons, a perfect correlation exists between the 2 sets of α

values. This is also true for the WMAP7±1σ cosmologies shown in Figure 3.3.

The right panel of Figure 3.16 shows the corresponding values of σα measured from
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Figure 3.16: Testing the effects of using the wrong cosmology to derive the co-
variance matrix and construct the model template. (left) α values measured from
the LasDamas mocks in redshift space after reconstruction using a fitting template
and MGCM (see Figure 3.3) based on the WMAP7 cosmology versus those mea-
sured using the fiducial model (LasDamas fitting template and its corresponding
MGCM). The α values from the WMAP7 cosmology have been rescaled to the Las-
Damas cosmology. (right) The analogous plot for σα measured from p(α). One can
see that perfect correlations exist between the axes of both plots. This indicates
that our acoustic scale measurements are not affected by deriving the MGCM using
the wrong cosmology. Our maximum likelihood method is capable of modifying
the matrix from the incorrect cosmology to match that expected from the correct
cosmology.

p(α). Again, a strong correlation exists and similar trends are observed for the 2

other WMAP7-like cosmologies. Hence, the measurement of the acoustic scale is not

affected by the cosmology used for the covariance matrix or the fitting model. This

demonstrates the robustness of our fiducial model in dealing with a fitting template

constructed using the wrong cosmology as well as our maximum likelihood approach

for deriving a suitable covariance matrix for the data.

Now that we have validated our fitting model, we must also test the robustness

of our reconstruction technique. The following investigates what happens when
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Figure 3.17: Validation of our fitting method in redshift space after reconstruction
using LasDamas mocks. The contents of this figure are comparable to Figures 3.11 &
3.12, however, the scatter plots have been replaced by histograms of ∆α = α[i]−α[f ]

here. The α[i] are measured from models that are derived by slightly changing the
fiducial model parameters. These are indicated above each plot. The solid red lines
mark the median ∆α. The dashed red lines indicate the 16th and 84th percentiles.
One can see that ∆α is very close to 0 with small scatter in most of these cases.
The slightly larger scatter in the case where we fit using the mock covariance matrix
is likely due to the noisiness of that matrix. This indicates that the value of α
is insensitive to small changes in template cosmology, Σnl, order of A(r), fitting
range and covariance matrix estimator used. Hence, our basic fitting form and our
covariance matrix estimators are robust. The results shown in this figure are all
consistent with those found in unreconstructed redshift space.
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Table 3.3: The effect of varying reconstruction smoothing length l on the measured
values of α from the mocks in redshift space.

Smoothing mean α rms of α

15h−1Mpc (fiducial) 1.001 0.021

20h−1Mpc 1.004 0.023

25h−1Mpc 1.006 0.026

we change the fiducial reconstruction parameters. As mentioned previously, the

smoothing scale we choose for reconstruction is very important. Table 3.3 shows

the average values of α obtained through our fits and the rms scatter between the

mocks for different smoothing lengths. One can see that l = 15h−1Mpc (our fiducial

value) is most effective at reducing the scatter.

Next we vary the other fiducial reconstruction parameters and re-perform the

fits to see if we recover consistent values of the acoustic scale α and errors σα (see

§3.3.3). We vary the bias b, the linear growth rate f and the power spectrum used

for generating the constrained realizations. In all cases, the average ∆α and ∆σα are

essentially 0 which implies that overall we recover consistent measurements regard-

less of the reconstruction parameters used. How well these values are consistent with

0 is illustrated in Table 3.4 which summarizes the average scatter in ∆α and ∆σα

between fits to the fiducial reconstruction output and the cases where we change the

fiducial parameters. Correlation coefficients ρ are given for both α and σα as well.

We expect that the input bias should have the largest effect on reconstruction.

This is because an overestimate of the bias implies an underestimate of the matter

density field (recall we use δmatter = δgal/b). If we underestimate the matter density

field, then we will also underpredict the displacement field. The opposite holds if we

underestimate the bias. One can see that this is indeed reflected in Table 3.4 where
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Table 3.4: The effects of varying reconstruction parameters on the measured acoustic
scale α from the mocks in redshift space. ρ is the correlation coefficient between the
case listed in column 1 and the fiducial case.

Case rms of ∆α1 ρ rms of ∆σα ρ

b=1.8 (-20%) 0.009 0.92 0.003 0.94

b=2.6 (+20%) 0.006 0.97 0.002 0.97

f=0.5 (-20%) 0.002 1.00 0.001 1.00

f=0.8 (+20%) 0.002 1.00 0.001 1.00

Pk, no-wiggle 0.000 1.00 0.000 1.00

Pk, shot-noise 0.003 0.99 0.001 0.99

1 Here ∆ denotes the difference between the quantity measured using the fiducial

reconstruction parameters and that measured using different parameter values.

the scatters in ∆α and ∆σα are the greatest for the changing bias cases, implying

that the measured values slosh around the most in this case. However, the ∆α rms

is only ∼ 0.5 − 1.0% which is much smaller than the typical σα error we expect to

measure from each mock. Hence, it is not detectable in an individual mock at our

current level of statistical precision. The fact that the correlation coefficients are

nearly 1 underscores the point that overall we are measuring consistent values of α

and σα despite changing the bias in our reconstruction.

The input value of f affects the magnitude of the Kaiser correction. If we pick

a value that is too large or too small, we will either introduce additional or leave

behind residual anisotropy in the 2D correlation function. However, we see that this

parameter has little affect on the measured values of α and σα as indicated in Table

3.4. Finally we test the effects of changing the input power spectrum for generating

the constrained Gaussian realizations. We use a power spectrum without an acoustic
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signal (Pk, no-wiggle) and another one with no clustering signal at all (Pk, shot-

noise). Table 3.4 indicates that reconstruction is insensitive to these choices as well,

although we note that these results are sensitive to survey geometry. If the DR7

survey geometry had been different, the choice of power spectrum could prove to be

more important. Hence we see that overall, the acoustic scale measured is robust to

different choices of reconstruction parameters.

We conclude this section by demonstrating and comparing the detectabilities

of the BAO in the reconstructed (solid red line) and unreconstructed (solid black

line) mocks as shown in Figure 3.18. We have plotted the normalized cumulative

distribution of ∆χ2 = χ2
BAO − χ2

no BAO for fiducial A(r) (left) and poly0 (right).

Here, the χ2 values for each mock are calculated by marginalizing over the nuisance

parameters only while fixing α at the best-fit value from the fiducial model or poly0

fits. χ2
BAO is the χ2 obtained in this fashion using a template ξm(r) containing BAO.

χ2
no BAO is the analogous value obtained using a template that has no BAO feature.

While it is true that in the no BAO fits, the value of α we impose may not give

the minimum χ2, the lack of a BAO feature in the model eliminates its ability to

constrain α in these fits. Hence, comparing the BAO and no BAO χ2 values at

the fiducial or poly0 best-fit α is a reasonable way to circumvent this problem. We

obtain the BAO-less model by setting Σnl = 1000h−1Mpc to completely damp out

any acoustic signal. This cumulative distribution indicates the fraction of mocks

that lie more negative of a given ∆χ2 value. Note that we have plotted all 160

mocks here (i.e. we did not throw out any poorly constrained mocks).

If the data favours a model containing BAO, χ2
BAO should be smaller than χ2

no BAO

(i.e. ∆χ2 should be negative). The intersections of the dashed horizontal black lines

and the distributions correspond to values of ∆χ2 that halve the data and hence

indicate the median ∆χ2 values. One can see that these medians are negative for all
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cases which indicates that on average the data favours models containing BAO. The

median ∆χ2 before reconstruction is ∼ −10 and after reconstruction, it is ∼ −16 for

the fits performed using fiducial A(r). The two vertical dashed black lines indicate

where ∆χ2 = 0 and ∆χ2 = −9. The latter corresponds to where a model containing

BAO is favoured at 3σ above a model without BAO. Before reconstruction, about

56% of the mocks lie above (more negative of) this 3σ line. After reconstruction, this

number increases to 88%. This again indicates that our reconstruction algorithm

is helping to restore acoustic information back into the acoustic peak. Hence, the

robustness of the BAO detection is further improved by reconstruction.

Although there are some mocks that do not favour a model with BAO at very

high confidence and even a few mocks that do not favour a model with BAO at all

(∆χ2 > 0), this does not indicate that we are not detecting the BAO. It is merely

a statement that if we take observations of many different regions of the universe,

there is a finite chance that the BAO signal will not be robustly detected in some of

these regions. This is in contrast to the conclusions drawn in Cabré & Gaztañaga

(2011).

The median value of ∆χ2 is slightly more negative when the fit is performed

using the fiducial model versus when it is performed using poly0 both before and

after reconstruction. However, we see that even the simple poly0 fits favour a model

containing BAO over one without BAO. Before reconstruction, about 53% of the

mocks lie above the 3σ line and after reconstruction, about 82% lie above this line.

These numbers are very similar to those obtained in the fiducial model case.

We have also performed this experiment for a few other fitting ranges (50-

200h−1Mpc and 70-150h−1Mpc). The former yielded similar results, however, the

latter had slightly less dramatic ∆χ2 values. This is not unexpected because in

these cases, the A(r) terms are less constrained and can therefore absorb some of
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Figure 3.18: The detectability of the BAO feature in redshift space before and after
reconstruction. (left) The normalized cumulative distribution function of ∆χ2 =
χ2

BAO − χ2
no BAO from fits using the fiducial A(r) term. The solid black line shows

the distribution before reconstruction and the solid red line shows the distribution
after reconstruction. The horizontal dashed black line at fraction=50% indicates
the value of ∆χ2 that splits the mocks in half (i.e. the median ∆χ2 value). We can
see that the average ∆χ2 is negative in both of these cases. The vertical dashed
black lines indicate where ∆χ2 = 0 and -9 (3σ). (right) The distribution of ∆χ2

values from fits using poly0. Again the average ∆χ2 is negative both before and
after reconstruction. In all cases, the majority of mocks lie beyond the 3σ line,
especially in the reconstructed case. This indicates that a detection of the BAO in
our mock data is favoured over a non-detection.

the BAO signal.

3.6 LasDamas Real Space Results

3.6.1 Covariance Matrices

Although our observations will always lie in redshift space, it is still useful to demon-

strate our results for real space as past works involving reconstruction and pertur-

bation theory have been based in real space (Padmanabhan, White & Cohn, 2009;

Noh et al., 2009). In addition, we will demonstrate that after reconstruction, our

mocks show comparable scatter between real and redshift space, again indicating
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the utility of reconstruction.

As in redshift space, the covariance matrix derived from the mock correlation

functions through Equation (3.8) is noisy. Hence, we again use a modified Gaus-

sian covariance matrix as a smooth approximation to the mock covariance matrix.

However, in real space, we do not have any redshift-space observational effects such

as Kaiser squashing or FoG. Therefore, we take the input power spectrum to the

covariance matrix calculation to be

Pc(k) = b2
0Pt(k) (3.40)

where the value of b2
0 is determined as it was in redshift space.

We then introduce similar modification parameters to the redshift-space case,

namely, we assume the covariance matrix can be modeled by the form

Cm
ij = 2

∫
k2dk

2π2
∆j1(kri)∆j1(krj)P

2(k; c0, c2) + c3. (3.41)

Here, P2(k; c0, c2) corresponds to an I2(k), Equation (3.20), in which we make the

substitution

Pc(k) +
1

n̄(z)
→ c0Pc(k) +

c2

n̄(z)
. (3.42)

Note that this is the same as Equation (3.24) except with c1 = 0 and a different

form for Pc(k). Using the same maximum likelihood prescription as that described

in §3.3.2, we can derive values for the modification parameters c0, c2 and c3.

We use Σnl = 7h−1Mpc for calculating Pc(k) in real space before reconstruction.

As in the redshift-space case, the value of Σnl used has negligible affect on the

derived matrix. With this Pc(k) we find c1 = 0.98, c2 = 1.50 and c3 = 5.57 × 10−8.

After reconstruction, we take Σnl = 3h−1Mpc in real space. The modified

Gaussian covariance matrix we obtain has the modification parameters c0 = 0.89,

c2 = 1.57 and c3 = 8.85 × 10−8.
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3.6.2 Fitting Forms

We use the same fiducial fitting form in both real space with and without recon-

struction as in redshift space for measuring the shift in the acoustic scale, α. This is

described by Equations (3.33 & 3.34). In real space before reconstruction, we define

the fiducial model to make use of this fiducial form with ξm(r) derived from the Las-

Damas cosmology and Σnl = 7h−1Mpc over a fitting range of 30 < r < 200h−1Mpc.

If we fit the average mock real-space correlation function allowing Σnl to vary, we

obtain α = 1.002 and Σnl = 6.6h−1Mpc, so our assumption for Σnl s not bad. In

practice, like in redshift space, the measured α values for each individual mock are

insensitive to our choice of Σnl as is shown in Table 3.5. The error bars on our

mock data are approximated by the modified Gaussian covariance matrix (MGCM)

derived in the previous section.
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Table 3.5: Real space fitting results for various models. The columns are as in Table 3.2.

Model ᾱ α̃ ∆α ∆̃α χ2/dof

Real Space without Reconstruction

Fiducial [f ] 1.001 ± 0.030 1.000±0.031
0.027 – – 53.34/52

Fit with 15% larger Ωm using fiducial A(r). 1.000 ± 0.030 0.999±0.031
0.028 −0.001 ± 0.001 −0.001±0.001

0.001 53.58/52

Fit with ns = 0.96 using fiducial A(r). 1.002 ± 0.030 1.001±0.030
0.027 0.001 ± 0.001 0.001±0.001

0.000 53.39/52

Fit with Nrel = 4 using fiducial A(r). 1.007 ± 0.030 1.005±0.030
0.027 0.006 ± 0.001 0.005±0.001

0.001 53.36/52

Fit with Σnl → 0. 0.998 ± 0.032 0.997±0.032
0.029 −0.003 ± 0.013 −0.003±0.009

0.012 53.79/52

Fit with Σnl → Σnl + 2. 1.003 ± 0.030 1.003±0.031
0.031 0.002 ± 0.005 0.002±0.004

0.005 53.83/52

Fit with poly0. 0.999 ± 0.031 1.001±0.030
0.031 −0.002 ± 0.008 −0.001±0.006

0.007 56.19/55

Fit with poly2. 1.000 ± 0.030 0.999±0.031
0.028 −0.001 ± 0.003 −0.001±0.002

0.002 54.65/53

Fit with poly4. 1.001 ± 0.029 1.000±0.031
0.027 0.000 ± 0.000 0.000±0.000

0.000 52.03/51

Fit with 50 < r < 200h−1Mpc fitting range. 1.002 ± 0.029 1.001±0.031
0.025 0.001 ± 0.003 0.001±0.003

0.003 46.18/45

Fit with 20 < r < 200h−1Mpc fitting range. 1.002 ± 0.028 1.000±0.029
0.026 0.001 ± 0.006 0.002±0.005

0.006 59.33/57

Fit with 70 < r < 150h−1Mpc fitting range. 1.002 ± 0.031 0.999±0.031
0.020 0.001 ± 0.011 0.001±0.008

0.008 21.99/22

Fit using mock covariance matrix. 1.002 ± 0.023 1.003±0.021
0.025 0.001 ± 0.016 0.002±0.013

0.016 53.15/52

Continued on next page
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Table 3.5 – continued from previous page

Model ᾱ α̃ ∆α ∆̃α χ2/dof

Real Space with Reconstruction

Fiducial [f ] 0.998 ± 0.020 0.999±0.019
0.019 – – 53.44/52

Fit with 15% larger Ωm using fiducial A(r). 0.998 ± 0.020 0.999±0.019
0.020 −0.001 ± 0.002 −0.000±0.001

0.001 53.78/52

Fit with ns = 0.96 using fiducial A(r). 0.999 ± 0.020 1.000±0.020
0.019 0.001 ± 0.001 0.001±0.001

0.001 53.48/52

Fit with Nrel = 4 using fiducial A(r). 1.003 ± 0.020 1.003±0.020
0.019 0.004 ± 0.001 0.004±0.001

0.000 53.68/52

Fit with Σnl → 0. 0.998 ± 0.020 0.999±0.021
0.020 −0.000 ± 0.002 −0.000±0.002

0.002 53.47/52

Fit with Σnl → Σnl + 2. 0.999 ± 0.020 0.999±0.020
0.019 0.000 ± 0.003 0.001±0.002

0.003 53.66/52

Fit with poly0. 0.997 ± 0.021 0.999±0.019
0.020 −0.001 ± 0.005 −0.001±0.003

0.004 56.44/55

Fit with poly2. 0.998 ± 0.020 0.999±0.019
0.021 −0.001 ± 0.002 −0.001±0.001

0.001 54.82/53

Fit with poly4. 0.998 ± 0.020 0.999±0.019
0.019 0.000 ± 0.000 −0.000±0.000

0.000 52.00/51

Fit with 50 < r < 200h−1Mpc fitting range. 0.999 ± 0.020 1.001±0.019
0.020 0.001 ± 0.002 0.001±0.001

0.002 46.80/45

Fit with 20 < r < 200h−1Mpc fitting range. 0.996 ± 0.020 0.999±0.018
0.021 −0.002 ± 0.004 −0.001±0.002

0.004 58.24/57

Fit with 70 < r < 150h−1Mpc fitting range. 0.999 ± 0.021 1.000±0.019
0.022 0.001 ± 0.007 0.001±0.004

0.005 21.89/22

Fit using mock covariance matrix. 0.999 ± 0.017 1.001±0.014
0.019 0.001 ± 0.012 −0.000±0.010

0.010 52.85/52
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Fitting the average of the reconstructed real-space mock correlation functions

while allowing Σnl to vary gives α = 0.999 and Σnl = 3.0h−1Mpc. As in redshift

space, the value of α prior to reconstruction is already very close to 1 and hence, we

do not expect reconstruction to shift the acoustic peak much closer to its predicted

linear theory position. However, Σnl decreased by a factor of ∼ 2.2 from its pre-

reconstruction value, implying that reconstruction was effective at removing the

smearing of the acoustic peak caused by non-linear structure growth.

In our fiducial model for real space after reconstruction, we take Σnl = 3h−1Mpc,

as we did in the calculation of the modified Gaussian covariance matrix. All other

parameters of the fiducial model are analogous to the unreconstructed case described

above. The same fitting algorithm as described in §3.3.3 is used.

3.6.3 Without Reconstruction Fitting Results

We use the same technique as that described in §3.5.1 to identify and remove the

mock correlation functions that do not provide a well constrained measurement of α

from our fitting sample. The corresponding real-space plot to Figure 3.10 is shown

in Figure 3.19. We use the same 7% cutoff in standard deviation (σα) as in redshift

space. This is marked by the black horizontal line. There are 5 mocks (∼ 3%) that

lie above this cut off (circled in black) which we take to have poorly constrained

values of α and discard from our sample. The mean and median values of α after

removing these poorly constrained mocks are indicated on the plot.

We test the robustness of our covariance matrix modeling and the fiducial model

as we did in redshift space. Namely, we compare the values of α we measure using

the fiducial model to those measured using a model in which the fiducial parameters

are slightly changed, or by a fit in which we use the mock covariances rather than

the MGCM. The resultant α, ∆α and χ2 values are given in Table 3.5. Note that

in general, the values of ∆α and their scatters are slightly smaller in real space
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Figure 3.19: The standard deviations measured from p(α) versus the best-fit values
of α from the fiducial model for each mock in real space. We impose a cutoff at a
standard deviation of 7% (marked by the black horizontal line) as in redshift space.
There are 5 mocks that lie above this line (circled in black). We take these mocks
to have poorly measured values of α and discard them from our sample. The mean
and median value of α after discarding these poorly constrained mocks are given on
the plot.
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than in redshift space. This is not unexpected since observational effects in redshift

space such as FoG and Kaiser squashing tend to broaden the acoustic peak further,

making it more difficult to obtain a precise measurement.

The results listed in Table 3.5 indicate that the trends in real space are the

same as those found in redshift space. In particular, the values of α measured

by slightly changing the input cosmology, Σnl, the order of A(r) and the fitting

range are consistent with the values measured using the fiducial model, usually with

∆α < 0.2%. As in redshift space, the worst case is when we change the template

to use Nrel = 4; this has a deviation of 0.6%. Again, this is likely the result of

the Nrel = 4 correlation function template having a BAO peak that does not quite

match the mocks well enough. If we go to less sensible Σnl such as Σnl = 0h−1Mpc,

or decide to not use an A(r) term, or fit using a less optimal fitting range, the scatter

in ∆α increases as it did in redshift space. Noise in the mock covariance matrix is

again the likely culprit causing the larger scatter in ∆α between the MGCM fits

and the mock covariance fits. These results all imply that our covariance modeling

and our fiducial model are generally robust in real space as well.

3.6.4 With Reconstruction Fitting Results

As in redshift space, we find that after reconstruction, we are able to obtain much

tighter constraints on the α values measured from each individual mock in real

space. Figure 3.20 demonstrates this by plotting the standard deviation of p(α)

for each mock before reconstruction against the value obtained after reconstruction.

Note that this is the analogue to Figure 3.14 for redshift space. One can once again

see that most of the points lie significantly below the 1-1 line which indicates that

reconstruction effectively sharpened up the acoustic peak allowing for more robust

detections. The median decrease in standard deviation is 0.8% and there are no

longer any mocks that lie above our σα cutoff of 7%.
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Figure 3.20: The analogous plot in reconstructed real space to Figure 3.14 for re-
constructed redshift space. Once again, most of the points lie significantly below
the 1-1 line. The median decrease in standard deviation is ∼ 0.8% as shown in the
plot. Note that there are no longer any poorly constrained mocks with standard
deviations above our 7% cutoff. This once again illustrates how useful and effective
reconstruction is.
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Next, we once again test how slightly adjusting the fiducial model parameters

affects our measurements of α. The results from these fits are given in Table 3.5.

One can see that after reconstruction, the scatters in α are very similar between real

space and redshift space.

We see that changing the fitting template cosmology, adjusting the value of Σnl,

changing the order of A(r) and altering the fitting range mostly have little effect on

the value of α measured. The only case with ∆α worse than 0.2% is the Nrel = 4

case, which measures 0.4%. In general, we still find that our fiducial model and

our prescription for deriving a suitable covariance matrix such as the MGCM are

robust. These results are all consistent with previous results.

Lastly, we investigate the detectability of the BAO in both unreconstructed

and reconstructed real space. We find that the median ∆χ2 = χ2
BAO − χ2

no BAO

values are again negative and similar in magnitude to the redshift-space cases. This

suggests that the data is better fit by a model containing BAO rather than a model

without BAO. We also note that the post-reconstruction real-space ∆χ2 values are

more negative than before reconstruction. Hence, we conclude that we have a firm

detection of the acoustic signal in our mocks, with the detection being even more

robust after reconstruction.

3.7 Measuring the BAO in SDSS DR7

3.7.1 Covariance Matrices

In this section, we apply the techniques described in §3.3 for redshift space to the

DR7 LRG full sample. We use the form for the modified Gaussian covariance matrix

given in Equation (3.23) for redshift space with and without reconstruction. We

adopt the modification parameters (c0, c1, c2 and c3) derived for the LasDamas

mocks in both of these cases, assuming that the overall shape of the covariance
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matrix should be modified in the same way for both DR7 and LasDamas. However,

we now switch to the WMAP7 cosmology in constructing Pc(k).

The b2
0 coefficient in Equation (3.17) is chosen such that Pc(k) matches the DR7

correlation function at r = 50h−1Mpc. This again ensures that the amplitude of

Pc(k) matches the clustering amplitude of DR7, an essential condition when reusing

the modification parameters to adjust the shape of the Gaussian covariance matrix.

In computing the pre-reconstruction covariance matrix, we retain Σnl = 8h−1Mpc

and for post-reconstruction, we retain Σnl = 4h−1Mpc. We also note that since the

DR7 data goes out to z = 0.47, we extend our n̄(z) model derived from the Las-

Damas random catalogue out to z = 0.47 as well, after scaling it to the WMAP7

cosmology.

3.7.2 Fit Results

We compute the DR7 correlation functions in the WMAP7 cosmology. For details of

the computation and reconstruction, please see Paper I. We present only the fitting

results here.

Figure 3.21 shows the results of our fits to the DR7 data using the fiducial model

and fitting algorithm outlined in §3.3. These results are also summarized in Table

3.6 along with the fit results from varying fiducial model parameters such as Σnl

and fitting range.

The 2 panels at the top illustrate the pre-reconstruction results and the 2 panels

at the bottom illustrate the post-reconstruction results. We fix Σnl in our model

templates to the same values as in the covariance matrices. The left column shows

the data with the fiducial model fit overplotted (black line). The dashed red line

corresponds to a fit using poly0 instead of fiducial A(r). The best-fit α and χ2

values are quoted on the plot. The right column shows the p(α) distributions for

the fits using the fiducial model (black line) and the fits using poly0 (red line).
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Table 3.6: DR7 fit results for various models

Model α χ2

Redshift Space without Reconstruction

Fiducial [f ] 1.017 ± 0.0351 47.71/52

Σnl = 0 1.025 ± 0.029 49.89/52

Σnl → Σnl + 2 1.011 ± 0.039 47.86/52

poly0 1.002 ± 0.038 55.35/55

poly2 1.016 ± 0.034 47.72/53

poly4 1.016 ± 0.039 42.74/51

50 − 200h−1Mpc fitting range 1.011 ± 0.040 40.44/45

Redshift Space with Reconstruction

Fiducial [f ] 1.012 ± 0.019 36.82/52

Σnl = 0 1.012 ± 0.017 35.99/52

Σnl → Σnl + 2 1.012 ± 0.021 38.12/52

poly0 1.007 ± 0.020 47.18/55

poly2 1.012 ± 0.019 37.14/53

poly4 1.012 ± 0.019 36.34/51

50 − 200h−1Mpc fitting range 1.012 ± 0.019 33.21/45

1 Here, the quoted α is the best-fit value rather than the mean of the probability
distribution p(α). These 2 values may be slightly different but are well within
error of each other.
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Figure 3.21: DR7 fit results. (top) Before reconstruction. (bottom) After recon-
struction. The left column shows the fits to the DR7 data using the fiducial model
(solid black line) and poly0 (dashed red line). The right column shows the p(α)
distributions for fits using the fiducial model (black line) and poly0 (red line). Here
we have again applied the 15% prior in log(α) as described in §3.5.1. As with the
LasDamas mocks, we use Σnl = 8h−1Mpc in the fiducial model before reconstruc-
tion and Σnl = 4h−1Mpc after reconstruction. The similarities in χ2, α and σα

between the fiducial and poly0 cases indicate that the covariance matrix does not
demand an A(r) term in the model. However, our mock correlation function anal-
yses suggest that having an A(r) term is useful for marginalizing out errors due
to assuming the wrong cosmology and broadband effects that are not included in
our fitting model. The effectiveness of A(r) in marginalizing over the conspicuous
excess large-scale power seen in these DR7 correlation functions (left panels) also
exemplifies its utility.
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The means of the distributions are quoted on the plot along with their standard

deviations σα. Taking the best-fit α value from the fiducial model fit and the σα

from the p(α) distribution, we measure the DR7 acoustic scale to correspond to

α = 1.017± 0.035 before reconstruction and α = 1.012± 0.019 after reconstruction.

Using the mean of the p(α) probability distribution instead gives α = 1.013± 0.035

before reconstruction and α = 1.012 ± 0.019 after reconstruction. One can see that

the two values are the same after reconstruction, however, they are slightly different

before reconstruction due to the slight asymmetry of the p(α) distribution. The

pre-reconstruction error is comparable to the 3.3% found by Percival et al. (2010)

for a similar sample.

This factor of 1.8 decrease in the error after applying reconstruction is similar to

what we saw for the mock catalogues. Since the survey volume required to achieve a

certain variance is inversely proportional to the variance, we would have to increase

the survey volume by about a factor of 3 to achieve this same reduction in the error.

This clearly shows how effective reconstruction is at improving our measurement

of the acoustic scale. We can convert these α values into Dv(z)/rs measurements

at a median redshift of z = 0.35 using Equation 3.30. In the WMAP7 cosmology

we have rs,f = 152.76Mpc and Dv,f (z) = 1340.2Mpc. The best-fit α values then

give Dv(z)/rs = 8.92 ± 0.31 before reconstruction and Dv(z)/rs = 8.88 ± 0.17 after

reconstruction. The means of the p(α) distributions give Dv(z)/rs = 8.89 ± 0.31

before reconstruction and Dv(z)/rs = 8.88 ± 0.17 after reconstruction.

The probability distribution p(α) contains all of the relevant BAO distance in-

formation. Since α is easily converted into DV /rs, p(α) can also be transformed

into p(DV /rs) trivially. This distribution is no longer linked to a fiducial cosmology

as α is and serves as the key BAO distance constraint that enters into the predic-

tion of cosmological parameters. We will use this distance measurement to infer
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cosmological parameters in Chapter 4.

From Table 3.6, we see that the α values obtained by varying Σnl, order of A(r)

and fitting range are all consistent with each other within the errors. In particular,

after reconstruction, we see that all cases have very similar errors and all give an α

value within 0.1% of the others except the poly0 case. This is as expected from our

analysis of the mock catalogues.

Once again we demonstrate the robustness of our reconstruction technique to

bias, linear growth rate, smoothing scale and choice of input power spectrum for

generating constrained Gaussian realizations. The measured values of α ± σα are

given in Table 3.7. One can see that we consistently recover the same α and σα which

implies that our acoustic scale measurements are robust against small changes in

reconstruction parameters.

We also test the impact of changing the assumed fiducial cosmology. These

results are listed in the last 2 rows of Table 3.7. Here we have used a flat cosmology

with Ωm = 0.2 and another with Ωm = 0.35. We adjust h such that Ωmh2 is the

same as in the WMAP7 case and then we adjust Ωb such that Ωbh
2 is consistent with

WMAP7. This leaves the time of matter-radiation equality the same, but changes

the distance-redshift relation. The measured values of α are significantly different

from the WMAP7 case as expected since we have changed the fiducial cosmology.

The quantity we should actually compare is the observable DV (z)/rs (see Equation

(3.30)) which is given in the second column of Table 3.7 at z = 0.35, the median

redshift of the DR7 LRG sample. One can see that this value is not sensitive to

the choice of cosmology. To obtain the last column in the table, we have assumed

rs = 152.76Mpc which is the sound horizon in the WMAP7 cosmology.

The DR7 correlation function exceeds the linear theory prediction at large r,

suggesting extra large-scale power. This can be seen in Figure 3.21 by comparing
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Table 3.7: The effects of varying reconstruction parameters on α in the DR7 LRG
data. Note that the actual observable is not α but rather DV (z)/rs listed in column
2 for z = 0.35, the median redshift of our galaxy sample.

Case α DV /rs DV (Gpc)

Unrecon 1.013 ± 0.035 8.89 ± 0.31 1.358 ± 0.047

Recon 1.012 ± 0.019 8.88 ± 0.17 1.356 ± 0.025

Smoothing, 20 Mpc/h 1.009 ± 0.021 8.85 ± 0.18 1.352 ± 0.028

b=1.8 (-20%) 1.014 ± 0.020 8.89 ± 0.18 1.358 ± 0.027

b=2.6 (+20%) 1.014 ± 0.019 8.89 ± 0.16 1.359 ± 0.025

f=0.5 (-20%) 1.011 ± 0.019 8.87 ± 0.16 1.355 ± 0.025

f=0.8 (+20%) 1.015 ± 0.019 8.90 ± 0.16 1.360 ± 0.025

Pk, no-wiggle 1.012 ± 0.019 8.88 ± 0.17 1.356 ± 0.025

Pk, shot-noise 1.015 ± 0.019 8.90 ± 0.17 1.360 ± 0.026

ΩM = 0.20 1.159 ± 0.024 8.93 ± 0.18 1.377 ± 0.028

ΩM = 0.35 0.924 ± 0.018 8.93 ± 0.17 1.378 ± 0.026
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the data to the fit using the A(r) = 0 model (dashed red line). While this offset

appears large to the eye, we stress that the data points are correlated such that

these coherent offsets are only weakly constrained. This is demonstrated by the

fact that the fiducial A(r) fit, which adds three marginalization parameters and

largely compensates the offset, does not decrease χ2 by a very significant amount.

Hence, while such extra power could be a sign of unaddressed systematic errors in

the data set or some exotic cosmology, the statistical significance of the extra power

is weak. In addition, the measured α and σα values are consistent, which suggests

that the data does not strongly demand a non-zero A(r) in the model. However, we

see that the fiducial A(r) fit matches the data much better. Also, our analysis of

the mock correlation functions indicates that we should err on the side of caution

and marginalize over a non-zero A(r) term to remove any broadband affects not

accounted for in the model that could bias our measurement of the acoustic scale.

To further address the excess large-scale power, we study whether the magnitude

of the fiducial A(r) term in the best-fit model to the DR7 data is unusual in the

context of the LasDamas mocks. Figure 3.22 shows the values of the A(r) term

at the edges of the fitting range (i.e. at r ∼ 30h−1Mpc and r ∼ 200h−1Mpc) for

the LasDamas mocks before reconstruction (black crosses). The large blue cross

indicates the mean and standard deviation of the LasDamas values and the large

red cross indicates the median and the 16th/84th percentiles. The DR7 point is

overplotted as the green circle and clearly falls within 2σ of the LasDamas average.

A similar plot can be made for the post-reconstruction fits.

3.7.3 Comparison with LasDamas Cosmology

We also compute the DR7 correlation functions with and without reconstruction

using the LasDamas cosmology. We apply the same fitting algorithm, but change

the cosmology of the covariance matrix and template model to that of LasDamas.
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Figure 3.22: The values of the fiducial A(r) term at the edges of the fitting range
for the 160 LasDamas mocks (black crosses) in redshift space before reconstruction.
The large blue cross indicates the mean and standard deviation. The large red cross
indicates the median and 16th/84th percentile levels. The DR7 point is overplotted
as the green circle. One can see that this point falls within 2σ of the LasDamas
average which implies that the shape of the DR7 A(r) term is not unexpected.
Hence, even though A(r) is providing a significant amount of marginalization to
account for the excess power at large scales in the DR7 correlation function, it is
not an inordinately large amount in the context of LasDamas.
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We again adopt the LasDamas modification parameters to the Gaussian covariance

matrix and the same Σnl values.

We find α = 1.053 ± 0.034 in redshift space before reconstruction and α =

1.044± 0.019 after reconstruction. Converting these α values to Dv/rs at a median

redshift of z = 0.35, we find Dv/rs = 8.95± 0.30 before reconstruction and Dv/rs =

8.87 ± 0.17 after reconstruction. These values are consistent with those obtained

from the DR7 data in the WMAP7 cosmology when we factor in errors. The values

of σα are also consistent.

3.7.4 Significance of the BAO Detection

The BAO detection significance is an obvious question that must be addressed.

However, its characterization is non-trivial. There are essentially 2 different tests

which need to be evaluated. The first considers the possibility that we have not

detected the BAO signal in our data, either because it does not actually exist or we

just have not observed it. The second assumes the BAO peak does exist and asks

how robustly we have measured its location.

We attempt to address these 2 questions in Figure 3.23. In the top panels we

have plotted ∆χ2 = χ2
BAO − χ2

no BAO at various values of α for different A(r). As

in Figure 3.18, the χ2
BAO values are obtained through fits using a model containing

BAO and the χ2
no BAO are obtained through fits using a model without BAO. The

left panel shows the results before reconstruction and the right panel shows the

results after reconstruction. These plots answer the first question of whether we

have detected the BAO assuming that we are fairly confident in our cosmology.

With this assumption, we know that α must be close to 1 and hence we can restrict

our attention to this region. One can see that the ∆χ2 values are all negative around

α = 1 and reach a minimum of ∆χ2 ∼ −11 before reconstruction and ∼ −18 after

reconstruction for the fiducial A(r) fits (solid black line). This indicates that a model
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Figure 3.23: Significance of the BAO in the DR7 data. (top) ∆χ2 = χ2
BAO−χ2

no BAO

versus α for different A(r) before reconstruction (left) and after reconstruction
(right). The different forms of A(r) are represented by different line styles as indi-
cated in the legend. For our fiducial form (solid black line), ∆χ2 reaches a minimum
of ∼ −11 before reconstruction and ∼ −18 after reconstruction. Hence, a model
containing BAO is a better fit to the data than a model without BAO at more than
3σ significance (∆χ2 = −9) before reconstruction and at more than 4σ significance
(∆χ2 = −16) after reconstruction. (bottom) ∆χ2 = χ2(α) − χ2

min versus α for
different A(r) before reconstruction (left) and after reconstruction (right). For our
fiducial form, the curve is parabolic around the minimum that corresponds to the
best-fit value of α. Before reconstruction, the χ2 difference between the minimum
and where the curve starts plateauing at small α is ∼ 10 − 15. This difference be-
comes even more pronounced after reconstruction, measuring a ∆χ2 ∼ 25. Hence,
the measured acoustic scale is favoured at slightly more than 3σ (∆χ2 = 9) before
reconstruction and at 5σ (∆χ2 = 25) post-reconstruction. Both the top and bottom
panels show an increase in significance of the BAO detection after reconstruction.
Also, one can see that in general (and especially before reconstruction), the fits with
higher order A(r) terms (i.e. poly2 and fiducial) have more prominent ∆χ2 minima
in both the top and bottom panels. This indicates that we obtain more robust BAO
detections when fitting with non-trivial A(r) terms. However, fits with poly4 appear
to perform worse than the lower order fits before reconstruction. This indicates that
we are likely beginning to afford the model too much flexibility.
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containing BAO is favoured over a model without BAO at more than 3σ (∆χ2 = −9)

confidence before reconstruction and more than 4σ (∆χ2 = −16) confidence after

reconstruction. Note that these ∆χ2 values are comparable to the median values we

measured for the LasDamas mocks (−10 and −16 respectively). While it is true that

these χ2 values are not directly comparable due to the volume difference between

DR7 in a LasDamas cosmology and a WMAP7 cosmology, this discrepancy is small.

Hence, DR7 should be a fairly typical sample consistent with cosmic variance.

The bottom panels show ∆χ2 = χ2(α) − χ2
min versus α for various A(r). Here,

χ2
min is the value of χ2 that corresponds to the best-fit value of α. These plots are

similar to the middle columns of Figures 3.9 and 3.13. They answer the second

question of whether the BAO scale we measure is significantly favoured over other

values. Again, the left column corresponds to the results before reconstruction and

the right column corresponds to the results after reconstruction. For the fiducial

A(r) fit before reconstruction, the curve is parabolic around the best-fit α indicating

the Gaussian nature of α. The corresponding χ2
min lies at ∆χ2 ∼ 10−15 below where

the curve starts plateauing. Recall that the plateau is due to the fitter having an

easier time hiding the acoustic peak in the errors at large r and is not actually

physical. Post-reconstruction, the parabola becomes tighter around the best-fit α

and the χ2 difference between the minimum and the plateau grows to 25. This

indicates that while the measured acoustic scale is favoured at slightly more than

3σ (∆χ2 = 9) before reconstruction, after reconstruction, it becomes favoured at

5σ (∆χ2 = 25). Hence, reconstruction increases the BAO detection significance in

both of the tests considered here.

Another point to note is that in general, the ∆χ2 minima in both of the above

mentioned cases is more prominent when one fits with a higher degree A(r) (i.e.

poly2 or fiducial). This is especially true before reconstruction when the acoustic
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scale is more difficult to measure due to non-linear effects. Hence, we see that a

more robust BAO detection is achieved when fitting with a non-zero A(r). However,

we also see that before reconstruction, poly4 (dash-dotted line) performs worse than

the lower order fits. This is because when we give the model too much freedom,

it acquires more flexibility to hide the acoustic peak in the errors at large r while

using the A(r) nuisance terms to compensate for the shape of the acoustic peak in

the data.

3.8 Conclusions

We demonstrated the first application of reconstruction to a galaxy redshift survey,

namely the SDSS DR7 LRG sample. We found that reconstruction was able to

reduce the error on the measured acoustic scale from 3.5% to 1.9%, a factor of

1.8. This is equivalent to the effects of tripling the survey volume. Our 1.9%

measurement is the most precise BAO distance measure to z = 0.35 to date.

Our reconstruction technique is adapted from that originally proposed in Eisen-

stein et al. (2007) where we have included techniques to account for the effects of sur-

vey boundaries and redshift-space distortions. Reconstruction is meant to partially

undo the large-scale flows that result from non-linear structure formation which

can degrade the acoustic information leading to less precise measurements of the

acoustic scale. It also includes a prescription for removing large-scale redshift-space

distortions (the Kaiser effect), thereby isotropizing the 2D clustering of galaxies at

large scales.

We test our reconstruction technique on 160 LasDamas DR7 mock catalogues

and find that it is indeed effective at sharpening the acoustic peak in the correlation

function. The non-linear damping scale Σnl used to model the degradation of the

BAO decreases from 8.1h−1Mpc before reconstruction to 4.4h−1Mpc after recon-
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struction. This is nearly a factor of 2 improvement and is consistent with previous

estimates (Padmanabhan & White, 2009). In addition, reconstruction reduces the

rms scatter in α, the measured acoustic scale, from the mocks. Before reconstruction

this scatter was 3.3%, however after reconstruction, it dropped to 2.1%.

Using the mocks we find that the optimal smoothing scale for reconstruction is

∼ 15h−1Mpc. Choosing a small smoothing scale of 10h−1Mpc resulted in noticeable

distortions in the correlation function at small scales. We also vary the bias, linear

growth rate and power spectrum input to the reconstruction algorithm and find that

the recovered acoustic scale is always consistent. Hence our reconstruction appears

to be robust against small changes in these parameters.

Through our analysis of the mocks, we find that the covariance matrix derived

directly from the mocks is very noisy. We present a new method for obtaining a

smooth approximation to the mock covariance matrix using the analytic Gaussian

covariance matrix. This process introduces appropriate modifications to the Gaus-

sian covariance matrix using a maximum likelihood fit to the mock covariances. We

show that the modified Gaussian covariance matrix obtained this way is a good fit

to the mock covariances and produces consistent measurements of the acoustic scale.

Some of the mocks have weak acoustic signals and hence the acoustic scale can

be poorly determined in these. In order to identify these poorly constrained mocks,

we find that looking at the probability distribution of α can be a good gauge. For

mocks that have distributions with a larger standard deviation, the constraint on

α is poorer and vice versa. We impose a cutoff at a standard deviation of 7% in

our mocks and find that in redshift space, 8 mocks lie above this cutoff and in real

space, 5 do. After reconstruction, no poorly constrained mocks remain in redshift

or real space.

We find that in redshift space, we obtain consistent measurements of α when
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the fiducial model parameters (template cosmology, Σnl, degree of A(r) and fitting

range) are slightly tweaked. This implies that the values of α we measure are robust

against small changes in model parameters. Hence, our fiducial model should return

reliable measurements of the acoustic scale. However, we note that in order to

afford the model enough flexibility, A(r) should be non-zero as in the fiducial form,

Equation (3.34). This is because the A(r) term is required to marginalize out all the

broadband contributions not accounted for by the template such as scale-dependent

bias and redshift-space distortions (or residual redshift-space distortions in the post-

reconstruction case). This term also accounts for any errors in our choice of model

cosmology. We find that if we use a template cosmology that does not match the

simulations to perform the fit, a low order A(r) does not recover the correct acoustic

scale as well. One must also be careful not to use an A(r) term that is very high

order as the model will begin fitting the noise in the data.

We demonstrated the detectability of the acoustic signature in redshift space

both before and after reconstruction. In both cases we fit each of the mocks using

a model containing BAO and a model without BAO and find that ∆χ2 = χ2
BAO −

χ2
no BAO is negative on average. This indicates that the mock data prefers a model

containing BAO over a model without BAO. Hence, we conclude that we have

a robust detection of the acoustic signal in our mocks. We note that ∆χ2 is even

more negative after reconstruction, again revealing the importance of the procedure.

In addition, when we fit using poly0, we still obtain negative average values of ∆χ2

implying that even with this simple model we can robustly detect the BAO in our

mocks. Similar results are obtained in real space before and after reconstruction.

We then apply our covariance matrix and fitting techniques to the correlation

function calculated from the DR7 data in the WMAP7 cosmology. We again vary the

various parameters of the fit and recover consistent values of α. From the probability
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distribution of α we measure a mean α = 1.013± 0.035 before reconstruction which

gives Dv(z = 0.35)/rs = 8.89 ± 0.31. After reconstruction we measure α = 1.012 ±

0.019 which gives Dv(z = 0.35)/rs = 8.88 ± 0.17. We see that the error on α has

decreased by a factor of 1.8. Such a decrease is equivalent to what we would expect

if we increase the survey volume by a factor of 3. This again demonstrates the power

of reconstruction in removing the uncertainties introduced by non-linear structure

growth.

Assuming rs = 152.76Mpc as in the WMAP7 cosmology, we have DV (z =

0.35) = 1356 ± 25 Mpc. The probability distribution of this distance measure-

ment p(DV /rs) can be obtained through a trivial conversion of p(α) obtained from

the χ2 versus α relation. This is the key input needed for predicting cosmological

parameters as will be discussed in Chapter 4.

Finally we assess the significance of our DR7 BAO measurement using 2 different

tests. The first measures how confident we are that our data contains a BAO

signature and the second measures how confident we are that our measurement of

the BAO scale is correct. We find that before reconstruction, our data favours a

model containing BAO at more than 3σ over a model without BAO and the acoustic

scale we measure is preferred at more than 3σ. After reconstruction, these confidence

levels become even more pronounced. The data favours a model containing BAO

at more than 4σ and the measured acoustic scale is preferred at 5σ. Hence, we

conclude that our DR7 BAO measurement is robust.
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Chapter 4

The clustering of Galaxies in the SDSS-III Baryon Oscillation

Spectroscopic Survey: Baryon Acoustic Oscillations in the Data

Release 9 Spectroscopic Galaxy Sample

We present baryon acoustic oscillation measurements from the Baryon Oscillation

Spectroscopic Survey (BOSS), a major program of the third generation Sloan Digital

Sky Survey (SDSS-III). We use the Data Release 9 (DR9) constant mass (CMASS)

sample which covers a 3275 deg2 area on the sky and contains 264,283 massive galax-

ies. This sample spans a redshift range of 0.43 < z < 0.7 with an effective redshift of

z = 0.57 and is the largest galaxy sample at an n̄ ∼ 3×10−4h−3Mpc3 number density

surveyed to date. Using the angle-averaged correlation function and power spectrum

to measure the clustering of these galaxies, we extract the acoustic scale and use it

to measure DV (z = 0.57)/rs = 13.67 ± 0.22 where DV is the spherically averaged

distance. We make use of the density field reconstruction algorithm presented in

(Padmanabhan et al., 2012a) and the fitting techniques presented in (Xu et al., 2012)

to arrive at this measurement. Assuming a sound horizon rs = 153.19Mpc, we have

DV (z = 0.57) = 2094 ± 34Mpc which is a 1.7% distance measure. This is the most

precise distance constraint ever achieved from a galaxy redshift survey. In addition,

we detect the BAO feature at ∼ 5σ, which combined with the SDSS-II Luminous Red

Galaxy sample gives a 6.7σ detection. Placing our distance measure in the distance-

redshift relation defined by previous BAO measurements and current supernova

measurements gives excellent agreement. Taking these various datasets to constrain

cosmological parameters, we find ongoing consistency with a flat ΛCDM universe.
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4.1 Introduction

Numerous past works have demonstrated the utility of baryon acoustic oscillations

(BAO) in providing stringent constraints on cosmological parameters (Percival et

al., 2001; Miller, Nichol & Batuski, 2001; Eisenstein et al., 2005; Cole et al., 2005;

Hütsi, 2006; Blake et al., 2007; Padmanabhan, White & Eisenstein, 2007; Percival

et al., 2007; Okumura et al., 2008; Gaztanaga, Cabre & Hui, 2009; Kazin et al.,

2010; Percival et al., 2010; Reid et al., 2010; Blake et al., 2011a; Beutler et al.,

2011; Seo et al., 2012; Mehta et al., 2012). Of particular note (and in order of

increasing redshift) are the results from the 6dF Galaxy Redshift Survey (6dF;

Jones et al. 2009) at z = 0.1, combined Sloan Digital Sky Survey (SDSS; York

et al. 2000) and 2dF Galaxy Redshift Survey (2dF; Colless et al. 2003) at z =

0.275, SDSS-II Data Release 7 (Abazajian et al., 2009) at z = 0.35, and WiggleZ

(Drinkwater et al., 2010) at z = 0.6. Beutler et al. (2011) was able to obtain a

4.5% distance measure to z = 0.1 from 6dF. Percival et al. (2010) obtained a 2.7%

distance measure to z = 0.275 from SDSS+2dF. Padmanabhan et al. (2012a); Xu

et al. (2012) & Mehta et al. (2012) measured the distance to = 0.35 with 1.9%

precision (after reconstruction) from SDSS-II. Blake et al. (2011a) obtained a 4%

distance measure to z = 0.6 from WiggleZ. This last measurement was further

broken down into various overlapping bins at z = 0.44, 0.60 and 0.73 with 7.2%,

4.5% and 5.0% distance measures respectively (Blake et al., 2011b). Hence we see

that the BAO method has been highly prolific recently in constraining the distance-

redshift relation.

In this work we will add another point to this distance-redshift relation at

z = 0.57 using the Sloan Digital Sky Survey III (SDSS-III; Eisenstein et al. 2011)

Baryon Oscillation Spectroscopic Survey (BOSS; Schlegel, White & Eisenstein 2009)

Data Release 9 (DR9) constant mass (CMASS; White et al. 2011) sample. We ap-
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ply the reconstruction technique first proposed by Eisenstein et al. (2007) and later

extended by Padmanabhan et al. (2009); Noh et al. (2009) & Padmanabhan et

al. (2012a) to partially reverse the large-scale flows arising from non-linear struc-

ture growth that smear the BAO feature (Eisenstein, Seo & White , 2007; Crocce

& Scoccimarro, 2008; Matsubara, 2008a,b). This technique was demonstrated on

the SDSS-II Luminous Red Galaxy sample by Padmanabhan et al. (2012a); Xu

et al. (2012) & Mehta et al. (2012) where they were able to reduce the error on

the measured acoustic scale from 3.5% to 1.9% simply by applying reconstruction

(see Chapter 3). The sharpened acoustic feature that results from reconstruction

allows a better centroiding of the BAO position and subsequently a more precise

measurement of the acoustic scale.

We calibrate the reconstruction technique on 600 mock catalogues generated via a

second order Lagrangian perturbation theory-based approach (Manera et al., 2012).

While we do see that in general the errors on the measured acoustic scale decrease

after reconstruction in the mocks, it turns out that in the CMASS sample, we do

not see any improvement. This can be attributed to luck; we find that in a finite

number of mocks we see no improvement or even a degradation of the measurement.

The fitting technique used to measure the acoustic scale in the correlation func-

tion is based on the method described in Xu et al. (2012). Details of the power

spectrum analysis methods can be found in Percival et al. (2010) and will not be

discussed in this chapter. Using these techniques, we obtain a spherically averaged

distance DV (z = 0.57) = 2094 ± 34Mpc assuming a sound horizon of 153.19Mpc.

This is the sound horizon in the fiducial cosmology assumed throughout this chapter

which has Ωm = 0.274, h = 0.7, Ωbh
2 = 0.0224, ns = 0.95 and σ8 = 0.8, similar to

the best-fit WMAP7 cosmology (Komatsu et al., 2011). Our 1.7% error on DV rep-

resents the most precise BAO distance measurement to date. Note that CMASS is
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observationally split between the Northern Galactic Cap and the Southern Galactic

Cap. All results quoted for CMASS in this paper will be for the combined North

plus South sample unless otherwise noted.

This chapter will be organized as follows: in §4.2 we introduce the the DR9

CMASS sample and its calibration. In §4.3 we outline the reconstruction and fitting

techniques used to analyze the correlation function. In §4.4 we test the robustness

of these methods on the mocks and discuss the results of our CMASS correlation

function analyses. We also describe how we obtain the final CMASS correlation

function plus power spectrum consensus distance measurement here. §4.5 contains

the cosmological implications of our CMASS distance measure. We conclude in §4.6.

4.2 The Data

The SDSS-III (Eisenstein et al., 2011) BOSS project extends the survey area of

the original SDSS dataset (Abazajian et al., 2009) described in §3.2.2. SDSS (York

et al., 2000) used a dedicated 2.5m telescope (Gunn et al., 2006) at Apache Point

Observatory to map over a quarter of the sky. BOSS has imaged an additional 3100

deg2 in the Southern sky which has increased the total SDSS imaging footprint

to 14,055 deg2 (7600 deg2 at galactic latitudes greater than 20 deg in the North

Galactic Cap and 3000 deg2 at galactic latitudes greater than 20 deg in the South

Galactic Cap). These images were taken using the original SDSS drift-scanning

mosaic CCD camera (Gunn et al., 1998) in 5 photometric bandpasses (Fukugita et

al., 1996; Smith et al., 2002; Doi et al., 2010) to a limiting magnitude of r ∼ 22.5.

All images were processed using the same pipeline as SDSS to perform astrometric

calibration (Pier et al., 2003), photometric reduction (Lupton et al., 2001) and

photometric calibration (Padmanabhan et al., 2008). Galactic extinction corrections

were performed using the maps of Schlegel, Finkbeiner & Davis (1998). The SDSS-
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III BOSS and original SDSS imaging was collectively reprocessed as part of SDSS

Data Release 8 (DR8; Aihara et al. 2011). Additional details of the survey design

can be found in Eisenstein et al. (2011) and Dawson et al. (2012).

The current SDSS Data Release 9 (DR9) used for analysis in this chapter consti-

tutes the first year of BOSS spectroscopic followup of targets selected based on DR8

photometry. It covers 3275 deg2 which is roughly a third of the total area that will

eventually be observed by BOSS. Upon completion, BOSS is scheduled to obtain

spectra and redshifts for about 1.35 million galaxies over a 10,000 deg2 area on the

sky. In addition, BOSS will also observe about 160,000 quasars and 100,000 ancil-

lary targets. The selection of galaxies for BAO analysis is based on the two targeting

algorithms for SDSS-II Luminous Red Galaxies (LRGs; Eisenstein et al. 2001) with

an extension to pick up fainter and bluer galaxies to achieve a 3 × 10−4h3Mpc−3

number density. Most of these galaxies are old and have prominent 4000Å breaks,

making them easy to select using multiband photometry. BOSS target selection is

divided into 2 samples. The first (LOWZ) consists of galaxies in the redshift range

0.2 < z < 0.43 and the second (CMASS) consists of galaxies in the redshift range

0.43 < z < 0.7. These are analogous to Cut-I and Cut-II used to select LRGs in

SDSS-II (Eisenstein et al., 2001) and are based on when the 4000Å break falls in

the g and r bands respectively. In this chapter, we will focus on the CMASS sample

for our BAO analysis.

The CMASS (constant mass) sample was conceived as a roughly constant stellar

mass sample based on the passive galaxy template of Maraston et al. (2009). The

sample has a uniform mass distribution at all redshifts as verified by the stellar mass

distribution analysis of Maraston et al. (2012) and the velocity dispersion analysis

of Thomas et al. (2012). The majority of CMASS objects are central galaxies that

reside in 1013h−1M⊙ halos, but a significant number are satellite galaxies that reside
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in halos that are roughly 10 times more massive (White et al., 2011; Nuza et al.,

2012). As mentioned above, unlike the SDSS-II LRG sample which consisted only

of massive early-type galaxies, about 26% of CMASS galaxies are massive spirals

(Masters et al., 2011). The CMASS sample is highly biased with b ∼ 2 and very

luminous, making them ideal tracers of the underlying dark matter distribution over

large cosmological volumes. They have a sufficiently high number density so that

shot-noise (∼ 1/n̄) does not dominate our measurements of the power spectrum

or correlation function of galaxies. Hence they afford us great leverage in probing

large-scale structure. A more detailed discussion of the target selection is given in

Anderson et al. (2012) & Padmanabhan et al. (2012b).

To perform spectroscopic observations, the targets are divided into “tiles” with

3◦ diameters using an algorithm developed by Blanton et al. (2003). Up to 1000

holes are drilled in aluminum plates at locations corresponding to the positions of

the targets on the tiles. Optical fibers that feed a pair of double spectrographs

are manually plugged into the holes. The BOSS spectrographs are upgraded from

the original SDSS spectrographs. BOSS covers the wavelength range 3600Å < λ <

10000Å at a resolution of 1500 to 2600 compared to the original SDSS coverage of

3850Å < λ < 9220Å. The 640-fiber cartridges with 3” apertures have been replaced

by 1000-fiber cartridges with 2” apertures. In addition, the throughputs have been

increased by upgrading the CCDs, gratings and optical elements. The exposures are

performed in series, each 900 seconds in duration, until a minimum signal-to-noise

ratio is achieved for the faintest sources. This results in > 97% redshift completeness

over the full area of the survey.

The exposures are coadded for each source and the resulting spectra fit to eigen-

templates of stars, quasars and galaxies. This effectively classifies the targeted object

and measures its redshift. To account for residual extinction effects or broadband
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continua not included in the templates, a polynomial term is included in the fits.

The χ2 indicator is used to select the best-fit template to the data. Corrections

and cuts to account for fiber collisions and redshift measurement failures are made.

These are described in detail in Guo, Zehavi & Zheng (2011) & Ross et al. (2012).

Additional weights are applied to correct for other systematics such as the effect of

stellar density on galaxy density, galactic extinction, seeing, airmass and sky back-

ground. The weighting scheme minimizes the spurious fluctuations introduced by

these effects in the galaxy density field and is analyzed in depth in Ross et al. (2012).

4.3 Analysis Methods

4.3.1 Measuring the Correlation Function

The BAO feature can be detected in clustering statistics such as the correlation

function ξ(r) and the power spectrum P (k). We will focus on the correlation function

in this chapter, where the BAO appears as a small peak at the acoustic scale.

The 2-point correlation function can be estimated using the Landy-Szalay estimator

(Landy & Szalay, 1993) as

ξ(r) =
DD − 2DR + RR

RR
(4.1)

where DD, DR and RR are the number of galaxy-galaxy, galaxy-random and

random-random pairs with separation r. The random particles serve as an esti-

mate of the average galaxy density and are generated according to the angular and

redshift selection functions of the CMASS sample. We generate random sets that

contain 70 times the number of CMASS objects to minimize their shot-noise con-

tribution to the clustering measurement. In addition, the randoms account for any

difference in selection functions between the Northern and Southern galactic caps,

allowing their pair counts to be directly combined to form the correlation func-

tions used in this analysis. A more detailed description of the random catalogue
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generation is given in Ross et al. (2012).

We compute our correlation functions from 4h−1Mpc to 200h−1Mpc in bins of

4h−1Mpc widths.

4.3.2 Reconstruction

The reconstruction technique was originally proposed by Eisenstein et al. (2007) in

order to partially undo the smearing of the BAO information caused by the large-

scale flows that arise from non-linear structure growth. This effectively sharpens the

BAO peak in the correlation function which allows us to centroid it more accurately.

Since the non-linear growth and displacement of overdensities is governed by the

gravitational potential generated by these overdensities themselves, we can use the

measured density field to infer the first-order displacement field. We can then shift

the galaxies back along their displacement vectors, placing them near their linear

theory positions. As mentioned in §4.1, this technique was adapted and first applied

to a galaxy redshift survey by Padmanabhan et al. (2012a); Xu et al. (2012) &

Mehta et al. (2012) in order to obtain constraints on cosmological parameters from

the BAO signal measured from the SDSS-II DR7 LRG sample. Full details of the

reconstruction method are described in Padmanabhan et al. (2012a) and Chapter

3. We give a brief summary here.

Before we begin reconstruction, we must first estimate the galaxy bias b and the

linear growth rate f = d log D/d log a, where D(a) is the linear growth function and

a is the scale factor. The former can be estimated by calculating the unreconstructed

correlation function or power spectrum and comparing its amplitude to linear theory

since δmatter ∼ δgal/b at large scales. Here, δ is the fractional overdensity relative

to the critical density of the universe ρc, i.e. δ = (ρ − ρc)/ρc. The latter can be

approximated as Ωm(z)0.55. We pick our fiducial reconstruction parameters to be

b = 1.85 and f = 0.75.
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Reconstruction operates on the matter density field, which we can infer by mea-

suring the galaxy density field and scaling it down by b. We then embed the density

field in a volume that is much larger than the boundaries of the survey. The regions

of this volume not covered by the survey are filled in by generating constrained

Gaussian realizations (see Padmanabhan et al. (2012a) and Chapter 3 for details).

The final density field is smoothed using a Gaussian of width l = 15h−1Mpc to blur

the “spiky” density field that results by a trivial scaling of the galaxy density field.

The choice of this smoothing scale is discussed in Padmanabhan et al. (2012a) and

Chapter 3.

The displacement field ~q can be estimated from the density field by inverting the

continuity equation

∇ · ~q = −δgal

b
. (4.2)

We can also include a modification to this equation to undo large-scale redshift-space

distortions as shown in Padmanabhan et al. (2012a) and Chapter 3. Redshift-space

distortions arise due to the intrinsic motions of galaxies that impart additional

redshifts not related to the cosmological redshift that arises from the expansion of

the universe. Since the line-of-sight separations of galaxies is inferred from redshift,

the clustering along the line-of-sight appears distorted as a result of these additional

redshifts. At large scales, the dominant redshift-space distortion arises from the

coherent infall of galaxies towards overdense regions known as the Kaiser effect

(Kaiser, 1987).

Finally we can shift the galaxies by −~q to place them back near their linear theory

positions. To undo the Kaiser effect, we must shift the galaxies by an additional

−fqsŝ, where qs is the displacement along the line-of-sight direction ŝ. We will

denote this shifted dataset as D. We must generate an additional set of randomly

distributed points and shift these by −~q as well, to ensure that we are not removing
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power from the density field. This set we will denote as S. The reconstructed

correlation function can then be calculated as

ξ(r) =
DD − 2DS + SS

RR
. (4.3)

where DD, DS and SS are the number of shifted galaxy-galaxy, galaxy-random and

random-random pairs with separation r. RR is the number of unshifted random-

random pairs with separation r.

Since the separation between the Northern and Southern Galactic Caps is large,

we run reconstruction on these separately and combine them at the level of pair-

counts during the estimation of the correlation function (see previous section).

4.3.3 Fitting the Correlation Function

We measure the acoustic scale from the correlation function by fitting a template

with an assumed fiducial cosmology to the data and measuring the relative shift in

the BAO location. As a reminder, the fiducial cosmology we assume is Ωm = 0.274,

h = 0.7, Ωbh
2 = 0.0224, ns = 0.95 and σ8 = 0.8. Our fitting procedure is based on

the technique described in Xu et al. (2012) and Chapter 3. We give a brief summary

of the techniques here.

Our correlation function model is given by

ξfit(r) = B2ξm(αr) + A(r) (4.4)

where

ξm(r) =

∫
k2dk

2π2
Pm(k)j0(kr)e−k2a2

, (4.5)

and

A(r) =
a1

r2
+

a2

r
+ a3. (4.6)

In Equation 4.5, the Gaussian term has been introduced to damp the oscillatory

transform kernel j0(kr) at high-k to induce better numerical convergence. The
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exact damping scale used in this term is not important as long as it is significantly

below our scales of interest. We set a = 1h−1Mpc here. The A(r) term is composed

of nuisance parameters a1,2,3 that help marginalize over the unmodeled broadband

signal in the correlation function. Such broadband effects include redshift-space

distortions, scale-dependent bias and any errors made in our assumption of the

model cosmology. These effects may bias our measurement of the acoustic scale if

not removed. B is a multiplicative constant, allowing for an unknown large-scale

bias. We use a template Pm(k) of the form

Pm(k) = [Plin(k) − Pnobao(k)]e−k2Σ2

nl
/2 + Pnobao(k), (4.7)

as given in Eisenstein, Seo & White (2007). Here, Plin(k) is the linear theory power

spectrum and Pnobao(k) is the power spectrum with the BAO feature erased. The Σnl

term is used to damp the acoustic oscillations in the linear theory power spectrum,

serving to model the effects of non-linear structure growth. We fix Σnl = 8h−1Mpc

in our fits to the pre-reconstruction correlation functions and Σnl = 4h−1Mpc in

our fits to the post-reconstruction correlation functions. We normalize the template

to the observed or mock correlation function being fit at r = 50h−1Mpc, thereby

ensuring that B2 ∼ 1. These parameters were tuned on our mock catalogues, and we

explicitly verify that our results are insensitive to these particular choices in §4.4.2.

The scale dilation parameter α is defined as

α =
[DV (z)/rs]

[DV (z)/rs]fid
(4.8)

where DV (z) is the spherically averaged distance to the effective redshift of our

galaxy sample z = 0.57 and rs is the sound horizon. Note that DV (z) is defined as

DV (z) = [cz(1 + z)2D2
AH−1]1/3 (4.9)

The fid subscript indicates that the values correspond to the fiducial cosmology used

to construct the fitting model. Hence it can be seen that α measures the relative
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position of the acoustic peak in the data versus the model, thereby characterizing

any observed shift. If α > 1, the acoustic peak is shifted towards smaller scales, and

vice versa for α < 1.

We obtain the best-fit value of α by computing the χ2 goodness-of-fit indicator

at intervals of ∆α = 0.001 in the range 0.8 < α < 1.2, then identify the value of α

that gives the minimum χ2 and take this as our best-fit value. The χ2 as a function

of α is given by

χ2(α) = [~d − ~m(α)]TC−1[~d − ~m(α)], (4.10)

where ~d is the measured correlation function and ~m(α) is the best-fit model at each

α. C is the sample covariance matrix described in the next section , and we use

a fitting range of 28 < r < 200h−1Mpc. We therefore fit over 44 points using 5

parameters, leaving us with 39 degrees-of-freedom (dof). Assuming a multi-variate

Gaussian distribution for the fitted data, the probability distribution of α is

p(α) ∝ e−χ2(α)/2. (4.11)

The normalization constant is determined by ensuring that the distribution inte-

grates to 1. In calculating p(α), we also impose a 15% Gaussian prior on log(α) to

suppress values of α ≪ 1 that correspond to the BAO being shifted to the edge of

our fitting range at large scales. The sample variance is larger at these scales, and

the fitting algorithm is afforded some flexibility to hide the acoustic peak within the

larger errors.

The standard deviation of this probability distribution serves as an error estimate

on our distance measurement. The standard deviation σα for the data and each

individual mock catalogue can be calculated as

σα =

√∫
(α − ᾱ)2p(α)dα (4.12)
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where

ᾱ =

∫
αp(α)dα (4.13)

is the mean of the distribution.

In reference to the mocks, 〈α〉 will denote the ensemble mean of the α values

measured from each individual mock, and α̃ will denote the median. The term

“Quantiles” will denote the scatter in the mocks as indicated by the 16th/84th per-

centiles, which are approximately the 1σ level if the distribution is Gaussian. The

scatter predicted by these quantiles suffers less than the rms from the effects of

extreme outliers.

4.3.4 Mocks and Covariance Matrices

The covariance matrix we use for our fits (Equation (4.10)) is calculated directly

from the 600 mock catalogues we generate for the CMASS sample. The mocks are

generated in a manner similar to the PThalos method introduced by Scoccimarro

& Sheth (2002). Using second order Lagrangian perturbation theory (2LPT), we

create 600 matter density fields at z = 0.55, the median (unweighted) redshift of

the CMASS sample. Since we sample the mocks in the same way we sample the

data, the effective weighted redshift of the mocks is z = 0.57, the same as for the

data. Halos are identified in the mocks using a friends-of-friends (fof) algorithm and

populated using a halo occupation distribution (HOD) that matches the CMASS

clustering at 30 − 80h−1Mpc. Details of the fof linking length used to define halos

can be found in Manera et al. (2012). The HOD form used is described in detail in

Zheng, Coil & Zehavi (2007).

The mocks are generated in 2400h−1Mpc boxes and then reshaped into the DR9

geometry. Redshift-space distortions are included, and sky completeness and num-

ber density are matched to CMASS. 2LPT does not allow a full treatment of small

scales, where structure growth is highly non-linear. However, we find that our mocks
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match the CMASS clustering into the quasi-linear regime at a level similar to mocks

generated from full N-body simulations which do account for the non-linear evolu-

tion. This comparison was made to simplified mocks made from the LasDamas

simulations (McBride et al., 2012, in prep) which were not shaped to match DR9.

The Northern and Southern Galactic Cap mocks were created separately and

combined at the paircount level while calculating the correlation function, similar

to the data. The sample covariance matrix can be calculated as

Cij =
1

N − 1

N∑

n=1

[ξn(ri) − ξ̄(ri)][ξn(rj) − ξ̄(rj)], (4.14)

where N is the total number of mocks, ξn(r) is the correlation function calculated

from the nth mock and ξ̄(r) is the average of the mock correlation functions. We

compare this sample covariance matrix to 2 other schemes for estimating covari-

ances. The first fits a smooth Gaussian covariance model to a small number of

mock catalogues (Xu et al., 2012) and the second computes an analytic estimate

from the power spectrum (de Putter et al., 2012). Both of these produce smooth

covariance matrices which are free from the noise found in the sample covariance ma-

trix. We find that the acoustic scale and errors measured using the fitting technique

described in §4.3.3 is consistent for all 3 of these covariance matrices. In addition,

performing singular value decompositions of these 3 matrices reveal that they share

similar structure. These tests are described in detail in Manera et al. (2012). We

perform the fits in this work using the sample covariance matrix.

4.4 Results

4.4.1 Correlation Function Results

Using the procedure described in §4.3.3, we measure the shift in the acoustic scale

from the CMASS DR9 data to be α = 1.016 ± 0.017 before reconstruction and
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Figure 4.1: The CMASS correlation function before (left) and after (right) recon-
struction (crosses) with the best-fit models overplotted (solid lines). Error bars
show the square root of the diagonal covariance matrix elements, and data on simi-
lar scales are also correlated. The BAO feature is clearly evident, and well matched
to the best-fit model. The best-fit dilation scale is given in each plot, with the χ2

statistic giving goodness of fit. One can see that reconstruction has not significantly
improved our measurement of the acoustic scale from the CMASS sample.

α = 1.024±0.016 after reconstruction. The quoted errors are the σα values measured

from the probability distributions, p(α). Plots of the data and corresponding best-

fit models are shown in Figure 4.1 for before (left) and after (right) reconstruction.

We see that for CMASS DR9, reconstruction has not significantly improved our

measurement of the acoustic scale. However, in the context of the mock catalogues,

this result is not surprising.

Figure 4.2 shows the σα values measured from the mocks before reconstruction

versus those measured after reconstruction from the correlation function fits. The

CMASS DR9 point is overplotted as the black star and falls within the locus of

mock points. However, we see that before reconstruction, our recovered σα for

CMASS DR9 is much smaller than the mean expected from the mocks. For typical

cases, reconstruction improves errors on α, but if one has a “lucky” realization

that yields a low error to begin with, then reconstruction does not produce much
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Figure 4.2: Comparisons of σα errors in mock catalogues before and after recon-
struction as measured from ξ(r). Reconstruction tends to improve our ability to
measure α; on a mock-by-mock basis, the average amount of improvement in σα is
a factor of 1.54. However, the amount of improvement varies, and 26 (out of 600) of
the mocks actually see σα increase from pre-reconstruction to post-reconstruction.
The CMASS DR9 point is overplotted as the black star and falls within the locus of
the mock points. 44 (out of 600) of the mocks have a ratio of σα after reconstruc-
tion compared to before reconstruction that is greater than the CMASS DR9 value.
Hence, the fact that the error on α measured from CMASS DR9 does not decrease
significantly after reconstruction is not unexpected in the context of the mocks.
One can also see that most of the extreme outliers in σα before reconstruction have
significantly smaller errors after reconstruction.
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Figure 4.3: Significance of the CMASS DR9 BAO feature before (left) and after
(right) reconstruction as measured from ξ(r). The dashed lines correspond to fits to
the data using a model without BAO. The quantity ∆χ2 = χ2 − χ2

min, where χ2
min

corresponds to the minimum χ2 where the best-fit value of α lies. By comparing the
minimum of the solid curve with the dashed curve, we can quantify how confident
we are that the BAO can be measured from the CMASS DR9 sample. Similarly,
comparing the minimum and the plateau of the solid curve tells us how confident
we are that we have measured the correct local minima for the acoustic scale. One
can see that both before and after reconstruction, we detect the BAO at greater
than 5σ confidence and the global minimum is itself at 6σ below the χ2 plateau,
implying that the best-fit α is preferred at this level.

improvement. The mock catalogue comparison in Figure 4.2 shows that the BOSS

DR9 data volume can be thought of as such a “lucky” realization, with a strong and

well defined acoustic peak. It is therefore unsurprising that reconstruction does not

reduce the error on α.

The BAO detection in the CMASS DR9 data is highly significant as illustrated

in Figure 4.3. Here we have plotted ∆χ2 = χ2−χ2
min, where χ2

min is the minimum χ2

that corresponds to the best-fit value of α. The dashed line overplotted corresponds

to fits to the data using a model without a BAO signature. This figure captures

two tests of BAO significance: the first requires a comparison between the solid and

dashed curves, and indicates how confident we are that the BAO feature exists in
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the CMASS DR9 data. The second uses the plateau height of the ∆χ2 curve to

indicate how confident we are that we have measured the correct acoustic scale.

The panel on the left corresponds to our pre-reconstruction results and the panel

on the right corresponds to our post-reconstruction results. Before reconstruction,

the minimum of the solid curve lies beyond a ∆χ2 of 25 from the dashed curve,

indicating that the BAO is detected in CMASS DR9 at greater than 5σ confidence.

Local maxima are seen at greater than ∆χ2 of 36 above the minimum, indicating

that the data prefer our best-fit value of α at more than 6σ. We see similar confidence

levels post-reconstruction.

Before reconstruction our mocks yield 〈α〉 = 1.004 with an average error on any

single realization (i.e. the rms or standard deviation) of 0.027 and a standard error

on the mean of 0.001. The median is α̃ = 1.004 with quantiles of +0.026
−0.026. After

reconstruction, we obtain 〈α〉 = 1.004 with average error on any single realization

of 0.018 and standard error on the mean of 0.001. The median is α̃ = 1.004 with

quantiles of +0.017
−0.018. One can see that given the error on the mean, we detect a

statistically significant shift in our measured mean from the true acoustic scale

(α = 1) expected in the mocks. This small systematic offset before reconstruction

is mostly due to non-linear structure growth and galaxy bias which can shift the

location of the BAO by ∼ 0.5% (Crocce & Scoccimarro, 2008; Padmanabhan &

White, 2009; Seo et al., 2010; Mehta et al., 2011). Reconstruction has been shown

to remove this shift in periodic box simulations and the SDSS-II mock catalogues

(Seo et al., 2010; Mehta et al., 2011; Padmanabhan et al., 2012a), so the fact that

we still see a slight bias after reconstruction suggests that something intrinsic to the

CMASS sample may be the culprit. For example, the DR9 survey geometry (which

is donut-shaped) may be too disjointed to fully remove these shifts. In addition,

systematics may exist in the galaxy catalogue itself and can also arise if the fitting
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Figure 4.4: Average of the mock correlation functions before and after reconstruc-
tion showing that the average acoustic peak sharpens up significantly after recon-
struction. This indicates that, in general, our reconstruction technique effectively
removes some of the smearing caused by non-linear structure growth, affording us
the ability to more precisely centroid the acoustic peak.

model does not match the data well enough. We ameliorate these effects as best as

possible by including the broadband A(r) marginalization term. In any case, the

current statistical precision does not allow us to detect this offset at any significance

in each mock or the CMASS data as indicated by the level of scatter in the mocks.

Most important, the average error on α recovered from the mocks has decreased

after reconstruction. This is illustrated in Figure 4.2, where an overall improvement

in σα is evident after reconstruction. The greatest improvements occur when the

pre-reconstruction errors are the worst. The average decrease in σα is a factor of

1.54, which is equivalent to the effects of increasing the survey volume by a factor
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of 2.3. Therefore on average, reconstruction appears to significantly improve our

ability to measure α. This point is further illustrated in Figure 4.4, where we have

plotted the average mock correlation function before and after reconstruction. One

can see the sharpening up of the acoustic peak, indicating the effectiveness of the

reconstruction algorithm in partially removing the smearing of the BAO caused

by non-linear structure growth. This improvement is what allows a more precise

centroiding of the peak location. In fitting the average mock correlation function

before and after reconstruction, we find Σnl, the damping of the BAO due to non-

linear evolution, decreases from 7.6h−1Mpc to 3.2h−1Mpc. Beyond reducing the

distance errors, reconstruction also makes our distance estimates more robust to

parameter choices in our fitting algorithms and reduces the scatter between the

distance estimates from the the correlation function and the power spectrum. We

quantify these improvements further in following sections.

We next compare the observed scatter in the best-fit α in the mocks to the σα

estimated in each fit from the χ2(α) curve. In Figure 4.5, we plot a histogram of

(α − 〈α〉)/σα from the mocks and compare the result to the unit normal distribu-

tion. We find excellent agreement; a Kolmogorov-Smirnov (K-S) test finds a high

likelihood that the observed distribution is drawn from a unit normal. Hence the

Gaussian probability distribution obtained from the χ2 statistic is an appropriate

characterization of the error on α.

4.4.2 Robustness of Techniques
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Figure 4.5: Histogram of (α−〈α〉)/σα measured from ξ(r) of the post-reconstruction
mocks, where 〈α〉 is the mean. This quantity is a proxy for the signal-to-noise ratio
of our BAO measurement. We see that this distribution is close to Gaussian as
indicated by the near-zero K-S Dn. The corresponding p-value indicates that we
are 90% certain our values are drawn from a Gaussian distribution, indicating that
the values of σα we measure from the χ2 distribution are reasonable descriptors of
the error on α measured by fitting ξ(r).
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Table 4.1: Fitting results for various models, found by varying the fiducial fitting model and reconstruction parameters
on the ensemble distance scale measurement from the mocks (i.e. the mean 〈α〉 and the median α̃) as well as the
difference in the observed distance scale with respect to the fiducial model on a mock-by-mock basis (∆α). The results
for the fiducial model, and for different broadband A(r) fitting functions (poly0, poly2, poly4), fitting ranges, and
non-linear damping Σnl of the acoustic scale, are shown for the correlation function before and after reconstruction.
We also present the results of fitting with a different covariance matrix (ML) derived based on the technique in Xu et
al. (2012). For our reconstruction tests, we present the effects of changing the fiducial galaxy bias by −20% and +20%
(b = 1.5 and b = 2.2), the fiducial growth rate by −20% and +20% (f = 0.6 and f = 0.9), and the smoothing length
to 20h−1Mpc, a more conservative choice than our fiducial smoothing of 15h−1Mpc.

Model 〈α〉 rms α̃ Quantiles 〈∆α〉1,2 rms ∆̃α Quantiles 〈χ2〉/dof

Before Reconstruction

Fiducial [f ] 1.004 0.027 1.004 +0.026
−0.026 – – – – 39.60/39

Fit with poly0. 0.999 0.026 1.000 +0.024
−0.024 -0.005 0.009 -0.004 +0.007

−0.008 42.93/42

Fit with poly2. 1.001 0.027 1.002 +0.025
−0.025 -0.002 0.004 -0.002 +0.003

−0.003 41.24/40

Fit with poly4. 1.004 0.027 1.004 +0.025
−0.025 0.000 0.001 -0.000 +0.001

−0.001 38.27/38

Fit between 20 < r < 200h−1Mpc. 1.001 0.028 1.003 +0.025
−0.028 -0.002 0.006 -0.002 +0.004

−0.004 41.78/41

Fit between 50 < r < 200h−1Mpc. 1.005 0.027 1.005 +0.025
−0.026 0.001 0.003 0.001 +0.003

−0.002 34.20/34

Fit with Σnl → 0. 1.000 0.030 0.999 +0.028
−0.026 -0.004 0.015 -0.005 +0.012

−0.011 41.60/39

Fit with Σnl → Σnl − 2. 1.002 0.028 1.003 +0.026
−0.025 -0.001 0.005 -0.002 +0.004

−0.004 39.72/39

Fit with Σnl → Σnl + 2. 1.005 0.028 1.005 +0.026
−0.027 0.001 0.005 0.001 +0.004

−0.004 40.11/39

Continued on next page
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Table 4.1 – continued from previ-

ous page

Model 〈α〉 rms α̃ Quantiles 〈∆α〉 rms ∆̃α Quantiles 〈χ2〉/dof

Fit using ML covariance matrix. 1.003 0.029 1.005 +0.023
−0.028 -0.001 0.008 -0.000 +0.006

−0.007 40.07/39

After Reconstruction

Fiducial [f ] 1.004 0.018 1.004 +0.017
−0.018 – – – – 40.95/39

Fit with poly0. 1.002 0.018 1.002 +0.017
−0.018 -0.002 0.004 -0.002 +0.003

−0.004 45.15/42

Fit with poly2. 1.004 0.018 1.003 +0.017
−0.017 -0.001 0.001 -0.001 +0.001

−0.001 42.53/40

Fit with poly4. 1.004 0.018 1.004 +0.017
−0.017 -0.000 0.000 -0.000 +0.000

−0.000 39.94/38

Fit between 20 < r < 200h−1Mpc. 1.010 0.017 1.010 +0.017
−0.017 0.006 0.003 0.005 +0.003

−0.003 47.38/41

Fit between 50 < r < 200h−1Mpc. 1.004 0.018 1.003 +0.017
−0.018 -0.001 0.002 -0.001 +0.002

−0.002 34.55/34

Fit with Σnl → 0. 1.003 0.019 1.003 +0.017
−0.018 -0.001 0.003 -0.001 +0.003

−0.003 40.87/39

Fit with Σnl → Σnl − 2. 1.003 0.018 1.004 +0.017
−0.018 -0.001 0.002 -0.001 +0.002

−0.002 40.84/39

Fit with Σnl → Σnl + 2. 1.006 0.018 1.006 +0.016
−0.018 0.001 0.003 0.001 +0.002

−0.002 41.62/39

Fit using ML covariance matrix. 1.004 0.019 1.003 +0.019
−0.018 -0.000 0.004 -0.000 +0.005

−0.004 41.02/39

Fit to recon. with b → 1.5. 1.004 0.019 1.004 +0.016
−0.022 0.000 0.006 0.000 +0.006

−0.006 42.56/39

Fit to recon. with b → 2.2. 1.003 0.019 1.005 +0.015
−0.023 -0.000 0.006 -0.001 +0.006

−0.005 41.01/39

Continued on next page
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Table 4.1 – continued from previ-

ous page

Model 〈α〉 rms α̃ Quantiles 〈∆α〉 rms ∆̃α Quantiles 〈χ2〉/dof

Fit to recon. with f → 0.6. 1.003 0.018 1.004 +0.017
−0.021 -0.000 0.002 -0.000 +0.001

−0.002 40.50/39

Fit to recon. with f → 0.9. 1.004 0.018 1.005 +0.015
−0.022 0.001 0.002 0.001 +0.001

−0.002 41.09/39

Fit to recon. with l → 20h−1Mpc. 1.006 0.019 1.008 +0.016
−0.023 0.003 0.007 0.002 +0.005

−0.005 45.04/39

1 ∆α = α[i] − α[f ], where i is the model indicated in the first column.
2 Note that the error on the mean ∆α is

√
N smaller than the rms from the mocks quoted in the table, where N is

the number of mocks. These much smaller numbers would indicate that there is a significant detection of the change
in the mean as we change fitting model or reconstruction parameters; however, such a small change would not be
significantly detected in each mock given the dispersion.
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We test the robustness of our correlation function fitting model by slightly vary-

ing the fiducial model parameters and then re-performing the fits to see if we recover

consistent values of the acoustic scale α. These tests are performed on the mocks

as well as the CMASS DR9 data. Recall that the fiducial model takes on the form

given in Equations (4.4) and (4.6), where we have taken Σnl = 8h−1Mpc before

reconstruction and Σnl = 4h−1Mpc after reconstruction. In addition, we specify

a fiducial fitting range of 28 < r < 200h−1Mpc and use the sample covariance

matrix. The fiducial model parameters we alter in performing these tests are the

order of A(r), the value of Σnl, the fitting range, and the covariance matrix used.

In modifying the form of A(r), poly0 corresponds to A(r) = 0, poly2 corresponds

to a 2-parameter A(r) = a1/r
2 + a2/r, and poly4 corresponds to a 4-parameter

A(r) = a1/r
2 + a2/r + a3 + a4r.

The fiducial and tweaked model fit results for 600 mocks are shown in Table 4.1.

We remove mock results with poorly measured values of α since a BAO feature was

not clearly identified (σα > 7%). The similarity between the α and σα values listed

in the table for the “tweaked” models and the fiducial model implies that our fiducial

model returns unbiased measurements of the acoustic scale. The only cases that have

somewhat larger discrepancies are the pre-reconstruction poly0 and Σnl = 0h−1Mpc

cases which is not surprising. The prior implies that before reconstruction, there

is non-negligible broadband smooth signal that may bias our measurement of the

acoustic scale and hence a non-zero form for A(r) is required to marginalize over this

contribution. The latter implies that using a BAO model that does not account for

the effects of non-linear evolution, which are clearly evident before reconstruction,

will also bias the measurement of α. After reconstruction, the scatter in these

cases is greatly reduced as reconstruction partially undoes large-scale redshift space

distortions and non-linear structure growth.
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Table 4.2: Fitting results for various models. Here we explore the effects of varying the fiducial fitting model and
reconstruction parameters on our measurements of the distance scale from CMASS DR9. The results for the fiducial
model, for different broadband A(r) fitting functions (poly0, poly2, poly4), fitting ranges, and non-linear damping
Σnl of the acoustic scale are shown for the correlation function before and after reconstruction. We also present the
results of fitting with a different covariance matrix (ML) derived based on the technique in Xu et al. (2012). For
our reconstruction tests, we present the effects of changing the fiducial galaxy bias by −20% and +20% (b = 1.5 and
b = 2.2), the fiducial growth rate by −20% and +20% (f = 0.6 and f = 0.9), and the smoothing length to 20h−1Mpc,
which is a more conservative choice than our fiducial smoothing of 15h−1Mpc.

Model α χ2

Before Reconstruction

Fiducial [f ] 1.016 ± 0.017 30.53/39

Fit with poly0. 1.018 ± 0.020 40.84/42

Fit with poly2. 1.017 ± 0.016 30.74/40

Fit with poly4. 1.016 ± 0.017 30.33/38

Fit between 20 < r < 200h−1Mpc. 1.020 ± 0.017 32.47/41

Fit between 50 < r < 200h−1Mpc. 1.018 ± 0.018 22.99/34

Fit with Σnl → 0. 1.005 ± 0.013 30.84/39

Fit with Σnl → Σnl − 2. 1.012 ± 0.015 29.93/39

Fit with Σnl → Σnl + 2. 1.019 ± 0.019 32.02/39

Continued on next page
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Table 4.2 – continued from previous page

Model α χ2

Fit using ML covariance matrix. 1.022 ± 0.018 30.64/39

After Reconstruction

Fiducial [f ] 1.024 ± 0.016 34.53/39

Fit with poly0. 1.026 ± 0.017 41.82/42

Fit with poly2. 1.025 ± 0.015 36.12/40

Fit with poly4. 1.024 ± 0.017 33.29/38

Fit between 20 < r < 200h−1Mpc. 1.031 ± 0.018 47.31/41

Fit between 50 < r < 200h−1Mpc. 1.022 ± 0.016 25.94/34

Fit with Σnl → 0. 1.019 ± 0.015 34.18/39

Fit with Σnl → Σnl − 2. 1.020 ± 0.015 34.27/39

Fit with Σnl → Σnl + 2. 1.029 ± 0.017 35.10/39

Fit using ML covariance matrix. 1.022 ± 0.017 34.30/39

Fit to recon. with b → 1.5. 1.033 ± 0.020 42.97/39

Fit to recon. with b → 2.2. 1.021 ± 0.015 46.89/39

Fit to recon. with f → 0.6. 1.024 ± 0.015 33.19/39

Continued on next page
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Table 4.2 – continued from previous page

Model α χ2

Fit to recon. with f → 0.9. 1.025 ± 0.017 36.53/39

Fit to recon. with l → 20h−1Mpc. 1.026 ± 0.015 43.79/39
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Similar results for the CMASS DR9 data are shown in Table 4.2. In general,

our choice of model parameters does not affect the outcome of the fits. A few cases

measure slightly larger or smaller values of α, but all fall well within the 1σ errorbars.

We also investigate our measurements of BAO significance with respect to the

form of A(r). The results are shown in Figure 4.6 after reconstruction. The right

panel shows the difference in χ2 between a fit to the data using a model containing

BAO and a fit to the data using a model without BAO. These curves demonstrate

how well we have detected the BAO in the CMASS DR9 data. The solid black curves

correspond to subtracting the solid line from the dashed line in Figure 4.3. The other

lines correspond to various other forms of A(r), some with more and some with less

nuisance terms. Here, the more negative ∆χ2 is, the more a model containing BAO

is preferred. Allowing more or less flexibility in the broadband marginalization as

parameterized by A(r) does not change the fact that a model containing BAO is

favoured and we have a robust detection of the BAO in the CMASS DR9 data. The

actual confidence level changes slightly between the different A(r) forms; however,

the variation is small and consistently falls between 5 − 6σ.

The right panel shows the ∆χ2 values from the minimum (or best-fit value) and

demonstrates how well we have measured the acoustic scale. The solid black curve

is identical to the solid line in Figure 4.3. The other curves correspond to various

other forms of A(r). In all cases, the minima lie at the same value of α with the

plateaus lying at significant ∆χ2 above the minima. Although ∆χ2 shows significant

variation between the A(r) forms, we see at least a 6σ (∆χ2 ∼ 36) preference for

the best-fit value of α. It appears that a lower order or less flexible form for A(r)

may return α at a higher confidence, which indicates that higher order A(r) may

give the model too much flexibility to start fitting noise.

Next we test the robustness of our reconstruction by varying our fiducial recon-
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Figure 4.6: ∆χ2 for CMASS DR9 using various forms of A(r). These plots are
analogous to Fig. 4.3, except we have split the two tests of BAO significance into
separate panels. The left panel shows how robustly we have detected the BAO in the
CMASS DR9 sample and the right panel shows how confident we are that we have
measured the correct acoustic scale. In the left panel, we have plotted the difference
in χ2 between 2 fits to the data, one using a model containing BAO and one using a
model without BAO. We see that this ∆χ2 is consistently around −30 for all forms
of A(r) indicating that the amount of flexibility in the broadband marginalization
(i.e. the number of nuisance parameters in A(r)) does not have a significant impact
on how well we detect the BAO in the CMASS DR9 sample. In the right panel,
we have plotted the ∆χ2 of the minimum as a function of α. The various forms of
A(r) all identify the same best-fit value of α and this best-fit is at a ∆χ2 well below
the plateau in the curve. However, it appears that lower orders of A(r) allow more
confident measures of α, possibly due to the increased flexibility in higher order
forms to fit noise. Regardless, we have at least a 6σ measurement of best-fit α in
all cases which is robust.
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struction parameters. Recall that the fiducial parameters are galaxy bias b = 1.85,

linear growth rate f = 0.75 and smoothing length l = 15h−1Mpc. We run our recon-

struction algorithm using b ± 20%, f ± 20% and l = 20h−1Mpc on both the mocks

and the CMASS data. Then we re-perform our fits to see if we recover consistent

values of α and σα. The results of these fits are listed in the bottom section of Table

4.1 for the mocks and Table 4.2 for the CMASS data. One can see that in all cases

the values of α we measure are fairly consistent with those measured in the fiducial

case for both the mocks and the CMASS data. The only case that has a slightly

larger discrepancy is b+20% for the CMASS data. This is because the shape of the

correlation function near the BAO in this case appears suppressed relative to the

other cases. Hence we cannot pick completely arbitrary reconstruction parameters.

However, as long as we choose reasonable values, the acoustic scale and errors we

measure are insensitive to the reconstruction parameters used.

4.4.3 Consensus Results

Up to this point we have only discussed the BAO measurement from the CMASS cor-

relation function. A parallel analysis using the power spectrum was also performed.

The P (k) methods and results are discussed in detail in Percival et al. (2010) & An-

derson et al. (2012). In this section, we discuss how we combine the ξ(r) and P (k)

results into a consensus distance measure to z = 0.57 from the CMASS sample.

Although the correlation function and the power spectrum are Fourier transforms

of each other and should contain the same information, we find that the α values

we measure for the mocks and the CMASS data are discrepant at the ∼ 1σ level.

Before reconstruction from the CMASS correlation function we measure α = 1.016±

0.017, whereas from the power spectrum we measure α = 1.022 ± 0.017. After

reconstruction, we measure α = 1.024 ± 0.016 from the correlation function and

α = 1.042 ± 0.016 from the power spectrum. Our analysis of the mock catalogues
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Figure 4.7: Comparison of acoustic scale measurements from ξ(r) and P (k). The
left column shows the pre-reconstruction results and the right column shows the
post-reconstruction results. The top panels show the values of α measured using
ξ(r) versus those measured using P (k); the bottom panels show analogous plots for
σα. The mock points are shown in grey and the CMASS point is overplotted as the
black star. The black cross marks the median values of α or σα along with their
quantiles. One can see that there is notable scatter between the values of α and σα

measured from the two different statistics. For example, α from ξ and P vary by
0.014 after reconstruction.
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suggests that this level of discrepancy is not unexpected. Figure 4.7 shows the

values of α and σα measured from the mocks using ξ(r) versus those measured using

P (k). The CMASS value is overplotted as the black star. One can see that the ξ(r)

and P (k) α measures are correlated, but the scatter is quite large: ∼ 2.1% before

reconstruction and ∼ 1.4% after reconstruction. In both cases the CMASS point

falls within the locus of mock points and although in the post-reconstruction case,

the star appears to lie at the edge of the mock locus, αP − αξ ∼ 0.018 is only 1.3×

the scatter.

The lower panels of Figure 4.7 show that the σα error estimates we obtain from

χ2 are comparable between ξ(r) and P (k). Hence, none of these statistics performs

notably better than the other. This implies that both P (k) and ξ(r) return reason-

able estimates of the acoustic scale. The discrepancy between ξ(r) and P (k) is then

likely due to binning and the fact that we only consider these statistics over a finite

domain. The noise from small scales and shot-noise enter differently into ξ(r) and

P (k) in this case.

As is such, we choose to average the results from ξ(r) and P (k) to obtain our

consensus distance measurement. Note that we only use the post-reconstruction

result for our cosmological analysis. To estimate the errorbar on this value, we use

the rms scatter (0.017) of (αP + αξ)/2 from the post-reconstruction mocks. Figure

4.8 shows the distribution of these values from the mocks which appears very close

to Gaussian. This is supported by the small Dn value which corresponds to a 96%

certainty that these average α values are drawn from a Gaussian distribution. Since

we expect our CMASS α measurement to be Gaussian, it is reasonable to use the

rms scatter from the mocks as an estimate of the acoustic scale error in CMASS.

Note that this 1.7% scatter is comparable to the 1.6% error measured on α from the

post-reconstruction CMASS correlation function. It is also comparable to the 1.8%
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Figure 4.8: Histogram of averaged α values from ξ(r) and P (k) as measured from
the post-reconstruction mocks. This distribution is very close to Gaussian. The
near-zero K-S Dn value and the corresponding p-value indicate we are 96% certain
that our α values are drawn from a Gaussian. This result justifies our using a
Gaussian probability distribution for our CMASS distance measure based on the
standard deviation of this distribution.
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scatter measured from the correlation functions of the post-reconstruction CMASS

mocks. Hence we adopt a consensus α measurement of 1.033 ± 0.017. Given that

DV,fid(z = 0.57) = 2027Mpc and rs,fid = 153.19Mpc, our α measurement implies

DV (z = 0.57)/rs = 13.67 ± 0.22. This post-reconstruction distance measure is the

CMASS contribution to the distance-redshift relation and will be used in conjunction

with other datasets to constrain cosmological models in the next section.

4.5 Cosmological Implications

4.5.1 Comparison with Past Results

As mentioned in §4.1, there are now percent-level BAO distance measures (DV ) to

many redshifts between z = 0.1 and z = 0.6. There has also has been recent work

in measuring relative luminosity distances (DL) to the percent level at z < 1 us-

ing supernovae observations made by the 3-year Supernova Legacy Survey (SNLS3;

Conley et al. 2011). In addition, Riess et al. (2011) has lately made a direct mea-

surement of the Hubble constant H0 using Hubble Space Telescope (HST) data with

a ∼ 3% errorbar. Combining these datasets now gives an extraordinarily well mea-

sured distance-redshift relation at z . 1. Observations of the Cosmic Microwave

Background (CMB) at z ∼ 1000 provides a high-redshift anchor for this relation.

These measurements are provided by missions such as the Wilkinson Microwave

Anisotropy Probe (WMAP; Bennett et al. 2003) which recently released its 7th

year results (WMAP7; Jarosik et al. 2011).

It is particularly interesting to compare our current CMASS results with the

SDSS-II DR7 LRG results presented in Chapter 3 (Padmanabhan et al., 2012a; Xu

et al., 2012; Mehta et al., 2012). Although these two datasets have some minor

overlap at 0.43 < z < 0.47, we find that the overlapping volume is less than 9%

of the CMASS effective (number density weighted) volume and less than 5% of
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Figure 4.9: The post-reconstruction correlation function measured from CMASS
data (black circles) versus that from SDSS-II LRG data (grey squares) as shown in
Padmanabhan et al. (2012a). The vertical offset is due to the difference in galaxy
bias between the samples. On average the SDSS-II LRGs are more luminous and
reside in more massive halos. Since these 2 analyses used slightly different cosmolo-
gies, we have scaled the SDSS-II LRG points to match the fiducial cosmology of this
paper. One can clearly see that the acoustic peak is located at the same position in
both datasets. As an aside, we note that the difference in the size of the errors is
due to 3 main effects. The first is that the CMASS sample is larger and the second
is that the CMASS sample has a higher number density and hence less shot-noise.
Lastly the CMASS sample uses 4h−1Mpc bins, whereas the SDSS-II analysis uses
3h−1Mpc bins, and the linear scaling of the vertical axis causes equal fractional
errors to appear larger in the higher bias (LRG) sample.
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Figure 4.10: The total significance of the BAO feature, combining the CMASS and
SDSS-II LRG results, both after reconstruction. This figure is analogous to Figure
4.3 and indicates that in the combined CMASS and LRG data sets, we have detected
the acoustic peak at greater than 6.5σ, with a ∼ 8σ preference for the best-fit α.
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Figure 4.11: The distance-redshift relation as measured using the BAO method
from various spectroscopic galaxy surveys. Note that the actual observable from
BAO analyses is DV (z)/rs, so here we have multiplied all of these constraints by
the sound horizon in our fiducial cosmology. At low redshift we have the 6dF
measurement (Beutler et al., 2011) and at intermediate redshift we have the SDSS-
II LRG measurement from Chapters 3 & 3 (Padmanabhan et al., 2012a; Xu et
al., 2012; Mehta et al., 2012). The two higher redshift points correspond to the
WiggleZ measurement (Blake et al., 2011a) and our new CMASS measurement.
The overplotted line corresponds to the flat ΛCDM cosmology measured by WMAP7
(Komatsu et al., 2011). One can see that the BAO distance-redshift relation agrees
remarkably well with the WMAP7 prediction.
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the LRG effective volume. Hence for the analyses here, we will assume that these

two datasets are independent. Figure 4.9 shows the post-reconstruction CMASS

(z = 0.57) and LRG (z = 0.35) correlation functions in the same fiducial cosmology.

The offset between the two is a result of differing galaxy bias and redshift. One can

see that the alignment of the acoustic peaks is excellent, given the distance-redshift

relation in the fiducial cosmology. Figure 4.10 shows the combined significance of

the BAO detection in the CMASS plus LRG samples. This figure is identical to

Figure 4.3 which shows the BAO detection significance for the CMASS sample only.

A full description of what is plotted can be found there. One can see that in the

combined dataset we detect the BAO at ∼ 6.5σ with the best-fit α preferred at

∼ 8σ.

Figure 4.11 shows the distance-redshift relation in DV (z) versus z measured from

various BAO analyses using spectroscopic data. We have included the recent 6dF

result at low redshift (Beutler et al., 2011) and SDSS-II LRG result at intermediate

redshift (Chapters 3 & 3; Padmanabhan et al. 2012a; Xu et al. 2012; Mehta et al.

2012). At the higher redshift end we have the WiggleZ point (Blake et al., 2011a)

and our new CMASS point. Recall that BAO actually constrains DV (z)/rs. Here we

have multiplied these constraints by the sound horizon in our fiducial cosmology to

arrive at the plotted points. The overplotted curve corresponds to the flat ΛCDM

cosmology measured by WMAP7 (Komatsu et al., 2011) and is not a fit to the

data. The grey regions correspond to taking the 1σ ranges of Ωmh2 and Ωbh
2 from

WMAP7. One can see that there is clear agreement between the BAO measurements

and a standard flat ΛCDM cosmology. However, the BAO distance-redshift relation

tends to lie near the upper end of the 1σ errorbar from WMAP7. We also note the

excellent agreement between our CMASS result and the WiggleZ result at nearly

the same redshift, although the errorbar on our datapoint is a factor of 2.3 smaller.
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Next we compare our CMASS distance measurement to supernova distance mea-

sures. Note that supernovae are used to measure the relative luminosity distance

DL as a function of redshift. Without a measure of the Hubble parameter which

links the rungs of this relative distance ladder, the supernova distances cannot be

directly compared to the BAO distance measures. However, using a Markov Chain

Monte Carlo (see next section) approach it is possible to infer the ratios of DV (z) at

different redshifts using supernova data. We use SNLS3 (Conley et al., 2011) plus

CMB data from WMAP to measure these ratios for a cosmological model including

spatial curvature and varying dark energy (i.e. w(a) = w0 + wa(1 − a) (Chevallier

& Polarski, 2001; Linder, 2003), where w(a) is the equation of state of dark energy

as a function of scale factor a). This is the most general cosmological model we can

test.

The supernova data predict a DV ratio between z = 0.35 and z = 0.57 of

0.6579 ± 0.0063, which implies that DV (z = 0.35)/rs = 8.99 ± 0.14 ± 0.09 using

our measured CMASS value of DV (z = 0.57)/rs = 13.67 ± 0.22. The first error

reflects the error on our CMASS distance measure and the second reflects the error

in the distance ratio predicted by the supernova. The inferred DV (z = 0.35)/rs

value matches the SDSS-II LRG measurement of 8.88 ± 0.17 very well. Performing

the same exercise for 6dF at z = 0.1 we find DV (0.1)/DV (0.57) = 0.2018 ± 0.0038

from the supernova data. Combined with our CMASS measurement, this gives

DV (z = 0.1)/rs = 2.759 ± 0.044 ± 0.052, in excellent agreement with the 6dF

measurement of DV (z = 0.1)/rs = 2.81 ± 0.13 (note that here we have scaled the

6dF result from z = 0.106 to z = 0.1).

Overall we see very good agreement between our CMASS distance measure and

distance measures from other BAO analyses and supernova analyses. Since the BAO

method returns absolute distance measures given a value of rs, it provides leverage on
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the Hubble parameter which is needed to calibrate the relative supernova distance

scale. Hence the combination of these two datasets is particularly powerful for

constraining cosmological parameters as will be shown in the next section.

4.5.2 Cosmological Parameters

The observed distance-redshift relation can be used to measure the values of cos-

mological parameters in a myriad of different cosmological models. Of particu-

lar interest are constraints on the behaviour of dark energy, which can be probed

through measuring its equation of state w. In this section, we explore a number

of cosmological models using various combinations of BAO and supernova distance

measurements as well as direct measurements of H0. The BAO datasets we use

are the current CMASS measurement, the SDSS-II LRG measurement at z = 0.35

(Padmanabhan et al., 2012a; Xu et al., 2012; Mehta et al., 2012) and the 6dF mea-

surement at z = 0.1 (Beutler et al., 2011). We do not include the Percival et al.

(2010) BAO measurement at z = 0.275 and the WiggleZ measurement at z = 0.6

(Blake et al., 2011a) due to their significant overlap with the LRG and CMASS sam-

ples respectively. However, as discussed previously these were in good agreement

with the LRG and CMASS distance measures. For the supernova data we use the

SNLS3 compilation (Conley et al., 2011) and for the direct measurement of H0 we

use the Riess et al. (2011) measurement. In addition, we use the 7-year WMAP

CMB measurements (Jarosik et al., 2011) to anchor the distance-redshift relation

at high redshift (z ∼ 1000).

Our effort is aimed at exploring 6 major cosmological models. The most basic

(and most restrictive) is the standard flat, constant dark energy ΛCDM model. We

then open up additional directions in the parameter space by allowing the universe

to have spatial curvature and/or allowing dark energy to deviate from a cosmological

constant and vary in time. These are known as
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1. oCDM - allowing curvature

2. wCDM - allowing non-cosmological constant dark energy

3. owCDM - allowing curvature and non-cosmological constant dark energy

4. w0waCDM - allowing non-cosmological constant and time-varying dark energy

5. ow0waCDM - allowing curvature, and non-cosmological constant and time-

varying dark energy.

The last of these is also known as the Dark Energy Task Force (DETF) cosmology

and is currently the most general cosmological model. In the cases where we allow

varying dark energy, we are effectively employing the parameterization w(a) = w0 +

(1−a)wa for the equation of state w(a) as a function of scale factor a. The departure

of dark energy from a standard cosmological constant model is encoded in any

deviation of w0 from -1 and the time dependence of dark energy is encoded in wa.

In a standard ΛCDM model, w0 = −1 and wa = 0.

We input the distance constraints from our datasets of interest to CosmoMC

(Lewis & Bridle, 2002), a Markov Chain Monte Carlo code that maps the poste-

rior probability distributions of the parameters that define a certain cosmological

model. This is identical to the method employed by Mehta et al. (2012) to measure

cosmological constraints from the SDSS-II LRG BAO distance measurement. Many

of the numbers quoted in this section are taken directly from that analysis.
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Table 4.3: Cosmological constraints from CMASS, LRG and other datasets. Column one shows the cosmological
model and column 2 shows the datasets used. All remaining columns show parameter constraints from the posterior
distribution. The quoted value is the mean of this distribution and the quoted error is the standard deviation (these
are parenthesized and only show the changes to the last significant digits). Empty cells imply that the parameter was
kept fixed at a fiducial value in the cosmological model, i.e. for flat models ΩK = 0, for spatially constant dark energy
models w0 = −1 and for time-constant dark energy models wa = 0.

Model Data Sets1 Ωm H0 ΩK w0 wa

(km/s/Mpc)

ΛCDM CMB 0.268(29) 71.0(26) – – –

ΛCDM CMB+CMASS 0.298(17) 68.4(13) – – –

ΛCDM CMB+LRG 0.280(14) 69.8(12) – – –

ΛCDM CMB+LRG+CMASS 0.293(12) 68.8(10) – – –

ΛCDM CMB+LRG+CMASS+6dF 0.293(12) 68.7(10) – – –

ΛCDM CMB+LRG+CMASS+SN 0.287(11) 69.2(10) – – –

ΛCDM CMB+LRG+CMASS+SN+6dF 0.288(11) 69.1(10) – – –

oCDM CMB 0.423(175) 60.0(123) -0.039(44) – –

oCDM CMB+CMASS 0.299(16) 67.0(15) -0.008(5) – –

oCDM CMB+LRG 0.278(15) 69.3(16) -0.004(5) – –

oCDM CMB+LRG+CMASS 0.288(12) 68.1(11) -0.006(5) – –

Continued on next page
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Table 4.3 – continued from previous page

Model Data Sets1 Ωm H0 ΩK w0 wa

(km/s/Mpc)

oCDM CMB+LRG+CMASS+6dF 0.288(12) 68.1(11) -0.006(5) – –

oCDM CMB+LRG+CMASS+SN 0.284(12) 68.3(12) -0.006(5) – –

oCDM CMB+LRG+CMASS+SN+6dF 0.284(12) 68.2(11) -0.007(5) – –

wCDM CMB 0.263(105) 75.4(138) – -1.12(41) –

wCDM CMB+CMASS 0.323(43) 65.4(60) – -0.87(24) –

wCDM CMB+LRG 0.285(25) 69.0(39) – -0.97(17) –

wCDM CMB+LRG+CMASS 0.294(27) 68.6(44) – -0.99(21) –

wCDM CMB+LRG+CMASS+6dF 0.298(20) 67.8(31) – -0.95(15) –

wCDM CMB+LRG+CMASS+SN 0.280(13) 70.8(18) – -1.09(8) –

wCDM CMB+LRG+CMASS+SN+6dF 0.282(13) 70.4(17) – -1.08(8) –

owCDM CMB+LRG+CMASS 0.250(42) 74.1(70) -0.008(5) -1.31(34) –

owCDM CMB+LRG+CMASS+6dF 0.271(31) 70.5(43) -0.007(6) -1.14(23) –

owCDM CMB+CMASS+SN 0.280(17) 69.2(21) -0.009(5) -1.10(8) –

owCDM CMB+LRG+CMASS+SN 0.275(14) 69.8(18) -0.007(5) -1.09(8) –

Continued on next page
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Table 4.3 – continued from previous page

Model Data Sets1 Ωm H0 ΩK w0 wa

(km/s/Mpc)

owCDM CMB+LRG+CMASS+SN+6dF 0.276(13) 69.6(17) -0.008(5) -1.09(8) –

w0waCDM CMB+LRG+CMASS 0.282(52) 70.7(68) – -1.11(51) 0.18(122)*

w0waCDM CMB+LRG+CMASS+6dF 0.292(41) 68.9(48) – -1.02(42) 0.44(113)*

w0waCDM CMB+CMASS+SN 0.281(17) 70.3(23) – -1.07(16) -0.85(96)*

w0waCDM CMB+LRG+CMASS+SN 0.280(14) 70.6(19) – -1.08(15) 0.10(87)

w0waCDM CMB+LRG+CMASS+SN+6dF 0.281(14) 70.2(17) – -1.08(15) 0.08(81)

ow0waCDM CMB+LRG+CMASS 0.263(54) 72.7(79) -0.009(6) -1.13(54) -0.70(139)*

ow0waCDM CMB+LRG+CMASS+6dF 0.284(40) 69.2(50) -0.009(7) -0.93(41) -0.93(130)*

ow0waCDM CMB+CMASS+SN 0.280(17) 69.5(21) -0.012(6) -0.91(17) -1.31(102)*

ow0waCDM CMB+LRG+CMASS+SN 0.277(14) 69.8(18) -0.012(5) -0.89(16) -1.44(93)*

ow0waCDM CMB+LRG+CMASS+SN+6dF 0.278(14) 69.5(17) -0.012(5) -0.88(15) -1.40(94)*

ow0waCDM CMB+LRG+CMASS+SN+H0 0.270(12) 71.1(15) -0.010(5) -0.93(16) -1.46(95)*

ow0waCDM CMB+LRG+CMASS+SN+H0+6dF 0.270(12) 70.8(14) -0.010(5) -0.93(16) -1.39(96)*

1 CMB+LRG values are taken directly from Mehta et al. (2012).
∗ Datasets allow chains to explore parameter space outside the −3.0 ≤ wa ≤ 2.0 prior.
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Our cosmological constraints for the various models listed above are summarized

in Table 4.3. There is a slight degeneracy between Ωm and H0 in the standard ΛCDM

cosmology if we only use the CMB data to constrain this model. This degeneracy is

completely broken by adding either BAO or supernova (SN) data at low redshift. We

see that the LRG and CMASS samples give similar errors on H0 (±1.2km/s/Mpc

and ±1.3km/s/Mpc respectively). The combined constraint (±1.0km/s/Mpc) gives

a 1.4% measurement of H0. For comparison, the direct measurement of H0 by Riess

et al. (2011) has a 3.3% error.

The CMB-only constraint on the simple ΛCDM model is much better than the

CMB-only constraints on the other models. This is because allowing spatial curva-

ture or varying dark energy introduces degeneracies between these parameters and

H0. In terms of the distance-redshift relation, at low redshifts allowing curvature

offsets this relation and allowing variations in dark energy changes its shape. These

differences can only be probed using low-redshift distance measures from BAO or

SN. Hence, if we open up spatial curvature (oCDM) or allow varying dark energy

(wCDM) in our cosmological model, we can use BAO or SN to break the degeneracy

between these parameters and H0.

There is one key difference between using BAO data versus SN data. The SN

distance ladder is calibrated on measurements of H0 at low redshift and extends

to higher redshifts, while the BAO distance ladder is actually inverted. It uses

the sound horizon calibrated at z ∼ 1000 from CMB observations and extends

downwards to low redshift. As a result SN are more sensitive to dark energy and w

since the transition between matter domination and dark energy domination occurs

at low redshift z ∼ 2. BAO on the other hand is more sensitive to curvature which is

more important at high redshift. Hence combining CMASS and LRG BAO distance

measures is more effective at breaking the degeneracy between ΩK and H0 in an
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oCDM universe, reflected in the ∼ 25% drop in error on H0 when the CMASS and

LRG results are combined.

We see from Table 4.3 that SN are very poor at constraining curvature in an

oCDM universe as expected. This is reflected in the fact that the CMB+BAO+SN

dataset does not improve the constraints on the various cosmological parameters

over the CMB+BAO case. However, in the wCDM case, although BAO does

not provide tight constraints on w, its degeneracy direction is different from SN.

The CMB+BAO+SN constraints listed in the table actually show a slight improve-

ment over the CMB+SN case. This is reflected in Figure 4.12, where the solid

red (CMB+BAO+SN) 1σ contour is tighter than the dashed blue (CMB+SN) 1σ

contour in the w0 versus H0 plane.

The different sensitivities of BAO and SN make them particularly good for con-

straining curvature and the equation of state in an owCDM universe as illustrated

in Figure 4.13. The BAO and SN degeneracies in the w0 versus ΩK plane are virtu-

ally perpendicular to each other. Hence, we can simultaneously constrain ΩK and

w0 to high precision in this cosmological model. The CMB+BAO and CMB+SN

contours are also moderately misaligned in the w0 versus wa plane for a w0waCDM

cosmology. Hence the combined constraints on w0 and wa from CMB+BAO+SN is

an improvement over any single dataset.

The most generalized DETF cosmology cannot be constrained by BAO or SN

separately due to the limited sensitivities of current data. Hence we combine the

CMB, BAO and SN datasets to calculate the “Figure of Merit” (FoM), a recom-

mended baseline comparison between dark energy experiments, that corresponds

to the inverse of the area of the 95% contour in the w0 versus wa plane (Albrecht

et al., 2006). Using CMB+LRG+SN+CMASS gives an FoM of 14.4, a noticeable

improvement over the FoM of 11.5 from CMB+LRG+SN (Mehta et al., 2012). The
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Figure 4.12: The 1σ contours in the w0 versus H0 plane for a wCDM universe. One
can see that BAO alone is very poor at constraining the equation of state w0. This is
because BAO is an inverse distance ladder calibrated on the acoustic scale measured
from the CMB at z ∼ 1000 and extended downwards to lower redshifts. Dark energy
does not become dominant until z . 2 and hence is not well constrained by BAO
distance measures. However the BAO degeneracy direction is not parallel to that
of SN and hence the combined CMB+BAO+SN constraint (solid red contour) is
better than the CMB+SN constraint (dashed blue contour) alone.
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Figure 4.13: The 1σ contours in the w0 versus ΩK plane for an owCDM universe.
One can see that the degeneracy directions of the BAO and SN contours are almost
orthogonal to each other. BAO is more constraining in ΩK and SN is more con-
straining in w0. Combining the two gives particularly good constraints on ΩK and
w0 simultaneously in an owCDM universe.
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contribution of our high precision CMASS BAO measurement in improving cosmo-

logical constraints is clear.

Lastly we plot our CMB+BAO+SN inferred values of H0 for each of our 6

cosmological models and the Riess et al. (2011) direct measurement from HST (H0 =

73.8±2.4km/s/Mpc) in Figure 4.14. One can see that the value of H0 we measure is

robust against changes in cosmological model. However, there appears to be a slight

tension between our values and the Riess et al. (2011) value, albeit, at a statistically

insignificant level (∼ 1 − 2σ). This is consistent with the BAO results of Beutler

et al. (2011) & Mehta et al. (2012) using 6dF data and SDSS-II LRGs respectively.

These H0 values can be brought into better agreement with the introduction of

additional relativistic species. This was first pointed out by Eisenstein & White

(2004) who found that extra energy density in relativistic particles will cause CMB

and BAO measurements to underestimate the values of Ωmh2 and H0. Combining

the CMB, BAO, SN and direct H0 measurement, we find a best-fit energy density

equivalent to 4.26± 0.56 neutrino species (recall that the standard model has 3.04).

Improved measurements of the CMB power spectrum in the near future are expected

to resolve this issue.

4.6 Conclusions

We have analyzed the BAO signal in the clustering of galaxies from the SDSS-III

DR9 CMASS sample and obtained a 1.7% distance measure to z = 0.57. This is

the most precise distance measure achieved using the BAO method to date.

The CMASS sample contains 264,283 massive galaxies covering 3275 deg2 over

a redshift range of 0.43 < z < 0.7. This amounts to a number density of n̄ .

3 × 10−4h3Mpc−3. The CMASS sample is the largest sample of the universe ever

surveyed at this high number density, making it ideal for BAO analysis.
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Figure 4.14: H0 values inferred from our CMB+BAO+SN datasets versus the direct
H0 measurement from HST (Riess et al., 2011). The agreement between the H0

values we measure is good between different cosmological models, however, there
appears to be some slight tension with the direct measurement at the 1 − 2σ level.
Introducing additional relativistic species can alleviate this tension, suggesting at a
low significance that there may be an extra neutrino species.
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We analyze the BAO signal in the correlation function calculated using the

CMASS galaxies. We apply reconstruction (Eisenstein et al., 2007; Padmanab-

han et al., 2012a) to partially undo the smearing of the BAO caused by large-scale

flows that arise from non-linear structure growth and to remove large-scale redshift-

space distortions. The former allows us to obtain a more precise centroiding of the

acoustic peak and hence a better measurement of the acoustic scale. We measure

the relative shift (α) in the acoustic peak between a fiducial cosmology and the

data using the fitting technique presented in Xu et al. (2012). This can be trivially

transformed into a measure of the spherically averaged distance DV (z) to redshift z

given a value of the acoustic scale (which we can obtain from CMB measurements).

We verify the robustness of our fitting and reconstruction techniques on 600 PTHalo

mocks generated using second order Lagrangian perturbation theory (Manera et al.,

2012). The covariance matrix used in our fitting is also calculated directly from

these mocks.

We find that reconstruction does not significantly improve the precision of our

CMASS BAO distance measurement. However, this is not unexpected in the context

of the mocks. We find that 44 out of 600 mocks have post-to-pre-reconstruction error

ratios that are larger than the CMASS value. Using the techniques mentioned above

we measure the BAO scale to be α = 1.024 ± 0.016 from the post-reconstruction

CMASS correlation function. We also find the significance of our CMASS BAO

detection to be ∼ 5σ with the best-fit α value preferred at ∼ 6σ.

A parallel analysis was also performed on the power spectrum which gave α =

1.042 ± 0.016 after reconstruction. We find that this ∼ 1σ tension between the

ξ(r) and P (k) measurements is not unusual given the mocks. The different ways in

which noise from small scales and shot-noise enter into ξ(r) and P (k), calculated

via binning over a finite domain, is the likely culprit here. We therefore decide
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to average our ξ(r) and P (k) distance measures to obtain a consensus value. We

estimate the errorbar on this value as the rms of (αP + αξ)/2 from the mocks. This

distribution is very close to Gaussian and we expect the CMASS α measurement to

be Gaussian as well. Hence the rms should be a reasonable estimate of the error.

This resulted in a consensus α = 1.033 ± 0.017 which translates into a distance

measure of DV (z = 0.57)/rs = 13.67 ± 0.22.

We showed that the combined BAO detection significance of the CMASS sample

and the LRG sample of Chapter 3 (Padmanabhan et al., 2012a; Xu et al., 2012;

Mehta et al., 2012) is > 6.5σ. Plotting the CMASS and LRG BAO results along

with other spectroscopic BAO distance measures from 6dF (Beutler et al., 2011)

and WiggleZ (Blake et al., 2011a) reveals their mutual consistency. We also showed

the consistency between the relative distance scale predicted by SNLS3 (Conley

et al., 2011) and our BAO results. Combining all of these datasets and the CMB

measurements from WMAP7 (Jarosik et al., 2011) predicts cosmological parameters

consistent with a flat ΛCDM universe.
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Chapter 5

Mapping the Cosmic Expansion History using the Anisotropic

Baryon Acoustic Oscillations Signal in SDSS DR7

We present the first measurement of isotropic dilation (α) and anisotropic warping

(ǫ) of the sound horizon from the reconstructed density field derived from a galaxy

redshift survey. This is done using the baryon acoustic oscillations (BAO) signal in

the luminous red galaxy (LRG) sample from the 7th data release (DR7) of the Sloan

Digital Sky Survey (SDSS), which has a median redshift of z = 0.35. We present

the theoretical framework behind the anisotropic BAO signal and give a detailed

account of the fitting model we use to extract this signal from the data. We apply

density field reconstruction to partially remove the effects of non-linear evolution

and redshift-space distortions in order to sharpen up the acoustic signal. The ro-

bustness of our reconstruction and fitting techniques are tested on 160 LasDamas

DR7 mock catalogues. We find that our ability to measure the anisotropic warping,

ǫ, from DR7 is only marginal. We measure α = 1.012±0.024 and ǫ = −0.014±0.036

after reconstruction. These translate into DA = 1050± 38 Mpc and H = 84.4± 7.1

km/s/Mpc at z = 0.35 assuming a sound horizon of rs = 152.76 Mpc. Our ǫ mea-

surement is consistent with predictions from current datasets. The methods laid out

in this work pave the path for future anisotropic BAO analyses using larger datasets

such as SDSS DR9.

5.1 Introduction

In this chapter, we will use an extension of the baryon acoustic oscillations method,

namely its anisotropic signature, to probe the cosmic expansion history. To use

the BAO method, we must first measure the acoustic scale from the clustering of
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galaxies. This is typically done in a statistical sense using the 2-point correlation

function of galaxy separations or its Fourier transform, the power spectrum. Past

BAO studies have primarily been focused on the spherically-averaged monopoles of

these statistics (Cole et al., 2005; Eisenstein et al., 2005; Hütsi, 2006; Tegmark et al.,

2006; Padmanabhan, White & Eisenstein, 2007; Kazin et al., 2010; Percival et al.,

2010; Beutler et al., 2011; Blake et al., 2011a), which only allows us to measure the

spherically-averaged distance DV (z) ∝ DA(z)2/H(z), where z is the median redshift

of the galaxy sample. This effectively assumes that the clustering of galaxies is

isotropic. Most importantly, the Hubble parameter H(z) is degenerate with DA(z)

in this measure and hence we cannot directly probe the cosmic expansion history

encoded by H(z).

The clustering of galaxies, however, is not truly isotropic. Anisotropies arise from

large-scale redshift-space distortions caused by the line-of-sight velocity of galaxies

(Kaiser, 1987) and from assuming the wrong cosmology when calculating the 2-point

statistics. This second point can be used to break the degeneracy between H(z) and

DA(z). One can imagine that if we assume the wrong cosmology, then the BAO will

appear at slightly different locations along the line-of-sight and transverse directions

because the line-of-sight distances are measured from redshifts and H(z), whereas

the transverse distances are measured using the angular separation and DA(z).

The use of such anisotropies to measure the cosmic expansion history was first

proposed by Alcock & Paczynski (1979). In the case of the BAO, the anisotropy can

be measured using the clustering signal along different directions (Okumura et al.,

2008; Blake et al., 2011b; Chuang & Wang, 2011; Kazin, Sánchez & Blanton, 2012)

or by looking at higher order multipoles of the 2-point statistics (Padmanabhan &

White, 2008; Taruya, Saito & Nishimichi, 2011). If the clustering were isotropic,

then all higher order multipoles should be zero, however, anisotropies introduce
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power into the even multipoles. The second method listed above exploits this fact

to measure the amount of anisotropy relative to some assumed fiducial cosmology.

This can then be used to infer the values of H(z) and DA(z) based on the fiducial

values (see §5.2). Hence, we can directly measure the cosmic expansion history

parameterized by H(z).

In this chapter, we will focus on the multipole method and apply the technique

described in Padmanabhan & White (2008) to the 7th data release (DR7) of the

Sloan Digital Sky Survey (SDSS). We present the first application of this method

to a galaxy redshift survey and thoroughly demonstrate its feasibility. We calibrate

our covariance matrix and fitting model on 160 LasDamas mocks and perform de-

tailed tests of the model to ensure its robustness. We also apply reconstruction, a

technique for partially removing the effects of non-linear structure growth on the

BAO (Eisenstein et al., 2007). This technique has been tested extensively on the

monopole through simulations (Seo et al., 2008; Noh et al., 2009; Seo et al., 2010;

Mehta et al., 2011) and has recently been applied to SDSS DR7 data (Padmanabhan

et al., 2012a; Xu et al., 2012; Mehta et al., 2012). The current work takes a first

look at how reconstruction affects the quadrupole and uses the measured anisotropy

to infer H(z) and DA(z) from the DR7 data.

After reconstruction we obtain a 3.6% measurement of DA(z) and an 8.4% mea-

surement of H(z) at z = 0.35. The large error on H(z) reflects our marginal mea-

surement of the anisotropic BAO signal parameterized by ǫ from the LRG dataset.

However, with datasets containing more galaxies such as SDSS DR9, we should be

able to directly apply the same methods outlined in this chapter to obtain much

tighter constraints on ǫ and subsequently DA(z) and H(z).

In §5.2 we present the theoretical background for the multipole method. In §5.3

we present our analysis techniques with emphasis on the intricacies of the fitting



219

model. §5.4 and §5.5 present our fitting results and detailed tests of our fitting model

and reconstruction technique on the mocks and data respectively. We present the

cosmological implications of our DA(z) and H(z) measurements in §5.6 and conclude

in §5.7. Note that the mock catalogues and DR7 dataset we use in this chapter are

the same as those described in §3.2.

5.2 Theory

5.2.1 Background, Basics and Definitions

There are two main effects that give rise to anisotropic galaxy clustering. The first

are redshift-space distortions, which arise due to the line-of-sight velocities of galax-

ies such as their peculiar motions within clusters (the Finger-of-God effect) or their

coherent infall towards overdense regions (the Kaiser effect, Kaiser (1987)). These

impart additional redshifts that affect our measurement of cosmological redshift and

hence the line-of-sight separation between galaxies. In measures of galaxy cluster-

ing, these effects are broadband effects that vary smoothly with scale and affect the

overall shape of the clustering statistic.

Anisotropic clustering can also arise if we assume the wrong cosmology when

calculating the separations between galaxies, a necessary step in all measures of

galaxy clustering. Since the distribution of matter is mostly isotropic at large scales,

artificial anisotropies are introduced by calculating distances assuming the wrong

cosmology as each cosmology predicts a unique distance scale. Specifically, we cal-

culate line-of-sight distances using redshifts and the Hubble parameter H(z) while

transverse distances are calculated using the angular size of an object and the an-

gular diameter distance DA(z). Both H(z) and DA(z) are predicted given a set

of cosmological parameters; however, if these do not match the true cosmology of

the universe, we will measure different clustering signals along the line-of-sight and



220

transverse directions. This implies that the BAO signal in the line-of-sight direction

will be slightly offset from its location in the transverse direction. This is a mani-

festation of the Alcock-Paczynski technique (Alcock & Paczynski, 1979), which uses

the measured anisotropy in an object thought to be isotropic to constrain the true

cosmology of the universe.

In the past, limited survey volume has made it difficult to analyze the differential

clustering along the line-of-sight and transverse directions. As a result, most BAO

analyses have been based on the spherically-averaged (i.e. monopole) clustering

statistics (e.g. Percival et al. (2010) and Padmanabhan et al. (2012a)), which only

allow us to measure DV (z), the spherically-averaged distance to redshift z. This

quantity is defined as

DV (z) =

[
(1 + z)2D2

A(z)
cz

H(z)

]1/3

(5.1)

which corresponds to 2 powers of DA(z) from our transverse distance measure along

the 2 transverse directions on the sky and 1 power of H(z) from our line-of-sight

distance measure. However, with anisotropic measurements, we will be able to

break this degeneracy between DA(z) and H(z), and measure these two quantities

separately.

To measure the anisotropy, we must derive a clustering model that includes a

parameterization of the anisotropic signal. We can then fit this model to the data

and measure this parameter. Essentially one is presented with 2 choices. The first

is to perform fits to the transverse and radial correlation functions (e.g. Okumura

et al. (2008)) and the second is to simultaneously fit the monopole and higher order

multipoles of the clustering statistics (Padmanabhan & White, 2008). If clustering

were perfectly isotropic then the higher multipoles would all be zero, however, any

anisotropic signal bleeds power into the even order multipoles.

In this work, we will present the formalism for the multipole method based on the
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work of Padmanabhan & White (2008). We note that the BAO can additionally be

shifted in an isotropic manner if the assumed cosmology is not the true cosmology.

Isotropic shifts also occur due to non-linear structure growth. We define the isotropic

shift in BAO position as

α =
DV (z)/rs

DV,f(z)/rs,f

(5.2)

=

[
D2

A(z)

D2
A,f(z)

Hf(z)

H(z)

]1/3
rs,f

rs

(5.3)

where DV is defined as above and rs is the sound horizon (BAO scale). The f

subscripts correspond to the fiducial cosmology used in the fitting template and in

calculating the clustering statistic. This parameterization has been used extensively

in past BAO studies focusing on the monopole.

We parameterize the anisotropic BAO signal as ǫ

1 + ǫ =

[
Hf(z)

H(z)

DA,f(z)

DA(z)

]1/3

. (5.4)

These parameterizations of α and ǫ are derived from isotropic coordinate dilations

and anisotropic coordinate warpings between the true and fiducial cosmology spaces

(see Equations (5.12) & (5.13)). Combining Equations (5.3) & (5.4), we arrive at

DA(z)

rs
=

α

1 + ǫ

DA,f(z)

rs,f
(5.5)

H(z)rs =
1

α(1 + ǫ)2
Hf(z)rs,f . (5.6)

By measuring both the isotropic and anisotropic BAO shifts, we can separately

constrain the angular diameter distance DA(z) and the Hubble parameter H(z) at

the median redshift of our galaxy sample z. If we denote the errorbars on α and ǫ

as σα and σǫ, and the covariance between them as σαǫ, then the errorbars on DA(z)

and H(z) can be calculated as

(
σ2

DA
σDAH

σDAH σ2
H

)
=

(
∂DA

∂α
∂H
∂α

∂DA

∂ǫ
∂H
∂ǫ

)(
σ2

α σαǫ

σαǫ σ2
ǫ

)(
∂DA

∂α
∂H
∂α

∂DA

∂ǫ
∂H
∂ǫ

)T

. (5.7)
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This yields,

σ2
DA

D2
A

= α−2σ2
α + (1 + ǫ)−2σ2

ǫ − 2α−1(1 + ǫ)−1σαǫ (5.8)

σ2
H

H2
= α−2σ2

α + 4(1 + ǫ)−2σ2
ǫ + 4α−1(1 + ǫ)−1σαǫ. (5.9)

We will also need a method for distinguishing between anisotropies introduced

by redshift-space distortions into the broadband shape of our clustering statistic

and those introduced through assuming the wrong cosmology (i.e. the Alcock-

Paczynski signal). There exist simple redshift-space distortion models that can be

used if we are only interested in analyzing the anisotropy in the BAO signal and

not the details of the redshift-space distortions themselves. Any residual inadequate

matching between these models and the actual broadband shape of the data can be

mostly compensated by including a few additional marginalization terms (Seo et al.,

2008; Xu et al., 2012) such as Equation (5.50) described in §5.3.3.

5.2.2 Formalism for the Correlation Function

The clustering of galaxies can be measured using the correlation function ξ(r), the

power spectrum P (k) or ωℓ(rs), a band-filtered statistic optimized to pick out the

acoustic information in ξ(r) or P (k) (Xu et al., 2010). Since our analysis will focus

on the correlation function, we will present the formalism for configuration space

here and state the analogue for the power spectrum in Fourier space, which can also

be found in Padmanabhan & White (2008).

We begin with a few basic coordinate definitions,

r2 = r2
‖ + r2

⊥ (5.10)

µ2 = cos2 θ =
r2
‖

r2
(5.11)

where r is the separation between 2 galaxies and θ is the angle between a galaxy pair

and the line-of-sight direction. In the following, unprimed coordinates will denote
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the fiducial cosmology space and primed coordinates will denote the true cosmology

space.

The dilation (α) and warping (ǫ) parameters are then defined by

r′‖ = α(1 + ǫ)2r‖ (5.12)

r′⊥ = α(1 + ǫ)−1r⊥. (5.13)

Substituting Equations (5.12) & (5.13) into the definitions of r′ and µ′ as in

Equations (5.10) & (5.11), we see that

r′ = α
√

(1 + ǫ)4r2
‖ + (1 + ǫ)−2r2

⊥

= αr[1 + 2ǫL2(µ)] (5.14)

where in the last line we have substituted the second order Legendre polynomial

L2(µ) = (3µ2 − 1)/2. Also,

µ′2 =
α2(1 + ǫ)4r2

‖

α2(1 + ǫ)4r2
‖ + α2(1 + ǫ)−2r2

⊥

= µ2 + 6ǫ(µ2 − µ4) (5.15)

where in the last line we have only kept terms up to first order in ǫ.

The true 2D correlation function ξ(~r′) can be Legendre decomposed into multi-

pole moments as

ξ(~r′) =
∞∑

ℓ′=0

ξℓ′(r
′)Lℓ′(µ

′) (5.16)

where the Lℓ(µ
′) are Legendre polynomials of order ℓ′. Again, if clustering were

perfectly isotropic the ℓ > 0 moments would all be zero. Anisotropy introduces

power into the even order multipoles. We can substitute Equation (5.14) into ξℓ′(r
′)

and Equation (5.15) into Lℓ′(µ
′) and write

ξ(~r′) =

∞∑

ℓ′=0

[
ξℓ′(αr) + 2ǫL2(µ)

dξℓ′(αr)

d log(r)

]

·
[
Lℓ′(µ) + 3ǫµ(1 − µ2)

dLℓ′(µ)

dµ

]
, (5.17)
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where we have made a Taylor expansion in both large brackets.

Finally, in the fiducial cosmology space, we measure the multipole moments

ξℓ(r) =
2ℓ + 1

2

∫ 1

−1

ξ(~r′)Lℓ(µ)dµ (5.18)

= ξℓ(αr)

+3ǫ

[−ℓ(ℓ − 1)(ℓ − 2)

(2ℓ − 3)(2ℓ − 1)
ξℓ−2(αr)

+
ℓ(ℓ + 1)

(2ℓ − 1)(2ℓ + 3)
ξℓ(αr)

+
(ℓ + 1)(ℓ + 2)(ℓ + 3)

(2ℓ + 3)(2ℓ + 5)
ξℓ+2(αr)

]

+2ǫ

[
3ℓ(ℓ − 1)

2(2ℓ − 3)(2ℓ − 1)

dξℓ−2(αr)

d log(r)

+
ℓ(ℓ + 1)

(2ℓ − 1)(2ℓ + 3)

dξℓ(αr)

d log(r)

+
3(ℓ + 1)(ℓ + 2)

2(2ℓ + 3)(2ℓ + 5)

dξℓ+2(αr)

d log(r)

]
, (5.19)

where we have used the recursion relation for Legendre polynomials

(ℓ + 1)Lℓ+1(µ) = (2ℓ + 1)µLℓ(µ) − ℓLℓ−1(µ), (5.20)

the derivative relation

dLℓ(µ)

dµ
=

(ℓ + 1)[µLℓ(µ) − Lℓ+1(µ)]

1 − µ2
(5.21)

and the orthonormality of Legendre polynomials

∫ 1

−1

Lℓ(µ)Lℓ′(µ)dµ = δℓℓ′ . (5.22)

Here, δℓℓ′ is the delta function. Since we measure the correlation function using

our choice of fiducial cosmology, Equation (5.19) will form the basis of our fitting

template for extracting the isotropic dilation (α) and the anisotropic warping (ǫ)

signal from the data.
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The same relations can be derived in Fourier space from the definitions (Pad-

manabhan & White, 2008)

k′
‖ = α−1(1 + ǫ)−2k‖ (5.23)

k′
⊥ = α−1(1 + ǫ)k⊥. (5.24)

The final equation for the measured multipole moments is identical to the config-

uration space case except ξℓ(r) → Pℓ(k) and the sign on each occurrence of ǫ is

flipped.

5.2.3 The Anisotropic Signal

Although anisotropic information exists in all higher order multipoles, its magnitude

decreases considerably. Hence, for the purposes of this study, we will only focus on

the monopole (ℓ = 0) and the quadrupole (ℓ = 2). The monopole and quadrupole

we expect to measure according to Equation (5.19) are

ξ0(r) = ξ0(αr) +
2

5
ǫ

[
3ξ2(αr) +

dξ2(αr)

d log(r)

]
(5.25)

ξ2(r) = 2ǫ
dξ0(αr)

d log(r)
+

(
1 +

6

7
ǫ

)
ξ2(αr) +

4

7
ǫ
dξ2(αr)

d log(r)

+
4

7
ǫ

[
5ξ4(αr) +

dξ4(αr)

d log(r)

]
, (5.26)

and will form the basis of our analysis. Here, ξ4(r) is the hexadecapole (ℓ = 4).

Figure 5.1 shows variations of the expected monopole (Equation (5.25)), the

transverse and radial correlation functions, and the quadrupole (Equation (5.26))

with ǫ for a linear theory based model. The transverse and radial correlation func-

tions were calculated as ξ0 + L2(µ)ξ2 for µ = 1 and 0 respectively. Note that taking

the difference between these yields the quadrupole. We have included anisotropic

large-scale redshift-space distortions (the Kaiser effect) so that the quadrupole be-

comes non-zero, but not the Finger-of-God effect. One can see that the sensitivity
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Figure 5.1: The monopole (left) and quadrupole (right) we expect to measure in
the presence of anisotropic clustering for a linear theory based model including the
Kaiser effect. The Kaiser effect gives rise to the BAO bump near 110h−1Mpc in the
quadrupole. ǫ parameterizes the amount of Alcock-Paczynski anisotropy, which, if
there was none, would be equal to 0. The left panel shows the spherically-averaged
monopole (black), the transverse correlation function (red) and the radial correlation
function (blue), where the difference between these latter two yields a measurement
of the quadrupole. Solid, dashed and dotted lines are defined as in the plot legend
of the right panel which shows the spherically-averaged quadrupole. One can see
that the spherically-averaged monopole is insensitive to ǫ. However, ǫ works to vary
the position of the line-of-sight and transverse BAO features with the line-of-sight
having a more prominent shift. The anisotropic nature of these shifts moves the
BAO in the quadrupole. Hence, we expect the quadrupole to be sensitive to any
anisotropic BAO signal.
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Figure 5.2: Variation of monopole and quadrupole models including the Kaiser
effect and a full non-linear treatment of FoG and anisotropic Σnl. The solid black
line in this and the similar plots following always corresponds to the fiducial model
parameters Σ⊥ = 6h−1Mpc, Σ‖ = 10h−1Mpc and Σs = 4h−1Mpc with β = 0.35
(center of the β prior in our fits). The monopole is again affected very little by
ǫ. The fiducial quadrupole model picks up a crest-trough-crest structure at the
BAO scale due to the differential broadening of the line-of-sight and transverse
BAO signals the redshift-space distortions. We again see that ǫ works to shift the
location of the quadrupole BAO. In addition, it can adjust the relative amplitude of
the crests. This shifting of the BAO in the quadrupole but not in the monopole is
only possible through changing ǫ. Note that the quadrupole BAO feature is much
weaker in this more realistic non-linear model.
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of the monopole to ǫ is quite low. However ǫ does cause slight shifts in the BAO

position in the line-of-sight and transverse correlation functions. The shift in the

radial direction is larger than that in the transverse direction which causes the BAO

feature in the quadrupole at ∼ 110h−1Mpc to shift with ǫ. Hence we see that the

quadrupole can be used to obtain a measurement of the anisotropic BAO signal via

ǫ.

5.2.4 A Non-linear Model

In Figure 5.1 discussed in the previous section, we have assumed linear theory in-

cluding Kaiser effect models for ξ0(r) and ξ2(r). However, in order to model actual

observations with fidelity, we must also account for the Finger-of-God (FoG) effect

and non-linear structure growth. This section details a plausible model that includes

all of these effects and will be used in our fitting procedure described in §5.3.3 to

measure α and ǫ.

In Fourier space we can write the following template for the 2D non-linear power

spectrum

Pt(k, µ) = (1 + βµ2)2F (k, µ, Σs)Pdw(k, µ) (5.27)

where

F (k, µ, Σs) =
1

(1 + k2µ2Σ2
s)

2
(5.28)

corresponds to a streaming model for the Finger-of-God effect and the (1 + βµ2)2

term corresponds to the Kaiser model for large-scale redshift-space distortions. Here

Σs is the streaming scale and is typically ∼ 3 − 4h−1Mpc.

The de-wiggled power spectrum Pdw(k, µ) is defined as

Pdw(k, µ) = [Plin(k) − Pnw(k)]

· exp

[
−

k2µ2Σ2
‖ + k2(1 − µ2)Σ2

⊥

2

]
+ Pnw(k)

(5.29)
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where Plin(k) is the linear theory power spectrum, Pnw(k) is a power spectrum

without an acoustic signature (Eisenstein & Hu, 1998) and Σ2
nl = (Σ2

‖ + Σ2
⊥)/2 is

the standard Gaussian damping of the BAO used to model the degradation of the

signal due to non-linear structure growth (Eisenstein, Seo & White , 2007). Here

we have split this damping into transverse and line-of-sight components since it is

anisotropic due to the Kaiser effect.

The multipoles of this template are then

Pℓ,t(k) =
2ℓ + 1

2

∫ 1

−1

Pt(k, µ)Lℓ(µ)dµ, (5.30)

which can be transformed to configuration space using

ξℓ,t(r) = iℓ
∫

k3d log(k)

2π2
Pℓ,t(k)jℓ(kr). (5.31)

Figure 5.2 shows the variation of our non-linear monopole and quadrupole models

with ǫ while Figures 5.3, 5.4 & 5.5 shows the variations with other parameters. The

variation with α is not shown as its role is well understood: α works to shift the

BAO feature around equally in both the monopole and quadrupole. Figure 5.3

shows the variations with Σ⊥ and Σ‖. Figure 5.4 shows the variations with Σs and

Figure 5.5 shows the variations with β. In these plots, the solid black line always

corresponds to the fiducial model parameters Σ⊥ = 6h−1Mpc, Σ‖ = 10h−1Mpc and

Σs = 4h−1Mpc. β is set to the center of the prior, 0.35, unless indicated otherwise.

These fiducial parameters will be discussed in more detail in §5.3.3.

We see that the spherically-averaged monopole model is only weakly affected by

varying these parameters. Σnl has an immediately obvious effect on the BAO peak

since it is designed to damp the BAO to model non-linear evolution. The change in

the peak is only significant with a large change in Σnl. The Σ⊥ = Σ‖ = 8h−1Mpc case

and the fiducial case have very similar Σnl values. Hence, we see little difference

between the monopole models in these 2 cases. However, the Σ⊥ = 4h−1Mpc,



230

0 50 100 150 200
r(hD1Mpc)

200

100

0

E100

r2

F 0,
m
(r
)

transverse
radial
monopole

Varying Gnl

0 50 100 150 200
r(hH1Mpc)

40

0

I40

I80

I120

I160

r2
J 2,

m
(r
)

KL=6hM1Mpc,KN=10hM1Mpc

KL=KN=8hM1Mpc

KL=4hM1Mpc,KN=7hM1Mpc

Figure 5.3: Variation of the monopole and quadrupole models with Σ⊥ and Σ‖. The
monopole BAO peak in can be affected by Σnl as expected since this parameter is
used to model the smearing of the BAO due to non-linear structure growth. In these
plots we have demonstrated the effects of going to an isotropic Σnl of roughly the
same magnitude as the fiducial case (dotted line) and a smaller Σnl (dashed line).
We see that going to an isotropic Σnl has little effect on the monopole, however, it
completely eliminates the trough feature at the BAO scale in the quadrupole. Going
to a smaller Σnl makes the peak appear sharper in the monopole as expected. In
the quadrupole, it alters the structure of the peaks and reduces the crest-trough
contrast.
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Figure 5.4: Variation of the monopole and quadrupole models with Σs. The BAO
feature in the monopole can be slightly broadened by a large Σs. In the quadrupole,
the effects of Σs are partially degenerate with Σnl in that it can alter the crest-trough
contrast and can also completely eliminate the trough (Σs = 0h−1Mpc). However,
the effects of Σs are much stronger at small scales due to its large influence on the
radial and transverse correlation functions, giving us leverage on this parameter.
These variations are not surprising since the FoG effect is most pronounced at smaller
scales.

Σ‖ = 7h−1Mpc case corresponds to Σnl ∼ 6h−1Mpc which affords a weaker smearing

of the peak. Large Σs values can also weakly damp the monopole BAO, causing

slight modifications to its shape. β appears to have little affect on the monopole

and ǫ has no affect. The only parameter that can shift the monopole BAO position

is α, which also shifts the quadrupole BAO equally.

Looking at the quadrupole model in the fiducial case, we see that the BAO (at

r ∼ 110h−1Mpc) looks different to the linear theory including Kaiser case presented

in Figure 5.1. In that case, we saw a single bump at the acoustic scale due to the

Kaiser anisotropy (1 + βµ2)2. Including FoG and anisotropic Σnl introduces more

structure at the BAO scale. We see that in the fiducial model, a dip has appeared

at the center of the linear-theory peak, creating a crest-trough-crest structure. This

is the result of anisotropic Σnl, Σs and β differentially broadening the BAO peak

in the radial and line-of-sight directions. We see that the radial BAO is wider than
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Figure 5.5: Variation of the monopole and quadrupole models with β. Again we see
that the monopole is not significantly affected by β. The line-of-sight and trans-
verse correlation functions experience large changes in amplitude leading to the
quadrupole model having similarly large changes, especially near the acoustic scale.
This is expected since β is used to model the large-scale redshift-space distortions.
Such amplitude changes are not degenerate with any of the other parameters. Com-
paring the behaviour of Σnl, Σs and β to ǫ (Figure 5.2) indicates that these model
parameters have mostly different effects on the quadrupole. While all of these pa-
rameters can affect the shape and/or magnitude of the quadrupole BAO, only ǫ
can change its position separately from the monopole BAO (α changes both in
lock-step). Hence we expect that the effects of ǫ should be detectable.
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the transverse BAO, but the radial BAO peak has more contrast. Subtracting the

two therefore yields the observed crest-trough-crest shape of the quadrupole near

the BAO.

Varying Σ⊥, Σ‖, Σs and β all change the shape of the line-of-sight and transverse

BAO signals but do not change their positions. Since the quadrupole is the difference

between these two, we see that these parameters can only affect the shape of the

quadrupole BAO. Figure 5.3 shows that changing Σ⊥ and Σ‖ gives rise to crests and

troughs near the BAO scale. Taking Σnl to be isotropic and non-zero completely

removes the trough, leaving a single peak that is broader than the linear-theory

case. Changing the values of Σ⊥ and Σ‖ (but keeping their ratios roughly the same)

alters the structure of the peaks and changes the crest-trough contrast.

Changing Σs has the most prominent effects at small scales as expected, since the

FoG is strongest there. It also causes a noticeable change in the BAO signal which

is partially degenerate with the effects of anisotropic Σnl, i.e. it can also adjust the

crest-trough contrast and can eliminate the trough entirely (Σs = 0h−1Mpc). Lever-

age on this parameter mostly comes from small scales, where Σs has a significant

effect on the quadrupole shape.

Changing β is mostly a large-scale effect which is also not surprising since the

Kaiser effect is a large-scale redshift-space distortion. This parameter shifts the

overall magnitude of the quadrupole at large scales and is not degenerate with any

of the other parameters.

Only ǫ and α can shift the location of the BAO. While α shifts the BAO po-

sition equally along all directions, Figure 5.2 shows that ǫ shifts the radial BAO

position more than the transverse BAO position. Therefore changing ǫ will cause

the quadrupole BAO position to change in addition to the shift induced by α. We

see from 5.2 that ǫ can also adjust the BAO shape so it is not completely non-
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degenerate with the other parameters. We emphasize that Σ⊥, Σ‖, Σs and β cannot

shift the quadrupole BAO, they merely work to change the BAO shape. ǫ is the

only parameter that can change the quadrupole BAO position without changing the

monopole BAO position, so its effects should be detectable.

The above observations of the model quadrupole behaviour can be re-cast into

Figure 5.6. The panels of this figure show the derivatives of the quadrupole model

with respect to each parameter (Σ⊥ - top left, Σ‖ - top right, Σs - middle left,

β - middle right, α - bottom left and ǫ - bottom right). The dashed line marks

the acoustic scale. These derivatives show the variation of the model with these

parameters and are especially interesting near the acoustic scale.

One can see that the behaviour of the Σ⊥ derivative near the BAO scale is exactly

opposite to the Σ‖ case. In the former we see a down-up-down structure and in the

latter we see an up-down-up structure. Hence these 2 modes are non-degenerate.

The Σs derivative shows similar behaviour to the Σ‖ derivative near the acoustic

scale and hence these 2 parameters are partially degenerate. However, its small-

scale behaviour is much different. The β derivative shows only a single peak near

the acoustic scale and is much different in magnitude than the previous three. Note

that all of these derivatives show even parity around the acoustic peak.

The α and ǫ derivatives are different from the others in that they both show odd

parity around the acoustic peak. This reflects their ability to shift the BAO feature.

The difference between α and ǫ lies mainly in the monopole where α can significantly

shift the BAO but ǫ cannot; ǫ only shifts the BAO in the quadrupole. Near the

acoustic scale, the quadrupole α derivative shows a large amount of structure while

the ǫ derivative shows a simple up-down structure. The crests and troughs of both

of these will be partially degenerate with the other parameters despite their opposite

parities near the acoustic scale. However, if we place well-informed priors on the
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other parameters, we limit the model from exploring these degeneracies thereby

obtaining reasonably robust measurements of ǫ.

A similar conclusion can be reached by noting that the first 3 cases look like

the derivative of a Gaussian with respect to its width. The β case looks like the

derivative of a Gaussian with respect to its height and the ǫ case looks like the

derivative of a Gaussian with respect to its center. All of these behaviours are

different.

5.2.5 Covariance Matrix Formalism

Assuming that the amplitude of primordial overdensities is drawn from a Gaussian

random field, the covariance between two multipole moments ℓ and ℓ′ is

Cij(ξℓ(ri), ξℓ′(rj)) =
2(2ℓ + 1)(2ℓ′ + 1)

V

·
∫

k3d log(k)

2π2
jℓ(kri)jℓ′(krj)P

2
ℓℓ′(k)

(5.32)

where V is the volume, the jℓ(kr) are the spherical Bessel functions of order ℓ and

P 2
ℓℓ′(k) is defined as

P 2
ℓℓ′(k) =

1

2

∫ 1

−1

[
P (k, µ) +

1

n̄

]2

Lℓ(µ)Lℓ′(µ)dµ. (5.33)

Here, P (k, µ) is the 2D power spectrum and n̄ is the mean number density of

galaxies. The 1/n̄ term corresponds to Poisson shot-noise expected in the linear

theory regime, i.e. in the absence of non-linear structure growth and mode coupling.

Typically the redshift dependence of n̄ is not taken into account, however, we will

describe a method that allows its inclusion in §5.3.3.

In practice, the correlation functions we measure are binned and hence, if we are

interested in using the Gaussian covariance matrix, we must also account for this

binning. If we calculate the correlation function in bins with lower bounds r1 and
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(Figure 5.6 caption on next page)
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(Figure 5.6 continued)

Figure 5.6: Derivatives of the model quadrupole with respect to Σ⊥ (top left), Σ‖

(top right), Σs (middle left), β (middle right), α (bottom left) and ǫ (bottom right).
These derivatives illustrate how the model changes with these various parameters
and are especially interesting near the BAO scale marked by the dashed line. We
see that the Σ⊥ and Σ‖ derivatives are similar in nature at the acoustic scale but
opposite in sign, implying their non-degeneracy. The Σ‖ and Σs derivatives, however,
are of the same sign and show the same up-down-up structure near the BAO scale.
Therefore, these 2 parameters are partially degenerate, however, the behaviour of
the Σs derivative is very different at small scales. The β derivative is much different
in magnitude and also only shows a single peak near the acoustic scale. Note that
the Σ⊥, Σ‖, Σs and β derivatives all show even parity near the acoustic scale while
the α and ǫ derivatives show odd parity. The α derivative has the most structure
near the acoustic scale. The ǫ derivative shows a simple up-down structure. Despite
their opposite parities near the acoustic scale, the various crests and troughs of the
α and ǫ derivatives will be partially degenerate with the other parameters. However,
given reasonable priors on the other parameters, the model will not be allowed to
explore these degeneracies and we will recover robust measurements of ǫ.
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upper bounds r2, the binned covariance matrix is

Cij(ξℓ(ri), ξℓ′(rj)) =
2(2ℓ + 1)(2ℓ′ + 1)

V

3

r3
i2 − r3

i1

3

r3
j2 − r3

j1

·
∫ ri1

ri2

r2dr
dΩ

4π

∫ rj1

rj2

r′2dr′
dΩ′

4π

·
∫

k3d log(k)

2π2
jℓ(kr)jℓ′(kr′)P 2

ℓℓ′(k).

(5.34)

We note that this assumes the correlation function is calculated by spherically av-

eraging the 2D correlation function, which is slightly different to the correlation

function calculated by spherically averaging over the paircounts (see §5.3.2). Here,

we neglect the weighting specified by the random paircounts which encode the survey

geometry and distribution of galaxies. In the case of the monopole and quadrupole

relevant to this study, the above expression can be split into the ℓ = ℓ′ = 0 case, the

ℓ = 0 and ℓ′ = 2 (or vice versa) case and the ℓ = ℓ′ = 2. The first case was shown

to have the form (Xu et al., 2012)

Cij(ξ0(ri), ξ0(rj)) =
2

V

∫
k3d log(k)

2π2
J0(kri)J0(krj)P

2
00(k) (5.35)

where

J0(kr) =
3

r3
2 − r3

1

[
r2j1(kr)

k

]r2

r1

(5.36)

and

j1(kr) =
sin(kr)

(kr)2
− cos(kr)

kr
. (5.37)

Here, [f(x)]ab is standard notation for f(a) − f(b) for any function f . The second

case has the form

Cij(ξ0(ri), ξ2(rj)) =
10

V

∫
k3d log(k)

2π2
J0(kri)J2(krj)P

2
02(k) (5.38)

where

J2(kr) =
3

r3
2 − r3

1

[
3si(kr)

k3
− 1

k

(
3r

k
j0(kr) + r2j1(kr)

)]r2

r1

, (5.39)
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si(x) =

∫ x

0

sin(x′)

x′
dx′ (5.40)

and

j0(kr) =
sin(kr)

kr
. (5.41)

Note that due to symmetry, we have Cij(ξ0(ri), ξ2(rj)) = Cij(ξ2(ri), ξ0(rj)). Finally,

the last case has the form

Cij(ξ2(ri), ξ2(rj)) =
50

V

∫
k3d log(k)

2π2
J2(kri)J2(krj)P

2
22(k). (5.42)

Collectively, we can then write

Cij(ξℓ(ri), ξℓ′(rj)) =
2(2ℓ + 1)(2ℓ′ + 1)

V

·
∫

k3d log(k)

2π2
Jℓ(kri)Jℓ′(krj)P

2
ℓℓ′(k).

(5.43)

These forms for the binned Gaussian covariance matrix form the basis for deriv-

ing a covariance matrix for our data. We extend the method for approximating the

mock covariances using a modified form of the binned Gaussian covariance matrix

as described in Xu et al. (2012). This will be outlined in §5.3.3.

5.3 Analysis

5.3.1 Reconstruction

Non-linear structure growth degrades and shifts the acoustic peak. Reconstruction

was initially proposed to partially remove these effects (Eisenstein et al., 2007). In

the linear theory description of structure growth, overdensities are small and hence

remain largely in place as they accrete more matter and grow. However, at low

redshifts, this description becomes increasingly less suitable as some overdensities

grow to masses large enough that they begin exerting significant gravitational pulls
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on each other. This gives rise to pairwise relative velocities between particles sepa-

rated by ∼ 100h−1Mpc. These coherent flows that form large-scale structure are the

dominant source of smearing of the BAO signal. The peculiar motions of particles

within a gravitationally bound structure are subdominant. Reconstruction attempts

to undo these coherent motions in the matter density field and arrive back at some-

thing that more closely resembles linear theory. This translates into a sharpening

up of the acoustic peak in the correlation function which allows us to gain a better

centroiding of its location and hence a more precise measure of the acoustic scale.

It also removes some of the shifting of the BAO due to non-linear structure growth,

which has been shown to be a ∼ 0.5% effect at z = 1 (Seo et al., 2010; Mehta et al.,

2011) and will be slightly larger at lower redshifts.

Our reconstruction algorithm is described in detail in Padmanabhan et al. (2012a).

A more pedagogical discussion of reconstruction can also be found there. This

method is extended from the original reconstruction algorithm proposed in Eisen-

stein et al. (2007) and its theoretical basis is established in Padmanabhan, White

& Cohn (2009) and Noh et al. (2009). A basic outline is given below.

The ultimate goal of reconstruction is to infer the matter displacement field that

arises due to non-linear structure growth from the observed galaxy density field.

Then, we can shift the galaxies back along their inferred displacement vectors to

place them where they would have been in linear theory. This is simple if we consider

only the first order displacements Ψ. In this case

∇ · Ψ + β∇ · (Ψsŝ) = −δgal

b
(5.44)

where Ψs = Ψ · ŝ is the displacement in the line-of-sight direction (Nusser & Davis,

1994). δgal is the galaxy density field, b is the large-scale galaxy bias (which is

roughly constant) and hence δgal/b is an approximation of the matter density field.

The second term in this equation arises due to large-scale redshift-space distortions
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caused by the coherent infall of galaxies towards overdense regions (the Kaiser effect,

Kaiser (1987)). This implies that as an additional perk, reconstruction also corrects

for Kaiser squashing. The β parameter governs the amount of anisotropy introduced

by the Kaiser effect. It is defined as β = f/b where f = d log D(a)/d log(a) ∼

Ωm(a)0.55 is the linear growth rate, D(a) is the linear growth function and a is the

scale factor (Caroll, Press & Turner, 1992; Linder, 2005). If we assume that Ψ is

irrotational (i.e. curl-free), we can write Ψ = ∇φ. After selecting appropriate values

of b and f , we can solve for the scalar field φ and then the displacement field Ψ

using a finite difference approach.

Areas that do not fall within the survey or are masked out by the survey need to

be accounted for as the gravitational potential (and hence the displacement field) is

sensitive to these regions. Our algorithm fills in these external regions by embedding

our survey into a volume that is sufficiently larger than the survey volume before

the displacement field is calculated (we use 200h−1Mpc padding). It then smooths

over the density field using a Gaussian with a 15h−1Mpc smoothing length and

generates a constrained realization of a Gaussian density field that matches the

observed density (Hoffman & Ribak, 1991; Zaroubi et al., 1995). This effectively

fills in the masked and unobserved regions.

5.3.2 Computation

The computation of our correlation functions is tied to our reconstruction algorithm.

We bin our correlation functions in 3h−1Mpc bins starting at 2.5h−1Mpc and going

up to 197.5h−1Mpc. A list of the steps involved is given below.

I) Obtain a set of randomly distributed points that have the same angular and

radial selection function as the survey.

II) Compute the unreconstructed monopole correlation function from the data
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using the Landy-Szalay estimator (Landy & Szalay, 1993),

ξℓ(r, µ) =
DD − 2DR + RR

RR
Lℓ(µ) (5.45)

where DD, DR and RR are the number of galaxy-galaxy, galaxy-random and

random-random pairs that are separated by r and µ. We apply FKP weighting

(Feldman et al., 1994) for each object as

wi =
1

1 + n̄(zi)P (k0)
(5.46)

where n̄(zi) is the number density at the redshift of the object zi and P (k0) =

40000h−3 Mpc3 is the approximate value of the power spectrum at the BAO

scale. To obtain the spherically-averaged monopole and quadrupole (ξ0(r) and

ξ2(r)), we integrate over µ in the pair-counts themselves, but one could also

choose to integrate over ξℓ(r, µ).

III) Estimate the galaxy bias b and the anisotropy parameter β from the un-

reconstructed correlation function. We use fiducial values of b = 2.2 and

β = 0.3.

IV) Embed the survey in a larger volume and smooth the density field using

a Gaussian (again, we use a smoothing length of 15h−1Mpc). Generate a

constrained Gaussian realization matching the observed density to fill in the

masked and unobserved regions.

V) Estimate the displacement field Ψ using Equation (5.44) and shift the galax-

ies by −Ψ−f(Ψsŝ) to partially undo the effects of non-linear structure growth

and large-scale redshift-space distortions. This is the essence of reconstruction.

VI) Obtain another set of randomly generated particles with the same radial

and angular selection function as the survey. Shift these by −Ψ and denote

as S.
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VII) Compute the reconstructed correlation function using the Landy-Szalay

estimator

ξℓ(r, µ) =
DD − 2DS + SS

RR
Lℓ(µ). (5.47)

5.3.3 Fitting

We construct models of the monopole and quadrupole in a fiducial cosmology to

measure the position of the BAO in the data relative to the model (parameterized

by α) and the degree to which it is anisotropic in the data (parameterized by ǫ). We

base our fitting templates for the monopole and quadrupole on Equations (5.25) &

(5.26). That is, we define fitting models of the form

ξ0,m(r) = B2
0ξ0,t(αr) +

2

5
ǫ

[
3ξ2,t(αr) +

dξ2,t(αr)

d log(r)

]
+ A0(r)

(5.48)

ξ2,m(r) = 2B2
0ǫ

dξ0,t(αr)

d log(r)
+

(
1 +

6

7
ǫ

)
ξ2,t(αr) +

4

7
ǫ
dξ2,t(αr)

d log(r)

+
4

7
ǫ

[
5ξ4,t(αr) +

dξ4,t(αr)

d log(r)

]
+ A2(r) (5.49)

where

Aℓ(r) =
aℓ,1

r2
+

aℓ,2

r
+ aℓ,3. (5.50)

The Aℓ(r) are composed of linear nuisance terms used to marginalize out broadband

effects such as scale-dependent bias and redshift-space distortions as in Xu et al.

(2012). The B2
0 term adjusts the amplitude of the monopole template ξ0,t. We

infer the galaxy bias b from the multiplicative offset, b2, between this template and

the measured correlation function at r = 50h−1Mpc. We then use this offset to

normalize the full models, ξ0,m and ξ2,m in Equations (5.48) & (5.49), to the data.

This ensures that B2
0 ∼ 1 as it is primarily the monopole fit that sets this term and ǫ

is very small. In practice we perform our fits in the non-linear parameter log(B2
0) to

prevent B2
0 from going negative which would be unphysical. We adopt a Gaussian
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prior on log(B2
0) with standard deviation 0.4 and centered at 0 to prevent B2

0 from

wandering too far from 1 as described in Xu et al. (2012).

In addition, we apply a 10% Gaussian prior on 1 + ǫ to limit the ability of noise

in dragging ǫ to unrealistically large values. In fitting the mocks without the prior,

only 2 have measured ǫ values > 0.1, so this prior does not have a significant impact.

To verify that this prior is not cosmologically informative, we take the results of a

Markov Chain Monte Carlo simulation used to find the posterior distribution of var-

ious cosmological parameters. In particular, we use the CMB+allBAO ow0waCDM

chain from Mehta et al. (2012) which allows for a spatially curved universe and

non-cosmological constant, time-varying dark energy. At each step in the chain,

we calculate ǫ and plot up a histogram of these values. The distribution is nearly

Gaussian with a standard deviation of ∼ 0.026 which is much less than our 0.1 prior.

The monopole and quadrupole correlation function templates (ξ0,t(r) and ξ2,t(r))

are derived from the 2D power spectrum Pt(k, µ) template (Equation (5.27)) as

described in §5.2.4. We set Σs = 4h−1Mpc. We let β vary in our fits as it affords us

leverage on the amplitude of the quadrupole with which it is partially degenerate.

We put a prior on β centered at f/b ∼ Ωm(z)0.55/b = 0.35 before reconstruction

and 0 after reconstruction with 0.2 standard deviation in both cases. The choice

of β = 0 as the center of the prior after reconstruction is because we expect the

Kaiser effect to be mostly removed. We fix Σ⊥ = 6h−1Mpc and Σ‖ = 10h−1Mpc

in our pre-reconstruction fits and Σ⊥ = Σ‖ = 3h−1Mpc in our post-reconstruction

fits. These values are approximated from the fit results to the average correlation

function of the mocks where we set Σ‖ = (1 + f)Σ⊥ in the pre-reconstruction case

due to the Kaiser effect and Σ‖ = Σ⊥ in the post-reconstruction case due to the

expected removal of Kaiser squashing by reconstruction. The pre-reconstruction fit

results to the average mock correlation function are shown in Figure 5.7.
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We simultaneously fit the monopole and the quadrupole for 4 non-linear param-

eters log(B2
0), β, α and ǫ, in addition to the linear nuisance parameters in Aℓ(r).

The non-linear parameters are handled using a simplex algorithm and the linear

parameters are obtained using a least-squares method nested within this simplex.

That is, for each set of non-linear parameters, the least-squares algorithm returns

the corresponding best-fit linear parameters. The simplex steps sequentially through

the non-linear parameter space until the best-fit values are obtained. To determine

the best-fit values, we minimize the χ2 goodness-of-fit indicator given by

χ2 = (~m − ~d)T C−1(~m − ~d) (5.51)

where ~m is a column vector of the model at each step in the simplex and ~d is the data.

Both of these must contain both the monopole and quadrupole values in sequence.

C is the covariance matrix which is described below. We use a fiducial fitting range

of 50 < r < 200h−1Mpc which corresponds to fitting 50 points in both the monopole

and the quadrupole. This gives 2×50−# of fit parameters = 100−10 = 90 degrees-

of-freedom (dof) in the fit. Using this technique we can obtain best-fit values of our

parameters of interest, the isotropic dilation α and the anisotropic warping ǫ of the

BAO signal.

In addition, we can calculate the probability distribution p(α, ǫ) by fitting for

the other parameters at various grid values of these 2 parameters and measuring

the best-fit χ2. This is feasible because p(~x) ∝ exp(−χ2/2). The constant of pro-

portionality corresponds to the normalization that makes the integral
∫

p(~x)d~x = 1.

Then we can calculate p(α) and p(ǫ) as

p(α) =

∫
p(α, ǫ)dǫ (5.52)

p(ǫ) =

∫
p(α, ǫ)dα. (5.53)

We can take the widths of these distributions (σα and σǫ) as measurements of the
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errors on α and ǫ if α and ǫ have Gaussian posteriors. In §5.4 we demonstrate using

fit results to our mock catalogues that α and ǫ have finite probabilities of being

drawn from Gaussian distributions. The covariance between α and ǫ (Cαǫ) can also

be calculated and converted into a correlation coefficient ραǫ. These are defined

σ2
x =

∫
p(x)(x − 〈x〉)2dx (5.54)

Cαǫ =

∫
p(α, ǫ)(α − 〈α〉)(ǫ− 〈ǫ〉)dαdǫ (5.55)

ραǫ =
Cαǫ

σασǫ
(5.56)

where 〈x〉 is the mean of the distribution p(x). For our grids we pick the ranges

0.7 < α < 1.3 and −0.3 < ǫ < 0.3 at spacings of 0.0025 and 0.005 respectively. We

also apply an additional Gaussian prior on log(α) with a width of 0.15 to suppress

any unphysical downturns in the χ2 distribution at small α. These α correspond to

the acoustic peak in the model being pushed out to larger scales where the fitter has

an easier time hiding the peak in the large errorbars. This procedure was scrutinized

in detail in Xu et al. (2012). Note that our grids are only used to compute p(α) and

p(ǫ). We do not use them to infer the best-fit values of these parameters, which are

obtained through the non-linear simplex optimization described above.

We obtain a smooth estimate of the covariance matrix using the method de-

scribed in Xu et al. (2012) extended here to include the quadrupole (see below). A

detailed description of the method is given there. This method approximates the

covariance matrix calculated directly from the mock correlation functions with a

modified Gaussian covariance matrix. We use this method since the mock covari-

ances show evidence of noise and ideally the covariance matrix should be smooth.

The method allows us to include the redshift dependence of the galaxy number

density n̄. This is anchored in the observation that the covariance in configuration

space is just the transform of the variance in Fourier space P 2
ℓℓ′(k)/V . Hence, we
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can imagine building up the inverse variance as

I2(k) =

∫
dV

P 2
ℓℓ′(k)

(5.57)

where

dV =
c

H0

r2(z)√
Ωm(1 + z)3 + ΩΛ

dzdΩ (5.58)

for a flat universe and defining P2
ℓℓ′(k) = [I2(k)]−1. This allows us to include the

redshift dependence of the number density which enters into the calculation of P 2
ℓℓ′(k)

(see Equation (5.33)), assuming n̄(z) has no angular dependence.

Since our correlation functions are computed via binning, we must use the binned

Gaussian covariance given in Equation (5.43). Using the above observation, we can

replace the P 2
ℓℓ′(k)/V term in that equation with P2

ℓℓ′(k), i.e.

Cij(ξℓ(ri), ξℓ′(rj)) = 2(2ℓ + 1)(2ℓ′ + 1)

·
∫

k3d log(k)

2π2
Jℓ(kri)Jℓ′(krj)P

2
ℓℓ′(k).

(5.59)

We can then insert the modification parameters c0, c1, c2 and c3 such that

Cij(ξℓ(ri), ξℓ′(rj)) = 2(2ℓ + 1)(2ℓ′ + 1)

·
[ ∫

k3d log(k)

2π2
Jℓ(kri)Jℓ′(krj)

·P2
ℓℓ′(k; c0, c1, c2)

]
+ c3. (5.60)

Here, P2
ℓℓ′(k; c0, c1, c2) corresponds to a P 2

ℓℓ′(k), Equation (5.33), where we have made

the substitution

P (k, µ) +
1

n̄
→

[
c0Pdw(k, µ) +

c1

n̄(z)

]
(1 + βµ2)2F (k, µ, Σs)

+
c2

n̄(z)
. (5.61)
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The c0 term adjusts the magnitude of the sample variance. The c1 term acts like

a non-linear shot-noise component and the c2 term adjusts the magnitude of the

standard Poisson shot-noise contribution. The c3 term can be associated with the

integral constraint, which appears as an additive offset in the correlation function.

To derive values for these parameters, we maximize the likelihood function

L =
N∏

i=0

(2π)−q/2(detC)−1/2exp(−χ2
i /2). (5.62)

Here N is the total number of mocks and q is the number of points to fit. We

derive the parameters using the mock covariances between 50 < r < 200h−1Mpc

(50 monopole points and 50 quadrupole points) and hence q = 50 × 2 = 100.

χ2
i = ~xT

i C−1~xi where ~xi is a column vector of dimension q containing the difference

between the monopole and quadrupole of each mock and the average of all mocks.

Before reconstruction we set β = f/b. After reconstruction we set β = 0, again

due to the expected removal of large-scale redshift-space distortions. We test several

cases where we vary β from these fiducial values and find that changing β affects

the relative amplitudes of the Cij(ξ0(ri), ξ0(rj) and Cij(ξ2(ri), ξ2(rj) terms. This

can cause slight changes in the resulting σα and σǫ at the 0.1% level, which is not

significant at our current levels of statistical precision. The Σs streaming scale for the

FoG is fixed at 4h−1Mpc. We find very little difference in the resulting modification

parameters in cases where we allow Σs to vary. We fix Σ⊥ and Σ‖ to their fiducial

model values (recapped below) in our covariance matrix calculations. With the

modification parameters in hand, we can construct a smooth approximation to the

mock covariances from the binned Gaussian covariance matrix using Equation (5.60).

Our fiducial model parameters are summarized as follows: we define our fidu-

cial model before reconstruction to have Σ⊥ = 6h−1Mpc, Σ‖ = 10h−1Mpc, Σs =

4h−1Mpc and a prior on β centered on β = 0.35. After reconstruction, we set
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Σ⊥ = Σ‖ = 3h−1Mpc and center our β prior on 0. Our fiducial fitting range is

50 < r < 200h−1Mpc.

In §5.4 and §5.5, we present our measured values of α and ǫ for the mocks (§3.2.1)

and actual survey data (§3.2.2) using the fitting models defined in Equations (5.48)

& (5.49) and the modified Gaussian covariance matrix described above.

5.4 Mock Catalogue Results

In this section we present the results of fits to the LasDamas mock correlation

functions before and after reconstruction. These were computed and fit by taking the

LasDamas cosmology as the fiducial cosmology. The LasDamas mocks are described

in more detail in §3.2.1.

We plot the average monopole and quadrupole of the 160 mocks before recon-

struction in Figure 5.7. The monopole and the quadrupole at large scales look

very similar to the fiducial template plotted in Figure 5.2. The small scales in

the quadrupole, however, show substantially different structure indicating that our

model does not suit the data well at these scales. This motivated our choice for the

fiducial fitting range: 50 < r < 200h−1Mpc. The best-fit model to the spherically-

averaged monopole and quadrupole are overplotted as the red lines where the solid

line corresponds to using the fiducial A0,2(r) and the dashed line corresponds to

using A0,2(r) = 0 (i.e. no broadband marginalization). The monopole fits look

very similar; however the fiducial A0,2(r) does much better in the quadrupole near

the acoustic scale with χ2 decreasing by ∼ 33 relative to the A0,2(r) = 0 fit. We

allow Σ⊥ and Σ‖ to vary in these fits and obtain best-fit values of 6.3h−1Mpc and

10.4h−1Mpc, motivating our choices in the fiducial model. We keep Σs fixed at

4h−1Mpc.

A comparison of the monopole and quadrupole before and after reconstruction is
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Figure 5.7: Average monopole (left) and quadrupole (right) of the 160 mock cata-
logues before reconstruction. One can see that the monopole and the quadrupole at
large scales are very similar to the fiducial template (solid lines) plotted in Figure
5.2, however the quadrupole on small scales shows substantially different structure.
The fit to the average of the spherically-averaged monopole and quadrupole from
the mocks is overplotted in red. The solid line corresponds to a fit using the fiducial
A0,2(r) (Equation (5.50)) and the dashed line corresponds to a fit using A0,2(r) = 0.
We allow Σ⊥ and Σ‖ to vary in these fits and obtain best-fit values of 6.3h−1Mpc
and 10.4h−1Mpc respectively using the fiducial A0,2(r). In the monopole case, the
fit using the fiducial A0,2(r) is very similar to the A0,2(r) = 0 fit. In the quadrupole,
the A0,2(r) = 0 fit is much worse around the acoustic scale. Overall, χ2 decreased
by ∼ 33 going from A0,2(r) = 0 to the fiducial A0,2(r).
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shown in Figure 5.8. As in Padmanabhan et al. (2012a), we see the acoustic peak in

the monopole appears less smeared after reconstruction which indicates that our re-

construction technique was effective at partially undoing non-linear evolution. This

is also reflected in the fact that after reconstruction, a fit to the average of the mocks

gave a much smaller BAO smoothing scale of Σnl = 2.9h−1Mpc as opposed to the

pre-reconstruction values of Σ⊥ = 6.3h−1Mpc and Σ‖ = 10.4h−1Mpc. In addition,

we see that the quadrupole is nearly zero on large scales after reconstruction, which

implies that our reconstruction technique was also effective at partially removing

the Kaiser effect. The fact that the quadrupole is positive and not exactly 0 is likely

due to some slight anisotropy introduced by reconstruction. This is discussed in

more detail below and shown not to significantly affect our measurements of α and

ǫ.

By averaging the mocks we have effectively increased the survey volume by a fac-

tor of 160 and hence the variance should decrease by an equal amount. This means

that the average of the mocks should have substantially less noise. In addition, we

know that we are computing the correlation functions and fitting using the correct

(LasDamas) cosmology. Hence, we expect that the α and ǫ values measured from the

average of the mocks should be 1 and 0 respectively if our models are unbiased (i.e.

there should be no shift in the location of the peak relative to the model and there

should be no anisotropy). We find that fitting the pre-reconstruction mock average

gives α = 1.005 and ǫ = 0.003 while post-reconstruction we measure α = 1.002 and

ǫ = 0.002. The slight offset in α from 1 is not too concerning as we expect non-linear

structure growth to shift the peak by . 0.5% (Padmanabhan & White, 2009; Mehta

et al., 2011). The fact that α moves closer to 1 after reconstruction is encouraging

as reconstruction is supposed to remove some effects of non-linear structure growth.

The small bias in ǫ is not significant at our current levels of statistical precision and
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Figure 5.8: The average monopole (left) and quadrupole (right) of the 160 mocks
before (gray crosses) and after (black crosses) reconstruction. One can see that after
reconstruction, the acoustic peak in the monopole has sharpened up, indicating that
reconstruction is effective at removing the degradation of the BAO caused by non-
linear structure growth. In the quadrupole, the power at large-scales goes close to
0 which implies that reconstruction was effective at removing the Kaiser effect. It
is not exactly zero due to some small anisotropy introduced by the reconstruction
technique itself (see Figure 5.16). We note that the quadrupole is multiplied by r2

in this figure and hence the magnitude of this anisotropy is exaggerated.

is likely the result of small mismatches between the broadband model and the data.

This will be discussed in more detail shortly. We again emphasize that in these

fits we have allowed Σ‖ and Σ⊥ to vary. When we fit the individual mocks, the

signal-to-noise of the data is not sufficient for constraining any of these parameters

and hence we fix them in the fiducial model to the values obtained in the averaged

mock fits.

We measure α and ǫ for each mock using the fitting procedure and fiducial

model outlined in §5.3.3. We also estimate the errors σα, σǫ and the correlation

coefficient ραǫ for each mock using Equations (5.54) & (5.56). Before reconstruction,

we measure a mean 〈α〉 = 1.003 ± 0.003 with an rms scatter between the mocks of

0.034 and a median α̃ = 1.008 with 16th/84th percentiles of the mocks corresponding

to +0.030
−0.036 (these will henceforth be denoted the quantiles). For ǫ we measure a
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Figure 5.9: β versus ǫ measured from fits to the 160 mocks after reconstruction.
One can see that these two parameters are uncorrelated as expected. We see similar
results before reconstruction as well.
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Figure 5.10: α versus ǫ (top) and DA(z) versus H(z) (bottom) for the mocks after
reconstruction. One can see that α and ǫ are not highly correlated. From the
points plotted we measure a correlation coefficient of 0.27 and analogously in the
pre-reconstruction case we measure 0.20. These are in excellent agreement with
Fisher matrix predictions (ραǫ ∼ 0.21). We see a stronger correlation between DA

and H which we obtained by combining α and ǫ as in Equations (5.5) & (5.6). We
expect ρDAH ∼ 0.4 and we find correlation coefficients of 0.23 and 0.50 between our
measured DA and H values before and after reconstruction respectively.
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Figure 5.11: Post-reconstruction σα versus σǫ for the mocks. We see that the errors
on α and the errors on ǫ are directly correlated with each other. This indicates
that mocks with poorer measurements of the acoustic scale α also have poorer
measurements of the BAO anisotropy ǫ. A similar correlation exists in the pre-
reconstruction case. The median ratios of σǫ/(1 + ǫ)-to-σα/α are ∼ 1.3 and ∼ 1.4
before and after reconstruction respectively. Fisher matrix arguments predict a ratio
of ∼ 1.2.
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Figure 5.12: ǫ versus σǫ before (left) and after (right) reconstruction for the 160
mocks. One can see that reconstruction decreases the scatter in the measured ǫ
values (this is further highlighted in Figure 5.13). While reconstruction does de-
crease the average error on ǫ, we see that the errors we measure are still fairly large
compared to the errors on α (see Figure 5.11). This suggests that our ability to
detect ǫ with fidelity in current datasets such as the SDSS LRGs is marginal.

mean 〈ǫ〉 = 0.001 ± 0.003 with an rms scatter between the mocks of 0.037 and a

median ǫ̃ = 0.004 with quantiles +0.032
−0.037. After reconstruction, we measure a mean

〈α〉 = 1.002 ± 0.002 with an rms scatter between the mocks of 0.024 and a median

α̃ = 1.002 with quantiles +0.023
−0.022. For ǫ we measure a mean 〈ǫ〉 = 0.002±0.003 with an

rms scatter between the mocks of 0.032 and a median ǫ̃ = 0.007 with quantiles +0.023
−0.037.

These values were calculated after rejecting the mocks where the acoustic signal is

too weak to obtain an accurate centroiding of the BAO peak. This corresponds

to making a cut in σα at 0.07 and discarding the mocks that lie above this cut as

demonstrated in Xu et al. (2012). Before reconstruction, 9 mocks lie above this cut

and after reconstruction, 0 lie above this cut.
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Figure 5.13: ǫ before reconstruction versus ǫ after reconstruction fit from the 160
mocks. The slope of a linear fit to these points is less than 1 implying that the
post-reconstruction ǫ values have smaller scatter.
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Figure 5.14: The robustness of our fitting model as demonstrated by α and ǫ scatter
plots for some sample cases. Results for other tweaks to the fiducial model are given
in Table 5.2. The plotted α and ǫ values were obtained through fitting the mock
correlation functions before and after reconstruction. The plots are presented in
pairs: α on the left and ǫ on the right. The first plot in each pair shows the pre-
reconstruction results and the second plot shows the post-reconstruction results.
If we obtain consistent measurements of α and ǫ, then we should see ∆α and ∆ǫ
values that are ∼ 0. We see that this is true at the level of our current statistical
precision. Therefore, our fitting model is reasonably robust against small changes to
the fiducial model parameters. (top) Comparison of results obtained using a larger
fitting range (30 < r < 200h−1Mpc) versus the fiducial fitting range. Here, we
see an average ∆α that is ∼ −0.003 before reconstruction. The error on the mean
is a factor of ∼

√
160 smaller than the scatter indicated by the quantiles, which

makes this 0.003 shift statistically significant. This is caused by the templates being
poor matches to the data at low r. While the A0,2(r) terms attempt to compensate
for this, accurate fitting of the BAO scale is compromised. The significant ∆ǫ in
this case is rooted in the same cause. The fact that ∆α and ∆ǫ are both 0 after
reconstruction suggests that the post-reconstruction model is better matched to the
data. (bottom) Comparison of results obtained using Σs = 0h−1Mpc versus the
fiducial value of Σs = 4h−1Mpc. Here, we see that the average ∆ǫ is different from
0 when considering the error on the mean. This is caused by the quadrupole model
being a less optimal match to the data. We note that these small shifts in α and ǫ
are certainly not detectable in each mock, which have much larger errors on α and
ǫ than ∼ 0.003.
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Figure 5.15: DA(z) and H(z) scatter plots obtained by plotting those measured
using an Ωm = 0.4 cosmology versus the true LasDamas cosmology. DA(z) is in
units of Mpc and H(z) is in units of km/s/Mpc. These values were calculated using
Equations (5.5) & (5.6) and assuming rs = 159.71 Mpc. The median ∆DA and ∆H
values are significantly different from 0 when approximating the error on the median
as the scatter predicted by the quantiles divided by

√
160. Such a discrepancy

may be due to our median redshift not being exactly z = 0.35 as assumed or the
breakdown of the Taylor expansions around α = 1 and ǫ = 0 made in the derivation
of our fitting model. In the Ωm = 0.4 cosmology, our measured α and ǫ deviate from
1 and 0 as shown in the last row of Table 5.2. We again emphasize that while this
difference is detectable in the median α and ǫ of the mocks, it is not significant in
each individual mock.
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Table 5.1: ǫ statistics for various mock combinations. The first column indicates
the number of mocks we have combined (m). The second column quotes the mean ǫ
we measure with the standard error on the mean. The third column shows the rms
of the mocks. The fourth column quotes the median ǫ and the fifth column quotes
the quantiles.

m 〈ǫ〉 rms ǫ̃ Qtls

Redshift Space without Reconstruction

1 0.001 ± 0.003 0.037 0.004 +0.032
−0.037

2 0.001 ± 0.003 0.029 0.006 +0.023
−0.030

4 0.001 ± 0.003 0.019 -0.001 +0.017
−0.010

8 0.002 ± 0.003 0.012 0.002 +0.009
−0.013

Redshift Space with Reconstruction

1 0.002 ± 0.003 0.032 0.007 +0.023
−0.037

2 0.003 ± 0.002 0.018 0.006 +0.012
−0.020

4 0.003 ± 0.002 0.012 0.003 +0.012
−0.011

8 0.003 ± 0.002 0.008 0.006 +0.004
−0.007
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Table 5.2: Fitting results from the mocks for various models. The model is given in column 1. The median α is given
in column 2 with the 16th/84th percentiles from the mocks given in column 3 (these are denoted as the quantiles in
the text, hence the label Qtls in the table). The median ǫ is given in column 6 with corresponding quantiles in column
7. The median difference in α on a mock-by-mock basis between the model listed in column 1 and the fiducial model
is given in column 4 with corresponding quantiles in column 5. The analogues for ǫ are given in columns 8 and 9. The
mean χ2/dof is given in column 10.

Model α̃ Qtls ∆̃α Qtls ǫ̃ Qtls ∆̃ǫ Qtls 〈χ2〉/dof

Redshift Space without Reconstruction

Fiducial [f ] 1.008 +0.030
−0.036 – – 0.004 +0.032

−0.037 – – 91.92/90

Fit w/ (Σ⊥, Σ‖) → (8, 8)h−1Mpc. 1.008 +0.029
−0.039 0.001 +0.003

−0.003 0.001 +0.032
−0.037 −0.002 +0.003

−0.003 91.97/90

Fit w/ Σs → 0h−1Mpc. 1.005 +0.030
−0.037 −0.002 +0.003

−0.004 0.000 +0.031
−0.033 −0.003 +0.005

−0.004 91.76/90

Fit w/ A2(r) = poly2. 1.006 +0.031
−0.036 0.000 +0.002

−0.001 0.005 +0.032
−0.036 0.001 +0.005

−0.005 93.08/91

Fit w/ A2(r) = poly4. 1.006 +0.031
−0.035 0.000 +0.001

−0.001 0.002 +0.037
−0.033 −0.000 +0.007

−0.007 90.98/89

Fit w/ 30 < r < 200h−1Mpc range. 1.003 +0.032
−0.037 −0.003 +0.004

−0.005 0.000 +0.032
−0.035 −0.003 +0.005

−0.005 105.90/104

Fit w/ 70 < r < 200h−1Mpc range. 1.007 +0.030
−0.035 0.000 +0.002

−0.002 0.004 +0.032
−0.040 0.000 +0.003

−0.003 79.33/76

Fit w/ 50 < r < 150h−1Mpc range. 1.005 +0.031
−0.040 −0.000 +0.004

−0.006 0.004 +0.036
−0.043 −0.001 +0.008

−0.007 54.34/58

Redshift Space with Reconstruction

Fiducial [f ] 1.002 +0.023
−0.022 – – 0.007 +0.023

−0.037 – – 92.68/90

Fit w/ (Σ⊥, Σ‖) → (2, 4)h−1Mpc. 1.002 +0.023
−0.021 −0.000 +0.001

−0.001 0.008 +0.022
−0.037 0.000 +0.001

−0.001 92.73/90

Continued on next page
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Table 5.2 – continued from previous page

Model α̃ Qtls ∆̃α Qtls ǫ̃ Qtls ∆̃ǫ Qtls 〈χ2〉/dof

Fit w/ Σs → 0h−1Mpc. 1.001 +0.024
−0.020 −0.001 +0.005

−0.003 0.004 +0.020
−0.030 −0.003 +0.007

−0.005 92.27/90

Fit w/ A2(r) = poly2. 1.002 +0.024
−0.022 0.000 +0.001

−0.000 0.008 +0.023
−0.037 0.001 +0.002

−0.002 94.23/91

Fit w/ A2(r) = poly4. 1.002 +0.023
−0.022 0.000 +0.001

−0.001 0.005 +0.025
−0.037 −0.001 +0.004

−0.004 91.68/89

Fit w/ 30 < r < 200h−1Mpc range. 1.003 +0.022
−0.023 0.000 +0.002

−0.001 0.006 +0.022
−0.038 0.000 +0.002

−0.002 106.12/104

Fit w/ 70 < r < 200h−1Mpc range. 1.002 +0.023
−0.021 0.000 +0.001

−0.001 0.006 +0.022
−0.036 −0.000 +0.002

−0.002 79.99/76

Fit w/ 50 < r < 150h−1Mpc range. 1.002 +0.024
−0.023 −0.001 +0.004

−0.004 0.008 +0.022
−0.037 −0.001 +0.005

−0.005 54.65/58

Recon. w/ β → 0.24. 1.002 +0.023
−0.022 −0.000 +0.001

−0.001 0.005 +0.023
−0.033 0.000 +0.002

−0.003 92.49/90

Recon. w/ β → 0.36. 1.002 +0.022
−0.020 0.000 +0.001

−0.002 0.005 +0.024
−0.038 −0.000 +0.002

−0.002 92.89/90

Recon. w/ b → 1.8. 1.001 +0.022
−0.021 −0.000 +0.006

−0.005 0.006 +0.025
−0.041 −0.000 +0.006

−0.006 92.61/90

Recon. w/ b → 2.6. 1.003 +0.023
−0.023 0.001 +0.004

−0.004 0.004 +0.025
−0.036 −0.001 +0.006

−0.005 92.65/90

Recon. w/ Wiener Filter. 1.004 +0.020
−0.022 −0.000 +0.004

−0.003 0.005 +0.024
−0.035 −0.000 +0.004

−0.004 92.69/90

Recon. on Ωm = 0.4 case.1 0.832 +0.021
−0.019 −0.171 +0.010

−0.010 0.020 +0.028
−0.037 0.017 +0.014

−0.014 92.61/90

1 α = 1 and ǫ = 0 in the LasDamas cosmology correspond to α = 0.832 and ǫ = 0.013 in this Ωm = 0.4 cosmology
according to Equations (5.5 & 5.6).
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The median ǫ in the pre- and post-reconstruction cases are different from 0

and from the mean at & 1-2 times the error on the mean. In addition, the post-

reconstruction quantiles are asymmetric, implying that the posterior ǫ distribution

deviates from Gaussian. These appear to be in part due to the intrinsic noise in

the data and in part due to a slight mismatch between the model and the data. To

reduce noise, we combine our 160 mocks into groups of 2, 4 and 8, and re-perform

our fits. In general, we see a better agreement between the mean and median ǫ.

The quantiles remain mildly asymmetric in some cases but overall we see improved

agreement. The rms scatter decreases by roughly the expected amount (∼ √
m,

where m = 2, 4 or 8) if we consider ǫ to be Gaussian. These results are summarized

in Table 5.1.

We see that there is a persistent bias in ǫ towards non-zero values that is currently

below our detection threshold. This bias is . 1σ significant before reconstruction

and only at the 1-1.5σ level after reconstruction. To further test this, we split the

mocks into 2 groups of 80 which reduces the noise in the data. After re-performing

the fits, we find 〈ǫ〉 ∼ 0.002 both before and after reconstruction. These values

agree with the fit results to the average of the 160 mocks described above. This

suggests that the persistent bias in ǫ is not due to noise but is rather a result of

some mismatch between the model and the data. In our fits we fix Σ⊥, Σ‖ and

Σs, and use the nuisance terms in A2(r) to account for any other mismatch in the

broadband shape between the model and the data. However Σ⊥, Σ‖ and Σs are

partially degenerate with ǫ, so if they are fixed at non-optimal values that cannot

be fully compensated by A2(r) (see bottom row of Figure 5.14), the fitter can resort

to adjusting ǫ. We stress however, that such small biases in our redshift-space

measurements of ǫ are below the current detection limit in a single DR7 realization

as indicated by the rms of the mocks.
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Figure 5.16: Average quadrupole from the mocks in real space before (grey) and
after (black) reconstruction. The quadrupole before reconstruction is very close to
0 as we would expect in real space due to the lack of redshift-space distortions.
Our ǫ measurements are unbiased in this case which suggests that the small biases
we see in redshift space are due to slight mismatches between our redshift-space
distortion models and the actual broadband in the data. After reconstruction, the
quadrupole at large scales acquires some additional power likely due to the survey
geometry and sample number density fluctuations as a function of redshift. Our
post-reconstruction real space ǫ measurements remain unbiased which suggests that
this anisotropy can be accounted for by our A2(r) nuisance terms.
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We can gain additional insights by analyzing the real-space mocks which do not

have redshift-space distortions and therefore do not require Σs or anisotropic Σnl in

the model. We find that these give non-biased measures of ǫ in both the pre- and

post-reconstruction cases. In the pre-reconstruction case we measure the mean ǫ to

be 〈ǫ〉 = 0.003 ± 0.003 with an rms between the mocks of 0.037. The median is

ǫ̃ = 0.002 with quantiles +0.040
−0.040. After reconstruction we measure 〈ǫ〉 = 0.001±0.002

with a mock rms of 0.027 and ǫ̃ = −0.002 with quantiles +0.030
−0.023. One can see that

the mean and median ǫ are consistent with each other and with 0. Fitting the

average of the 160 mocks gives ǫ = 0.001 and 0.000 before and after reconstruction

respectively; again implying a largely unbiased measurement of ǫ in real space.

An interesting artifact we do find is that reconstruction appears to introduce

some broadband anisotropy as shown in Figure 5.16. Here we have plotted the mean

of the real-space quadrupoles before (grey) and after (black) reconstruction. We see

that the quadrupole is nearly 0 before reconstruction as expected since there should

not be any anisotropies in real space. However, after reconstruction, the quadrupole

acquires some additional large-scale power. The reconstruction displacement vec-

tors may take on a subtle anisotropy due to the variation of number density with

redshift or the survey geometry (i.e. if it is wider than it is deep). Fortunately,

this broadband anisotropy introduced by reconstruction is fairly smooth and can be

removed by the A2(r) nuisance parameters as evidenced by our unbiased measures

of ǫ in post-reconstruction real space.

To build more intuition for the parameters we fit in redshift space and to demon-

strate their inter-dependencies, we show various scatter plots of these quantities in

Figures 5.9, 5.10, 5.11, 5.12 & 5.13. Figure 5.9 shows the values of β and ǫ we obtain

from our fits to the 160 mocks after reconstruction. Our pre-reconstruction results

are similar. As expected, these two parameters are not degenerate with each other.
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The top panel of Figure 5.10 shows the ǫ versus α values we measure from

the mocks after reconstruction. Again we see that these two parameters are not

highly correlated. The correlation coefficient between DA and H is predicted to

be ρDAH ∼ 0.4 (Seo & Eisenstein, 2007). This subsequently predicts a σH/H-to-

σDA
/DA ratio ∼ 2 (i.e. the percentage error of the Hubble parameter is twice that

of the angular diameter distance). Using these values, a Fisher matrix argument

shows that we should expect ραǫ ∼ 0.21 (see Appendix 8). The correlation coefficient

between the α and ǫ values plotted in Figure 5.10 is 0.20 and the corresponding pre-

reconstruction value is 0.27. Both are in excellent agreement with the Fisher matrix

prediction. The bottom panel of Figure 5.10 shows our α and ǫ measurements

translated into measurements of DA and H using Equations (5.5) & (5.6). In the

plotted post-reconstruction case, the correlation coefficient between DA and H is

∼ 0.50 and in the pre-reconstruction case it is ∼ 0.23, which are not too different

from our assumed ρDAH = 0.4.

Figure 5.11 shows σǫ versus σα for the mocks after reconstruction. We see that

the errors on α and ǫ are correlated which implies that mocks with poorer measure-

ments of the acoustic scale (i.e. larger σα values) also have poorer measurements

of the BAO anisotropy (i.e. larger σǫ values). We see a similar correlation in the

pre-reconstruction results. Taking the ratio of σǫ/(1 + ǫ)-to-σα/α, we find a median

∼ 1.3 before reconstruction and ∼ 1.4 after reconstruction. Fisher matrix arguments

predict a ratio of ∼ 1.2 (Equation (8.16)), which is similar to what we see.

Figure 5.12 shows the values of ǫ we measure versus σǫ before (left) and after

(right) reconstruction. Reconstruction clearly decreases the scatter in ǫ which is

again highlighted in Figure 5.13, showing the values of ǫ before and after recon-

struction. While the two are correlated, the post-reconstruction values have smaller

scatter as evidenced by the locus of points having a slope shallower than 1:1. From
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Figure 5.12 we also see that reconstruction decreases σǫ, our estimated error on

ǫ. However, these σǫ values are still large compared to σα (see Figure 5.11). This

suggests that we are only able to obtain marginal detections of ǫ in current datasets

such as the SDSS DR7 LRGs.

Next we test the robustness of our fitting model to changes in various model

parameters. A full list of these results are found in Table 5.2 for changes of Σ⊥,

Σ‖, Σs, fitting range and form of A2(r) both before and after reconstruction. In the

table, poly2 corresponds to an A2(r) = a1/r
2 + a2/r and poly4 corresponds to an

A2(r) = a1/r
2 + a2/r + a3 + a4r. We see that the scatter in α between the mocks

can show ∼ 10% variations between the different cases; however, this is quite rare.

For ǫ on the other hand, we see ∼ 10% variations quite often. This again indicates

the noisiness of our ǫ measurements.

Figure 5.14 shows scatter plots in α and ǫ for a few sample cases. Here, ∆α and

∆ǫ are the differences between the α and ǫ values measured using the slightly altered

model and the fiducial model. We expect the average ∆α and ∆ǫ to be 0 within the

errors if our measurements of α and ǫ are consistent between the two models. We

see that in all cases, ∆α = 0 and ∆ǫ = 0 fall within the scatter predicted by the

quantiles on a mock-by-mock basis. However, the errors on the average ∆α and ∆ǫ

are on the order of
√

160 times smaller than the scatter implied by the mocks. This

indicates that in a few cases, we detect a significant shift in the average value of α

and ǫ measured.

In particular, this occurs in the pre-reconstruction cases where we have changed

the fitting range. The α and ǫ scatter plots for the 30 < r < 200h−1Mpc fitting

range versus the fiducial fitting range cases are shown in the top row of Figure 5.14.

The plots are shown in pairs with α on the left and ǫ on the right. The first plot in

each pair corresponds to the pre-reconstruction case and the second plot to the post-
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reconstruction case. We see that on average, the larger fitting range gives slightly

smaller values of α and ǫ. If we begin fitting at r = 30h−1Mpc where the errorbars

are smaller, the fitter forces the model to match the data at these small scales where

we know the templates (especially the quadrupole) are not faithful representations

of the data. The A0,2(r) marginalization terms compensate for this at the expense

of accurately fitting the BAO scale. After reconstruction, ∆α and ∆ǫ are both 0

which suggests that the model is better matched to the data in this case.

We also see average ∆ǫ values that are significantly different from zero in the

Σs = 0h−1Mpc case both before and after reconstruction. This is illustrated in the

bottom row of Figure 5.14. Σs = 0h−1Mpc implies that we exclude FoG from the

model, which is unrealistic as it is implemented in the mocks. The likely culprit

here is again the mismatch between the data and the model at small r especially

in the quadrupole. In addition, if we compare the dotted line in Figure 5.4 (the

Σs = 0h−1Mpc case) and the average quadrupole in Figure 5.7, we see that the

quadrupole BAO feature in this model is a poorer fit to the data overall. The

mocks show more of a crest-trough-crest structure near the BAO scale as in the

fiducial parameter template (solid line in Figure 5.2) whereas the trough in the

Σs = 0h−1Mpc case is much weaker. This is further affirmed by the fact that the

dotted line in Figure 5.3 (isotropic Σnl) has a similar looking BAO feature and shows

a similar discrepancy in ǫ relative to the fiducial model before reconstruction. The

fitter can partially compensate for these differences through adjusting the value of

ǫ which also gives rise to crests and troughs near the BAO scale, although with

different structure than those introduced through Σ⊥, Σ‖ and Σs. Hence one must

pick a quadrupole model that has a BAO feature fairly well matched to the data to

avoid biasing the ǫ values measured.

Despite these offsets in the median α and ǫ for different fitting models, we note
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that at the statistical precision of current datasets, we would not be able to detect

any of these changes. For the DR7 mocks, σα is ∼ 0.04 before reconstruction

and ∼ 0.03 after reconstruction. The average σǫ are even larger at ∼ 0.05 before

reconstruction and ∼ 0.04 after reconstruction. Hence, assuming that σα and σǫ

characterize the error on α and ǫ, a 0.003 shift will fall entirely within the expected

errors. Therefore, our fitting model is reasonably robust against small changes to

model parameters and our measured α and ǫ values are largely unbiased.

We perform similar exercises for various different reconstruction parameters such

as the bias and β values we input to the algorithm. The fiducial reconstruction

parameters we use are b = 2.2 and β = 0.3. We also generate the constrained

Gaussian realizations in a manner equivalent to Wiener filtering the data in the

observed region. This is akin to setting the unconstrained Gaussian realization

amplitudes (δU in Equation (3) of Padmanabhan et al. (2012a)) to 0, the expected

mean amplitude from averaging over many constrained realizations. In our fiducial

procedure, the δU are matched to the observed density field. The fitting results of

these cases are also listed in Table 5.2. We see that in all cases we recover similar

values of α and ǫ. This indicates that our fitting model effectively marginalizes

away the broadband signal introduced by reconstruction when incorrect values of

the fiducial parameters are used. The model is robust against small changes in

reconstruction parameters and returns reliable measurements of α and ǫ.

Finally we calculate and perform our fits using a fiducial cosmology that is

significantly different to the LasDamas cosmology. This forces a stronger anisotropic

BAO signal to appear in the quadrupole. We pick a cosmology with Ωm = 0.4 that

preserves the matter-to-baryon ratio of LasDamas. We also fix Ωmh2 which implies

h = 0.553. We convert the measured α and ǫ values to DA(z) and H(z) using

Equations (5.5) & (5.6) and compare these to the values measured using the fiducial
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cosmology. This is illustrated in Figure 5.15. The equations listed above only allow

us to infer DA(z)/rs and H(z)rs. We have assumed rs = 159.71 Mpc, which is the

sound horizon in the LasDamas cosmology, to obtain the DA(z) and H(z) values

plotted in the figure. In the LasDamas cosmology (which is the true cosmology in

our mocks), DA(z) = 1032 Mpc and H(z) = 81.8 km/s/Mpc at z = 0.35. Taking

the ratio ∆̃DA/DA(z) and ∆̃H/H(z) implies that on average our measurements of

DA(z) and H(z) using the Ωm = 0.4 cosmology and the true LasDamas cosmology

differ by ∼ 0.7% and ∼ 0.6% respectively. Dividing the scatter indicated by the

quantiles by
√

160 suggests that these average offsets are significant, although again,

in a single mock, we would not be able to detect these offsets. The fiducial DA(z)

and H(z) are calculated assuming a median redshift of z = 0.35; however, if the true

median redshift were slightly different, such discrepancies would not be unexpected.

In addition, our models for α and ǫ are based on Taylor expansions around 1 and 0

respectively. When the fitting model is constructed using a fiducial cosmology that

is extremely wrong, the α and ǫ values we measure can deviate significantly from 1

and 0 as shown in the last row of Table 5.2. Our first-order Taylor assumption may

be breaking down at this point, further affecting our measurements. In this case,

one can iteratively change the fiducial cosmology and re-fit for α and ǫ until values

closer to 1 and 0 are obtained.

We verify our assumption that the standard deviation of p(α) and p(ǫ) are good

indicators of the errors on α and ǫ in Figure 5.17. The top panel of this figure shows

a normalized histogram of (α − 〈α〉)/σα after reconstruction and the bottom panel

shows the analogue for ǫ. The best-fit Gaussian is overplotted and the p-value from

a K-S test is shown. This value gives the probability that the plotted distribution is

drawn from a Gaussian. The pre-reconstruction p-values are 0.40 and 0.09 for α and

ǫ respectively. These values indicate that there are finite probabilities that α and
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Figure 5.17: Histograms of (α − 〈α〉)/σα (top) and (ǫ − 〈ǫ〉)/σǫ (bottom) after
reconstruction. These are a measure of the signal-to-noise of our measured α and
ǫ values. The best-fit Gaussians are overplotted as black lines. We perform a K-S
test to see how likely these distributions are drawn from a normal distribution. The
p-values or probabilities are indicated on the plots and imply that α and ǫ both
have finite chances of being drawn from Gaussian distributions. This verifies that
the standard deviations σα and σǫ we calculate from χ2(α, ǫ) characterize the errors
on α and ǫ reasonably well. A similar conclusion holds for our α and ǫ values before
reconstruction as well.
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ǫ have Gaussian posteriors. Hence the standard deviations σα and σǫ we calculate

from χ2(α, ǫ) characterize the errors on α and ǫ reasonably well.

5.5 DR7 Results

5.5.1 Anisotropic Results

Now that we have verified the robustness of our techniques and obtained a better

understanding of the anisotropic signal from our mocks, we can proceed to the ac-

tual SDSS DR7 LRG data. This dataset is described in more detail in §3.2.2. To

calculate our fitting model for the data, we use the flat ΛCDM cosmology predicted

by WMAP7: H0 = 70.2 ± 1.4, Ωbh
2 = 0.02255 ± 0.054, Ωch

2 = 0.1126 ± 0.0036,

ns = 0.968 ± 0.012 and σ8 = 0.816 ± 0.024 (Komatsu et al., 2011). For the co-

variance matrix, we again use the modified Gaussian covariance matrix discussed in

§5.3.3 with the modification parameters derived from the mocks and the WMAP7

cosmology.

The results of our fits are shown in Figure 5.18. The pre-reconstruction results

are in the top row and the post-reconstruction results are in the bottom row. Our

ǫ measurements have fairly large errors, again indicating that our detection of any

anisotropy is only marginal. However, reconstruction does help in bringing down

this error. The acoustic peak appears much sharper after reconstruction, again

indicating the effectiveness of our technique in undoing non-linear evolution. This

is reflected in the decrease in error on α and ǫ by factors of 1.8 and 1.3 respectively

after reconstruction. The quadrupole near 100h−1Mpc scales is much closer to 0 after

reconstruction which implies that our partial removal of the Kaiser effect was also

successful. The deviation from 0 at larger scales again indicates that reconstruction

is introducing some additional anisotropy (see Figure 5.16).

Using our measured α, σα, ǫ, σǫ and Cαǫ values from the DR7 data, we can use
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Figure 5.18: DR7 fit results before (top row) and after (bottom row) reconstruction.
These values imply a 3.6% measurement of DA(z) and an 8.4% measurement of H(z)
after reconstruction. We see that the acoustic peak has sharpened up significantly
after reconstruction as expected. The error on α decreases by a factor of 1.8 and
the error on ǫ decreases by a factor of 1.3 as a result. The quadrupole is nearly
0 at ∼ 100h−1Mpc after reconstruction, indicating the effectiveness of our Kaiser
correction. The deviation from 0 at larger r is likely some anisotropy introduced by
reconstruction.
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Table 5.3: Summary of key measurements from DR7 data. Columns 2 and 3 list the α and ǫ values we measure.
Column 4 lists the covariance between α and ǫ while column 5 lists their correlation coefficient. Column 6 and 7 list
the distance constraints we obtain to z = 0.35 from our measured α and ǫ values. Columns 8 and 9 translate these
relative distance measures into more tangible quantities assuming rs = 152.76 Mpc as in the WMAP7 cosmology.

α ǫ Cαǫ ραǫ DA(z)/rs H(z)rs DA(z) H(z)

(km/s) (Mpc) (km/s/Mpc)

Before recon. 1.015 ± 0.044 0.007 ± 0.046 0.00054 0.27 6.751 ± 0.363 12339 ± 1367 1031 ± 55 80.8 ± 9.0

After recon. 1.012 ± 0.024 −0.014 ± 0.036 0.00029 0.34 6.875 ± 0.249 12895 ± 1079 1050 ± 38 84.4 ± 7.1
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Equations (5.5), (5.6), (5.8) & (5.9) to determine DA(z = 0.35) and H(z = 0.35).

These results are summarized in Table 5.3. The values in the table were obtained

using the fiducial angular diameter distance and Hubble parameter in our WMAP7

cosmology: DA,f = 1022.7 Mpc and Hf = 83.1 km/s/Mpc at z = 0.35. We see

that post-reconstruction we have a ∼ 3.6% measurement of DA(z) and ∼ 8.4%

measurement of H(z) from SDSS DR7.

One can investigate whether DR7 is somehow an outlier with unusually large

errors. We find that our DR7 measurements of σα and σǫ are comparable to the

scatter in α and ǫ from the mocks. Furthermore, we see that our DR7 σα and σǫ

measurements fall nicely within the locus of mock points as shown in Figure 5.19

for the post-reconstruction case. Note that the mock results shown in this figure are

identical to Figure 5.11. Hence we have no reason to believe that our DR7 measure-

ments have unusually large errors. The σǫ/(1 + ǫ)-to-σα/α ratio we obtain is ∼ 1.1

before reconstruction and ∼ 1.5 after reconstruction which is roughly consistent with

the Fisher matrix prediction of ∼ 1.2. Lastly, we note that our σH/H-to-σDA
/DA

ratio is ∼ 2, consistent with the predictions of Seo & Eisenstein (2007) and the

assumption that went into our Fisher matrix predictions (see Appendix 8).

The first column of Figure 5.20 shows the χ2(α, ǫ) distribution measured at

various grid points in α and ǫ. As described in §5.3.3, our α grid points are separated

by 0.0025 in the range 0.7 < α < 1.3 and our ǫ grid points are separated by 0.005 in

the range −0.3 < ǫ < 0.3. The 1 through 6σ confidence levels for a 2D distribution

are overplotted. The pre-reconstruction results are shown in the top row and the

post-reconstruction results are shown in the bottom row. One can see that the

contours in the central regions are fairly elliptical, indicating a nearly parabolic

χ2 distribution. As we go to smaller α, the acoustic peak in the model is being

pushed out to larger scales where the errorbars are larger. Hence it is much easier
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Figure 5.19: Post-reconstruction σα versus σǫ for the mocks with the DR7 point
overplotted as the black star. Note that the mock points are identical to Figure
5.11. We see that our DR7 measurement falls nicely within the locus of mock points
which suggests that it is not unusual. The DR7 σǫ/(1 + ǫ)-to-σα/α ratio is ∼ 1.1
before reconstruction and ∼ 1.5 after reconstruction, roughly consistent with the
Fisher matrix prediction of ∼ 1.2.
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Figure 5.20: The χ2(α, ǫ) distribution (column 1) and the derived p(α) and p(ǫ)
distributions (columns 2 & 3) for DR7. The pre-reconstruction results are in the
top row and the post-reconstruction results are in the bottom row. Contour levels
corresponding to 1-6σ for a 2D distribution are overplotted. The central regions of
the χ2 distributions are fairly elliptical which indicates their parabolic natures. We
apply a 0.15 prior in log(α) to suppress the unphysical downturn at low α which
corresponds to the acoustic peak being pushed out to large r. The errorbars are
much larger here and the fitter has an easier time hiding the peak inside the errors.
The plateauing of the distribution at small α is a result of this. We also see that
after reconstruction, the contours become much tighter. This corresponds to the
tightening of p(α) and p(ǫ) after reconstruction seen in columns 2 & 3 due to the
sharpening up of the acoustic peak. We see that p(α) and p(ǫ) are nearly Gaussian
and hence the standard deviations σα and σǫ characterize the errors on α and ǫ well.
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for the fitter to hide the peak within the errors. Although we have applied a 0.15

prior in log(α) to suppress this unphysical downturn in χ2, the distribution still

plateaus in this region. One can also see that after reconstruction, the χ2(α, ǫ)

distribution is much tighter at the center, indicating that the best-fit values are

much better measured. This corresponds to the smaller errorbars we see in α and ǫ

after reconstruction.

The second and third columns of Figure 5.20 show the α and ǫ probability distri-

butions derived from the χ2 grid. One can see that both of these are fairly Gaussian

so we can quantify the errors on α and ǫ as the standard deviations of these distribu-

tions, σα and σǫ. The smaller standard deviations after reconstruction accompany

the sharpening up of the acoustic peak. This corresponds to the tightening of the

contours in the χ2 distribution shown in column 1.

Our measured Cαǫ, σα and σǫ imply correlation coefficients of ραǫ = 0.27 and 0.34

before and after reconstruction. These values are slightly larger than the expected

ραǫ ∼ 0.21 from Fisher matrix arguments. However, given the large rms of ραǫ from

the mocks of ∼ 0.35 both before and after reconstruction, our DR7 results are not

significantly different from the Fisher matrix prediction.
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Table 5.4: DR7 fitting results for various models. The model is given in column 1. The measured α values are given in
column 2 and the measured ǫ values are given in column 3. The χ2/dof is given in column 4.

Model α ǫ χ2/dof

Redshift Space without Reconstruction

Fiducial [f ] 1.015 ± 0.044 0.007 ± 0.046 89.60/90

Fit w/ (Σ⊥, Σ‖) → (8, 8)h−1Mpc. 1.012 ± 0.045 0.009 ± 0.044 89.77/90

Fit w/ Σs → 0h−1Mpc. 1.018 ± 0.040 0.007 ± 0.040 89.60/90

Fit w/ A2(r) = poly2. 1.018 ± 0.043 0.013 ± 0.046 91.42/91

Fit w/ A2(r) = poly4. 1.015 ± 0.044 0.006 ± 0.047 89.58/89

Fit w/ 30 < r < 200h−1Mpc range. 1.018 ± 0.039 0.004 ± 0.043 105.03/104

Fit w/ 70 < r < 200h−1Mpc range. 1.016 ± 0.050 0.008 ± 0.050 82.43/76

Fit w/ 50 < r < 150h−1Mpc range. 1.019 ± 0.042 0.001 ± 0.049 47.10/58

Redshift Space with Reconstruction

Fiducial [f ] 1.012 ± 0.024 −0.014 ± 0.036 62.53/90

Fit w/ (Σ⊥, Σ‖) → (2, 4)h−1Mpc. 1.012 ± 0.025 −0.014 ± 0.036 62.48/90

Fit w/ Σs → 0h−1Mpc. 1.013 ± 0.021 −0.013 ± 0.029 61.83/90

Fit w/ A2(r) = poly2. 1.013 ± 0.025 −0.011 ± 0.036 65.61/91

Continued on next page
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Table 5.4 – continued from previous page

Model α ǫ χ2/dof

Fit w/ A2(r) = poly4. 1.013 ± 0.025 −0.011 ± 0.036 61.92/89

Fit w/ 30 < r < 200h−1Mpc range. 1.014 ± 0.023 −0.013 ± 0.033 68.39/104

Fit w/ 70 < r < 200h−1Mpc range. 1.012 ± 0.027 −0.016 ± 0.040 54.50/76

Fit w/ 50 < r < 150h−1Mpc range. 1.017 ± 0.023 −0.009 ± 0.034 31.95/58

Recon. w/ β → 0.24. 1.014 ± 0.024 −0.016 ± 0.035 68.77/90

Recon. w/ β → 0.36. 1.013 ± 0.024 −0.013 ± 0.036 67.05/90

Recon. w/ b → 1.8. 1.014 ± 0.025 −0.017 ± 0.036 66.75/90

Recon. w/ b → 2.6. 1.015 ± 0.024 −0.012 ± 0.035 77.09/90

Recon. w/ Wiener Filter. 1.012 ± 0.025 −0.014 ± 0.035 61.23/90

Recon. w/ ℓ = 20h−1Mpc. 1.010 ± 0.024 −0.014 ± 0.035 79.12/90
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We again test the robustness of our α and ǫ measurements to our fitting model.

The results are listed in Table 5.4. We see that our α and ǫ measurements are

always consistent with the results obtained using the fiducial fitting parameters.

Our σα and σǫ measurements show ∼ 10% variations which are consistent with the

differences in scatter between the various cases seen in the mocks.

We also test the robustness of our reconstruction technique by varying the input

parameters and then re-performing our fits. The α and ǫ values we measure from

these tests are also listed in Table 5.4. Again we see very consistent α, ǫ, σα and

σǫ values between the various cases. This indicates that our measurements of the

acoustic scale and anisotropy are robust against reconstruction parameters.

5.5.2 Comparison with Past Works

Our measurements are consistent with those of Chuang & Wang (2011) who mea-

sure DA(z) = 1048+60
−58 Mpc and H(z) = 82.1+4.8

−4.9 km/s/Mpc at z = 0.35 using the

same DR7 data. Their analysis fits the 2D correlation function of the LRGs before

reconstruction whereas we fit the monopole and quadrupole. One can see that their

derived errors on DA are similar to our pre-reconstruction value, however, their de-

rived errors on H are about a factor of 2 smaller than ours. The correlation function

model they use is similar to ours, except they do not take Σnl to be anisotropic.

Their covariance matrix is also derived from the LasDamas mocks. The only sig-

nificant difference is that they use a Markov Chain Monte Carlo approach over the

parameter space {DA(z), H(z), β, Ωmh2, Ωbh
2, ns, Σs, Σnl} to derive their DA and H

measurements at z = 0.35. The inclusion of β and Σs in their parameter estimation

without any other marginalization (such as A(r)) to allow for inaccuracies in their

model indicates that their method also attempts to extract anisotropic information

in the broadband shape of the correlation function. In particular, their method

hinges on being able to correctly distinguish between anisotropy caused by redshift-
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space distortions (β and Σs) and those induced by assuming the wrong cosmology

(i.e. the Alcock-Paczynski effect). The latter of course, is what allows direct and

separate constraints of DA and H . This differs from the method we present which

only utilizes the anisotropy of the BAO signal.

Reid & White (2011) show that accurately modeling redshift-space distortions

is a challenging theory problem and requires going beyond simple Σs and β models.

They demonstrate that neglecting bispectrum and higher order terms from the real

to redshift space transformation results in models that are not accurate enough at

our current levels of observational precision. Since the observed anisotropic signal

in the correlation function is due to a combination of redshift-space distortions

and the Alcock-Paczynski effect, the difficulty in accurately modeling redshift-space

distortions makes isolating Alcock-Paczynski information challenging. This means

that although Chuang & Wang (2011) obtain a better measurement of H(z) by also

utilizing shape information from the correlation function, it is unclear whether the

Alcock-Paczynski signal they detect by doing this is fully separated from redshift-

space distortions.

Our method uses only the anisotropy in the BAO signal through fixing Σs

and allowing broadband marginalization terms, A0,2(r), to account for any resid-

ual mismatch between the model and the data. This represents a more conservative

approach since we do not attempt to utilize Alcock-Paczynski information in the

broadband by disentangling it from redshift-space distortions in our measurement

of H(z). The loss of shape information in our method makes it unsurprising that

our errorbar on H(z) is larger. However, we believe that the large uncertainty in

redshift-space distortion modeling warrants an Alcock-Paczynski method that only

uses the BAO signal such as that presented here.

Our DR7 α measurements are consistent with the monopole-only measurements
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of Xu et al. (2012), however, our errorbars on α are a factor of 1.25 larger both

before and after reconstruction. Although this is a very small change in absolute

terms, it is still worthy of some investigation. The top left panel of Figure 5.21

shows the σα values we measure for our full monopole+quadrupole fits as described

in §5.3.3 from the post-reconstruction mocks versus the monopole-only results of Xu

et al. (2012). The DR7 results are overplotted as the black star. We see that, in

general, the mocks have larger σα values in our full monopole+quadrupole fits. The

scatter at large σα where the acoustic scale is not well measured is also significantly

bigger. Our DR7 σα measurement lies within the locus of mock points and hence

the increase we see is consistent with the mocks.

Our monopole+quadrupole full fits have several differences relative to the monopole-

only fits of Xu et al. (2012). First, the covariance matrix is expanded to include

the quadrupole-quadrupole and monopole-quadrupole covariances. Second, we in-

troduce β as a fitting parameter. Third, we include FoG (i.e. Σs = 4h−1Mpc)

in our fitting model; Xu et al. (2012) have Σs implicitly set to 0h−1Mpc. Since

Σs can induce some smearing of the BAO, the Σnl value we use in the full fits is

correspondingly smaller (3h−1Mpc versus 4h−1Mpc in the monopole-only case). In

addition, in our pre-reconstruction fitting model, we introduce a non-isotropic Σnl.

To understand which of these steps induces the greatest change in σα, we start by

fitting the monopole+quadrupole using the new covariance matrix and gradually

add in the other changes. Before we describe our results, we again stress that the

changes in σα we see are very small and require probing some subtleties in our mod-

els to understand. Our measurements of α and σα are still reasonably robust against

fitting parameters in a single DR7 realization as shown in Tables 5.2 & 5.4.

The median changes in σα as we add in more elements of the fitting are listed

in Table 5.5 for the pre- and post-reconstruction mocks. The total change between
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Figure 5.21: The σα values measured from the post-reconstruction mocks for var-
ious fitting models. The DR7 results are overplotted as the black stars and fall
within the locus of mock points. (top left) The σα values measured through the
full monopole+quadrupole fits versus the monopole-only results of Xu et al. (2012).
One can see that the full fits have σα that are larger on average. There is also con-
siderable scatter at large σα where the acoustic scale is not as well measured. We
emphasize however, that these variations in σα are incredibly small and do not sig-
nificantly affect our results. (bottom left) σα from monopole+quadrupole fits with
Σs = 4h−1Mpc and Σnl = 3h−1Mpc versus those from the original monopole-only
fits with Σs = 0h−1Mpc and Σnl = 4h−1Mpc. The degradation in σα is obvious
and again suggests that there is some mismatch between our fitting model and the
data. (top right) σα from full monopole+quadrupole fits including ǫ versus those
from the monopole+quadrupole fit with ǫ = 0. The introduction of ǫ appears to
cause most of the scatter in σα and also further degrades σα. ǫ is known to have
some correlation with α so this is not surprising.
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Table 5.5: Effects on σα of introducing various new elements to the monopole-only fits of Xu et al. (2012). In the first
row we introduce the quadrupole fitting with the new combined monopole+quadrupole covariance matrix. The second
row introduces our β fitting in addition to the new covariance matrix while the third row introduces changes in Σs and
Σnl instead. The fourth row combines the previous two and corresponds to fitting with the fiducial model while forcing
ǫ = 0. The last row introduces ǫ fitting and corresponds to our fiducial model results.

Parameters Before Recon. After Recon.

∆̃σα Qtls ∆̃σα Qtls

New Cij 0.0007 +0.0014
−0.0015 0.0005 +0.0020

−0.0016

New Cij , adding β fit 0.0007 +0.0030
−0.0016 0.0006 +0.0018

−0.0019

New Cij , σs = 4h−1Mpc, new Σnl 0.0015 +0.0017
−0.0016 0.0013 +0.0021

−0.0016

New Cij , adding β fit, Σs = 4h−1Mpc, new Σnl (fiducial model w/ ǫ = 0) 0.0018 +0.0024
−0.0017 0.0014 +0.0014

−0.0016

New Cij , adding β & ǫ fits, Σs = 4h−1Mpc, new Σnl (fiducial model) 0.0036 +0.0040
−0.0044 0.0022 +0.0039

−0.0027
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the monopole-only fits and the full monopole+quadrupole fits is listed in the last

row of this table. We find that changing the covariance matrix (first row) increases

σα by a small amount and adding β (second row) does not further degrade the

errors. Introducing Σs and the accompanying change in Σnl (third row) appears

to be a major contributor to the degradation of σα. This increases the median σα

by about half the total. Combining the β fitting and the changes in Σs and Σnl

(fourth row) shows little additional degradation above the previous case. Note that

this corresponds to using the fiducial model with ǫ fixed at 0. Finally, as mentioned

above, the last row adds in ǫ fitting and corresponds to the fiducial model. We see

that this step causes the other half of the total increase in σα. It also introduces a

significant amount of scatter in σα.

The steps that contribute the most to the σα increase are shown in the bottom left

and top right panels of Figure 5.21 for the post-reconstruction case. In the bottom

left we have plotted the σα values measured from monopole+quadrupole fits with

Σs = 4h−1Mpc and Σnl = 3h−1Mpc versus those measured from the monopole-only

fits with Σs = 0h−1Mpc and Σnl = 4h−1Mpc. The offset between the two is obvious

and again suggests that our FoG model is not perfectly matched to the data.

The top right panel shows the σα values measured from the mocks through the

full monopole+quadrupole fits versus the monopole+quadrupole fits with ǫ fixed at

0. In addition to the obvious offset, we also see the appearance of significant scatter.

ǫ has small but non-zero correlation with α, implying a slight degeneracy between

these 2 parameters. It is not surprising that this extra covariance may increase σα

and its scatter. Again, this small degradation is not of great concern at our current

levels of statistical precision.
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Figure 5.22: The expected variation in α(z) (left) and ǫ(z) (right) as we open up
curvature or allow non-cosmological constant or time-varying dark energy. We have
taken the fiducial cosmology to be the flat, ΛCDM cosmology predicted by WMAP7
as usual. One can see that curvature and dark energy properties affect α more at low
z. At high z it becomes increasingly difficult to distinguish between non-cosmological
constant and time-varying dark energy models using measurements of α. However,
we see that ǫ is affected by curvature and dark energy the most at higher z, peaking
at z ∼ 1. This suggests that the anisotropic BAO signal is stronger and therefore
offers more constraining power at higher redshifts.

5.6 Cosmological Implications

In this section we will place our measurement of ǫ within the context of current

cosmological constraints. To build more intuition for how α(z) and ǫ(z) vary as we

change the amount of curvature or the nature of dark energy, we look to Figure 5.22.

The left panel shows α as a function of redshift for a cosmology that has positive

curvature (ΩK = 0.1), dark energy that is not a cosmological constant (w0 = −0.9)

and time-varying dark energy (wa = 0.5). The analogous plot for ǫ is shown in the

right panel. Here we have again taken the fiducial cosmology to be the flat ΛCDM

cosmology predicted by WMAP7. As we vary the cosmology, we fix Ωmh2 and the

distance to the last scattering surface (i.e. the distance to z = 1089, the redshift of

recombination). This guarantees that the sound horizon will be the same in all the

plotted cosmologies.
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Figure 5.23: Our DR7 ǫ measurement at z = 0.35 overplotted on the 1σ regions
predicted by MCMC chains. Here we have assumed a WMAP7 fiducial cosmology.
We have used chains for the most generalized cosmology in which the universe is
allowed to be curved. Dark energy is not forced to be a cosmological constant and
it is allowed to vary in time. The chains were computed using the most recent
CMB+BAO (dark grey) and CMB+BAO+SN (light grey) distance measures. The
solid black line corresponds to the mean ǫ(z) from the CMB+BAO chain and the
dashed black line is the analogue for the CMB+BAO+SN chain. One can see that
our DR7 point overlaps these predicted regions very well. The fact that our errorbar
is larger than the 1σ regions is not surprising since these regions were predicted by
combining different datasets whereas our measurement is only based on 1 dataset.
However, the largeness of our errorbar suggests that even if we were to include
our anisotropic distance measure in the MCMC chains, we would not be able to
substantially improve the constraints on cosmological parameters.
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Recall that if the fiducial cosmology matches the true cosmology of the universe,

then we would expect α = 1 and ǫ = 0. We see that introducing curvature and

altering the nature of dark energy both perturb α away from 1 the most at low

redshift. However, at higher redshift, it becomes increasingly difficult to distinguish

between non-cosmological constant models and time-varying dark energy models

using measurements of α. The opposite is true for ǫ. We see that the effects of

adding curvature or changing the properties of dark energy are most prominent at

larger redshifts, peaking at z ∼ 1. This suggests that to exploit the anisotropic

BAO signal, we gain more leverage by going to higher z. However, we also see that

even the maximum difference in ǫ between the wa = 0.5 and ΩK = 0.1 cosmologies is

smaller than our current error on ǫ which indicates that we are not able to distinguish

between these cosmologies using our DR7 measurement.

Figure 5.23 shows our DR7 measurement of ǫ overplotted on constraints derived

from cosmological Markov Chain Monte Carlo (MCMC) sampling. The MCMC

method computes the likelihood that a set of input cosmological parameters fits

distance measures from Cosmic Microwave Background (CMB) observations at high

redshift, and Type Ia supernova and BAO observations at low redshift. The number

of steps in the chain spent exploring a certain region in the cosmological parameter

space is proportional to the likelihood of that region representing the true cosmology.

Hence, we can infer DA(z) and H(z) at each step in the chain to compute ǫ(z) relative

to some fiducial cosmology (WMAP7 in our case). At each z, we can measure the

mean and rms of the ǫ distribution which gives us an estimate of what we should

measure ǫ to be and how well current measurements can constrain ǫ.

The grey regions in Figure 5.23 are derived from MCMC chains exploring a cos-

mology which is allowed to have curvature and varying dark energy with equation

of state w(a) = w0 +(1−a)wa where a is the scale factor. Note that this is the most
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generalized and least-constraining cosmology that is typically tested. These chains

were computed using CosmoMC, a standard MCMC sampler (Lewis & Bridle, 2002)

and were originally analyzed in Anderson et al. (2012). More detailed descriptions

of the MCMC algorithm and the specific chains can be found in these two papers.

The dark grey region (CMB+BAO) corresponds to the 1σ limits calculated from

a chain where we have used CMB data from WMAP7 (Komatsu et al., 2011) and

spherically-averaged BAO distance measures from the 6 Degree Field Galaxy Sur-

vey at z = 0.1 (Beutler et al., 2011), SDSS DR7 at z = 0.35 (Padmanabhan et

al., 2012a) and SDSS DR9 at z = 0.57 (Anderson et al., 2012). The light grey re-

gion (CMB+BAO+SN) includes additional distance constraints from the Supernova

Legacy Survey 3 (Conley et al., 2011).

One can see that our DR7 measurement of ǫ is consistent with the CMB+BAO

and CMB+BAO+SN constraints at z = 0.35. It is not surprising that our 1σ er-

rorbar is larger than the grey regions as our datapoint represents the constraints

from only a single dataset. However, the fact that this is true suggests that includ-

ing our measurement will not significantly improve our constraints on cosmological

parameters. This again, is not surprising given that our measurement of the BAO

anisotropy is only marginal in the DR7 data.

The future is nonetheless bright with the SDSS DR9 CMASS sample (Anderson

et al., 2012) now in hand. The galaxies in this dataset are denser and more abundant

than DR7, and also at higher redshift (z = 0.57). Therefore, the DR9 CMASS

anisotropic BAO signal should be less noisy and more prominent, implying a much

tighter constraint on ǫ.
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5.7 Conclusions

The differential clustering along the line-of-sight and transverse directions that arise

from assuming the wrong fiducial cosmology can be used to directly constrain the

angular diameter distance DA(z) and the Hubble parameter H(z). This anisotropy

can be measured from the BAO signal in the monopole and quadrupole moments of

2-point statistics such as the correlation function studied in this work.

We have presented measurements of the anisotropic BAO signal (ǫ) from the

SDSS DR7 LRG sample. We measured α = 1.012 ± 0.024 and ǫ = −0.014 ± 0.036

after density field reconstruction which translate into DA(z = 0.35) = 1050 ± 38

Mpc and H(z = 0.35) = 84.4 ± 7.1 km/s/Mpc assuming rs = 152.76 Mpc. The

relatively large error on ǫ suggests that our detection of the anisotropic signal is

only marginal in DR7 and results in the large 8.4% uncertainty in H(z). However,

we have demonstrated that the methods for extracting ǫ outlined in this chapter are

robust and nonetheless applicable to future anisotropic BAO studies.

We have given a detailed account of the theoretical background motivating the

origin of the anisotropic signal and a parameter, ǫ, for measuring it. An in-depth

look at the fitting model and method we use to extract the anisotropic signal is also

given. We find that our model parameters have different morphological structures

in their derivatives from ǫ, although they can still be partially degenerate with each

other. These minor degeneracies appear to introduce a small bias in ǫ at the 0.2%

level, far below our current level of statistical precision.

We apply density field reconstruction and test the robustness of our measured α

and ǫ against changes in the reconstruction parameters using 160 LasDamas mock

catalogues. We find that reconstruction appears to introduce some anisotropy into

the quadrupole, however this is adequately accounted for by our A2(r) nuisance

parameters. We then perform the same robustness checks on our fitting model
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using the mock catalogues. Similar tests were also performed on the DR7 data

returning consistently robust results. We demonstrate that α and ǫ have near-

Gaussian posteriors. Hence estimating their errors as the standard deviations σα

and σǫ from their respective probability distributions is reasonable. The σα, σǫ and

ραǫ values obtained from the mocks and the DR7 data are mostly consistent with

Fisher matrix predictions.

We find that in the mocks and the DR7 data, our α error estimates are slightly

larger than those obtained when only the monopole is fit. This small increase does

not detract significantly from the overall robustness of our measurements which we

verify as discussed above. About half of this increase is a result of including a Finger-

of-God model in our full monopole+quadrupole fits while the other half arises from

fitting for ǫ. This first point suggests that our FoG model does not match the data

perfectly and may induce slight biases into our measurements. Given the non-zero

covariance between ǫ and α the second point is not surprising. The behaviour of

DR7 falls completely within the locus of mock points and is therefore not unusual.

Our DR7 measurements of DA and H before reconstruction are consistent with

those obtained by Chuang & Wang (2011) using the same dataset. The errors we

predict for DA are also consistent, however, our H error is about a factor of 2 larger.

This is likely a result of differing methodology and more conservative assumptions on

our part. The errors on α and ǫ we measure from the DR7 data are consistent with

the scatter from the mocks as well as their average σα and σǫ values. In addition,

our σǫ/(1 + ǫ)-to-σα/α ratio agrees reasonably well with Fisher matrix predictions

and our σH/H-to-σDA
/DA ratio is ∼ 2 and in good agreement with the predictions

of Seo & Eisenstein (2007). Hence we have no reason to suspect that our DR7

measurement is unusual in the magnitude of its errors.

Our post-reconstruction DR7 ǫ measurement agrees well with the predictions
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from current datasets. However, its large error suggests that it will not offer much

leverage in obtaining cosmological constraints. We find that the anisotropic signal is

stronger at higher redshifts which suggests that we should be able to obtain a more

robust measurement of ǫ at higher z. The recently obtained SDSS DR9 CMASS

dataset has a higher number density than the DR7 LRG sample, contains more

galaxies and is at higher redshift (z = 0.57). The basic theory and methodology

presented in this work should serve as a foundation for obtaining a much better

detection of ǫ, and subsequently DA, H and other cosmological parameters from

CMASS.
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Chapter 6

Conclusions

The baryon acoustic oscillations (BAO) method is a very promising technique for

probing the properties of dark energy. Its geometric nature frees it from the many

systematics that plague the other major dark energy probes allowing statically-

limited measurements of the cosmic expansion history. I have presented detailed

techniques for obtaining precision measurements of the BAO scale and demonstrated

how these translate into improved constraints on cosmological parameters. The main

results of this thesis are summarized below.

In Chapter 2 we presented a new statistic designed to further limit the already

small systematics in BAO analyses. The new statistic, ωℓ(rs), corresponds to band-

filtering the correlation function or the power spectrum using a filter matched to the

BAO signal. As a result of this matching, the BAO signal is localized in ωℓ(rs). The

filter has steep drop-offs at large and small k in Fourier space, limiting the sensitivity

of the statistic to both large and small scales in the survey. Both of these are poorly

constrained, the former because galaxy surveys simply do not probe extremely small

scales and the latter because our surveys are finite in size. In addition, the filter

is compensated which means that it integrates to 0. This eliminates effects due to

the integral constraint which manifests itself as an additive offset in the correlation

function. The integral constraint is a statement that we do not know the true cos-

mic number density of galaxies. These properties of the filter make ωℓ(rs) calculated

in different subvolumes of a survey more independent and hence improves the ro-

bustness of error estimates from bootstrap and jackknife approaches. The statistic

is sensitive to anisotropic clustering because it can be computed via paircounting.

This accurately records the clustering distribution along all directions. Finally, the
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computation of ωℓ(rs) does not require us to bin the data as ξ(r) and P (k) do.

Binning, if not treated correctly, can introduce additional noise into our clustering

measurements.

We demonstrated the computation of ωℓ(rs) on 44 N-body simulations. We

presented a method for measuring the acoustic scale from ωℓ(rs) and showed that our

results were consistent with measurements from P (k). In addition, We demonstrated

that the error we expect to measure on the acoustic scale from ωℓ(rs), ξ(r) and P (k)

are all consistent with each other. Hence ωℓ(rs) represents a robust new statistic for

BAO analysis.

In Chapter 3 we presented the first application of density-field reconstruction

to a galaxy redshift survey. The SDSS DR7 LRG sample leant itself nicely to this

exercise due to the large cosmological volume it probes. The LRG sample covers

∼ 10, 000 deg2 on the sky, spans a redshift range of 0.16 < z < 0.47 and has a

number density of ∼ 10−4h3Mpc−3. The median redshift is z = 0.35.

Reconstruction is designed to partially remove the effects of non-linear structure

growth on the BAO scale. It also corrects for large-scale redshift-space distortions

which introduce anisotropies into our clustering measures. Non-linear evolution

causes the BAO signal to be smeared and shifted relative to its linear theory position.

The smearing makes the BAO more difficult to centroid and hence reduces the

statistical precision with which we can measure the acoustic scale. The shifting

affects the accuracy with which we can calibrate our BAO distance scale. Hence

it is clear that undoing these effects will allow us to obtain more precise distance

measurements.

We measured the spherically-averaged correlation function before and after re-

construction from the DR7 data and from 160 mock catalogues constructed from the

LasDamas simulations. We parameterize the acoustic scale as α, which measures the
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position of the acoustic peak in our data relative to some fiducial cosmology. We fit

for α using a simple χ2 minimization technique. The covariance matrix we employ

is constructed using a new method we introduce that involves approximating the

covariance matrix calculated from the mock catalogues with a modified Gaussian

covariance matrix. The modification parameters are obtained through a maximum

likelihood fit. We perform detailed robustness tests of this matrix as well as our

acoustic scale fitting model on the mock catalogues as well as the DR7 data itself.

To do this, we vary the model parameters and confirm that we obtain consistent

measurements of α. We perform similar robustness checks on the reconstruction

parameters and also find consistent results. Since we are only interested in the BAO

information, we must separate it from broadband effects such as redshift-space dis-

tortions and scale-dependent bias. We find that this is adequately accomplished

through including a few nuisance parameters in our fits.

Most importantly, we find that reconstruction is able to significantly improve

our measurement of the acoustic scale through sharpening up the acoustic peak.

We find that in the mocks, the rms scatter in α drops from 3.3% to 2.1% after

reconstruction. In the DR7 data, the error on α we estimate from its probability

distribution drops from 3.5% to 1.9%. This is a factor of 1.8 decrease which is

equivalent to the effects of tripling the survey volume. In addition, the significance

of our BAO detection increases from 3 to 4σ after reconstruction. The level at

which the data prefers the best-fit α increases from 3 to 5σ. Our α measurements

translate into a spherically-averaged distance DV (z)/rs = 8.88 ± 0.17 to z = 0.35

after reconstruction.

In Chapter 4 we employ similar techniques to those described in Chapter 3 to

obtain a BAO distance measure from the SDSS DR9 CMASS sample. CMASS

covers 3275 deg2 on the sky, spans a redshift range of 0.43 < z < 0.7 and has a
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number density of 3 × 10−4h3Mpc−3.

We find that reconstruction does not appear to improve our acoustic scale mea-

surement in CMASS. This is likely a result of CMASS having a highly irregular

(donut-shaped) survey geometry. It is unclear how well the large central gap of the

survey can be filled in via constrained Gaussian realizations as our reconstruction

technique employs. While we use the correlation function for our BAO measure-

ment, a parallel study using the power spectrum was also performed. We combine

the results from these two statistics by averaging their α measurements and adopt-

ing the rms of the mocks as the error. This gave a spherically-averaged distance of

DV (z)/rs = 13.67± 0.22 to z = 0.57 after reconstruction, a 1.7% measurement. We

detect the CMASS BAO signal at 5σ confidence and the data prefers the best-fit α

at 6σ confidence. Our CMASS distance measurement is consistent in the context of

past BAO and supernova distance measures.

We find that the BAO detection significance in the DR7+DR9 combined dataset

is greater than 6.5σ with a ∼ 8σ preference for the best-fit α. Hence it is clear that

we have measured the BAO. Further combining with other BAO, supernova and

cosmic microwave background observations, Markov Chain Monte Carlo sampling

predicts cosmological parameters consistent with standard ΛCDM. We find that

BAO distance measures are better for measuring the curvature of the universe while

supernovae distance measures are better for constraining the equation of state of

dark energy. This is because the BAO distance scale is inverted. It is calibrated

by CMB measurements of the sound horizon at the redshift of recombination and

extends down to lower redshifts. Curvature is more important at high z and hence

BAO is more sensitive to it. The supernova distance scale is calibrated on H0 mea-

surements in the local universe and extends up to higher redshifts. The transition

from matter to dark energy domination occurred in the low redshift universe and
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hence supernovae are more sensitive to it.

In Chapter 5 we used the anisotropic BAO signal in SDSS DR7 to obtain separate

and direct constraints of DA and H at z = 0.35 from the monopole and quadrupole

correlation functions. As H(z) maps the cosmic expansion history, being able to

directly measure it is key to understanding the acceleration of our universe. The

anisotropic BAO method relies on using slight differences in the BAO position along

the line-of-sight and transverse directions that arise when we assume the wrong

cosmology in calculating the correlation function. Only recently did we acquire large

enough datasets to begin probing this small anisotropic signal. In addition, our work

marks the first application of reconstruction to the anisotropic BAO analysis of a

galaxy redshift survey.

We measured the anisotropic warping, ǫ, and the isotropic dilation, α, of the

BAO signal by fitting correlation function models to our data in a manner similar

to what was described in Chapter 3. We presented the theoretical background be-

hind the anisotropic BAO technique and performed a detailed investigation of our

models. We also conducted thorough robustness checks of our fitting and recon-

struction methods on the LasDamas mock catalogues and the data itself. We saw

that our simple redshift-space distortion models did not perfectly match the data

and resulted in slight biases in our measurements of ǫ. However, these were far

below our current levels of statistical precision. We also saw that reconstruction

introduces additional anisotropy into the quadrupole broadband. Fortunately the

use of nuisance parameters in our fitting model was able to account for this excess

power so it did not affect our measurements of ǫ.

We find that our measurement of ǫ in a single DR7 realization is only marginal

due to the noisiness of the quadrupole. From the DR7 data we measure DA(z) =

1050 ± 38 Mpc and H(z) = 84.4 ± 7.1 at z = 0.35 after reconstruction. This
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corresponds to a 3.6% measurement of DA and an 8.4% measurement of H . Our

results agree with Chuang & Wang (2011) who use the same pre-reconstruction

DR7 dataset, however, our errorbar on H is about a factor of 2 larger due to our

more conservative approach. The ǫ values we measure are consistent within the

context of current cosmological constraints. Although the uncertainty of our DR7

measurement is large, this work outlines the necessary techniques for exploiting the

anisotropic BAO signal. With the improved DR9 CMASS dataset currently in-hand

and many others to come, we will be able to use these same techniques to obtain

more precise measurements of ǫ (and hence DA and H) in the future.

I have presented in this thesis a number of techniques for obtaining precision

distance measures using the BAO method. As we continue in this era of precision

cosmology, BAO will be a major focus of future galaxy surveys such as LSST and

BigBOSS for probing the cosmic expansion history. It is my hope that the methods

outlined in this thesis will remain core elements of future BAO analyses.



300

Chapter 7

Evaluating W̃ℓ(k)

The expressions for W̃ℓ(k), in terms of polynomials of k times trigonometric func-

tions, involve a lot of cancellation. This makes them unstable to direct evaluation.

However if we define

Kn(k) =
2 + n

(krs)2+n

∫ krs

0

xn sin x dx (7.1)

then

W̃0(k) =
8π

3

[
1

3
(K7 − K16) − (K10 − K13)

]
(7.2)

while

W̃2(k) = −24π

5k2
[3K5 − 16K8 + 25K11 − 12K14] . (7.3)

It is straightforward to evaluate Kn(x), the limits are

Kn(x) = 1 − n + 2

3!(n + 4)
x2 +

n + 2

5!(n + 6)
x4 + · · · (7.4)

as x → 0 and

Kn(x) = −(n + 2)
cos x

x2
+ n(n + 2)

sin x

x3
+ · · · (7.5)

as x → ∞. The Kn also satisfy a simple recurrence relation

Kn(x) =
n + 2

x3
[n sin x − x cos x − (n − 1)xKn−2] . (7.6)

Use of this recurrence relation for high k and the power-series expansion for low k

results in stable evaluation of the W̃ℓ.
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Chapter 8

Fisher matrix predictions

To derive the expected relationships between σα and σǫ, we begin with the matrix

equation

(
σ2

α σαǫ

σαǫ σ2
ǫ

)
=

(
∂α

∂DA

∂α
∂H

∂ǫ
∂DA

∂ǫ
∂H

)(
σ2

DA
σDAH

σDAH σ2
H

)(
∂α

∂DA

∂α
∂H

∂ǫ
∂DA

∂ǫ
∂H

)T

. (8.1)

Note that this is essentially the inverse process to Equation (5.7). Expanding we

get

σ2
α = σ2

DA

(
∂α

∂DA

)2

+ σ2
H

(
∂α

∂H

)2

+ 2σDAH
∂α

∂DA

∂α

∂H

(8.2)

σ2
ǫ = σ2

DA

(
∂ǫ

∂DA

)2

+ σ2
H

(
∂ǫ

∂H

)2

+ 2σDAH
∂ǫ

∂DA

∂ǫ

∂H
.

(8.3)

σαǫ = σ2
DA

∂α

∂DA

∂ǫ

∂DA
+ σDAH

(
∂α

∂H

∂ǫ

∂DA
+

∂α

∂DA

∂ǫ

∂H

)

+σ2
H

∂α

∂H

∂ǫ

∂H
(8.4)

Plugging in the relevant derivatives from Equations (5.3) & (5.4) we get

σ2
α

α2
=

4

9
σ2

log DA
+

1

9
σ2

log H − 4

9

(
σDAH

DAH

)
(8.5)

σ2
ǫ

(1 + ǫ)2
=

1

9
σ2

log DA
+

1

9
σ2

log H +
2

9

(
σDAH

DAH

)
(8.6)

σαǫ

α(1 + ǫ)
= −2

9
σ2

log DA
+

1

9
σ2

log H − 1

9

(
σDAH

DAH

)
(8.7)

where σ2
log y =

σ2
y

y2 .

The correlation coefficient between DA and H is ρDAH = σDAH/σDA
σH . If we
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write f = σlog H/σlog DA
, then we have

σ2
α

α2
=

1

9
σ2

log DA
(4 + f 2 − 4ρDAHf) (8.8)

σ2
ǫ

(1 + ǫ)2
=

1

9
σ2

log DA
(1 + f 2 + 2ρDAHf) (8.9)

σαǫ

α(1 + ǫ)
=

1

9
σ2

log DA
(−2 + f 2 − ρDAHf). (8.10)

Note that f is just the ratio of σH/H-to-σDA
/DA which is typically ∼ 2 (Seo &

Eisenstein, 2007). The correlation coefficient ρDAH is predicted to be ∼ 0.4. Hence,

we have

σα

α
= σlog α = 0.73σlog DA

(8.11)

σǫ

1 + ǫ
= σlog(1+ǫ) = 0.86σlog DA

, (8.12)

which implies the ratio

σǫ

1 + ǫ
−to−σα

α
∼ 1.2. (8.13)

The correlation coefficient between α and ǫ is

ραǫ =
σαǫ

σασǫ
(8.14)

=
α

σα

(1 + ǫ)

σǫ

(
1

9
σ2

log DA

)
(−2 + f 2 − ρDAHf). (8.15)

Using Equations (8.11) & (8.12) and plugging in the assumed values of f and ρDAH

gives

ραǫ ∼ 0.21. (8.16)
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