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ABSTRACT

We use cosmological hydrodynamic simulations to study the impact of out-

flows and radiative feedback on high-redshift galaxies. For outflows, we con-

sider simulations that assume (i) no winds, (ii) a “constant-wind” model in which

the mass-loading factor and outflow speed are constant, and (iii) “momentum-

driven” winds in which both parameters vary smoothly with mass. In order

to treat radiative feedback, we develop a moment-based radiative transfer tech-

nique that operates in both post-processing and coupled radiative hydrodynamic

modes.

We first ask how outflows impact the broadband spectral energy distribu-

tions (SEDs) of six observed reionization-epoch galaxies. Simulations reproduce

five regardless of the outflow prescription, while the sixth suggests an unusually

bursty star formation history. We conclude that (i) simulations broadly account

for available constraints on reionization-epoch galaxies, (ii) individual SEDs do

not constrain outflows, and (iii) SED comparisons efficiently isolate objects that

challenge simulations.

We next study how outflows impact the galaxy mass metallicity relation (MZR).

Momentum-driven outflows uniquely reproduce observations at z = 2. In this

scenario, galaxies obey two equilibria: (i) The rate at which a galaxy processes

gas into stars and outflows tracks its inflow rate; and (ii) The gas enrichment rate

owing to star formation balances the dilution rate owing to inflows. Combin-

ing these conditions indicates that the MZR is dominated by the (instantaneous)

variation of outflows with mass, with more-massive galaxies driving less gas into

outflows per unit stellar mass formed.
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Turning to radiative feedback, we use post-processing simulations to study

the topology of reionization. Reionization begins in overdensities and then “leaks”

directly into voids, with filaments reionizing last owing to their high density and

low emissivity. This result conflicts with previous findings that voids ionize last.

We argue that it owes to the uniqely-biased emissivity field produced by our star

formation prescriptions, which have previously been shown to reproduce numer-

ous post-reionization constraints.

Finally, preliminary results from coupled radiative hydrodynamic simulations

indicate that reionization suppresses the star formation rate density by at most

10–20% by z = 5. This is much less than previous estimates, which we attribute

to our unique reionization topology although confirmation will have to await

more detailed modeling.
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CHAPTER 1

INTRODUCTION

1.1 Motivation

This thesis is about Galaxy Evolution. There are many reasons why we might

want to understand Galaxy Evolution, but perhaps the most obvious one is in

order to work out the origin of our own galaxy, the Milky Way (Figure 1.1).

Figure 1.1 The Milky Way Map of William Herschel (Herschel, 1785). Image

scanned by Prof. Richard Pogge.

How much can we learn about the Milky Way just by studying the Milky Way

itself? We can use the spatial distribution of its stars to work out its structure (e.g.,

Shapley, 1918). We can combine these measurements with stellar abundances

and kinematics to distinguish between idealized formation scenarios (Eggen et

al., 1962; Searle & Zinn, 1978). If we derive a self-consistent model for gas flows

and chemical enrichment, we can then use that model to infer the order in which

its disk, bulge, and halo stars may have formed (Tinsley, 1980). If we study how

the Milky Way’s satellites are moving, then we can infer how much matter there
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is in the Milky Way and how it is distributed (Schmidt, 1956; Zaritsky, 1991). In

short, we can learn a great deal about the Milky Way’s formation and evolution

just by studying the Milky Way and its satellites.

On the other hand, even if we succeed in measuring the Milky Way’s stellar

mass, we may ask, Why is its stellar mass not larger or smaller than it is? Its stellar

mass is presumably related to the size of its gas reservoir, but what governs the

rate at which it accretes new gas? Has it retained all of the gas that it has accreted?

These and other questions become more urgent once we notice that other galaxies

can look quite different from the Milky Way (Hubble, 1927), and we will want to

know what sent the Milky Way down its particular evolutionary path and not

some other. To this end, it would be convenient if we could simply trace the

evolution of a sizeable population of galaxies back in time and determine what

makes their properties diverge from one another. To a certain extent, this can

be achieved through detailed analyses of galaxy spectra and stellar populations

that use chemical and stellar evolution clocks (Harris & Zaritsky, 2001; Thomas

et al., 2005). However, the temptation to try and understand galaxy evolution by

simply looking back in time and studying the presumable progenitors of nearby

galaxy populations is irresistible.

In 1996, Steidel and collaborators introduced the Lyman break technique, which

enables observers to identify large populations of galaxies at high redshift (z ≥ 3)

using a simple photometric color selection (Steidel et al., 1996). Through this and

other selections such as the BzK (Daddi et al., 2004), ERO (Elston et al., 1988),

DOG (Dey et al., 2008), and LAE (Hu et al., 1999) techniques, observers have

now compiled catalogs containing thousands of galaxies at an epoch when the

Universe was less than 20% of its current age. Figure 1.2 shows a typical Lyman
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break galaxy (LBG) at z ∼ 3.

Figure 1.2 Image credit: Chuck Steidel

It is of course exciting to discover such a distant object, but what is it? And

what does it teach us about the origin of the Milky Way? A reasonable fraction

of all extragalactic astronomers are currently devoting their careers to the first

question, leaving us free to address ourselves to the second. In order to make

progress, we need a general galaxy formation model that describes how the Milky

Way is a natural—preferably, inevitable—product of the Universe out of which it

condensed even though other galaxies happen to look very different.

This is the goal of hierarchical models of galaxy formation. Theorists are now

working toward that goal through an iterative process that involves alternating

between (1) Testing the model against observations, and (2) Adjusting the model

to address discrepancies. For reference, we now review the ingredients that go

into current galaxy formation models.

Before doing so, however, we pause to note that different hierarchical galaxy

formation modelers account for what they believe to be the relevant physical

processes in very different ways. Existing models divide into two philosophies,

the semi-analytical models (SAMS; Somerville 1997) and the numerical simula-
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tions (Katz et al., 1992). Broadly, a SAM uses a suite of simple parameterized pre-

scriptions to model its input physics whereas a numerical model aims to treat the

relevant physics as self-consistently as possible and then work out what physical

processes emerge. Because numerical simulations are 10–100 times as compu-

tationally expensive as SAMs, theorists who opt to work with numerical mod-

els sacrifice the opportunity to perform wide searches of parameter space in ex-

change for a more self-consistent treatment of the input physics. This thesis uses

only numerical simulations.

1.2 Background

The first attempt to understand galaxy evolution in a dark matter dominated uni-

verse was the seminal paper of White & Rees (1978). These authors introduced

the ideas—now gospel—that (1) dark matter haloes grow through hierarchical

merging, and (2) galaxy formation is efficient in dark matter haloes where the

gas cooling time is shorter than the dynamical time. They were also the first

to show that combining these ideas could yield realistic galaxy luminosity func-

tions. While this paradigm remains at the heart of state-of-the-art galaxy forma-

tion models, it has since undergone significant modification.

Among the first problems to receive closer scrutiny was the suggestion by White

& Rees (1978) that the majority of the baryons should have cooled and collapsed

from the haloes onto the central galaxies by the present time. This point was

later emphasized by Blanchard et al. (1992) and has since become known as the

“cooling catastrophe”. It is related to the observation that much of the baryonic

mass seems to be “missing” from galaxies (e.g., Gonzalez et al., 2007), which in

turn motivated many authors to suggest that thermal feedback from supernovae
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could efficiently expel gas from galaxies (e.g., Mathews & Baker, 1971; Larson,

1974; Saito, 1979; Chevalier & Clegg, 1985; Dekel & Silk, 1986). Numerical simu-

lations eventually revealed that this mechanism only expels gas efficiently from

low-mass galaxies (gas mass < 107M¯) even though it expels most of the met-

als at all masses (Mac Low & Ferrara, 1999). This left the overcooling problem

unsolved. Nevertheless, supernova feedback is now recognized as an essen-

tial ingredient in regulating star formation rates and is incorporated—directly

or indirectly—into all galaxy formation models.

The overcooling problem may be partially resolved by associating star forma-

tion with vigorous outflows that lob roughly the same amount of material out of

galaxies as condenses into stars (Springel & Hernquist, 2003b). This process also

accounts for the widespread presence of metals in the intergalactic medium (Aguirre

et al., 2001a,b,c; Oppenheimer & Davé, 2006). Unfortunately, plausible models

for star formation-driven outflows do not prevent hierarchical models from over-

producing the star formation rates in the most massive galaxies (Nagamine et al.,

2004, 2005), even when hypernova feedback is included (Kobayashi et al., 2007).

For this reason, modelers have begun invoking additional processes to quench

star formation in massive haloes, with the most prominent being feedback from

active galactic nuclei (Croton et al., 2006; Di Matteo et al., 2008).

Another modification to the White & Rees (1978) picture regards the question

of how gas collapses onto galaxies. While White & Rees (1978) assumed that gas

would always shock heat to the halo virial temperature at the virial radius before

radiatively cooling onto the central galaxy, recent work indicates that this prob-

ably only happens in fairly massive dark matter haloes (∼> 1011.4M¯; Birnboim &

Dekel 2003; Kereš et al. 2005). By constrast, in low-mass haloes, gas flows directly
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onto the central galaxy through cold filaments without ever being heated to the

virial temperature. Hence galaxy formation models now include two gas accre-

tion modes: The original “hot mode”, which is relatively inefficient and domi-

nates in massive haloes, and the new “cold mode”, which is highly efficient and

dominates in lower-mass haloes.

Interactions are also sure to play a role in galaxy evolution although the na-

ture of that role is the subject of debate. For example, there is the question of

how much stellar mass forms during interactions. The most rapidly star-forming

galaxies at low redshift are the ultraluminous infrared galaxies (ULIRGs), which

are invariably merging systems (Clements et al., 1996), hence mergers of gas-rich

systems are locally associated with enhanced star formation activity. At high red-

shift, LBGs generically exhibit disturbed morphologies and high star formation

rates (10–100M¯ yr−1). Except for their low masses, they thus resemble ULIRGs,

which has led some authors to suggest that their star formation rates must be

driven by mergers. Plausible implementations of this idea into SAMs have been

shown to yield reasonable agreement with observations (Somerville et al., 2001;

Idzi et al., 2004). However, numerical studies—which are comparably successful

at reproducing observations—have consistently indicated that star formation in

LBGs is regulated by the rate at which cold flows channel gas into galaxies, with

mergers playing a subdominant role. In this view, LBGs are simply the most

massive galaxies at their epoch (Davé et al., 2000; Nagamine et al., 2004). More

broadly, the models of Guo & White (2007) indicate that stellar mass growth in

haloes (less/more) massive than the Milky Way is dominated by (infall/mergers).

This finding also argues against the merger origin of LBGs, which are typically

∼ 10% as massive as the Milky Way.
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The debate about whether mergers or gas accretion fuels star formation at

high redshift also affects the interpretation of submillimeter galaxies (SMGs). In

this case, the remarkably high reported star formation rates (100–1000M¯ yr−1)

and stellar masses of SMGs can be attributed either to gas-rich major mergers (Baugh

et al., 2005; Chakrabarti et al., 2008; Narayanan et al., 2009) or to the extrapola-

tion to high masses of the (cold flow-driven) trend between stellar mass and star

formation rate that exists at lower masses (Fardal et al., 2001).

Although improved measurements of the masses, star formation rates, and

clustering of LBGs and SMGs will yield further insight into the role of interac-

tions, it may not be possible to settle the question conclusively until interactions

can be simulated fully self-consistently, which in turn requires a spatial resolu-

tion of better than 10 physical parsecs (Ceverino & Klypin, 2009; Kim et al., 2009).

Achieving this within a cosmologically interesting volume (> 1000 Mpc3) will

require a dynamic range of better than 106, which remains out of the reach of cur-

rent computers. Hence while all hierarchical models account for mergers in some

way, the correct way to do so remains unclear.

Finally, as galaxy observations push back into the reionization epoch, it is ex-

pected that they will yield evidence for an evolving, inhomogeneous ionizing

background. For example, galaxy clustering may appear enhanced (McQuinn

et al., 2007; Mesinger & Furlanetto, 2007); the star formation rate density may

drop appreciably at the epoch of overlap (Barkana & Loeb, 1999); or the apparent

number density of Lyman alpha emitting galaxies may drop rapidly (McQuinn

et al., 2007; Mesinger & Furlanetto, 2007). Modeling these phenomena accurately

requires a self-consistent treatment for the growth of an inhomogeneous ionizing

background. It is interesting to note that, because none of these effects have yet
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been directly observed, radiative transport stands apart from the other processes

that we have mentioned in that its relevance is largely anticipated. This should

be cause for concern given that accounting for radiation transport accurately can

easily double the computational cost of a numerical model. On the other hand, it

is widely expected that these effects will soon be directly observed by the James

Webb Space Telescope (JWST). It is for this reason that the theoretical literature

on reionization-epoch galaxy formation is already extensive and growing rapidly.

Unfortunately, most of the work to date has been highly simplified owing to the

inherent complexity of three dimensional radiative hydrodynamics (see, how-

ever, Gnedin 2000a; Gnedin & Fan 2006; Trac & Cen 2007). One of our goals in

this thesis will be to incorporate an accurate method for radiative transport into

a hierarchical galaxy evolution model.

In summary, here are (in no particular order) the physical processes that are

generally included in hierarchical models:

• Gas infall;

• Photoionization heating in the presence of an optically thin ionizing back-

ground;

• Radiative cooling owing to atomic hydrogen and fine-structure metal lines;

• Star formation;

• Metal enrichment owing to prompt and delayed supernovae as well as mass

loss from evolved stars;

• Thermal and kinetic feedback from massive stars and supernovae; and
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• Galaxy interactions.

The following additional processes have been experimented with but are not yet

standard:

• Active galactic nuclei;

• The production and destruction of dust grains, and their reprocessing of

starlight;

• Cosmic rays;

• Radiative transport through an optically thick IGM;

• Radiative cooling owing to molecular hydrogen; and

• Nonequilibrium production and destruction of metal ions and molecular

hydrogen.

A conclusive understanding of what the object in Figure 1.2 teaches us about the

object in Figure 1.1 will have to await the arrival of a hierarchical galaxy forma-

tion model that accurately accounts for all of these processes, and possibly others

as well. In this thesis, however, we will restrict our attention to two tasks on the

way towards that goal: (1) We will test a new phenomenological model for star

formation-driven outflows by comparing predictions and observations of high-

redshift galaxies; and (2) We will develop an accurate treatment for cosmological

radiative transport and use it to study reionization.

1.3 Outline

In Chapter 2, we will ask whether detailed observations of individual galaxies

may be used to test hierarchical galaxy formation models. This approach is com-
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plementary to traditional comparisons that employ statistical constraints such as

luminosity functions and color-magnitude relations. In other words, instead of

asking whether our model reproduces, for example, the observed ratio of bright

galaxies to faint galaxies, we will ask whether it yields individual galaxies whose

spectral energy distributions (SEDs) resemble the observed sample. This is the

best way to test a model against constraints from an epoch where few galaxies

have been discovered, but those that have been discovered have already been

studied in some detail.

We will show that, for five out of six galaxies observed at z ∼ 6, our simu-

lations generically yield model galaxies that can account for the available obser-

vations irrespective of how we treat galactic outflows. The fact that our ability

to reproduce individual galaxy SEDs does not turn on how we treat outflows

is somewhat surprising given that outflows dramatically impact the statistical

properties of the galaxy population as a whole (e.g., Davé et al., 2006a). On

the other hand, it usefully demonstrates how detailed observations of individ-

ual star-forming galaxies may not teach us as much about galaxy evolution as

traditional statistical constraints. Meanwhile, the object that our simulations fail

to reproduce shows how this approach quickly identifies objects that pose a sig-

nificant challenge to our models.

In Chapter 3, we will turn our attention to the relationship between a galaxy’s

mass and its metallicity. It has been known for more than forty years that more

luminous or massive galaxies are more chemically enriched (McClure & van den

Bergh, 1968). Recent work has shown that the gas-phase mass-metallicity rela-

tionship (MZR) is quite tight, with a 1σ scatter of ∼ 0.1 dex (Tremonti et al., 2004).

Clearly the MZR is trying to teach us something about galaxy evolution, but what



37

is that something? This question has inspired a great deal of speculation, but to

date relatively few works have asked how the MZR arises self-consistently in

realistic models. Our simulations confirm recent findings that plausible hierar-

chical models inevitably produce an MZR that qualitatively resembles observa-

tions (De Lucia et al., 2004). This raises the possibility that we may settle the

question of what the MZR teaches us about galaxy evolution by working out

how it arises in our simulations.

We will show that the predicted mass-metallicity relationship is a sensitive

test of galactic outflows. Momentum-driven outflows, which best account for

the distribution of metals in the IGM (Oppenheimer & Davé, 2006; Davé et al.,

2006b), reproduce the observed MZR at z = 2 with no further tuning. This im-

plies a tight coupling between chemical evolution in galaxies and the IGM. After

analyzing how inflows and outflows work, we will argue that, in the presence of

the strong outflows that are required by observations of metals in the IGM, the

MZR is governed by two simple equilibrium conditions: (1) The rate at which a

galaxy processes its gas reservoir into stars and outflows tracks its gas accretion

rate; and (2) the rate at which a galaxy’s gas is enriched owing to star formation is

balanced by the rate at which it is diluted owing to inflows. Combining these con-

ditions leads to an equilibrium metallicity that links a galaxy’s metallicity with its

outflow strength. In our most successful outflow model, the amount of material

driven into outflows per unit of stellar mass formed scales with mass, hence we

conclude that the MZR teaches us how galactic outflows vary with mass.

Throughout the rest of this thesis, we will return to the reionization epoch.

Our goal will be to implement an accurate and efficient method for accounting

for an inhomogeneous ionizing background into our custom version of the cos-
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mological hydrodynamic code GADGET-2.

In Chapter 4, we will develop a new method for solving the radiative trans-

port and ionization rate equations on a three-dimensional Cartesian grid. Our

method is a moment method, meaning that, at every position in space, we solve

for the time-dependent photon number densities and fluxes rather than tracking

the trajectories of individual photon packets as is done in ray-tracing and Monte

Carlo codes. While the latter techniques are accurate, they suffer from the well-

known problem that the computation time scales linearly with the number of

sources. This is a show-stopper in cosmological simulations, which tend to form

hundreds to thousands of sources. Moment methods do not necessarily suffer

from this problem because they separate the task of advecting photons through

space from the task of determining which direction to advect them in. The latter

task is deferred to the computation of the Eddington tensors, which may be up-

dated more or less frequently for a more or less accurate solution. Intuitively, in

our method, an inaccurate solution means that the correct number of photons are

emitted, but the geometry of the resulting ionized regions is only approximately

correct. We will optimize this method for the problem of cosmological reioniza-

tion and then demonstrate that it performs well in several idealized test cases.

Note that, in this chapter, we will only show that our method accurately solves

the radiation and ionization equations on grids of fixed density and temperature;

we will not yet attempt to compute the hydrodynamic response of the gas to the

passage of ionization fronts.

In Chapter 5, we will apply this code to precomputed snapshots from a state-

of-the-art cosmological hydrodynamic simulation and use the results to study the

topology of reionization. The topology of reionization addresses the question of
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how large reionized regions are during different stages of reionization. It has re-

ceived a great deal of attention recently because it encodes information regarding

the nature of the sources that brought about reionization: Larger ionized regions

will indicate that reionization was dominated by rare, bright sources that lived

in high overdensities whereas smaller ionized regions will indicate that reion-

ization was dominated by more common, fainter sources residing in lower-mass

haloes (Furlanetto & Oh, 2005; McQuinn et al., 2007). It is hoped that the topol-

ogy of reionization will soon be constrained through tomographic measurements

of the redshifted 21cm background by the Low Frequency Array (LOFAR) or the

Square Kilometer Array (SKA).

We will study the order in which regions of varying overdensities reionize.

During the initial stages of reionization, ionization fronts propagate from the

overdensities that spawn ionizing sources into progressively less overdense re-

gions; this is the “inside-out” topology. On the other hand, the end stages of

reionization proceed in the reverse order (“outside-in”) because the last regions

to reionize are moderately overdense regions such as Lyman limit systems that

can self-shield but not self-reionize (Miralda-Escudé et al., 2000). Hence the topol-

ogy must switch from inside-out to outside-in at some point, and the question

reduces to when this happens.

To date, three-dimensional simulations of reionization have tended to con-

clude that reionization follows an entirely inside-out topology. We will show that,

by contrast, in our simulations, this switch occurs when reionization is not more

than halfway complete. We will argue that this owes to a tendency for ioniza-

tion fronts to bypass moderately overdense areas and “leak” from overdensities

directly into voids, an effect that manifests quite generically in high-resolution
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simulations of individual sources in static density fields and leads to butterfly

wing-shaped ionized regions. We will show that our qualitative result is not sen-

sitive to our choice of spatial resolution, volume, or ionizing escape fraction al-

though it weakens somewhat if reionization occurs earlier owing to the reduced

density constrast in the IGM at higher redshift. Finally, we will argue that this

topology has not been seen before because of the unique bias of our emissivity

field, which in turn results from prescriptions for star formation and feedback

that have previously been tuned to account for a wide variety of observations of

the post-reionization Universe.

In Chapter 6, we will introduce our technique for merging our nonequilib-

rium ionization and radiation solver into GADGET-2, enabling us to run our first

cosmological radiative hydrodynamic simulations of reionization. We will begin

by discussing how we adapt each of the components introduced in Chapter 4

to the demands of massively parallel computers. Next, we will discuss how we

combine these components into a single code and demonstrate that the merged

code’s computational scaling is adequate. Finally, we will discuss some prelimi-

nary results from our merged radiative hydrodynamic simulations. Note that, in

both Chapters 5 and 6, we use only the Case B recombination rates.
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CHAPTER 2

CONSTRAINTS ON PHYSICAL PROPERTIES OF z ∼ 6 GALAXIES USING

COSMOLOGICAL HYDRODYNAMIC SIMULATIONS

In this chapter, we conduct a detailed comparison of broad-band spectral energy

distributions of six z ∼> 5.5 galaxies against galaxies drawn from cosmological hy-

drodynamic simulations. We employ a new tool called SPOC, which constrains

the physical properties of observed galaxies through a Bayesian likelihood com-

parison with model galaxies. We first show that SPOC self-consistently recovers

the physical properties of a test sample of high-redshift galaxies drawn from our

simulations, although dust extinction can yield systematic uncertainties at the

≈ 50% level. We then use SPOC to test whether our simulations can reproduce the

observed photometry of six z > 5.5 galaxies drawn from the literature. We com-

pare physical properties derived from simulated star formation histories (SFHs)

versus assuming simple models such as constant, exponentially-decaying, and

constantly rising. For five objects, our simulated galaxies match the observations

at least as well as simple SFH models, with similar favored values obtained for

the intrinsic physical parameters such as stellar mass and star formation rate,

but with substantially smaller uncertainties. Our results are broadly insensitive

to simulation choices for galactic outflows and dust reddening. Hence the exis-

tence of early galaxies as observed is broadly consistent with current hierarchical

structure formation models. However, one of the six objects has photometry that

is best fit by a bursty SFH unlike anything produced in our simulations, driven

primarily by a high K-band flux. These findings illustrate how SPOC provides a

robust tool for optimally utilizing hydrodynamic simulations (or any model that
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predicts galaxy SFHs) to constrain the physical properties of individual galaxies

having only photometric data, as well as identify objects that challenge current

models.

2.1 Introduction

Over the last few years, observations of galaxies at z ∼ 6 have opened up a new

window into the reionization epoch, turning it into the latest frontier both for

observational and theoretical studies of galaxy formation. Planned (González-

Serrano et al., 2005) and existing wide-area narrowband searches for z ∼> 5.5 ob-

jects such as the Subaru Deep Field (Ajiki et al., 2006; Shimasaku et al., 2006), the

Large Area Lyman-Alpha Survey (Rhoads & Malhotra, 2001; Malhotra & Rhoads,

2004), the Chandra Deep Field-South (Wang et al., 2005; Malhotra et al., 2005),

and the Hubble Ultra Deep Field (Malhotra et al., 2005) are now combining with

Lyman-alpha dropout searches (Dickinson et al., 2004; Bouwens et al., 2004a,b;

Mobasher et al., 2005; Bouwens et al., 2006; Eyles et al., 2006; Labbé et al., 2004),

targeted searches near lensing caustics in galaxy clusters (Kneib et al., 2004; Hu et

al., 2002) and occasionally serendipity (Stern et al., 2005) to uncover star-forming

galaxies from the reionization epoch in significant numbers (see Berger et al.,

2006, for a listing of spectroscopically-confirmed z > 5 galaxies).

A question immediately raised by this new stream of observations is, what

are the physical properties of these early galaxies? Optimally, one would de-

termine properties such as the stellar mass, star formation rate, and metallicity

directly from high-quality spectra, but at present this is infeasible for such faint

systems. Hence properties must be inferred from photometry alone, occasionally

augmented by emission line information. This requires making some poorly con-
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strained choices for the intrinsic galaxy properties. A commonly applied method

known as Spectral Energy Distribution (SED) fitting involves generating an en-

semble of population synthesis models under a range of assumptions for the in-

trinsic nature of the object, and then finding the set of assumptions that best re-

produces a given galaxy’s observed photometry (e.g. Benı́tez, 2000; Kauffmann

et al., 2003). The physical properties that yield the lowest χ2 model are then for-

warded as the most probable values, sometimes with little attention to statistical

uniqueness or robustness (see Schaerer & Pelló, 2005, for a nice exploration of

such issues).

Amongst the various assumptions used in SED fitting, the one that is of-

ten least well specified and produces the widest range in final answers is the

galaxy’s star formation history (SFH). With no prior information, common prac-

tice is to use simple SFHs with one free parameter such as constant, single-burst,

or exponentially-decaying, which in aggregate are assumed to span the range of

possible SFHs for a given galaxy. Indeed, in most cases all one-parameter SFHs

yield plausible results, though the parameters obtained and quality of fits in each

case can vary significantly. If it were possible to narrow the allowed range of

SFHs through independent considerations, physical parameters could in princi-

ple be more precisely determined.

One approach for constraining SFHs a priori is to incorporate information

from currently favored hierarchical structure formation models. As we will dis-

cuss in this paper, hydrodynamic simulations tend to produce a relatively narrow

range of star formation histories for early galaxies. Their galaxies’ SFHs tend to

follow a generic form at these early epochs, best characterized as a constantly-

rising SFH. This form is broadly independent of cosmology, feedback assump-
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tions, or other ancillary factors, and is furthermore distinct from any one-parameter

models commonly used today. A primary aim of this paper is to test whether this

relatively generic SFH form is consistent with observations, and if so, what the

implication are for the physical properties of high-redshift galaxies.

Despite impressive recent successes in understanding cosmology and large-

scale structure in our Universe (e.g. Spergel et al., 2006; Springel, Frenk, & White

, 2006), many uncertainties remain in our understanding of galaxy formation.

Several recent papers have tested models of high-z galaxy formation by compar-

ing them to observed bulk properties such as luminosity functions at rest-frame

UV and Lyα wavelengths. These comparisons have shown that such models are

broadly successful at reproducing observations, under reasonable assumptions

for poorly constrained parameters such as dust extinction (Somerville et al., 2001;

Idzi et al., 2004; Night et al., 2005; Finlator et al., 2006; Davé et al., 2006a). While

this broad success is encouraging, it is subject to some ambiguousness in inter-

pretation, because the properties of individual galaxies are not being compared

in detail. One could envision situations in which a model reproduces an ensem-

ble property of galaxies but not the detailed spectra of individual objects. As an

example, it was forwarded by Kolatt et al. (1999) that Lyman break galaxies at

z ∼ 3 are actually merger-driven starbursts, in contrast to many other models

predicting them to be large quiescent objects. Despite quite different SFHs, both

models reproduced many of the same bulk properties such as number densities

and clustering statistics. For z ∼> 6 galaxies where statistics are currently poor,

such degeneracies can hamper interpretations of bulk comparisons of observa-

tions to models.

A complementary set of constraints on galaxy formation models may be ob-
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tained by comparing models to the individual spectra of observed galaxies. In

practice, for high-z systems, photometry over a reasonably wide set of bands

must substitute for detailed spectra. Such comparisons of models to data would

move towards more precise and statistically robust analyses that do not rely on

having a large ensemble of objects. This last aspect is critical, because the very

earliest observed objects that may provide the greatest constraints on models will

in practice always be few in number and detected only at the limits of current

technology.

In short, what is desireable would be a tool to compare models and observa-

tions of high-redshift galaxies that (1) employs reasonably generic predictions of

current galaxy formation models; (2) provides a quantitative and robust statistical

assessment of how well such models reproduce observations; (3) yields informa-

tion on the physical properties of galaxies under various assumptions; (4) obtains

such information based solely on observed photometry; and (5) does all this on a

galaxy-by-galaxy basis rather than relying on having a large statistical sample of

observed galaxies.

In this paper we introduce such a tool, called SPOC (Simulated Photometry-

derived Observational Constraints). SPOC takes as its input the photometry (with

errors) of a single observed galaxy along with an ensemble of model spectra

drawn either from simulations or generated using one-parameter SFHs. The out-

put is probability distributions of physical parameters derived using a Bayesian

formalism, along with goodness-of-fit measures for any given model. The prob-

ability distributions give quantitative constraints on the galaxy’s physical prop-

erties, while the goodness-of-fit can be used to discriminate between models and

determine whether a given model (be it simulated or one-parameter SFHs) is able
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to provide an acceptable fit to that galaxy’s photometry.

After introducing and testing SPOC, we apply it to a sample of six z > 5.5

galaxies from the literature that have published near-infrared photometry. We

show that in five of six cases, the simulated galaxies fit observations at least as

well as one-parameter SFHs. Since there is no guarantee that simulations pro-

duce galaxy SFHs that actually occur in nature, the fact that good fits are possible

shows that the existence of the majority of observed z ∼> 5.5 galaxies is straight-

forwardly accommodated in current galaxy formation models. However, in one

case, we find that simulated galaxies provides a much poorer fit than can be ob-

tained with one-parameter SFHs, as burstier SFHs provide a much better fit than

can be obtained from any simulated galaxies. At face value, this implies that our

simulations cannot yet accommodate the full range of observed galaxies, and that

some physical process may be missing, although we will explore alternate inter-

pretations. For each galaxy we also present the best-fit physical parameters, with

uncertainties, obtained using each model SFH. The simulations provide signifi-

cantly tighter constraints than the full range of one-parameter SFHs, as expected

based on their relatively small range of SFHs produced. These values can there-

fore be regarded as predictions of our simulations that may be tested against

future observations.

§ 2.2 introduces SPOC, detailing our Bayesian formalism and discussing sys-

tematic uncertainties. § 2.3 presents the simulations and the one-parameter mod-

els that will be used as the template library for SPOC. § 2.4 discusses what drives

the inferred physical properties in the context of our simulations, and shows

that SPOC accurately recovers the physical properties of simulated galaxies. § 2.5

explores the best-fit parameters of one observed reionization-epoch galaxy in de-
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tail, and compares with results from traditional one-parameter SFH models. § 2.6

repeats the previous comparison for a larger set of observed galaxies, highlight-

ing the variety of interesting results that SPOC obtains. Finally, in § 2.7 we present

our conclusions.

2.2 Methodology of SPOC

2.2.1 SED Fitting

Pedagogical explanations of SED fitting techniques have been presented else-

where (Benı́tez, 2000; Kauffmann et al., 2003), so we refer the reader there for

more detailed discussion of those aspects. Here we provide some basic insights

and notes.

Clearly, the amount of physical information that can be inferred from avail-

able data depends on the quantity and quality of the data. For some high-z galax-

ies, only narrow-band photometry and rest-frame ultraviolet (UV) spectroscopy

are available (e.g., Cuby et al., 2003; Kodaira et al., 2003; Rhoads et al., 2003; Kurk

et al., 2004; Rhoads et al., 2004; Stern et al., 2005; Westra et al., 2005). For others, an

emission-line measurement and 1–3 rest-UV broad bands are available (e.g., Na-

gao et al., 2004; Stanway et al., 2004a,b; Nagao et al., 2005; Stiavelli et al., 2005; Hu

et al., 2004). Studies employing the Lyman dropout technique in the optical must

further contend with the possible presence of low-redshift interlopers (Dickinson

et al., 2004; Bouwens et al., 2004a,b) and large uncertainties from dust extinction.

Nevertheless, some interesting constraints can be placed on the underlying phys-

ical properties of the sources from solely rest-UV data (Drory et al., 2005; Gwyn

& Hartwick, 2005).

With the addition of rest-frame optical data, e.g. from Spitzer’s Infrared Ar-
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ray Camera (IRAC), it becomes possible to obtain simultaneous constraints for

the stellar mass, star formation rate (SFR), dust extinction, and redshift using

spectral energy distribution (SED) fitting techniques (Egami et al., 2005; Chary,

Stern & Eisenhardt, 2005; Eyles et al., 2005; Mobasher et al., 2005; Yan et al., 2005;

Schaerer & Pelló, 2005; Dunlop et al., 2006; Labbé et al., 2004). The uncertain-

ties inherent in such analyses primarily stem from a poor constraint on the age

of the galaxy’s stellar population, because the relationship between age and the

strength of the telltale Balmer break depends on the form of the assumed SFH

(Papovich et al. 2001; Shapley et al. 2005a; Figure 2.8). This age uncertainty prop-

agates via a host of degeneracies into increased uncertainties in the inferred stel-

lar mass, SFR, metallicity, and dust extinction, if no priors are assumed on these

quantities. Additional uncertainties arise from the unknown form of the appro-

priate template SED (e.g. Schaerer & Pelló, 2005) and the treatment of stellar evo-

lution assumed by the chosen population synthesis models (see e.g. Maraston et

al., 2006). Still, SED fitting offers the most promising approach for determining

the physical properties of individual high-z galaxies.

Given this, how can one employ simulations to improve constraints on SED

fitting? One can view a numerical simulation as producing a Monte Carlo sam-

pling of parameter space such that the frequency with which a given set of physi-

cal parameters ought to occur is proportional to the number of galaxies in the sim-

ulation that are characterized by that set of parameters. In essence, numerically-

simulated galaxies provide “implicit priors” for SED fitting, i.e. solutions that are

a priori weighted more heavily because they occur more frequently.

The underlying assumption is that simulated galaxy SFHs represent those oc-

curing in nature. This is by no means guaranteed, and indeed whether SPOC
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provides an acceptable fit to a given galaxy constitutes a stringent test of the sim-

ulation, because a galaxy’s spectrum encodes information about its full SFH. This

is the manner in which SPOC can provide a test of galaxy formation models based

on individual systems.

2.2.2 The SPOC Equation

We now summarize the Bayesian statistical method employed in SPOC. Our

goal is to constrain the stellar mass, SFR, mean stellar metallicity, age, dust ex-

tinction, and redshift (M∗, Ṁ∗, Z∗, t, AV , and z, respectively) based on avail-

able measurements D. According to Bayes’ Theorem, the probability p that the

measurements D correspond to a galaxy with the intrinsic physical parameters

φ̂ ≡ (M̂∗,
ˆ̇M∗, Ẑ∗, t̂, ÂV , ẑ) (where a hat indicates a particular value of a parameter)

is given by

p(φ̂ | D) ∝ p(φ̂)p(D | φ̂). (2.1)

The prior p(φ̂) indicates the relative a priori probability that a randomly selected

galaxy has this particular combination of parameters, and the likelihood p(D | φ̂)

indicates the probability of obtaining the measurements D for a galaxy character-

ized by the parameters φ̂; for a given model galaxy and data set D this is assumed

to be proportional to e−χ2/2. Any information regarding the expected distribu-

tions of physical properties of the observable galaxies (such as the stellar mass

function) or relationships between these properties (such as a mass-metallicity

relation) can be taken into account via a contribution to the prior, and will gener-

ally give rise to more precise—and possibly more accurate—constraints.

In this work, we assume uniform priors on z and AV , and we do not assume

any dependence between AV and the other intrinsic physical properties. We in-
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troduce an additional prior p(sim) to account for any other priors. For exam-

ple, when matching observed galaxies against model galaxies derived from the

outputs of two cosmological simulations that span different comoving volumes,

p(sim) represents the ratio of the simulation volumes. After several applications

of the product rule, we obtain

p(φ̂) ∝ p(M̂∗,
ˆ̇M∗, Ẑ∗, t̂ | ẑ)p(sim)p(D | φ̂). (2.2)

This is the fundamental equation that SPOC evaluates. Generically, one would

use Equation 2.2 by beginning with a set of models that uniformly samples the

relevant parameter space and then guessing the form of the prior p(M̂∗,
ˆ̇M∗, Ẑ∗, t̂ |

ẑ), which now encodes the assumed distribution of intrinsic physical properties

of galaxies as a function of redshift. In the high-redshift literature, where little

is known about the intrinsic physical properties of the galaxies, it is common to

neglect priors altogether (or, equivalently, to choose the model with the lowest

χ2) or even to introduce them accidentally by not sampling parameter space uni-

formly. The difference between this work and that of previous authors is that we

account for this prior implicitly by using numerically simulated galaxies as the

model set.

To see how this works, consider how one would use equation 2.2 in practice.

For simplicity, suppose that we wished to constrain a galaxy’s stellar mass and

that the mass could only fall within one of two ranges. If we omitted priors and

assumed that the models sample stellar mass uniformly, then the probability that

the galaxy’s mass falls within a given range would be given by
∑

i Ae−χ2

i
/2, where

the sum is taken over all models whose mass lies within that range and the nor-

malization A is chosen so that the sum taken over all models in both ranges equals
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unity. If we believed that galaxies with masses in one range were, say, twice as

common (and therefore a priori twice as likely to be the right answer) as galaxies

with masses in the other range, we could account for this via an explicit prior by

changing the sum to
∑

i APie
−χ2

i
/2 where Pi = 2 for models in the more common

range and 1 for models in the less common range (with A of course rescaled). It

is clear that an equivalent method to employing this explicit prior would be to

generate twice as many models in the more common range, resulting in twice the

probability of selecting one of these models. Generalizing this idea, one can view

simulated galaxies as a Monte Carlo sampling of parameter space that naturally

produces more models with parameters that are more commonly found. Hence

by taking a set of simulated galaxies, generating a library by resampling this set

with parameters having uniform priors (namely, AV and z), and using that library

to discretely sample the probability distribution in the right-hand side of equa-

tion 2.2, one can solve equation 2.2 effectively incorporating the implicit priors

given by the simulated galaxies. This is in essence the SPOC algorithm.

2.2.3 Systematic Uncertainties in Using Simulated Galaxies

A major difficulty with the SPOC approach is that there is no guarantee that the

simulation predicts the correct distribution of intrinsic properties of galaxies; in

Bayesian terms, the priors could be wrong. On some level this is bound to be the

case as we do not account for every process that could in principle affect galaxies at

this epoch; indeed, no model currently does. However, our goal is to determine

whether our treatment is sufficient to account for current observations. If not,

then the failures indicate needed improvements to the model. If our treatment

can account for current observations, then the constraints that we derive may be

regarded as physically-motivated predictions, subject to verification when more
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constraining data become available.

The two greatest uncertainties for the input physics present in our current

simulations are (1) numerical resolution—manifested either as an inability to ac-

count for physical processes that occur on scales that are too small or too rapid

(e.g. merger-induced starburst) or as a lack of numerical convergence—and (2)

the prescription for superwind feedback. In § 2.4.3 we use a simple convergence

test to argue that our results do not suffer from numerical resolution limitations.

As to our treatment for outflows, we can estimate the extent of any resulting

systematics by comparing results from our three different outflow simulations.

While this does not span the full range of possible feedback mechanisms, the fact

that (as we show in § 2.5.1) most of the best-fit parameters are insensitive to the

choice of wind prescription suggests that outflows do not noticeably alter typical

SFHs at a given stellar mass.

On the other hand, if there are significant physical processes affecting galaxy

SEDs that are not accounted for by our simulation or population synthesis mod-

els, then our simulated galaxies may fail to reproduce the observed spectra, or

they may mistakenly model nonstellar contributions to the observed SED as starlight.

Among the possibilities here are active galactic nuclei (AGN), incorrectly mod-

eled thermally pulsating asymptotic giant branch (TP-AGB) stars (Maraston et

al., 2006), emission lines, and an inappropriate treatment of dust or IGM absorp-

tion. We will argue in §2.6 that significant AGN contamination is unlikely for

the high-redshift objects we will consider here. The contribution of TP-AGB stars

is also unlikely to be important partly because we do not model measurements

from bands redder than I in the rest-frame, and partly because at z ∼ 6 less than

half of the existing stellar mass is more than 200 Myr old (Table 2.2). Emission
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lines and incorrectly-modelled IGM absorption could in principle affect our re-

sults at the 10% level (Schaerer & Pelló, 2005; Egami et al., 2005). These effects

are expected to be similar for the various SFHs investigated because we use the

same population synthesis models to model the stellar continuum in each case.

Regarding dust, we have found, in agreement with Schaerer & Pelló (2005), that

our results are relatively insensitive to the form of the dust law that we consider

(see § 2.4.1). Thus, for the preliminary study in this paper we ignore all of these

effects.

Another possible problem is that galaxy classes that are rare in reality are

likely to be rare in the simulations. Accordingly, if the comoving volume from

which the catalog of simulated comparison galaxies is drawn is sufficiently small

that a simulated analogue to an observed rare object is neither expected nor

found, that object cannot directly constrain the model. For example, our simu-

lations produce no galaxies massive enough at z > 6 to fit HUDF-JD2, the puta-

tive 6 × 1011M¯ object at z ∼ 6.5 reported by Mobasher et al. (2005). Although

this particular object is likely to be at a lower redshift (Dunlop et al., 2006), it

does illustrate limitations imposed by simulation volume, which could also im-

pact constraints on rare classes such as sub-millimeter galaxies (e.g. Smail et al.,

2004) (alternatively, if such objects are indeed common at z ≥ 6 then they rep-

resent a challenge to our simulations). In principle one could work around this

issue by running larger-volume simulations or by deriving the priors from the

simulations and then resampling parameter space by hand. In lieu of these ap-

proaches, the simulations utilized must have comoving volumes comparable to

the effective volume of the survey in which the object was found.

It may appear overly ambitious to attempt to constrain 6 (or more) seemingly
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independent parameters for a galaxy for which fewer than 6 measurements are

available. However, cosmological simulations allow us to do this because they

generically predict that galaxies’ intrinsic physical parameters are manifestly not

independent; there are tight predicted correlations between, for example, stellar

mass on the one hand and star formation rate and metallicity on the other (Finla-

tor et al., 2006; Davé et al., 2006a).

In summary, using simulated galaxies to estimate physical properties is only

valid when the dominant emission mechanism is star formation, and when other

uncertainties can be carefully analyzed and shown to be negligible. For galaxies

at high redshift, such as the ones we consider in this paper, this is believed (but

not guaranteed) to be true. However, in the general case these issues must be

considered carefully. In turn, the goodness of fit enables constraints to be placed

on simulations of galaxy formation, and can highlight missing physics that may

be required in order to explain the observed properties of galaxies.

2.3 Models

2.3.1 Simulations

We draw our simulated galaxies from cosmological hydrodynamic simulations

run with Gadget-2 (Springel & Hernquist, 2002), including our improvements

as described in Oppenheimer & Davé (2006, hereafter OD06). This code uses

an entropy-conservative formulation of smoothed particle hydrodynamics (SPH)

along with a tree-particle-mesh algorithm for handling gravity. Heating is in-

cluded via a spatially uniform photoionizing background (Haardt & Madau, 2001),

which is an acceptable approximation for the galaxies that are observed at high

redshift owing to the fact that they form in highly overdense regions that undergo
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local reionization at z À 6 (Davé et al., 2006a). All gas particles are allowed to

cool under the assumption of ionization equilibrium, and metal-enriched parti-

cles may additionally cool via metal lines. Cool gas particles are allowed to de-

velop a multi-phase interstellar medium via a subresolution multi-phase model

that tracks condensation and evaporation following McKee & Ostriker (1977).

Stars are formed from cool, dense gas using a recipe that reproduces the Kenni-

cutt (1998a) relation; see Springel & Hernquist (2003a) for details. The metallicity

of star-forming gas particles grows in proportion to the SFR under the instan-

taneous recycling approximation. Stars inherit the metallicity of the parent gas

particle, and from then on cannot be further enriched.

Cosmological hydrodynamic simulations that do not include kinetic feed-

back from star formation invariably overproduce stars (e.g., Balogh et al., 2001;

Springel & Hernquist, 2003a, OD06). Because superwinds can affect the physical

properties of the simulated galaxies (e.g. Davé et al., 2006a), we consider model

galaxies from simulations with three different superwind schemes: (1) a “no

wind” model that omits superwind feedback; (2) a “constant wind” (cw) model

in which all the particles entering into superwinds are expelled at 484 km/s out

of star forming regions and a constant mass loading factor (i.e. the ratio of the rate

of matter expelled to the SFR) of 2 is assumed (as in the runs of Springel & Hern-

quist, 2003b); and (3) the “momentum-driven wind” (vzw) model of OD06, in

which the imparted velocity is proportional to the local velocity dispersion (com-

puted from the potential) and the mass loading factor is inversely proportional

to the velocity dispersion (Murray, Quatert, & Thompson, 2005), as inferred from

observations of local starbursts (Martin, 2005; Rupke et al., 2005). Gas particles

are “kicked” out of star-forming regions using a Monte Carlo prescription whose
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parameters are tuned to yield the desired mass loading factor and wind speed.

This selection is meant to bracket plausible models in order to expose any related

systematic uncertainties; however, owing to the range of successes in comparison

with IGM metal-line observations obtained by OD06 for the vzw model, we focus

on this model when the conclusions from the different wind models are broadly

similar.

All of our wind models were tested in simulations that assumed the “old”

WMAP-concordant cosmology (Spergel et al., 2003) having Ω = 0.3, Λ = 0.7,

H0 = 70 km s−1 Mpc−1, σ8 = 0.9, and Ωb = 0.04. Each of our simulations

has 2 × 2563 particles, with parameters as given in OD06. We only employ the

16h−1Mpc and 32h−1Mpc simulations from OD06, as the 8h−1Mpc runs did not

have any galaxies large enough to be observable at z ∼> 6. An additional set of

simulations (the “jvzw” model) were run using our preferred wind model with

the 3rd-year WMAP cosmology (Spergel et al., 2006), namely Ω = 0.26, Λ = 0.74,

H0 = 71 km s−1 Mpc−1, σ8 = 0.75, and Ωb = 0.044. Due to an error in the initial

conditions generation, the power spectrum index was set to n = 1 rather than

the currently-favored n = 0.95; however, this has little impact on our results as

we will show that they are insensitive to such differences in cosmology. There

is a slight change in the wind model for jvzw versus vzw, in that jvzw has a

smaller mass loading factor by a factor of two-thirds compared to vzw (in the

terminology of OD06, σ0 = 200 km/s) in order to compensate for the lower col-

lapse fraction at high redshift in the new cosmology. In addition to 16h−1Mpc

and 32h−1Mpc box sizes, we also run a 64h−1Mpc box with the jvzw model to

sample the bright end of the mass function in order to better constrain some ob-

served galaxies that we will consider in §2.6. We found that model galaxies from
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the jvzw simulations have bulk properties that are similar to that from vzw. For

this paper we will compute all luminosity distances assuming the new 3rd-year

WMAP cosmology.

We identify galaxies using Spline Kernel Interpolative DENMAX (see Kereš

et al. 2005 for a full description). We only consider galaxies with stellar masses

exceeding 64 star particles, which guarantees that the simulated stellar masses

and star formation histories are numerically converged (Finlator et al., 2006). Ac-

cording to this criterion, our 16h−1Mpc simulation volumes resolve galaxies with

stellar mass ∼> 1.2 × 108M¯.

For this work, the most important output of the simulations is the set of SFHs

corresponding to the resolved galaxies in each simulation at the various redshift

outputs. We obtain the rest-frame spectrum for each star formation event in a

given galaxy at the time of observation by interpolating to the correct metallicity

and age within the Bruzual & Charlot (2003) models, assuming a Chabrier IMF.

Summing these up, we obtain the galaxy’s intrinsic rest frame spectral energy

distribution (SED).

We consider the following prescriptions for dust reddening: The Calzetti et al.

(2000) starburst dust screen, the Charlot & Fall (2000) embedded star formation

law, the Gordon et al. (2003) Small Magellanic Cloud bar law, and the Cardelli

et al. (1989) Milky Way law. We account for IGM absorption bluewards of rest-

frame Lyα using the Madau (1995) prescription. The Madau (1995) law may be

less appropriate for z ∼> 6 than at lower redshifts because the universe is com-

pleting reionization at this epoch. Indeed, Schaerer & Pelló (2005) found that

they were able to improve the quality of their fits to the SEDs of two reionization-

epoch galaxies by simply doubling the optical depth predicted by Madau (1995).
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However, they also found that the best-fit derived parameters are relatively in-

sensitive to the IGM treatment. Thus, for simplicity we retain the Madau (1995)

treatment without modification.

2.3.2 One-Parameter Star Formation Histories

To date, efforts to use SED-fitting to infer the physical properties of high-redshift

galaxies have generally employed some combination of constant, exponentially

decaying, and single-burst star formation histories in order to span the presumed

range of possibilities. In general, it has been found that the stellar mass, SFR, and

redshift of a galaxy can be fairly well-constrained via this technique while the

age, metallicity, and dust extinction cannot. Much of the gain in precision that

results from using simulated galaxies in SED-fitting results from the relatively

small range of SFHs that actually occur in the simulations.

For example, the solid black curves in Figure 2.1 show the SFHs of the 3 galax-

ies from the vzw simulation that yield the best fits to the z ∼ 6.7 galaxy Abell 2218

KESR, which we will discuss extensively in §2.5. The SFHs have been sampled in

20-Myr bins and smoothed with a 100-Myr tophat in order to make the plot more

readable. All 3 galaxies begin forming stars at z > 15 and exhibit a SFR that is

generally rising. An examination of simulated SFHs at these redshifts shows that

steadily rising SFHs are typical. For this reason we consider a constantly-rising

model SFH in this work; as we will see, the constantly-rising model reproduces

most closely the constraints obtained from the simulated galaxies (Figure 2.8).

This model has to our knowledge not been investigated before.

In order to facilitate comparison with much of the available SED-fitting work

that is available in the literature, we investigate three one-parameter model SFHs

for each galaxy in addition to simulated SFHs, as described below:
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Figure 2.1 Star formation histories of the 3 model galaxies that best fit observa-

tions of Abell 2218 KESR from the vzw simulation (solid black) as well as several

one-parameter model SFHs: constant SFR (dotted green), exponentially decay-

ing SFR (long-dashed blue), and constantly rising SFR (short-dashed red). The

SEDs of all models match the data with χ2 per degree of freedom less than unity.

The vzw SFHs have been sampled in 20-Myr bins and smoothed with a 100-Myr

tophat for readability. The areas under the curves are slightly different, reflecting

uncertainty in the total stellar mass. Note that the best-fitting rising model is very

similar to the best-fitting simulated model.
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• Exponentially Decaying SFR We generate models with SFR proportional to

e−t/τ . We use four values of τ logarithmically spaced between 10 and 795

Myr, roughly the age of the universe for our most distant object. Each of

these SFHs is sampled at 23 ages t evenly spaced between 10 and 1000 Myr.

• Constant SFR We generate models that have been forming stars at a constant

rate Ṁ∗ for t Myr. For t we sample 41 ages that lie between 10 and 1000 Myr,

and for Ṁ∗ we sample 45 SFRs that lie between 0.2 and 30.0 M¯ yr−1.

• Constantly Rising SFR In the constantly rising SFH, a galaxy’s SFR is pro-

portional to its age. While a rising SFH can clearly not be maintained for

all galaxies until low redshifts, it arises fairly generically for high-redshift

galaxies in hydrodynamic simulations (Finlator et al., 2006). We generate

models in which each galaxy’s SFR has been rising at a constant rate for t

Myr, where for t we have sampled 41 ages that lie between 10 and 1000 Myr.

For each star formation history, we have generated models with masses in

the range log(M∗/M¯) ∈ [7.5, 10.5] and metallicities Z∗/Z¯ ∈ (0.005, 0.07, 1.0, 2.5).

These SFHs are then put through the SPOC formalism, in order to determine the

probability distribution of physical properties. During the fitting, we require that

the oldest star of a given model is not older than the age of the universe at the

model’s redshift.

2.4 Performance of SPOC

2.4.1 Self-Consistency Test

We begin by testing that SPOC recovers the (known) properties of simulated

galaxies. This serves to both test the algorithm and quantify its intrinsic uncer-
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tainties. To do so, we take the 73 galaxies that are resolved by our vzw simulation

at z = 6.5, and determine how accurately we can recover their intrinsic physical

properties using model galaxies from the z = 6 and z = 7 outputs as inputs

to SPOC. While the model and sample galaxies are not strictly independent in

this test (all but the least massive galaxies at z = 6.5 correspond to at least one

ancestor in the z = 7 output and descendant in the z = 6 output), the galaxies

are evolving rapidly enough that these populations are effectively independent.

The test-case and model galaxies are compared in 6 bands from i-band to IRAC

4.5µm (the same ones applied to Abell 2218 KESR in §2.5), where we assume

a 0.15 magnitude uncertainty in each band. The test-case galaxies are reddened

with a fiducial dust extinction AV = 0.6 via the Calzetti et al. (2000) law. We apply

SPOC to these test-cases using each of the different extinction curves mentioned

in §2.3.1 in order to investigate the systematic uncertainties resulting from our

ignorance of the appropriate extinction curve for high-redshift galaxies. During

the fitting, redshift space is sampled by perturbing each model galaxy over a grid

extending to ∆z = 0.5 so that we sample the range z ∈ [5.5, 7.5]; AV is sampled

over the range AV ∈ [0, 1].

SPOC constrains six quantities: M∗, SFR, AV , Z∗, age, and redshift. The defi-

nitions of M∗ and redshift are self-evident. AV is defined in terms of the Calzetti

et al. (2000) reddening presciption. For the purposes of this work, metallicity Z∗

is defined as the mean mass fraction of metals in the galaxy’s stars; this is useful

in determining what metallicity to choose during population synthesis model-

ing. Although metallicity is not the dominant factor in determining a galaxy’s

SED, the fact that the vzw model reproduces the mass-metallicity relation of star-

forming galaxies at z ∼ 2 (Erb et al., 2006; Davé et al., 2006b) as well as for the host
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galaxy of GRB050904, which is located at z = 6.295 (Berger et al., 2006; Kawai et

al., 2006), leads us to believe that this model’s predictions for the metallicities of

observed reionization-epoch galaxies are plausible (Finlator et al. 2007, in prep.).

We define a galaxy’s age as the mass-weighted mean age of its star particles; this

is more meaningful than the more commonly-used age of the oldest star, which

is both difficult to constrain observationally and difficult to predict owing to the

stochastic nature of our simulations’ star formation prescription. We define a

galaxy’s SFR as the average over the last 100 Myr leading up to the epoch of ob-

servation; if none of a galaxy’s stellar mass is older than 100 Myr then the age of

the oldest star is used. This metric is found to correlate more tightly with rest-

frame UV flux than averages over a shorter time-baseline for the numerically

simulated SFHs.

First we consider the case in which the test-case and model galaxies are both

reddened via the Calzetti et al. (2000) extinction curve. For this case, the points

in Figure 2.2 show how the fractional error in the six inferred properties varies

with stellar mass and the solid black histogram gives their combined distribution.

The dotted lines indicate the mean formal 1σ uncertainties; these are computed

directly from the probability densities that are returned by SPOC rather than from

the scatter in the points. In general, the recovered physical parameters lie within

50% and 2σ of the correct values, suggesting that our SED-fitting technique is

indeed self-consistent. The fact that the formal uncertainties are at least as large

as the scatter (and, in some cases, are somewhat larger) suggests that the formal

uncertainties are sufficiently conservative.

The most accurately (and precisely) recovered parameter is redshift. The high

accuracy in this case owes to the fact that the I814, z850, and J110 fluxes tightly
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Figure 2.2 Fractional error in inferred physical properties of z = 6.5 vzw galax-

ies as determined using the z = 6.0 and z = 7.0 galaxies as models in SPOC.

First we considered the case in which both test-case and model galaxies are red-

dened via the Calzetti et al. (2000) extinction curve. For this run, black crosses

and blue triangles denote test galaxies from the 16h−1Mpc and 32h−1Mpc volume

simulations, respectively; the solid black histogram denotes their combined dis-

tribution; and dotted lines indicate mean fractional 1σ uncertainties computed

by SPOC. We then compared the same test-case galaxies (reddened with the

same extinctinction curve) to models with the same SFHs but using different dust

laws. From these runs, the dotted red, short-dashed blue, and long-dashed ma-

genta histograms correspond to the cases where the models were reddened with

the Cardelli et al. (1989), Gordon et al. (2003), and Charlot & Fall (2000) laws.

With few exceptions, the best-fit values are within 50% and 2σ of the correct val-

ues. Stellar mass and redshift are recovered remarkably accurately.
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contrain the position of the Lyman break, which itself results from the Madau

(1995) prescription for IGM absorption.

Stellar mass is recovered with 20% accuracy, owing primarily to the fact that

the rest-frame optical flux is generally dominated by numerous long-lived, low-

mass stars whose mass-to-light ratio is relatively insensitive to age and dust ex-

tinction. Additionally, as we will show in Figure 2.3, the lack of a significant

systematic offset in the recovered stellar masses owes to the similarity between

the SFHs of the test-case and model galaxies.

Metallicity is also accurately recovered. This is expected given that there is a

tight mass-metallicity relation in the simulations (the 1σ scatter is 15%) that does

not vary strongly with redshift (Davé et al., 2006a; Davé et al., 2006b), and the

fact that the test galaxies and models came from the same simulations. With-

out this implicit prior, metallicity cannot be tightly constrained from broadband

photometry (Papovich et al., 2001; Schaerer & Pelló, 2005).

Turning to SFR, we expect a reasonably accurately inferred SFR given the tight

correlation between SFR and stellar mass that the simulated galaxies obey (Fin-

lator et al., 2006; Davé et al., 2006a); in other words, if the redshift is known and

the stellar mass can be constrained from the rest-frame optical flux, then the SFR

is already constrained to within a factor of two regardless of the rest-frame UV

flux. Figure 2.2 bears this out. In detail, SFR is somewhat less accurately recov-

ered than stellar mass owing to the degeneracies with age and AV —in fact, a close

inspection reveals that galaxies with underestimated SFR have overestimated AV

and vice-versa.

Age is accurately recovered owing largely to the small range of SFHs that oc-

cur in our simulations. Just as only a small range of metallicities remains available
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once the stellar mass is constrained, a relatively small range of ages is available

once the redshift and stellar mass are constrained (Figure 2.1).

If we relax the assumption that we know the correct form of the dust extinc-

tion curve, we find systematic effects up to the ≈ 50% level. In Figure 2.3, the

dotted red, short-dashed blue, and long-dashed magenta histograms correspond

to the cases where the models were reddened with the Cardelli et al. (1989), SMC

bar (Gordon et al., 2003), and Charlot & Fall (2000) laws while the test-cases were

reddened with the Calzetti et al. (2000) law as before. Metallicity and age are

not strongly affected because these are tightly constrained by the combination of

stellar mass and redshift. In contrast, AV , M∗, and SFR are underestimated for

the other curves by up to 60% while the photometric redshifts are systematically

off by up to 2%, with the the SMC law yielding the largest underestimates. These

discrepancies owe to the varying slopes of the extinction curves: Steeper extinc-

tion curves require less overall dust (i.e., lower AV ) and redder rest-frame UV

colors (i.e., lower SFR, and thus lower stellar mass in our simulations) in order

to match a given observed rest-frame UV color. Similarly, photometric redshifts

are systematically off because the extra suppression of rest-frame UV flux that

results from an overly steep extinction curve can be partially cancelled out by

underestimating the galaxy’s redshift.

In summary, stellar mass, metallicity, age, and SFR can simultaneously be re-

covered by SPOC when numerically simulated models are used owing to the exis-

tence of implicit priors on these parameters. Any remaining discrepancy between

the observed and model UV fluxes is minimized by the choice of AV , which is

also relatively accurately recovered. Thus, our SED-fitting technique is indeed

self-consistent. However, if the slope of the assumed dust extinction curve is in-
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correct then the resulting best estimates of the physical parameters may be off by

up to ≈ 50% while the photometric redshift may be off by up to 2%. These sys-

tematic uncertainties are generic to studies of high-redshift galaxies that employ

SED-fitting and are unrelated to uncertainties that result from our ignorance of

the correct form of high-redshift SFHs. Since it is the latter aspect that we are

currently trying to constrain, we do not further consider SED-fitting errors.

2.4.2 Comparison With One-Parameter Models

It is reassuring but not terribly surprising that SPOC can accurately recover the

physical properties of the galaxies that it uses as templates. A more interesting

question is how well SPOC can recover galaxy properties using a different SFH

than that of the input galaxy, as this illustrates the variations in inferred physical

parameters among various assumed SFHs. To address this, we have fit the test-

case galaxies that were used in § 2.4.1 using model sets generated from constant,

decaying, and rising SFHs as described in § 2.3.2.

Figure 2.3 gives the distributions of fractional errors in the inferred values of

stellar mass, SFR, age, and redshift that result when using the different model

sets. The vzw case is simply a vertically-binned histogram from Figure 2.2. Gen-

erally, the one-parameter models yield stellar mass and age results that are within

50% of the correct values. The errors for these quantities are generally distributed

with slightly larger scatter than the errors from the vzw models and show system-

atic discrepancies up to the 40% level. The SFRs are overestimated systematically

by 50–200% with significantly more scatter than returned by the vzw models;

this is clearly the quantity that is most dependent on the assumed SFH. The vzw

models systematically underestimate redshift by 0.2% while the one-parameter

models are low by 0.5%; the scatters are comparable for all of the models. We
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Figure 2.3 Comparison of the distribution of fractional errors in the inferred phys-

ical properties of the galaxies from Figure 2.2 when assuming different SFHs in

SPOC. Redshift error is plotted as δz/(1 + z). All histograms in a given plot

have been normalized to enclose a constant area. Solid black, dotted cyan, short-

dashed blue, and long-dashed red curves give the histograms for the simulated,

constant, decaying, and rising model sets; the vertical tickmarks at the top indi-

cate the respective medians. Redshift is very well-recovered for all models, stellar

mass and age to within 50%, while SFR can be off by large amounts.
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briefly discuss results specific to each one-parameter model in turn.

When considering all test-case galaxies together, the constant-SFR models

tend to underestimate the age and stellar mass by 40% and 10% respectively

while overestimating the SFR by a median factor of 3, the largest discrepancy

among the SFHs that we consider. When we split the sample into “massive”

and “low-mass” galaxies at M∗/M¯ = 109, we find that the constant models tend

to overestimate the ages of “massive” galaxies by ∼ 20% while underestimating

the ages of low-mass galaxies by ∼ 40%. In order to match the rest-frame op-

tical measurements, the constant-SFR models then overestimate the SFR for the

low-mass and massive galaxies by 100–200% and 0–100%, respectively, with 50%

scatter in each case. Stellar masses are underestimated by 20% for the low-mass

galaxies and overestimated by roughly the same amount for massive galaxies.

This illustrates that uncertainties in parameter recovery are not only dependent

on the assumed SFH, but also on the mass.

The decaying models tend to reproduce the stellar mass and age with system-

atic errors of roughly 10% and scatter comparable to the scatter from the vzw

models. These successes are somewhat surprising because the simulated SFHs

look nothing like the decaying case. Conversely, the SFRs are higher by a me-

dian factor of 2.8, only slightly better than the constant model. The fact that the

SFR could be dramatically overestimated while the age, stellar mass, and dust

reddening (not shown) are recovered accurately probably owes to our use of 100-

Myr average SFRs. When considering all of the stellar mass that has formed in

the last 100 Myr, a larger fraction of the O-stars will have evolved off of the main

sequence for decaying or constant SFHs than for rising models that show the

same 100 Myr average SFR, leading to the result that models with differing SFRs
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nonetheless produce similar UV luminosities. The broad success of the decaying

model despite the input SFHs looking nothing like the decaying case shows that

SED fitting can yield interpretations consistent with monolithic collapse models

even though the true SFH may be quite different.

The rising models tend to underestimate the age by 10–40% and overestimate

the SFR by 40%, though with significant scatter. Both of these offsets are compen-

sated by overestimated AV in such a way that the stellar masses are recovered

quite accurately, with < 5% systematic offset and scatter comparable to what is

achieved via the numerically-simulated models. Overall, this model probably

recovers the true parameters most faithfully among the one-parameter models,

though it is not a dramatic improvement over the others.

In summary, we have shown that SPOC can self-consistently recover the phys-

ical properties of the model galaxies that we use in fitting observed high-redshift

galaxies. Further, simple one-parameter models are able to recover stellar mass

and age to within 50% accuracy and SFR to within a factor of three, although

there are systematic offsets at a comparable level. All models yield photometric

redshifts with better than 1% accuracy although none of them outperform the

numerical models.

2.4.3 Numerical Resolution

The SPOC library of simulated galaxies that we employ is accumulated from

simulations at different volumes and resolutions (e.g. in the jvzw case, we use

the 16, 32, 64h−1Mpc runs). In Davé et al. (2006a), we showed that, down to the

adopted stellar mass resolution limit, the physical properties of galaxies are sim-

ilar at overlapping mass scales between the various simulations. To reiterate this

point in a way that is more relevant to the current work, Figure 2.4 shows how the
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Figure 2.4 Numerical resolution convergence test I. (Top) Rest-frame UV-optical

color versus stellar mass at z = 6. The blue squares, magenta triangles, and red

crosses correspond to the resolved galaxies from the 16, 32, and 64 h−1Mpc simu-

lations, respectively; running medians are also given. (Bottom) Stellar metallicity

versus stellar mass for the same galaxies. In both cases, the median trend and the

scatter do not vary with scale, indicating that the SFHs of our simulated galaxies

do not suffer from numerical resolution issues.
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Figure 2.5 Numerical resolution convergence test II. The dotted blue and dashed

red curves give the probability densities for the physical properties of A370

HCM6A as derived from model galaxies from a 16h−1Mpc and a 32h−1Mpc sim-

ulation volume, respectively, while the solid black curve results from combining

the models. All of the probability densities show agreement at the 1σ level and

only the age curves show clear evidence of resolution effects (see text). This fig-

ure indicates that our inferred physical properties are not significantly hampered

by numerical resolution issues.
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rest-frame UV-optical color and mean stellar metallicity vary with stellar mass at

z = 6 for resolved (≥ 64 star particles) galaxies from our 16, 32, and 64 h−1Mpc

simulation volumes. In both cases, the trend and the scatter are consistent be-

tween the different volumes, giving us further confidence that our simulated

SFHs are in fact resolved.

A related way to look for resolution issues is to ask whether SPOC will yield

similar answers when it is applied to same-mass galaxies at different resolutions.

We now demonstrate that, indeed, SPOC does recover similar parameters for

galaxies at different resolutions, and so combining different resolution simula-

tions into a larger set is justified. Of course, one does not need to do so in or-

der to use SPOC, it is merely a convenient avenue to increase the dynamic range

spanned by our model galaxies.

For convenience, we study A370 HCM6a as it can readily be fit by our mod-

els. We apply SPOC using three sets of models derived from the jvzw simula-

tions: once using models from the 16h−1Mpc volume (“j16”), once using models

from the 32h−1Mpc volume (“j32”), and once using both sets. A lack of numerical

convergence would result in systematic offsets between the probability densities

from the first two fits, while the combined result shows how the models from the

two volumes combine to yield our full probability density.

Figure 2.5 shows the derived probability density functions for the various

physical parameters that we consider. The ranges agree well, and the best es-

timates from the j16 and j32 volumes (defined as the means of the probability

density functions) are consistent at the 1σ level. In detail, the j16 models return

fits with somewhat lower stellar mass, SFR, and metallicity than the j32 models

while the j32 models yield ages that are younger by about 40 Myr. The small off-
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sets in mass, SFR, and metallicity do not indicate resolution problems as they are

expected even in the absence of any convergence issues. Briefly, the j16 volume

contributes lower mass models owing to the slope of the mass function (at the

massive end) and our 64 star particle mass resolution cut (at the low-mass end).

On the other hand, the age offset results from a well-known numerical resolu-

tion limitation whereby galaxies in lower-resolution simulations take longer to

condense beyond a given critical density in order to begin forming stars, yield-

ing younger ages at a given stellar mass and redshift. Fortunately, the offset is

comparable to the intrinsic uncertainty on this parameter. We have repeated this

test using object SBM03#1 with the 32 and 64h−1Mpc volumes and found simi-

lar results. Hence we do not believe that our results using combined simulation

samples are significantly hampered by numerical resolution effects.

2.5 Test Case: Abell 2218 KESR

The triple arc in Abell 2218, dubbed Abell 2218 KESR by Schaerer & Pelló (2005)

after its discoverers (Kneib et al., 2004), is probably the best-studied z > 6 object

at present, and its physical parameters have been constrained through SED fitting

by various authors. Hence it provides a good test case for exploring the systemat-

ics that result from using numerically simulated model galaxies, and comparing

to results employing more traditional simple SFHs.

The flux from Abell 2218 KESR can be measured from two lensed images in

the Hubble Advanced Camera for Surveys (ACS) z850, Wide-Field Planetary Cam-

era 2 (WFPC2) I814, and Near-Infrared Camera and Multi-Object Spectrograph

(NICMOS) J110 and H160 bands, and only one image in the Spitzer/IRAC 3.6 and
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Figure 2.6 Best-fit spectra from the simulations to the data for Abell 2218 KESR,

which we have demagnified by 25× (Kneib et al., 2004). Spectra from the nw, cw,

and vzw, and jvzw models are denoted by red dashed, blue dotted, black solid,

and long-dashed cyan curves, respectively. All four models produce galaxies

whose spectra match Abell 2218 KESR within the errors (χ2 per degree of freedom

< 1).
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4.5 µm bands (the other image is blended with a nearby submillimeter source

at IRAC’s spatial resolution). Schaerer & Pelló (2005) note that the fluxes mea-

sured by different authors in the optical/near-infrared bands disagree due to the

inherent difficulties of measuring photometry from extended arcs, and that the

different images of the galaxy do not agree in the Hubble/ACS z850 band. Fol-

lowing their suggestion, we use the weighted mean of the two images in the

optical/near-infrared bands (their SED1) and impose a minimum 0.15 mag un-

certainty in all bands in order to account for differential lensing across the im-

ages.1

2.5.1 Modeling Uncertainties: Outflows and Dust

Figure 2.6 shows that the SEDs of the best-fitting model galaxies from our three

galactic outflow recipes and two cosmologies all reproduce the observations with

reduced χ2 < 1. Moreover, they are remarkably similar. All four models possess

a very blue rest-frame UV continuum owing to young age and low metallicity as

well as a pronounced Balmer break owing to the presence of older stars. The best-

fit parameters are similar, indicating that the simulation’s ability to reproduce the

observations is robust to the choice of superwind feedback prescription and de-

tailed cosmological parameters (to the extent of the variations considered). This

result is akin to the findings from studies employing one-parameter model SFHs

that good fits can be obtained via a variety of assumed SFHs and metallicities.

To quantify this point, Figure 2.7 and Table 2.1 show how the derived prob-

ability densities for the physical parameters of Abell 2218 KESR depend on the

choice of wind model. The entries in Table 2.1 list the mean and variance of the
1Schaerer & Pelló (2005) have noted that the published upper limits from LRIS and in the

Hubble/ACS V606 band do not significantly affect the derived parameters. In the case of the V606

limit, we have verified this.
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Figure 2.7 Probability densities for the physical parameters of Abell 2218 KESR

based on four numerical simulations assuming different treatments for super-

wind feedback. Results from the nw, cw, vzw, and jvzw models are given with

dashed red, dotted blue, solid black, and long-dashed cyan lines, respectively.

Solid green and dotted magenta boundaries denote ranges inferred by Egami et

al. (2005) and Schaerer & Pelló (2005), respectively (the lower limit to stellar mass

obtained by Schaerer & Pelló (2005) is 7.7). Each curve has been normalized to

unit area and then scaled so that the three models fit on the same plot. All of the

best-fit physical parameters except metallicity (see text) are robust to changes in

the superwind feedback treatment.
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histograms shown in Figure 2.7. Each curve in Figure 2.7 has been normalized to

unit area and then scaled so that all four curves fit on the same plot.

All of the derived physical parameters except Z∗ are remarkably robust to our

choice of superwind feedback prescription. Generally, the data seem consistent

with negligible dust reddening, a mean stellar age of 100–200 Myr, SFRs of 1–3

M¯ yr−1, a stellar mass of 3–8×108M¯, and a redshift z ∼ 6.7, in good agree-

ment with other determinations (Egami et al., 2005; Schaerer & Pelló, 2005)2. The

tightness of the constraints on the various intrinsic physical parameters results

from the relatively narrow range of SFHs experienced by the galaxies in the sim-

ulations. By contrast, the uncertainty in the inferred redshift is determined by

our treatment of IGM extinction since the inferred redshift is dominated by the

position of the Lyman-α break.

Comparing the results from the models in detail, both the cw and nw mod-

els are less efficient at suppressing star formation via outflows. For this reason,

at fixed number density (or equivalently, dark matter halo mass) the cw and nw

model galaxies have formed more stars, retained more of their metals, have a

higher SFR, and are older (Davé et al., 2006a). Similarly, at a given stellar mass,

the vzw galaxies are younger, have expelled a larger fraction of their heavy el-

ements, and for these reasons require more dust reddening in order to match a

given observed colour owing to the age–metallicity–dust degeneracy. The jvzw

models give results that are the similar to the vzw results owing to the similar

feedback treatment. However, the lower values used in the jvzw simulation for
2Note that because our simulations’ star formation treatment assumes instantaneous recyling,

we give here the total mass of stars that have formed. Using the Bruzual & Charlot (2003) tables,
we find that ≈ 70% of the stellar mass of stars formed in galaxies that are more massive than
108M¯ at z = 6.75 remains in stellar form at z = 6.75.
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the cosmological parameters Ωm and σ8 delay the growth of structure at early

times, yielding fewer model galaxies for us to match against observations for a

given simulated volume. As a result, parameter space is less well-sampled and

the probability density curves (notably AV ) exhibit more stochasticity.

Next to stellar mass and redshift, the mean stellar metallicity is the most

tightly constrained parameter, followed by the mean age and SFR. Metallicity

is the only parameter for which the different wind models disagree at the > 1σ

level. That the models could agree on all of the derived parameters except for the

metallicity reflects the fact that the effect of metallicity on the photometry is small

compared to the effect of stellar age (Schaerer & Pelló, 2005). On the other hand,

the tightness of the metallicity constraint follows from the tight mass-metallicity

relation that the simulation predicts (§ 2.4). Thus, the apparent disagreement be-

tween the metallicity constraints is simply a reflection of the tight priors imposed

by the different simulations combined with the robust constraints on stellar mass.

Note that because the vzw model agrees the best with the distribution of metals

in the IGM (OD06) and the mass-metallicity relationship of star-forming galax-

ies (Davé et al., 2006b), it probably makes the most believable prediction of Abell

2218 KESR’s mean stellar metallicity.

We investigated the effect that varying the dust prescription has on the de-

rived physical parameters and found, in agreement with Schaerer & Pelló (2005),

that this has no significant effect on the derived physical parameters other than

AV when the simulated models were used. The derived AV were roughly 0.1

mag lower for the Cardelli et al. (1989) and Charlot & Fall (2000) laws; these dif-

ferences are expected given the extra extinction imposed at rest-frame UV wave-

lengths in the former case and (similarly) for younger stars in the latter case. The
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total amount of light removed by dust extinction, which can be regarded as a

prediction of the total infrared luminosity, is roughly 1010L¯, independent of the

assumed dust prescription.

Two groups have previously published constraints on this object’s properties.

Egami et al. (2005) employed a uniform sampling of single-parameter SFHs; their

results are given in Table 2.1 and by the solid green vertical lines in Figure 2.7,

where we have converted their derived SFR and M∗ to values appropriate for

a Chabrier IMF. It is clear that their constraints are entirely consistent with our

own, although the tight intrinsic correlations between physical parameters in the

simulated models allow us to impose tighter constraints on all of the derived pa-

rameters. In the second work, Schaerer & Pelló (2005) exhaustively examined the

systematics of assumptions regarding SFH and template spectra with the goal of

bracketing the most likely parameter space. Their constraints, given by the dot-

ted magenta vertical lines and listed in 2.1, are also consistent with ours. Hence

our simulations, despite a different generic form for their galaxies’ SFHs than has

been assumed in previous investigations, can reproduce the properties of Abell

2218 KESR equivalently well.

2.5.2 Comparison to One-parameter SFHs

Efforts to constrain the physical properties of high-redshift galaxies via SED-

fitting invariably encounter a host of degeneracies between the best-fit param-

eters, the most difficult of which is certainly the age-extinction-SFR degener-

acy (Shapley et al., 2001; Papovich et al., 2001; Shapley et al., 2005a). Gener-

ally, young stellar population age, high SFR, and low dust extinction all yield

bluer photometric colours while old age, low SFR, and high dust extinction all

yield redder photometric colours. These degeneracies also contribute to the un-
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Figure 2.8 Best-fit combinations of age, extinction, and and SFR for 1000 Monte

Carlo re-observations of Abell 2218 KESR. The solid black, dotted blue, short-

dashed red, and long-dashed cyan contours enclose 68%, 95%, and 99% of the

best-fit solutions for the vzw, decaying, rising, and constant model sets, respec-

tively. The vzw models allow for the tightest constraints to be placed. Interest-

ingly, the 1σ best-fit intervals from the constantly-rising SFH are very close to the

simulation result.
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certainty in the inferred stellar mass via the stellar age-stellar mass degeneracy,

whereby older populations have a higher mass-to-light ratio, yielding a higher

stellar mass at a given measured flux density. Compounding the problem, there

are a number of ways in which the best-fit physical properties depend on any

assumptions that are made regarding the shape of a galaxy’s star formation his-

tory (Shapley et al., 2005a). Numerical simulations, in contrast, provide tight rela-

tionships between galaxy star formation rate, stellar mass, and metallicity (from

which extinction may be inferred). These predicted relationships translate into

tighter constraints on physical parameters that depend strongly on the shapes of

the trial SFHs.

In order to quantify how effectively the simulations reduce well-known de-

generacies in best-fit parameters, we generated 1000 Monte Carlo re-observations

of Abell 2218 KESR by adding scatter to the photometric measurements in a way

that was consistent with the reported observational uncertainties. For each data

set, we then determined the best-fit parameters from the vzw models as well as

from the decaying, rising, and constant SFH models. Figure 2.8 shows the locus

of best-fit parameters in several famously degenerate projections of parameter

space. The solid black, dotted blue, short-dashed red, and long-dashed cyan con-

tours enclose 68%, 95%, and 99% of the best-fit solutions for the vzw, decaying,

rising, and constant model sets, respectively.

The expected degeneracies that result from one-parameter SFHs are easy to

see in each panel of Figure 2.8. At the young end, each of the one-parameter

models includes a parameter space corresponding to a galaxy that has formed all

of its stars in a rapid burst lasting less than 100 Myr. Our use of 100-Myr average

SFRs guarantees these models a high SFR (≥ 4M¯ yr−1). Because these models
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are very young, they are intrinsically blue and can require high dust reddening

(AV ≤ 1 mag) to match the observations. Additionally, their young ages guaran-

tee that their observed optical flux is dominated by short-lived O and B stars with

low mass-to-light ratios, leading to low inferred stellar masses. These dramatic

burst-dominated models have no analogue in the simulations.

The old end is dominated by the constant-SFR models, equivalent to the τ →

∞ limit of the decaying models. These models are characterized by intrinsically

red colours and high mass-to-light ratios, leading to low dust extinctions and

high stellar masses. The oldest of these fits requires the galaxy to have been form-

ing stars at ≈ 1M¯ yr−1 when the universe was less than 10 Myr old; our simula-

tions cannot produce this because gas densities have not grown high enough to

support such SFRs at such early times.

At the 1σ confidence level, the one-parameter model that most closely approx-

imates the simulated galaxies is the rising SFH model, albeit with a preference

for somewhat older ages. Returning to Figure 2.1, we see that this is expected

because the simulated galaxies’ SFHs are generically characterized by a slowly

rising SFR at these redshifts. Conversely, at the ∼> 2σ level, the constantly rising

SFH model allows for a wider range of models that have no analogues in the

simulations. The relatively small range of simulated galaxy SFHs typified by the

examples in Figure 2.1 leads directly to the relatively tight range of inferred ages

for the solid contours in Figure 2.8. Assuming that Abell 2218 KESR is located

at z = 6.75, the SFHs in Figure 2.1 suggest that it may have formed its first stars

before z = 15, with (10%, 50%) of its stars in place by z =(11,8); in other words,

roughly half of the best-fitting models’ stars at the epoch of observation are over

150 Myr old. This relatively old population readily accounts for the pronounced
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Balmer break that is visible in Figure 2.6, and is typical in our simulations.

In summary, a key point of this paper is demonstrated by the fact that, in each

panel of Figure 2.8, the confidence intervals obtained from simulated galaxies

fall well within the range described by the complete set of one-parameter model

SFHs, while yielding the tightest constraints. The tighter constraints owe to the

relatively small range of SFHs and the tight correlations between the various pa-

rameters that generically occur in hierarchical simulations of galaxy formation.

This illustrates that, if the simulations are broadly correct, the physical properties

of high-z galaxies can be more precisely constrained using SPOC. However, since

at present the simulations are largely untested at these epochs (modulo the broad

successes in Davé et al., 2006a), it may be more appropriate to regard the tight

simulation constraints as predictions to be tested against future observations.

2.5.3 The Importance of Rest-Frame Optical Data

In this work we focus on reionization-epoch objects for which rest-frame optical

measurements are available because the rest-frame optical flux is dominated by

relatively low-mass stars whose mass-to-light ratio evolves slowly relative to the

stars that dominate the rest-frame UV. For reasonable SFHs, this allows tighter

constraints to be placed not only on the galaxy’s stellar mass, but also on its SFH.

To quantify this point, Figure 2.9 plots the light-weighted median age of A2218

KESR versus rest-frame wavelength for the SFHs in Figure 2.1. For example, a

point at 2000 Å and 15 Myr indicates that, for that model, 50% of the photons

with rest-frame wavelength of 2000 Å are emitted by stars that are 15 Myr old or

younger.

For all of the models that we consider, photons from bluewards of the Balmer

break are generated by stars that are under 100 Myr old. This is expected since
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Figure 2.9 Light-weighted median age of A2218 KESR versus rest-frame wave-

length. The single solid curve corresponds to the best-fitting vzw model while the

dotted green, short-dashed red, and long-dashed blue curves correspond to the

three best-fitting constant, rising, and decaying models, respectively. The ranges

at the top of the figure indicate the full width at 20% of maximum response for

an object located at z = 6. The specific one-parameter models whose spectra

are considered in Figure 2.9 are the same as the models in Figure 2.1 except that

we include only the best-fitting vzw model for clarity. Generally, measurements

shortward of the Balmer break sample light from stars that are 50-100 Myr old

whereas measurements in rest-frame optical wavelengths constrain older popu-

lations.
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B stars live roughly 100 Myr (Iben, 1967) and justifies the use of rest-frame UV

flux as a constraint on the current SFR. Conversely, it explains why rest-frame

UV data do not constrain a galaxy’s SFH prior to ≈ 100 Myr before the epoch of

observation. By contrast, data from longer wavelengths sample the SFH at earlier

epochs because the stars that dominate these wavelengths live much longer. In

the case of A2218 KESR, the constant and decaying models in Figure 2.9 suggest

that rest-frame optical data constrain the galaxy’s SFH roughly 80 and 200 Myr

before the epoch of observation, while the rising and vzw models fall in between

these limits; the differences probably owe to the detailed interplay between the

slope of the SFH and the rate at which low-mass stars fade. It is possible that

the rough agreement in the optical portion of Figure 2.9 explains the tendency of

all of the best-fit models in Figure 2.1 to be in rough agreement with each other

during the interval z ≈ 8 → 6.7 even though they diverge prior to z = 8. Note

that this agreement is nontrivial given that all of the one-parameter models can

in principle match the observations with burst-like solutions (Figure 2.8). Most

importantly, it highlights the potential of rest-frame optical measurements red-

wards of the Balmer break to constrain the SFH for reionization-epoch galaxies.

2.6 A Sample of Reionization-Epoch Galaxies

While the example of Abell 2218 KESR is illustrative, the ultimate purpose of

SPOC is to constrain physical parameters for a large sample of galaxies, in order

to characterize the observed galaxy population and to constrain the underlying

galaxy formation model. To illustrate the sort of insights gained using SPOC, we

apply it to a sample of observed z > 5.5 objects that have published broadband

photometry in the rest-frame UV and optical bands. For each object, we used
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Figure 2.10 Spectra of the best-fitting model galaxies overplotted on the measured

photometry. In cases where spectroscopic redshifts are available this has been

forced; in other cases (Abell 2218 KESR and Y05#7ab) we used the photometric

redshifts. Horizontal error bars indicate the full width of each filter at 20% of

maximum response. The bottom and top horizontal axes give the observed and

rest-frame wavelengths. Using the numerically-simulated SFHs with the Bruzual

& Charlot (2003) models, we obtain satisfactory fits in all cases and excellent fits

in 5 cases.
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Figure 2.11 Contours enclosing 68 and 99% of the solutions found for the various

galaxies given the various SFHs that we inspected. Thick solid black, dotted

red, solid cyan, and dashed blue curves correspond to the jvzw, rising, constant,

and decaying SFH models, respectively. In all cases but GLARE#3001, the jvzw

models yield results that are generally consistent with the one-parameter model

SFHs while allowing for equally-tight or tighter uncertainties.
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SPOC to determine its best-fit physical parameters with the jvzw, constant, rising,

and exponentially-decaying models. For objects whose redshift has been mea-

sured spectroscopically, we run SPOC twice: once with the redshift constrained

to the measured value and once with the redshift left as a free parameter. The

first run allows more accurate derivations of the physical parameters, while the

second enables us to study the accuracy of SPOC’s photometric redshifts.

Table 2.2 compares the means and 95% confidence intervals for the various

physical parameters of each galaxy that result from the various models, while

Figure 2.11 shows the 68 and 99% contours in the M∗-SFR space for the same mod-

els. In the table, “jvzw” denotes results derived assuming the simulated galaxies;

“constant”, “decaying”, and “rising” denote representative one-parameter model

SFH models. The derived dust extinction assumes the Calzetti et al. (2000) dust

prescription and RV = 4.05. All parameters are derived using a Chabrier IMF; to

convert to a Salpeter IMF from 0.1–100 M¯, multiply the stellar mass and SFR by

1.5. The parameter tH/tSFR gives the ratio of the current SFR to the past-averaged

SFR. Where available, spectroscopic redshifts zspec are quoted in the second col-

umn next to the object name. The last column gives the minimum reduced χ2 for

each combination of models and observed object. The number of degrees of free-

dom is the number of detections used minus 3 for A2218 KESR and Y05#7ab, and

minus 2 for the others. While fitting with one-parameter models, we confirmed

that the probability density varies only weakly with Z∗ (Papovich et al., 2001); for

this reason we have omitted Z∗ from Table 2.2. Our simulations, combined with

SPOC, suggest that all of the objects have 0.1 ∼< Z∗/Z¯ ∼< 0.3 (Davé et al., 2006a).

Figure 2.10 compares the synthetic spectra of the best-fit jvzw models with the

published rest-frame UV through optical data for our sample. Table 2.2 shows
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that we obtain very good fits (χ2
ν ∼< 2) with the simulated library in all cases

except for the unusual object GLARE#3001. Note that these spectra and χ2
ν values

are purely representative; in practice we obtain physical constraints through the

Bayesian analysis described in §2.2 rather than by simply examining the best-

fitting model. It is encouraging that the fits obtained from our simulated galaxy

library are generally equally as compelling, in terms of goodness-of-fit measure

χ2
ν , as the fits that result from the one-parameter SFH model libraries.

Taken together, these findings strongly support the idea that most observed

reionization-epoch galaxies possess theoretical analogues within our simulations.

However, some of these objects show minor discrepancies that may be hinting at

some failing in the models. Given the currently large observational uncertain-

ties it is difficult to place robust constraints on the models, but it is nevertheless

worthwhile to discuss each of these systems in detail in order to illustrate how

SPOC can be used to both reveal physical characteristics as well as test the under-

lying model.

A370 HCM 6A: We have taken the photometric data and errors in the observed

R,Z,J,H,K’, and Spitzer/IRAC bands from Chary, Stern & Eisenhardt (2005, here-

after CSE05), and we have adopted their lensing magnification factor of 4.5. The

measured 4.5µm flux is anomalously large; CSE05 interpret the excess over the

inferred stellar continuum as Hα emission line flux and derive an SFR of 140 ±

90M¯ yr−1. In our simulations galaxies at z = 6.5 that possess this object’s 3.6µm

flux are forming stars at 2–12M¯ yr−1. Since such systems are not expected to

produce Hα equivalent widths that would contribute significantly to the broad-

band flux, we adopt the uncorrected 4.5µm measurement. We verified that, if

we use the Hα-corrected 4.5µm flux obtained by CSE05, the inferred SFR drops
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from 6.1 ± 2.3 to 4.9 ± 1.9M¯ yr−1; this value is in conflict with the assumed line

strength as expected. The 8.0µm limits quoted in the text of CSE05 are different

from the limit plotted in their Figure 2; we adopt the less restrictive limit from the

Figure.

When we do not enforce the spectroscopic redshift, the photometric redshift

5.9 ± 0.4 is dominated by the R − Z ′ limit and is roughly 1.5σ below the spec-

troscopic redshift; the formal redshift uncertainty is dominated by the size of the

R−Z ′ baseline. Although the one-parameter models yield more accurate photo-

metric redshifts in this case, the difference is comparable to the formal uncertainty

and we regard it more as a coincidence than as a clue to the SFH of this object. A

more accurate photometric redshift would require us to include the unpublished

measurement in I and an accurate Z ′ transmission curve; we have used the SDSS

z′ profile because a transmission curve for the Z ′ measurement used by Hu et al.

(2002) is not available.

The fits that we obtain are very good, although we confirm that the 4.5µm

measurement is difficult to interpret as purely stellar continuum emission. In

fact, even without the anomalous 4.5µm flux the UV continuum is difficult to

understand owing to the dip at K ′ (Schaerer & Pelló, 2005), and the measured

Lyα flux is difficult to reconcile with the observed Lyα luminosity function at

z ∼ 6.5 (Malhotra & Rhoads, 2004; Kashikawa et al., 2006). Thus, until more

precise measurements of this object are available, any inferences regarding its

physical properties should probably be regarded as suggestive.

With these caveats in mind, we find that using the simulated models yields

inferred stellar mass, SFR, and AV that are fully consistent with previous deriva-

tions as well as with the one-parameter model SFHs. The range of stellar masses
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allowed by the jvzw models nicely brackets the range between the emission line-

dominated and stellar continuum-dominated solutions suggested by CSE05, and

the range of SFRs is consistent with the derivation of Hu et al. (2002) based on

the Lyα line and well below the inferred Hα-based SFR of CSE05. Turning to

the one-parameter models, the widest uncertainties for all of the parameters are

provided by the decaying model, with the results from the constant and rising

models spanning a somewhat smaller subset of this space. The results from the

rising model are generally the closest match to the jvzw models although they

permit a somewhat larger range of SFR; these are burst-like models that have no

analogue in our simulations.

SBM03#1, SBM03#3, GLARE#3001: We adopted the measured broadband fluxes

and spectroscopic redshifts for these objects from Tables 1 and 2 in Eyles et al.

(2005). Object SBM03#1 is the same as object #1ab in Yan et al. (2005). Comparing

the derived fluxes in these two papers, we find disagreement at the ≈ 1σ level

in the ACS i775, z850, and NICMOS H160 bands. To be conservative, we therefore

impose a minimum uncertainty of 0.15 mag in all bands for these objects. When

fitting for the photometric redshifts we include the i775 fluxes; otherwise we ex-

clude this datum following Eyles et al. (2005). Figure 2.10 shows that we obtain

an excellent fit for SBM03#1 and satisfactory fits for SBM03#3 and GLARE#3001,

with the chief difficulty in the latter objects being the anomalous fluxes in KS as

noted by Eyles et al. (2005).

For objects SBM03#1 (Dickinson et al., 2004; Stanway et al., 2004a, 2003) and

SBM03#3 (Bunker et al., 2003; Stanway et al., 2003) SPOC deduces stellar masses of

≈ 1010M¯ and mean ages that include the range 100–300 Myr irrespective of the

assumed SFH, consistent with the findings of Eyles et al. (2005). The minimum
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age for each model is older than the ages for the other objects in our sample

because the small measured uncertainties on the 3.6µm fluxes for SBM03#1 and

#3 create the strongest case for a pronounced Balmer break. In our simulations,

such objects are roughly 130–200 Myr old and are forming stars at a healthy 30–60

M¯ yr−1 (both 1σ). The resulting intrinsically blue colours cause SPOC to select

moderate dust extinctions AV of 0.4–0.9 and 0–0.1 for #1 and #3, respectively, in

order to match their UV continuum slopes. While these SFRs are within the full

range inferred via the one-parameter models, they are generally more active and

younger than inferred via the decaying and constant models. The discrepancy

owes primarily to the fact that the constant and decaying models permit higher

SFRs at early times (z ∼> 10) than occur in our simulations. Because the rising

model excludes such early episodes, it yields constraints that are more similar to

the results from the jvzw models.

The photometric redshifts for SBM03#1 and #3 are 1–3σ below the spectro-

scopic values for both simulation and one-parameter models, suggesting that

unknown systematic uncertainties such as uncertainty owing to inaccurate filter

profiles should be folded into the formal uncertainties; in future work an enforced

minimum redshift uncertainty of δz/(1 + z) ≥ 0.02 seems reasonable.

Object GLARE#3001 is a particularly interesting case because it represents the

worst fit for all our models. This object shows a relatively flat SED with little

evidence for a Balmer break (Figure 2.10). The photometric redshifts are sys-

tematically high although they are accurate at the 1σ level. SPOC finds that it

is perhaps an order of magnitude less massive than SBM03#1 and #3. In our

simulations, the analogues to GLARE#3001 are of roughly the same age as the

SBM objects while their SFRs are roughly one tenth as large, leading to similarly
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strong Balmer breaks and dust extinctions. Comparing with the one-parameter

model SFHs, Table 2.2 shows that, for this object, constant and rising models

yield masses, SFRs, and ages that are marginally consistent with the results from

our simulations (although they are skewed to higher SFR) while decaying models

yield extremely young, burst-like fits whose parameters are entirely inconsistent

with the jvzw results (this is especially clear in Figure 2.11).

The chief difficulty in fitting GLARE#3001 is the anomalously high flux mea-

sured in KS , as noted by Eyles et al. (2005). If real, this would suggest that this

is a low-mass objects undergoing a burst. Table 2.2 shows that the χ2
ν per degree

of freedom is lower for the one-parameter models than for the simulated models,

because the one-parameter models have the freedom to produce a higher KS flux

through a higher SFR and AV together with a lower stellar mass; galaxies with

these combinations of high SFR (> 10M¯ yr−1) and low stellar mass (< 109M¯)

simply do not occur in our simulations. It would be preliminary to stake the final

interpretation of this galaxy on one broadband measurement (particularly one in

KS), especially since even the one-parameter model fits are not particularly good

(χ2
ν ∼> 3). But this object does illustrate how SPOC can pick out galaxies that may

provide the most stringent tests of galaxy formation models.

Y05#5abc,#7ab: We adopted the Hubble/ACS+NICMOS and Spitzer/IRAC fluxes

for objects #5abc and #7ab from the z ≈ 6 sample in Yan et al. (2005) and imposed

a minimum uncertainty of 0.15 mag in all bands as before. SPOC failed to find an

acceptable fit for object #5abc, for either simulated or one-parameter model SFHs.

This object is evidently a blend of at least three components located at different

redshifts and should therefore be fit with multiple components (Yan et al., 2005);

however, this is beyond the scope of the present work. We therefore do not show
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the results from #5abc.

By contrast, we obtain excellent fits for object #7ab. This is somewhat surpris-

ing given that #7ab is clearly a mixture of two components (Figure 1 in Yan et al.

(2005)), and probably owes largely to the fact that it does not show anomalous

single-band fluxes in the way that HCM 6A, SBM03#3, and GLARE#3001 do. The

photometric redshift is constrained to 6.2 ± 0.2, 1.5σ higher than the photometric

redshift determined by Yan et al. (2005) (although they do not quote an uncer-

tainty). Stellar mass is relatively poorly constrained owing to the relatively low

signal-to-noise in the observed 3.6µm band. As Figure 2.11 shows, when we ap-

ply SPOC with our simulated models, the poorly-constrained stellar mass leads

directly to a poorly-constrained SFR. Comparing with the one-parameter mod-

els, we find that these span an even larger (overlapping) space. This object illus-

trates the importance of high-quality near-infrared data in order to understand

the physical properties of high-redshift galaxies.

Yan et al. (2005) applied exponentially-decaying models to this object and

found a burst-like best-fit solution with a stellar mass of log(M∗/M¯) = 9.5 (when

converted to a Chabrier IMF), little current star formation (∼ 0.001M¯ yr−1), no

dust extinction, and an age of 50–100 Myr. The stellar mass is fully consistent

with our jvzw results. However, we find disagreement in the inferred dust ex-

tinction, SFR, and age because in the simulations galaxies of this stellar mass

and redshift are invariably older and are still forming stars. In particular, we

expect AV = 0.34 ± 0.24, Ṁ∗ = 9 ± 5M¯ yr−1, and age = 175 ± 30 Myr (1 σ un-

certainty). Once again, the absence of burst-like models in our simulations con-

stitutes an effective prior that excludes such solutions. When we apply our own

exponentially-decaying models to this object we find that the probability density
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possesses a sharp peak at low ages (< 100 Myr) and a broad but slightly lower

plateau at older ages. So while we formally obtain the lowest χ2 for burst-like

models, folding in our simulation prior leads to an older age being preferred.

This object is therefore a classic case where simply taking the lowest χ2 among all

SFHs results in a substantially different interpretation than that obtained using

physically-motivated priors. It will be interesting to see with improved oberva-

tions whether or not the simulation prediction ends up being correct.

The sixth column of Table 2.2 combines M∗ and Ṁ∗ with the age of the uni-

verse tH at each galaxy’s redshift into an estimate of the ratio of the present- to

past-averaged SFR, Ṁ∗/(M∗/tH) = tH/tSFR. A value of tH/tSFR less than unity

indicates a declining SFH whereas a value greater than unity indicates a rising

SFH.3 Eyles et al. (2005, 2006) have previously used this quantity to argue that

galaxies that exhibit Balmer breaks at z ∼ 6 must be experiencing a declining

SFH. In contrast, Table 2.2 indicates that, while this possibility is permitted by

the decaying models at the 2σ level for all but one of the galaxies that we con-

sider, it is by no means required4. For our physically-motivated models it is not

permitted owing to the generally rising SFHs in our simulations, but in fact even

for the decaying models it is not the favored solution when the full range of pos-

sibilities is taken into account. Hence we do not find that the presence of a Balmer

break requires a declining SFH. The disagreement between our results and those

of Eyles et al. (2005) owes partly to the slightly different model sets used in the

two analyses, and partly to our employing the full probability densities rather
3Note that, because tH/tSFR does not involve the inferred age of a galaxy’s stars, this exercise

is not circular; e.g., results from fitting exponentially decaying models do not necessarily require
that tH/tSFR < 1.

4Decaying models permit tH/tSFR < 1 while other models do not because decaying models
can yield blue colors along with a lower specific SFR than the other models.
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than restricting our attention to the model with the lowest χ2. Most importantly,

however, this disagreement emphasizes the fact that the form of the correct SFH

is not constrained by the current measurements and hence the conclusions are

highly model-dependent.

In these fits, we have not considered the possibility of any AGN contribution

to the SEDs. From rest-UV photometry alone it is difficult to rule out this possi-

bility. Fitting power laws of the form fν ∝ να to their rest-frame UV continua,

we obtain slopes in the range α ∈ [−0.3,−1.1] with a weighted mean of -0.61.

These are not significantly different from the slopes inferred by Fan et al. (2001)

from 39 quasars at 3.66 ≤ z ≤ 4.77, with a mean and standard deviation of -

0.79 and 0.34, respectively. However, with Spitzer/IRAC photometry the Balmer

breaks in A2218 KESR, SBM03#1, SBM03#3, and Y05#7ab are clearly evident. Fur-

thermore, Stanway et al. (2004a) and Bunker et al. (2003) argue that AGN can be

ruled out for three of the objects (SBM03#1, SBM03#3, and GLARE#3001) based

on upper limits to the flux of the kmfionNV doublet at 1240Å, the lack of any

X-ray detection, and the relatively small velocity width of the observed Lyα lines

(vFWHM < 500 km s−1). These arguments also apply to A370 HCM 6A. Addition-

ally, CSE05 note that the latter object is similar to high-redshift Lyα emitters, for

which the AGN fraction is constrained to be less than 5% (e.g., Gawiser et al.,

2006; Ouchi et al., 2005; Dawson et al., 2004; Wang et al., 2004; Santos et al., 2004).

This suggests that AGN do not dominate their rest-frame optical spectra, and

emphasizes the usefulness of Spitzer/IRAC measurements for constraining the

properties of reionization-epoch objects. Hence it seems reasonable to model all

of these objects with stellar population synthesis models alone, as we have done.

In summary, we are usually but not always able to find galaxies within our
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simulations whose photometry suggests that they could be the theoretical coun-

terpart to observed reionization-epoch galaxies. Using these models as inputs to

our SED-fitting engine, SPOC, we obtain physical constraints on the properties

of the galaxies that are, in five out of six cases, consistent with the results from

one-parameter model SFHs. In the remaining case, the observed SED leads the

one-parameter models to prefer burst-like scenarios that do not occur in our sim-

ulations. In all cases the tightness of constraints from the simulated models is

equal to or better than that from one-parameter model SFHs. Albeit small, this

sample of systems illustrates how using SPOC to compare among SFHs can pro-

vide insights into the physics of early galaxy formation, and identify unusual

galaxies that provide the tightest constraints on such models.

2.7 Conclusions

In this paper we present a Bayesian SED-fitting engine called SPOC, which pro-

vides constraints on the physical properties of galaxies from photometric data.

SPOC takes as input a galaxy’s photometry and a set of model galaxy spectra, ob-

tained either by assuming an analytic form for the galaxy’s star formation history

or from numerical simulations of galaxy formation, and outputs probability dis-

tributions for the physical properties of individual galaxies based on those model

priors. Here we compare and explore implications for different models, with an

eye towards better constraining the physical properties of high-redshift galaxies.

Because SPOC is intended to test whether predicted SFHs match those in-

ferred from data, it provides constraints on models of galaxy formation that com-

plement comparisons to bulk properties such as galaxy luminosity functions or

clustering. A successful model must not only reproduce observed bulk statis-
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tics, but must also reproduce the colors of individual galaxies across all observed

bands. Galaxies with photometry that cannot be well fit in a given model provide

insights into model failings, and ultimately into the physics that drives galaxy

formation. Using SPOC it is possible to quantitatively determine how well a par-

ticular model matches an individual galaxy. Such a methodology is particularly

useful at epochs when only a small number of galaxies are detectable, such as for

the earliest galaxies known.

We show that SPOC accurately recovers the input physical parameters of model

galaxies when fitted with SFH derived from the simulations themselves, with

typical systematic errors less than the formal 1σ fitting errors. When a simulated

galaxy is fit with one-parameter star formation histories or the incorrect extinc-

tion model, then larger deviations can occur. Since the true SFH and extinction

law are unknown, these deviations can be regarded as systematic errors on the

determination of physical parameters. In most cases, such systematic errors are

less than 50% in stellar mass, star formation rate, and AV , and ∼< 2% in redshift.

We then apply SPOC to six galaxies at z ∼> 5.5 that have published photometry

spanning the 4000Å break (which is necessary in order to obtain meaningful con-

straints on physical properties). We begin with a more in-depth study of Abell

2218 KESR (z ≈ 6.7), since at present it is probably the best-studied reionization-

epoch system, and then apply SPOC to five more galaxies in order to investigate

a wider variety of galaxy properties. Our main conclusions are summarized as

follows:

• The physical parameters derived for Abell 2218 KESR using our library of

simulated galaxies are in line with previous determinations, and those em-

ploying various one-parameter SFHs. The formal uncertainties are smaller
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when using simulated galaxies, because the simulations intrinsically pro-

duce a relatively narrow range of SFHs for galaxies at these epochs. The ex-

istence of an object with the properties of Abell 2218 KESR at these epochs

does not pose a significant challenge to current models of galaxy formation.

• All inferred physical parameters for Abell 2218 KESR except metallicity

are remarkably insensitive to the explored choices for superwind feedback

model, dust extinction law, and cosmology. The fundamental reason for

this is that regardless of such choices, simulations produce a similar form

for the SFH of early galaxies. Disappointingly, this means that photome-

try alone cannot constrain such modeling uncertainties. On the other hand,

this means that simulation predictions of physical parameters using SPOC

are quite robust. Discrimination between, say, superwind feedback models

can be obtained through comparisons with bulk properties such as lumi-

nosity functions (as shown in Davé et al., 2006a).

• Exploring a set of six z ∼> 5.5 galaxies, we find that for five of the systems the

simulated galaxies and one-parameter models produce overlapping proba-

bility contours and best-fit physical parameters that are formally consistent,

and the minimum reduced χ2 is similar between all models. This shows

that simulations are usually but not always able to produce galaxies with

properties similar to observed z ∼ 6 systems.

• The spectra of simulated galaxies always show a significant Balmer break,

despite the fact that their SFHs are best characterized as constantly-rising

(not decaying). The median stellar age is ≈ 120 − 250 Myr (2σ) for all six

objects, spanning a range in stellar masses from ∼ 5 × 108M¯ ∼< M∗ ∼<
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2 × 1010M¯. Hence the existence of somewhat older stellar populations in

these early systems is consistent with simulation predictions.

• The object GLARE#3001 is an outlier that is poorly fit by our simulations,

though in fairness the fits with one-parameter models are not optimal either.

The best fits tend to favor models with younger stellar ages, lower masses,

and higher SFRs than any simulated galaxies, perhaps indicating that this

is a galaxy undergoing a burst. However, as discussed in the text, these

fits are mainly driven by a high Ks-band flux. If that data point were con-

firmed it would suggest that the simulations may be missing some physical

process(es) that governs a small fraction of galaxies at this epoch.

Our hydrodynamic simulations of galaxy formation make some clear predic-

tions for the star formation histories of galaxies at these early epochs. In partic-

ular, they predict that the stellar mass, star formation rate, and metallicity are all

tightly correlated (Finlator et al., 2006; Davé et al., 2006a). Indeed such trends are

generically seen in most hydrodynamic simulations of galaxy formation, though

not necessarily in semi-analytic models. Our preliminary comparisons to z ∼ 6

galaxies show that, while the simulations are not necessarily statistically favored

over other classes of SFHs, the available data at least do not rule out these sim-

ulation predictions. Together with the fact that such simulations can reproduce

key bulk properties of early galaxies (Finlator et al., 2006; Davé et al., 2006a), this

suggests that models of early galaxy formation are able to reproduce a range of

observed properties of galaxies at these epochs.

In this work we have performed the simplest possible spectral synthesis cal-

culations, primarily because our focus has been a comparison between different
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SFH models. In the future we plan to investigate different population synthesis

models (e.g., Maraston et al., 2006), IMFs (e.g. Fardal et al., 2006), and nonstel-

lar contributions to the observed fluxes such as emission lines from HII regions.

Eventually we will apply SPOC to a larger sample of galaxies, which will enable

a number of interesting investigations. First, the bulk statistics (e.g. stellar mass

or star formation rate functions) derived using SPOC can be compared against

that directly produced in simulations. While this is partly a circular compari-

son because simulated galaxies are being used to infer the physical properties, in

practice there is no guarantee that consistency will be achieved because the simu-

lated SFHs are quite generic; hence this should provide a stringent test of models

of galaxy formation. Second, SPOC can be used to identify populations of galax-

ies that deviate dramatically from simulation predictions (such as GLARE#3001),

in order to isolate which physical processes may be missing in models. In prin-

ciple this could quantify the contributions from nonstellar emission-dominated

sources such as AGN and extremely dusty objects. Finally, the redshift evolution

of the galaxy population provides a strong test of models, particularly investigat-

ing the dramatic change in the nature of massive galaxies that appears to occur

at z ∼ 1 − 2 (Papovich et al., 2005).

SPOC is a general-purpose code, in principle able to utilize any type of model

that produces detailed galaxy SFHs, be it a hydrodynamic, semi-analytic, or ana-

lytic model. In principle there is nothing that restricts SPOC to high redshift use,

but in practice other physical phenomena such as AGN contamination may be-

come more important at lower redshifts. SPOC could also provide a useful tool

to identify galaxy classes that are not readily reproduced in current models. We

are currently planning to make SPOC and our latest library of simulated galax-
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ies publicly available upon publication of this paper. We hope that SPOC will be

a useful and flexible tool for conducting detailed comparisons between simula-

tions and observations, as are critical for advancing our understanding of galaxy

formation.
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CHAPTER 3

THE ORIGIN OF THE GALAXY MASS-METALLICITY RELATION AND

IMPLICATIONS FOR GALACTIC OUTFLOWS

In this chapter, we use cosmological hydrodynamic simulations that dynami-

cally incorporate enriched galactic outflows together with analytical modeling to

study the origin of the stellar mass–gas-phase metallicity relation (MZR). We find

that metallicities are driven by an equilibrium between the rate of enrichment

owing to star formation and the rate of dilution owing to infall of unenriched

gas. This equilibrium is in turn governed by the outflow strength. As such, the

MZR provides valuable insights and strong constraints on galactic outflow prop-

erties across cosmic time. We compare three outflow models: No outflows, a

“constant wind” model that emulates the popular Dekel & Silk (1986) scenario,

and a “momentum-driven wind” model that best reproduces z ∼> 2 intergalactic

medium metallicity data (Oppenheimer & Davé, 2006). Only the momentum-

driven wind scaling simulation is able to reproduce the observed z ∼ 2 MZR’s

slope, amplitude, and scatter. In order to understand why, we construct a one-

zone chemical evolution model guided by simulations. This model shows that

the MZR in our outflow simulations can be understood in terms of three param-

eters: (1) The equilibrium metallicity Zg,eq = yṀSFR/ṀACC (where y=net yield),

reflecting the enrichment balance between star formation rate ṀSFR and gas ac-

cretion rate ṀACC; (2) the dilution time td = Mg/ṀACC, representing the timescale

for a galaxy to return to Zg,eq after a metallicity-perturbing interaction; and (3)

the blowout mass Mblowout, which is the galaxy stellar mass above which winds can

escape its halo. Without outflows, galaxy metallicities exceed observations by ∼
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×2−3, although the slope of the MZR is roughly correct owing to greater star for-

mation efficiencies in larger galaxies. When outflows with mass loading factor ηW

are present, galaxies below Mblowout obey Zg,eq ≈ y/(1+ηW), while above Mblowout,

Zg,eq → y. Our constant wind model has Mblowout ∼ 1010M¯, which yields a sharp

upturn in the MZR above this scale and a flat MZR with large scatter below it,

in strong disagreement with observations. Our momentum-driven wind model

naturally reproduces the observed Zg ∝ M0.3
∗ because Zg,eq ∝ η−1

W ∝ M
1/3
∗ when

ηW À 1 (i.e. at low masses). The flattening of the MZR at M∗ ∼> 1010.5M¯ ob-

served by Tremonti et al. (2004) is reflective of the mass scale where ηW ∼ 1,

rather than a characteristic outflow speed; in fact, the outflow speed plays lit-

tle role in the MZR except through Mblowout. The tight observed MZR scatter is

ensured when td ∼< dynamical time, which is only satisified at all masses in our

momentum-driven wind model. We also discuss secondary effects on the MZR,

such as baryonic stripping from neighboring galaxies’ outflows.

3.1 Introduction

In the reigning hierarchical model of galaxy formation, cooling times for mod-

erate overdensity gas at high redshifts (z > 3) are shorter than a Hubble time,

and protogalaxies accrete gas from the intergalactic medium (IGM) at rates that

increase with time (e.g., Birnboim et al., 2007). Gas forms into stars at rates that

mainly track the rising gas accretion rates (Kereš et al., 2005); these rates also

scale with galaxy mass and are occasionally boosted by mergers (e.g. Somerville

et al., 2001; Straughn et al., 2006). Each generation of stars in turn enriches the

surrounding gas with heavy elements. The young galaxies also drive much of

their enriched gas out via galactic superwinds, lacing the IGM with heavy el-
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ements (Adelberger et al., 2005b, 2003; Schaerer, 2003) while suppressing their

own star formation (Springel & Hernquist, 2003b; Oppenheimer & Davé, 2006).

As the universe expands further, cooling times rise, until z ∼ 1−2 when the cool-

ing time at moderate overdensities exceeds the Hubble time, and gas accretion

rates and star formation rates begin to decline.

At any given epoch the accumulated history of star formation, inflows, and

outflows affects a galaxy’s mass and its metallicity. Hence one expects these

quantities (or their proxies) to be correlated in some way, and furthermore for

this correlation to encode information about the physical processes that govern

galaxy formation. In this paper, we investigate what constraints may be placed on

such processes, particularly outflow processes that are currently the most poorly

understood, based on the observed mass-metallicity relation (MZR) of galaxies.

McClure & van den Bergh (1968) were the first to observe a correlation be-

tween the luminosity and metallicity of elliptical galaxies, and Lequeux et al.

(1979) were the first to show that total mass (or, equivalently, rotational velocity)

correlates with metallicity for irregular and blue compact galaxies. The question

of which relationship is more fundamental (Zaritsky et al., 1994; Garnett et al.,

1997) was resolved when Tremonti et al. (2004) showed, for a sample of ≈ 53, 000

star-forming galaxies from the Sloan Digital Sky Survey, that the MZR possesses

much less intrinsic scatter than the luminosity-metallicity relation. The trends

seen by Tremonti et al. (2004) have recently been shown to extend unbroken to

much lower masses by Lee et al. (2006), confirming the idea (Garnett, 2002) that a

single mechanism may govern galaxies’ metallicities across five decades in stellar

mass. Finally, the MZR is observed to evolve slowly such that galaxies of a given

stellar mass are only moderately more enriched today as compared to in the early
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Universe (Shapley et al., 2005b; Savaglio et al., 2005; Erb et al., 2006; Berger et al.,

2006).

A number of mechanisms have been proposed to explain the observed trends.

Building upon an idea originally introduced by Mathews & Baker (1971) and Lar-

son (1974), Dekel & Silk (1986) and Dekel & Woo (2003) showed that supernova

feedback energy could give rise to a range of observed trends in low mass galax-

ies including the MZR, if the supernova energy injected into galaxies’ interstellar

media is proportional to its stellar mass (as one might naı̈vely expect). In this

model, there is a characteristic halo circular velocity of ∼ 100 km s−1 above which

galaxies retain their gas, and below which gas removal becomes progressively

more efficient.

More recent investigations have attempted to put the MZR in a hierarchical

context. De Lucia et al. (2004) used semianalytical models to suggest that such

winds can be tuned to reproduce the z ≈ 0 MZR irrespective of what the out-

flows do upon leaving the galaxy. De Rossi et al. (2006) and Tassis et al. (2006)

used cosmological hydrodynamic simulations without strong supernova feed-

back to obtain rough agreement with the Tremonti et al. (2004) and Dekel & Woo

(2003) MZRs, respectively. Both works cite the possible role of a varying star

formation efficiency with stellar mass, while Tassis et al. (2006) also suggest that

the observed low effective yields in low-mass galaxies could result from mixing

processes that transport metals to galaxies’ outer disks, where they are difficult

to observe. Brooks et al. (2006) used cosmological hydrodynamic simulations

with a treatment for pressure-driven outflows to argue that mass loss does not

directly suppress the metallicities of low mass galaxies, and instead argued that

supernova feedback leads to low star formation efficiencies in low-mass galaxies,
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which in turn lead to low metallicities; it is particularly encouraging that their

model reproduces the observed trends both at z ∼ 2 and at z ∼ 0. Kobayashi

et al. (2007) used a similar model that also incorporated a treatment for hyper-

nova feedback and obtained qualitative agreement with the same observations.

However, they concluded that their MZR is primarily driven by a tendency for

low-mass galaxies to eject relatively more material in outflows, an idea that our

results support. A more speculative idea from Köppen et al. (2006) suggests that

the observed trends at low redshift can be reproduced by postulating that the

stellar initial mass function (IMF) is more top-heavy in galaxies with higher star

formation rates, thereby producing higher metal yields.

In short, the galaxy MZR has been speculated as arising from variation in

mass loss, star formation efficiency, and/or yield with galaxy stellar mass. A

key aim of this present work is to distinguish between these alternatives, and

determine the key driver that sets the MZR.

A feature that has garnered much attention is the apparent flattening of the

MZR for M∗ ∼> 1010.5M¯. This characteristic mass also seems to divide galaxy

properties in general, such as blue from red and high surface brightness from

low (Kauffmann et al., 2004). Dekel & Woo (2003) note that their predicted char-

acteristic halo velocity (Dekel & Silk, 1986) is in broad agreement with this mass.

Building on this, Tremonti et al. (2004) and Garnett (2002) proposed that winds

may not be effective at driving metals out of galaxies above this mass range (see

however Dalcanton 2006). One physical model that could give rise to this be-

havior is the “constant wind” scenario. In this model, the low effective yields

observed in small galaxies result from winds that have roughly constant veloci-

ties at all masses, and hence are progressively more effective at driving out metals
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from the shallower potential wells of smaller galaxies. Consequently, the escape

velocity at the observed MZR turnover should be an indicator of the character-

istic wind speed. At present, this scenario of mass loss variation is probably the

most widely accepted explanation for the MZR’s shape.

In this work we show that such a constant wind scenario, when incorporated

into a fully three-dimensional hierarchical structure formation simulation, pro-

duces an MZR shape that is in poor agreement with observations, for reasons

that can be understood from straightforward physical arguments. This scenario

has been also called into question recently by observational analyses of dwarf

galaxy metallicities. Lee et al. (2006) note that such energetic speeds from small

galaxies should produce a much greater scatter in metallicities than observed in

their sample of dwarf irregulars. They instead propose that “a less energetic form

of metal-enhanced mass loss than blowouts could explain the small scatter.” Dal-

canton (2006) used a rigorous treatment of the effects of outflows to show that

outflows alone cannot account for the low observed effective yields of dwarf

galaxies, unless the winds are substantially enriched relative to ISM gas. She

proposed instead that the low gas surface densities of galaxies with circular ve-

locities below 120 km s−1 lead to low star formation rates (SFRs) so that their

effective yields “recover” from outflows relatively slowly. Hence she suggests

star formation efficiency variations are the key driver of the MZR. The results we

present here are generally in agreement with this conclusion.

In this paper we use cosmological hydrodynamic simulations and simple ana-

lytical models to investigate the origin of the mass-metallicity relation. Our sim-

ulations employ parameterized outflows from star-forming galaxies that drive

metals into the IGM, and hence we directly track the growth of galaxy metallicity
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along with its mass within a full three-dimensional hierarchical structure forma-

tion scenario. In Oppenheimer & Davé (2006) we introduced our outflow mod-

els, and showed in particular that models in which the outflow velocity scaled

linearly with galaxy circular velocity while the mass loading factor (i.e. the rate

of mass ejection relative to the star formation rate) scaled inversely with it were

remarkably successful at enriching the IGM to observed levels at z ∼ 2−6. These

scalings arise naturally for radiation or momentum-driven winds (e.g. Murray,

Quatert, & Thompson, 2005), though for our purposes the important aspect is

the scaling relations themselves and not the physical mechanism responsible. In-

terestingly, recent observations of local galactic outflows indicate momentum-

driven wind scalings (Martin, 2005; Rupke et al., 2005), providing an intriguing

connection between rare local outflows and the more ubiquitous and generally

stronger outflows at z ∼> 2.

In our preliminary study of the MZR (Davé et al., 2006b), we compared vari-

ous outflow models with the z ∼ 2 MZR seen by Erb et al. (2006) and examined

its evolution from z = 6 → 2. We found that the “constant wind” model as im-

plemented by Springel & Hernquist (2003b) leads to poor agreement with obser-

vations at z ∼ 2, while our momentum-driven wind scalings naturally reproduce

the slope and amplitude of the observed relation. While this work provided inde-

pendent support for the outflow model concurrently favored by IGM metallicity

data, it did little to address the fundamental question of what physical processes

govern the MZR’s slope, amplitude, scatter, and evolution.

In order to improve our understanding of the relationship between outflows

and the MZR, we follow a trajectory that encompasses three basic goals:

(1) Show that our numerical model reproduces observations at z ∼ 2. In this step
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we describe our simulations (Section 3.2) and discuss the mass scales that our

outflow models introduce. Next we compare the simulated MZRs assuming dif-

ferent outflow models with the observed MZR at z = 2 (Section 3.3). Our finding

that momentum-driven outflows produce the best agreement with observations

motivates a more detailed investigation into the origin of the MZR within our

simulations.

(2) “Boil down” our numerical model to a set of key processes and combine them in an

analytically tractable way. We begin this step by introducing a simple model that

captures the main processes that impact the growth of galaxies’ stellar masses

and metallicities (Section 3.4). Next, we investigate how gas accretion and star

formation rates vary with mass and time in each outflow scenario in order to

treat them accurately in our analytical model. We continue this discussion in Sec-

tion 3.5 with a detailed investigation into the time-integrated effects of outflows

on our simulated galaxies at z = 2. In Section 3.6 we trace the observable trends

at z = 2 back in time in order to understand how galaxies evolve through the

MZR. In Section 3.6.3 we verify that our analytical model reproduces this evolu-

tion reasonably well, which suggests that our analytical model accounts for the

important processes that drive the observable MZR.

(3) Use the analytical model to determine what drives the observable MZR in the presence

of outflows. In Section 3.7 we use our analytical model to determine what drives

the form of the observable MZR; the reader may wish to skip directly to this Sec-

tion for a relatively self-contained explanation of the origin of the MZR. Here we

show why our momentum-driven wind model is successful at reproducing the

z ≈ 2 MZR, and why other models are not. More generally, we show how the

observed MZR’s slope, amplitude, and scatter down to low masses provide strin-
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Table 3.1. Simulation parameters.

La εb mSPH
c mdark

c M∗,min
c,d zend

16 1.25 3.87 25.2 248 2,0e

32 2.5 31.0 201 1984 2,0e

aBox length of cubic volume, in comov-

ing h−1Mpc.
bEquivalent Plummer gravitational soft-

ening length, in comoving h−1kpc.
cAll masses quoted in units of 106M¯.

dMinimum resolved galaxy stellar mass.
eFirst number for nw, cw runs; second

for vzw.

gent constraints on outflow models.

Finally, in Section 3.8 we present our conclusions.

3.2 Simulations

3.2.1 Simulations and Sample Definition

We employ the parallel cosmological galaxy formation code Gadget-2 (Springel &

Hernquist, 2002) in this study. This code uses an entropy-conservative formula-

tion of smoothed particle hydrodynamics (SPH) along with a tree-particle-mesh

algorithm for handling gravity. Heating is included via a spatially uniform pho-
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toionizing background (Haardt & Madau, 2001). Gas particles undergo radiative

cooling under the assumption of ionization equilibrium, where we account for

metal-line cooling using the collisional ionization equilibrium tables of Suther-

land & Dopita (1993). The metal cooling function is interpolated to the gas metal-

licity as tracked self-consistently by Gadget-2 (for details see Oppenheimer &

Davé, 2006). Stars are formed from dense gas via a subresolution multi-phase

model that tracks condensation and evaporation in the interstellar medium fol-

lowing McKee & Ostriker (1977). The model is tuned via a single parameter, the

star formation timescale, to reproduce the Kennicutt (1998a) relation; see Springel

& Hernquist (2003a) for details. Star-forming gas continually self-enriches under

an instantaneous recycling approximation. The effects of Type Ia supernovae

are neglected; this should not affect comparisons with observed Oxygen abun-

dances. In reality Type II supernovae occur with a time delay of 10–30 Myr, longer

than our typical timestep of ∼a few Myr, hence the assumption of instantaneous

feedback is inappropriate if gas accretion or star formation is believed to vary

on shorter timescales. However, our simulations (and observations; Noeske et

al. 2007) indicate that star formation occurs in a predominantly smooth fashion,

hence instantaneous feedback is unlikely to introduce significant errors. Delayed

feedback from low-mass stars is also neglected. When star particles are spawned

(in two stages, each with half the original gas particle’s mass), they inherit the

metallicity of the parent gas particle and from then on cannot be further enriched.

We model galactic outflows using a Monte Carlo approach. First we define

the wind model by two parameters: a wind speed VW and a mass loading factor

ηW, which is the ratio of the outflow mass rate to the star formation rate. These

parameters can be chosen to be constant or scale with galaxy properties. Dur-
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ing the simulation run, for each star-forming particle we compute a probability

that it enters into an outflow based on its star formation rate and ηW, and use a

random number to decide whether that particle will enter into an outflow. If so,

we kick it with a velocity of VW in the direction of v×a, which would be purely

unipolar for a thin disk but more typically has a large opening angle of ∼ 45◦.

The hydrodynamic forces are turned off for that wind particle until it reaches a

density of one-tenth the critical density for star formation, or else it travels for a

time greater than (20 kpc/h)/VW. The outflow particle carries its own metals out

of the galaxy; it is not preferentially enriched.

In order to explore the effects of superwind feedback on the MZR, we concen-

trate on three outflow schemes: A no-wind (nw) model, a “constant wind” (cw)

model where VW = 484 km s−1 and ηW = 2 (this is the scheme used in the runs

of Springel & Hernquist, 2003b), and a “momentum-driven wind” (vzw) model

where VW ∝ σ and η = (300 km s−1)/σ, where the velocity dispersion σ is es-

timated from the local gravitational potential. The exact scalings are taken from

the momentum-driven wind model of Murray, Quatert, & Thompson (2005); see

Oppenheimer & Davé (2006) for details. The vzw model also gives a velocity

boost in low-metallicity systems, based on the arguments that more UV photons

are produced per unit stellar mass at lower metallicities (specifically, we employ

eqn. 1 of Schaerer, 2003), and that it is these UV photons that are driving the wind

(Murray, Quatert, & Thompson, 2005). Using larger simulations evolved to low

redshift, we have verified that both models broadly reproduce the star formation

history of the universe (Oppenheimer & Davé, 2006, Figure 4); this constrains the

choice of parameter values.

We run a total of six simulations: two different volumes, each with our three
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different superwind schemes, as detailed in Table 3.1. All runs assume a WMAP-

concordant cosmology (Spergel et al., 2003) having Ω = 0.3, Λ = 0.7, H0 =

70 km s−1 Mpc−1, σ8 = 0.9, and Ωb = 0.04. Each run has 2563 dark matter and

2563 gas particles, evolved from well in the linear regime.

We identify galaxies using Spline Kernel Interpolative DENMAX and dark

matter halos using the spherical overdensity algorithm (see Kereš et al., 2005, for

full descriptions). In previous papers we have shown that imposing a mass reso-

lution cut of 64 star particles leads to a converged sample in terms of stellar mass

and star formation history (Finlator et al., 2006, 2007; Davé et al., 2006a). In the

present work we make an even more conservative cut at 128 star particles in or-

der to study the scatter in our simulated trends. Hence our minimum resolved

galaxy stellar mass ranges from 2.5 × 108M¯ in our higher-resolution 16h−1Mpc

runs to 2.0×109M¯ in our larger volume 32h−1Mpc runs. Just as we did in Davé et

al. (2006a), we will often show both runs on the same plot, and the smoothness of

trends in overlapping mass ranges is to be noted as an indicator of numerical res-

olution convergence. We have also run higher-resolution simulations in 8h−1Mpc

volumes and confirmed that the trends that we identify continue to lower masses,

though the galaxies in these runs are unobservably small at the redshifts where

we will perform comparisons to data.

3.2.2 Scales in the Wind Models

Our wind models introduce several mass scales that are important in understand-

ing the behavior of the MZR. The reheating scale is the scale below which galaxies

produce enough supernova energy to unbind all of their gas. The blowout scale

is the scale below which the wind speed exceeds the escape velocity of the halo.

Here we compute values for these scales in our wind models.
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We first consider the reheating scale in the cw model. The virial energy of

the baryons in a halo scales with the halo mass as Evir ∝ M5/3 whereas the feed-

back energy scales as Ewind ∝ M (assuming that the fraction of baryons con-

verted to stars f∗ varies slowly with M ). The ratio of these energies thus scales

as Ewind/Evir ∝ M−2/3 with the implication that the relative importance of wind

heating declines as mass increases in the cw model. Below the “reheating scale”,

a galaxy’s winds produce enough energy to expel all of the baryons from the

halo; this is analogous to the critical scale for supernova-driven mass loss pro-

posed by Dekel & Silk (1986). In the spherical collapse scenario (e.g., Dekel &

Woo, 2003) it can be shown that this scale corresponds to a stellar mass of

M∗ =
f

5/2
∗ η

3/2
W V 3

W

23/2G3/2

Ωb

Ωm

[
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or a halo circular velocity of

V = VW

(

f∗ηW

2

)1/2

(3.3)

= 150 km s−1

(

VW

484km s−1

)(

f∗
0.1

ηW

2

)1/2

. (3.4)

Here, ∆(z) ≈ 200 is the overdensity of collapsed structures, which varies weakly

with redshift (Dekel & Woo, 2003); ηW is the mass loading factor of the winds;

and VW is the wind speed. Note that the circular velocity of the reheating scale in

the cw model is similar to the critical velocity identified by Dekel & Silk (1986).

This is expected because the energy injected by winds assuming these parameters

is comparable to the supernova feedback energy (Springel & Hernquist, 2003b).

Hence a comparison between our cw model and observations constitutes a quan-

titative test of the Dekel & Silk (1986) scenario.
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In galaxies above the blowout scale, our constant wind model outflows should

escape from the galaxies’ halos provided that they couple inefficiently with the

ambient halo gas. Under reasonable assumptions regarding the depth of the

galaxy’s potential well, the ratio of the escape velocity to the halo circular ve-

locity lies within the range Vesc/V ≈ 1.5–3.5 (e.g., Martin, 1999). In the spherical

collapse model, the blowout scale in the cw model is therefore given by

M∗ =
f∗V

3
W(V/Vesc)

3

G3/2

Ωb

Ωm

[

4π

3
∆(z)ρ(z)

]−1/2

(3.5)

=
6 × 1010M¯

(1 + z)3/2

(

f∗
0.1

)(
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484 km s−1

V/Vesc

0.4

)3

(3.6)

Both the reheating scale and the blowout scale fall within the range that is

resolved by our simulations, hence we expect to see features in the MZR indi-

cating that the two effects grow significantly more effective below this scale and

decreasingly effective above it. In Section 3.5.1 we will show that this is indeed

what happens, although we will argue that blowout is much more important than

reheating in our models. In Section 3.7 we will use simple physical arguments to

show how the existence of a blowout scale leads to predictions that conflict with

observations.

In the vzw model, ηW = σ0/σ and VW = kσ, where σ0 is a constant, σ is the

halo velocity dispersion, and k relates the wind velocity and the halo velocity

dispersion to the ratio of the galaxy luminosity to the galactic Eddington lumi-

nosity (Murray, Quatert, & Thompson, 2005); k = 6.7 on average. Hence by

construction, all galaxies are above the blowout scale in this model. With these

assumptions, the injected energy scales as Ewind ∝ MηWσ2 ∝ σ4 ∝ M4/3, and

the ratio of the heating energy to the virial energy scales as Ewind/Evir ∝ M−1/3—

more shallowly than in the cw model. In this case, the reheating scale is given
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by
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which is so large that in practice all of our simulated galaxies would expel all

their baryons if wind energy coupled efficiently with the remaining gas in the

galaxies’ halos. In Figure 3.7 we will show that this does not happen, and halos

actually retain much of their baryonic mass far below the reheating scale. Hence

in our models, the outflow energy does not couple efficiently to the ambient ISM

or halo gas, but rather tends to blow holes and escape into the IGM. This idea

is qualitatively consistent with high-resolution individual galaxy simulations of

outflows (e.g. Mac Low & Ferrara, 1999), but inconsistent with the assumption of

efficient energy coupling with ambient gas that is sometimes made in analytical

blowout models.

3.3 The M∗ − Zg relation at z = 2

3.3.1 Gas-phase Metallicities

We begin by demonstrating that the choice of wind model heavily impacts the

simulation’s predictions for the MZR. Before doing so, several remarks are in or-

der regarding the simulated and observed measurements. First, throughout this

work we follow Davé et al. (2006b) and define the metallicity of each simulated

galaxy as the SFR-weighted metallicity of its gas particles; this presumably pro-

vides a fair analogue to metallicities derived from metal emission lines as these

trace the most actively star-forming regions in each galaxy. Second, in order to

compare our simulated metallicites with the measurements of Erb et al. (2006)
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Figure 3.1 The MZRs at z = 2 compared to observations by Erb et al. (2006) (re-

produced from Davé et al. 2006b). The no-wind case overproduces metals, the

constant wind case shows too steep a slope above the blowout scale and a large

scatter below it, and the momentum-driven wind scenario fits observations quite

well. The two clumps of points in each figure correspond to the 16 and 32h−1Mpc

simulation volumes, and are bounded at the low-mass end by their galaxy mass

resolution limits.
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in Figures 3.1 and 3.11, we normalize all metallicities to the net yield. We have

calculated the net Oxygen yield using published Type II SN yields (Woosley &

Weaver, 1995; Chieffi & Limongi, 2004; Portinari et al., 1998) with the Salpeter

(1955) and Chabrier (2003) IMFs and find that it lies between 0.008 and 0.021

depending on the choice of models, IMF, and metallicity. Our simulations as-

sume a total metal yield of 0.02 with solar abundance ratios, corresponding to a

net Oxygen yield of 0.0087. We use this value to normalize the Erb et al. (2006)

measurements for consistency with our simulations while noting that the choice

of net yield introduces a factor of ∼2 uncertainty in the relative normalizations

in Figure 3.1 that is in addition to the factor of ∼ 2 uncertainty in the observed

metallicities (Shapley et al., 2005b). Finally, because the stellar masses reported

in Erb et al. (2006) correspond to the total stellar mass formed whereas our sim-

ulations report the mass of stars that does not immediately explode in Type II

supernovae, we multiply the Erb et al. (2006) masses by the ratio of mass in long-

lived stars to the total mass formed (which is 0.802 for the Chabrier 2003 IMF)

while noting that the observed stellar masses are also uncertain at the ∼ 2× level

owing to uncertainty in the IMF.

Figure 3.1 shows the MZR that arises in each wind model at z = 2, compared

with observations by Erb et al. (2006). The fact that outflows affect the MZR is

abundantly clear from these figures. In the no wind case, galaxies are too en-

riched at a given stellar mass (this is also seen in the wind-free models of De

Rossi et al., 2006). This indicates that outflows are necessary to expel metals from

galaxies, adding to the growing body of evidence that outflows have a significant

and ubiquitous impact on high-redshift galaxies. Interestingly, the slope of the

MZR in the no-wind case is in fair agreement with observations (though slightly
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too shallow in detail), despite the fact that no galaxies are driving out any met-

als. Metal loss by tidal stripping is generally negligible, as we show in §3.5.3.

Hence the slope of the MZR does not necessarily imply that low-mass galaxies

preferentially expel metals relative to high-mass ones. Even without outflows,

the observed MZR slope (though not its amplitude) is broadly reproduced.

The constant wind (cw) model shows some remarkable and interesting trends.

Above the blowout scale of 1010M¯, the MZR slope is quite steep, steeper than the

no-wind case, and the scatter is fairly small. Hence relative to the no-wind case,

the cw model appears to be preferentially ejecting metals from low-mass systems,

as expected. Unfortunately, this takes what was a good agreement with the ob-

served slope in the nw case and produces poor agreement in the cw case. Below

the blowout scale, the scatter increases dramatically; this behavior is seen at all

redshifts down from z ≈ 6 → 0 and is not a consequence of numerical resolu-

tion, as evidenced by the fact that our higher-resolution run joins smoothly onto

the lower-resolution one. The large scatter in the cw model can be qualitatively

compared with the findings of Geha et al. (2006), who report that the observed

baryonic Tully-Fisher relation does not show the excess scatter below the blowout

scale that would be predicted in blowout scenarios. Additionally, Lee et al. (2006)

have shown that the observed scatter is ≈ 0.1 dex at all mass scales at low redshift

and argued that this is inconsistent with blowout scenarios. We discuss the likely

source of this excess scatter in Section 3.7.5; the important point is that this scat-

ter is not observed, hence models that introduce a characteristic blowout scale at

observable masses are unlikely to be consistent with Lee et al. (2006).

The vzw model’s MZR shows good agreement with observations in both slope

and amplitude. There is a minor offset in amplitude, but there are enough sys-
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tematic uncertainties in metallicity indicators to render this difference insignifi-

cant (e.g. Tremonti et al., 2004; Ellison & Kewley, 2005). To explain this agreement,

Davé et al. (2006b) proposed that galaxies must lose a roughly fixed fraction of

their metals independent of their mass, because this would preserve the slope

seen in the nw case while lowering the amplitude. Indeed, by comparing the

mass of metals produced by each galaxy in the vzw run with the mass of met-

als retained in stars and gas, we find the fraction of metals that galaxies retain

scales very slowly as M 0.07
∗ at z = 2 (§3.5.3). It is intriguing to compare this result

to Geha et al. (2006), who infer that the fraction of baryons lost cannot vary with

baryonic mass based on the fact that the slope of the observed z ∼ 0 baryonic

Tully-Fisher relation lies very close to the value that is expected from cosmologi-

cal simulations that do not treat baryons. In the momentum-driven wind scenario

this arises naturally because outflow speeds scale with galaxy escape velocities.

3.3.2 Stellar Metallicities

Although the goal of this paper is to understand the relationship between stellar

mass and gas-phase metallicity, recent observational efforts to constrain the evo-

lution of the stellar mass-stellar metallicity relation (hereafter, the “stellar MZR”)

motivate a comparison between our simulated gas-phase and stellar metallicities.

Before we proceed, however, a few comments on systematic effects are in order.

The first observational constraints on the high-redshift stellar MZR will focus on

rest-frame UV absorption features (e.g., the 1978 index of Rix et al., 2004, which

measures Fe III) because at z ≥ 2 these features are redshifted into conveniently-

accessible optical wavelengths. Unfortunately, they are also dominated by stars

with zero-age main-sequence masses greater than 5M¯ (Rix et al., 2004), hence

they are only sensitive to a galaxies’ youngest stars. In order to estimate the ex-
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Figure 3.2 Z∗ versus M∗ at z = 2. Red dots denote galaxies in our simulations

while blue curves denote the mean trend from the gas-phase MZR (Figure 3.1).

The data point with error bars denotes the inferred stellar mass and metallicity

of MS 1512-cB58. Within each wind model, the UV-weighted stellar metallicities

closely track the metallicity of the star-forming gas, as expected.
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tent to which the observed stellar MZR depends on the choice of metallicity indi-

cator, we have measured the stellar MZR for each wind model twice: once using

mass-weighted stellar metallicities averaged over all stars (Z∗,all), and once using

only stars that are younger than 100 Myr (Z∗,UV). The latter figure approximates a

UV-luminosity-weighted stellar metallicity. We find that, for all three wind mod-

els, Z∗,UV lies systematically 40–60% higher than Z∗,all, indicating that UV indices

systematically overestimate stellar populations’ mean metallicities even in the ab-

sence of any systematics in the indices themselves. We also find that, in all three

wind models, the scatter in Z∗,UV at given M∗ is 0.1–0.2 dex, whereas the scatter

in Z∗,all is generally ≈ 0.05 dex, tighter than the scatter in the gas-phase MZR. The

increased scatter in Z∗,UV likely owes partially to our simulations’ limited mass

resolution. On the other hand, it is also likely that the short time baseline sam-

pled by UV indices renders them more sensitive to the distribution of metallicities

among individual HII regions within individual galaxies, hence we do expect the

scatter in the measured MZR to be larger for UV indices than for optical indices.

In order to facilitate comparison with upcoming measurements at high redshift,

we only consider Z∗,UV throughout the rest of this work.

The red points in Figure 3.2 compare the predicted stellar MZRs at z = 2 for

our three wind models (red points) to the mean gas-phase MZRs (blue curves)

as well as to current constraints on the z = 2.7276 lensed galaxy MS 1512-cB58

(hereafter, “cB58”;Yee et al. 1996). For cB58, we use the stellar metallicity of Rix

et al. (2004) normalized to solar yield and the stellar mass of Baker et al. (2004).

We assume a factor of 2 uncertainty for each estimate. Comparing the stellar

and gas-phase MZRs in Figure 3.2 indicates that they are predicted to be quite

similar, regardless of the outflow scenario. This is expected since young stars’
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metallicities should track the metallicities of their parent gas clouds. On the other

hand, it is not consistent with observations of cB58, for which the most likely stel-

lar metallicity Z∗=0.7Z¯ significantly exceeds the inferred gas-phase metallicity

Zg = 0.4 ± 0.1Z¯ (Rix et al., 2004). However, considering that the metallicity off-

set in cB58 is well within the range of systematic uncertainties and that its ISM

metallicity shows excellent agreement with the observed mean gas-phase metal-

licity for its stellar mass at z ∼ 2 (Erb et al., 2006), we believe that the offset likely

results from systematic offsets in the observational abundance indicators. It will

be interesting to see whether larger samples of galaxies at high redshift show a

similar offset.

We have additionally compared our stellar MZRs to the stellar MZR pre-

dicted at z = 2 by the hypernova feedback model of Kobayashi et al. (2007,

Figure 20). In the range 109−10.5M¯, the Kobayashi et al. (2007) model predicts

V-band luminosity-weighted stellar metallicities that are ≥ 0.5 dex below our nw

model at all scales, 0.1-0.2 dex higher than our vzw model at all scales, and 0.2–

0.5 dex below our cw model at all masses except the blowout scale. The best

agreement is hence with our favored vzw model, indicating that, broadly, the ef-

fects of the Kobayashi et al. (2007) hypernova feedback model are similar to our

momentum-driven outflows although the hypernova winds may be somewhat

weaker.

3.3.3 The IGM Metallicity

A fully self-consistent model for galaxy evolution must account for the distribu-

tion of metals in the IGM as well as in galaxies, hence we have also tested our

outflow models by comparing the predicted and observed IGM metallicities. Be-

cause the impact of our outflow prescriptions on the distribution of metals in
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different gas phases has been discussed previously (Oppenheimer & Davé, 2006;

Davé et al., 2007), we will only mention the results here. The mean metallic-

ity of the IGM at z = 2 in our favored vzw model is roughly [Z/H]=-1.7 (Davé

et al., 2007, Figure 1). This is roughly twice as high as predicted by the hyper-

nova feedback model of Kobayashi et al. (2007, Figure 18), implying once again

that the outflows in the hypernova feedback model are somewhat weaker. How-

ever, by analyzing simulated quasar absorption spectra generated along sight-

lines through the simulation volume, Oppenheimer & Davé (2006) have shown

that the predicted abundance of CIV in the vzw model is in excellent agreement

with observations from z = 6 → 2. Hence our favored vzw model is broadly con-

sistent with observations of the distribution of metals both within and outside of

galaxies at z = 2.

3.4 Analytical Model for the MZR

Figure 3.1 strongly suggests that the observed MZR can be used to constrain su-

perwind models, but it gives little physical insight into how superwinds impact

the trends and evolutionary behavior of the MZR. In order to probe this question

more deeply, we construct a simple one-zone chemical enrichment model similar

to many others in the literature (e.g., Tinsley, 1980). The novel aspect is that we

will use our simulations to calibrate the model inputs, so essentially by construc-

tion our analytical model will broadly reproduce the simulation results, as we

show in §3.6.3. Owing to its simplicity, it provides an instructive tool to examine

the relative importance of various physical effects in driving the MZR, which we

will do in §3.7.
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3.4.1 Equations of Evolution

At each timestep, the mass of metals in the ISM MZ increases owing to inflows

and star formation and decreases owing to outflows and metals being locked up

in long-lived stars:

ṀZ = ZIGMṀACC + yṀSFR − ZgṀSFR − ZgṀwind

= αZZgṀACC + yṀSFR − ZgṀSFR(1 + ηW) (3.9)

Here, ZIGM and Zg denote the metallicities of the IGM and the ISM, respectively;

ṀACC and ṀSFR denote the gas accretion and star formation rates, respectively; y

denotes the net Oxygen yield (Tinsley, 1980), Ṁwind denotes the rate at which gas

enters the wind; and ηW denotes the ratio Ṁwind/ṀSFR. Equation 3.9 makes the

following assumptions:

• The rate at which new metals are injected into the ISM is given by yṀSFR,

where the yield y is a constant;

• The outflow rate is proportional to ṀSFR;

• The metallicity of the outflowing gas is equal to the mean metallicity of the

galaxy’s ISM;

• We assume instantaneous feedback (Tinsley, 1980) so that the effects of Type

Ia supernovae and delayed mass loss are neglected;

• The mean metallicity of inflowing gas is some fraction αZ ≥ 0 of the metal-

licity in the galaxy’s ISM;

• We neglect the difference between the rate of formation of all stars and the
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rate of formation of low-mass stars, i.e. we assume that the bulk of stellar

mass is in long-lived stars; and

• All metals resulting from star formation and gas accretion are assumed to

be well-mixed within the galaxy’s ISM.

The first four assumptions mimic those made in our simulations whereas the lat-

ter three are made for convenience. Also, note that any effects resulting from

the enhanced cooling rates of metal-enriched gas will be taken into account im-

plicitly when we tune our star formation efficiencies to match the simulations in

Section 3.5.2.

To obtain the metallicity evolution in this model we need the evolution of

metal mass as a function of gas mass. This requires us to know all the parameters

in equation 3.9 except the net yield y (we normalize our metallicities by y in all

of our Figures). We will assume αZ = 0 for the nw and cw models and 50% for

the vzw model (we will justify this assumption in § 3.7.3). For ηW in the vzw

model, we infer σ from the time-dependent relation between baryonic mass and

velocity dispersion that we measure directly from the vzw outputs and then plug

this into ηW = 300 km s−1/σ. For the cw model, we set ηW = (2, 0) for all galaxies

with masses (below, above) the blowout scale.

Finally, we need ṀACC and ṀSFR as a function of redshift and galaxy mass. In

the following sections we describe how we calibrate relations for these quantities

from our simulations.

3.4.2 Gas Accretion History

We infer the time-dependent rate at which galaxies accrete fresh gas from their

environments directly from the vzw simulations. In detail, we trace each galaxy’s
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Figure 3.3 Mean baryonic accretion rates of the simulated galaxies in the

32h−1Mpc vzw simulation as a function of time (bottom) and redshift (top). Four

different mass bins are shown, with the labels referring to the stellar mass at

z = 0; each history is normalized to its maximum accretion rate. Galaxies of all

masses experience remarkably similar baryonic accretion histories.
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baryonic growth rate backwards in time by searching for its most massive pro-

genitor in each simulation snapshot. The total baryonic accretion rate is then

simply the baryonic growth rate plus losses due to outflows:

ṀACC = Ṁbar + ηWṀSFR. (3.10)

In practice this technique yields the accretion rate of gas and stars rather than

just gas as it is difficult to determine from the outputs of our simulations whether

new stellar mass results from star formation or mergers. However, baryonic mass

growth is known to be dominated by gas accretion at high redshifts (Kereš et al.,

2005; Guo & White, 2007), and the bottom panel of Figure 3.14 suggests that this

is approximately true in our models as well.

To estimate outflow losses for the vzw model, we need the average ηW for

each galaxy as a function of time. We can obtain a good estimate by combin-

ing the known baryonic mass with the time-dependent relation between galaxy

velocity dispersion and baryonic mass, measured directly from our simulations,

and substituting this back into the relation assumed by our vzw model ηW =

(300 km s−1/σ). Figure 3.3 plots the resulting accretion histories in 4 bins of stel-

lar mass, where we have normalized each one to its maximum accretion rate; the

mean stellar masses in each bin at z = 2 are indicated.

Galaxies of all masses experience remarkably similar accretion histories in our

simulations, with accretion rates rising steadily at early times until a peak around

z ∼4–3 and falling afterwards. The existence of this generic accretion history

has two interesting implications. First, under the assumption that ṀSFR tracks

ṀACC (which we justify below), the rising accretion rates immediately explain

why galaxies generically exhibit rising star formation histories at high redshifts
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in our simulations (Finlator et al., 2007). Second, the existence of a generic accre-

tion history implies that a correlation between ṀSFR and halo mass—and, under

reasonable assumptions, stellar mass—is expected, as found in other simulations

by Finlator et al. (2006) and recently observed at z ∼ 0.5 − 2 (Noeske et al. 2007;

E. Daddi, private communication).

In detail, there are slight differences after z = 2 with a suggestion that the

most massive galaxies continue to accrete too much gas at late times. Future

work incorporating a treatment for AGN feedback is expected to alleviate this

problem. Additionally, note that the use of a completely generic gas accretion

history along with the assumption that the gas processing rate exactly tracks the

gas accretion rate does not reproduce the so-called “downsizing” of galaxy evo-

lution, where the latter is defined as the tendency for more massive galaxies to

exhibit lower specific star formation rates (Zheng et al., 2007; Iglesias-Paramo et

al., 2007), unless the ratio of past-averaged to present wind suppression factors

(1 + η̃MLF)/(1 + ηW) scales strongly with mass. It is more likely star formation

is delayed in low-mass galaxies by an effect that our model does not account

for (Noeske et al., 2007b).

We averaged over the normalized accretion histories in Figure 3.3 and found

that a reasonable approximation to the resulting mean accretion history is given

by the fitting formula from Springel & Hernquist (2003b):

ṀACC(z) ∝
b exp[a(z − zm)]

b − a + a exp[b(z − zm)]
. (3.11)

Using a least-squares algorithm we determine the best-fit parameters for the vzw

model as a = 1.06, b = 1.32, and zm = 3.5. Although this formula was originally

designed to describe the global star formation history, as Kereš et al. (2005) has
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pointed out, this closely tracks the gas accretion history, so it is not surprising

that a good fit is obtained for ṀACC using this form.

Similar trends are seen in the cw and nw models at z ≥ 2 (unfortunately only

our vzw simulations were evolved to z = 0). In detail, there are slight differences

between the gas accretion histories in the three wind models. The most promi-

nent of these is that gas accretion rates peak at an earlier redshift in the cw model

than in the vzw or nw models because the cw’s energetic winds heat the IGM

too efficiently (Oppenheimer & Davé, 2006). As a result, the gas cooling time at

moderate overdensities (∼ 10) surpasses a Hubble time and the star formation

rate density begins to decline at an earlier redshift (z ∼ 5; Springel & Hernquist

2003b) than in the vzw or nw models (z ∼ 3; Oppenheimer & Davé 2006). We

account for this early peak by setting zm = 5 when modeling the impact of cw

outflows in our analytical model. We will show in Figure 3.12 that using this pa-

rameterized fit to the vzw model’s gas accretion history allows us to approximate

the chemical evolution of our simulated galaxies in all three wind models, hence

a more detailed discussion of the impact of outflows on gas accretion histories is

beyond the scope of the present work. The amplitude of a galaxy’s gas accretion

history is determined by a constant multiplicative factor.

3.4.3 Star Formation Rates

To obtain ṀSFR, we measure ṀSFR/Mg in the simulations as a function of baryonic

mass and redshift, and then use

ṀSFR =
ṀSFR

Mg

(z,Mbar) Mg, (3.12)
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Figure 3.4 Least-squares fit to the vzw star formation efficiency at z = 2. Because

the slope of the trend does not vary with scale, we can readily use it to tune our

analytical model.
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Figure 3.5 Least-squares fitting parameters to the star formation efficiency as a

function of baryonic mass in our three wind models. For each model, the line

indicates how fits to the relation log(ṀSFR/Mg) = a + b log(Mbar) evolve over

cosmic time.
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where the gas mass Mg increases owing to inflows and decreases owing to out-

flows and star formation according to

Ṁg = ṀACC − ṀSFR(1 + ηW). (3.13)

Through trial and error we determined that it is not possible to reproduce the

detailed mass-metallicity evolution of our simulated galaxies without such a cal-

ibration for each wind model; indeed, this is a hint as to what governs the MZR.

Figure 3.4 shows that the star formation efficiency varies with scale in a simple

way in the vzw model at z = 2; similar trends hold for all epochs and wind

models. In order to tune our analytical model, we fit regression lines of the form

log(ṀSFR/Mg) = a+b log(Mbar) to each simulation at a range of epochs. Figure 3.5

gives the resulting fits. In all three wind models b > 0, indicating that more

massive galaxies are generically more efficient at converting their gas into stars

owing to their higher gas densities; this behavior is qualitatively similar to the

idea that star formation timescales are shorter in more massive galaxies (Noeske

et al., 2007b). The offsets a in the wind models are everywhere lower than in the

nw model because superwinds decrease galaxies’ gas densities. The slopes b are

everywhere higher in the wind models because wind effectiveness generically

scales with mass. However, the fact that the cw efficiencies lie very close to the

nw efficiencies at high redshift and then diverge from them suggests that cw

winds are relatively ineffective in the low-mass galaxies that dominate at early

times. The fact that the slope and offset of the trend evolve in opposite directions

regardless of wind model indicates that gas densities in low-mass galaxies are

more sensitive to changes in environment than in more massive galaxies. It is

intriguing that the slope of the evolutionary trend changes sign near the point
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z = 0.5, likely a consequence of the universe becoming Λ-dominated.

Does self-enrichment impact our simulated star formation efficiencies? If gas

in more massive halos cools more efficiently owing to enhanced metallicities then

a scale-dependent “positive feedback” could obtain between the gas cooling and

self-enrichment rates; in this case the form of the MZR could be influenced by

the relative effectiveness of this positive feedback cycle as a function of mass.

Comparing Figures 3.1 and 3.5 shows that, indeed, the nw model exhibits both

the highest star formation efficiencies and the highest metallicities, in qualitative

agreement with this picture.

However, the low star formation efficiencies in our wind models can also

be explained by the tendency for gas particles to be ejected by winds before

their densities (and hence star formation rates) grow comparable to the typical

densities in the nw model. Moreover, while the metallicities in the nw model

scale more steeply than the vzw model, the star formation efficiencies scale more

steeply in the vzw model, in qualitative disagreement with the self-enrichment

picture. Additionally, we note that galaxy growth at these redshift and mass

scales is dominated by cold-mode gas accretion (Kereš et al., 2005), with the result

that the gas cooling timescale is much shorter than the dynamical timescale irre-

spective of its metallicity. In Section 3.7 we will show that, in the outflow model

that reproduces observations, the MZR can be understood entirely in terms of

the effects of outflows. Hence while a self-enrichment feedback cycle must be

operating on some level, its effects on the observable MZR are likely to be weak

compared to the effects of outflows.
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3.5 The Effects of Winds

In this section we begin our exploration of the impact of outflows on the MZR

by evaluating how winds affect our simulated galaxies; in short, we wish to de-

termine what outflows do to galaxies. In our analytical model we assume that

the primary parameters through which winds modulate the observable MZR are

the star formation efficiency, ηW, and the gas accretion history. We would like to

compare how each of these parameters scales with mass in our three wind mod-

els. The gas accretion history has been explored elsewhere (e.g. Oppenheimer &

Davé, 2006; Davé et al., 2006a), and is reasonably well described by equation 3.11.

Hence we first discuss the impact of outflows on ηW and star formation efficiency.

Next, we show that the fraction of metals retained by galaxies does not drive

the MZR even though it is affected by outflows. Afterwards we compare how

outflows suppress stellar mass and gas-phase metallicity on a galaxy-by-galaxy

basis. Finally, we discuss how winds impact the trajectories that galaxies follow

through the MZR.

3.5.1 Mass Loading

In our simulations, the rate at which material enters the wind is given by ṀSFRηW.

In the cw model, ηW = 2 and VW = 484 km s−1 while in the vzw model ηW =

300 km s−1/σ and VW ≈ 6.7σ. After a wind particle leaves the star forming re-

gion it interacts with the galaxy’s halo hydrodynamically. Some gas particles

may escape into the IGM while others may radiate away their kinetic energy and

rain back down as “galactic fountains”. Hence it is not obvious what fraction of

the gas that enters a galaxy’s wind will actually escape from the galaxy perma-

nently, or whether this fraction will preserve the input ηW scaling. Fortunately,
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Figure 3.6 Mean mass loading factor experienced by galaxies as a function of

stellar mass. In the nw model only low-mass galaxies lose any baryons, while in

the cw and vzw models galaxies the mass of baryons lost scale as expected. Note

how rapidly winds become ineffective above the blowout scale in the cw model.
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the connection between star formation, metal enrichment, and winds allows us

to constrain this quantity.

If an isolated star-forming galaxy generates a wind with a constant mass load-

ing factor ηW then the fraction of metals that it retains is given by

MZ,retained

MZ,formed

= 1 −
ηW

1 + ηW

(

1 −
ZgMg

yM∗

)

. (3.14)

If the masses and metallicities of a galaxy’s gas and stellar phases are known then

Equation 3.14 can be solved for the instantaneous mass-loading factor ηW. In gen-

eral, ηW varies as the galaxy grows so that it is not possible to recover ηW from

our simulation outputs. However, in this case it is still possible to obtain an “ef-

fective mass loading factor” η̃MLF as a function of stellar mass in our simulations

from Equation 3.14 using the known masses and metallicities of the simulated

galaxies; in this case η̃MLF measures the mass loss rate averaged over the galaxy’s

star formation history.

As previously noted by Dalcanton (2006), the fact that equation 3.14 is not in

general proportional to the effective yield indicates that the relative metal con-

tribution to the IGM from different galaxies cannot straightforwardly be inferred

from their effective yields (as attempted by, e.g. Bouché et al., 2007).

Figure 3.6 shows η̃MLF vs. M∗ in our various wind models at z = 2. This plot is

one of the most important ones in this paper for understanding the MZR. Looking

at the nw model first, we find that ≈ 10% of the nw galaxies show evidence of

having lost some of their baryons (η̃MLF > 0). These losses owe primarily to

tidal stripping, although additional scatter is introduced by discreteness effects

and uncertainties in the identification of low-mass galaxies within the simulation

outputs. The result is a slight “flaring” of the trends toward low masses that is



142

visible in all three of our models. Because these effects are small compared to the

overall trends that relate to the MZR (for example, compare the size of the η̃MLF

in the nw model to the typical η̃MLF in the vzw model), they do not affect any of

our results.

In the cw model, below the blowout scale η̃MLF ≈ 1.5 ≈ 3
4
ηW, indicating that

on average 3
4

of wind particles from these galaxies leave permanently. Above

the blowout scale (≈ 1010M¯ at z ∼ 2 − 3) η̃MLF declines rapidly because these

winds thermalize their kinetic energy efficiently and return to the source galaxy

as galactic fountains. Such a phenomenon, if real, would leave clear signatures in

the observed baryonic Tully-Fisher relation or MZR at this scale. As we discuss

in §3.7, the absence of such features in observations argues against the cw model.

In the vzw model, η̃MLF ∝ M−0.25
∗ , shallower than the predicted slope of −1/3

if the stellar mass is a fixed fraction of the halo mass. To understand this, in

Figure 3.7 we show the stellar fraction f∗ as a function of Mhalo, and indeed we

see that for the vzw case f∗ ∝ M
1/3
halo. Taking this into account, we find that

η̃MLF ∝ M
−1/3
halo ∝ 1/σ as expected. This indicates that outflow processes preserve

the assumed scalings once the scaling of f∗ is accounted for as long as the galaxy

is above the blowout scale. Furthermore, it indicates that in the vzw model the

fraction of wind particles that escape the galaxy is roughly constant for all galaxy

masses, as required by observations of the low-redshift baryonic Tully-Fisher Re-

lation (Geha et al., 2006).

It is interesting to note that the η̃MLF trend in our vzw scenario is qualitatively

similar to the trend of wind strength versus mass in Figure 16 of Kobayashi et al.

(2007). In our work, this trend results directly from the assumed scaling of the

instantaneous ηW while in Kobayashi et al. (2007) it results from their treatment
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for pressure-driven outflows from supernova and hypernova feedback.

3.5.2 Star Formation Efficiency

We now discuss the impact of outflows on the star formation efficiency. We seek

to answer two questions: (1) What impact do outflows have on the integrated star

formation efficiency f∗ (defined as the fraction of baryons in a halo converted to

stars as a function of halo mass) at z = 2?; and (2) How do outflows suppress f∗?

The latter question is of interest because the expected scalings depend on whether

outflows couple efficiently with the remaining gas in the galaxy’s ISM as well as

its ambient IGM. If coupling is poor then, for galaxies above the blowout scale,

the f∗ scaling should reflect the intrinsic ηW scaling. Alternatively, if coupling is

efficient then the f∗ scaling should reflect the condition that the feedback energy

is comparable to the binding energy of the baryons in the halo (e.g., Dekel & Silk,

1986; Dekel & Woo, 2003).

Figure 3.7 (similar to Figure 5 of Davé et al. 2006a) shows how f∗ varies with

stellar mass in the different wind models at z = 2. Examining the nw model

first, we see that in the absence of winds f∗ climbs steadily with mass below

Mhalo = 1011M¯ and then decreases slowly with increasing mass above the char-

acteristic minimum mass scale for halos to be dominated by hot gas rather than

cold gas (e.g., Birnboim et al., 2007). This shape qualitatively mimics the behavior

predicted by Dekel & Woo (2003). However, since there are no winds to couple

the feedback energy to the halo gas, the qualitative agreement is merely a coinci-

dence. The fact that f∗ is not constant with stellar mass in the nw model has the

important implication that f∗ (and hence the MZR) is not governed solely by out-

flows (Dalcanton, 2006). We note that Tassis et al. (2006, Figure 2) and De Rossi

et al. (2006, Figure 2) have observed qualitatively similar behavior in the absence
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Figure 3.7 Fraction of baryons converted to stars as a function of halo mass (bot-

tom axis) and circular velocity (top axis) at z = 2. The two loci correspond to

halos from the 16 and 32h−1Mpc volumes that contain more than 128 star par-

ticles. The dashed and solid lines in the wind models show the range of scal-

ings expected from considerations of mass-loading and energy balance, respec-

tively (Dekel & Woo, 2003, see text). Below the minimum mass scale for hot-mode

gas accretion f∗ scales with mass even without outflows. In the presence of out-

flows, f∗ is determined by the combined effects of mass-loading and Scannapieco

& Broadhurst (2001) suppression.
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of strong outflows.

What determines the f∗ scaling in the absence of outflows? If all halos con-

verted their gas into stars with the same instantaneous star formation efficiency

ṀSFR/Mg then neither Zg nor f∗ would scale with mass. Evidently ṀSFR/Mg must

scale with mass at some point prior to z = 2. Indeed, we find that, without out-

flows, star formation efficiency and gas density increase strongly with increasing

mass before the reionization epoch z ≥ 6 although both trends weaken signifi-

cantly by z = 2. The scaling in star formation efficiency at high redshift can be

understood intuitively as a consequence of the fact that more massive halos begin

collapsing earlier than less massive halos, giving them a “head-start” in condens-

ing their gas reservoirs. The same effect also manifests itself in a trend for more

massive galaxies to exhibit older mean stellar ages than less massive galaxies in

this model, dubbed “natural downsizing” by Neistein, van den Bosch, & Dekel

(2006). As a result, low-mass galaxies possess lower gas densities, enhanced gas

fractions and suppressed gas-phase metallicities with respect to massive galaxies.

The vzw model qualitatively resembles the nw model in f∗ vs. Mhalo except

that it is shifted down by a factor of 5–12 with an additional dependence on mass

(as shown more clearly in Figure 3.9). The normalization is lower because the

vzw model significantly delays star formation (and suppresses gas-phase metal-

licities) at all scales. The flattening behavior in halos above 1011.5M¯ obtains be-

cause more massive halos are generally hot mode-dominated, just as in the nw

model.

What determines the slope at masses below this scale? If we assume that, as

the galaxy grows, the fraction of baryons that forms stars at each mass scale is
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1/(1 + ηW), then f∗ is simply given by

f∗ =

∫

dM/(1 + ηW)
∫

dM
. (3.15)

This scaling is denoted by the dashed line in the figure, where we have made the

approximation that the halo velocity dispersion is given by σ = 0.0083(M/M¯)1/3 km s−1.

Alternatively, if we follow Dekel & Woo (2003) and assume that stars continue

to form until the total energy in outflows equals the virial energy of the halo’s

baryons then we find that f∗ ∝ M1/3(1+z)1/2 in the vzw model; this scaling is de-

noted by the solid line in the figure and has been normalized to 1 at the reheating

scale at this redshift M = 5.6 × 1013M¯. At a glance the ηW-driven explanation

seems more accurate although both theories produce the correct scaling. How-

ever, noting that the normalizations of these two scaling relations are somewhat

uncertain owing to the assumptions in our spherical collapse estimates, in prac-

tice either explanation could be valid. Below we show that the f∗ scaling that is

expected from energy considerations is not obeyed in the cw model, implying

that energy in outflows does not couple efficiently with inflowing material. For

this reason we conclude that the accuracy of the f∗ scaling that is predicted from

energy considerations is purely a coincidence and that f∗ is dominated by the

scaling of the mass loading factor ηW.

In the cw model f∗ is relatively flat between the smallest halos containing

≥ 128 star particles and the blowout scale at a halo mass of 1011.5M¯. Above

the blowout scale f∗ climbs slowly. The way that f∗ varies only slowly with

mass below the blowout scale and climbs above it echoes the cw model’s MZR

(Figure 3.1), indicating a connection between the suppressed star formation ef-

ficiencies and the suppressed metallicities. However, the fact that Figures 3.1
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and 3.7 look rather different in the cw model (especially above the blowout scale)

indicates that the suppressed f∗ does not by itself determine the MZR. Addition-

ally, the fact that the MZR and the f∗ plots look qualitatively different from the nw

and vzw models indicates that some process specific to the cw model is affecting

f∗ and Zg in similar ways.

What determines how f∗ scales in the cw model? If f∗ depended only on

ηW then we would expect f∗ = 1/3 at all scales; this is indicated by the dashed

line in the Figure. The slow dependence of f∗ on M agrees qualitatively with the

expected flat trend. However, the normalization is much lower than expected, in-

dicating that another process must be suppressing galaxy growth. Returning to

energy considerations, Dekel & Woo (2003) used the assumption that stars con-

tinue to form until the total energy in outflows equals the virial energy of the

halo’s baryons to predict that, in energy-driven wind scenarios such as our cw

model, f∗ (and hence the metallicity) should increase smoothly with increasing

mass below the reheating scale of ≈ 150 km s−1 and then flatten out above it. The

range of possible scalings that they derive is indicated by the solid lines, where

we have normalized their scalings to f∗ = 1 at the reheating scale. Their predic-

tions were based on the assumption that energy in outflows couples efficiently

with the baryons in the galaxy’s ISM and its halo. It is clear from Figure 3.7 that

this key assumption does not hold in our cw model. At high masses the Dekel

& Woo (2003) model predicts too little suppression, indicating that outflows sup-

press star formation even if much of the gas does not escape from the galaxy’s

halo. Furthermore, at low masses their model predicts too much suppression, in-

dicating that simulated outflows either escape these galaxies without entraining

the bulk of the halo gas (as would be expected if the outflows are not spherically
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symmetric) and/or their energy is thermalized and radiated away. Thus, despite

the impressive agreement between observations and the simple model put forth

by Dekel & Woo (2003), simulations suggest that the interaction between outflows

and ambient gas is qualitatively different than what they assumed.

We can speculate as to why good agreement with the MZR is obtained by

Dekel & Woo (2003), as well as in semi-analytic models based on this type of sce-

nario such as De Lucia et al. (2004). In these models, they assume that winds from

galaxies below the reheating scale inject progressively more energy per baryon

into ambient gas, thereby unbinding progressively more of it to smaller masses.

In essence, they force a scaling of η̃MLF with M∗ that is similar to our vzw model

(cf. Figure 3.6), by assuming that η̃MLF À ηW for small masses owing to efficient

energy coupling with ambient gas. This physical process is not borne out by

our three-dimensional numerical simulations, in which reheating is mostly irrel-

evant. It is a minor coincidence that in constant wind models, the blowout and

reheating scales are fairly similar (equations 3.1 and 3.3).

In summary, a comparison between Figures 3.1 and 3.7 indicates that (1) in

the presence of outflows, the scaling of f∗ (or, equivalently, gas fraction) depends

more heavily on the mass-loading factor ηW than on energetic considerations; and

(2) f∗, while a key driver, does not by itself determine the MZR. Some other factor

must be important in determining the basic shape of the MZR. We will argue

below that it is primarily gas accretion, although gas stripping due to winds from

neighboring galaxies can play a role in some situations, as we will discuss in In

§ 3.5.3 and 3.5.4.
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Figure 3.8 Fraction of metal mass retained fZ,ret as a function of M∗. The two

loci correspond to galaxies from the 16 and 32h−1Mpc volumes. Without winds

galaxies tend to retain their metals, whereas in the presence of winds galaxies can

lose up to 50% of their metals. These trends are far too weak to account for the

observed MZR.
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3.5.3 Metal Retention

The most popular interpretation of the observed MZR is that low-mass galaxies

exhibit low metallicity because they drive a larger fraction of their metals into

the IGM. In order to determine whether this idea explains the observable MZR

in our simulations, we plot in Figure 3.8 the fraction of metals retained fZ,ret as

a function of stellar mass in each of our wind models. If metal loss dominates

the form of the observable MZR then we expect the slope and scatter of fZ,ret as

a function of M∗ to mimic the MZR. For simplicity we discuss only the 16h−1Mpc

boxes at z = 2 here while noting that similar results hold for other scales and

epochs.

In the nw model galaxies retain all of their metals on average (as expected

in the absence of outflows) although ≈ 0.06 dex of scatter is introduced by dy-

namical disruption and uncertainties in group idenfication. This contrasts with

the strong scaling (Zg ∝ M0.28
∗ ) and larger scatter (0.11 dex) in the nw MZR (Fig-

ure 3.1). Moreover, a few low-mass galaxies have lost up to 80% of their metals

through interactions, yet we find that even these galaxies exhibit no departure

from the mean gas-phase metallicities for their stellar masses. Hence while they

have ejected significant baryons, those baryons were enriched at the same level

as the baryons that remained in the galaxies.

Turning to the wind models, at a fiducial stellar mass of 1010M¯ the cw and

vzw models retain roughly 40% and 70% of their metals at z = 2, respectively.

However, the mean gas-phase metallicity of the cw galaxies is roughly 70% higher

than it is in the vzw galaxies. Comparing the scalings reveals similar inconsisten-

cies: In the vzw model fZ,ret ∝ M0.07
∗ while the MZR scales as Zg ∝ M0.21

∗ . In

the cw model, fZ,ret ∝ M−0.04
∗ with 0.09 dex of scatter, while its MZR scales as
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Zg ∝ M0.06
∗ (note that this is in the opposite sense as the fZ,ret scaling) with 0.19

dex of scatter.

The poor correspondence between the fZ,ret scalings and the MZRs for all

three models indicates that galaxy metallicities are not primarily driven by metal

loss. The inconsistency between the relative gas-phase metallicities and fZ,ret val-

ues of the vzw and cw models suggests that the detailed way in which metals

are distributed in different baryonic phases must be taken into account. Note

that we do not claim that fZ,ret cannot trace the MZR in principle; Figure 3.8 only

shows that it does not do so in general. Indeed, there is no rigorous reason why it

should. Observationally, it is possible to test this if the metallicities and masses in

the stellar and gas phases as well as the net metal yield y are known: if Zg ∝ fZ,ret

then it should also be proportional to Z∗(y − Mg/M∗)
−1 at all scales. However,

guided by our own simulations, we will argue in §3.7 that the MZR is dominated

by the scaling of the star formation efficiency in the absence of winds, and by

a competition between the rates of enrichment and dilution in the presence of

winds.

3.5.4 Suppression of M∗ and Zg

Another way to highlight the differences between the wind models is to compare

their effects on individual galaxies. Because all of our simulations were run with

the same initial conditions, we can readily do this by matching the positions of

individual galaxies between the simulations. Figure 3.9 displays the ratios of stel-

lar mass and metallicity in the wind models versus the no wind model at z = 2.

Note that we have directly verified that excluding from Figure 3.9 those galaxies

whose nw metallicities suggest η̃MLF > 0 does not impact the slope, normaliza-

tion, or scatter of the inferred suppression factors for either wind model.
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Figure 3.9 Ratio of stellar mass and gas-phase metallicity in the wind models

versus the no-wind model at z = 2. The two loci correspond to galaxies from the

16 and 32h−1Mpc volumes. In the cw model the effect of wind suppression does

not vary strongly below the blowout scale whereas it decreases rapidly above

it; in the vzw model wind suppression is less effective at higher masses and the

scaling is quite smooth.
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In the cw model one might at first expect the ratios M∗,cw/M∗,nw and Zg,cw/Zg,nw

to be ≈ 1/(1 + ηW) for galaxies below the blowout scale as long as outflows cou-

ple inefficiently with the ambient gas (i.e. if ηW = 2 then 2/3 of the baryons

should be ejected in winds). Figure 3.6 showed that cw outflows are highly ef-

fective for all galaxies below the blowout scale, in that their effective mass load-

ing factor is, on average, equal to 3/4 of the true assumed ηW = 2, hence we

might expect M∗,cw/M∗,nw to be roughly 1/(1 + 2.5) = 0.4. Turning to Figure 3.9,

we see that M∗,cw/M∗,nw lies below this value even at the blowout scale, consis-

tent with the existence of an extra source of suppression implied by Figure 3.7.

Above the blowout scale the cw ratios climb with tight scatter, reaching unity at

M∗ ≈ 1011.3M¯.

Below the blowout scale M∗,cw/M∗,nw varies slowly with decreasing mass and

shows considerable scatter. At the lowest masses (M∗ < 109M¯) M∗,cw/M∗,nw and

Zg,cw/Zg,nw actually climb with decreasing mass despite the fact that η̃MLF is con-

stant in this range. We have verified that these trends continue to lower masses

at higher mass resolution, hence the behavior is not an artifact of numerical res-

olution. Moreover, it clearly conflicts with the naı̈ve picture above. In order to

understand it, we must consider how winds might affect galaxy growth in the

full context of structure formation rather than as isolated systems.

First, there is the possibility that an early generation of galaxies pre-enriches

the IGM, giving rise to a “metallicity floor” in the observable MZR. Such a mini-

mum has been inferred from quasar absorption line systems (e.g., Songaila, 2001)

as well as in our simulations (e.g. Davé et al., 2007). In Davé et al. (2006b) we

hypothesized that widespread pre-enrichment of the IGM in the cw model (Op-

penheimer & Davé, 2006) may be responsible for its low-mass behavior. One way
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to quantify pre-enrichment is to measure how many metals were created in one

galaxy, expelled, and reaccreted onto another. We measured the fraction of galax-

ies’ metals at z = 2 that originated in another galaxy and find that it is roughly 5%

and 15% in the cw and vzw models, respectively. While this is not insignificant,

it is not sufficient to account for the scatter in the cw MZR. Furthermore, the fact

that the vzw model has more pre-enrichment but shows much less scatter sug-

gests that this process does not contribute significantly to the MZR scatter. Hence

the pre-enrichment hypothesis is unlikely to be correct.

Second, in a full hierarchical context there are two effects that reduce the ten-

dency of winds to drain galaxies’ gas reservoirs, which may lead to increased

metallicities. Whereas in a simple closed-box scenario all gas is equally eligi-

ble to form stars, in a fully self-consistent model galaxies’ gas reservoirs possess

density and pressure gradients and star formation is concentrated in relatively

small regions. Gas that is ejected from these areas can in principle be replaced

on a dynamical time by infall from less dense areas owing to the loss of pressure

support. A second effect is that gas entering a wind can potentially thermalize

its energy before escaping the galaxy’s halo and fall back down onto the galaxy

in a galactic fountain, effectively increasing the galaxy’s gas accretion rate. Fig-

ure 3.6 does not indicate the presence of scale-dependent galactic fountains below

the blowout scale. On the other hand, the fact that M∗,cw/M∗,nw increases at low

masses suggests that gas that escapes the galaxy in a wind is indeed being rapidly

replaced, boosting M∗,cw/M∗,nw above what would naı̈vely be expected.

Finally, galactic winds can affect neighboring galaxies. In particular, Scan-

napieco & Broadhurst (2001) proposed that halos with masses 109−10M¯ suffer

stripping of their baryons owing to winds from lower-mass neighbors. In their
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model, once galaxies form they drive spherical winds whose energies are compa-

rable to the wind energies in our cw model. The winds from galaxies in low-mass

halos (< 109M¯) then strip baryons from intermediate-mass halos (109−10M¯)

that are not yet virialized without affecting more tightly-bound massive halos

(> 1010M¯), with the result that galaxy formation in intermediate-mass halos

is suppressed (note that this effect is not related to tidal stripping). Although

our winds are not spherical, when averaging over a large sample of galaxies

the effect should still be noticeable. It is expected to be weak at z ≥ 6 (e.g.,

Figure 7 of Davé et al., 2006a) and to grow most noticeable during the heyday

of galaxy formation z ≤ 3 (Figure 8 of Scannapieco & Broadhurst, 2001). In-

deed, the ratios M∗,cw/M∗,nw and Zg,cw/Zg,nw show significantly less suppression

at z = 6 (not shown) than at z = 2. More interestingly, they also show less

scatter at higher redshifts, as expected for an effect whose strength depends on

environment rather than on galaxies’ intrinsic properties. In summary, it is likely

that stellar mass growth in the cw model divides into three mass regimes: At

low masses (M∗/M¯ < 108) galaxy growth is suppressed only by outflows and

hence M∗,cw/M∗,nw → 1/(1 + ηW). At intermediate masses (108 < M∗/M¯ < 1010)

galaxy growth is dominated by a collaboration between Scannapieco & Broad-

hurst (2001) suppression and losses to winds, where the relative contribution of

each effect varies nontrivially with scale and epoch. Because it only works in

a particular mass regime, Scannapieco & Broadhurst (2001) suppression hence

gives rise to a local minimum in M∗,cw/M∗,nw. Finally, at high masses (M∗/M¯ >

1010) galaxy growth is again dominated by outflows, where the effects of out-

flows weaken rapidly with increasing mass owing to the rapidly declining η̃MLF

(Figure 3.6).
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In the vzw model wind suppression of metallicity and stellar mass both scale

smoothly, with relatively little scatter, and without evidence for a preferred scale.

We have already shown (Section 3.5.2) that stellar masses in the vzw model can

be attributed largely to the scaling of ηW. Given that fZ,ret does not scale strongly

with mass in this model, it is also not surprising that Zg,vzw/Zg,nw scales in the

same way.

Does baryonic stripping occur in our vzw simulation? We can predict whether

it should be stronger or weaker in the vzw versus the cw model by estimating the

ratio of their momentum generation rates:

ṗvzw

ṗcw

=
f∗,vzwηW,vzwVW,vzw

f∗,cwηW,cwVW,cw

(3.16)

From Figure 3.7, f∗,vzw ≈ 0.1 and f∗,cw ≈ 0.2. From before, we know ηW,vzw =

300 km s−1/σ, VW,vzw = 6.7σ, ηW,cw = 2, and VW,cw = 484 km s−1, hence we find

that Ṗvzw/Ṗcw ≈ 1—the effect should be roughly as strong in the vzw model as in

the cw model. By subtracting the mean trend from the vzw MZR and inspecting

the residual, we have found that vzw galaxies less massive than M∗ = 1010M¯

do, in fact, exhibit signatures of baryon stripping, seen as a change of slope and a

slightly increased scatter in the MZR below this scale. However, the effect is much

less noticeable than in the cw model because it is small compared to the effects of

the strong outflows. Applying this idea to interpret observations, the tight scatter

and smooth scaling in the observed low-redshift MZR (Lee et al., 2006; Tremonti

et al., 2004) indicate that either galactic winds do not carry enough momentum to

suppress growth in neighboring halos appreciably or the effects of outflows must

be strong enough to erase any evidence of baryon stripping; both possibilities

clearly conflict with the behavior of our cw model, but are satisfied in our vzw
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case.

Comparing the top and bottom panels of Figure 3.9 yields insight into the ex-

tent to which f∗ governs the MZR. The metallicity suppressions show consider-

ably more scatter than the mass suppressions. Additionally, the gas-phase metal-

licities are systematically about 50% less suppressed than stellar masses in the cw

models, independent of M∗. (They are roughly equally suppressed in the vzw

model.) Both of these observations are inconsistent with the idea that f∗ solely

governs the MZR; evidently the effects of winds on gas accretion rates and star

formation efficiencies also play a role.

In summary, Figure 3.9 indicates that outflows tend to suppress both M∗ and

Zg. The trends and the levels of scatter indicate that the amounts of suppression

cannot, in general, be predicted from simple scaling relations. We have high-

lighted the fact that, in both figures, the scatter in the cw model seems to be large

below the blowout scale and small above it, whereas the scatter in the vzw model

is comparable to ∼ 0.1 dex at all masses. Lee et al. (2006) recently reported that the

1σ scatter in the observed relation is roughly 0.1 dex from 106–1012M¯ at low red-

shift and argued that this implied a less energetic form of metal-enhanced mass

loss than blowouts. Our results tend to support this view. However, we also find

that, in order to avoid the large scatter introduced by Scannapieco & Broadhurst

(2001) suppression, winds must either transport significantly less momentum out

of halos than occurs in the simplest energy-driven wind models, or else they must

invoke large mass loading factors ηW > 2 at intermediate masses. Momentum-

driven winds naturally satisfies that requirement while our constant wind model

does not.
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3.6 Evolution of the MZR

In the previous sections we explored how the effects of winds scale with mass by

studying galaxies at a single epoch. In order to understand how outflows affect

the evolution of the MZR, we now discuss how the metallicity evolves through

cosmic time in our three models, as a function of galaxy mass and gas fraction.

To do so, we trace the evolution of each simulated galaxy at z = 2 by searching

for its most massive progenitor in each simulation output, thereby compiling its

mass and metallicity history. Because enrichment histories of individual galaxies

are highly stochastic, we bin the histories by stellar mass in order to show the

typical evolution as a function of stellar mass.

3.6.1 Evolution of M∗ − Zg

Figure 3.10 compares the mean enrichment histories from the different models

from z = 6 → 2. As expected, galaxies generally increase in both mass and

metallicity as they evolve. However, the slope of the evolution is in general

neither constant nor parallel to the observable trend owing to the fact that gas

accretion rates, star formation efficiencies, and wind properties vary with scale

and time. In particular, galaxies do not generally evolve as closed boxes (green

dashed line) although the nw model comes quite close even at high redshift. In-

stead, their evolution is more shallow owing to the fact that outflows expel gas

that is enriched compared to inflows from the IGM. At lower redshifts where

strong outflows are rare and accretion rates are low, the evolution is expected

to more closely resemble the closed-box scenario. This can be seen in Figure 1

of Brooks et al. (2006), where their simulated galaxies evolve from z = 2 → 0

with a slope d log(Zg)/d log(M∗) ≈ 1. Additionally, Savaglio et al. (2005) have
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Figure 3.10 Mean enrichment histories of the simulated galaxies in the three wind

models starting from z = 6 → 2. Blue and red solid lines denote evolutionary

trends from the 16- and 32h−1Mpc boxes, respectively, while the green dashed line

gives the slope of a closed-box with baryonic mass 5×109M¯ (Zg/y = − ln µ(M∗)).

The magenta curves indicate the mean observable trends at z = 2. Galaxies

evolve roughly parallel to the observable trend in the vzw model and more

steeply in the cw and nw models.
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shown that closed-box scenarios can account for the observed evolution from

z = 0.7 → 0.1.

There is a slight upturn in the evolutionary slope from z = 3 → 2 that can

be seen in all three models. This feature occurs because gas accretion rates are

declining during this interval owing to the increasing gas cooling times at inter-

mediate overdensities; in other words, because gas accretion grows decreasingly

effective at diluting gas reservoirs, star formation grows increasingly effective at

enriching them. The fact that the rate at which the normalization of the MZR

changes during this interval varies among our wind models illustrates how the

time evolution of the MZR, in addition to its normalization, shape, and scatter, is

a testable prediction of the wind model.

Turning to the individual models, galaxies in the nw model evolve nearly

as steeply as a closed box in all but the highest mass bin. The relatively steep

evolution in the low-mass bins reflects the fact that these galaxies’ metallicities

are not significantly diluted by inflows owing to their large gas fractions. By

contrast, the shallower evolution in the highest mass bin indicates that, owing

to their high gas densities and star formation efficiencies, these galaxies possess

somewhat lower gas fractions with the result that inflows dilute their metallicities

more readily. We will show in Figure 3.11 that the same effects can be seen in

these galaxies’ effective yields.

In the vzw model galaxies enrich their gas reservoirs somewhat more slowly.

This evolution can intuitively be understood as a consequence of the tendency

for vzw galaxies to expel a large fraction of their metals. However, we can also

understand it via our analytical model as follows: In the vzw model, the effec-

tive mass loading factor scales with stellar mass as η̃MLF ∝ M−0.25
∗ (Figure 3.6).
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If galaxies’ metallicities remain near equilibrium (Section 3.7.1) and if the gas

processing rate is approximately equal to the gas accretion rate ṀSFR(1 + ηW) ≈

ṀACC, then the vzw MZR should scale with mass as Zg ≈ y/(1+ηW). For ηW À 1

(typical of small galaxies at high-z) we therefore expect Zg ∝ M0.25
∗ —exactly the

scaling seen in Figure 3.10.

The evolution of the MZR in the cw model is more complex than in the other

two models owing to the nontrivial environment-dependent interactions between

the outflowing winds and the inflowing gas. The relevant points are that the basic

shape of the constant wind MZR does not evolve with redshift while its normal-

ization increases somewhat more rapidly than that of the vzw but not as rapidly

as the nw model.

3.6.2 Evolution of Effective Yields

A more direct way to investigate the extent to which our simulated galaxies de-

part from closed-box evolution is to plot the metallicity versus gas fraction, Fig-

ure 3.11. The axes in this figure are chosen so that galaxies with a constant effec-

tive yield yeff ≡ Zg/ − ln(µ) (where µ denotes the mass fraction of baryons in the

gas phase) evolve along straight lines. The dashed green lines show the evolution

for (from bottom to top) yeff/y = 0.5, 1.0, 2.0. Individual galaxies generally evolve

from lower left to upper right in this space.

The nw galaxies remain quite close to the closed-box curve yeff/y = 1.0 as

suggested by the steep evolution in Figure 3.10. The effective yield never ex-

ceeds the closed-box case, as required by Theorem 3 of Edmunds (1990). It drops

below the closed-box value most strongly at the redshift corresponding to the

peak accretion rates z ≈ 3 because the dilution of the metallicities at this epoch

is overcompensating for the increase in gas fraction (this happens irrespective of
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Figure 3.11 Mean enrichment histories of the simulated galaxies in the three wind

models starting from z = 6 → 2. Dashed green lines show where galaxies fall

that have yeff/y = 0.5, 1.0, 2.0. Blue and red solid lines denote evolutionary trends

from the 16- and 32h−1Mpc boxes, respectively. The nw galaxies involve much

like closed boxes while the vzw and cw galaxies show suppressed effective yields.
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the wind model and is therefore a robustly predicted—if difficult to confirm—

consequence of the global gas accretion peak at z ≈ 3). After the accretion rates

begin subsiding, yeff/y returns to the closed-box value relatively quickly owing to

continued star formation (Dalcanton, 2006).

By contrast, galaxies in the vzw model tend to evolve from higher to lower

yeff/y during this period owing to the combined effects of dilution and outflows.

In this model accretion rates fall off somewhat more slowly following the z = 3

peak than in the other models, pushing the peak of star formation to lower red-

shift (Oppenheimer & Davé, 2006) and delaying the recovery of the effective

yields. The delayed falloff in accretion owes to galactic fountain effects that occur

because outflowing gas does not escape the halo ∼ 20− 50% of the time, on aver-

age. The gas is then retained in a puffy distribution, owing to small wind speeds

that do not drive gas far from the galaxy, and becomes available for reaccretion

on a time scale smaller than a Hubble time.

Galaxies in the cw model show a gradual evolution from nearly closed-box

yields yeff/y ≈ 0.8 at z = 6 to lower values yeff/y ≈ 0.3 at z = 3 before rebounding

to yeff/y ≈ 0.5 at z = 2. The relatively weak dependence of yeff/y on M∗ at all

redshifts recalls the flat MZR in Figure 3.1 and owes to the fact that most of the

galaxies in this figure lie below the blowout scale and are hence roughly equally

affected by winds.

The bottom-right plot in Figure 3.11 compares how yeff varies with M∗ at z = 2

in our three models versus observations of UV-selected galaxies at z ∼ 2 (Erb et

al., 2006). The nw model shows no trend at low masses and declines with in-

creasing mass for masses above 1010M¯. The decline occurs because gas fractions

decline with increasing mass: Galaxies more massive than 1010M¯ have gas frac-
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tions µ ≤ 20% in the nw model so that unenriched inflows are able reduce yeff

efficiently (Dalcanton, 2006). The yeff behavior is qualitatively consistent with the

observed trend although the normalization is ≈ 50% too high.

In the vzw model, yeff increases with increasing mass at low masses and flat-

tens out around 1010M¯. This behavior at face value conflicts with observations at

z ∼ 2. On the other hand, it bears a striking resemblance to the observed trend at

low redshift (Garnett, 2002; Tremonti et al., 2004; Pilyugin et al., 2004). Although

we do not show it here, the overall shape of the yeff trend in the vzw model does

not vary with redshift. An aggressive interpretation of Figure 3.11 would be that

winds at high redshifts must differ qualitatively from winds at low redshifts, with

the former relatively more effective in massive galaxies than the latter; in other

words, at high redshift the effect of winds on yeff should preserve the nw scal-

ing while at low redshift the vzw model is more realistic. However, considering

that Erb et al. (2006) were forced to infer gas masses indirectly rather than mea-

suring them, and given that their measurements span a much smaller dynamic

range than low-redshift observations, we prefer not to draw any firm conclu-

sions from Figure 3.11. Future measurements that trace high-redshift gas masses

more directly (e.g. with ALMA) will constrain the effective yields of high-redshift

galaxies more directly, and will provide a key test of the momentum-driven wind

scalings.

The vzw trend at low masses is expected despite their higher gas fractions

(not shown) because ηW increases to lower masses (Figure 3.6). In terms of our

analytical model, we now anticipate the conclusions of Section 3.7 by assuming

that ṀSFR(1 + ηW) = ṀACC and dividing Equation 3.20 by y ln(1/µ) to find the



165

equilibrium condition:
yeff,eq

y
=

1

(1 + ηW) ln( 1
µ
)

(3.17)

As mass increases, ηW decreases (Figure 3.6), hence yeff,eq increases.

The flattening behavior in yeff,eq around M∗ = 109.5−10M¯ is more interest-

ing. Recall that in our vzw model the fraction of baryons lost to winds does not

vary strongly with mass (Section 3.5.3). Evidently, a flattening in yeff does not

necessarily indicate a scale at which superwind feedback becomes effective at re-

moving a galaxy’s metals, an interpretation we discuss further below. Nor does

it indicate that yeff has reached the true yield yeff/y = 1. Instead, it seems to be

a coincidence resulting from a competition between dilution owing to accretion

and the outflows’ suppression of star formation. Indeed, in more massive galax-

ies (M∗ > 1011M¯) yeff begins to increase with mass again owing presumably to

the fact that gas accretion rates are falling in this range. While the highest mass

bin in the Tremonti et al. (2004) data tantalizingly suggests agreement with this

behavior, confirmation will have to await the arrival of larger samples of massive

star-forming galaxies at z ∼ 1 (since at z = 0 massive galaxies are generally too

gas-poor for their gas-phase abundances to be measured).

Garnett (2002) also found a flattening of yeff below ∼ 100 km s−1 at low red-

shift, but his interpretation was that low-mass galaxies retain a smaller fraction

of their metals owing to the onset of winds in less massive galaxies, in conflict

with our interpretation. However, Dalcanton (2006) recently used the same data

to show that the observed trend in yeff can be obtained without assuming that

winds are more effective in low-mass galaxies by removing the approximation

that the gas fraction is constant. In this view, yeff is suppressed in low-mass galax-

ies because their low star-formation efficiencies prevent their yeff from recovering
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quickly from inflow episodes. Our findings tend to support the latter view.

In the cw model, yeff does not vary with mass below the blowout scale and in-

creases with increasing mass above it, emphasizing the idea that the effectiveness

of winds below the blowout scale does not seem to follow the trends that would

be expected from simple scaling arguments.

Effective yields can also give insight into another important question in the

study of high-redshift galaxies, namely whether the buildup of stellar mass oc-

curs in a predominantly smooth or episodic fashion. At redshifts z < 1, the tight

observed correlation between stellar mass and ṀSFR argues in favor of a pre-

dominantly smooth mechanism for relatively massive galaxies 1010 < M∗/M¯ <

1011 (Noeske et al., 2007). At z ∼ 2, clustering measurements indicate that Lyman-

break and submillimeter galaxies possess duty cycles of ∼ 1 (Adelberger et al.,

2005a) and ∼ 0.1 (Bouché et al., 2005), respectively, suggesting that Lyman Break

galaxies form stars smoothly while submillimeter galaxies are more bursty. Sim-

ilarly, recent clustering measurements indicate that Lyman-α emitters at z ≈ 4.5

possess duty cycles of ∼ 10%, again hinting at relatively bursty star formation

histories (Kovac et al., 2007).

Effective yields provide another way to test this behavior, because in the ab-

sence of inflows and outflows, galaxies’ effective yields quickly recover to the

true yield. Hence if the timescale for the yeff/y to recover to the true yield is short

compared to the duty cycle then some mechanism must be actively suppressing

it (Dalcanton, 2006). Quantitatively, if we define the ratio of the effective yield to

the true yield Xy ≡ yeff/y then, in the absence of inflows and outflows, Xy varies

with time according to
d Xy

d t
=

ṀSFR

Mg ln( 1
µ
)
(1 − Xy) (3.18)
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This equation shows that the equilibrium solution Xy = 1 is a stable one (Köppen

& Edmunds, 1999) and that departures from equilibrium disappear with an e-

folding timescale given by Mg ln(1/µ)/ṀSFR. Applying this timescale to UV-

selected galaxies at z ∼ 2, where by computing weighted means over bins 2–6

in Erb et al. 2006 we determine (< ṀSFR >,< Mg >,< µ >) ≈ (29 M¯yr−1, 2.1 ×

1010 M¯, 0.38), we find that the timescale for yeff/y to return to the closed-box

yield is 700 Myr. This is considerably shorter than the gas consumption time

of 1.2 Gyr. This short timescale together with the suppressed observed effective

yields yeff < 0.01 imply that star formation in these galaxies cannot be episodic

in nature, consistent with the large inferred duty cycles. In our simulations, this

timescale is less than 50% of the Hubble time at all epochs in both wind models,

indicating that our predicted effective yields reflect star formation and gas accre-

tion processes that are predominantly smooth rather than episodic in nature.

In summary, at high redshift (z = 6 → 2) galaxies tend to evolve from high to

low yeff as accretion rates increase and are hence expected to “rebound” at lower

redshifts z < 2 where gas accretion rates decrease. Superwind feedback gener-

ically suppresses yeff in our galaxies as expected. The resulting M∗ − yeff trend

depends on the ways in which winds affect how inflows, outflows, and gas frac-

tions scale with mass. The cw trend conflicts with high- and low-redshift observa-

tions while the vzw trend agrees qualitatively with low- but not all high-redshift

observations. The fact that the vzw model produces better agreement with the

directly-measured high-z MZR and low-z M∗ − yeff trends suggests that our vzw

model is closer to reality. In both cases star formation occurs via predominantly

smooth rather than bursty processes. It will be interesting to see whether the vzw

model’s conflict with the observed trend in yeff at high-z is alleviated once direct
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measurements of gas densities at high redshifts become available.

3.6.3 Analytic Model MZR Evolution

In Section 3.7 we will synthesize the insights gained from our analytical model

to understand the origin of the MZR in our simulations. In order to justify this

analogy, in this section we show that our analytical model broadly reproduces

the evolution of the simulated MZR.

Figure 3.12 compares how galaxies evolve through the MZR in our simula-

tions (thin lines) versus our analytical model (thick lines) for three different mass

bins. The analytical model succeeds in recovering most of the qualitative fea-

tures of the models as well as the differences between them. For example, in each

model the observable MZR has nonzero slope. This is only achieved if the star

formation efficiency or the ηW scales with mass (Section 3.7.2). The agreement be-

tween the simulated and analytical trends results because we directly tuned our

analytical star formation efficiencies to match Figure 3.5. We have verified that

our analytic model reproduces the simulated galaxies’ effective yields as well

(Figure 3.11) although we do not discuss it here.

The qualitative differences in evolution between our different outflow models

are well-reproduced. For example, nw galaxies evolve the most from z = 6 → 2

while cw galaxies evolve the least because the nw galaxies retain their entire gas

reservoirs while the accretion histories in the cw model peak at an earlier time.

The vzw galaxies evolve the most shallowly owing to their high ηW’s while the

nw galaxies evolve the most steeply. The result of these differences is that the

vzw galaxies are the least enriched at z = 2 while the nw galaxies are the most

enriched.

While our analytical model reproduces many of the gross features of the sim-
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Figure 3.12 A comparison of the mean evolution of galaxies through the MZR in

the w16 (thin blue) and w32 (thin red) models versus our analytical model. The

analytical model reproduces the qualitative differences between the wind models

although it does not reproduce the behavior of the individual models in detail.

In particular, the analytical model yields a nonzero slope at low masses in the cw

model, in clear conflict with the hydrodynamic simulations.
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ulations as well as the differences between the different wind models, it does a

poorer job of reproducing the individual wind models in detail. For example, in

the nw and vzw models metallicities at z = 2 are ≈ 0.1 dex too low. Such offsets

can easily result from minor inconsistencies in accretion histories or the defini-

tion of the gas-phase metallicity. The upturn at late times is not conspicuous in

any of our analytical models although it can readily be reproduced by forcing gas

accretion rates to drop more precipitously at z < 3 than we have done. This is

especially clear in the cw model, which is generally the most difficult model to

reproduce owing to the fact that its behavior does not scale smoothly with galaxy

mass. Our analytical cw model inevitably yields a nonzero slope in the observ-

able MZR, in conflict with the simulations. This can be alleviated by allowing the

star formation efficiencies ṀSFR/Mg to vary more slowly at low masses than at

high masses (Figure 3.13). However, further fine-tuning of the star-formation ef-

ficiencies and accretion histories in our analytical model would yield little insight.

The important point to take away from Figure 3.12 is that our analytical model

captures the essential ingredients that determine how galaxies evolve through

the MZR in our fully three-dimensional simulations. In the next Sections, we will

therefore apply our analytical model to determine the conditions that drive the

form of the observable MZR.

3.7 Understanding the Mass-Metallicity Relation

In this section we use the intuition gained in the past several sections along with

the simulation results in order to piece together a comprehensive understanding

of what drives the MZR’s form and evolution. We have already demonstrated

that our vzw simulation produces good agreement with the slope, normaliza-
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tion, and scatter of the observed MZR (Figure 3.1) and that our analytical model

provides an acceptable description of how galaxies evolve in our full simulation

(Figure 3.12). Hence we begin by showing how our analytical model can account

for the amplitude, slope, and scatter of the simulated—and, by implication, the

observed—MZR.

3.7.1 Implications of the Model

3.7.1.1 Normalization and Scaling

Combining our original analytical model, equation 3.9, and the evolution of the

gas mass, equation 3.13, it is straightforward to show that galaxies evolve through

the MZR with a slope given by

d Zg

d M∗

=
1

Mg

(

ṀACC

ṀSFR

Zg(αZ − 1) + y

)

, (3.19)

which is equal to zero if

Zg = y
ṀSFR

ṀACC(1 − αZ)
≡ Zg,eq (3.20)

This possible balance between the influences of star formation and infall has been

identified previously (e.g., Tinsley & Larson, 1978; Köppen & Edmunds, 1999).

Winds enter into the determination of Zg,eq indirectly by modulating the rate at

which a galaxy depletes its gas reservoir as well as the relative enrichment of the

satellite galaxies that it accretes. If a galaxy processes its gas into stars and winds

at the gas accretion rate1, then ṀSFR(1 + ηW) = ṀACC, which in turn yields the

equilibrium gas-phase metallicity Zg,eq = y(1 + ηW)−1(1 − αZ)−1. In what follows

we will show that in our wind models this is approximately true.
1This can be viewed as setting the constant k ≡ ṀSFR/ṀACC in Tinsley & Larson (1978).
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3.7.1.2 Scatter

The ratio of a galaxy’s metallicity to its equilibrium metallicity XZ ≡ Zg/Zg,eq

evolves with time according to

d Xz

d t
=

ṀACC

Mg

(1 − XZ) − yXZ

(

M̈SFR

ṀSFR

−
M̈ACC

ṀACC

)

. (3.21)

The second term in Equation 3.21 is small except during short-lived interactions,

hence we may neglect it. In this case, Equation 3.21 implies that the equilibrium

solution XZ = 1 is a stable one (Köppen & Edmunds, 1999) and that departures

from equilibrium disappear on a timescale given by Mg/ṀACC, or the timescale

for the gas reservoir to be diluted by a factor of 2. If this timescale is shorter

than the timescale over which perturbations to a galaxy’s metallicity occur then

galaxies’ gas-phase metallicities recover from perturbations quickly, suppressing

scatter in the observable MZR.

3.7.2 Normalization and Scaling Without Outflows

We begin our discussion of the origin of the MZR with the no-wind scenario

in order to develop some intuition about how hierarchical structure formation

impacts the MZR. In Figure 3.1 we showed that its MZR has approximately the

correct slope, but an amplitude that is ≈ 0.5 dex too high. We further showed

in Figure 3.6 that no-wind galaxies retain most of their gas, as expected without

outflows. Hence the only physical effect left that can cause a slope in the MZR is

the star formation efficiency.

If galaxies converted their gas into stars at precisely the gas accretion rate then

the slope of the MZR in the nw model would be zero. This can be seen from the

“infall model” formalism of Larson (1972), which tells us that if the gas mass is



173

Figure 3.13 Predicted MZR at z = 2 in the nw model versus several analytical

models. The solid black curve gives the mass-weighted gas-phase metallicity in

the nw simulation. The red dashed and blue dotted lines are computed by as-

suming that gas collapses into stars in 1 and 10 dynamical times, respectively

(see text); the long-dashed magenta line is computed by tuning star formation ef-

ficiencies to match the nw model. Green dot-dashed curves denote infall models

(Equation 3.22) assuming constant gas masses of 108, 109, and 1010M¯ from left to

right. The slope of the MZR in the absence of winds is dominated by the scaling

of the star formation efficiency.
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constant and ṀSFR = ṀACC then the gas metallicities evolve as:

Zg = y(1 − e−ν) (3.22)

ν ≡ µ−1 − 1,

(Note that this can be obtained from Equation 3.19 by substituting ṀSFR/ṀACC =

1.) In this model, for sufficiently small gas masses the MZR would be flat because

the gas fraction µ would rapidly shrink to zero for all galaxies. Equivalently,

Equation 3.21 tells us that we would expect all galaxies to approach Zg,eq = y as

long as Mg/ṀACC were significantly less than the Hubble time. The MZR clearly

is not flat in the nw model. Therefore, guided by our discussion of Figure 3.7,

we now ask whether the scaling of the star formation efficiency ṀSFR/Mg can

account for the scaling of the no-wind MZR.

We have calculated the z = 2 MZR using our analytical model with three

different prescriptions for the SFR. In the first, we compute the star formation rate

by assuming that gas condenses into stars in 10 dynamical times; this is similar to

the Kennicutt (1998a) relation. The gas densities are obtained from the baryonic

masses by combining the Virial Theorem with the low-redshift baryonic Tully-

Fisher relation (Geha et al., 2006) and assuming that galaxies are 5 times as dense

as their host halos (the value chosen for this ratio affects the amplitude but not the

trend of our results). In the second, we assume that gas condenses into stars in

one dynamical time. In the third, we tune the star formation efficiencies ṀSFR/Mg

to reproduce the efficiencies in the nw simulations.

Figure 3.13 compares the resulting MZRs at z = 2 with the trend from the fully

three-dimensional nw model using mass-weighted gas-phase metallicities (solid

black curve). Additionally, we have plotted the evolution of Zg versus M∗ for
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three representative infall models (Equation 3.22; green dot-dashed curves) cor-

responding to constant gas masses of 108, 109, and 1010M¯ from left to right. The

trend from the 10-dynamical time prescription has a negative slope, indicating

that more massive galaxies possess larger gas masses (and larger gas fractions)

than less massive galaxies and hence cannot enrich their gas reservoirs as effec-

tively; in terms of Equation 3.19, since ṀSFR/ṀACC declines with increasing M∗,

Zg does as well. The trend from the one dynamical time model is flat, as ex-

pected for a scenario with such efficient star formation; indeed, for this model

ṀSFR ≈ ṀACC so that Equation 3.22 accurately predicts Zg/y = 1 for all masses

since the gas fractions are negligible. By contrast, the trend from the model in

which we have tuned the star formation efficiencies exhibits the desired posi-

tive slope. This trend is in qualitative agreement with the numerical trend al-

though the most massive nw galaxies exhibit metallicities above the yield. The

high metallicities at the massive end are likely a consequence of accreting pre-

enriched gas; in terms of Equation 3.19, αZ > 0.

The simulated trend is shallower than expected from Equation 3.22 because

the assumption ṀSFR = ṀACC is violated weakly in the absence of outflows; in

particular, ṀSFR/ṀACC drops from 1.0 at 108M¯ to 0.9 at 1011M¯ in the analyt-

ical (magenta) curve while µ drops from 0.6 to 0.2 over the same interval. In

short, the reason the nw model has the correct MZR slope is that the star for-

mation efficiency in a hierarchical structure formation scenario naturally yields

the desired differential with galaxy mass (cf. § 3.5.2). Nevertheless, the excessive

amplitude (cf. Figure 3.1) suggests that metals must be preferentially removed

from these galaxies. Hence outflows are necessary to obtain the correct ampli-

tude (Kobayashi et al., 2007), but are not required to obtain the suppression of
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metallicity in low-mass galaxies (De Rossi et al., 2006; Tassis et al., 2006).

3.7.3 Normalization and Scaling With Outflows

Next we consider the impact of winds. From Figure 3.9 we see that outflows

suppress both the stellar mass and the metallicity. In order to lower the MZR

amplitude, outflows must lower Zg more than M 0.3
∗ , which is the observed slope

of the MZR.

Looking first at M∗ = 1010M¯, which is around L∗ at z = 2, we see from Fig-

ure 3.1 that both the cw and vzw models produce roughly the correct MZR am-

plitude (recall that the observed metallicities and the yield each introduce ≈ 0.3

dex of uncertainty). Under the assumption that the MZR is governed primarily

by the mass loading factor ηW via the equilibrium conditions (cf. § 3.7.1.1), this

is expected because galaxies in both models experience effective mass loading

factors in the range η̃MLF = 1 − 1.5 at this scale (cf. Figure 3.6). Intuitively, η̃MLF

determines the level of suppression of gas enrichment and stellar mass growth

because higher mass-loading factors lead to lower gas densities (cf. Figure 3.5)

and to more gas being ejected in winds rather rather than converted into stars.

This leads to a tendency for galaxies with similar η̃MLF to possess similar proper-

ties regardless of wind model.

Above this mass scale, constant wind outflows cannot escape halos, caus-

ing η̃MLF to drop rapidly. Hence cw metallicites grow much more rapidly with

M∗ than observed. Below this scale, metallicities reach a minimum in the range

M∗ = 109.5M¯ and then “rebound” slightly to lower masses. If this trend contin-

ues to z = 0 (as it does from z ≈ 6 → 2), then this would be in gross conflict with

observations. The cause of this scaling likely owes to the flat trend of η̃MLF with

mass at low masses, with the slight rebound at low masses due to baryon strip-
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ping from nearby galaxies’ outflows as discussed before (see also Scannapieco &

Broadhurst 2001, Figure 12).

In the vzw case, galaxies are always below the blowout scale (which increases

linearly with mass). In this regime, the mass loading factor governs the MZR. In

order for the scaling of Zg ∝ M0.3
∗ to hold, ηW must be roughly proportional to

M−0.3
∗ , which is satisfied in the vzw case. There is also slight evidence for baryon

stripping, but it is highly subdominant compared to the high η̃MLF in the mass

range where stripping is effective.

In summary, winds suppress galaxy masses and metallicities primarily by

modulating the relative rates at which gas reservoirs are enriched and diluted and

secondarily by stripping baryons from neighboring galaxies. In the vzw model

the latter effect is small compared to the former while in the cw model both are

significant. We emphasize that the normalization and scaling of the MZR are not

determined by the total fraction of metals that galaxies retain because the rates of

gas accretion and star formation are too rapid for the gas reservoirs to retain any

memory of this quantity. If baryon stripping is negligible compared to the effects

of outflows then the most important parameter is the effective mass loading fac-

tor η̃MLF; if the wind speed exceeds the escape velocity then η̃MLF ∝ ηW and the

scaling of ηW dominates the MZR.

3.7.4 Normalization and Scaling: The Equilibrium Metallicity

We now illustrate our main result that the mass loading factor governs the MZR

below the blowout scale by applying the analytical relations derived in § 3.7.1 to

the vzw simulation. In particular, we show that our simulated galaxies’ metallic-

ities do indeed track the equilibrium metallicity.

For each simulated galaxy in the vzw model, we have used our progenitor
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Figure 3.14 (Top) Mean ratio of actual to equilibrium gas-phase metallicity in four

bins of M∗ in the vzw model. The different curves correspond to galaxies in

different mass bins; the legend gives the stellar masses at z = 2. The vertical

dashed line denotes z = 2. (Bottom) Mean ratio of the gas processing to gas

accretion rates. The mean metallicity of infalling material grows with both galaxy

mass and time and is roughly αZ = 50% of the mean ISM metallicity at z = 2

(right y-axis on top panel). Gas processing rates generally lie within 20% of the

equilibrium values at all times.
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lists to track how the ratio of its gas phase metallicity to its equilibrium metal-

licity (XZ ≡ Zg/(yṀSFR/ṀACC); cf. Section 3.7.1.2) varies with mass and time

during the interval 6 < z < 2. If galaxies’ gas-phase metallicities closely track

equilibrium and if infalling material is unenriched then we expect XZ ≈ 1 at all

masses and redshifts.

The result is shown in the top panel of Figure 3.14. Comparing the least and

most massive galaxy bins, we find that whereas the actual gas metallicities of

1010.8M¯ and 108.7M¯ galaxies differ by ≈ 0.6 dex at z = 2 (Figure 3.1), their XZ ’s

only differ by ≈ 0.2 dex. Moreover, the spread in XZ is even tighter before z = 2.

This would not be expected in the absence of an equilibrium condition. The fact

that the spread in these ratios is tighter than the spread in galaxies’ actual metal-

licities indicates that at all times galaxies’ metallicities are tightly constrained by

a balance between enrichment from star formation and dilution from inflows.

The fact that the ratios are offset from zero implies that the mean metallicity of

inflowing gas is more than 10% of the mean metallicity in the galaxy’s ISM and

reflects the widespread presence of galactic fountains in the vzw model; the ratio

αZ can be read from the y-axis on the right side of the top panel. The increase in

αZ with cosmic time reflects the growing relative contribution of galactic foun-

tain gas with respect to pristine ISM gas: by z = 2, αZ ≈ 50%, indicating that

roughly 50% of the infalling gas is galactic fountain material. The increase in αZ

with mass reflects the fact that the rate at which pristine IGM gas accretes onto

the galaxies declines with increasing halo mass owing to their increasing hot gas

fractions (e.g., Birnboim et al., 2007).

The top panel of Figure 3.14 also supports our view that pre-enrichment of

gas that falls onto galaxies is not significant in the vzw simulation, which can be
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understood as follows: If, at a given redshift, gas that is being accreted were ho-

mogeneously pre-enriched to a certain level, this pre-enrichment would provide

a relatively larger boost to the metallicities of low-mass galaxies than to massive

galaxies. As a result, the gas-phase metallicities of low-mass galaxies would lie

farther above their expected equilibrium value given unenriched infall, and the

normalization of the XZ trend for low-mass galaxies would be boosted system-

atically above the XZ trend for more massive galaxies. In fact, all but the most

massive galaxies display roughly the same ratio XZ down to z = 2, hence a ho-

mogeneous pre-enrichment is not significant in this model.

In Sections 3.6 and 3.7 we proposed that the rate at which gas is processed

into stars and winds tracks the rate at which it is accreted, ṀSFR(1+ηW) = ṀACC.

This idea is central to the current work as it allows us to demonstrate that the

slope and normalization of the MZR depend almost entirely on the scaling of ηW.

Additionally, a systematic imbalance between the rates of gas accretion and gas

processing could in principle mimic the effects of nonzero αZ , leading to an in-

correct interpretation of the top panel of Figure 3.14. For this reason, we show

the ratio of the gas processing to the gas accretion rates in our vzw model in the

bottom panel of Figure 3.14. This figure indicates that galaxies generally pro-

cess their gas at the same rate as they accrete it, justifying our assumption2 that

ṀSFR/ṀACC = 1/(1 + ηW) and supporting our view that the increase in XZ with

time in the top panel results from galactic fountains rather than a mismatch be-

tween gas accretion and gas processing rates. Interestingly, this plot also indicates

that, in the vzw model, mergers do not contribute significantly to the buildup of
2Note that this is a generalization of the Ansatz ṀSFR = ṀACC that was introduced by Larson

(1972).
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galaxies’ stellar populations even in our most massive bin. Because we measure

baryonic accretion rates rather than strict gas accretion rates (the latter being diffi-

cult to infer from our simulations), a tendency for galaxies to accrete a significant

fraction of their baryons as ready-formed stars would show up as a tendency for

the accretion rate to exceed the gas processing rate. There is some evidence that

this does occur in the most massive galaxies in the vzw model, i.e. that dry merg-

ers are more prevalent at high masses. However, on average galaxies at z ≥ 2

do not accrete more than ≈ 10% of their baryons in the form of already-formed

stars (see also Guo & White, 2007).

In summary, the top panel of Figure 3.14 verifies that the slope and normaliza-

tion of the observable MZR are dominated by the equilibrium condition in Equa-

tion 3.20, while the bottom panel verifies that galaxies process newly accreted

gas into stars and winds at roughly the gas accretion rate. In other words, at all

masses and redshifts, metallicities are dominated by an equilibrium between the

rates of enrichment and dilution while the enrichment rate is dominated by an

equilibrium between the rates of gas accretion and gas processing. These equilib-

rium rates are governed primarily by the mass loading factor, hence the scaling

of the mass loading factor directly determines the scaling of the MZR.

3.7.5 Scatter

In our analytical model, scatter in the MZR occurs because a perturbation, such

as an accretion or merger event, displaces a galaxy’s metallicity from its equilib-

rium value. The timescale to return to equilibrium is given by the gas dilution

time Mg/ṀACC. Perturbations to a galaxy’s metallicity are expected to occur on

timescales no shorter than the dynamical time, tvir ' 2.5Gyr/(1 + z)3/2. Hence if

the dilution time is shorter than the dynamical time, then we expect perturbations
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Figure 3.15 The ratio of the dilution time Mg/ṀACC to the dynamical time as a

function of mass and time in our various models. The galaxy masses at z = 2 are

indicated in the legend and the vertical dashed lines indicate z = 2. Comparison

with Figure 3.1 indicates that mass scales with short dilution times tend to show

small scatter in the MZR whereas mass scales with long dilution times tend to

show large scatter.
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to disappear rapidly and for the scatter in the MZR to be tight.

Figure 3.15 shows how the ratio of the dilution time to the dynamical time

varies with scale and time in our models. In the nw models the dilution times

scale inversely with mass at early times from roughly 1.5tvir in the most massive

galaxies to roughly 15tvir in the lowest-mass galaxies at z ∼2–3. In the cw model

the dilution time scales more slowly with mass although the trend for low-mass

galaxies to dilute their gas reservoirs more slowly than massive galaxies is pre-

served despite the cw winds. Generally, galaxies less massive than 1010M¯ have

dilution times longer than tvir at z = 2 while more massive galaxies have dilution

times that are shorter than tvir. Finally, in the vzw model the dilution time does

not exceed tvir at any mass scale. More interestingly, in this model it is the low-

mass galaxies whose dilution times are the shortest, a direct consequence of our

assumption that the mass loading factor scales with the inverse of the velocity

dispersion.

Turning to the question of the scatter in the MZR (Figure 3.1), the relatively

long dilution times in the nw model at z = 2 are consistent with the relatively

large scatter (≈ 0.11 dex) in the corresponding MZR: Because perturbations to

these galaxies’ metallicities disappear relatively slowly, they spend a relatively

large amount of time out of equilibrium. Galaxies in the vzw model possess sig-

nificantly shorter dilution times than the nw galaxies or the low-mass cw galax-

ies, consistent with the tight scatter (≈ 0.08 dex) in the vzw MZR at all scales.

In the cw model low-mass galaxies possess long dilution times and large scat-

ter whereas massive galaxies possess short dilution times and small scatter, as

expected. The most massive cw galaxies possess the shortest dilution times of

any of our simulated galaxies at z = 2, consistent with the extremely tight scat-
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ter (≈ 0.06 dex) in the cw MZR above the blowout scale. The dilution times for

low-mass cw galaxies are shorter than they are for the low-mass nw galaxies even

though the scatter in the MZR is largest for the low-mass cw galaxies. The extra

scatter at low masses owes to these galaxies having had their baryons stripped by

winds from neighboring galaxies. Because the amount of stripping varies with

environment, it effectively creates a range of equilibrium metallicities for each

halo mass.

In summary, galaxies tend to process gas into stars and winds at roughly the

gas accretion rate. This tendency leads to the existence of an equilibrium gas-

phase metallicity Zg,eq = yṀSFR/ṀACC, which encodes information regarding

both a galaxy’s present conditions (via the accretion rate and wind properties)

and its star formation history (via the current gas content, which determines

ṀSFR). Corrections to this zeroth-order equilibrium result from galaxies accreting

pre-enriched gas or ready-formed stars as well as effects that depend on environ-

ment; the first two of these effects should not increase the scatter in the MZR

while the last one should. Metallicities are expected to lie close to Zg,eq as long as

dilution times are short compared to a dynamical time; in our momentum-driven

wind model that achieves the best agreement with the observed z = 2 MZR, this

holds for all scales and epochs. Our interpretation of the origin of the MZR scat-

ter also explains the no-wind and constant wind cases. Together with its relative

simplicity, we believe this makes our interpretation reasonably compelling.

3.8 Summary

In this paper we have compared the observed MZR of star-forming galaxies at

z ∼ 2 with predictions from cosmological hydrodynamic simulations that in-
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corporate three different models for galactic outflows: No outflows, a “constant

wind” model that emulates the energy-driven Dekel & Silk (1986) scenario, and

a “momentum-driven wind” model that reproduces z ∼> 2 IGM metallicity ob-

servations (Oppenheimer & Davé, 2006). We have shown that the momentum-

driven wind model produces the best agreement with the slope, normalization,

and scatter of the observed MZR. We have constructed a simple analytical model

that qualitatively reproduces the behavior of our simulations, and used it to iden-

tify the processes that drive galaxies’ metallicities. Our work shows that the

slope, normalization, and scatter of the MZR as well as its evolution with time all

constitute constraints on the behavior of outflows. In particular, our simulations

strongly disfavor any constant wind scenario, and explain why our momentum-

driven wind model produces reasonable agreement with available constraints.

Our main conclusions are summarized as follows:

• Outflows are required in order to bring the simulated and observed MZRs

into agreement at z ≈ 2. Without outflows, enrichment proceeds too rapidly

relative to dilution with the result that galaxy metallicities are 2–3× higher

than observed.

• The MZR is governed by an evolving equilibrium between the enrichment

rate owing to star formation and the dilution rate owing to gas accretion.

This results in an equilibrium metallicity for any given galaxy, given by Zg,eq =

yṀSFR/ṀACC, where y is the yield, ṀSFR is the star formation rate, and

ṀACC is the gas accretion rate.

• Outflows affect Zg,eq, and hence the MZR, by limiting the gas supply for

star formation. For a given mass loading factor ηW, and assuming (as our
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simulations predict) infalling gas has a negligible metallicity, then Zg,eq =

y/(1 + ηW).

• Wind speeds (VW) affect the MZR by governing how much outflowing mass

actually escapes the halo. This results in an effective mass loading parame-

ter η̃MLF (Figure 3.6), which is similar to (but slightly less than) ηW so long

as winds are fast enough to escape a galaxy’s halo, and drops rapidly to-

wards zero for galaxies whose winds are slower than the escape speed. Our

simulations’ metallicities are hence well described by Zg,eq ≈ y/(1 + η̃MLF),

where η̃MLF ≈ ηW below the blowout scale, and η̃MLF ≈ 0 above it.

• The reheating scale, which is the mass below which the outflow energy in-

put is sufficient to unbind all the gas, does not play a significant role in

determining η̃MLF. This is evident because in our cw run the fraction of

baryons converted to stars (f∗) does not vary with halo mass in the way

expected under the assumption of efficient energetic coupling of outflows

with ambient gas (Figure 3.7). Physically, this is because in our simulations

outflows tend to blow holes in surrounding gas rather than heat it.

• The observed slope and amplitude of the MZR therefore constrain how

η̃MLF and VW varies with M∗. Our momentum-driven wind model obtains

the observed relation Zg(M∗) ∝ M 0.3
∗ by having ηW ∝ 1/σ ∝ M

−1/3
halo ∝

M
−1/3
∗ , and by having outflow speeds always above the escape velocity (so

η̃MLF ≈ ηW). The latter constraint requires some positive mass dependence

of outflow speeds on galaxy mass, which we assumed to be VW ∝ σ, but

any dependence where galaxy masses are always below the blowout scale

would suffice.
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• Our no-wind scenario also produces a MZR with roughly the correct slope,

though in detail it is too shallow. In the absence of outflows, this owes to a

mass dependence of M∗ on Mhalo such that low-mass galaxies have a lower

fraction of baryons in stars. Hence in principle it is possible to match the

observed MZR without having η̃MLF vary with M∗. However, the required

scaling of M∗ with Mhalo does not occur naturally in our simulations with

outflows.

• Our constant wind scenario fails to even qualitatively match the observed

MZR. The existence of a blowout scale at ∼ 1010M¯ produces a marked fea-

ture in the MZR, below which η̃MLF ≈ ηW =constant, and above which η̃MLF

goes rapidly to zero and hence the MZR rises quickly towards Zg,eq = y.

Such a feature is generically expected across the blowout scale. The ab-

sence of such a feature in the observed z ≈ 0 MZR from M∗ ≈ 107 − 1011M¯

argues against a blowout scale in that mass range, thereby ruling out any

reasonable constant wind speed scenario.

• The scatter in the MZR is governed primarily by the dilution time td =

Mg/ṀACC compared to the dynamical time tvir. If dilution times are short

compared to a dynamical time, then perturbations from Zg,eq have time

to equilibrate, thereby suppressing scatter. The small scatter seen in the

MZR argues for td/tvir ∼< 1 across the full range of observed masses. Our

momentum-driven wind model satisfies this non-trivial constraint, whereas

our other models do not (Figure 3.15).

• Another physical effect that plays a secondary role in governing the MZR is

that outflows carry significant amounts of momentum that can strip baryons
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from neighboring halos. This increases scatter by causing equilibrium metal-

licities to depend on environment as well as mass. Hence the tight scatter

in the observed MZR suggests that either galactic winds do not carry sig-

nificant amounts of momentum out of galaxies, or outflows must be suffi-

ciently mass-loaded to “drown out” the effects of baryonic stripping. In our

constant wind case below the blowout scale, neither are true, and the scat-

ter increases significantly. In our momentum-driven wind case, the latter is

generally true.

• Outflows and inflows cause galaxies to evolve more shallowly than closed-

box models at early times, with the vzw galaxies evolving most shallowly

of all (Figure 3.11). Effective yields are expected to be ∼ 0.01 at z = 2 for

both our wind models. However, the detailed scaling of the vzw model’s

yeff suggests better agreement with the well-constrained low-redshift obser-

vations. It is worth noting that the effective yield is only reflective of the

recent history of gas and metal accretion over a dilution time, hence it can-

not be used to infer long-term accretion histories.

According to our analysis, an outflow model that will successfully reproduce

the observed MZR must satisfy three main conditions:

1. ηW ∝(slope of MZR)−1 when ηW À 1;

2. VW must scale with mass such that all galaxies are below the blowout scale

(so that η̃MLF ≈ ηW);

3. Dilution times must be short compared to dynamical times in order to main-

tain a small MZR scatter at all masses.
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These criteria show that the MZR mostly constrains the mass loading factor, with

weaker constraints on outflow speeds and gas accretion rates. It is interesting

that our momentum-driven wind scenario naturally satisfies these requirements

(along with secondary requirements such as the subdominance of baryon strip-

ping). Although other wind models could conceivably be postulated that also sat-

isfy these requirements, it is compelling that this same model also satisfies IGM

metallicity constraints, and broadly agrees with available direct measurements

of outflow parameters at high and low redshift. In any case, other wind models

will likely need to satisfy the above criteria in order to match the observed MZR,

demonstrating that the MZR provides strong constraints on outflow properties.

The rather dramatic failure of our constant wind scenario is suprising in light

of the apparent success of the simple analytical models presented by Dekel &

Silk (1986) and Dekel & Woo (2003). The root difference traces back to those

works assuming that feedback suppresses star formation by efficiently coupling

supernova energy with baryons in halos, while our three-dimensional simula-

tions produce inefficient coupling with a propensity for winds to blow holes in

surrounding gas. This is partly a result of the way we implement winds in our

simulations by turning off hydro forces for some distance; however, in practice

that distance is much smaller than the halo size and hence interactions with halo

gas can (and do) still occur. Regardless, the existence of a strong feature at the

blowout scale seems an unavoidable consequence in a constant wind scenario,

and is in direct conflict with the observed unbroken MZR power law over four

orders of magnitude in stellar mass. Furthermore, the increased scatter below

the blowout scale predicted by such a scenario is not seen. Hence we strongly

disfavor this explanation of the MZR.
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The slow turnover in the z ∼ 0 MZR at M∗ ∼> 1010.5M¯ cannot be studied

directly in our simulations owing to a lack of sufficient dynamic range, along

with the fact that our simulations were not evolved to z = 0. However, it arises

naturally in our scenario when the mass loading factor becomes ¿ 1, which

yields Zg,eq → y =constant. In principle, it could also arise if galaxies with

M∗ ∼> 1010.5M¯ are above the blowout scale (which would also make η̃MLF → 0);

indeed, this is the conventional interpretation (e.g. Tremonti et al., 2004). How-

ever, this would imply the existence of a blowout scale at that mass, which as

we have argued above causes other features in the MZR that contradict obser-

vations. Hence we suggest that this mass scale does not reflect a characteristic

wind speed, but rather a characteristic scale of the mass loading factor, namely

the galaxy mass where the mass loading factor is roughly unity.

Our findings agree broadly with those from the higher-resolution study of Brooks

et al. (2006), though there are some differences in interpretation. In their work,

they determined that winds affect the MZR of low-mass galaxies in the following

sense: When they compared gas-phase metallicities at z = 0 with the mean metal-

licity of all gas that had ever belonged to the galaxies, they found no systematic

offset. This is expected if the mean metallicity in an outflow equals the mean

metallicity in the galaxy’s ISM. On the other hand, by comparing simulations

with and without winds they found that winds suppress gas densities and hence

star formation efficiencies, which in turn shapes the observable MZR. Hence they

deduced that star formation efficiency is a key driver of the MZR. We also find

that more massive galaxies have more efficient star formation in Figure 3.5, and

Figure 3.13 shows that this is important for establishing the MZR, at least in the

no-wind case.
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However, in our wind models we find that the star formation efficiency doesn’t

by itself determine the MZR, because the trends in Figure 3.7 don’t mimic those

of the MZR. Instead, the MZR’s trend is the mass scaling of Zg,eq, which is set

by how the accretion rate compares with the star formation rate (Tinsley & Lar-

son 1978; eqn. 3.20); in our models, this is similar across all masses and close to

unity at z ∼ 2, when the dependence on ηW is taken into account, as shown in the

bottom panel of Figure 3.14. Hence the mass dependence in Zg,eq arises mainly

from the mass dependence in η̃MLF. In this way, the trends in η̃MLF (Figure 3.6)

are directly reflected in the MZR.

This interpretation can be compared with the results of Kobayashi et al. (2007),

who observed a tight correlation between stellar metallicity and the mass frac-

tion of metals retained by the galaxies in their models at all redshifts (their Figure

16d) and concluded that higher stellar metallicities result directly from a lower

mass fraction of metals ejected. Our models obey a similar correlation, hence

our conclusions should be consistent with theirs. In fact, the tendency of gas-

phase metallicities to track an equilibrium value combined with a tendency for

η̃MLF to decline and Zg,eq to grow as galaxies grow requires that the fraction of

metals retained and the mean stellar metallicity must grow together, as found

by Kobayashi et al. (2007). Moreover, given that the gas-phase MZR shows lit-

tle scatter at all redshifts, the stellar MZR should also show little scatter (as also

noted by Kobayashi et al. 2007) even though it is not directly governed by an equi-

librium condition analogous to Equation 3.20. In this way, Equation 3.20 likely

governs the gas-phase MZR directly and the stellar MZR indirectly in both sets

of models. Indeed, it is likely that an analogous equilibrium condition governs

the MZR of any galaxy evolution model that incorporates a treatment for strong
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(η̃MLF À 1) outflows.

Despite considerable progress over the last decade, the use of metallicities

and effective yields to constrain galaxy evolution constitutes a field that is in its

infancy from both theoretical and observational perspectives. Our simulations’

implementation of outflows, while being state-of-the-art for cosmological simu-

lations, is still crude. For instance, we currently assume enrichment only from

Type II supernovae, we do not shut off winds in galaxies with low star formation

rate surface densities (Heckman, 2003), and we use the local potential as a proxy

for galaxy mass. All of these simplifications are probably not fatal at z = 2, but by

z = 0 they likely are; this (in addition to computer time constraints) is the main

reason we have not attempted to extend our simulation analysis to z = 0. We

are working towards incorporating metals from Type Ia supernovae and stellar

mass loss, improved wind criteria, and direct galaxy identification into our code

(Oppenheimer et al., in preparation). Our preliminary results indicate that none

of these issues significantly impact the predicted z = 2 MZR.

Another aspect for future exploration is different scalings of the wind model.

For instance, our constant wind scenario is only one possible implementation of

energy-driven outflows. More sophisticated versions that allow ηW and the wind

speed to vary could improve the agreement between the observed and simu-

lated luminosity functions at the faint end while yielding agreement with the ob-

served MZR. It is by no means clear that momentum-driven winds, as we have

implemented them, are the only viable alternative. Indeed, it is for this reason

intriguing that Kobayashi et al. (2007) have obtained reasonable agreement with

the observed MZR using a treatment for pressure-driven outflows that result in

a qualitatively similar scaling of mass-loading factor versus mass as well as the
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predicted MZR. The intuition gained from these results can hopefully guide us

(and others) towards understanding how alternative outflow models may fare

prior to running expensive simulations.

On the observational side, galactic outflows are still relatively poorly con-

strained despite impressive advances over the past decade. More detailed mea-

surements of the mass loading factors and wind speeds across a large dynamic

range would be helpful in indicating whether momentum-driven or energy-driven

winds are likely to dominate. More importantly, despite heroic observational

efforts there remain relatively few constraints on galaxies’ metallicities and gas

fractions at high redshift. Upcoming metallicity measurements made with multi-

object infrared spectrographs such as FLAMINGOS-2 as well as direct gas mass

measurements made with IRAM and ALMA will prove crucial in finally allowing

us to apply these metrics to the high-redshift Universe.

Despite its simplicity, the fact that our model explains the detailed shapes of

both of our wind models’ MZRs leads us to believe that it captures most of the

essential physics. Our scenario invokes two parameters, the equilibrium metal-

licity and the dilution time, neither of which can be directly measured because

they depend on the gas accretion rate. Instead, they must be constrained indi-

rectly through observations of how galaxy properties such as SFR, gas mass, and

metallicity vary with mass and epoch. We look forward to undertaking such com-

parisons to observations in the future, and are hopeful that they will shed further

light on the critical problem of understanding galactic outflows.
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3.9 Afterthought: Observational Selection Effects

Since publishing this work, we have become aware of three systematic effects

that could impact the observed mass-metallicity relation at z = 2. First, the

galaxy sample used by Erb et al. (2006) was selected in the rest-frame ultravi-

olet, which implies systematically high specific star formation rates. Detailed

study of the Tremonti et al. (2004) sample has revealed that galaxies with high

specific star formation rate tend to have systematically low metallicity (Ellison et

al., 2008; Peeples et al., 2009), hence the Erb et al. (2006) MZR could be system-

atically low by up to 0.1–0.2 dex. Second, studies that employ emission lines to

study the MZR are biased to low metallicities by the fact that emission line fluxes

tend to go up as the metallicities go down. This is because, at fixed stellar mass,

a smaller fraction of metal-rich galaxies will have sufficiently high signal to noise

to constrain their metallicities. Finally, it is possible that star-forming gas at high

redshift is exposed to a higher ionization parameter than at low redshift (Erb et

al., 2006; Brinchmann et al., 2008), which could account for some of the offset

between the observations at low and high redshift.

While each of these considerations introduces further uncertainty into the ob-

servational constraints, we believe that our qualitative conclusion that the mo-

mentum wind model best reproduces observations is robust. This is for two rea-

sons. First, it is unlikely that correcting for these errors would push the “true”

MZR into closer agreement with the predictions of the nw and cw models. In

the former case, the offset between the observations and simulations is roughly

0.5 dex, which is large compared to the expected size of the individual effects. In

the latter case, the enormous scatter below the blowout mass and the dramatic

change in slope and scatter above it have no analogue in observations. Second,
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the momentum wind model yields significantly better agreement with observa-

tions of metal line absorbers in the IGM, which are not subject to these selection

effects.

We thank Professor Dennis Zaritsky for reminding us of these observational

biases.
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CHAPTER 4

A NEW MOMENT METHOD FOR CONTINUUM RADIATIVE TRANSFER IN

COSMOLOGICAL REIONIZATION

In this chapter, we introduce a new code for computing time-dependent con-

tinuum radiative transfer and non-equilibrium ionization states in static density

fields with periodic boundaries. Our code solves the moments of the radiative

transfer equation, closed by an Eddingtion tensor computed using a long charac-

teristics method. We show that traditional short characteristics and the optically-

thin approximation are inappropriate for computing Eddington factors for the

problem of cosmological reionization. We evolve the non-equilibrium ioniza-

tion field via an efficient and accurate (errors < 1%) technique that switches

between fully implicit or explicit finite-differencing depending on whether the

local timescales are long or short compared to the timestep. We tailor our code

for the problem of cosmological reionization. In tests, the code conserves pho-

tons, accurately treats cosmological effects, and reproduces analytic Strömgren

sphere solutions. Its chief weakness is that the computation time for the long

characteristics calculation scales relatively poorly compared to other techniques

(tLC ∝ N∼1.5
cells ); however, we mitigate this by only recomputing the Eddington ten-

sor when the radiation field changes substantially. Our technique makes almost

no physical approximations, so it provides a way to benchmark faster but more

approximate techniques. It can readily be extended to evolve multiple frequen-

cies, though we do not do so here. Finally, we note that our method is generally

applicable to any problem involving the transfer of continuum radiation through

a periodic volume.
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4.1 Introduction

The epoch of reionization is the current frontier in understanding how galaxies

form and evolve over cosmic time. After the Universe cooled sufficiently to re-

combine hydrogen atoms at redshift z ≈ 1088 (Spergel et al., 2007), the Universe

was fully neutral. Gravity grew ever-denser structures that, at z ∼ 30 − 50, were

able to collapse into stars and/or black holes. The radiation emitted from these

first objects then began to re-ionize hydrogen. By z ∼ 6, hydrogen reionization

appears to be complete (Fan, 2007), and the diffuse intergalactic medium (IGM)

has a neutral fraction of ∼ 10−4. Understanding this transition epoch is central to

understanding the origin of galaxies and the evolution of the IGM. It is a major

science driver for a host of upcoming international telescope facilities, such as the

James Webb Space Telescope and the Atacama Large Millimeter Array.

Reionization involves a complex interplay between nonlinear growth of struc-

ture, radiative cooling, star/black hole formation, chemical enrichment, and pho-

ton transport. Numerical simulations are required to accurately model these

highly nonlinear processes. However, the large dynamic range and complex

physics involved make this an extraordinarily challenging computational prob-

lem. To obtain a full picture of reionization in the context of currently-favored

hierarchical structure formation models, it is imperative that simulations include

processes of star formation, galaxy formation, and IGM evolution, along with

feedback processes that connect all three. Cosmological hydrodynamic simula-

tions accounting for these processes are now achieving maturity, thanks to im-

proving algorithms and computing power. However, the inclusion of radiation

transport complicates matters immensely. A cosmological radiative hydrody-

namics code that can accurately evolve a representative volume with sufficient
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dynamic range to study how galaxies reionize the Universe would be a major

development towards understanding reionization. In this paper we provide a

step towards that end by introducing a new accurate moment-based method for

calculating radiative transfer (RT) in a cosmological context.

Time-dependent radiative transfer is one of the most difficult components to

treat in any theoretical study of the reionization epoch owing to the problem’s

well-known high dimensionality. Consequently, over the past decade, a number

of approximate treatments have emerged that seek to render it more tractable

through well-motivated physical approximations. The most flexible methods are

the fully analytic treatments (for example, Madau et al., 1999; Wyithe & Loeb,

2003; Furlanetto et al., 2004; Iliev et al., 2005; Kramer et al., 2006). These gen-

erally involve assuming values for quantities such as the gas clumping factor

and the recombination rate that are averaged over all space or, in the case of the

excursion-set formalism (Furlanetto et al., 2004), over the volume of an ionized

region. In exchange, they readily allow for broad surveys of parameter space to

be performed.

The next step in the direction of a full solution is taken by the semi-numerical

methods (Ciardi et al., 2000; Mesinger & Furlanetto, 2007; Geil & Wyithe, 2008;

Choudhury et al., 2009), which combine numerically-generated density fields

with analytic treatments for radiative transfer using techniques such as the excursion-

set formalism in order to account more realistically for source bias and the ef-

fects of inhomogeneous density fields. These treatments offer a dramatic increase

in realism over purely analytic calculations at modest additional computational

cost. However, they have some difficulty accounting fully for the consequences

of inhomogeneous density fields such as shadowing and the tendency for low-
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density regions to have a lower neutral fraction during the later stages of reion-

ization (Choudhury et al., 2009). These problems arise from the need of semi-

numerical models to make assumptions regarding the shape of the ionized re-

gions surrounding individual sources and the nontrivial relationship between

dark matter and gas densities in the nonlinear regime.

Some of these difficulties are avoided in models that actually solve the radia-

tive transfer equation on numerically-generated density fields but without fully

accounting for radiative feedback on the sources (Ciardi et al. 2001; Sokasian et

al. 2001; Mellema et al. 2006; McQuinn et al. 2007; Iliev et al. 2007a; Pawlik &

Schaye 2008; see also Iliev et al. 2006a for a very useful comparison of a number

of techniques). Nonetheless, obtaining realistic baryonic density and emissiv-

ity fields in such contexts still presents considerable challenges (McQuinn et al.,

2007). Additionally, while parametrized treatments for radiative feedback have

been introduced in such models in order to study, for example, whether the pho-

toevaporation of minihaloes extends the epoch of reionization (Ciardi et al., 2006;

McQuinn et al., 2007), the simplified nature of these studies leaves their results

open to question (Mesinger & Furlanetto, 2007). Hence, while each of these meth-

ods has yielded an abundance of insight into reionization and warrant continued

development, the need is emerging for a complete solution to the radiative trans-

fer equation that is merged self-consistently with hydrodynamical calculations.

To date, only the OTVET algorithm (Gnedin & Abel, 2001) has been consis-

tently deployed for radiative hydrodynamic calculations of reionization. While

this technique is realistic, efficient, and has broken a great deal of ground in the-

oretical studies of reionization, the possible consequences of its physical approx-

imations remain poorly understood owing to the lack of complementary tech-
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niques.

In this work, we present a moment method solution to the radiative transfer

equation (Auer & Mihalas, 1970) and test it on static density fields. Our technique

is highly flexible, involves a minimum of physical approximations, and can read-

ily be combined with existing hydrodynamical calculations. It is similar to the

method presented by Stone et al. (1992), but with several differences. First, we

optimize our code only for cubical simulation volumes with periodic boundaries,

as this is typical of cosmological simulations. Second, we derive our Eddington

tensors from a long characteristics (LC) calculation in order to minimize artifacts

owing to poor angular and spatial resolution. Finally, we include a treatment for

nonequilibrium ionizations and account for the cosmological terms in the radia-

tive transfer equation. In a follow-up paper, we will present its implementation

within a cosmological galaxy formation code.

We do not solve for the hydrodynamic response to the radiation field, hence

the temperature field is constant in time (but not necessarily in space) for all

of our present calculations. For our cosmological applications (Sections 4.3.3.1–

4.3.3.3 and 4.7), we obtain the mass-weighted baryon temperature field directly

from the same simulation snapshots that are used to generate the baryon density

and emissivity fields. In all other tests, the temperature is set to a uniform value

of 104 K unless otherwise specified.

We begin in Section 4.2 by casting the radiative transfer equation into the

form in which we solve it and summarizing our numerical method. In Sec-

tion 4.3, we compare the performance of long characteristics versus two other

time-independent radiative transfer techniques in order to select a method for

deriving the Eddington tensor, which we need in order to close our moment
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hierarchy. After demonstrating that long characteristics introduces the fewest

unphysical artifacts, we optimize it for computing reionization using a suite of

realistic albeit low-resolution integrations. In Section 4.4, we discuss our tech-

nique for evolving the nonequilibrium ionization field. In Section 4.5, we sum-

marize our iterative scheme for weaving these ingredients into a self-consistent

calculation. In Section 4.6, we subject our code to a number of standard tests. In

Section 4.7, we apply our code to the problem of reionizing a static cosmological

density field. Finally, we summarize our method and results in Section 4.8.

4.2 Solving the Radiative Transfer Equation

We begin this section by writing down the RT equation in comoving coordinates

including emission, absorption, and cosmological effects. Next, we recast the

RT equation in the form that our code computes and discuss our treatment of

the various terms. Finally, we discuss our approach to solving these equations

numerically.

4.2.1 The Moments of the Radiative Transfer Equation

The radiative transfer equation in comoving coordinates is (for a derivation, see

Gnedin & Ostriker, 1997)

1

c

∂Nν(n̂)

∂t
+

n̂

a
· ~∇cNν(n̂) + H

(

2Nν − ν
∂Nν

∂ν

)

= cην − cχνNν(n̂). (4.1)

Here, Nν(n̂) represents the number of photons with frequency between ν and

ν + dν crossing an area dA in the direction n̂ into a solid angle dΩ during a time

interval dt; H is the Hubble constant; a is the cosmological expansion factor; ~∇c

denotes a gradient in comoving coordinates; ην is the local number of photons

emitted per unit time per unit solid angle with frequency between ν and ν + dν;
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c is the speed of light; and the absorption mean opacity χν =
∑

i niσν,i is the

sum of the opacities due to the various absorbing species. All emissivities and

opacities are taken as isotropic because Equation 4.1 is written in the cosmological

comoving frame. Here and throughout our work, we compute the radiation field

in terms of photon number densities rather than energy densities. For simplicity

of notation, we will generally omit the n̂-dependence of Nν from now on.

The left hand side of Equation 4.1 is the convective derivative of the photon

phase space density but written in terms of Nν . The first two terms are the clas-

sical convective derivative modified to apply in comoving spatial coordinates,

and the terms proportional to the Hubble constant account for, respectively, the

dilution of Nν and redshifting of the photon frequencies owing to cosmological

expansion. The terms on the right hand side account for photon emission and

absorption, respectively.

By integrating over the frequency range (ν1, ν2), we recast Equation 4.1 in a

form appropriate for a multigroup method:

1

c

∂N

∂t
+

n̂

a
· ~∇cN = η − (χH + χabs)N (4.2)

Here, we have defined the photon number density N , the emissivity η, the cos-

mological opacity χH , the spectral slope 〈ν ∂
∂ν
〉, and the absorption mean opacity
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χabs as follows:

N ≡

∫ ν2

ν1

Nνdν (4.3)

η ≡

∫ ν2

ν1

ηνdν (4.4)

χH ≡
H

c

(

2 − 〈ν
∂

∂ν
〉

)

(4.5)

〈ν
∂

∂ν
〉 ≡

∫ ν2

ν1

ν
∂Nν

∂ν
dν/

∫ ν2

ν1

Nνdν (4.6)

χabs ≡

∫ ν2

ν1

χνNνdν/

∫ ν2

ν1

Nνdν. (4.7)

Equation 4.2 is equivalent to an integral of Equation 4.1 over frequency as long

as the frequency-averaged cosmological and absorption mean opacities χH and

χabs can be determined consistently. Both depend on the slope of the spectrum at

each frequency bin. The dependence of the absorption mean opacity χabs is clear,

and the dependence of the cosmological opacity χH can be made more intuitive

by noting that, for a power-law spectrum Nν ∝ ν−α, the spectral slope 〈ν ∂
∂ν
〉

is given by −α. In this case, the cosmological opacity χH reduces to H
c
(2 + α).

This term is generically quite small in the problem of cosmological reionization:

For star-forming galaxies and active galactic nuclei, the slope of the ultraviolet

continuum generally falls within the range α ∼ 0.3–5, so during the reionization

epoch χH ∼ 0.1–3 × 10−26cm−1. By contrast, even for a neutral hydrogen fraction

of 10−3 at z = 6 (Fan et al., 2006), the opacity at 912Å at the mean density is around

3–4 × 10−25cm−1. This is simply a statement that, throughout the reionization

epoch, ionizing photons tend to be absorbed long before they can be diluted or

redshifted by the Hubble flow. For this reason, we bring the cosmological term

to the right-hand side of Equation 4.2. In multifrequency computations we will

allow the spectral slope α to vary self-consistently with frequency by using the
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value from the previous timestep. However, in the present work, we neglect it

entirely as we consider only monochromatic problems. From now on, we use the

opacity χ to refer to the sum of the cosmological and absorption mean opacities:

χ ≡ χH + χabs.

The first two angle moments of Equation 4.2 are:

∂J

∂t
= −

1

a
~∇c · ~F + 4πη − cχJ (4.8)

∂ ~F

∂t
= −

c

a
~∇c · (cfJ ) − cχ ~F (4.9)

f ≡

∫

N n̂n̂dΩ
∫

NdΩ
. (4.10)

The zeroth and first moments J and ~F are the number density and flux of pho-

tons in a frequency bin, respectively, and the Eddington tensor f is used to close

the moment hierarchy; we will discuss how we obtain the Eddington tensor in

Section 4.3.

When constructing a solution to equations 4.8 and 4.9, it is important to cen-

ter the photon number density, flux, and the components of the Eddington ten-

sor about each cell spatially in such a way that the resulting finite-difference ap-

proximation for the number density at the updated time (Equation 4.11) is cell-

centered. This is important not only to improve the solution’s accuracy in space,

but also because improper centering can lead to spurious anisotropies in the radi-

ation field or even prevent the solution from converging altogether. Accordingly,

we center the variables as follows: J and diagonal components of f are posi-

tioned at the cell center, components of ~F are stored at cell faces, and off-diagonal

elements of f are stored at cell edges (see Figure 4.1).

One ambiguity remains regarding the treatment of off-diagonal elements of

f such as fxy ≡
∫

N x̂ŷdΩ/
∫

NdΩ. Proper centering requires that these factors
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Figure 4.1 The centering scheme for our radiative variables.

always enter into the partial derivatives of Equation 4.13 via a spatially-averaged

product with the photon number density J . For example, the finite-difference

approximation for J n+1(i, j, k) includes, among other things, the spatial average

of the product fxyJ over the cells (i, j, k), (i−1, j, k), (i, j−1, k), and (i−1, j−1, k).

In such instances, it is possible to use either the “average of the products”, 〈fJ 〉

or the “product of the averages”, 〈f〉〈J 〉. Testing suggests that the differences

between the two options are small, but inspection shows that the “average of

the products” option gives rise to significant cancelling of terms within the full

finite-difference expression and hence could lead to less smooth solutions. For

this reason, we prefer the “product of the averages” approach.

4.2.2 Solving the Radiation Transfer Equation

We now discuss our technique for integrating Equations 4.8 and 4.9 numerically.

These equations can be quite stiff when applied to the problem of cosmological
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reionization, hence we use an implicit finite-differencing scheme in time. In other

words, we use the photon number density and flux at the updated time on the

right hand side of Equations 4.8 and 4.9. SMN92 solved the resulting system us-

ing the “Automatic Flux-Limiting” prescription of Mihalas & Weaver (1982). This

scheme proceeds by integrating Equation 4.9 over one timestep analytically be-

fore plugging the result into an implicitly finite-differenced form of Equation 4.8.

However, Hayes & Norman (2003) found that the results from this technique do

not differ significantly from the results of simply finite-differencing Equation 4.9.

Our own testing also indicates that the latter technique produces accurate results,

hence in our code the updated flux ~Fn+1 and number density J n+1 relate to the

previous values ~Fn and J n as follows:

J n+1 =
1

1 + xn+1

[

J n + 4πη∆t − ∆t
~∇c

a
·

(

~Fn

1 + xn+1

)

+c2∆t2
~∇c

a
·

[

1

1 + xn+1

~∇c

a
· (fJ n+1)

]]

(4.11)

~Fn+1 =
1

1 + xn+1

[

~Fn − c2∆t
~∇c

a
· (fJ n+1)

]

(4.12)

xn+1 ≡ cχn+1∆t

These equations can be combined and rearranged into the form

A · ~J n+1 = ~b, (4.13)

where the vector notation indicates that we are solving a coupled system of alge-

braic equations with dimension equal to the number of computational cells. The

update matrix A is a function of ~J n and ~Fn but not ~J n+1, hence the photon num-

ber densities may be updated via a simple matrix inversion. The photon number
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density in each cell couples only to 18 of its neighboring cells. Consequently, only

19 elements in each row of A are nonzero, making it a sparse matrix.

Linear systems of equations for which the coefficient matrix is sparse but not

both symmetric and positive definite can be solved via the biconjugate gradient

method. We have found that the preconditioned biconjugate gradient routine

linbcg in Numerical Recipes (Press et al., 1992) solves the problem rapidly. We use

the diagonal of A as the preconditioner and halt the iteration when the residual

|A · ~J n+1 −~b|/|~b| is less than 10−6.

We generalize this technique to multifrequency problems by solving Equa-

tions 4.11 and 4.12 independently for a number of multigroup frequency bins.

We compute the Eddington tensor f , absorption mean opacity, and cosmological

opacity fields separately for each frequency bin. When evaluating Equations 4.5–

4.7, we use the spectrum J (ν) from the previous timestep.

4.3 Computing the Eddington Factors

As is well-known, the primary difficulty in solving the radiative transfer equa-

tion lies in its high dimensionality. Treating the moments of the equation does

not suppress this dimensionality unless the photon mean free path is short com-

pared to all length scales of interest, in which case one can close the moment

hierarchy with analytical flux-limiters (e.g., Hayes et al., 2006). This is not the

case in the problem of cosmological reionization, hence an accurate solution de-

pends critically on an accurate derivation of the Eddington tensor f . This in turn

requires knowing how the photon density N varies as a function of direction n̂

(see Equation 4.10). A fully consistent treatment would obtain N (n̂) via a time-

dependent integration of the radiative transfer equation; however, if this were
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easily done then of course the entire problem would already be solved. Here,

we derive the Eddington tensor f from a time-independent formal solution to the

radiative transfer equation (that is, a solution in which ∂Nν/∂t = 0; see also Auer

& Mihalas 1970; SMN92). We note that this is our only approximation.

Previous efforts have approached this problem through computationally ef-

ficient techniques such as short characteristics (Stone et al., 1992; Hayes & Nor-

man, 2003) or the optically thin approximation (Gnedin & Abel, 2001). While

these techniques have their strengths and have led to a great deal of insight into

reionization, the associated compromises in accuracy are poorly-understood. For

this reason, we undertake an accurate calculation of the Eddington tensor, even

though this degrades our computational efficiency, in order to study its impact

on cosmological problems. In this section, we begin by reviewing the long charac-

teristics (LC) technique for computing the Eddington tensor f . We then compare

it to short characteristics (SC) and the optically thin approximation in order to

highlight the strengths of LC. Finally, we optimize LC for calculations of cosmo-

logical reionization.

4.3.1 Long Characteristics

The LC approach to computing N (n̂) at a target cell consists of integrating the

(time-independent) radiative transfer equation along characteristics that run in

the directions n̂i from the target cell to the source cells i. The photon density at

the target cell is then given by the sum

N (n̂) =
∑

i

ηi

χi

e−τiδ(n̂ − n̂i), (4.14)

where the index i runs over all source cells and τi is the total optical depth be-

tween the target cell and the source cell i. The problem of computing N (n̂) at a
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Figure 4.2 A sketch of our long characteristics method in two dimensions. Long

characteristics from the bottom-left cell to sources 1 and 2 are shown; the line

integral to source 3 is halted when it encounters an intervening optically thick

cell.

target cell hence reduces to one of determining the total optical depth τi to each

source cell. Here, we outline our approach to computing τi (see also Figure 4.2).

We note that our treatment is similar to the ray-tracing technique of Abel et al.

(1999).

Consider the contribution to the Eddington tensor in a target cell whose center

is located at ~rT ≡ (xT , yT , zT ) owing to a source cell i whose center is located at

~ri ≡ (xi, yi, zi). We compute the optical depth between the two cells by integrating

along a ray that points in the direction n̂ = (nx, ny, nz) = (~ri−~rT )/|~ri−~rT |. Starting

at ~rT , the distance in the direction n̂ to the nearest y-z plane ∆rx is given by

∆rx =

[

∆x

2
− sign(nx)(x − xc)

]√

1 + (
ny

nx

)2 + (
nz

nx

)2, (4.15)

where sign(x) equals −1 or +1 if x is negative or positive, respectively. Analo-

gous relations exist for the distance to the next x-z boundary ∆ry and the next x-y
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boundary ∆rz. We determine which cell the ray enters next by evaluating which

of the three distances is shortest; for example, if ∆rx < ∆ry and ∆rx < ∆rz, then

the ray will next encounter a y-z plane. We then add the contribution χ∆r to the

optical depth from the cell that the ray just traversed assuming that χ is uniform

throughout the cell. Repeating this procedure, we continue adding contributions

to the line integral until either the ray enters the source cell or the accumulated

optical depth exceeds a maximum value τmax that will be determined from con-

vergence testing. If the accumulated optical depth exceeds τmax before the ray

enters the source cell i, then we consider the source to be completely obscured

and halt the line integral. Otherwise, we add the contribution of the source cell

to the Eddington tensor at the target cell and proceed to the next source cell.

If the cell is itself a source, then we account for the contribution of its self-

illumination to its Eddington tensor f by adding (4πN0/3)1 to the numerator and

4πN0 to the denominator in Equation 4.10, where 1 indicates the unit tensor and

N0 is given by

N0 =
η

χ
(1 − e−χr∗)

r∗ =

(

∆x∆y∆z
4
3
π

)
1

3

.

4.3.2 Comparison of Techniques

4.3.2.1 Short Characteristics

A well-known difficulty with cosmological reionization is the large number of

sources involved. The computation time for SC in its original form (Kunasz &

Auer, 1988; Stone et al., 1992) does not scale with the number of sources, hence

we considered whether it would be an appropriate method for computing the

Eddington tensor field. Here we compare the performance of SC versus LC for
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the simple case of an isolated point source in a homogeneous medium. Note

that different flavors of SC (Rijkhorst et al., 2006; Mellema et al., 2006), which do

scale with the number of sources, perform much better in this scenario, hence our

conclusions apply only to SC as described by Kunasz & Auer (1988).

SC involves solving the radiative transfer equation within each cell along

characteristics that run from the cell’s faces to its center using boundary condi-

tions at the cell faces that are obtained through interpolation. Given the boundary

conditions on the computational volume, one simply marches downstream from

one side of the volume to the other so that, at each cell, the upstream boundary

conditions are always known. SC is an efficient technique for computing a time-

independent formal solution to the RT equation (or even a time-dependent one;

see Hayes & Norman (2003)): In three dimensions, the computation time scales

with the number of cells on each side of the computational grid ngrid as O(n3
grid).

Unfortunately, if the emissivity or opacity varies significantly on the scale of the

computational grid, then the interpolations can give rise to dramatic numerical

artifacts in the spatial distribution of the photon number density. In the problem

of cosmological reionization, sources are generally pointlike and there are sharp

transitions between optically thick and thin regions (for example, at ionization

fronts), hence such artifacts are expected. Additionally, in the presence of point

sources, the number of angles that must be sampled in order to yield smooth

ionization fronts can scale as poorly as O(n2
grid), yielding a less-favorable overall

scaling of O(n5
grid) (Razoumov & Scott, 1999; Nakamoto et al., 2001).

In order to demonstrate the anisotropies that arise around point sources in SC,

we consider the idealized case of a galaxy consisting of 108M¯ of young stars at

z = 20 with an ionizing escape fraction of 10%. We locate the galaxy at the center
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Figure 4.3 Contours in photon number density versus position in a plane that

contains the source as calculated using SC (black solid) and LC (red dotted). The

strong anisotropies resulting from the interpolations that are inherent to SC com-

pare unfavorably to LC, which does not involve interpolations.
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of a homogeneous region 0.5 (proper) Mpc on a side in which pure hydrogen of

total number density 1.5×10−3 cm−3 and temperature 104 K is ionized to a neutral

fraction of 10−3. We solve the time-independent radiative transfer equation for

this scenario using both SC and LC. In the SC case we sample the unit sphere with

320 uniformly-distributed unit vectors. In both cases we use a grid resolution of

643 cells.

In Figure 4.3 we show contours of photon number density versus position in

a plane that contains the source. The interpolations that are inherent to SC give

rise to strong anisotropies in the number density field owing to the discontinu-

ous emissivity field at the source. These can be alleviated (but not eliminated)

by significantly increasing spatial and angular resolution, but at the cost of in-

creased computation time. Not surprisingly, tests indicate that using SC-derived

Eddington factors to solve the Strömgren Sphere problem within our full time-

dependent moments method gives rise to unacceptable anisotropies in the shape

of the ionization front. By contrast, LC yields smooth mean intensity contours

because it does not involve any interpolations.

4.3.2.2 Optically Thin Approximation

The optically thin approximation (Gnedin & Abel, 2001) involves evaluating Equa-

tion 4.10 via a time-independent formal solution to the radiative transfer equa-

tion in which the opacity is neglected. Specifically, N is calculated from the sum

total of all photons emitted in the volume, with no attenuation. This approach

conserves photons, does not suffer from some of the grid-induced artifacts that

can occur in the SC approach, and yields results that are qualitatively reasonable.

Moreover, the computation time scales as O(N 3). These desirable characteristics

motivate us to evaluate the benefits of accurately accounting for the optical depth,
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Figure 4.4 Neutral fraction as a function of position along a line connecting a

bright source and a faint source at three different times. The solid and dashed

curves show the results obtained when computing the Eddington tensor through

LC and the optically thin approximation, respectively. The vertical dashed lines

indicate the positions of the sources. The optically thin approximation does well

at early and late times, but the individual H II regions overlap too quickly and the

ionization front from the faint source is too extended during the overlap phase.
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and the most direct way to do so is simply to compare the results of using opti-

cally thin versus accurate Eddington tensors within our moment method. Our LC

code is well-suited for performing such a comparison. For this reason, we revisit

the problem of multiple sources embedded in an initially optically thick medium.

In the optically thin approximation, a source can affect the Eddington tensor in

the vicinity of a neighboring source even before their respective H II regions have

overlapped. This can potentially lead to errors in the shape of the resulting ion-

ization fronts even before they overlap (see also Gnedin & Abel 2001).

We consider the problem of a bright source with a monochromatic ionizing

luminosity of 5 × 1048 s−1 located 2.2 kpc from a faint source whose luminosity

is 5 × 1047 s−1. Both sources are embedded in a homogeneous medium of pure

hydrogen with number density 10−3 cm−3 and temperature 104 K. The medium

is initially entirely neutral. In this arrangement, the flux from the bright source

dominates that of the faint source at a distance from the faint source equal to

one quarter of the faint source’s Strömgren radius. We evolve this system with

Eddington tensors obtained from LC and the optically thin approximation until

the sources’ H II regions overlap at t ≈ 5 Myr. We use a grid of 803 computational

cells and disable periodic boundary conditions.

In Figure 4.4, we compare the resulting neutral fractions along the line pass-

ing through the source centers before, during, and after overlap. At t = 0.5 Myr,

the two H II regions are evolving approximately correctly in the optically thin

approximation although there is a suggestion that photons stream too rapidly

along the direction connecting the two sources. By t = 1.5 Myr, there is a notice-

able tendency for the ionization fronts to advance too rapidly between the two

sources in the optically thin case. This tendency oversuppresses the neutral frac-
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Figure 4.5 Ionized hydrogen fraction as a function of position for the test in Fig-

ure 4.4 at t = 2.1 Myr. The left and right panels show how the H II regions

appear when we compute the Eddington tensors using the optically thin approx-

imation and long characteristics, respectively. The smaller H II region is dramati-

cally elongated in the optically thin approximation. These figures were produced

using IFRIT.

tion in this region. By t = 2.5 Myr, it is clear that overlap has occurred too soon in

the optically thin approximation. Finally, after overlap has occurred (t = 5 Myr)

the optically thin approximation performs well again because, at least within the

ionized region, it is no longer a strong approximation.

In Figure 4.5, we compare the morphologies of the H II regions at t = 2.1 Myr.

The left and right panels show the results of using the optically thin approxima-

tion and long characteristics, respectively. Looking at the right panel first, we see

that the H II regions show slight departures from spherical symmetry even with

accurate Eddington tensors, appearing slightly boxy in this projection owing to

low spatial resolution. In addition to this asymmetry, however, the smaller H II

region appears dramatically elongated prior to overlap when we use the optically
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thin approximation to compute the Eddington tensors. In fact, the optically thin

approximation causes both H II regions to elongate along the axis that connects

the two sources, leading to the early overlap seen in Figure 4.4.

What effect do morphological errors and a tendency towards early overlap

have on galaxy evolution during the recombination epoch? Figures 4.4 and 4.5

suggest that the errors will be small on scales that are larger than the largest ion-

ized regions at any given time. The fact that moment methods automatically con-

serve photons irrespective of the Eddington tensors reinforces this view. How-

ever, at smaller scales it is possible that galaxy evolution in satellite halos will be

oversuppressed, especially in regions between larger halos. Such an error could

in turn lead to an underestimate of the number density of smaller ionized re-

gions, which may dominate the photon budget of overdense regions (Iliev et al.,

2007b). The only way to settle this question will be through full-scale simulations

of reionization in which the two techniques can be compared.

4.3.3 Optimizing the Long-Characteristics Calculation

Our LC calculation of the Eddington tensors is time consuming. To optimize

the calculation, we introduce some numerical approximations. Because these ap-

proximations are numerical and not physical, it is possible to rigorously assess

the errors introduced through convergence tests. The key optimization is that we

only recompute the Eddington tensor field when the radiation field has changed

significantly, and not at every timestep of the moment solver. Since in typical

cosmological situations the radiation field evolves relatively slowly over much of

the volume, this results in many fewer LC calculations. In this section we discuss

our optimizations and quantify the errors.

The first problem that we must address is the way that we smooth the Ed-
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dington tensor field. Smoothing is necessary because discontinuities in the opac-

ity field (for example, around isolated sources or at ionization fronts) give rise

to discontinuities in the Eddington tensor field, which in turn imprint numerical

artifacts onto the morphology of the radiation and ionization fields. In extreme

cases, these discontinuities can prevent the code from converging altogether (as

also noted by Razoumov & Scott 1999). While the optimal solution to these prob-

lems would be to enforce a spatial resolution at which no cell is optically thick,

this condition is computationally prohibitive. We have found that smoothing the

Eddington tensor field largely removes the numerical effects (see, however, Fig-

ure 4.5). We employ a ”cubical tophat” smoothing filter whose length is three

times the length of a single computational cell; in other words, the filter sub-

tends 27 cells and weights them equally. This smoothing prevents the radiative

pressure tensor cfJ from varying too rapidly on the scale of our finite-difference

stencil (Equation 4.11). It does not degrade the quality of our solution for two

reasons: (1) it does not impact photon conservation, and (2) it does not reduce

the solution’s spatial resolution because the moment method is already second-

order in space; that is, we smooth over the same spatial scales used to compute

the spatial derivatives.

Next, we turn to the choice of numerical parameters. Our implementation of

LC introduces three parameters: (1) The maximum optical depth from a target

cell to a source cell τmax beyond which we consider the source to be obscured and

halt its LC line integral; (2) the depth nd of periodic replicas that we use to mimic

periodic boundaries; and (3) the minimum fractional change in photon number

density fJ required to trigger an update to a cell’s Eddington tensor. We select

optimal values for each of these parameters by running parameter convergence
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tests: For each parameter, we compute the reionization of a cosmological density

field at moderate spatial resolution assuming a range of values for the parameter

while holding the other parameters constant. We then determine what parameter

value leads to a 10% median accuracy in the photon number density J . Note

that (as we have directly verified) this is equivalent to requiring a 10% median

accuracy in the neutral fraction xH I.

We obtain the initial conditions for these convergence tests by dividing the gas

and stellar densities from the z = 9 snapshot of an 8h−1Mpc cosmological volume

(the w8n256vzw simulation of Oppenheimer & Davé 2006) onto a 163 grid. We

divide the total mass associated with SPH particles that lie near cell boundaries

between the cells by summing incomplete gamma functions to their equivalent

Plummer SPH smoothing kernels. We assume that all gas is completely neutral at

z = 9. We compute the cell emissivities by convolving the stellar populations in

each cell with the Bruzual & Charlot (2003) stellar population synthesis models

and assuming a 10% escape fraction for ionizing photons. During the integra-

tion, we account for cosmological expansion by assuming (Ω, Λ, H0) = (0.3, 0.7,

70). With this setup, we find that the volume-averaged neutral fraction drops

to roughly xH I = 10−3 at z = 6 (Figure 4.16), in good agreement with available

constraints (Fan et al., 2006), hence our convergence tests are realistic.

4.3.3.1 Optimizing the Maximum Optical Depth

We look for an optimal maximum optical depth τmax beyond which the effect of

terminating the LC line integrals is small. To do so, we compute the reionization

of our cosmological test case assuming τmax = 1, 5, 6, and 1000 and using the

hybrid treatment for the periodic depth nd (see Section 4.3.3.2). We compare in

Figure 4.6 the resulting errors.
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Figure 4.6 Convergence-testing the parameter that controls the optical depth at

which LC line integrals are terminated, τmax, by comparing fractional errors in the

local photon number density J as a function of time. We compute reionization

using τmax = 1 (short-dashed magenta), τmax = 5 (dotted red) and τmax = 6, (solid

blue); we obtain the “converged” answer by assuming τmax = 1000. The top panel

shows the median local error in J as a function of time while the bottom panel

shows the full distribution of local fractional errors at t = 285 (z = 6.5, xH I =

0.07). The vertical lines at the top of the bottom panel indicate the medians. Here

and in Figures 4.7 and 4.8, we consider only cells with comoving photon number

density J > 1 × 10−10 cm−3 in order to eliminate cells where J is dominated

by roundoff error. Choosing τmax = 6 yields median fractional accuracy errors

≤ 10% at all times.
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The top panel shows how the median fractional error in the local photon

number density J varies with integration time, where we compute the frac-

tional errors by comparing against the τmax = 1000 test case. At early times

(log(xH I) > −0.5) the fractional errors are small regardless of the choice of τmax.

This simply reflects the fact that, at this epoch, reionization is dominated by scales

below our spatial resolution so that radiative transfer between cells is subdomi-

nant to self-ionization of individual cells. As log(xH I) drops below -0.5, however,

the transport of photons between cells becomes more important and the errors

in the LC calculation become noticeable. The errors reach a maximum at the

point when the individual H II regions begin to overlap (log(xH I) ∼ −1), and

then begin to decline slowly as the universe becomes increasingly optically thin.

The slow decline in errors at late times owes to the fact that cells can “see” more

sources and the Eddington tensors become more nearly isotropic irrespective of

τmax. Comparing the error trends for different values of τmax, we find that the

accuracy errors seem nearly converged even for τmax = 1.

The bottom panel shows the distribution of accumulated fractional errors

in local photon number density at the point where the neutral fraction xHI has

dropped to 7%. There is a peak in the error distribution near 10-20%, with signif-

icant tails out to low errors and a few regions with errors of order unity. We find

no correlation between the magnitude and fractional error in J ; in other words,

bright regions are equally as likely as faint ones to suffer large fractional errors.

As in the top panel, the solution seems generally converged even for τmax = 1 al-

though the errors for τmax = 5 and 6 are slightly lower systematically. Evidently,

choosing τmax = 1 would be sufficient to guarantee a median accuracy better than

10% at all times; however, in order to be conservative, we choose τmax = 6.
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4.3.3.2 Optimizing the Periodic Depth

Hydrodynamical simulations of cosmological volumes assume periodic bound-

aries. We are thus faced with the problem of accounting for periodic boundaries

in our LC calculations. Unfortunately, an analytic treatment is impossible as it

cannot be determined a priori whether a cell can “see” a source in a periodic

replica of the volume. The only obvious treatment is the brute-force approach of

mimicking periodic boundaries by positioning periodic replicas around the sim-

ulation volume. Each source is then reproduced in each replica, and the LC line

integrals must be computed from each cell in the central volume to each copy of

each source. We use the periodic depth parameter nd to indicate the depth of the

periodic replicas. For example, nd = 1 corresponds to positioning 26 replica vol-

umes about the simulation. Clearly, accuracy and computation time both grow

with nd. Our problem thus reduces to determining the minimal value of nd that

allows for better than 10% accuracy at all times.

It is tempting to suppose that, since the universe is optically thick until the

neutral fraction xH I drops below ∼ 10−3, using nd = 1 should be adequate until

then. However, straightforward testing indicates that this leads to median errors

in photon number density that approach 10% even when xH I > 5%. In order

to determine what value of nd leads to converged behavior, we have computed

the reionization of a static density field from z = 9 → 6 using nd = 1, 2, 5. We

also introduce a hybrid scheme in which nd changes from 1 to 2 when the mean

neutral fraction drops below 0.5, which, as we will show, is the best alternative.

In Figure 4.7, we show how the resulting fractional errors vary with time. The

top panel shows the median fractional error in local photon number density as a

function of time. We compute the fractional error by comparing with the nd = 5
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Figure 4.7 Convergence-testing the parameter that controls the number of sim-

ulation volume replicas used to mimic periodic boundaries, nd, by comparing

fractional errors in the local photon number density J as a function of time. We

compute reionization using nd = 1 (red solid), nd = 2, (magenta dot-dashed),

and using a hybrid scheme in which nd switches from 1 to 2 when the volume-

averaged neutral hydrogen fraction dips below 0.5 (blue short-dashed); the “con-

verged” answer is obtained by assuming nd = 5. The meanings of the various

curves are analogous to Figure 4.6. The hybrid scheme yields median fractional

accuracy errors of less than 10% at all times.
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result, which yields a very nearly converged solution for low neutral fractions

and completely converged solutions for xH I > 50%. At early times (xH I > 0.6),

the universe is so optically thick that few cells are affected by sources in replica

volumes. In this regime, using nd = 1 leads to negligible errors. As xHI ap-

proaches 0.5, however, some of the H II regions grow to substantial fractions of

the simulation volume and cross its boundaries so that the median fractional er-

ror begins to rise. By the time xH I = 0.01 (z ≈ 6.3), the median fractional error

exceeds 1% even if nd = 2. Not surprisingly, the errors from nd = 1 are larger at

all timesteps.

The bottom panel shows the distribution of accumulated fractional errors in

local photon number density at the point where the neutral fraction has dropped

to 7%. There is a peak in the error distribution near 5–10%, with significant tails

out to low errors and a few regions with fractional errors of order unity. The

errors in the hybrid scheme are comparable to the errors for nd = 2, with a median

error of 3%. Noting that the errors generally increase with timestep, we conclude

that the hybrid scheme leads to median errors that are always ≤ 10%.

The hybrid nd scheme speeds up our code significantly. We have verified

through direct testing that the LC computation time varies with the periodic

depth roughly as (2nd +1)3 (that is, proportional to the total number of volumes),

regardless of both the spatial resolution and the ionization state of the universe.

It follows that, for a calculation in which xH I drops below 50% after roughly half

of the total integration time has elapsed, using hybrid nd rather than using nd = 2

reduces the computation time by up to ≈40% without affecting the accuracy.

Finally, it is possible that the accuracy of the hybrid nd scheme varies with the

age of the universe, the baryonic clumping factor, and the length of the computa-
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tional volume in addition to xH I because each of these factors potentially impacts

the number of optically thin lines of sight through a cosmological volume. Of

these, the dependence on the length is the strongest since, for representative cos-

mological volumes, the relationship between xH I, baryonic clumping factor, and

the age of the universe is unique. The present scheme achieves the required 10%

accuracy for any volume whose length is ≥ 8h−1Mpc because larger volumes are

pierced by fewer optically thin lines of sight at given xH I.

4.3.3.3 Optimizing the Eddington Tensor Update Criterion

Our technique involves periodically updating the Eddington tensor field in order

to maintain consistency with the time-dependent integration. Naturally, more

frequent Eddington tensor updates lead to a more accurate solution; in fact, Auer

& Mihalas (1970) recommend iterating to convergence between the radiation and

Eddington tensor fields. Unfortunately, this approach would be prohibitively

time-consuming for our problem. Instead, we opt to update the Eddington ten-

sor in a given computational cell only when the radiation field has changed sig-

nificantly in that cell; this technique has been shown to be an excellent approxi-

mation in other contexts (for example, Hubeny & Burrows, 2007). In particular,

after each timestep, we re-compute the Eddington tensor in those cells where the

photon number density has undergone a fractional change greater than fJ in at

least one frequency bin since the last update to its Eddington tensors. In order to

determine how the resulting errors vary with fJ , we compute the reionization of

a static density field from z = 9 → 6 using fJ = 0, 0.01, 0.05, 0.1, and 0.5.

In Figure 4.8 we show how the resulting fractional errors vary with time. This

figure demonstrates the power and flexibility of the moment method: even if

we only compute the full angular dependence of the radiation field when it has
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Figure 4.8 Convergence-testing the parameter that controls the frequency of up-

dates to the Eddington tensor, fJ , by comparing fractional errors in the local

photon number density J as a function of time. We compute reionization us-

ing fJ = 0.5 (black long-dashed), fJ = 0.1 (red short-dashed), fJ = 0.05 (blue

dot-dashed) and fJ = 0.01 (magenta solid); the “converged” answer is obtained

with fJ = 0. The meanings of the various curves are analogous to Figure 4.6.

Choosing fJ = 0.05 yields median errors better than 10% at all times.
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changed by more than a factor of two (fJ = 0.5), the typical local errors are

better than 20% at all times. Most importantly, because setting fJ > 0 results in

less-frequent updates to the Eddington tensor field, it speeds up the computation

considerably. Through direct testing, we find that the computation time t for our

reionization calculation varies with fJ as t ∝ f−0.5
J

.

We now examine the top panel of Figure 4.8 in more detail. At early times

(xH I > 0.5), errors are small because reionization is dominated by the self-ionization

of small, overdense regions rather than by radiation transport. Eddington tensor

updates are frequent in overdense regions owing to the rapidly-evolving J , but

they are also fast because, in an optically thick universe, the τmax parameter in-

sures that most of the LC line integrals terminate well before they arrive at the

source. After xHI drops below 0.5, the errors begin to grow. However, rather than

growing without bound, they level off at a characteristic value that in turn grows

with fJ . This is the regime in which setting fJ > 0 yields the biggest savings

in computation time because, on average, the LC line integrals traverse more

cells before reaching τmax. On the other hand, the radiation field evolves more

slowly because the rapidly-evolving overdense regions are already largely reion-

ized. Hence setting fJ > 0 corresponds to culling the most expensive Eddington

tensor updates aggressively while preserving the overall accuracy.

The bottom panel of Figure 4.8 indicates that the distribution of errors shifts to

smaller errors with decreasing fJ , with values of fJ less than 0.1 leading to me-

dian errors ≤ 10%. In practice, errors may be slightly larger as the median error

at a given timestep and fJ increases slightly with increasing spatial resolution.

Moreover, Figure 4.8 does not address errors in the topology of the ionization

field, which may vary differently with fJ (although McQuinn et al. 2007 argue
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that the topology of reionization is dominated by the emissivity field and xH I

and does not vary strongly with other parameters). The appropriate choice of fJ ,

therefore, depends on the problem. However, for reference, we note that choos-

ing fJ = 0.05 generally leads to median errors that are better than 10% while

speeding up the calculation by roughly a factor of three.

4.3.3.4 Full Error Budget

In Figure 4.9, we summarize the results of these convergence tests by compar-

ing the distributions of errors in accuracy at t = 285 that result from our fiducial

choice of numerical parameters. The median errors for τmax = 6, hybrid nd, and

fJ = 0.05 are 8.0, 2.1, and 2.2%, respectively. Hence our fiducial choice of param-

eters leads to a typical numerical accuracy of 10% in J .

4.3.4 Computational Scaling

The computation time for LC, tLC, is proportional to the number of cells n3
grid, the

number of cells containing sources nS , and the average length of a line integral in

cells nl:

tLC ∝ n3
gridnSnl

Both nl and nS generally vary with spatial resolution as well as with the mean

opacity. In the limit of an optically thin volume (nl ∼ ngrid) with nonzero emis-

sivity everywhere (nS = n3
grid), tLC ∝ n7

grid, while in the limit of an optically thick

medium (nl constant) and highly clustered sources (nS constant) the scaling flat-

tens to tLC ∝ n3
grid. Because tLC potentially scales quite unfavorably with ngrid, we

expect that it will ultimately dominate our spatial resolution limit. Hence, it is of

interest to determine where the scaling falls for our problem. To do so, we grid-

ded the same cosmological snapshot used in Section 4.3.3 onto grids of increasing
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Figure 4.9 The distributions of accuracy error at t = 285 for our fiducial choice of

numerical parameters (τmax, nd, fJ ) = (6, “hybrid”, 0.05). For this set of parame-

ters, the error is dominated by the error owing to our choice of τmax. Adding the

median errors in quadrature, we expect a typical error of 9% in J .
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Figure 4.10 LC computation time versus number of grid cells to a side in the

case of a mostly neutral (solid black) and highly ionized (dashed red) universe.

The scaling flattens from n5.6–6.1
grid at coarse resolution to n3.4–4.2

grid at high resolution,

depending on the neutral fraction xH I.
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spatial resolution assuming two different uniform ionized fractions, xH I = 0.9

and xH I = 0.01. We then ran our LC code on these fields and used the gnu gprof

utility to measure the computation time. We repeated the low-resolution tests up

to ten times and averaged the results. For consistency, we set the periodic depth

parameter to nd = 1 in all cases. We performed the calculations on a single 2-GHz

AMD Athlon processor. In Figure 4.10 we compare the resulting scalings.

Looking at the nearly-neutral case (xH I = 0.9) first, we see that at coarse res-

olution our code scales as n5.6
grid, indicating that nS is increasing rapidly with in-

creasing resolution. At higher resolutions the scaling flattens to n3.4
grid, indicating

both that nS is varying only very slowly with resolution owing to source cluster-

ing and that nl is varying more slowly than ngrid because most LC line integrals

are terminated at the first cell owing to the high opacity.

Turning to the nearly-ionized case (xH I = 0.01), we find that the computation

times are uniformly higher and the scaling is slightly steeper than in the nearly-

neutral case, flattening from n6.1
grid at coarse resolution to n4.2

grid at high resolution.

Because nS is the same in both cases, these differences owe entirely to changes in

nl. First, in a more optically thin volume nl is greater overall because, on average,

line integrals traverse more cells before reaching τmax. Second, nl scales more

nearly as ngrid because more of the line integrals proceed past the first cell even at

low spatial resolution.

In summary, we find that, for the problem of cosmological reionization, tLC ∝

n3.4–6.1
grid , depending on xH I and ngrid. The flat scaling at high xHI and high spatial

resolution is encouraging, and indicates that LC should lend itself well to study-

ing galaxy evolution well before the epoch of overlap (z =6–7). On the other

hand, the generally longer computation times and steeper scaling at low xH I in-
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dicate that our code will slow down considerably as the mean neutral fraction

drops below 0.01. In future work we plan to study how to transition to the much

faster optically thin approximation at this epoch without introducing significant

inaccuracies.

4.4 Solving for the Non-Equilibrium Ionization States

In order to compute cosmological reionization, we must integrate the nonequi-

librium equations for ionization and recombination of hydrogen and helium. A

thorough discussion of the relevant chemical processes including analytic fits for

the cross sections and reaction rates is provided by Anninos et al. (1997) and Abel

et al. (1997). Here, we focus on deriving a technique for integrating these equa-

tions. We neglect H− and H2 because we do not anticipate being able to resolve

the mass scales at which these species are expected to dominate (< 108M¯; see,

e.g., Couchman & Rees 1986). However, it would be trivial to extend our tech-

nique to account for these species as well.

Following Anninos et al. (1997), we write the equation that governs the abun-

dance of species i schematically as
∂ni

∂t
= Ci(T, nj) − Di(T, nj)ni, (4.16)

where Ci and Di respectively represent source and destruction terms summed

over all species j that can convert to or result from species i. Equation 4.16 can

be modified to hold in an expanding universe by redefining ni as the comoving

number density and normalizing the reaction rate coefficients by a3.

Equation 4.16 can be quite stiff; that is, its terms can evolve on very different

timescales from each other. This property has led many authors to adopt uncon-

ditionally stable integration techniques (see, e.g., Anninos et al., 1997; Mellema et
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Figure 4.11 (top) Fractional error in final ionization state as a function of ioniza-

tion timescale for three different nonequilibrium integration techniques. (bottom)

Final neutral fraction for the same tests. For short ionization timescales the error

is dominated by roundoff error while for long ionization timescales the accumu-

lated error is dominated by timestep truncation error. A hybrid scheme using

implicit differencing for short timescales and RK2 for long timescales is accurate

to better than 1% in all regimes of interest.



234

al., 2006). Unfortunately, stable techniques are not necessarily accurate. More-

over, within cosmological density fields the timescales of the terms in Equa-

tion 4.16 can vary rapidly with position. For example, we have found that the

timescales encountered during a typical reionization calculation at our expected

spatial resolution can vary between 10−4–102 Myr at a given time. We have ex-

plored the stability and accuracy of a number of integration techniques when

applied to a range of gas densities and ionization timescales. Here we discuss

two techniques, a fully implicit (FI) backwards differencing formula and second-

order Runge-Kutta (RK2).

Backwards differencing Equation 4.16 results in the following difference equa-

tion for the updated density nn+1
i in terms of the previous density nn

i and the

updated densities of the other species nn+1
j :

nn+1
i − nn

i

∆t
= Ci(T, nn+1

j ) − Di(T, nn+1
j )nn+1

i , (4.17)

where all densities on the right hand side are evaluated at the updated time. This

fully implicit technique is accurate to first order in time and is stiffly stable (Gear,

1971). We solve the resulting set of algebraic equations using Newton-Raphson

iteration. For 1 Myr timesteps, we have found that the iterative solution con-

verges to within a tolerance of 10−4 in fewer than 4 iterations, hence it is also

reasonably efficient. However, evaluating and inverting the Jacobian is time-

consuming. Moreover, in regimes where the shortest timescale is comparable

to the timestep, its accuracy suffers because the rate coefficients at the end of the

timestep are not a good approximation for their timestep-averaged values.

Second order explicit Runge-Kutta methods are accurate to second order in

time and can be computed rapidly, but they become unstable if the timestep is
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comparable to or longer than the shortest relevant timescale. We have imple-

mented the standard form of RK2 (e.g., Press et al., 1992). In addition, we have

implemented a hybrid technique that combines the accuracy of RK2 around long

timescales with the stability of implicit methods at short timescales. To do so, the

hybrid technique simply checks all relevant timescales before each timestep and

uses RK2 whenever the timestep is shorter than the shortest relevant timescale.

We test these techniques by solving Equation 4.16 for a single zone composed

of pure hydrogen. The zone has a uniform, constant total number density and

is initially entirely neutral. The ionizing radiation field is time-independent, and

we refer to its intensity by its associated ionization timescale tI . The relevant

processes are radiative ionization, collisional ionization owing to collisions with

electrons, and radiative recombination assuming case-B recombination rates. We

evolve the ionization state using 0.5-Myr timesteps for 50 Myr and then deter-

mine the accumulated fractional error in the numerical result by comparing to

the analytical solution. The temperature of the gas is fixed at 104 K, the total

number density is 1.66 × 10−4 cm−3, roughly the cosmological mean density at

z = 9, and we ignore Hubble expansion for simplicity.

In Figure 4.11 we compare the results of performing the test integration with

our three schemes versus the analytical solution. In the top panel, we find that the

accumulated fractional error varies nontrivially with tI . For small tI (i.e., intense

ionizing backgrounds) the solution reaches ionization equilibrium well before the

integration ends. In this “equilibrium regime” the error grows with decreasing tI .

We have found that the accuracy here cannot be further improved by integrating

with smaller timesteps or switching to a higher-order finite-differencing scheme

in time (for example, note that the second-order accurate RK2 scheme yields the
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same magnitude of error as the first-order accurate FI scheme for log(tI) = −0.5–

1). The “error floor” owes directly to roundoff error: if the machine accuracy is

εm and if the solution is close enough to equilibrium that the change in the next

timestep is small compared to the current solution, |ṅ(ni)|∆t < εmni, then the

error cannot decay.

For large enough tI (weak ionizing backgrounds), the solution does not reach

ionization equilibrium and roundoff error becomes subdominant. In this “nonequi-

librium regime” the error is dominated by the usual truncation error in the finite-

differencing scheme with the result that using shorter timesteps or switching to

a higher-order finite differencing scheme improves the accuracy, as can imme-

diately be seen from Figure 4.11. We repeated this test integration with a range

of densities, timesteps, and integration times. In the nonequilibrium regime, we

find that RK2 consistently yields accuracies better than 1% while FI often yields

fractional errors of order unity.

To evaluate how much computation time we save through our hybrid tech-

nique, we tracked the number of calls to each of the two ionization routines

throughout a test calculation of reionization similar to that in Section 4.7 but with

only 83 computational cells. Before reionization (xH I >50% ) RK2 is chosen 91%

of the time, while after reionization it is chosen 38% of the time. Overall, RK2 is

called 52% of the time. Noting that RK2 is ≈ 4 times faster than FI, our use of a

hybrid technique rather than relying only on FI roughly halves the time required

for evolving the ionization state. In other words, it simultaneously improves both

the accuracy and the efficiency of our technique.

The bottom panel can be used to determine whether our tests span the domain

of physical conditions that arise in cosmological calculations. At our anticipated
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spatial resolution (> 50h−1kpc), tI ranges between 10−4 and 102 Myr while the

final (that is, post-recombination) hydrogen neutral fraction ranges between 10−7

and 1. Our test calculations clearly span this domain, hence we conclude that

our hybrid integration technique stably and efficiently yields fractional errors of

≤ 1% throughout our problem’s domain.

4.5 Putting it All Together

Having discussed our techniques for updating the Eddington tensor, radiation,

and ionization fields, we now turn to our method for combining these ingredients

into a single code. Figure 4.12 illustrates our algorithm for computing a single

timestep. At the beginning, we solve self-consistently for the updated photon

number densities J n+1 and ionization states nn+1 in terms of the previous values

(J n, Fn, nn) through iteration. Schematically, we loop through the following

calculations until the solutions have converged:

J n+1 = J n+1(J n, nn+1,Fn)

nn+1 = nn+1(J n+1, nn)

During the first iteration of each timestep, we use the values from the previous

timestep as the initial guess for the updated values.

Because this scheme does not converge for general initial conditions and timestep

∆t, we must include a treatment for reducing the timestep whenever necessary.

We have implemented an adaptive stepsize scheme that is designed to collapse

the timestep rapidly near difficult spots but then slowly accelerate as the integra-

tion grows smoother. In particular:

1. If the maximum fractional change in J between iterations drops below
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Figure 4.12 A single timestep in our code.
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10−4, then we consider the solution to have converged. We halt the itera-

tion and advance the timestep.

2. If the fractional changes in J do not reach 10−4 in 15 iterations, we divide

∆t by 4 and restart the iteration.

3. If 4 consecutive substepped iterations converge, then we multiply ∆t by 2.

4. If the substepped timestep becomes smaller than 10−5 of the original timestep,

then we consider the computation to have diverged. In this case, we termi-

nate the integration.

After updating the radiation and ionization fields, we compute the updated fluxes

Fn+1. We then compute the fractional change in each cell’s J since the last update

to its Eddington tensor and update the Eddington tensors wherever the fractional

change exceeds fJ . This marks the end of a single timestep.

4.6 Tests

4.6.1 Strömgren Spheres

We now demonstrate that our code accurately computes the growth of H II re-

gions in both static and expanding media. For the static case, we locate a sin-

gle O star of monochromatic ionizing luminosity 5 × 1048 s−1 in a homogeneous

medium of pure hydrogen with total density 10−3 cm−3, temperature 104 K, and

initial ionized fraction 0.0012 (Test 1 from Iliev et al. 2006a). The simulation vol-

ume has a side length of 10.5 kpc and is divided into 483 cells. We evolve the

nonequilibrium radiation and ionization fields for 500 Myr. In the bottom-left

panel of Figure 4.13, we compare how the radius of the resulting ionization front
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Figure 4.13 Test of classical (left) and cosmological (right) Strömgren spheres. In

the bottom panels we show the numerical (solid) and analytical (dashed) solu-

tions as a function of time. The error bars in the bottom panel are included for

reference and span twice the width of a computational cell. In the top panels we

show the ratio of the numerical to the analytical solutions. In both test cases, the

numerical and analytical solutions agree to within one cell width at all times.
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grows with time in our code (solid) versus the analytical solution (dashed; Iliev

et al., 2006a). In the numerical case, we define the radius of the ionized region as

the radius at which the neutral hydrogen fraction drops to 50%.

There is a slight tendency for the numerical radius to exceed the analytical

one. In order to put this effect into context, we include an error bar that spans

twice the width of a single computational cell; this is our true spatial resolution.

Evidently, the solutions agree to within the spatial resolution. In the top panel we

show the ratio of the numerical to the analytical solutions as a function of time. At

all times, they agree to within 5%. The majority of the codes that are compared

in Iliev et al. (2006a) also yield ionization front radii that exceed the analytical

solution by 1–5% (Figure 7 of Iliev et al. 2006a). In fact, Pawlik & Schaye (2008)

recently demonstrated that the analytical solution is expected to underpredict the

radius of the ionized region (by roughly 5% in their test) owing to the assump-

tion that the ionized region remains fully ionized. Hence we conclude that our

method’s accuracy is comparable to the other codes in Iliev et al. (2006a).

For the expanding case, we consider a protogalaxy that “turns on” at z = 20

with an ionizing luminosity 5 × 1049 s−1 (this is roughly what is expected for

104M¯ of young Population II stars assuming an ionizing escape fraction of 5%).

The protogalaxy lives in a homogeneous medium of pure hydrogen with comov-

ing density 1.66 × 10−7 cm−3 and temperature 104 K. We evolve the test from

z = 20 → 10 in an Einstein-de Sitter universe with h = 0.7 using 483 computa-

tional cells. In the bottom right panel of Figure 4.13, we compare the comoving

radius of the ionized region as a function of time in our numerical model (solid)

against the analytical solution of Shapiro & Giroux (1987) (dashed). As before,

the numerical solution tracks the analytical one to within the size of a grid cell at
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all times. In the top right panel we show the ratio of the numerical to the analyti-

cal solutions as a function of time. Once again, our numerical solution is accurate

to within 5% at all times.

Combining the results of these tests, we conclude that our code conserves

photons, accurately determines the nonequilibrium ionization states, and accounts

for the relevant cosmological terms.

4.6.2 Shadowing

We now discuss how well our code is able to produce shadows. Our goal is to run

a test case whose results can be compared to Test 3 of Iliev et al. (2006a). However,

this test involves irradiating a dense clump with a plane-parallel wavefront, a

situation that is difficult to impose in our method. Instead, we consider the case

of a dense clump of cold hydrogen irradiated by a bright disk located sufficiently

far away that the flux from the disk at the clump is approximately plane-parallel.

We calibrate the disk’s (isotropic) emissivity to the simulation resolution so that,

if it were an infinite plane, the flux would be 2 × 106 s−1 cm−2. The radius of the

clump and the disk is 0.8 kpc, they are separated by 3.75 kpc, and the plane of

the disk is oriented perpendicular to the line connecting the disk and the clump.

The ambient hydrogen number density and temperature are 2 × 10−4 cm−3 and

8000 K, while inside the clump they are 0.04 cm−3 and 40 K. The box size is 6.6

kpc and contains 643 computational cells. We evolve the simulation for 15 Myr.

Figure 4.14 shows the neutral hydrogen fraction and photon number density

in the simulation mid-plane after 1 Myr (top panels) and 15 Myrs (bottom pan-

els). In these figures the dense clump is on the right and the source disk, seen

edge on, is on the left. Looking at the top panels first, we see that after 1 Myr

the region behind the clump remains largely neutral although the rest of the vol-
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Figure 4.14 Test of ionization front trapping: a luminous disk irradiates a dense

clump of the same radius in a diffuse medium. The left and right panels show the

neutral hydrogen fraction and photon number density, respectively, in a plane cut

through the middle of the simulation volume at t = 1 (top) and 15 (bottom) Myr.

The brightest areas give the position of the source, and the darkest areas give the

position of the barrier. The “spokes” radiating from the source to the corners in

the right panels are a numerical artifact of the opaque boundary with which we

surround the simulation box in order to suppress periodic effects. Our moment

method results in incomplete shadowing owing to numerical diffusion. These

Figures were produced using IFRIT.
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ume is completely ionized, suggesting that our technique shadows well, with the

photon density at this time 4–5 orders of magnitude fainter in the shadowed re-

gion than in the unshadowed one. The small amount of diffusion results from

the fact that our LC module sets the Eddington tensors in the shadowed region

to the isotropic case because no sources are visible there. Consequently, photons

are free to diffuse into the shadowed region, as is expected in any moment for-

malism. After 15 Myr, the ionizing field behind the clump has strengthened to

a photon number density of roughly 1% of the value in the unshadowed region,

driving the neutral hydrogen fraction down to 10−3. At this point, the volume is

in equilibrium; in fact, the radiation and ionization fields do not change appre-

ciably between 5 and 15 Myr.

Comparing Figure 4.14 to Figures 22 and 24 of Iliev et al. (2006a), we find that

our technique shadows as well as ray-tracing and Monte Carlo codes at t = 1

Myr. However, at t = 15 Myr our code performs more poorly owing to the dif-

fusion of photons into the shadowed region. Figure 4.14 can also be compared

with Hayes & Norman (2003), who introduced a moment method that is similar

to ours. They demonstrated that incorporating Eddington factors from a time-

dependent short characteristics integration results in incomplete shadowing (see

their Figures 6–9). They also found that increasing the spatial resolution did not

resolve the problem. Instead, they concluded that the incomplete shadowing re-

sults from the fourth term in Equation 4.11, which involves the Laplacian of the

product fJ . Evaluating this term couples nonadjacent computational cells and

gives rise to numerical diffusion in space, which may be understood as follows:

Initially, J is nonzero in the unshadowed region and zero in the shadowed re-

gion. At the boundary, the divergence of fJ is proportional to the delta function
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and the Laplacian is infinite. This amplifies roundoff error in the solution of the

shadowed region to the point that some flux diffuses into this region. Afterwards,

flux diffuses throughout the shadowed region since the Eddington tensor is given

by the unit tensor there. This might be expected to present even more of a prob-

lem in our technique given that we find it necessary to smooth our Eddington

tensors whereas they did not. Despite this, Figure 4.14 demonstrates that our

technique can shadow reasonably well.

4.7 Cosmological Application

As a sample application, we compute the reionization of a cosmological den-

sity field in which we account for Hubble expansion but hold the emissivity and

baryon density fields constant. We derive the initial conditions using the same

output and the same gridding technique as in Section 4.3, but here we divide the

volume into 643 rather than 163 computational cells so that each computational

cell spans a comoving width of 125h−1kpc. Given that the parent simulation be-

gins with 2563 baryon particles, this implies that, on average, 64 baryon parti-

cles contribute to each cell, hence systematic errors associated with the gridding

are dominated by effects related to low spatial resolution rather than to Poisson

statistics. We do not attempt a detailed treatment of subgrid physics as our fo-

cus is on our radiative transfer technique (for a careful treatment of these issues

see McQuinn et al. 2007). We evolve the ionization and radiation fields from

z = 9 → 6 with outputs spaced 1 Myr apart assuming (Ω, Λ, H0) = (0.3, 0.7, 70).

We set nd = 1 and update the full Eddington tensor field whenever the photon

number density has changed by more than a factor of two in at least 20% of the

volume, and after xH I drops below 0.5% we use the optically thin approximation
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Figure 4.15 Two-dimensional slices through a reionization computation with a

static emissivity field at four representative redshifts. The neutral hydrogen frac-

tions are color-coded as indicated in the color bar and the redshifts are given in

the top-left corner. These Figures were produced using IFRIT.
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(tests indicate that this yields better than 20% accuracy in J ). This computa-

tion required roughly 10000 CPU hours using 32 1.6 GHz Itanium2 processors

in a shared-memory environment. Note that, although this computation is only

intended as a proof-of-concept for our method, it is already quite realistic in the

sense that the gas density and emissivity fields derive from a cosmological hydro-

dynamic simulation that simultaneously reproduces a wide array of observations

of galaxies (Davé et al., 2006b; Bouwens et al., 2007; Finlator & Davé, 2008) and

the intergalactic medium (Oppenheimer & Davé, 2006) in the post-reionization

universe.

In Figure 4.15, we show the neutral fraction as a function of position in a

two-dimensional slice through the computational volume at four representative

redshifts. Reionization proceeds in the familiar way: At early times, individual

ionized bubbles grow around the brightest sources, which are strongly clustered.

As reionization proceeds, the individual ionized regions begin to overlap; this

process can be seen to be well underway by z = 8. The volume-averaged neu-

tral hydrogen fraction dips below 50% at z ≈ 7.75. Around this time, the mean

free path of ionizing photons grows comparable to the length of the simulation

volume and the ionization field becomes a network of simply-connected regions

that are largely ionized and isolated regions that are largely neutral. As this topol-

ogy emerges, the ionizing background continues to strengthen and the remaining

neutral regions continue to shrink. Finally, in the post-overlap universe only re-

gions with high recombination rates and low emissivities remain neutral.

In Figure 4.16, we give a more quantitative view of how reionization proceeds

in our calculation. In the top panel, we compare the neutral hydrogen fraction

xH I averaged over the entire computational volume with the average over un-
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Figure 4.16 Volume-averaged neutral hydrogen fraction (top) and the ionizing

background mean intensity J21 (bottom) as a function of the age of the Universe

(bottom axis) and redshift (top axis). The right axis in the bottom panel indicates

the hydrogen ionization rate in units of 10−12 s−1. In both panels, the solid line

is the average over all space whereas the dotted and dashed lines are averaged

over underdense and overdense regions, respectively. The red dot-dashed curve

in the bottom panel shows how the volume-averaged J21 varies at half our spatial

resolution. The arrow in the top panel indicates the observed limit on xH I at

z = 6.4 (Fan et al., 2006), while the limit in the bottom panel is representative of

observed limits on the ionization rate at z = 6 (Bolton & Haehnelt, 2007).
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Figure 4.17 Median neutral fraction as a function of normalized density at five

Hydrogen neutral fractions as indicated. The curves correspond to to redshifts of

(top to bottom) 8.9, 7.0, 6.7, 6.3, and 6.0 in our simulation.
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derdense and overdense regions. At the beginning of our computation, over-

dense regions are more rapidly ionized because they host the bulk of the ionizing

sources. Meanwhile, underdense regions remain more neutral because they have

not yet been penetrated by ionization fronts. As reionization proceeds, the fil-

aments channel the ionization fronts into the voids (Ciardi et al., 2001), which

rapidly become more highly ionized than the overdense regions. xH I continues

to shrink in all three density bins until z ∼ 6, by which point most of the universe

has arrived at ionization equilibrium with a fairly uniform ionizing background.

At this time xH I has dropped to xHI ∼ 10−3, in good agreement with observa-

tions (Fan et al., 2006).

We show how the relation between density and ionization fraction evolves in

a different way in Figure 4.17. Here, the different curves show the median rela-

tion at five representative ionization fractions as indicated. At early times, highly

overdense regions ionize to a neutral fraction below < 10−4 even when the cos-

mological mean neutral fraction remains at 99% owing to their high emissivities.

Regions that are at and below the mean density ionize next owing to their low

recombination rates. Mildly overdense regions ionize last owing to their blend of

relatively high recombination rates and low emissivities.

The reversal in the trend of ionization fraction versus overdensity that we find

at z ∼ 8 has recently been discussed in the semi-numerical study of Choudhury

et al. (2009). In this work, it is argued that underdense regions should be more

strongly ionized than overdense regions at late stages in reionization owing to

their lower recombination rates. Our computation, which (automatically) treats

recombination rates realistically, supports their results while making far fewer

assumptions regarding baryonic physics. Unfortunately, this calculation cannot
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be used to study the most overdense regions before z ≈ 8 owing to the spatial

resolution of this particular simulation; this point will become clear when we

examine the bottom panel of Figure 4.16.

In the bottom panel of Figure 4.16, we compare the time evolution of the

volume-averaged mean specific intensity at the Lyman limit J21 ≡ Jν(νH) for

the same bins of density. We estimate J21 following Mesinger & Dijkstra (2008)

by assuming that the ionizing photons are distributed as a power law of the form

J(ν) = J21(ν/νH)−α × 10−21 erg s−1 Hz−1 cm−2 sr−1 with α = 4.7, which is ap-

propriate for the typical age and metallicity of stars at z = 9 in our simulations.

Throughout reionization, overdense regions see a more intense ionizing back-

ground than the volume average. As we saw in the top panel, this leads them

to reionize first. Unfortunately, this computation does not resolve reionization

around the most overdense cells at z > 8 because, in these regions, J21 is not

smooth enough spatially. The strong peaks in J21 around the brightest sources

lead to inaccurately computed fluxes, which in turn lead to overestimates in J21.

After z = 8, however, the H II regions around these cells grow and J21 becomes

smoother and consequently more accurate. By contrast, the ionizing background

in underdense regions tracks the volume average at all times, supporting the idea

that underdense regions remain more highly ionized at late times owing to their

lower recombination rates rather than a stronger J21.

The right axis converts J21 into its associated hydrogen ionization rate Γ−12 ≡

ΓHI/10
−12. The open triangle indicates the observed upper limit on Γ−12 at z = 6

from Bolton & Haehnelt (2007). The arrow’s length combines the uncertainties

in cosmology, the observed Lyman-α forest effective optical depths used to de-

rive Γ−12, and the thermal state of the intergalactic medium. This observation
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is representative of other constraints from the literature. Comparing the Bolton

& Haehnelt (2007) constraint against our simulation suggests that the simulated

Γ−12 is a factor of ∼ 20 too high. This is surprising for several reasons. First,

our emissivity field corresponds to the galaxy population at z = 9 and does not

account for the rise in the star formation rate density that occurs between z = 9

and z = 6 (Oppenheimer & Davé, 2006). Second, we assume an ionizing escape

fraction of 10%, whereas Bolton & Haehnelt (2007) suggest that an escape fraction

of up to 20% may be required in order to maintain the observed ionization state

of the intergalactic medium at z = 6. Third, we start our calculation at z = 9

whereas observations from WMAP-5 are best fit by an instaneous reionization

redshift of 11.0 ± 1.4 (Dunkley et al., 2008), which suggests that reionization was

already well underway by z = 9. Finally, we do not include active galactic nuclei.

All of our assumptions, therefore, tend to underestimate the value of Γ−12. The

source of the discrepancy could lie in cosmic variance, low spatial resolution, or

the uncertainty in the choice of ionizing escape fraction. As a quick test, we have

plotted the evolution of J21 in a separate integration in which the same density

field was divided into 323 rather than 643 cells (red dot-dashed curve). The result-

ing curve suggests that some, but not all, of the discrepancy owes to poor spatial

resolution. However, further investigation into this discrepancy is beyond the

scope of this work.

4.8 Summary

In this paper, we introduced a method that accurately and efficiently computes

continuum radiative transfer in static density fields. The code uses a moment-

based approach to solve the equation of comoving radiative transfer, with the
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Eddington tensors obtained using a long characteristics method. We compared

several techniques for computing the Eddington tensors that are needed to close

the moment hierarchy and demonstrated that, of the three methods that we in-

vestigated, only the method of long characteristics has the ability to compute

highly inhomogeneous radiation fields without introducing numerical artifacts.

We found through direct measurement that the computation times for our long

characteristics and moments modules scale with the number of computational

cells Ncells as N 1.5
cells and N 1.0

cells, respectively. Next, we introduced a hybrid method

for computing the evolution of nonequilibrium ionization fields and demonstrated

that it is accurate to 1% throughout our computational domain. We combined

this with our radiative transfer code via an efficient iterative algorithm. The final

code is regulated by a number of parameters, and we characterized how these pa-

rameters impact computation time and accuracy using a suite of low-resolution

convergence tests.

We subjected our method to a number of standard problems in continuum ra-

diative transfer. First, we verified that our code accurately computes the growth

of an H II region about a source in the classical (static) case as well as in the

case of an expanding medium. We found that, in both cases, the radius of the

resulting ionized region agrees with analytic expectations to within the compu-

tation’s spatial resolution at all times. Next, we tested whether our code is able

to produce shadows behind opaque regions. In agreement with previous work,

we found that the moment method introduces a small diffusion into the shad-

owed region (Hayes & Norman, 2003). Nevertheless, we found that the strength

of the radiation field in the shadowed region was up to only 1% of the value in

the unshadowed region. Finally, we computed the reionization of an expanding
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cosmological volume and found qualitative agreement with other work in the

literature.

Our code currently accounts for radiative and collisional ionization of hydro-

gen and helium as well as radiative recombination. It does not account for re-

combination radiation. Additionally, it does not follow the evolution of the tem-

perature field, hence it does not account for photoionization suppression of star

formation in low-mass halos, photoionization heating, recombination cooling, or

shock formation.

In the future we plan to expand on our code in several ways. First, we have

found that the computation time increases dramatically as the universe becomes

optically thin because the LC line integrals traverse more cells before terminating

either because they arrive at the source or because they reach τmax. However, in

this regime, the optically-thin approximation, which is roughly ten times faster

than LC, becomes increasingly valid. For this reason, we plan to study how to

transition smoothly from LC to the optically thin approximation without intro-

ducing accuracy errors. Second, we will generalize our method to multifrequency

radiative transfer, which is necessary for studying, for example, ionization front

hardening or He II reionization. Finally, we plan to merge our radiative transfer

scheme with our version of the cosmological galaxy formation code GADGET-2.
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CHAPTER 5

THE LATE REIONIZATION OF FILAMENTS

In this chapter, we study the topology of reionization using accurate three-dimensional

radiative transfer calculations post-processed on outputs from cosmological hy-

drodynamic simulations. In our simulations, reionization begins in overdense

regions and then “leaks” directly into voids, with filaments reionizing last ow-

ing to their combination of high recombination rate and low emissivity. This

result depends on the uniquely-biased emissivity field predicted by our prescrip-

tions for star formation and feedback, which have previously been shown to ac-

count for a wide array of measurements of the post-reionization Universe. It

is qualitatively robust to our choice of simulation volume, ionizing escape frac-

tion, and spatial resolution (in fact it grows stronger at higher spatial resolution)

even though the exact overlap redshift is sensitive to each of these. However, it

weakens slightly as the escape fraction is increased owing to the reduced den-

sity contrast at higher redshift. We also explore whether our results are sensitive

to commonly-employed approximations such as using optically-thin Eddington

tensors or substantially altering the speed of light. Such approximations do not

qualitatively change the topology of reionization. However, they can system-

atically shift the overlap redshift by up to ∆z ∼ 0.5, indicating that accurate

radiative transfer is essential for computing reionization. Our model cannot si-

multaneously reproduce the observed optical depth to Thomson scattering and

ionization rate per hydrogen atom at z = 6, which could owe to numerical effects

and/or missing early sources of ionization.
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5.1 Introduction

In the concordance ΛCDM cosmology, the sources that dominate cosmological

reionization form predominantly in overdense regions. In the presence of an in-

homogeneous intergalactic medium (IGM), the way in which ionization fronts

(I-fronts) propagate into the IGM depends on the spatial distributions of the gas

density and sources. During the early stages of reionization, I-fronts proceed

preferentially from the overdense knots, where sources form, toward underdense

regions, where the hydrogen recombination rates are lower; this is referred to as

“inside-out” (IO) reionization. By contrast, in the final stages of reionization or

within regions that have already reionized, reionization proceeds predominantly

from voids towards overdensities; this is referred to as “outside-in” (OI) reion-

ization. The way in which reionization proceeds from the initial IO phase to

the final OI phase affects the evolution of the size spectrum of ionized regions,

leaving observable imprints on the power spectrum of fluctuations in the 21cm

background (Furlanetto & Oh, 2005; McQuinn et al., 2007) and the galaxy-21cm

cross-correlation function (Lidz et al., 2009). Additionally, the topology of reion-

ization directly determines the dependence of the volume-averaged hydrogen

recombination rate on the neutral hydrogen fraction through the clumping factor

because it determines the “order” in which regions with different recombination

rates are reionized. Hence, it is an important ingredient in observational con-

straints on the strength of the ionizing background as well as in semi-analytic

models of reionization.

For these reasons, the topology of reionization has been the subject of nu-

merous recent investigations. In one of the pioneering radiative hydrodynamic

simulations of cosmological reionization, Gnedin & Ostriker (1997) found that the
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clumping factor of ionized hydrogen increases monotonically with time. While

they did not specifically discuss the topology of reionization, this trend suggests a

completely OI topology because the baryonic clumping factor is smaller in voids

than in overdensities. The approximations in this work effectively smoothed

the ionizing background over a large cosmological volume, and the resulting

topology was probably an artifact of this treatment. Similar results have been

found in simulations that introduce the ionizing background as a boundary con-

dition (Nakamoto et al., 2001). Indeed, soon afterwards, Gnedin (2000a) found

that a more accurate treatment for the spatial distribution of the ionizing sources

yields a more IO-like reionization in the sense that the clumping factor of ionized

hydrogen decreases monotonically in time.

In the same year, Miralda-Escudé et al. (2000) formulated an influential ana-

lytic treatment for the final stages of reionization based on the idea that the last

regions to reionize are those that combine high density with low emissivity. This

model also describes the evolution of the ionization field within H II regions.

However, it does not address the early stages of reionization, which are currently

being tackled by large-scale radiative transfer simulations that attempt to model

the expansion of I-fronts out of small haloes. These calculations now consistently

predict an IO topology in the sense that the ratio of the mass-averaged to the

volume-averaged ionized hydrogen fraction xM/xV is greater than unity at all

times (Iliev et al., 2006a, 2007a; Trac & Cen, 2007; Lee et al., 2008). Finally, a

recent semi-numerical work speculated that treating the spatial distribution of

the hydrogen recombination rate accurately could lead to a hybrid scenario in

which overdense regions ionize first, then underdense regions, and then fila-

ments (Choudhury et al., 2009). In summary, there is as yet no consensus on
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how the topology of reionization evolves from the Dark Ages until overlap.

We have recently developed an accurate technique for computing cosmolog-

ical reionization that uses a moment method to solve the fully time-dependent

radiative transfer equation (Finlator et al., 2009). Here, we use this method to

investigate the topology of reionization. This work is complementary to previ-

ous studies in that we derive the baryon density and emissivity fields from hy-

drodynamic simulations whose baryonic physics treatments have been shown

to reproduce a wide range of observations of the post-reionization Universe, in-

cluding the high-redshift galaxy luminosity function (Davé et al., 2006a) and the

metallicities of galaxies (Finlator & Davé, 2008), groups (Davé et al., 2008), and

the IGM (Oppenheimer & Davé, 2006, 2008; Oppenheimer et al., 2009). Of course,

we are making an assumption that the same emission sources and processes dom-

inate during reionization; in effect, we will test this assumption by comparing to

available observations. Additionally, the present work represents an improve-

ment over the preliminary application presented in Finlator et al. (2009) in three

important respects: (1) we now evolve the emissivity and density fields in time

rather than assuming them to be static; (2) the present simulations incorporate

eight times the cosmological volume while the underlying star formation rates

are computed using the same mass resolution; and (3) these calculations begin

at z = 14 rather than z = 9, so they account more accurately for the impact of

ionizing photons that were emitted well before the hydrogen recombination time

at the mean IGM density exceeded the Hubble time.

In Section 5.2, we describe the cosmological simulation that we use as a basis

for our post-processing radiative transfer calculations, and review our radiative

transfer technique. In Section 5.3, we study the topology of reionization in our
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calculations. In Section 5.4, we compare our results with constraints on the in-

tegrated optical depth to Thomson scattering and the volume-averaged ionizing

emissivity at z ∼ 6. We discuss our results in Sections 5.5. Finally, we summarize

our findings in Section 5.6.

5.2 Simulations

5.2.1 Cosmological Simulation

We ran the cosmological hydrodynamic simulation that serves as an input to

our post-processing radiative transfer calculation using our custom version of

the parallel cosmological galaxy formation code Gadget-2 (Springel & Hernquist,

2002). This code uses an entropy-conservative formulation of smoothed parti-

cle hydrodynamics (SPH) along with a tree-particle-mesh algorithm for handling

gravity. It accounts for photoionization heating starting at z = 9 via a spatially

uniform photoionizing background (Haardt & Madau, 2001). Gas particles un-

dergo radiative cooling under the assumption of ionization equilibrium, where

we account for metal-line cooling using the collisional ionization equilibrium ta-

bles of Sutherland & Dopita (1993). Stars are formed from dense gas via a sub-

resolution multi-phase model that tracks condensation and evaporation in the

interstellar medium following McKee & Ostriker (1977). The model is tuned

via a single parameter, the star formation timescale, to reproduce the Kennicutt

(1998a) relation; see Springel & Hernquist (2003a) for details. Self-enrichment of

star-forming gas and delayed feedback from old star particles are also treated.

We account for galactic-scale superwind feedback using our momentum-driven

outflows with a normalization σ0 = 150 km s−1. For further details on the physics

treatments in the simulations, see Oppenheimer & Davé (2006, 2008). Our simu-
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Figure 5.1 The simulated relationship between total halo mass and instantaneous

star formation rate at z = 9 (upper, blue locus) and z = 6 (lower, red locus).

The simulated relationships roughly follow SFR∝ M 1.3 at high masses, with nor-

malizations and low-mass cutoffs that evolve in time. The red dot-dashed line

indicates the current observational limit at z = 6 (see text), which translates to a

halo mass of 109.5M¯.

lation subtends a cubical volume 16h−1Mpc long on each side and uses 5123 dark

matter and star particles. It assumes a cosmology where ΩM = 0.25, ΩΛ = 0.75,

H0 = 70 km s−1 Mpc−1, σ8 = 0.83, and Ωb = 0.044.

We now briefly discuss how our mass resolution compares to the mass scales

that dominate reionization. Haloes that are less massive than the threshold for

atomic cooling (8.3×107(7/(1+ z))1.5M¯) do not contribute significantly to reion-

ization owing to inefficient star formation (Wise & Cen, 2009) and the early pas-

sage of Lyman-Werner photons (Haiman et al., 1997; Ahn et al., 2009), hence we
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Figure 5.2 (Top) The simulated halo mass functions at z = 9 (solid) and z = 6

(dashed). (Bottom) The corresponding ionizing luminosity-weighted halo mass

functions in units of ionizing photons per hydrogen atom per Hubble time per

mass bin. The open squares indicate the lower mass limits above which (right to

left) 0.2, 0.4, 0.6, and 0.8 of the total ionizing luminosity is emitted. The vertical

short dashed line denotes the 64 particle resolution limit for baryonic physics, in-

dicating that our simulation resolves star formation in haloes more massive than

2 × 108M¯. The vertical long-dashed line indicate the halo mass where gas infall

is expected to be suppressed by 50% at z = 6 (Okamoto et al., 2008). The vertical

dot-dashed segment in the lower panel indicates the current observational limit

at z = 6 (see text).
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are interested only in more massive haloes. Ideally, we would like to resolve

star formation in haloes down to roughly 2 × 107M¯, the atomic cooling thresh-

old at z = 14. In order to understand how our ionizing emissivity field relates

to the underlying halo population, we have identified the dark matter haloes in

our cosmological volume at the representative redshifts z = 9 and z = 6 using a

spherical overdensity algorithm that determines the smallest radius out to which

a halo’s enclosed density falls below the virial density.

We show in Figure 5.1 the predicted relationship between halo mass M and

star formation rate ṀSFR. For haloes above 109M¯, both relationships follow a

trend ṀSFR ∝ M1.3. The superlinear scaling results from our momentum-driven

outflows because the outflow mass loading factor ηW scales inversely with the ve-

locity dispersion, preferentially suppressing the star formation rates of low-mass

systems (Oppenheimer & Davé, 2006). At both redshifts, there is a turnover at

low masses. Defining the turnover mass as the highest mass where the median

ṀSFR is below 50% of the linearly extrapolated high-mass trend (extrapolated

from M > 109M¯), we find that the turnover mass rises from 108.3M¯ at z = 9

to 108.7M¯ at z = 6. At z ∼> 9, the turnover owes to resolution effects, while at

z = 6 it owes entirely to the suppression of cooling into low-mass haloes (e.g.,

Thoul & Weinberg, 1996; Okamoto et al., 2008) by the nascent ionizing back-

ground (Haardt & Madau, 2001). During the same interval, the normalization

of the M − ṀSFR trend drops by roughly 0.25 dex owing to cosmological expan-

sion.

The red dot-dashed segment in Figure 5.1 indicates the current observational

limit at z = 6 corresponding to MUV,AB = −17.5 (Bouwens et al., 2007). We

obtained this limit using the relationship between star formation rate and rest-
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frame 1350 Å luminosity that arises in our hydrodynamic simulation at z = 61.

The relationship in Figure 5.1 is a testable prediction of our model because

it is related to the rest-frame UV luminosity function of Lyman-break galaxies

at z = 6. It has previously been shown (albeit with slightly different parameter

choices) that our model nicely reproduces the observed normalization (Davé et

al., 2006a) and evolution (Bouwens et al., 2007) of the high redshift galaxy lu-

minosity function. Hence the trends in Figure 5.1 represent at least a plausible

model for the sources of ionizing photons at z ∼> 6.

The top panel of Figure 5.2 shows the simulated halo mass functions at the

same redshifts. The mass functions rise smoothly to lower masses until roughly

6.0 × 107M¯, which is the 20 dark matter particle resolution limit for haloes and

lies close to the above target resolution. Converting the dark matter haloes in

the top panel into an ionizing emissivity field involves a host of additional as-

sumptions regarding gas cooling and star formation. The novelty of our method

is that these processes are already treated in great detail by our hydrodynamic

simulation, so that we are not obliged to make any additional assumptions when

generating the emissivity field snapshots that we use for computing reionization

save for the choice of ionizing escape fraction fesc. By convolving each halo’s stel-

lar population with the Bruzual & Charlot (2003) population synthesis models

assuming a Chabrier (2003) IMF, we have computed the corresponding ionizing

luminosity-weighted halo mass functions. We show these in the bottom panel in

units of ionizing photons emitted per hydrogen atom per Hubble time per mass

bin. These curves show how haloes of different masses contribute to reionization,
1Convolving our simulated stellar populations’ star formation histories and metallicities with

the Bruzual & Charlot (2003) models and assuming no dust, this is given by MUV,AB = −21.10 −

2.88 log(ṀSFR), where ṀSFR is in M¯ yr−1.
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and the volume-averaged ionizing emissivity per hydrogen atom into the IGM is

simply their integral multiplied by the escape fraction.

At both redshifts, the ionizing emissivity per mass bin increases with decreas-

ing mass before turning over below 109M¯. The trend at high masses is flatter

than the mass function (note that the y-axes in the bottom and top panels span the

same dynamic range) because more massive haloes have higher star formation

rates (Figure 5.1), and it increases with decreasing mass because the high abun-

dance of low-mass haloes wins over their low individual star formation rates.

The low-mass turnover at each redshift reflects the behavior in Figure 5.1. At

z = 9, the turnover lies below 2 × 108M¯ and owes entirely to low resolution

since the threshold for resolved star formation rates is 64 star particles (Finlator

et al., 2007). We crudely suggest this threshold with a vertical short dashed line at

64 dark matter particle masses = 108.29M¯. By z = 6, the uniform ionizing back-

ground that we employ in the hydrodynamic simulation (Haardt & Madau, 2001)

boosts the minimum halo mass for efficient gas infall to ∼ few×108M¯ (Thoul &

Weinberg, 1996; Okamoto et al., 2008), which we indicate with a vertical long

dashed line. This is well above the 64-particle minimum for resolved star forma-

tion histories, hence the emissivity field during the latter stages of reionization

is very well-resolved. Note that the suppression of star formation in low-mass

haloes at late times bears some resemblance to self-regulated scenarios (e.g., Iliev

et al., 2007a) although our prescription for regulating star formation is different.

The red vertical dot-dashed segment translates the observational limit at z = 6

from Figure 5.1 into halo mass, and the squares indicate the minimum halo mass

above which (from right to left) 20, 40, 60, and 80% of the ionizing photons are

produced. Comparing the dot-dashed line and the boxes suggests that, if fesc is
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constant, then current observations are sensitive to only 50% of the total ionizing

luminosity density at z = 6.

5.2.2 Radiative Transfer Calculations

We extract snapshots from this simulation at roughly 40-Myr intervals and map

their baryonic density and emissivity fields onto a Cartesian grid for the radiative

transfer integration. We divide the total mass associated with SPH particles that

lie near cell boundaries between the cells by summing incomplete gamma func-

tions to their equivalent Plummer SPH smoothing kernels. The gas temperature

in each cell is the mass-weighted average of the temperature of the gas particles

that lie within the cell. We omit from the grid those SPH particles whose den-

sity exceeds the threshold for star formation because their effect on the ionizing

photons is implicitly accounted for in the choice of ionizing escape fraction. We

assume that all gas is completely neutral at z = 14. We use radiative grids incor-

porating 323, 483 and 643 cells, yielding radiative spatial resolutions ∆xR of 500,

333, and 250 comoving h−1kpc, respectively. Poisson noise in the derived density

fields is insignificant because, even at our highest resolution, there are on average

(512/64)3 = 512 gas particles within each cell.

We compute each cell’s emissivity by convolving its stellar populations with

the Bruzual & Charlot (2003) stellar population synthesis models, interpolating

to the correct age and metallicity for each star particle. We tune the uniform

ionizing escape fraction to 13% so that the volume-averaged neutral fraction falls

to roughly 10−3 at z = 6. We group all ionizing photons into a single frequency

group at the hydrogen ionizing threshold.

During the radiative transfer computation, we update the total baryon den-

sities, emissivities, and temperatures using new snapshots from the cosmologi-
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cal simulation while holding the radiative variables and ionization fractions con-

stant. The radiative transfer calculation accounts for cosmological expansion us-

ing the same cosmology as the hydrodynamical simulation. We use Case B re-

combination rates throughout this work.

Our radiative transfer calculations solve the moments of the radiative trans-

fer equation in cosmological comoving coordinates. After each 1-Myr timestep,

we suspend the time-dependent integration of the moment equations and use

a (time-independent) ray-tracing technique to compute the full angular depen-

dence of the radiation field. From this, we derive the updated Eddington tensor

field, which is needed to close the moment hierarchy. We use a number of opti-

mizations to render this technique computationally feasible, as described in detail

in Finlator et al. (2009). In brief, (i) we only update a computational cell’s Edding-

ton tensor when its photon number density has changed by more than fJ = 5%

since its Eddington tensor was last updated; (ii) we terminate a ray-tracing com-

putation when the optical depth between the source and the target cell along the

ray exceeds 6; and (iii) we switch from using one to using two layers of peri-

odic replica volumes in order to mimic the effects of periodic boundaries once

the volume-averaged neutral fraction drops below 50%. In Finlator et al. (2009),

we used an extensive suite of parameter convergence tests to verify that each of

these optimizations introduces fractional errors in the ionization fractions of at

most 10%.

In this work, we introduce an additional optimization that enables the code

to transition smoothly between the different ray-tracing approaches that are ap-

propriate for the optically thick and thin regimes. Before cosmological H II re-

gions overlap, the highly inhomogeneous opacity and emissivity fields lead to
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strong spatial variations in the Eddington tensor field. These can only be treated

accurately by using ray-tracing to compute the optical depths from every posi-

tion to every source. However, as reionization proceeds, a growing fraction of

the computational cells lie deep within large H II regions where the Eddington

tensors are dominated by other sources located within the same H II region and

towards which the optical depth is negligible. In these regions, simply assum-

ing that the optical depth to every source is zero becomes increasingly valid, and

the computationally-efficient optically thin approximation is appropriate. Opti-

mization thus involves defining a criterion to determine when a computational

cell lies within a large H II region. We do this as follows: At all times, we store

the optically thin Eddington tensor field (that is, the result from assuming that

all optical depths are zero) in memory. Wherever the (time-dependent) photon

number density exceeds the photon number density from the (time-independent)

optically thin approximation by a factor of 2, we use the optically thin Eddington

tensors rather than performing ray-tracing. We have used a parameter conver-

gence test similar to those in Finlator et al. (2009) to verify that this choice incurs

no more than 10% fractional errors in the ionization fractions while speeding up

the computation by roughly a factor of 2.

Through extensive testing, we have found that relaxing our accuracy crite-

ria so that we recompute the Eddington tensors whenever the photon number

density changes by 10% and switch to the optically thin approximation once

the time-dependent photon density exceeds the optically thin value by 10% in-

troduces negligible changes into the topology and redshift of reionization (Fig-

ure 5.9) although it does introduce typical errors of 20% into the ionization states

of individual cells. We refer to this as the “fast” scheme and employ it for tests of
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systematics.

We evolve the ionization field using either implicit or explicit finite-differencing

techniques depending on the local ionization timescale. We do not evolve the gas

temperature because we do not solve for the hydrodynamic response of the gas to

the passage of ionization fronts. At each timestep, we iterate between the updates

to the ionization and radiation fields until they converge to 10−4.

Our highest-resolution simulation required roughly 10,000 CPU hours on a

shared-memory machine with 8 2.5-GHz Intel Xeon CPUs. The overall computa-

tion time for an individual reionization simulation scales with the total number

of cells Ncells approximately as N 1.5
cells, reflecting the fact that the time for the Ed-

dington tensor updates scales in this way (Finlator et al., 2009).

5.3 The Early Reionization of Voids

5.3.1 The Volume-Averaged Neutral Fraction

In the top panel of Figure 5.3, we show how the volume-averaged neutral frac-

tion evolves in time at our highest spatial resolution (∆xR = 250h−1kpc). The

solid curve gives the average over our entire simulation volume while the dotted,

short-dashed, and long-dashed curves correspond to underdense, overdense, and

mean-density regions, respectively. Note that using different ranges does not

change the qualitative results. Hereafter, we refer to underdense regions as “voids”

and mean-density regions as “filaments”.

The first thing to notice is that overlap (defined as the point where the volume-

averaged neutral fraction xHI,V drops below 10−3) occurs by z = 6. This is a non-

trivial result, given that our simulations have previously been shown to repro-

duce a wide array of observations of the post-reionization Universe (Section 5.2.2)
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Figure 5.3 (Top) The volume-averaged neutral fraction in the IGM for the ∆xR =

250h−1kpc calculation as a function of the age of the Universe (bottom axis) and

redshift (top axis) overall and for three bins in overdensity. (Bottom) The mean

intensity of the ionizing background at 912 Å for the same density bins. The

“notches” at roughly 40-Myr intervals (especially clear in the bottom panel) indi-

cate the timesteps where the ionization and density fields are updated during the

integration. The triangle indicates the observed upper limit (Bolton & Haehnelt,

2007). Voids reionize before mean-density regions owing to the spatial distribu-

tion of recombination rates and ionizing intensities.
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and that we have not introduced any new baryonic physics in order to bring

about reionization other than the (reasonable) choice of ionizing escape fraction.

This supports previous suggestions that reionization could have been dominated

by ordinary (that is, not Population III) star formation (e.g., Shull & Venkatesan,

2008).

Examining the reionization history in different density bins, we find that over-

dense regions reionize first because they host the bulk of the ionizing sources.

Around z = 9, photons bypass the filaments and flow into the voids, which ion-

ize rapidly owing to their low recombination rates. Filaments ionize last because

they possess fewer sources than overdense regions but higher recombination

rates than voids. We refer to this topology, in which the voids are ionized sig-

nificantly before the filaments, as the “inside-outside-middle” topology (IOM).

Following overlap, the neutral hydrogen fraction increases with overdensity as

expected in the presence of a uniform ionizing background.

In the bottom panel of Figure 5.3, we show how the volume-averaged mean

ionizing intensity evolves in the same regions. Overdense regions see the strongest

ionizing background owing to their proximity to sources. The mean intensity

in filaments always represents an average of the intensities in reionized regions

close to sources and self-shielded regions farther away (Figure 5.5), but broadly it

lies between the intensities in overdense and underdense regions. The intensity

in voids is negligible until the first I-fronts bypass filaments at z = 9. Afterwards,

voids ionize rapidly owing to their low recombination rates and their mean inten-

sity rapidly reaches the volume average. Following overlap at z ≈ 6, the ionizing

background is very nearly homogeneous.

In Figure 5.4, we show how the median redshift of reionization varies with
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overdensity and ∆xR. We constructed this figure by determining the first redshift

at which each cell’s neutral hydrogen fraction drops below 10−3. We define each

cell’s baryonic overdensity at the final timestep (z = 5.71). Broadly, our finding

that reionization occurs sooner in voids than in filaments is insensitive to ∆xR.

Decreasing ∆xR delays reionization in overdense regions by enhancing I-front

trapping while accelerating the reionization of voids. Defining the overlap epoch

as the redshift at which the volume-averaged neutral fraction drops below 10−3,

we find that increasing the spatial resolution from ∆xR = 500 to 250h−1kpc causes

overlap to occur earlier by ∆z = 0.2. We will argue in Section 5.3.3 that both of

these effects owe to more effective “tunneling” of photons through soft spots in

the IGM at higher spatial resolution.

The solid and short dashed - long dashed curves in Figure 5.4 show how

reionization proceeds when we use Eddington tensors that are derived accurately

versus in the optically thin limit, respectively. Using optically thin Eddington

tensors systematically accelerates reionization in voids while delaying it in fila-

ments. Overdense regions remain unaffected. The artificially late reionization

in filaments delays the overlap epoch by ∆z = 0.2. Note that this constitutes

the first evaluation of the consequences of incorporating inaccurate Eddington

tensors into calculations of cosmological reionization.

In order to show more intuitively how the topology in Figure 5.4 arises, we

show in Figure 5.5 maps of overdensity (a), ionizing emissivity (c,f), neutral hy-

drogen fraction (d,g), and the intensity of the ionizing background (e,h) at two

representative redshifts as well as the redshift of reionization (b) in the same thin

slice through our cosmological volume (see caption for details). We note that the

simulation from which we extract these maps is identical to the runs in Figure 5.4
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except that it uses 963 radiative transfer cells for a radiative transfer resolution of

∆xR = 177h−1kpc. Because this run became prohibitively slow after the neutral

fraction dropped below xH I,V < 10%, we completed its final stages using optically

thin Eddington tensors. This impacts the topology of reionization negligibly—in

fact, we found that this simulation continues all of our trends with respect to

resolution—but for consistency we omit it from the other figures in this paper.

Panels c–e correspond to z = 7.21 (xH I,V =50%) whereas panels f–g correspond

to z = 6.49 (xH I,V =10%).

Panel 5.5(b) can be compared to Figure 1 of Trac et al. (2008), who found a

purely IO reionization topology. Comparing panels a, c, and f reveals that, while

sources lie at the intersections between filaments as expected, they do not trace

the filaments smoothly out to the mean density owing to the low-mass cutoff in

the halo mass to light ratio (Figure 5.2). This suggests that, for the most part, the

filaments cannot self-ionize. Panels d, e, g, and h show that some filaments do

ionize rapidly owing to proximity to sources, but at distances of more than ∼a

few h−1Mpc from sources, filaments remain self-shielded even after most of the

voids have already reionized. The tendency for most filaments to reionize late

gives rise to our characteristic IOM reionization topology.

A close examination of the emissivity maps (panels 5.5(c) and 5.5(g)) shows

that our simulated emissivity varies rapidly with position. This is a consequence

of the fact that the ionizing luminosity of a single stellar population varies by 5

orders of magnitude during its first 100 Myr. Our limited mass resolution leads

to shot noise in the number of star particles per grid cell whose age lies within

this range, which in turn gives rise to the noisy emissivity field. To gauge the

impact of this, we tried computing and using instantaneous star formation rates
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directly from gas particles as the source of ionizing flux, rather than the star for-

mation history from star particles. This would be a more appropriate approach in

the limit that all ionizing photons are emitted instantaneously. We left the escape

fraction constant and tuned the ionizing luminosity per unit star formation rate to

2.45× 1053 s−1 per M¯ yr−1 in order to match the volume-averaged emissivity re-

sulting from the star particles2. We show the resulting reionization topology and

overlap redshift with the dotted green lines in Figure 5.9. Comparing these trends

with the solid black lines, which reflect our fiducial emissivity prescription, we

find that the two approaches yield nearly identical results. This indicates that our

overall results are not sensitive to stochasticity in the star formation algorithm.

5.3.2 The Ratio of Ionized Fractions

Another way to study the topology of reionization is to consider the ratio of

the mass-averaged to the volume-averaged ionized hydrogen fractions, xM/xV,

which can be thought of as the average density of ionized regions in units of

the mean density (Iliev et al., 2006a). For reionization in a homogeneous IGM,

xM/xV = 1 at all times. In an inhomogeneous IGM, OI reionization implies that

xM/xV ≤ 1 because ionizing voids increases xH II,V more rapidly than xH II,M. Sim-

ilarly, IO reionization implies that xM/xV ≥ 1 because ionizing overdense regions

increases xHII,M more rapidly than xHII,V. In Figure 5.6, we show how xM/xV

evolves in time for three different choices of ∆xR in the radiation grid. For the

period z ≥ 9, we smooth the simulated results with cubic polynomial fits in

order to suppress artifacts from low time resolution in our set of precomputed

density and emissivity grids. The inset panel shows the original trend for the
2This is 2.64 times the Kennicutt (1998a) relation. The extra ionizing luminosity can be at-

tributed to the low metallicity at z ≥ 6.
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Figure 5.4 The median redshift of reionization as a function of overdensity ρ/ρ̄

(curves) and overlap redshift (horizontal lines) for different choices of ∆xR. The

short dashed - long dashed curve results from using ∆xR = 250h−1kpc along with

optically thin (OT) Eddington tensors. Broadly, the early reionization of voids is

robust to the choice of ∆xR as well as the accuracy of the Eddington tensors. In-

creasing the spatial resolution allows us to resolve both the high recombination

rates in overdense regions and the tendency for photons to bypass filaments and

reionize voids early. The OT approximation delays overlap by ∆z = 0.2 by de-

laying reionization in filaments.
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Figure 5.5 Maps from a volume slice 16h−1Mpc to a side and 250h−1kpc thick at

two representative redshifts as indicated.



276

Figure 5.6 The ratio of the mass-weighted to volume-weighted ionized hydrogen

fractions xM/xV as a function of the age of the Universe (lower axis) and red-

shift (top axis). The top panels shows how xM/xV drops more rapidly at higher

spatial resolution owing to more efficient breakout of I-fronts into voids. We use

polynomial fits to the simulated trends for z ≥ 9. The inset panel shows the

full simulated result for ∆xR = 250h−1kpc, where the jumps owe to the low time

resolution in our set of precomputed density and emissivity fields. The bottom

panel expands the y-axis from the top panel about xM/xV = 1 in order to show

how xM/xV drops below unity well before reionization completes, with the effect

growing stronger at higher resolution.
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∆xR = 250h−1kpc calculation.

Broadly, xM/xV evolves from > 1 at early times when the ionized volume frac-

tion remains low, to < 1 when the voids reionize, to unity once the majority of

the universe has reionized (see also Iliev et al., 2007a). The early evolution is as

expected if reionization begins earlier in overdense regions than in the Universe

as a whole (Gnedin, 2000a; Iliev et al., 2006a), but the tendency for xM/xV to drop

below unity significantly before reionization completes has not been discussed

previously. The evolution of xM/xV is sensitive to the choice of ∆xR: Increas-

ing spatial resolution increases xM/xV at earlier times while decreasing it at late

times. Physically, higher spatial resolution allows the simulation to better resolve

the high recombination rates in the overdense regions where reionization begins,

leading to more effective trapping of I-fronts at early times. At late times, increas-

ing the resolution allows the simulation to resolve the tendency for I-fronts to

“leak out” through the porous IGM into voids. As the bottom panel of Figure 5.6

indicates, this leaking effect is so efficient that, at our highest spatial resolution,

xM/xV drops below unity around the time when xHI,V drops below 50% (at z ≈ 7).

In other words, by the time reionization is halfway complete, the average ionized region

is underdense. This is a direct consequence of the late reionization of filaments.

5.3.3 The Mean Free Path of Ionizing Photons

The tendency of ionizing photons to stream preferentially in directions where the

IGM is less dense naturally leads to the formation of ionized “tunnels” that con-

nect sources with voids. If this tunnel formation indeed dominates the topology

of reionization, and if the tunnels are small compared to ∆xR, then the mean free

path of ionizing photons λMFP from sources should increase with decreasing ∆xR.

This is because, as the tunnelling process is better-resolved, an increasing fraction
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of ionizing photons travel directly from sources through tunnels into voids rather

than being artificially absorbed nearby. To test this idea, we have computed λMFP

as a function of redshift by casting rays from each source (where a source is a com-

putational cell with nonzero emissivity) in 1280 directions that uniformly sample

the unit sphere and then computing the distance travelled until the optical depth

exceeds 6. By repeating this exercise for each combination of ∆xR and redshift,

we follow the growth of λMFP and its dependence on ∆xR.

We show the resulting trends of mean free path versus ionized volume frac-

tion in Figure 5.7. During the early stages of reionization, when the neutral frac-

tion is above 99%, higher resolution leads to higher λMFP. This is the result that

we expected: At higher spatial resolution, the tendency of photons to bore holes

through the IGM from sources to voids is better resolved, leading to a higher

λMFP at a given ionization state. In fact, Figure 5.7 indicates that even our highest-

resolution computation does not fully capture all the relevant substructure, sug-

gesting that the characteristic size of the tunnels is smaller than 250 comoving

h−1kpc. It is likely that using a spatial resolution that is comparable to the virial

radius of the dominant haloes is necessary for full resolution convergence. Un-

fortunately, this requirement is roughly a factor of 10 higher than what we have

achieved here, and would require either a much smaller cosmological volume

(thus increasing cosmic variance and biasing effects; Barkana & Loeb 2004), an

adaptive RT mesh, or a less accurate technique. Nevertheless, the trend indicates

that reionization proceeds rapidly from overdensities into voids before mopping

up the filaments. It also reinforces the need for spatial resolutions that are much

better than 1 comoving h−1Mpc when studying the topology of reionization.

As reionization proceeds, the trend of λMFP versus resolution inverts so that
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Figure 5.7 The ionizing mean free path λMFP from sources as a function of the

volume-weighted ionized hydrogen fraction, computed using three different val-

ues of ∆xR. The larger panel uses 6th-order polynomial fits to the simulated

trends for xHII,V <10%, while the inset panel shows the full original curve for

∆xR = 250h−1kpc. At early times, higher resolution leads to higher λMFP because

photons “tunnel” more effectively from sources to voids. At late times, higher

spatial resolution leads to lower λMFP because the small overdensities that domi-

nate the IGM opacity are better resolved.



280

higher resolution leads to lower λMFP. This occurs as the topology changes from

one in which ionized tunnels thread an otherwise opaque IGM to one in which

increasingly isolated overdensities are separated from each other by regions that

are already reionized. The remaining neutral regions dominate the IGM opac-

ity and shrink as reionization proceeds. Higher spatial resolution prevents them

from being averaged with the low recombination rates in neighboring voids. At

this stage, reionization proceeds from the voids back into regions of increasing

density and decreasing spatial scale (Miralda-Escudé et al., 2000). Our simula-

tions suggest that this topology could dominate by the time the neutral fraction

drops below 50%, and possibly earlier.

5.4 Comparison to Observational Constraints

The goal of the present work is to take a hydrodynamical model that has en-

joyed considerable success in accounting for observational constraints from the

post-reionization Universe and to ask how reionization proceeds in this model.

Because we have introduced no extra physical assumptions save for the choice

of ionizing escape fraction and have tuned this to achieve reionization by z = 6,

it is of interest to compare our results with additional observational constraints

from the reionization epoch, specifically Thomson optical depth measurements

from the Wilkinson Microwave Anisotropy Probe (WMAP), and observations of the

Lyman-α forest. In this Section we show that (1) our simulated optical depth to

Thomson scattering underproduces the observed value and (2) our simulations

overproduce the mean ionizing intensity at z = 6. We discuss the implications of

these findings.
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Figure 5.8 The integrated optical depth to Thomson scattering τes as a function

of the age of the Universe (bottom axis) and redshift (top axis). Thick curves

correspond to ∆xR = 250h−1kpc, fesc = 0.13, and fiducial accuracy while thin

curves correspond to ∆xR = 500h−1kpc, fesc = 1, and the fast scheme (Sec-

tion 5.2.2). Solid curves show the result from pure hydrogeon reionization, and

dotted curves include the contribution of Helium assuming that Helium is dou-

bly ionized after z = 3 and singly ionized with nHe II/nHe = nH II/nH for z > 3. The

dashed lines indicate the 68% confidence intervals for τes arising from combin-

ing WMAP-5 with distance measurements from Type Ia supernovae and baryon

acoustic oscillations, τes = 0.084 ± 0.016 (Hinshaw et al., 2009; Komatsu et al.,

2009). Our simulations do generate enough ionizing photons to match the ob-

served constraint on τes, but our fiducial choice of fesc may underproduce it.
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5.4.1 The Integrated Optical Depth to Electron Scattering

In Figure 5.8, we show the variation of the integrated optical depth to Thomson

scattering τes with redshift. The thick solid curve corresponds to pure hydro-

gen reionization at our highest spatial resolution and accuracy, and indicates an

integrated optical depth of 0.047, 0.023 below the 1-σ observational constraints.

Accounting for Helium reionization (thick dotted curve; see caption for details)

boosts τes to 0.051. The discrepancy between the observed and simulated τes,

which reflects the history of the volume-averaged electron number density, sug-

gests that reionization occurs too suddenly or too late in our calculations.

A number of effects could explain this discrepancy. On the numerical side,

our hydrodynamic simulation may not resolve all of the relevant star formation

at early times (Figure 5.2). Increased star formation at early times could start

reionization earlier and boost τes without changing xH I,V at late times, when the

ionizing background is dominated by more massive haloes (Figure 5.2; Iliev et

al., 2007a). The role of early star formation could be further enhanced through a

more detailed treatment of the ionizing escape fraction, fesc. Currently, we have

set fesc to a time-invariant value of 13% in order to obtain the end of reioniza-

tion at z ≈ 6. However, this is a free parameter and could be larger at earlier

times (e.g., Wise & Cen, 2009). Raising fesc to 1 (thin curves) brings our simu-

lated optical depth into agreement with the observed 68% confidence interval,

but makes the redshift of overlap z = 7.90. Note that this change slightly modi-

fies the qualitative topology of reionization, but does not make it purely IO (Fig-

ure 5.9). Third, the finite spatial resolution affects τes because reionization occurs

more rapidly at higher ∆xR (see Section 5.3). For radiative transfer grid resolu-

tions of ∆x = 500, 333, 250h−1kpc, xH I,V drops below 10−3 at z = 5.97, 6.05, and
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6.20, respectively. Hence the choice of ∆xR introduces an uncertainty of approx-

imately ∆z =0.2. Finally, our small cosmological volume delays reionization by

∆z = 0.1 because of the lack of long-wavelength density fluctuations (Barkana

& Loeb, 2004) and introduces a random uncertainty of ∆z = 1 owing to cosmic

variance (Barkana & Loeb, 2004; Iliev et al., 2006a), which can be translated to an

effect on τes via dτes/dzreion ≈ 0.008. In short, the systematic uncertainties in our

reionization history owing to numerical effects and assumptions are sufficient to

account for the missing optical depth.

But there are further observational uncertainties related to the observed τes. Shull

& Venkatesan (2008) have argued that the systematic uncertainties in comput-

ing the residual electron fraction leftover after recombination lead to systematic

uncertainties in τes of order ∼ 0.01. If true, then this could reduce the amount

of Thomson scattering that galaxies are responsible for producing, bringing our

simulations into better agreement with observations. The unknown time depen-

dence of reionization also renders τes uncertain (although Mortonson & Hu 2008

have argued that realistic reionization histories systematically increase τes over

the instantaneous reionization value, which would further increase the discrep-

ancy with our simulations).

Finally, it is also possible that reproducing τes in large cosmological volumes

requires additional physical processes such as self-regulation of star formation

in low mass haloes (Iliev et al., 2007a), Population III stars (Trac & Cen, 2007;

Shin et al., 2008), X-rays from early black holes (Shull & Venkatesan, 2008) or su-

pernovae (Oh, 2001), or primordial magnetic fields (Schleicher et al., 2008). In

future work, we will use radiative hydrodynamic simulations of reionization to

study self-regulation; however, for the present, our goal is to study how reion-
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ization follows from our existing baryonic physics treatments with no additional

assumptions.

5.4.2 The Hydrogen Ionization Rate at z = 6

The solid blue curve in the bottom panel of Figure 5.3 shows how the volume-

averaged hydrogen ionization rate per hydrogen atom Γ−12 ≡ ΓHI/10
−12 varies

with redshift in our calculation. At z = 6, we find log(Γ−12) = 1, whereas observa-

tions of the Lyman-α forest indicate log(Γ−12) < −0.6 (triangle with arrow; Bolton

& Haehnelt, 2007; Srbinovsky & Wyithe, 2008). Relatedly, our fiducial simulation

yields a volume-averaged neutral fraction at z = 6 of 2.4 × 10−6, 50–100 times

smaller than the observed 2–3×10−4 (Fan et al., 2006).

These large discrepancies could result either from fesc being too high or from

the opacity in the reionized IGM being too low. The fact that reionization occurs

more rapidly at higher spatial resolution (Figure 5.4) indicates that we are forced

to choose fesc artificially large in order to achieve overlap by z = 6. Meanwhile,

the fact that the IGM opacity at a given ionization state increases with decreasing

∆xR (Figure 5.7) indicates that our simulated IGM opacity at z = 6 is artificially

low. Both of these effects indicate that increasing our spatial resolution or incor-

porating a subgrid treatment for photoionization of structures below our spatial

resolution (e.g., Ciardi et al., 2006; Trac & Cen, 2007) would improve the agree-

ment with the observed Γ−12.

We may estimate how much our Γ−12 would improve with resolution by con-

sidering the likely impact of structures below our spatial resolution. Under ion-

ization equilibrium, the emissivity and ionization rate are related by

η = χΓ/4πσ. (5.1)
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Here, η = 2.694 × 10−24(fesc/0.13) is our simulated volume-averaged comoving

emissivity at z = 6 in s−1 cm−3 Sr−1; χ is the opacity to ionizing photons in cm−1;

and σ is the neutral hydrogen cross section at the Lyman limit in cm−2. At z = 6,

the IGM opacity is dominated by Lyman limit systems, hence we may approxi-

mate χ as the reciprocal of the mean free path to Lyman limit systems. Extrap-

olating the number density found by Storrie-Lombardi et al. (1994), this is 84

comoving Mpc in our cosmology at z = 6. Faucher-Giguère et al. (2008) have

estimated the additional impact of structures at lower column densities, finding

that the mean free path is roughly 85[(1 + z)/4]−4 proper Mpc (or 63 comoving

Mpc at z = 6). Folding these estimates into Equation 5.1, we find that resolving

Lyman limit systems could reduce Γ−12 from ≈ 10 to 2. This is still larger than

the observed upper limit of 0.3 (Bolton & Haehnelt, 2007; Srbinovsky & Wyithe,

2008), suggesting that our escape fraction may still be too large. However, given

that increasing the spatial resolution also accelerates reionization (Figure 5.4), this

observation reinforces our previous conclusion that decreasing both ∆xR and fesc

without changing our star formation prescription would yield improved agree-

ment with the observations.

Of course, while it is possible that these discrepancies owe to a combination

of numerical effects and systematic uncertainties in the observed optical depth

to Thomson scattering, a more interesting possibility is that they indicate a fail-

ing of the input physics. For example, detailed comparisons with observations

of galaxies and the IGM in the post-reionization Universe have prompted us to

assume that low-mass galaxies generate strong outflows (Section 5.1). These out-

flows dramatically suppress the ionizing emissivity at early times, leading to a

relatively late reionization epoch and a low τes. As a reference point, in our sim-
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ulations, 90% of the ionizing photons that are emitted by z = 6 are emitted after

z = 9. Weaker outflows at early times would boost early star formation rates

and hence τes. A stronger scaling between ionizing luminosity and metallicity

over what is found in the Bruzual & Charlot (2003) models would enhance the

ionizing light to mass ratios, as would including a treatment for an evolving ini-

tial mass function (i.e., Population III star formation), or the inclusion of mini-

quasars. Finally, an ionizing escape fraction that decreases with decreasing red-

shift or increasing halo mass would enhance the ionizing luminosity into the IGM

without changing the star formation history. However, until the numerical issues

are more fully investigated, we cannot make robust conclusions about the need

for new or enhanced sources of ionizing photons at the earliest epochs.

In summary, the failure of our simulations to reproduce simultaneously the

observed optical depth to Thomson scattering and the hydrogen ionization rate

at z = 6 could owe to observational uncertainties, numerical effects, or inade-

quate physics treatments. On the other hand, given that our simulations have

previously been shown to reproduce a wide variety of observations of the post-

reionization Universe and that the only additional physical assumption that we

have introduced is the choice of ionizing escape fraction, the level of agreement

that we find is encouraging. Our results support the idea that the processes gov-

erning star formation before and after reionization may not have been very dif-

ferent (Davé et al., 2006a).

5.5 Discussion

The tendency for I-fronts to bypass filaments and escape directly into voids oc-

curs generically in calculations that assume static emissivity and density fields
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(as we did in Finlator et al. 2009). Given high enough spatial resolution, such

calculations invariably produce H II regions with “butterfly wing” morpholo-

gies (e.g., Ciardi et al., 2001; Iliev et al., 2006b; Tasitsiomi, 2006). In addition, this

effect has recently been found in radiative hydrodynamic simulations of the first

stages of star formation (Abel et al., 2007; Wise & Abel, 2008). This was on much

smaller scales (< 1h−1Mpc) than the cosmological scales that we are interested

in. Nonetheless, one may understand the result in both cases as a competition

between the timescale for photons to bore tunnels through the IGM that connect

sources with voids on the one hand versus the timescale for filaments to self-

ionize and the timescale for I-fronts to burn directly through filaments on the

other. If photons leak into voids more rapidly than the filaments can either be

ionized or self-ionize, then the voids will reionize before the filaments.

These timescales are in turn governed by three factors: (1) The emissivity

field’s bias with respect to the baryon density field; (2) the time evolution of

the emissivity field; and (3) the spatial resolution. The impact of the emissiv-

ity bias on the topology of reionization has been explored elsewhere (McQuinn

et al., 2007); for our purposes it suffices to note that a highly biased emissivity

field promotes the late reionization of filaments by preventing them from self-

ionizing. The time evolution of the ionizing emissivity matters because if the

emissivity is relatively high at early times, then the late reionization of filaments

is suppressed even in the presence of a biased emissivity field owing to the lower

density contrast in the IGM. As a demonstration of this effect, we show the reion-

ization topology resulting from setting fesc = 1 in Figure 5.9 (cyan dot-dashed

curve). Comparing this curve to the topology in our fiducial case (solid black

curve) reveals that the higher reionization redshift is indeed associated with a
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flatter trend of median reionization redshift versus overdensity at low densities.

Finally, high spatial resolution also promotes the early reionization of voids by in-

creasing the density contrast. The topology presented in this paper results from a

particular combination of emissivity bias and evolution that has not been consid-

ered previously, and it is most clearly visible only at our highest spatial resolution

(Figure 5.6).

Iliev et al. (2006a) ran post-processed radiative transfer calculations of cosmo-

logical reionization on snapshots obtained from a pure N-body simulation. In

contrast to our results, they found a purely IO topology. Given that their spatial

resolution was comparable to ours, the difference between our results must owe

to the different emissivity fields. In constructing their emissivity field, they con-

sidered only haloes more massive than 2.5× 109M¯, which implies an even more

biased emissivity field than ours (Figure 5.2). Choudhury et al. (2009) suggested

that their purely IO topology might result from using high emissivities. Indeed,

the Iliev et al. (2006a) simulation achieved reionization by z ∼ 11, only ≈ 260

Myr after the first sources formed at z = 21, whereas our simulations are tuned

to produce reionization at z = 6, roughly 680 Myr after the computations begin at

z = 14. We conclude that their purely IO topology owed to their high reionization

redshift and the resulting lower IGM density contrast.

Subsequent calculations involving more extended reionization histories and

lower overlap redshifts have also resulted in more nearly IO-like topologies (Trac

& Cen, 2007; Iliev et al., 2007a), hence the overlap redshift alone is not the only

cause of our topology. In the case of Trac & Cen (2007), we ascribe the difference

to our more biased emissivity field. For example, comparing our Figure 5.2 with

their Figure 1, we find that, at z = 6, the minimum halo mass above which 60%
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of ionizing photons are emitted is 109.4M¯ for our simulation versus 109M¯ for

theirs. Their more extended reionization history also allows for much of reion-

ization to take place at higher redshift, when density contrasts are lower. Our

less gradual reionization history owes directly to our star formation prescription,

which suppresses the early star formation rate density with respect to models

that do not include strong outflows (e.g., Figure 3 of Oppenheimer & Davé 2006)

and leads to a more sudden overlap epoch because of the strong dependence of

star formation rate on halo mass (Figure 5.1).

The emissivity field of Iliev et al. (2007a) is also less biased than ours, but

this time in two respects. First, they assume that haloes with masses between

108–9M¯ are the sites of Population III star formation, leading to lower ratios of

mass to ionizing luminosity than more massive haloes. Second, they assume that

the ionizing luminosity is proportional to halo mass, which, even in the absence

of Population III stars, would yield a less-biased emissivity field than ours since

our ionizing luminosity scales as M 1.3 (Figure 5.1). With these assumptions, it

is not surprising that their filaments are able to self-ionize much more efficiently

than ours.

The simulations of Iliev et al. (2007a, 2006a) assume that the speed of light

is infinite whereas ours do not; could this assumption impact the topology of

reionization? As this question has not been investigated in a fully numerical con-

text previously, we have re-computed cosmological reionization using ∆xR =

500h−1kpc assuming three different values c′ for the speed of light: c/10, c, and

10c. To save time, we perform these integrations using our less-accurate “fast”

scheme for updating the Eddington tensors (Section 5.2.2). Figure 5.9 shows how

the trend of median redshift of reionization versus overdensity (curves) and the
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Figure 5.9 Systematic effects on the median reionization redshift as a function

of overdensity. The horizontal segments on the right indicate the corresponding

overlap redshifts. Short-dashed blue, solid black, and long-dashed red curves

show the results assuming three different values c′ for the speed of light. The

dotted green curve shows the results when the emissivity is derived from the

star formation rates. The dot-dashed magenta curve uses a cosmological volume

eight times as large as our fiducial volume. Because these computations used

somewhat less accurate Eddington tensors in order to save time, we also include

the result at our fiducial accuracy (light grey curves). Changing the speed of light

or the volume does not qualitatively change the topology of reionization, but it

does impact the overlap redshift. Changing how we derive the emissivity field

does not affect our results either.
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overlap redshift (horizontal lines) vary with the speed of light. The light solid

curve reflects our fiducial accuracy and is copied from Figure 5.4. It essentially

overlaps the dark solid curve, indicating that the impact of the somewhat less ac-

curate Eddington tensors in our fast scheme is small compared to the systematic

offset from using an inaccurate speed of light. The median redshift of reionization

is roughly ∆z = 0.1 (50 Myr) earlier at all densities for c′ = 10c and 0.2–0.4 (150

Myr) later for c′ = c/10, although in both cases the effects are stronger in the un-

derdense than in the overdense regions. Overlap (defined as the redshift when

xH I,V drops below 10−3) occurs ∆z = (0.3, 0.6) or (50,150) Myr (early, late) for

c′ = (10c, c/10). Evidently, the consequences of decreasing the speed of light (as

done by e.g. Aubert & Teyssier, 2008) are more dramatic than the consequences

of boosting it, although neither approximation changes the qualitative topology

of reionization.

McQuinn et al. (2007) investigated a variety of emissivity fields, including

cases that were much more biased than ours (their models S3 and S4). Although

they did not specifically address the onset of OI reionization, we may speculate

on whether their results would have agreed with ours. Their fiducial model S1

corresponds to a less biased field than ours partly because it includes the contri-

bution of all haloes down to 108M¯, and partly because they assume a constant

mass-to-light ratio. Their model S3 includes a stronger scaling between halo mass

and luminosity than we find, but it still includes the contribution of the low-

mass (< 108.5M¯) haloes. Their model S4 assumes that haloes with masses below

4 × 1010M¯ do not form stars, hence it corresponds to an extremely biased emis-

sivity field. However, because they tune the emissivities to match the volume-

averaged emissivity in their S1 model, reionization is already well underway



292

before the density contrasts are large enough for the filaments to self-shield effi-

ciently. Hence, of their models, the S3 would have been the most similar to ours.

Unfortunately, their spatial resolution is slightly lower than ours (367h−1kpc ver-

sus 250h−1kpc), which artificially suppresses the density contrast and hence the

onset of the OI phase (Figure 5.6).

It is possible that increasing our mass resolution would boost the star forma-

tion rates in low mass haloes at early times, leading to a less biased emissivity

and more extended reionization history. However, even in this case our results

would remain sensitive to the unknown ionizing escape fraction, which may de-

crease with decreasing mass (Gnedin et al., 2008; Wise & Cen, 2009) or increasing

gas fraction (Oey et al., 2007). Our finding that the topology of reionization de-

pends sensitively on assumptions regarding baryonic physics in low-mass haloes

emphasizes the need for improved observational constraints on the faint end of

the luminosity function as well as on the escape fraction of ionizing photons.

It also emphasizes the need for high-resolution radiative hydrodynamic simula-

tions of galaxy formation during the reionization epoch (e.g. Wise & Cen, 2009)

in order to tune the assumptions that go into larger-scale simulations.

Our limited cosmological volume may introduce some uncertainty into our

results. It has been shown that the lack of long-wavelength density fluctuations

sampled by our 16h−1Mpc volume delays overlap by ∆z = 0.1 and introduces

an uncertainty of ∆z = 1 owing to cosmic variance (e.g., Barkana & Loeb, 2004;

Iliev et al., 2006a). While it has not been shown that these effects qualitatively

change the topology of reionization, we have explored this possibility by com-

puting reionization using snapshots extracted from a 32h−1Mpc cosmological hy-

drodynamic simulation. The baryonic physics treatments in this simulation are
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the same as in our fiducial volume, as is the assumed ionizing escape fraction.

Its spatial resolution is 8× lower, with the result that star formation is artificially

suppressed in haloes below the 64-particle limit of 1.5 × 109M¯. We use a grid of

643 cells, making ∆xR identical to the tests in Figure 5.9. The dot-dashed magenta

curve in Figure 5.9 shows the resulting reionization topology. Comparing it to the

solid black curve, we find that the topology is qualitatively unchanged. In detail,

overdense regions reionize later owing to the delay of star formation at lower

mass resolution (e.g., Springel & Hernquist, 2003b). This in turn delays the over-

lap epoch by roughly ∆z = 0.2. Ideally, we would prefer run this test on outputs

from an even larger hydrodynamic simulation that used the same mass resolu-

tion. Unfortunately, this is not possible with our current computing resources.

Nevertheless, the qualitative agreement between our 16h−1Mpc and 32h−1Mpc

volumes suggests both that our topology does not owe to cosmic variance, and

that using an even larger volume would not change our results. It would be in-

teresting to compute the reionization of a 16h−1Mpc or 32h−1Mpc volume using a

testbed that is known to yield a purely inside-out reionization topology for larger

volumes; however, this is beyond the scope of our present work.

An additional source of uncertainty in our results is the unknown impact of

structures on size scales below our spatial resolution such as virialized haloes

with masses in the range 105–7M¯ (i.e., minihaloes). Given that the timescale

for ionizing photons to bore holes through the IGM into the voids is compara-

ble to the timescale over which the Universe emits enough photons to ionize

each baryon once, minihaloes—which are concentrated in filaments—could tilt

the competition further in favor of an IOM topology through their ability to de-

lay the completion of reionization by up to ∆z = 2 (e.g., Barkana & Loeb, 2002;
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Ciardi et al., 2006; McQuinn et al., 2007). Moreover, analytic and numerical stud-

ies now agree that minihaloes change the topology of reionization, decreasing the

number of large H II regions and increasing the number of small ones (McQuinn

et al., 2007; Furlanetto & Oh, 2005) at late times. Although we do not actually

resolve minihaloes, this finding is completely consistent with the trend that we

found in Figure 5.7 whereby the mean free path to ionizing photons in the lat-

ter stages of reionization is shorter at higher spatial resolution owing to the im-

pact of overdense “holdouts”. This, however, is in the late stages of reionization

(xH II,V > 0.5); what about during the early stages? Minihaloes cannot substan-

tially affect the topology of reionization until the mean free path to absorption

by the IGM is comparable to mean free path to pass within a virial radius of a

minihalo, which, for a Press-Schechter mass function and our reionization his-

tory, happens after z = 8. By contrast, Figure 5.3 indicates that the strength of the

ionizing background in voids is already comparable to the volume average by

z = 9. We conclude that minihaloes are not likely to prevent the IOM topology

because they are not numerous enough to obstruct the photons’ paths into the

voids.

5.6 Summary

We have used our new moment-based radiative transfer technique to study how

cosmological reionization proceeds on precomputed grids of density and ioniz-

ing emissivity spanning a 163h−3 Mpc3 volume. We extract these grids from a

cosmological hydrodynamic simulation that resolves all star formation in dark

matter haloes more massive than 2 × 108M¯. This mass threshold accounts for

most of the relevant star formation prior to the onset of reionization and all of it
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once reionization is well underway since the nascent ionizing background sup-

presses star formation in haloes less massive than ∼ 109M¯.

We find that reionization proceeds rapidly from overdense regions into voids

owing to the porous nature of the IGM, with filamentary structures ionizing last,

which we call an inside-outside-middle (IOM) topology. This is consistent with

what we obtained previously using less sophisticated methods (Finlator et al.,

2009). In our models this IOM topology arises because filaments cannot self-

ionize, since haloes less massive than ∼a few×108M¯ do not form stars efficiently.

While this cutoff may owe to resolution limitations in our simulation prior to the

onset of reionization, it is an expected consequence of Jeans mass suppression in

reionized regions and the primordial cooling floor at 104 K.

The mean density of ionized regions xM/xV drops from high values at early

times to the cosmological mean density following the epoch of overlap, as ex-

pected given that sources lie predominantly in overdense regions. At higher spa-

tial resolution, the tendency for photons to “leak” directly into voids suppresses

xM/xV more rapidly so that, at our highest resolution, the mean density of ionized

regions drops below the cosmological mean density once the volume-averaged

ionized hydrogen fraction xH II,V surpasses 50%. This leaking effect also mani-

fests as a tendency for the mean free path for ionizing photons λMFP to increase

at higher spatial resolution for xH II,V < 10%. At later stages, λMFP decreases at

higher resolution because the dense condensations that dominate the IGM opac-

ity at late times are better resolved.

Our reionization history underpredicts the integrated optical depth to Thom-

son scattering and overpredicts the strength of the ionizing background at z = 6.

The low optical depth could indicate that reionization begins too late and that
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fesc should be increased, while the high ionizing background suggests that the

IGM opacity at z = 6 is too low. Increasing fesc to unity leads to better agree-

ment with the observed optical depth while exacerbating the discrepancy with

the observed ionizing background at z = 6. An interesting alternative would be

to have fesc = 1 for small haloes while leaving it at ≤ 10% for larger haloes. This

would increase the electron fraction at early times, when the ionizing background

is dominated by low-mass haloes, while leaving it unchanged at late times, when

the haloes below 5 × 108M¯ no longer form stars. This would be analogous to

models considering Population III star formation and self-regulation of star for-

mation in low-mass haloes, which have been shown to yield good agreement

with WMAP observations (Iliev et al., 2007a).

The qualitative topology of reionization is robust to our choice of spatial res-

olution, cosmological volume, and ionizing escape fraction even though each of

these affects the overlap redshift. Increasing the spatial resolution delays reion-

ization in overdense regions owing to more effective I-front trapping while ad-

vancing the reionization of voids owing to more efficient “tunneling” of photons

through small-scale soft spots in the IGM. The latter effect also causes overlap to

occur sooner. Doubling the length of our simulation volume from 16 to 32h−1Mpc

delays overlap by ∆z ≈ 0.1 because the delayed onset of star formation at lower

mass resolution wins over the tendency for overlap to occur earlier in larger

periodic volumes. The topology, however, remains essentially unchanged. In-

creasing the ionizing escape fraction to unity causes overlap to occur sooner by

∆z ≈ 2. Additionally, although the filaments are still the last regions to ionize in

this scenario, they do so somewhat sooner with respect to the voids owing to the

decreased density contrast at higher redshift. This suggests that enhancing the
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ionizing emissivity at early times by, for example, increasing the ionizing escape

fraction from low-mass halos would lead to a more IO-like topology.

We have also explored how approximations regarding the speed of light and

the accuracy of the Eddington tensors impact reionization. Broadly, we find that,

while these approximations do not qualitatively change the topology of reioniza-

tion, they do affect the overlap redshift. We find that (increasing/decreasing) the

speed of light by a factor of 10 (advances/delays) overlap by (50/150) Myr or

∆z = (0.3/0.6). At a resolution of ∆xR = 250h−1kpc, using Eddington tensors de-

rived in the optically thin limit delays reionization by 40 Myr or ∆z = 0.2, primar-

ily by delaying the reionization of filaments. These results emphasize the need to

avoid such physical approximations when an accurate calculation of reionization

is desired, and also highlight an important feature of our accurate RT code that

enables us to directly check the impact of such approximations.

Simulations of reionization are in their infancy. Ideally, one would like a sin-

gle model to span first stars calculations on sub-kpc scales within cosmological

volumes that encompass the largest ionization bubbles at overlap. Our current

codes cannot do so, but future improvements such as an adaptive RT mesh and

its incorporation into the hydrodynamical evolution will bring us closer to this

goal. Meanwhile, we can still gain key insights into the topology of reionization,

and better understand how one must compute reionization accurately. This will

set the framework for understanding the rapidly advancing observations of this

final cosmic frontier.
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CHAPTER 6

COSMOLOGICAL RADIATIVE HYDRODYNAMIC SIMULATIONS WITH GADGET-2

In this chapter, we describe our method for merging the radiative transport solver

introduced in Chapter 4 into the cosmological hydrodynamic code Gadget-2 (Springel,

2005). In Section 6.1, we describe how we have adapted the individual numer-

ical methods in Chapter 4 for massively parallel computers. In Section 6.2, we

describe how we assemble these components into the fully merged radiative hy-

drodynamic code. In Section 6.3, we discuss how our code’s computation time

scales with the available number of processors. Finally, in Section 6.4, we discuss

preliminary results from our radiative hydrodynamic simulations of reionization.

6.1 Methods

6.1.1 Converting Between Discretizations

Our radiative transport (RT) solver discretizes the radiation field on a three-

dimensional Cartesian grid and is hence Eulerian in nature. By contrast, Gadget-

2 discretizes the fluid equations using Smoothed Particle Hydrodynamics (SPH)

and is hence Lagrangian in nature. In order to merge these two techniques into

a single code, we must translate between these two discretizations rapidly and

often. Here we describe how we accomplish this.

The conversion from the SPH field to the RT grid occurs when we compute

the emissivity field owing to stars and the opacity field owing to partially ionized

and neutral gas. The volume-weighted mean emissivity η in an RT cell is given
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by an integral over the cell’s volume V :

η =
1

V

∫

V

η(r)dr. (6.1)

In our simulations, star particles are represented by point masses so that the full

emissivity field η(r) is given by a sum of delta functions in space. This means

that, for each cell, Equation 6.1 reduces to a sum over the luminosities of the

star particles that lie within that cell. Because our star formation prescription

self-consistently predicts stellar population ages and metallicities, we may ob-

tain the luminosities by interpolating to each star particle’s age and metallicity

within the Bruzual & Charlot (2003) stellar population synthesis models assum-

ing a Chabrier (2003) initial mass function. We assume that a constant fraction

fesc of ionizing photons escapes into the IGM and omit star-forming gas from the

IGM opacity because it is implicitly taken into account through fesc.

Each RT cell’s opacity χ is also given by a volume-weighted mean:

χ =
1

V

∫

V

χ(r)dV. (6.2)

Equation 6.2 looks similar to Equation 6.1, but we must evaluate it in a different

way because χ(r) depends on the spatial distribution of SPH particles, which are

spatially extended and generally straddle cell boundaries. Equation 6.2 becomes,

for each cell, a sum over the SPH kernel-weighted volume means owing to the

SPH particles that overlap that cell:

χ =
∑

i

∫

V

W (ri − r, hi)χidV (6.3)

Here, χi is the opacity at the location of particle i, ri is the particle’s position, hi

is its smoothing length, and W is the SPH smoothing kernel. Equation 6.3 must
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be evaluated accurately in order to conserve photons and avoid morphological

distortions to the H II regions. We accomplish this by fitting a Gaussian to each

SPH particle’s smoothing kernel so that its contribution to each of its neighboring

cells reduces to a sum over incomplete gamma functions.

The translation from the RT grid back to the SPH field occurs when we com-

pute the photoionization and photoheating rates. This involves, for each SPH

particle, summing the contributions owing to the radiation fields from each of its

neighboring cells. For example, the photoionization rate Γi for particle i is given

by the integral (over all space)

Γi =

∫

W (ri − r, hi)Γ(r)dV, (6.4)

where Γ(r) is the gridded photoionizing background. We evaluate Equation 6.4

by fitting a Gaussian to each particle’s smoothing kernel. Once again, this reduces

the integral to a sum over incomplete gamma functions.

The photoionization heating rate owing to the photoionization of hydrogen

εΓHI
is given by the hydrogen photoionization rate ΓHI times the energy per pho-

toionization εHI

εHI =

∫

4πσνJν
h(ν−νLL)

hν
dν

∫

4πσνJν
1

hν
dν

, (6.5)

where Jν is the mean specific intensity and the integrals run from the Lyman

limit νLL to ∞. εHI depends on many factors including the slope of the ionizing

spectrum, the frequency dependence of the ionizing escape fraction, and spectral

hardening in the IGM (e.g., Tittley & Meiksin, 2007). While it will be possible to

treat these effects once we have incorporated multifrequency radiative transfer

into our code, for the present, we restrict ourselves to monochromatic calcula-

tions. Hence we must assume that εHI is constant in space and time. The young,
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metal-poor stars that dominate our reionization photon budget have a spectral

slope that is approximately a power law Jν ∝ ν−α with α =4–5. This leads to val-

ues for εHI in the range 0.25–0.33hνLL, where νLL is the Lyman limit. We choose

εHI = 0.3hνLL as our fiducial value.

6.1.2 Nonequilibrium Ionizations and Recombinations

We evolve the nonequilibrium ionization field using essentially the same solver

as in Section 4.4. Briefly, we first determine the fastest timescale tion on which any

of the various terms in the ionization equations 4.16 are evolving. We then com-

pare this timescale to the timestep dt. Wherever tion/dt > 4, the ionization field is

evolving slowly compared to the timestep and we update it using second-order

Runge-Kutta. Otherwise, we use a fully implicit method. This algorithm yields

a solution that is both accurate and numerically stable throughout our computa-

tional domain.

The only difference with Chapter 4 is that we solve the ionization (and heat-

ing) equations on the SPH field rather than on the RT grid. This improvement nat-

urally captures the impact of gas clumpiness on length scales below the RT grid,

which is crucial for modeling the contribution of subresolution condensations to

the IGM opacity (Trac & Cen, 2007). Note that we use Case B recombination rates

throughout this work.

6.1.3 Parallelizing the Moment Solver

In this section, we describe how we have adapted our radiative transport solver

for massively parallel computers.

As before, our fully implicit discretization of the moments of the radiative

transfer equation requires us to solve Equation 4.13. We prefer this discretization
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to an explicit one because an explicit discretization would be numerically unsta-

ble unless we either evolved the system on a timestep that satisfied the radiative

Courant condition or artificially reduced the speed of light (e.g., Gnedin & Abel,

2001; Aubert & Teyssier, 2008). The former option is prohibitively expensive,

and the latter significantly impacts the history of reionization (Chapter 5). By

contrast, our implicit formulation is numerically stable and involves no physical

approximations. Unfortunately, the price we pay for stability is that the updated

radiation field in each cell couples to the updated field in every other cell. In

other words, we cannot evolve any subset of the volume in isolation. This does

not present problems on a shared memory computer, where the various loops

in any iterative matrix solver parallelize trivially over the domain of radiative

transfer cells (using, for example, OpenMP). Indeed, we found this paralleliza-

tion adequate for the tests described in Chapters 4 and 5. Unfortunately, this

approach is not possible on parallel computers because the most natural domain

decomposition of our RT grid prevents any processor from being able to access

the full radiation field. For this reason, we have developed a custom method for

solving Equation 4.13 on massively parallel computers that scales well up to 96

processors.

Our method begins by dividing up the domain of radiative transfer cells into

subdomains, each of which is assigned to a single processor. We accomplish this

using Morton keys, which improve data coherency in memory and reduce cache

misses nearly as effectively as Peano-Hilbert keys (Fryer et al., 2006) while be-

ing trivial to invert. Figure 6.1 shows how our domain decomposition works in

two dimensions although in practice our code is three dimensional. Each pro-

cessor solves the portion of Equation 4.13 that is local to its subdomain, subject
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Figure 6.1 A representation of how we decompose our radiative transfer grid into

subdomains. Here, a periodic, two dimensional domain is decomposed into four

subdomains. The top-left subdomain is horizontally hatched while its boundary

regions are diagonally hatched.
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to boundary conditions provided by the processors that “own” the neighboring

subdomains. For example, in Figure 6.1, we indicate the top-left subdomain us-

ing horizontal hatches and its boundaries using diagonal hatches. The proces-

sors then swap updated boundary conditions with the processors that own the

neighboring subdomains. We iterate between these two steps until the solution

converges, where convergence is defined by the condition that the normalized

residual |b−Ax|/|b is less than 10−10. In our science runs, we find that the num-

ber of iterations to convergence generally ranges from 1 to 10. However, if the

solution does not converge within 50 iterations, we say that the moment update

has failed. In this case, we reduce the timestep and try again as described in

Section 4.5.

A few words on our technique’s convergence are in order before we continue.

Our algorithm, which is known in the numerical literature as an additive Schwarz

iteration owing to the way in which each iteration can be expressed as a sum of

independent linear operations (Schwarz, 1870; Saad, 1996), does not generally

converge. For this reason, it is ordinarily wielded as a preconditioner to a more

robust linear solver rather than as a standalone technique. However, in our case,

the matrix is generally already well-conditioned.1 In fact, if the cells are optically

thick or the timesteps satisfy the radiative Courant condition, then the matrix can

be quite close to the identity matrix.2 If, for each row in the matrix, the absolute

value of the diagonal exceeds the sum of the absolute values of the off-diagonals

(so-called “strict diagonal dominance”), then our algorithm is guaranteed to con-
1By “well-conditioned” we mean that the ratio of the largest and smallest eigenvalues is near

unity. Generally, the more well-conditioned a matrix is, the more rapidly an iterative solver
converges.

2Physically, this is simply a statement that the radiation field is evolving slowly compared to
the timestep because relatively few photons are able to cross cell boundaries.
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verge (Stoer & Bulirsch, 1980). In practice, we have found that it often converges

even if this condition is not satisfied.

A major strength of this parallelization is its lack of global synchronization

points; that is, there are no points at which all processors need to communicate

with all other processors (for example, to compute dot products). The only com-

munication that is necessary is the exchanging of boundary conditions between

iterations. For reasonable domain decompositions, this requires each processor

to communicate with at most 26 other processors, hence the communication over-

head does not scale with the number of processors. We accomplish the boundary

condition swaps using MPI’s derived datatype functionality, which minimizes

the remaining communication overhead.

In practice, computing the normalized residual in order to test for conver-

gence does introduce a global synchronization because it involves a dot product,

which will ultimately limit our technique’s scaling. We mitigate this by only test-

ing for convergence after some minimum number of iterations and then adjusting

that minimum number adaptively. However, we have found that our merged ra-

diative hydrodynamic code already scales quite well for our science problems,

strongly suggesting that collective communications are not currently the most

expensive part of our method. Hence we defer further optimizations to the linear

solver to future work.

6.1.4 Updating the Eddington Tensors

In this section, we describe how we have adapted our method for computing the

Eddington tensor field for integration with GADGET-2.

The major modification is that we use message-passing to parallelize this task

evenly over all processors. This is critical because the Eddington tensor updates
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are the most computationally intensive part of our radiative transport solver.

First, each processor compiles a list of the RT cells within its subdomain whose

Eddington tensors need an update using the criterion in Section 4.3.3.3. We then

assemble the complete list onto each processor via a collective communication.

We additionally compile the updated emissivity and opacity fields onto each pro-

cessor via collective communications. At this point, each processor stores all the

information that is necessary to update the full Eddington tensor field. We next

divide up the list of cells that require updates evenly, and each processor updates

its assigned subset of the cells. Finally, we assemble the updated Eddington ten-

sor field onto all processors via a collective communication.

The only other change that we have adopted is that we employ one layer

of replica volumes in order to mimic periodic boundaries while computing the

Eddington tensors (nd = 1; see Section 4.3.3.2). This approximation, which could

trivially be relaxed, introduces numerical errors of order 20% in the evolution

of individual cells (Figure 4.7) but does not substantially alter the topology or

timing of reionization (Chapter 5). We have not yet implemented the option to

switch to the optically thin Eddington tensor field as described in Chapter 5, but

we will restore this functionality in future work.

6.1.5 Iterating to Convergence

Our method for iterating between updates to the radiation and ionization fields

until they converge closely follows the method described in Section 4.5, with two

minor differences. First, we must use collective communications to gather the

updated radiation and ionization fields onto all of the processors following each
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step of each iteration:

J n+1 = J n+1(J n, nn+1,Fn)

(collect J n+1 onto all processors)

nn+1 = nn+1(J n+1, nn)

(collect nn+1 onto all processors)

The extra collective communications limit our technique’s computational scal-

ability. However, they are unavoidable because our radiation solver invokes a

fundamentally Eulerian discretization whereas GADGET-2 is Lagrangian in na-

ture. Consequently, the most appropriate domain decompositions for the two

solvers are different. Nevertheless, as we will show, our technique scales well up

to 96 processors for reasonably large problems, which is good enough to model

cosmological reionization in some detail. The second change is that we only re-

quire the radiation and ionization updates to converge to 10% (rather than 10−4

as before) owing to the extra computational cost of solving the ionization equa-

tions on the SPH field. Despite this compromise, our code models the growth of

an individual ionized region to an accuracy of better than 5%. We plan to tighten

this requirement in the future.

6.2 Radiative Hydrodynamic Simulations

In this section, we summarize how we have updated GADGET-2 to treat nonequi-

librium ionization and radiation fields. Recall that conventional cosmological

hydrodynamic simulations assume that the gas is in ionization (but not thermal)

equilibrium with an optically thin ionizing background (e.g., Katz et al., 1996).

We show schematically how GADGET-2 computes one full timestep under this
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Figure 6.2 Flowcharts illustrating how the conventional version of GADGET-2

compares with our radiative hydrodynamic version.

approximation on the left side of Figure 6.2. The code begins with the “drift”

portion of the leapfrog integrator in which particles are advected for one half

of a timestep at constant velocity (see Springel, 2005). Next, if the ionizing back-

ground is time-varying, then it is updated to the value at the beginning of the cur-

rent timestep because GADGET-2 treats heating and cooling with an explicit time

discretization. The code then uses this field to evolve the gas particles’ thermal

state including the contribution of star formation. Finally, the particles receive a

“kick” in momentum space using updated forces and are advected in space for

an additional half timestep.

Our method for incorporating nonequilibrium ionization and radiation fields

into this algorithm involves an operator splitting approach in which we treat the

cooling step separately from the ionization/radiation iteration. This means that
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we carry out the heating and cooling step at constant ionization, and the ion-

ization/radiation update at constant temperature. Ideally, of course, we would

compute all three updates simultaneously for a fully consistent solution. How-

ever, in practice, the ionization and radiation fields couple strongly to each other

but only weakly to the gas temperature, hence this approach—which greatly sim-

plifies the code—does not represent a major approximation.

Our operator-splitting approach requires us to limit the photoionization heat-

ing rate at the positions of ionization fronts. Physically, the ultraviolet photons

that power reionization in our model have extremely short mean free paths prior

to reionization. This means that ionization fronts are sharp and gas ionizes over a

time interval that is short compared to our numerical timestep dt. Assuming that

the gas remains at a constant ionization fraction throughout a numerical timestep

thus leads to overheating. We avoid this problem by limiting the hydrogen pho-

toionization heating rate εΓHI
as follows:

εΓHI
=







εHIΓ if Γdt < 1

εHI/dt if Γdt ≥ 1

We show how a single radiative hydrodynamic timestep proceeds on the right

side of Figure 6.2. As before, the timestep begins with a “drift” step and ends

with a “kick” step. However, we now evolve each SPH particle’s specific energy

at constant ionization fraction and photoionization heating rate, where the pho-

toionization heating is interpolated from the local nonequilibrium radiation field

computed using the SPH kernel as described in Section 6.1.1. Then, we update

the ionization and radiation fields self-consistently as described in Section 6.1.5.

Note that we perform the iterative update to the ionization and radiation fields

after the cooling and star formation step rather than before it because our radia-
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tive transport solver needs to know the emissivity field at the end of the current

timestep (because it is fully implicit). Finally, we update the Eddington tensors

using the updated emissivity and opacity fields.

We have tested this code using a cosmological Strömgren Sphere test similar

to the one described in Section 4.6. As before, the simulated ionized region’s

size is within 5% of the analytic solution at all times. This indicates that our

merged cosmological radiative hydrodynamic code is photon-conservative and

accurately models the growth of ionized regions in an expanding volume.

6.3 Computational Scaling and Time

In order for a radiative hydrodynamic code to be useful, it must not increase the

computational expense over the cost of the individual radiative and hydrody-

namic modules by more than one or two orders of magnitude, and it must scale

well in a high-performance environment. In this section, we characterize how

the extra computation time that our radiative transport solver requires varies

with the number of processors (Section 6.3.1) and the simulated volume’s phys-

ical state (Section 6.3.2). We will show that our code scales well up to at least

96 processors and that the radiative transport solver currently increases the total

computation time by a factor of 10–100.

6.3.1 Computational Scaling

In this section, we profile how well our cosmological radiative hydrodynamic

code scales with the number of processors. If our code involved no communi-

cation overhead and did not require any tasks to be performed redundantly on

all processors, then the wall time to complete a problem would scale inversely

with the number of processors. This scaling is the goal. In practice, parallel codes
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tend to obey this ideal scaling only up to some maximum number of processors.

Above this maximum, the curve of wall time versus number of processors flattens

because the increased overhead from communication and redundant operations

defeats the increased computing power.

For our test, we employed a cosmological volume of side length 3h−1Mpc that

contains 2 × 1283 gas and dark matter particles and is divided into a radiative

transfer grid of 323 cells. We “seeded” two of the radiative transfer cells with

low-mass galaxies in order to put the radiation and ionization solvers to work.

We simulated this volume’s evolution from z = 319 → 132 using between 4 and

96 processors. Our test computer was Arizona State University’s Saguaro 2 super-

computer, which uses Intel Xeon processors and an Infiniband DDR interconnect.

We show the resulting scalings of wall clock time versus number of processors

in Figure 6.3. The solid curve shows the total time and the dotted curve shows

the ideal computational scaling, where the latter is normalized to the overall time

with 4 processors. As the number of processors grows from 4 to 16, the compu-

tation time decreases slightly more rapidly than the ideal case. We attribute this

to the tendency for an increasing fraction of the problem to fit into cache, reduc-

ing costly cache misses. For larger numbers of processors, the scaling is slightly

shallower than ideal as expected. The dashed curve shows the computation time

used to update the ionization and radiation fields. It scales similarly to the solid

curve and indicates that the nonequilibrium ionization and radiation updates in-

crease the total computation time by roughly 30%.

We expect that applying our code to larger problems than the test problem

used in Figure 6.3 will improve the overall computational scaling while increas-

ing the time spent updating the radiation field. The scalings will probably im-
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prove because more work will be required of the individual processors in be-

tween instances of communication, as is generically seen in parallel codes. In-

deed, we have found that the total computation time scales similarly to Figure 6.3

in our science runs, which involve 2×2563 particles and up to 643 radiative trans-

fer cells. Hence we believe that the overall computation time scales well up to at

least 96 processors. However, as we show in the next section, the fraction of time

that the code spends in the radiation/ionization iteration will grow much larger

than suggested in Figure 6.3. This is for two reasons: (1) More iterations will be

necessary per timestep in order for the updated radiation and ionization fields to

converge; and (2) The Eddington tensors will grow more more expensive as the

volume spawns more sources and becomes optically thin.

6.3.2 Computation Time

In this section, we use a suite of simulations to explore how our computation

time varies with the ionizing escape fraction fesc and the spatial resolution of

the RT grid. We show that the history of reionization varies weakly with the

spatial resolution and strongly with fesc. By contrast, the computation time varies

strongly with the spatial resolution and weakly with fesc.

Our test case is a periodic box of length 3 comoving h−1Mpc with 1283 dark

matter and SPH particles. We use our standard star formation and feedback pre-

scriptions including momentum driven outflows (Oppenheimer & Davé, 2006).

We assume a standard ΛCDM cosmology with (ΩM , Ωb, ΩΛ, σ8, n, h) =

(0.28, 0.046, 0.72, 0.82, 0.96, 0.7) and evolve the simulation from z = 320 → 6. Our

fiducial RT run assumes fesc = 50% and discretizes the radiation field on a grid

with 323 cells. We compare this to (i) a simulation with no RT (that is, no ioniz-

ing background at all), (ii) a run in which fesc = 1, and (iii) a run that discretizes
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Figure 6.3 Wall-clock time as a function of processor number in a strong scaling

test. The squares connected by a solid line show the total processor time, the tri-

angles connected by a dashed line show the processor time for radiative transfer,

and the dotted line shows the ideal scaling. Both curves indicate that the code

scales well up to at least 96 processors.
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Figure 6.4 (top) The cumulative fraction of the total CPU time used to update the

ionization and radiation fields versus redshift. (bottom) The volume-averaged

neutral hydrogen fraction versus redshift.
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the radiation field over 643 cells. Note that our fiducial test volume locates an

average of (128/32)3 = 64 gas particles within each RT cell. Because of the fact

that the RT discretization uses a fixed Eulerian mesh whereas SPH is inherently

Lagrangian, this will vary as the growth of structure decreases the gas density in

some RT cells while increasing it in others.

We show in Figure 6.4 how our RT treatment affects the computation time.

The top panel shows how the cumulative fraction of the total time that our code

spends in the ionization, radiation, and Eddington tensor updates varies with

redshift (we refer to the total time used by these tasks as the “RT” time). Examin-

ing our fiducial simulation first (solid black), we find that it spends less than 30%

of its time on RT until the first haloes virialize around z = 20. As gas around these

haloes shock-heats and collisionally ionizes, the ionization updates become more

expensive, boosting the “RT” time even though there are not yet any photons.

The first star particle forms at z = 17, bringing the radiation solver into play. At

z = 14, the first RT cells become optically thin, which slows down the Eddington

tensor updates because the ray-tracing instances cross more of the volume before

becoming optically thick. The RT updates continue to grow more expensive as

the volume becomes optically thin and more sources form. Finally, at z = 6.1,

reionization completes and the cumulative fractional time spent on RT levels off

at 88% because the radiation field is no longer evolving rapidly.

In the middle panel, we divide the total computation time as a function of

redshift by the computation time without RT. This indicates the true price of our

radiative transfer treatment. In total, RT updates increase the computation time

of our fiducial RT simulation by a factor of 8. Comparing the middle and bottom

panels shows that the growth in computation time closely tracks the decline of
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the neutral hydrogen fraction. This is expected in a reasonably optimized RT

code since RT should not take long in an optically thick volume.

The dotted red curves show that raising fesc to 1 moves the redshift at which

xH I,V drops below 1% from 6.1 back to 7.6. The computation time needed for RT

begins growing sooner, but it levels off at 88% of the total just as in our fiducial

case. Meanwhile, the total computation time is roughly 10 times larger than with-

out RT. This is slightly larger than for our fiducial RT run because reionization

begins sooner. The dashed blue curve indicates that raising the spatial resolution

of our radiative transfer grid from 323 cells to 643 cells boosts the total computa-

tion time by roughly a factor of 8 while leaving the reionization history largely

unchanged. Evidently, the overall time t scales with the number of RT cells Ncells

roughly as t ∝ Ncells. This is more favorable than the scaling t ∝ N 1.5
cells that we

found in Chapter 4 because we only use one layer of periodic replica volumes to

mimic periodic boundaries during the Eddington tensor updates. We conclude

that adding accurate RT to GADGET-2 increases the computation time by a fac-

tor of 10–100 (middle panel of Figure 6.4) depending on the choices of spatial

resolution and prescribed numerical accuracy.

6.4 Radiative Hydrodynamic Simulations: Reionization

In this section, we explore how reionization proceeds in the simulations that we

used in Section 6.3. We begin by demonstrating that our new radiative hydrody-

namic simulations reproduce the observed ionization state of the post-reionization

IGM more faithfully than our post-processing calculations did, although some

discrepancies remain. We then show that, while reionization suppresses the star

formation rate density as expected, the effect is much more mild than some SAMs
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have predicted and may be difficult to observe. In order to understand this result,

we analyze how effectively the ionizing background quenches star formation as

a function of halo mass. We show that, as expected, an ionizing background

suppresses cooling and star formation in low-mass haloes. However, the level

of suppression is comparable to the effect of momentum-driven outflows, which

also preferentially suppress star formation in low-mass haloes. Hence outflows

dampen the overall impact of reionization on the star formation rate density.

6.4.1 The Neutral Hydrogen Fraction and the Ionization Rate

In the top panel of Figure 6.5, we show how the mass-weighted (thin upper

curves) and volume-weighted (thick lower curves) neutral hydrogen fractions

vary with redshift. Broadly, both neutral fractions decline from ∼ 1 to ∼< 0.01

over ∆z ≈ 4 and then level off into a slowly-evolving ionization equilibrium. At

late times, xH I,M exceeds xH I,V, reflecting the fact that small, mildly overdense

regions such as filaments are the last to reionize (see also Miralda-Escudé et al.

2000). Meanwhile, the ionizing background (bottom panel) strengthens as more

sources form and the volume grows optically thin. Following overlap, it also

levels off. This behavior qualitatively agrees with has been seen in other stud-

ies (e.g., Trac & Cen, 2007; Gnedin, 2004). In detail, however, several aspects of

Figure 6.5 warrant closer consideration.

First, following overlap, log(xH I,M) and log(xHI,V) level off in our fiducial run

at roughly -1.7 and -2.6, respectively. Recall that, in our post-processing simu-

lations, log(xHI,V) leveled off at -5.6 (Chapter 5), which was a factor of 50 lower

than indicated by the observations of Fan et al. (2006). The much higher neu-

tral fraction in our new simulations indicates a “floor” to the IGM opacity. This

floor owes to small, dense structures that remain “self-shielded” even after the
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Figure 6.5 (top) Mass-weighted (thin) and volume-weighted (thick) neutral hy-

drogen fraction versus redshift. (bottom) Volume-weighted hydrogen ioniza-

tion rate versus redshift. The magenta triangle indicates the observed upper

limit (Bolton & Haehnelt, 2007). All curves have been smoothed with a boxcar

of width ∆z ≈ 0.1.
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simulated volume becomes optically thin. Our post-processing simulations were

unable to resolve the high recombination rates in these regions because they did

not account for structures smaller than the resolution of the RT grid. By contrast,

our new simulations solve the ionization equations on the (much finer) SPH par-

ticles rather than the RT grid, enabling dense regions to remain highly neutral

even though we do not actually resolve their self-shielding behavior. The regions

that dominate the opacity floor probably correspond to filaments and minihaloes

rather than galaxies because we omit star-forming gas from the gridded opacity

field (Section 6.1.1). Similar behavior has been reported by Trac & Cen (2007).

While it is encouraging that our new simulations naturally yield a higher post-

reionization neutral fraction, we now have the problem that xHI,M and xH I,V are

larger than indicated by Fan et al. (2006) by factors of roughly 3 and 15, respec-

tively. Boosting fesc from 0.5 to 1 suppresses the neutral fractions by a maximum

of ≈ 0.1 dex (and breaks the agreement between the simulated and observed

ionization rates in the bottom panel). Increasing the spatial resolution of the RT

grid by a factor of 2 improves xH I,V by an additional factor of 2 while leaving

xH I,M unchanged. We suspect that the remaining discrepancy owes to our lim-

ited simulation volume. A larger volume will reduce xHI,V at late times by better

accounting for voids, which dominate the volume. It will also reduce xH I,M by

better sampling the distribution of ionized mass fractions at late times, which

is not Gaussian and which is poorly sampled in volumes that are smaller than

∼ 5h−1Mpc (Iliev et al., 2006a, Figure 15).

Next, notice that xH I,M exceeds xHI,V once xHI,V drops below 40%. This indi-

cates that our simulation switches from an inside-out to an outside-in reioniza-

tion topology well before reionization completes, which is qualitatively the same
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result that we obtained through our post-processing calculations in Chapter 5.

There, we argued that this effect is not an artifact of limited spatial resolution or

cosmological volume. Figure 6.5 now indicates that it does not owe to our having

missed subtle radiative hydrodynamic effects in our post-processing calculations

either. It disagrees with the results of Trac & Cen (2007, Figures 10–11) and Iliev

et al. (2006a, Figure 5) but agrees qualitatively with Gnedin (2004, Figure 2). The

fact that the former two works employ ray-tracing techniques for the radiative

transfer whereas our work and that of Gnedin (2004) both use moment methods

raises the question of how sensitive the topology of reionization is to the radiative

transfer technique. For example, it is possible that moment methods cause voids

to reionize early owing to their inability to produce sharp shadows (Figure 4.14).

However, answering this question is well beyond the scope of this thesis.

The bottom panel of Figure 6.5 shows the ionization rate per hydrogen atom

Γ = 10−12Γ−12 as a function of redshift. Remarkably, the observed upper limit at

z = 6 (magenta; Bolton & Haehnelt 2007) is consistent with our fiducial and high-

resolution simulations. This is surprising given that our simulated xH I,V (and

hence the IGM opacity) is roughly an order of magnitude too large. One possible

explanation is that the simulated ionizing luminosity is also too large. This would

compensate for our simulated opacity being too large (Equation 5.1). In practice,

of course, the correct way to test our simulations will be to compare simulated

and observed Lyman alpha forests (e.g., Gnedin, 2004; Gnedin & Fan, 2006) rather

than using constraints that have been derived using other simulations. We will

pursue this approach in future work. For the present, we conclude that the dis-

crepancy between simulations and observations is dramatically reduced by using

fully radiative hydrodynamic simulations rather than post-processing techniques
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although lingering disagreements indicate that there is room for further progress.

6.4.2 The Reionization-Epoch Lilly-Madau Diagram

Figure 6.6 compares the volume-averaged star formation rate density ρ̇∗ as a func-

tion of redshift for our test simulations, with and without RT. The RT simulations

predict that ρ̇∗ fluctuates within 20% of the rate that arises without any back-

ground until reionization begins in earnest around z ≈ 10. At this point, the RT

volumes begin to reionize (Figure 6.5). As the RT volumes become optically thin,

the nascent ionizing backgrounds suppress star formation in the low-mass haloes

that dominate ρ̇∗, leading to a slow decline in the ratios in the bottom panel.

The most remarkable feature of Figure 6.6 is how unremarkable the impact of

reionization is on ρ̇∗. The fact that overlap occurs relatively suddenly (Gnedin,

2000a) and the fact that it quenches star formation in low-mass haloes (Thoul &

Weinberg, 1996; Barkana & Loeb, 1999; Gnedin, 2000b) has led to the idea that

reionization should strongly suppress ρ̇∗. For example, Barkana & Loeb (2000)

used a SAM to suggest that ρ̇∗ could experience a pronounced local maximum

at the overlap redshift and then decline by 50% over an interval of ∆z = 2. Our

model with fesc = 1 yields a similar overlap epoch to their zreion = 7 model, but

whereas their model’s ρ̇∗ declines from z = 7 → 5, our simulated ρ̇∗ does not even

turn over. Hence our simulations do not support the idea that measurements of ρ̇∗

will strongly constrain the history of reionization. In the next section, we explore

why the suppression is so mild.

6.4.3 Ionizing Feedback on Galaxy Formation

Reionization is thought to suppress ρ̇∗ by heating the IGM to ∼ 104K and prevent-

ing gas from cooling in haloes below a certain mass threshold (Thoul & Weinberg,
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Figure 6.6 (top) The volume-averaged star formation rate density as a function

of redshift. (bottom) The ratio of the star formation rate density in the radiative

transfer simulations to the simulation with no ionizing background.
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Figure 6.7 (top) The ratio of the halo baryonic mass fraction to the cosmic average

as a function of total halo mass. (bottom) The cumulative star formation rate

density in units M¯ yr−1h3Mpc−3. The vertical dashed line in both panels denotes

the 128-particle mass resolution limit.
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1996). It was originally believed that the mass threshold at any redshift would be

given by a time-average of the cosmological Jeans mass assuming the tempera-

ture at the mean density. At z = 6, this “filtering mass” is 109M¯ (Shapiro et

al., 1994; Gnedin, 2000b). However, recent simulations at higher resolution have

indicated that the threshold is instead dominated by the gas temperature at 1/3

of the virial density; that is, gas that is about to be accreted (Hoeft et al., 2006;

Okamoto et al., 2008). Defining the threshold mass as the mass at which simu-

lated haloes retain 50% of their baryons, Okamoto et al. (2008) found a value of

3 × 108M¯ at z = 6.

While these works have taught us a great deal about how photoionization

heating impacts star formation, none of them have explored the parallel role that

outflows play. Strong outflows seem to be required in order to avoid overcooling,

and they tend to deplete the gas reservoirs of low-mass haloes particularly effi-

ciently (e.g., Davé, 2009). Moreover, the tendency for outflows and photoionizing

backgrounds to interact nonlinearly (Pawlik & Schaye, 2009) could result in par-

ticularly efficient suppression of star formation. At the same time, the tendency

for low-mass halos to accrete their gas through cold flows rather than spherically

symmetric infall could lead them to resist photoheating if the filaments self-shield

efficiently. Clearly these effects need to be studied self-consistently, a task for

which our new code is uniquely well-suited.

In the top panel of Figure 6.7, we plot the median ratio of the halo baryonic

mass fraction fb to the cosmic average as a function of the total halo mass. If we

do not include any ionizing background (long-dashed magenta curve), then the

baryonic mass fraction decreases with increasing mass. This trend is opposite to

what is normally seen (e.g., Okamoto et al., 2008, Figure 2). Without outflows, the
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mass fraction in haloes near the resolution limit lies below the cosmic average

owing to a combination of resolution effects and the tendency for lower-mass

haloes to be younger (Neistein, van den Bosch, & Dekel , 2006), and it increases

with increasing halo mass. By contrast, in our simulations, larger haloes have

had more time to drive their gas reservoirs into outflows, hence their baryonic

mass fractions decline until reaching a “floor” of 0.5Ωb/Ωm at z = 9.

Turning to the RT runs, we see that an ionizing background flattens the trend

by preferentially suppressing gas reservoirs in low-mass haloes. This is the stan-

dard result (Shapiro et al., 1994) and indicates that the extra gas pressure in a

hotter IGM more readily resists the shallow potential wells of low-mass haloes.

Assuming that we resolve haloes more massive than 64 particles, our fiducial

simulation predicts a characteristic suppression mass of log(M) = 8.75 at z = 6,

only a factor of 2 larger than the value found by Okamoto et al. (2008). We regard

this agreement as a coincidence because Okamoto et al. (2008) did not incorpo-

rate outflows or self-consistent radiative transfer, and their mass resolution is 3.4

times higher than ours. Oddly, however, we expect that future work will push

our predicted suppression mass closer to their value (if not lower) for two rea-

sons: First, we heat the IGM by 4.1 eV per photoionization because the dominant

Population II stars at z ≥ 6 have hard ionizing continua, whereas Okamoto et al.

(2008) add 2 eV per hydrogen atom in order to match observations of the IGM

temperature-density relation. In future work, we will constrain our simulations

using similar measurements. This may allow us to reduce our photoheating rate,

which will in turn lower the IGM temperature and weaken the suppression of

inflows. Second, if we repeat our simulations at higher mass resolution, haloes

below log(M) = 8.75 may resolve more star formation and drive more of their
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baryons into outflows, which would further flatten the fb curve and lower the

threshold mass. In fact, if the higher fb at lower masses is mostly a resolution ef-

fect, then it is likely that all haloes at z = 6 will be missing more than half of their

baryons owing to the combined effects of outflows and photoionization heating.

Theoretically, this would blur the distinction between haloes above and below

the traditionally-assumed mass threshold. Observationally, it would impact the

slope of the galaxy luminosity function at the faint end and the evolution of ρ̇∗

through the reionization epoch.

In the bottom panel, we plot the cumulative instantaneous star formation

rate density in our simulations as a function of halo mass. As expected, the

suppressed gas fractions in the top panel are associated with suppressed star

formation rates in the bottom panel. The trends are all nearly flat for masses

above log(M) = 8.5, indicating that the tendency for ρ̇∗ to decline after z = 10

in Figure 6.6 owes largely to the suppression of star formation in haloes below

109M¯. The simulation with fesc = 1 shows slight suppression even in haloes

above this scale. It would not be surprising if a hotter IGM resists infall into

more massive haloes, but this may also be an artifact of poor statistics owing to

our small volume. Meanwhile, the simulation with a higher-resolution RT grid

shows weaker suppression in low-mass haloes although the cutoff mass is sim-

ilar. This could reflect a tendency for low-mass haloes to live in voids, whose

weaker ionizing backgrounds require higher spatial resolution. However, the

most likely explanation is that the filamentary flows that feed low-mass haloes

reionize late (Chapter 5) and thus resist photoheating suppression until the final

stages of reionization. The fact that the suppression of low-mass haloes weak-

ens with a higher-resolution RT grid supports this interpretation since our IOM
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topology strengthens at higher spatial resolution (Figure 5.6). Hence we tenta-

tively conclude that the tendency for cold flows to self-shield weakens the im-

pact of reionization on the history of star formation. Confirmation of this idea

will have to await the completion of additional simulations incorporating higher

resolution and increased dynamic range.

6.5 Summary

We have described a method for integrating our moment-based radiative trans-

port solver into GADGET-2. Our merged code incorporates several important

changes with respect to our post-processing code. First, we use an operator-

splitting technique to evolve the IGM’s radiation, ionization, and thermal state

simultaneously, allowing us to capture feedback effects more accurately. Second,

we now solve the ionization rate equations on the SPH particles rather than on

the RT grid. This resolves high recombination rates in dense structures that are

smaller than the resolution of our RT grid. The ability of these structures to re-

main neutral gives rise to a “floor” in the IGM opacity and improves agreement

with constraints from the Lyman-alpha forest at z = 6. Finally, we have paral-

lelized our RT treatment for massively parallel computers and shown that the

merged radiative hydrodynamic code scales well up to at least 96 processors. RT

increases the computation time by a factor that is sensitive to spatial resolution;

for our fiducial test volume, this is roughly a factor of 10.

Applying our merged radiative hydrodynamic code to a small test volume,

we find that assuming a 50% ionizing escape fraction allows the volume to com-

plete reionization at z = 6.1. This is already a remarkable result given that our

star formation and feedback prescriptions have been tuned to reproduce observa-
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tions of metal-line absorbers in the post-reionization Universe, not reionization.

Moreover, fesc is the only physical parameter that our RT treatment obliges us

to introduce; all of our other new parameters are numerical. This reinforces the

plausibility of our heuristic star formation and feedback prescriptions and argues

that star formation prior to and following reionization need not have been all that

different from each other.

At z = 6, our simulated neutral hydrogen fraction is roughly an order of

magnitude larger than observations indicate. This represents a significant im-

provement over the results from our post-processing simulations, where the neu-

tral fraction was a factor of 50 too low. We attribute the remaining discrepancy

to our limited volume. Meanwhile, the ionization rate per hydrogen atom at

z = 6 is entirely consistent with observations. This could indicate a coincidence

in which both the emissivity and the opacity are off by roughly the same factor,

but it is in any case a significant improvement over the ionization rate in our

post-processing results, which was 50 times too high.

In our simulations, reionization suppresses the star formation rate density at

z = 6 by not more than 20%. This suppression occurs because photoionization

heating pressurizes the IGM, choking off gas accretion into haloes less massive

than 109M¯. It is much more mild than would be expected without outflows be-

cause outflows preferentially remove gas from low-mass haloes even without an

ionizing background. Our simulations do not support the idea that the evolution

of ρ̇∗ will constitute a useful probe of the history of reionization. However, if the

epoch of overlap can be constrained through other means, then a tendency for

the galaxy luminosity function and ρ̇∗ to evolve relatively weakly through the

reionization epoch is a testable prediction of our model.
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This chapter represents a preliminary investigation into the feedback effects

of a self-consistently simulated ionizing background on galaxies and the IGM.

There are many ways in which we will improve on this work in the future.

First, a more in-depth inquiry into our preliminary results is in order. We

will determine whether our trends are resolution-convergent by repeating our

simulations at a variety of mass resolutions. This is especially important for un-

derstanding the low-mass haloes both because they are the easiest to quench and

because they dominate the star formation rate density at z ≥ 6. With a better

understanding of our numerical convergence, we will study the nonlinear cou-

pling between outflows and photoheating feedback (Pawlik & Schaye, 2009). We

suspect that the combination of outflows and an ionizing background will blur

the distinction between haloes above and below the traditionally-assumed char-

acteristic suppression mass at 108–9M¯. We will also study how sensitive our

results are to longer-wavelength density fluctuations by simulating a range of

volumes. We expect that increased volume will primarily affect the timing of

reionization (Barkana & Loeb, 2004) rather than its topology (Chapter 5) or the

quenching of low-mass haloes. On the other hand, larger volumes will be more

useful for comparison with the results from upcoming tomographic measure-

ments using, for example, the Square Kilometer Array (SKA) or the Low Fre-

quency Array (LOFAR).

These same simulations will allow us to test our model against a wider range

of existing observations. For example, we will construct synthetic Lyman-alpha

forest spectra and compare them directly against observations (e.g., Gnedin &

Fan, 2006) rather than focusing on the inferred neutral fraction and ionization

rate, which are subject to modeling uncertainties (Bolton & Haehnelt, 2007; Srbinovsky
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& Wyithe, 2008). Using similar tools, we will study the observability of metal ab-

sorbers during the reionization epoch, where it has been proposed that products

of core-collapse supernovae such as O I will yield better constraints on the IGM

ionization state than neutral hydrogen (Oh, 2002). We will also compare the sim-

ulated and observed galaxy luminosity functions at z = 6 and extend our previ-

ously published predictions out to z = 10, where they will soon be tested by the

James Webb Space Telescope (JWST).

We will improve on our simulations in a number of respects. Our current

monochromatic RT simulations cannot capture spectral hardening and are likely

to underestimate the gas temperature in voids (e.g., Tittley & Meiksin, 2007). We

will therefore extend our RT technique to treat multiple frequencies. We will also

develop a way to account for the ionizing background from QSOs. Doing this

self-consistently will remain impossible for the foreseeable future since we would

need to increase our volume by a factor of 40,000 to form one QSO. Nor can we

simply add an optically thin QSO background; this would immediately dominate

reionization. However, a compromise approach such as the local optical depth

approximation (Gnedin & Ostriker, 1997) may afford us enough realism to study,

for example, He II reionization and its effects on the IGM temperature. We will

account for the formation and photoionization of molecular hydrogen within our

ionization solver as this may enhance cooling in unenriched low-mass haloes.

And of course, we will continue to optimize our code in order to improve its

performance.

In summary, as observations continue to push farther into the reionization

epoch, it becomes increasingly important that simulations rise to the challenge of

incorporating accurate radiative hydrodynamics in order to capture the shocks,
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ionization fronts, and outflows that regulated star formation and the state of the

IGM at early times. Our new merged code presents a first step in that direction

and has already yielded some surprising results. Through continued refinement

and comparison with observations, we believe that our code—and others like

it—will prove to be a critical tool in piecing together the earliest stages of galaxy

evolution.
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CHAPTER 7

SUMMARY AND FUTURE DIRECTIONS

The Oxford English Dictionary defines the scientific method as:

a method of procedure that has characterized natural science since

the 17th century, consisting in systematic observation, measurement,

and experiment, and the formulation, testing, and modification of hy-

potheses1

This is, at least, how it is supposed to work. Modern astrophysics, however, tends

to involve the study of extraordinarily complicated emergent processes using re-

markably sensitive instruments. As a result, “systematic observation, measure-

ment, and experiment” are often years ahead of “the formulation, testing, and

modification of hypotheses.” This is certainly true in the case of galaxy evolu-

tion, where all of the processes that we listed in Chapter 1 matter on some level

but not more than half are routinely treated with any rigor. Part of the problem

is the ever-present dynamic range problem. For example, galactic outflows may

well begin as parsec-scale regions of gas heated to ∼ 106K before they expand into

kiloparsec-scale winds. Consequently, it has only recently become possible (via

adaptive mesh refinement) to simulate even one galaxy with sufficient resolution

to generate a plausible outflow fully self-consistently. Meanwhile, observers have

now detected outflows from hundreds of star-forming galaxies across a range of

masses and redshifts. Without a mature theoretical model of outflows, the appro-

priate way to interpret these observations remains unclear.
1”scientific, a.” The Oxford English Dictionary. 2nd ed. 1989. OED Online. Oxford University

Press. 4 Apr. 2000 http://dictionary.oed.com/cgi/entry/50215811.
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Despite such challenges, there is much that can be done to improve the real-

ism of hierarchical galaxy evolution models. To this end, this thesis has touched

on each of the “formulation, testing, and modification of hypotheses” steps of

the scientific method. In particular, we have tested a new model for galactic-scale

outflows, and we have formulated and tested a new treatment for self-consistent

continuum radiative transfer. In this chapter, we briefly revisit each of these stud-

ies and comment on the direction that we will take in future studies.

In Chapter 2, we tested the constraining power of six observed reionization-

epoch galaxies by comparing their SEDs against model galaxies from simulations

that assumed three different outflow treatments. We identified plausible theoreti-

cal analogues to five of them in each of our simulations. We then determined how

the predicted stellar mass, star formation rate, and age of each observed galaxy

varied with the outflow model; these predictions may be used to discriminate

between the models in the future. The galaxy for which we failed to find a clear

theoeretical analogue may simply suffer from large photometric errors. However,

the more intriguing explanation is that its star formation history is more bursty

than any of our models. We concluded that (1) our simulations broadly account

for the SEDs of individual reionization-epoch galaxies irrespective of the outflow

model, suggesting that these observations are not detailed enough to distinguish

between galaxy formation models; and (2) our SED-fitting technique is an effi-

cient way to identify objects that challenge models, and is a particularly good

way to test models against an epoch when traditional statistical constraints are

not yet available.

In the future, we will apply this technique to larger samples and account for a

wider range of influences on the stellar populations and on our SEDs. The larger
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sample will probe a wider range of galaxies and may turn up more objects whose

colors lie outside of our predicted range. Additionally, it will be interesting to

compare the results of applying SPOC to large samples versus using traditional

statistical comparisons such as luminosity functions and color-magnitude dia-

grams; we suspect that these tests will yield complementary results. We will

include nonstellar emission in our model SEDs in order to account for contami-

nation by prominent lines such as Lyman-α and Hα. We will also account for the

impact of star formation quenching in massive haloes using heuristic techniques

that group member Jared Gabor is currently developing. This will allow us to

apply SPOC to samples at lower redshifts, where quenching in massive haloes is

known to grow increasingly important.

In Chapter 3, we demonstrated that the galaxy mass-metallicity relation (MZR)

constitutes a strong test of galactic outflow models and explored how our pre-

ferred model gives rise to its predicted MZR. We found that the complex inter-

play between inflows and outflows may be reduced to two simple equilibrium

conditions that depend only on the amount of material ηW driven into outflows

per unit of stellar mass formed.

This work represented a starting point for using metal abundances to test our

galaxy model. We plan to extend it in two distinct ways. First, we will generalize

our previous work by studying α and iron-group elements separately rather than

considering only oxygen. Because the timescales for the production of α and iron-

group elements are very different, this will be a stronger test of our simulated star

formation histories. Second, we will consider “second-parameter” dependencies

in the MZR. In particular, the MZR has been observed to depend systematically

on specific star formation rate, environment, and redshift. Comparing against
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these trends will constitute a powerful—and, in the case of environment and red-

shift, considerably more hierarchical—test of our models. Additionally, we will

produce a uniform set of predictions in order to aid in designing future observing

campaigns.

In Chapter 4, we developed a new method for evolving nonequilibrium ion-

ization and radiation fields that is based on solving the moments of the radiative

transfer equation on a Cartesian grid. Our technique involves no physical ap-

proximations other than the approximation that the Eddington tensors may be

computed using a solution to the time-independent radiative transfer equation.

After optimizing it for the problem of cosmological reionization, we showed that

it is accurate to 10%, that it performs well on standard test problems, and that

its computation time t scales with the number of radiative transfer cells Ncells as

t ∝ N 1.5
cells.

In Chapter 5, we used this technique to study reionization by stitching to-

gether a sequence of snapshots from a recent cosmological hydrodynamic sim-

ulation. Our first result was that our simulated star formation history brought

about reionization by z = 6 with an ionizing escape fraction of only 13%. This

strongly supported the possibility that ordinary star formation may have been

responsible for generating the photons that drove reionization. We then turned

to the question of the topology of reionization. Whereas most numerical stud-

ies to date have found that reionization proceeds sequentially from overdensities

through filaments into voids, we found that ionization fronts leak directly from

overdensities into voids before mopping up the filaments. This “inside-outside-

middle” topology owes to a tendency for ionization fronts to travel more rapidly

parallel than perpendicular to filaments because the recombination rates in voids
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are lower. We found it to be qualitatively robust to every parameter that we could

think of including volume, spatial resolution, ionizing escape fraction, and the ac-

curacy of our radiative transport solver, although each of these parameters modi-

fies the overlap redshift. Our simulations failed to reproduce simultaneously the

observed optical depth to Thomson scattering and the ionization state of the IGM

at z = 6. We speculated that the lack of agreement could be attributed to either

observational errors, missing input physics, or poor mass resolution within our

simulations.

In Chapter 6, we began to add further realism to our studies by integrat-

ing our radiative transport solver into GADGET-2 and running coupled radia-

tive hydrodynamic simulations. Our merged code uses an operator splitting ap-

proach to separate the cooling and star formation step from the iterative ioniza-

tion/radiation update. We solve the ionization equations directly on the SPH

particles, which naturally incorporates the high recombination rates that occur in

dense structures below the resolution of our radiative transfer discretization.

Applying our new merged code to a small test volume, we confirmed our

previous result that ordinary star formation provides sufficient ionizing photons

to reionize the Universe and heat the IGM to ∼ 104K by z = 6. We also con-

firmed our inside-outside-middle reionization topology, ruling out the possibil-

ity that this was an artifact of not accounting for subtle radiative hydrodynamic

effects. We found that the simulated ionization state of the IGM was in consider-

ably better agreement with observations than in our post-processing simulations.

Lingering discrepancies indicated continued room for progress, possibly by in-

creasing our simulation volume. Turning to the cosmic star formation history, we

confirmed analytical expectations that reionization suppresses the star formation
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rate density at z = 6 by suppressing gas accretion into low-mass haloes. How-

ever, this suppression is much more mild than has previously been found, which

we attribute to the tendency for gas that falls onto low-mass haloes to be chan-

nelled through filaments that efficiently self-shield. Thus, we argued that the

evolution of the star formation rate density will not be a useful probe of the his-

tory of reionization. On the other hand, if the overlap epoch can be constrained

through other means, then a weakly-evolving galaxy luminosity function will be

a testable prediction of our model.

We outlined a number of ways in which we will improve on our simula-

tions, including folding more atomic species and molecular hydrogen into our

nonequilibrium ionization solver, adding support for multifrequency radiation

transport, and accounting for the ionizing background owing to active galactic

nuclei. These improvements will yield predictions that can be directly compared

against published and upcoming observations of, for example, the high-redshift

galaxy luminosity function or reionization-epoch metal line absorbers. Unfor-

tunately, computational limitations may for some time forbid us from running

radiative hydrodynamic simulations that simultaneously span ∼ 100h−1Mpc and

resolve haloes down to 107M¯, as is likely necessary for predicting the power

spectrum of 21cm fluctuations fully self-consistently. However, our simulations

will allow us to tune the assumptions that underlie more crude simulations,

which can then be applied to larger volumes. For example, our models self-

consistently predict the mass-to-light ratios of low-mass haloes as a function of

mass, redshift, and ionizing background. Incorporating these trends into dark

matter reionization simulations will represent a significant improvement over

assuming a constant mass-to-light ratio for all haloes, as has often been done
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to date.

In summary, in this thesis, we have (1) tested a model for galactic outflows

in two different ways; and (2) developed and tested a new method for comput-

ing continuum radiative transfer. A glance back at the list of processes that we

compiled in Chapter 1 will remind the reader that these are only two of many

processes that are not yet standard in hierarchical galaxy formation models. Each

of the others is likely to be important, and in the long run we certainly hope

that more of them will become standard. We have focused on these two because,

without them, accounting for any reasonable fraction of the available constraints

while pushing predictions back into the reionization epoch is quite hopeless.

Of the processes that are not yet standard, the quenching of star formation in

massive haloes—whether it owes to active galactic nuclei, hot-mode gas accre-

tion, or some other process—has the most immediate observational implications.

Our group is currently exploring a range of heuristic prescriptions for treating

quenching, and we look forward to incorporating them into our model. With con-

strained treatments for outflows, radiation transport, and quenching, we hope to

have a numerical model that can account for a reasonable fraction of observations

of galaxies and the IGM at all redshifts. This, in turn, will represent significant

progress towards the goal of assembling a model through which we will finally

understand what the object in Figure 1.2 teaches us about the object in Figure 1.1.
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González-Serrano, J. I., Cepa, J., Pérez-Garcı́a, A. M., Gallego, J., Alfaro, E. J.,
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